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Abstract—The paper considers Poisson temporal occurrence of

earthquakes and presents a way to integrate uncertainties of the

estimates of mean activity rate and magnitude cumulative distri-

bution function in the interval estimation of the most widely used

seismic hazard functions, such as the exceedance probability and

the mean return period. The proposed algorithm can be used either

when the Gutenberg–Richter model of magnitude distribution is

accepted or when the nonparametric estimation is in use. When the

Gutenberg–Richter model of magnitude distribution is used the

interval estimation of its parameters is based on the asymptotic

normality of the maximum likelihood estimator. When the non-

parametric kernel estimation of magnitude distribution is used, we

propose the iterated bias corrected and accelerated method for

interval estimation based on the smoothed bootstrap and second-

order bootstrap samples. The changes resulted from the integrated

approach in the interval estimation of the seismic hazard functions

with respect to the approach, which neglects the uncertainty of the

mean activity rate estimates have been studied using Monte Carlo

simulations and two real dataset examples. The results indicate that

the uncertainty of mean activity rate affects significantly the

interval estimates of hazard functions only when the product of

activity rate and the time period, for which the hazard is estimated,

is no more than 5.0. When this product becomes greater than 5.0,

the impact of the uncertainty of cumulative distribution function of

magnitude dominates the impact of the uncertainty of mean activity

rate in the aggregated uncertainty of the hazard functions. Fol-

lowing, the interval estimates with and without inclusion of the

uncertainty of mean activity rate converge. The presented algo-

rithm is generic and can be applied also to capture the propagation

of uncertainty of estimates, which are parameters of a multipa-

rameter function, onto this function.

Key words: Aggregated uncertainty in the activity rate and

magnitude, magnitude cumulative distribution function, interval

estimation of seismic hazard functions, resampling methods,

bootstrap, jackknife.

1. Introduction

The probabilistic seismic hazard is a potential

possibility of the occurrence of ground motion caused

by seismicity, expressed in the form of likelihoods.

This possibility results from probabilistic properties

of the seismic source, propagation of seismic waves

from the source to a receiver and receiving site. The

probabilistic seismic hazard analysis (PSHA) prob-

lem can be presented as

Pr amp x0; y0ð Þ� a x0; y0Þ in D time unitsð Þ½ � ¼ p;

ð1Þ

where D and p are given values and one looks for the

value of amplitude parameter of ground motion, a(x0,

y0), at the given point (x0, y0) whose exceedance

probability in D time units is p.

The classic formulation of PSHA assumes that the

earthquake occurrence process is Poissonian (e.g.

Cornell 1968; Cornell and Toro 1970; Reiter 1991).

There are numerous papers indicating the non-Pois-

sonian character of tectonic (e.g. Shlien and Toksöz

1970; Vere-Jones 1970; Kiremidjian and Anagnos

1984; Cornell and Winterstein 1988; Parvez and Ram

1997; Lana et al. 2005; Xu and Burton 2006; Chang

et al. 2006; Jimenez 2011; Martin-Montoya et al.

2015) as well as anthropogenic seismic processes

(e.g. Lasocki 1992; Weglarczyk and Lasocki 2009;

Marcak 2013). However, the classic formulation with

Poisson model for earthquake occurrence is still often

used (e.g. Petersen et al. 2014, 2015) as it may be

appropriate for the cases involving broad average of

mixtures of seismic processes. Nonetheless, its

practical application should be preceded by a rigor-

ous check of the applicability of Poisson model.

When the Poisson model for earthquake occurrences

is accepted, the exceedance probability, that is the

probability that the amplitude parameter of ground

motion will exceed a at (x0, y0) in any time intervthe

seismic source and pointal of length D time units is:
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Pr amp x0; y0ð Þ� a x0; y0ð Þ½ �

¼
Z1

0

Z

M

Pr amp x0; y0ð Þ� aðx0; y0Þjr;M½ �

f rð Þf M N Dð Þ 6¼ 0jð ÞdMdr;

ð2Þ

where N(D) is the number of seismic events in the time

interval of length D time units, M is the event magni-

tude, and f(M|N(D) = 0) is the probability density

function of M, conditional upon the occurrence of

seismic events in D, r is the distance between the

seismic source and point (x0, y0), f(r) is the probability

density function of r, and Pr[amp(x0, y0) C a(x0, y0)|r,

M] is the probability of occurrence at (x0, y0) the ground

motion amplitude greater than or equal to a(x0, y0),

when the event of magnitude M is located at the dis-

tance r from the point (x0, y0). It is also assumed in (2)

that the event magnitude and location are independent.

The conditional magnitude density reads:

f M N Dð Þ 6¼ 0jð Þ ¼ � d

dM

R M;Dð Þ
1 � exp �kDð Þ

� �
; ð3Þ

where,

R M;Dð Þ ¼ 1 � exp �kD 1 � F Mð Þð Þ½ �; ð4Þ

R(M, D), referred to as exceedance probability, is the

total probability that in D time units there will be

events equal to or greater than M, where F(M) is the

cumulative distribution function (CDF) of magnitude,

k is the mean activity rate, that is the parameter of

Poisson’s distribution of earthquake occurrence. R(M,

D) represents a potential of the seismic source.

The other function often used to express proba-

bilistic properties of seismic sources when the

Poisson model for occurrence is applied, is the

reciprocal of the rate of occurrence of earthquakes of

magnitude M or greater referred to as the mean return

period (e.g. Lomnitz 1974; Baker 2008):

T Mð Þ ¼ k 1 � F Mð Þ½ �f g�1: ð5Þ

The mean return period is the average recurrence

time of events of magnitude M or greater. Both these

hazard functions, R(M, D) and T(M), depend on the

mean event rate of the Poisson temporal occurrence of

earthquakes and the distribution of magnitude. The

interval estimation of the CDF of magnitude,

F(M) and subsequently the interval estimation of R(M,

D) and T(M) where the Poisson occurrence model is

accepted but only F(M) uncertainty is taken into

considerations have been presented in Orlecka-Sikora

(2004, 2008). Extending these works, here we propose

a method for the interval estimation of R(M, D) and

T(M) functions that accounts for aggregated uncer-

tainty resulting from the uncertainty of the Poisson

mean event rate, k, estimate and the uncertainty of

CDF of magnitude, F(M), estimate. On synthetic and

actual seismicity cases we analyze improvements

introduced by such an integrated approach.

2. Interval Estimation of Seismic Hazard Parameters

When taking into account the aggregated uncer-

tainty in the activity rate and magnitude CDF

estimates the confidence intervals (CI) of hazard

functions are evaluated on the plug-in curve in the

following way:

1. First, the percentiles of the mean activity rate

distribution, kðaÞ, are estimated, where a is the

percentile order;

2. Next, at each value of M the percentiles of CDF,

F Mð ÞðaÞ, are calculated for each a;

3. The values of R M;Dð Þ, T Mð Þ (or other hazard

functions), are products of all combinations of the

percentiles k̂ðaÞ with the percentiles F̂ Mð ÞðaÞ;
4. The confidence intervals on the plug-in R̂ M;Dð Þ,

T̂ Mð Þ are determined directly from the sorted

values of R̂k M;Dð Þ, T̂k Mð Þ obtained for the

particular value of M, where k ¼ 1; 2; . . .; l2

denotes the combinations of l evenly spaced

percentiles k with l the same percentiles for

magnitude CDF. The interval of intended cover-

age 1 � 2a is given by the a � l2
� �

-th and

1 � að Þ � l2
� �

-th values of the series of R̂k M;Dð Þ,
T̂k Mð Þ, where ab c= ad e denotes the largest/smallest

integer less/greater than or equal to a,

respectively.

For the assumed here Poisson earthquake occur-

rence the mean activity rate estimate is k = N(D)/D.

In this case, the standard method of confidence

interval construction for the Poisson mean is based on

inverting an equal tailed test for the null hypothesis

H0 : k ¼ k0 using the exact distribution, e.g. normal.
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However, Patil and Kulkarni (2012) present that this

approach provides conservative and too wide confi-

dence intervals. After review of the existing methods

for obtaining the Poisson confidence intervals they

recommend to choose method adjusted to the value of

mean activity rate. In the case where the value of

mean activity rate is lower than 2 they propose to use

one of the following methods:

(a) Modified Wald (Barker 2002):

CI :
0;� log a

2

� 	
 �
for x ¼ 0

xþ za
2
�

ffiffiffi
x

p
; xþ z1�a

2
�

ffiffiffi
x

ph i
for x[ 0

(
ð6Þ

(b) Wald continuity correction (Schwertman and

Martinez 1994):

CI: x� 0:5ð Þþ za
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 0:5

p
; xþ 0:5ð Þþ z1�a

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 0:5

ph i
;

ð7Þ

where x is the number of observation in the consid-

ered time period, za
2

and z1�a
2

are the quantiles of the

standard Gaussian distribution of the order a
2

and

1 � a
2
, respectively. In the case where the mean

activity rate is larger authors suggest to use one of the

four methods:

(a) Garwood (1936):

CI:

v2

2x;a
2ð Þ

2
;
v2

2 xþ1ð Þ;1�a
2ð Þ

2

2
4

3
5 ð8Þ

(b) Wilson and Hilferty (1931):

CI: x 1 � 1

9
xþ 1

3
za

2

ffiffiffi
x

p
 �
; xþ 1ð Þ

�

� 1 � 1

9
xþ 1ð Þ þ 1

3
z1�a

2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
 �� ð9Þ

(c) Molenaar (1970):

CI: x�0:5ð Þþ
2z2

a
2
þ1

� �

6
þ za

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�0:5ð Þþ

z2
a
2
þ2

� �

18

vuut
; xþ0:5ð Þ

2
664

þ
2z2

1�a
2
þ1

� �

6
þ z1�a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ0:5ð Þþ

z2
1�a

2
þ2

� �

18

vuut
3
775

ð10Þ

(d) Begaud et al. (2005):

CI:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 0:02

p
þ
za

2

2

� �2

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 0:96

p
þ
z1�a

2

2

� �2
� �

;

ð11Þ

where v2
n;að Þ are the quantiles of the a order of the v2

distribution with n degrees of freedom.

We consider two approaches to model the mag-

nitude distribution. First is the most popular

exponential magnitude distribution model, which

results from the Gutenberg–Richter relation and

reads:

f Mð Þ ¼ be�b M�Mminð Þ; F Mð Þ ¼ 1 � e�b M�Mminð Þ

M�Mmin; ð12Þ

f(M) = F(M) = 0 for M\Mmin, b ¼ bln10, where

b is the Gutenberg–Richters’ constant and Mmin

known as magnitude completeness is the lower limit

of magnitude of events, which statistically all are

present in the analyzed sample of earthquakes. For

this model, the interval estimation of its parameter is

usually based on the asymptotic normality of the

maximum likelihood estimator.

The second approach is applicable to deal with

multicomponental seismic processes in which the

magnitude distribution does not follow the Guten-

berg–Richter relation but is more complex, often

multimodal. It is then proposed to use the nonpara-

metric kernel estimation of magnitude distribution

(e.g. Lasocki et al. 2000; Kijko et al. 2001; Orlecka-

Sikora and Lasocki 2005; Lasocki and Papadimitriou

2006; Lasocki 2008; Quintela-del-Rio 2010; Fran-

cisco-Fernandez et al. 2011; Francisco-Fernandez and

Quintela-del-Rio 2011). The adaptive kernel estimate

of magnitude probability density function (PDF),

f Mð Þ, is constructed by summing up the Gaussian

kernel functions:

f̂ a Mð Þ¼

0 for M\Mmin

1ffiffiffiffi
2p

p
Pn

i¼1
1

xih
exp �0:5 M�Mi

xih

� �2
� �

n�
Pn

i¼1U
Mmin�Mi

xih

� � for M�Mmin

8>>>><
>>>>:

;

ð13Þ

where n is the number of events greater than or equal

to Mmin, Mi are the sizes of these events, Uð�Þ
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denotes the standard Gaussian cumulative distribu-

tion, h is the smoothing factor automatically selected

from the data using the least squares cross-validation

technique (Silverman 1986). For the Gaussian kernel

function and this h selection method it is the root of

the equation (Kijko et al. 2001):

X
i;j

2�0:5 Mi�Mj

� 	2

2h2
�1

" #
exp �

Mi�Mj

� 	2

4h2

" #(

�2
Mi�Mj

� 	2

h2
�1

" #
exp �

Mi�Mj

� 	2

2h2

" #)
�2n¼0:

ð14Þ

The local bandwidth factors xi; i ¼ 1; . . .; n cause

the smoothing factor to adapt to uneven data density

along the magnitude range. They are estimated as

follows

xi ¼
~f Mið Þ
g

� ��0:5

; ð15Þ

where ~f �ð Þ is the pilot, constant kernel estimator

~f Mð Þ ¼ 1ffiffiffiffiffiffi
2p

p � 1

nh

Xn
i¼1

exp �0:5
M �Mi

h


 �2
" #

; ð16Þ

and g ¼
Qn

i¼1
~f Mið Þ


 �1
n is the geometric mean of all

constant kernel estimates. Such adaptive approach

improves effectiveness of the nonparametric estima-

tor in high magnitude intervals where the data are

sparse. The corresponding magnitude CDF estimator

is:

F̂a Mð Þ ¼

0 for M\MminPn
i¼1 U M�Mi

xih

� �
� U Mmin�Mi

xih

� �h i

n�
Pn

i¼1 U
Mmin�Mi

xih

� � for M�Mmin

8>>><
>>>:

:

ð17Þ

Further details on the nonparametric estimator

and its adoption for magnitude distribution estimation

are provided in Lasocki et al. (2000), Kijko et al.

(2001), and Orlecka-Sikora and Lasocki (2005) and

the references therein.

For the nonparametric modeling of magnitude

distribution we propose the iterated bias corrected and

accelerated method (IBCa method) for interval esti-

mation (Orlecka-Sikora 2004, 2008). This procedure

is based on the smoothed bootstrap and second-order

bootstrap samples. The algorithm begins from the so-

called bias corrected and accelerated method (BCa

method, Efron 1987). The BCa intervals are second-

order accurate and transformation respecting (Efron

1987; Efron and Tibshirani 1998). To improve the

accuracy of results of the magnitude CDF confidence

interval estimation we use of the iterated bootstrap for

estimating the bias-correction parameter. According

to the iterated BCa method, for any magnitude value

the interval of intended coverage 1 � 2a of the non-

parametric magnitude CDF is given by:

F̂a�
a1 ; F̂

a�
a2

� 	
; ð18Þ

where F̂a�
a1 and F̂a�

a2 are bootstrap estimated percentiles

of the distribution of nonparametric magnitude CDF

estimator, F̂a. The orders of percentiles, a1 and a2,

are calculated from the equations:

a1 ¼ U ẑ0 þ
ẑ0 þ za

1 � â ẑ0 þ zað Þ


 �
; ð19Þ

a2 ¼ U ẑ0 þ
ẑ0 þ z1�a

1 � â ẑ0 þ z1�að Þ


 �
; ð20Þ

where za and z1�a are percentiles of the standard

Gaussian distribution, ẑ0 is the estimate of bias-cor-

rection, and â is the estimate of the acceleration

constant. The bias-correction, z0, measures the dis-

crepancy between the median of F̂a�
i and F̂a

i , in

normal units. According to IBCa method ẑ0 is esti-

mated as a mean value of the bootstrap estimates of

ẑ0, ẑ�0. Each value of ẑ�0 is obtained from the propor-

tion of the second-order bootstrap CDF estimates,

F̂a��
i , less than the magnitude CDF estimated from the

b-th bootstrap data sample, F̂a mð Þ�b, where b ¼
1; 2; . . .; B and B is the number of the first order

bootstrap samples (Orlecka-Sikora 2008):

ẑ�0¼U�1 numberof IIorderbootstrapestimates F̂a Mð Þ��i \F̂a Mð Þ�b
j


 �
;

ð21Þ

where U�1 �ð Þ indicates the inverse function of the

standard Gaussian CDF, j is the number of second-

order bootstrap samples drawn from every bootstrap

sample and used to estimate the magnitude CDF,

F̂a Mð Þ��i ; i ¼ 1; 2; . . .; j
� �

.

The acceleration constant refers to the rate of

change of the standard error of F̂a
i with respect to the
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actual value of magnitude CDF. The acceleration

constant can be evaluated in various ways, for

instance from the equation (Efron and Tibshirani

1998):

â ¼
Pn

i¼1 F̂a
�ð Þ
� F̂a

ijackð Þ

� �3

6
Pn

i¼1 F̂a
�ð Þ
� F̂a

ijackð Þ

� �2
� �3=2

; ð22Þ

where F̂a
ijackð Þ

denotes the i-th jackknife nonparametric

estimate of magnitude CDF, and F̂a
�ð Þ

is the arithmetic

mean of all jackknife estimates.

The bootstrap samples are generated by sampling

n-times with replacement from the original data set.

Given a data sample M ¼ Mif g, i ¼ 1; 2; . . .; n, the

bootstrap sample is obtained from the formula:

yi ¼ M0
i þ h � xi � e; ð23Þ

where M0
i represents the results of resampling with

replacement from the original data points, the

smoothing factor h is estimated on the basis of the

original data sample, the local bandwidth factors xi

are calculated on the basis of the original data sample

for M0
i values, and e is the standard normal random

variable, (Silverman 1986). The i-th jackknife sample

is defined as the original sample with the i-th data

point removed (Efron and Tibshirani 1998).

To achieve a desired level of accuracy of the

quantile level of CI of magnitude CDF the number of

bootstrap samples can be calculated using three-step

method (Andrews and Buchinsky 2002; Orlecka-

Sikora 2008). Further details on the IBCa interval

estimation and justification of its use for magnitude

CDF estimation when nonparametric approach is

applied can be found in the cited works and the ref-

erences therein.

3. Performance of the Algorithm

The performance of the proposed approach is

studied on Monte Carlo generated seismic catalogues

linked to three models of magnitude distribution. The

functional form of the first two models is the one-side

truncated exponential distribution of magnitude,

Eq. 12. The parameters for the simulations are:

b = 1.7 (b ¼ 3:8), Mmin ¼ 1:1 for the first model and

b = 0.6 (b ¼ 1:4), Mmin ¼ 1:0 for the second one. An

actual example of the first model-like magnitude

distribution is the seismic sequence that occurred in

connection with a geothermal well in Basel in

Switzerland (e.g. Haege et al. 2012; Urban et al.

2015). The second model corresponds for instance to

the seismicity triggered by a surface reservoir

impoundment of the hydropower plant Song Tranh 2

in Central Vietnam (e.g. Wiszniowski et al. 2015;

Urban et al. 2015). The third model is a mixture of

two one-side truncated exponential distributions, and

reads:

f ðxÞ ¼
k � b1 � e�b1x dla 0	 x	 xc

l � b2 � e�b2x dla x� xc

(
; ð24Þ

where x ¼ M �Mmin, xc ¼ Mc �Mmin, Mc is the

magnitude for which the break of linear scaling is

observed, k ¼ 1 � 1 � b1

b2

� �
� e�b1xc

n o�1

, l ¼ k � b1

b2
�

eb2xc

eb1xc
. This function models complex magnitude gen-

eration processes. The parameters for the simulation

are b1 ¼ 1:05 ðb1 ¼ 2:42Þ, b2 ¼ 1:55 ðb1 ¼ 3:57Þ,
Mmin ¼ 3:5; Mc ¼ 5:0.

From each of these model distributions we draw

50 samples of 50 elements each and 50 samples of

100 elements each. Every sample is used to estimate

the cumulative distribution, FðMÞ, and the seismic

hazard functions, R M;Dð Þ, T Mð Þ. The estimation is

done by fitting the parametric exponential model,

Eq. 12, to data drawn from model 1 and model 2 and

using the adaptive nonparametric kernel estimator,

Eqs. 13–17, for data drawn from model 3. We use

mean activity rate values from the range 0.1–10

events/time unit. In this way, we obtain an opportu-

nity to track scenarios stemming from combinations

of: (a) seismic sequence with low activity rate, (b)

seismic sequence with high activity rate, (c) seismic

sequence with low value of magnitude CDF for the

specified M, and (d) seismic sequence with high

value of magnitude CDF for the specified M.

In Figs. 1, 2, 3 and 4 the exact values of the

exceedance probability, R M;Dð Þ, and mean return

period function, T(M), are compared with the esti-

mates of 95% CI calculated with and without

inclusion of the activity rate uncertainty. The results

come from one of the above mentioned 100 and 50

event sample drawn from model 1 and model 2
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distributions, respectively, and from 100 event sam-

ple drawn from model 3 distribution. The estimation

of R M;Dð Þ has been performed for magnitude

Mp = 2.0 in models 1 and 2 and for Mp = 4.5 in

model 3.

Figures 5, 6, 7 and 8 show the relative disparity of

mean upper/lower bound of 95% CI of the excee-

dance probability when assuming an aggregated

uncertainty of the activity rate and magnitude CDF

and when accounting only for CDF uncertainty. The

disparity is evaluated by:

dU=L Mp

� 	
¼

�RU=L Mp;D
� 	

� �RB
U=L Mp;D

� 	
�RB
U=L Mp;D

� 	 ; ð25Þ

where �RB
U=L Mp;D

� 	
is the mean of 50 estimates of the

upper/lower bound of 95% CI of exceedance proba-

bility when assuming the aggregated uncertainty, and
�RU=L Mp;D

� 	
is this mean when the mean activity rate

estimate is assumed to be error free.

The analysis shows that the uncertainty of mean

activity rate affects significantly the interval esti-

mates of hazard functions only when the product kD
is small, the activity rate is small and the inference

does not concern very long time period D. With

increasing k, the impact of the uncertainty of mag-

nitude CDF dominates the impact of k uncertainty in

the aggregated uncertainty of the hazard functions

and the interval estimates with and without inclusion

of the k uncertainty converge. This agrees with and

stems from the functional forms of the hazard func-

tions. For larger M, 1 - F(M) tends to zero and for

moderate k and D it dominates kD in the exponent in

R(M, D) (see: Eq. 4).

When the k uncertainty effect is significant, its

neglecting results in underestimation of the upper

bound of CI of RðMp;DÞ and overestimation of its

lower bound. Increasing sample size reduces the level

of this misestimation. For the same sample size we

observe that the effect of k uncertainty becomes

greater for smaller magnitudes. This is due to smaller

magnitude CFD uncertainty for smaller magnitudes

and hence a reduction of its effect in total uncertainty

due to both factors: k and F(M) (Figs. 5a, 6a, b).

4. Practical Examples

The two considered approaches to CI estimation

of hazard functions have been applied to two actual

sets of earthquakes related to anthropogenic seis-

micity accompanying, respectively, (1) underground

exploitation of copper ore in the Legnica-Głogów

Copper District (LGCD) in Poland (Orlecka-Sikora

et al. 2012) and (2) Song Tranh 2 in Vietnam reser-

voir impoundment (Wiszniowski et al. 2015; Urban

et al. 2015).

Figure 1
Exact values (solid red) and 95% CI-s estimated with (dashed blue) and without (dotted black) the inclusion of the mean activity rate

uncertainty of a the exceedance probability of events of magnitude Mp = 2.0 and b the mean return period function. The results have been

obtained for 100 event sample drawn from the model 1 distribution. The mean activity rate has been assumed as 10 events/arbitrary unit
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The first dataset from LGCD is associated with

mining exploitation in section G-11/8 of Rudna mine.

An in-mine seismic monitoring system records all

events from there of magnitudes 1.2 and more.

Mining works in the section G-11/8 began in 2002

and have been continued until present. In this study,

242 seismic events that occurred in the period from

2.01.2004 to 30.12.2005 are analyzed. The strongest

tremors of local magnitudes 3.7 and 3.5 took place on

7.01 and 20.01.2005, respectively. The b-value for

this dataset is very low, 0.32, and the mean activity

rate is 0.3 event/day. Detailed analyses of the

empirical frequency–magnitude relations of the seis-

micity from the LGCD area revealed that the

magnitude distribution did not follow the Gutenberg–

Richter relation but had a complex structure (e.g.,

Orlecka-Sikora and Lasocki 2005; Lasocki and

Orlecka-Sikora 2008; Orlecka-Sikora 2008). In such

cases, the nonparametric kernel estimator is used to

estimate the magnitude CDF. We calculate point and

interval estimates of R(3.0, 30) and T(M) in the

moving time window of 100 events advancing by one

event. For each time window 10,000 bootstrap

replicas of the data in the window are used to

Figure 2
Exact values (solid red) and 95% CI-s estimated with (dashed blue) and without (dotted black) the inclusion of the mean activity rate

uncertainty of a the exceedance probability of events of magnitude Mp = 2.0 and b the mean return period function. The results have been

obtained for 50 event sample drawn from the model 2 distribution. The mean activity rate has been assumed as 0.1 events/arbitrary unit

Figure 3
Exact values (solid red) and 95% CI-s estimated with (dashed blue) and without (dotted black) the inclusion of the mean activity rate

uncertainty of the exceedance probability of events of magnitude Mp = 4.5. The results have been obtained for a 50 and b 100 event sample

drawn from the model 3 distribution. The mean activity rate has been assumed as 2.1 and 3 events/arbitrary unit for the a and b, respectively
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evaluate 95% CI of the mentioned hazard functions.

The final results of the analysis are shown in Fig. 8.

The presented T(M) estimates have been obtained for

the window No 20.

Song Tranh 2 dam, the base for the second prac-

tical example, locates on the River Song Tranh in

Quang Nam province in central Vietnam. The dam

was built as a part of hydropower plant. Filling of the

reservoir started in November 2010. Up to the

beginning of 2011, the seismic activity in this area

increased significantly. Two strongest earthquakes, of

magnitudes 4.6 and 4.7, took place on 22nd October

and on 15th November 2012, respectively. The seis-

mic activity continues until the present. We analyze a

set of 822 earthquakes recorded from 1.09.2012 to

10.11.2014. The range of magnitudes is [1.0; 4.7] and

the set is complete. The b-value from the whole set is

0.82, however, Urban et al. (2015) ascertained sta-

tistically a highly significant deviation of the

observed magnitude distribution from the Gutenberg–

Figure 4
Exact values (solid red) and 95% CI-s estimated with (dashed blue) and without (dotted black) the inclusion of the mean activity rate

uncertainty of the mean return period function. The results have been obtained for a 50 and b 100 event sample drawn from the model 3

distribution. The mean activity rate has been assumed as 2.1 and 3 events/arbitrary unit for the a and b, respectively

Figure 5
The relative disparity between the mean 95% CI-s of exceedance probability estimated with and without inclusion of the mean activity rate

uncertainty. Red lines correspond to the upper bound and blue lines to the lower bound of CI-s. The calculations have been done for Mp ¼ 3:5,

D = 12 arbitrary units and for k ranging from 0.1 to 10. The a 50 and b 100 element magnitude samples have been drawn from model 1 of

magnitude distribution with parameters: b ¼ 3:8, Mmin ¼ 1:1
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Richter related exponential model, Eq. 12. Therefore,

we also use the nonparametric approach to estimate

the seismic hazard functions and their uncertainties.

We calculate the estimates in the moving time win-

dow comprising 200 events and advancing by 10

events. The mean activity rate varies between the

windows within the range of 0.6–3.5 event/day. We

calculate point and interval estimates of R(3, 7 days)

and T(M). For each time window 10,000 bootstrap

replicas of the data in the window are used to eval-

uate 95% CI of the hazard functions. The results are

shown in Fig. 9. The presented mean return period

estimates have been obtained for the window No 5.

The first observation drawn from Figs. 8 and 9 is

that in both considered cases the exceedance proba-

bility considerably varies in time. In the example

Figure 6
The relative disparity between the mean 95% CI-s of exceedance probability estimated with and without inclusion of the mean activity rate

uncertainty. Red lines correspond to the upper bound and blue lines to the lower bound of CI-s. The calculations have been done for Mp ¼ 3:0

(a) and for Mp ¼ 2:0 (b), for D = 12 arbitrary units and k ranging from 0.1 to 10. The 50 element magnitude samples have been drawn from

model 1 of magnitude distribution with parameters: b ¼ 3:8, Mmin ¼ 1:1

Figure 7
The relative disparity between the mean 95% CI-s of exceedance probability estimated with and without inclusion of the mean activity rate

uncertainty. Red lines correspond to the upper bound and blue lines to the lower bound of CI-s. The calculations have been done for Mp ¼ 2,

D = 12 arbitrary units and k ranging from 0.1 to 10. The a 50 and b 100 element magnitude samples have been drawn from model 2 of

magnitude distribution with parameters: b ¼ 1:4, Mmin ¼ 1
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from Rudna mine during the time of the first 60

windows this probability, that is the seismic hazard,

was much stronger than the hazard during the time of

the windows from 70 to 120. In the Song Tranh 2

case the hazard was initially quite high and then

steadily decreased until the 33-rd time window to

increase again within the time period of the last 16

windows.

Second, the confidence intervals are generally

wide, that is the uncertainty of hazard functions

estimation is considerable. For instance in the Rudna

mine case, the point estimate of the exceedance

probability of M3 events in a month is 0.4 for the

window No 58 and the 95% CI is [0.01, 0.65]. For the

Song Tranh 2 case in the window No 1 we have 0.37

for the point estimate and [0.18, 0.52] for 95% CI of

Figure 8
The results for the induced seismicity episode from G11/8 panel in Rudna Mine. a Time changes of the estimated exceedance probability,

R(Mp, D) for Mp = 3.0 and D = 30 days calculated in moving time window of 100 events advancing by 1 event. b The mean return period

estimates for the time window No 20. The mean activity rate for this window is 0.36 events/day. The solid green lines represent the point

estimates, the blue dashed lines represent the 95% CI estimates when the mean activity rate uncertainty has been taken into account and the

black dotted lines represent the 95% CI estimates when the mean activity rate uncertainty has been neglected

Figure 9
The results for the induced seismicity episode from Song Tranh 2 reservoir. a Time changes of the estimated exceedance probability, R(Mp,

D) for Mp = 3.0 and D = 30 days calculated in moving time window of 200 events advancing by 10 events. b The mean return period

estimates for the time window No 5. The mean activity rate for this window is 1.36 events/day. The solid green lines represent the point

estimates, the blue dashed lines represent the 95% CI estimates when the mean activity rate uncertainty has been taken into account and the

black dotted lines represent the 95% CI estimates when the mean activity rate uncertainty has been neglected
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the exceedance probability of M3 events in a month.

These results underline the need for interval estima-

tion of hazard functions illustrating how much one

can be misled regarding hazard when only point

estimates are in hand.

Third, there are no significant differences between

the 95% CI estimates including and not including the

uncertainty of the mean activity rate, k. The one

visible difference is tiny. The biggest differences

between these estimates reach 12-per cent of RðMp ¼
3;D ¼ 30Þ for the Rudna mine case when the time

periods with the mean activity rate is the lowest,

equal to 0.22–0.28 event per day.

5. Conclusions

We have presented a way to integrate the uncer-

tainty of mean activity rate and magnitude CDF

estimates in the interval estimation of the most widely

used seismic hazard functions, namely the exceedance

probability, R(M, D) and the mean return period, T(M).

The proposed algorithm can be used in both situations,

either when the parametric model of magnitude dis-

tribution is accepted or when the nonparametric

estimation is in use. The performance of this algorithm

and the changes resulted from this integrated approach

with respect to the approach, which neglects the

uncertainty of the mean activity rate estimate have

been studied on synthetic and actual datasets. The

following conclusions can be drawn:

1. Assuming that earthquake occurrences are gov-

erned by the Poisson distribution, the algorithm

deals with the uncertainty of seismic hazard

functions, which depend on the magnitude distri-

bution and the Poisson mean activity rate, both

elements being uncertain. However, it is generic,

hence can be applied also to capture the propaga-

tion of uncertainty of estimates, which are

parameters of a multiparameter function, onto this

function.

2. Taking into account also the uncertainty of the

mean activity rate in the interval estimation of

hazard functions makes differences only when the

product kD is small, at about 5.0 or less. In such

cases, CI of the considered seismic hazard

functions should be estimated capturing uncer-

tainty of both their random components: the mean

activity rate and magnitude CDF.

3. When kD is bigger, the impact of the uncertainty of

magnitude CDF dominates the values of confidence

intervals of hazard functions. This results from the

particular forms of the hazard functions hence is

specific for these functions. In such cases, the

uncertainty of k can be safely neglected.

4. In any case the variance of hazard functions

estimates, resulting from the variance of estimates

of their components, is significant. Further devel-

opments of PSHA should aim at including this

source of uncertainty into seismic hazard

assessments.
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