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The Navier–Stokes equations (NSE) are the system of

non-linear partial differential equations governing the

motion of a Newtonian fluid. The NSE occupy a

central position in the studies of nonlinear phenom-

ena, including the basic problems in nonlinear

equations connected with well posedness, oscilla-

tions, discontinuities, and nonlinear dynamics.

Because of the complexity and variety of fluid

dynamical phenomena, the mathematical theory of

the NSE is far from being finished, and, in practice, is

still essentially open. On the other hand, the fact that

many of the most important questions in the theory of

NSE remain yet to be answered may be for all a

source of pleasure and fascination. So, the celebrated

American Clay Mathematics Institute created the

Navier–Stokes Millennium Price Problem and

offered one million dollar for its solution, stating:

‘‘Although [the Navier–Stokes equation] were written

down in the nineteenth Century, our understanding of

them remains minimal. The challenge is to make

substantial progress toward a mathematical theory

which will unlock the secrets hidden in the Navier–

Stokes equations.’’ (http://www.claymath.org/

millennium-problems/navier%E2%80%93stokes-

equation).

The book consists of long Preface, 21 chapters,

including Notations and glossary, and the

Bibliography.

Chapter 1, Presentation of the Clay Millennium

Prizes, pertains to the Millennium Prize Problems

and their importance to a broad audience by devel-

oping the mathematical background necessary to

understand them, and their historical context, range

from solving the P versus NP problem, the classical

fluid flow equations that were formulated over

170 years ago, and to proving the Birch and Swin-

nerton-Dyer conjecture. The sixth Millennium

Problem formulated by the Clay Mathematics Insti-

tute, Navier–Stokes Existence and Smoothness

Problem asks for a proof of global existence of

smooth solutions for all smooth data, or a proof of the

contrary non-global existence of a smooth solution

for some smooth data, referred to as breakdown or

blow-up. The chapter concisely explains why the

existence and smoothness of the NSE have remained

an outstanding open problem in partial differential

equations theory for more than 80 years.

The Navier–Stokes equations describe the balance

between the rate of change of momentum of an ele-

ment of fluid and the forces on it, as does Newton’s

second law of motion for a particle, where the stress

tensor is a linear function of the rate of strain.

Chapter 2, The physical meaning of the Navier–

Stokes equations, presents briefly some of the basic

ideas of continuum mechanics applied to the New-

tonian fluid in a physically, and mathematically

attractive manner. Several sections deal with standard

material on kinematics, conservation laws, the equa-

tions of hydrodynamics and vorticity dynamics. Next,

the important notions as pressure, strain, and stress

are introduced, and elucidated. Then, the model of the

Newtonian, isotropic, homogeneous and incom-

pressible fluid flow is analyzed in some detail,

leading to the Navier–Stokes equations, and the role

of boundary conditions is clarified. At last, the blow-
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up and turbulence phenomena are sketched, in the

context of NSE.

Chapter 3, History of the equation, gives a short

presentation of the engineering and theoretical

developments in fluid mechanics, beginning with

significant inventions in the ancient times, the crucial

role of the NSE for fluid flows and their complex

solutions as well as the birth of mathematical fluid

dynamics, until the end of twentieth century. It begins

with Archimedes, and then traces how the hydrody-

namics became transformed into a rudimentary

science through the stimulated works of Leonardo,

Newton, Leibniz, Bernoulli, D’Alembert, Euler,

Laplace, Navier (in 1823), Cauchy (in 1828), Poisson

(in 1829), Saint–Venant (in 1843), and Stokes (in

1845). In twentieth century, the science of hydrody-

namics was referred to pure mathematics, and to

mathematical physics. This direction has been initi-

ated by many researchers, including Kolmogorov,

Oseen, Leray, Lichtenstein, Hopf, Ladyzhenskaya,

Monin, Yaglom, Visik, Foias, and Temam.

Chapter 4, Classical solutions, concerns the clas-

sical approach to the Cauchy problem for the Navier–

Stokes equations in R3. The presented method is in

the spirit of the paper by Knightly (Arch. Ration.

Mech. Anal., 21: 211–245, 1966), and uses only

classical tools of differential calculus. To study the

problem, some necessary formulas are introduced and

proved first, including the heat equation and the heat

kernel, the Poisson equation and the Green function,

the Helmholtz decomposition theorem, and the Leray

projection operator. This mathematical apparatus is

sufficient to solve the Stokes problem, i.e., the NSE

when the convective bilinear term is neglected. After

these preliminaries, and use of the Oseen tensor, the

NSE has been transformed into an integro-differential

equation, for which, the following facts are proved:

the existence of a classical solution on [0, T] 9 R3,

T[ 0, for prescribed regular initial data, and the

global existence of the solution when the initial data

are sufficiently small. In addition, some results rela-

ted to the asymptotic behavior of incompressible fluid

equations are analyzed as time tends to infinity—the

phenomenon of instantaneous spreading for the

velocities, and the localization of the vorticity.

Chapter 5, A capacitary approach of the Navier–

Stokes integral equations, concentrates on solving the

NSE treated as the fixed point problem of an integro-

differential transform, through Picard’s iterative

scheme. For this purpose, a basic framework to

describe global solutions for a Cauchy problem with

small initial values concerning a wide class of

semilinear parabolic equations with quadratic non-

linearity is developed. These include such important

notions and tools as Kalton and Verbitsky’s theorem,

parabolic Riesz potentials, Hardy–Littlewood maxi-

mal function, and Hedberg’s inequality, dominating

functions (essential to establish the existence of

solutions to the integral NSE) as well as the suit-

able function spaces, Triebel–Lizorkin–Morrey-

Campanato spaces. For helping the reader to get an

orientation in various function spaces, I recommend

to read the book by W. Yuan, W. Sickel, and D. Yang

(Morrey and Campanato Meet Besov, Lizorkin and

Triebel, Springer, 2010).

Chapter 6, The differential and the integral

Navier–Stokes equations, discusses the various defi-

nitions of a solution of the Cauchy initial value

problem for the NSE, where the pressure term has

been eliminated through the Leray projection opera-

tor. The essential role in this study plays the uniform

local estimates, connected with the invariance of the

NSE under space translation. The uniform local

estimates for the heat equation are proved first. Then,

the Stokes problem is considered (with some

restrictions for the class of forcing terms), and the

Oseen’s tensor formalism, i.e., the equivalence

between the differential and the integral formulation

of the NSE, is established. After introducing various

functional analytic tools in the analysis of the NSE,

the concepts of a very weak solution, and weakly

regular very weak solution are presented. Also, the

criterion is given to ensure that a very weak solution

is indeed an Oseen solution. A special case of Oseen

solutions, called the mild solutions, is also discussed.

These are the solutions that may be obtained by

Picard’s iteration method. The remaining section

deals with the notions of the suitable solutions, and

the Leray weak solution for the NSE, i.e., the class of

weak solutions that satisfy a localized version of the

energy inequality, and the Leray energy inequality,

respectively.

The next three chapters are devoted to mild solu-

tions in various function spaces. Such solutions are

520 A. Icha Pure Appl. Geophys.



obtained by rewriting the NSE as the integral equa-

tion, and then proving that, in suitable function

spaces, the right-hand side defines a contraction.

Chapter 7, Mild solutions in Lebesgue or Sobolev

spaces, discusses the classical results of Kato and

Fujita on mild solutions in Sobolev spaces, and in

Lebesgue spaces together with the relatively recent

proof of uniqueness by Furioli et al. The local solu-

tions of NSE in the Hilbertian setting are analyzed

first. Then, the criterion for the existence of global

solutions is formulated, and proved. The subsequent

section extends the Fujita and Kato’s approach to the

case of Sobolev spaces, while the another section

studies the mild solution of NSE in the Lebesgue

spaces. The chapter is concluded with the proof of the

uniqueness of mild solutions of NSE by means of an

appropriate use of Besov type estimates. Chapter 8,

Mild solutions in Besov or Morrey spaces, focuses on

the analysis of a class of function spaces, to obtain

mild solutions for the NSE in Besov or Morrey

spaces. After establishing some key estimates and

properties of the bilinear operator in the Morrey

spaces, two alternative proofs for existence of mild

solutions of the NSE are presented. Then, the local

uniqueness of Morrey solutions is shown. The similar

analysis is made to the Navier–Stokes problem to

guarantee existence of solutions to the NSE with

initial values in Besov spaces. The case of Besov

spaces with positive regularity indexes is also dis-

cussed. The Cauchy problem for the NSE in Triebel–

Lizorkin spaces is considered briefly, as well as the

existence of global mild solutions of NSE in critical

Fourier–Herz spaces. The term BMO denotes the

space of functions of Bounded Mean Oscillation,

while the space BMO-1 is defined as the space of

derivatives of functions in BMO. Chapter 9, BMO-1

and the Koch and Tataru theorem, concerns the

important theorem stating the fact that the NSE in Rn

are globally well posed for small initial data in

BMO-1 (Rn). The space BMO-1 (Rn) plays a special

role since it is the largest critical space where such

existence results are available. In addition, the fol-

lowing important facts are presented and proved (for

the Navier–Stokes problem with a null force): ill-

posedness of the NSE in a certain Besov spaces; the

problem of global mild solutions associated to large

initial value; the time and space analyticity of mild

solution of the NSE, and the persistency phe-

nomenon, i.e., the property connected with the

propagation of initial regularity for mild solutions in

BMO-1.

The NSE are invariant under the action of various

discrete and continuous groups of transformations,

and this invariance leads to certain symmetries for the

NSE. Chapter 10, Special examples of solutions,

analyzes the solutions of NSE that are invariant with

respect to mentioned symmetries. The groups of

transformations under which the NSE are invariant,

(for the Navier–Stokes problem with a null force),

include: translations of time and space; space rota-

tion; Galilean transformations; the group of

transformations due to scalings of time and space,

and change of orientation. The so-called ‘‘two-and-a-

half dimensional flows’’ are considered first. The

global existence of unique solutions to the Navier–

Stokes problem, and the stability of the solutions are

proved. Then, the axisymmetrical solutions of

Navier–Stokes problem are analyzed using the theory

of Muckenhoupt weights. In the case of axisymmetric

flows with no swirl, the global existence under some

regularity assumptions on the initial velocity and

forces, but without any size requirements on the data,

is formulated and proved. The next section deals with

the helical symmetry of Navier–Stokes problem.

Global existence of helical symmetrical solutions is

formulated, and proved. Subsequently, the Bran-

dolese’s symmetrical solutions are considered, i.e.,

the solutions of Navier–Stokes problem which are left

invariant under the action of discrete group generated

by the certain isometries. The successive section

concerns the self-similar solutions, namely, the

solutions of Navier–Stokes problem that are invariant

under the action of time–space rescalings. It is shown

that the existence of self-similar solutions for the

NSE is an immediate consequence of the theory of

mild solutions for small data in Besov spaces. Two

sections deal with the steady solutions of the NSE.

After the formulation of the stationary NSE problem

in the form of the integral equation with small data,

the existence of steady solutions is proved, together

with the proof of the stability of steady solutions

under small perturbations. Then, the Landau’s solu-

tions are discussed, a celebrated family of explicit

solutions of the steady-state NSE. The next section is

Vol. 175, (2018) The Navier–Stokes Problem in the Twenty-first Century 521



devoted to time-periodic solutions of the NSE. The

time-periodic Navier–Stokes problems in Sobolev,

and Morrey spaces are analyzed, and the existence of

solutions for NSE is proved. The last section presents

a brief introduction to the Beltrami flows, and the

Trkalian flows. This term is associated with the name

of outstanding Czech physicist Viktor Trkal

(1888–1956), who made the significant contribution

in fluid mechanics, time-harmonic electromagnetism

and astrophysics. The Trkal solution of the NSE

forms an important subclass of Beltrami flows. In

particular, the famous Arnold–Beltrami–Childress

(ABC) flow, a helical steady solution of Euler equa-

tions for ideal incompressible flow, is the classical

example of the Trkalian flow.

Chapter 11, Blow-up? concentrates on the excit-

ing, open question of whether the NSE can generate a

finite-time singularity from smooth initial data. In

fact, this issue is of the essence of the Clay Millen-

nium problem. The simplified model for the NSE,

called the cheap NSE, is analyzed first. For this

equation, the blow-up in finite time for sufficiently

large initial data is proved. Next, the Serrin’s crite-

rion for blow-up of the NSE solutions together with

the several generalizations of it is discussed and

proved. The connection between blow-up and vor-

ticity is examined, and it is stated that, whenever the

direction of vorticity evolves regularly in the areas

where the vorticity is large, the solution cannot blow

up. The squirt singularities are also presented, and the

inequality is proved that precludes the possibility of

squirt singularities at the blow-up time for hydrody-

namic type equations.

Chapter 12, Leray’s weak solutions, provides a

concise overview of the classical theory on exis-

tence, and weak-strong uniqueness of Leray

solutions, and the extensions of the Prodi–Serrin

criterion to larger classes of solutions. Two sections

are on the existence of weak solutions, beginning

with the Rellich–Lions theorem (with proof), and

contain the following strategy for the main proof:

the use of the Picard algorithm to solve on a small

interval of time the mollified NSE; the establishing

an energy estimate on this solution, and use of the

Rellich–Lions theorem to relax the mollification and

get a solution to the NSE. The next section deals

with the weak–strong uniqueness problem. The

problem relies to find conditions on a strong solu-

tion u of NSE such that all weak solutions which

share the same initial condition u0 equal u. The

Prodi–Serrin uniqueness criterion is presented and

proved, as well as the recent, generalized conditions,

formulated and discussed by several authors. The

problem of the uniqueness for almost strong solu-

tions, and the novel results on stability of mild

solutions of the NSE through weak perturbations,

are also analysed.

Chapter 13, Partial regularity results for weak

solutions, concerns the interior regularity criteria for

weak solutions of the NSE, and the famous theorem

of Caffarelli, Kohn, and Nirenberg (C–K–N) that

gives the best estimate for Hausdorff’s dimension of

the singular set for a class of weak Leray–Hopf

solutions to the Cauchy problem. The terse review of

the state of the regularity theory for the NSE

including the Serrin’s, and the O’Leary’s theorems on

the interior regularity, is presented. The key points of

the strategy of Scheffer and C–K–N to achieve an

estimate of the Hausdorff dimension of the singular

set, together with the new proofs and results of the

partial regularity theorems for solutions of the NSE

are described, and discussed.

Two chapters are devoted to solutions of NSE in

Lebesgue spaces. Chapter 14, A theory of uniformly

locally L2 solutions, summarizes the state of knowl-

edge about local existence (in time) of suitable local

square-integrable weak solutions for NSE. The exis-

tence of uniformly locally square integrable

solutions, in four steps, is proven first. Then, the local

inequalities for local Leray solutions, together with

the asymptotic behavior of local Leray solutions, are

discussed, and proved. The specific variant of the C–

K–N regularity criterion is formulated, and the

inequalities in the L? norm for local Leray solutions,

are obtained and clarified. Also, the generalization of

the weak–strong uniqueness theorem for Leray

solutions is analyzed. Chapter 15, The L3 theory of

suitable solutions explores in an expository manner,

the L?
t L3

x regularity results for suitable solutions of

the NSE, and the possibility of the existence of initial

data with minimal L3-norm for potential Navier–

Stokes singularities.

Chapter 16, Self-similarity and the Leray–Schauder

principle, deals with the Leray–Schauder theorem and
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its applications to existence problem of large steady-

state solutions, and the existence of large self-similar

solutions for NSE. At the beginning, the case of steady-

state solutions of NSE is considered. The simple proof

of existence is presented, based upon particular form of

the Leray–Schauder principle, known as Schaefer’s

fixed-point theorem. The remaining sections concern

the theory of self-similar solutions of NSE. The prob-

lem of the existence of forward self-similar solution for

any large homogeneous initial value is formulated and

proved. Also, the non-existence of backward self-

similar solutions is shown, i.e., that the only self-sim-

ilar solution satisfying the global energy estimates is

the null solution. It is an answer on 1934 Leray’s

original problem, but some important questions

regarding self-similarity were left open. As an addi-

tional reading, I recommend the recent, interesting

paper, by Chae and Jörg Wolf (On the Liouville Type

Theorems for Self-Similar Solutions to the Navier–

Stokes Equations. Arch. Rational Mech. Anal. 225

(2017) 549–572).

The next two chapters concentrate on the approx-

imate models of the NSE. In Chapter 17, a-Models,

the four models are introduced and discussed,

namely, the Leray-a model; the Navier–Stokes a-

model, also known as viscous Camassa–Holm equa-

tions; the Clark-a model, and the simplified Bardina

model. The strategy refers to the 1934 Leray paper,

and relies on solving a mollified system, and then

showing that the limit of the solutions of such mol-

lified systems is, in some sense, a solution of the

NSE. The following steps for the solutions are con-

sidered: the local existence; the energy estimates and

global existence; the weak convergence; the global

energy estimates for the weak limit; the local energy

estimates for the weak limit, and the strong conver-

gence. The approximate formulas for the Reynolds

stress tensor in such models are also presented, and

discussed briefly. Chapter 18, Other approximations

of the Navier–Stokes equations, continues the subject

by describing the other approximations and correc-

tions for the NSE. These include: the Faedo–Galerkin

method; the frequency cut-off technique; a higher

order artificial viscosity approach (hyperviscosity);

the Ladyzhenskaya’s model, and the model with

nonlinear damping. I think, that the way of enforcing

uniqueness and global existence of weak solutions,

connected with the introduce a damping term in the

NSE is very promising (see also H. Liu, H. Gao,

Decay of solutions for the 3D Navier–Stokes equa-

tions with damping. Appl. Math. Lett. 68 (2017)

48–54).

To overcome the computational difficulties con-

nected with the incompressibility constraints, the ‘‘so-

called’’ artificial compressibility approximation was

developed. Chapter 19, Artificial compressibility,

concerns the Leray weak solutions of the NSE, con-

structed by the artificial compressibility method. Two

classical models, Temam’s model and Vishik and

Fursikov’s model, are introduced and analyzed. Also,

the correction to the NSE, combining the relaxation

time term and Vishik and Fursikov’s artificial com-

pressibility to get a hyperbolic model with finite speed

of propagation, (Hachicha model), is investigated.

The final chapter, Conclusions, recapitulates

briefly the key results concerning solvability of the

Cauchy problem for the NSE, together with a cata-

logue of what has been to prove in order to solve the

sixth Millennium Problem.

To summarize, I would strongly recommend this

book to anyone seriously interested in developments

on Navier–Stokes equations theory in the second half

of the twentieth century, and in the first 17 years of the

twenty-first century. The book is on a source of

extremely valuable information on NSE for both the

mathematicians, and the mathematically oriented the-

oretical physicists. However, in my opinion, only those

who professionally work in the area will have the for-

titude to exploration it in all details! The prerequisites

for the study are solid backgrounds in advanced anal-

ysis, theory of function spaces, distribution theory, and

nonlinear partial differential equations. In particular,

concerning the solutions of the NSE, I think that, from

the physical point of view, a very important question is

the obtain of at least one explicit, nontrivial solution of

the full Navier–Stokes equations… in future!
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