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Abstract—Numerical modeling of wind velocity above com-

plex terrain has become a subject of numerous contemporary

studies. Regardless of the methodical approach (dynamic or diag-

nostic), it can be observed that information about surface roughness

is indispensable to achieve realistic results. In this context, the

current state of GIS and remote sensing development allows access

to a number of datasets providing information about various

properties of land coverage in a broad spectrum of spatial resolu-

tion. Hence, the quality of roughness information may vary

depending on the properties of primary land coverage data. As a

consequence, the results of the wind velocity modeling are affected

by the accuracy and spatial resolution of roughness data. This paper

describes further attempts to model wind velocity using the fol-

lowing sources of roughness information: LiDAR data (Digital

Surface Model and Digital Terrain Model), database of topo-

graphical objects (BDOT10k) and both raster and vector versions

of Corine Land Cover 2006 (CLC). The modeling was conducted

in WindStation 4.0.2 software which is based on the computational

fluid dynamics (CFD) diagnostic solver Canyon. Presented exper-

iment concerns three episodes of relatively strong and constant

synoptic forcing: 26 November 2011, 25 May 2012 and 26 May

2012. The modeling was performed in the spatial resolution of 50

and 100 m. Input anemological data were collected during field

measurements while the atmosphere boundary layer parameters

were derived from the meteorological stations closest to the study

area. The model’s performance was verified using leave-one-out

cross-validation and calculation of error indices such as bias error,

root mean square error and index of wind speed. Thus, it was

possible to compare results of using roughness datasets of different

type and resolution. The study demonstrates that the use of LiDAR-

based roughness data may result in an improvement of the model’s

performance in 100 and 50 m resolution, comparing to CLC and

BDOT10k. Furthermore, a slight improvement of these results can

be accomplished if the LiDAR-based roughness calculation process

includes the variable of prevailing wind direction. Qualities of both

CLC and BDOT10k raw datasets (imposed land coverage classes,

necessity of the roughness classes assignment) induce relatively

high values of the modeled velocity error indices. Hence, these and

other similar datasets need to be carefully analyzed (e.g. compared

with aerial or satellite imagery) before they are used in the process

of roughness length parameterization.

Key words: Roughness length, LiDAR, diagnostic wind

velocity modeling, computational fluid dynamics, sudetes.

1. Introduction

Proper surface roughness estimation is consid-

ered as one of the most important aspects of

microscale and mesoscale meteorological modeling

(HANSEN 1993; EMEIS and KNOCHE 2007). Regardless

of the methodical approach (dynamic or diagnostic) it

can be assumed that roughness input data signifi-

cantly affects results of the near-ground wind velocity

modeling; only proper roughness parameterization

may result in a realistic spatial distribution of mod-

eled wind velocity. Hence, preparation of the input

roughness dataset involves consideration of two

issues: a method of roughness estimation and prop-

erties of the source of information.

The aerodynamic surface roughness z0 value is the

height above a surface at which the logarithmic

profile of wind speed versus altitude extrapolates to

zero wind speed (JACOBSON 2005). Under neutral

conditions, the idealized near-surface wind velocity

profile can be expressed as:

uðzÞ ¼ u�
j

ln
z

z0

� �
ð1Þ

where u* denotes friction velocity, j von Karman’s

constant (j = 0.4), z height above reference plane

and z0 aerodynamic surface roughness length (EMEIS

and KNOCHE 2007). The z0 value can be treated as a

fixed property of the surface; it is usually derived

from measured wind profiles. The empirical estima-

tion of roughness length has been considered by

many authors since 1950s for both natural and
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anthropogenic surfaces. Hence, some analyses consist

of exhaustive lists of z0 values assigned to specific

forms of land coverage (e.g. HANSEN 1993; CHO et al.

2012). A detailed review of roughness data from

boundary-layer experiments was provided by WIER-

INGA (1993), who stated that the classification created

by DAVENPORT (1960) describes roughness of land-

scape types in the most reliable way. After several

updates (WIERINGA et al. 2001), it has become prob-

ably the best field-validated roughness classification

to date (HAMMOND et al. 2012) (Appendix 1).

On the other hand, numerous authors have

focused on the relation between z0 value and

parameters of surface obstacles. This approach

resulted in a broad range of roughness definitions. For

instance, roughness length can be described simply as

a function of surface objects height (e.g. PLATE 1982;

GARRATT 1994; LOPES 2013):

z0 ¼ fhc ð2Þ

where hc denotes height of the roughness element.

The f value of 0.15 is recommended for most natural

surfaces (PLATE 1982). In fact, it depends on the

layout and shape of roughness elements. Hence, the

f range is variously specified, depending on the

author, e.g. 0.03–0.25 (LOPES 2013) or 0.07–0.14

(GARRATT 1994). Subsequently, the exploration of

properties of roughness elements (and their relation to

z0) resulted in the inclusion of much more sophisti-

cated morphometric analyses in the process of surface

roughness estimation. These methods are usually

applied in order to determine aerodynamic parame-

ters of dense urban areas, where empirical

anemometric estimation of z0 may not give sufficient

results or is impossible to perform (GRIMMOND and

OKE 1999; SUDER and SZYMANOWSKI 2014).

Direct application of the logarithmic law (Eq. 1)

encounters difficulties in the areas which are densely

built-up or covered by high vegetation. Thus, an

additional parameter, a zero-plane displacement

height (d), was added to roughness description (THOM

1971; JACKSON 1981), resulting in:

uðzÞ ¼ u�
j

ln
z � d

z0

� �
ð3Þ

where d value can be regarded as a datum height

above which normal turbulent exchange takes place

(HANSEN 1993). It is comparable to the depth of an air

layer trapped in vegetation (or in urban structure) and

depends on the density of the obstacles—the d be-

comes negligible when they are sparsely distributed

(WIERINGA 1993). However, some authors raise the

controversial aspect of the zero-plane displacement,

stating that much information concerned with d can

be included in z0 by increasing its value (DONG et al.

2001).

Aforementioned roughness parameters refer only

to homogenous surfaces. In practice, the single grid

cell of the numerical flow model usually represents

heterogeneous land use, which should be parameter-

ized by the effective roughness length z0eff (EMEIS and

KNOCHE 2007). According to TAYLOR (1987), the z0eff

can be approximated by an ensemble average of local

z0 values inside the grid cell. A different approach

was proposed by YAMAZAWA and KONDO (1989) who

considered that z0eff should be calculated for the

windward fetch areas which was a wedge with 458
angle and a radius R = 100 ha (where ha denotes

height of the anemometer placement). Similarly,

HAMMOND et al. (2012) calculated z0eff as an arith-

metic average of z0 values within fans of various

radius lengths (from 100 to 500 m).

An utterly different concept of surface drag

parameterization concerns sub-grid scale orographic

effects (WOOD et al. 2001, JIMENEZ and DUDHIA 2012).

In reality, orography is not uniform—there are con-

cave and convex terrain forms which are too small to

be represented explicitly within a single grid of

assumed resolution. Hence, additional parameteriza-

tion (of momentum equation) should be made in

order to include terrain characteristics inside every

grid. This problem applies mainly to mesoscale

meteorological models—a fine example is provided

by JIMENEZ and DUDHIA (2012), who demonstrate

improvements of WRF model’s performance (reso-

lution—2 km) by use of the standard deviation of the

subgrid-scale orography as well as the Laplacian of

the topographic field.

In reference to the aforementioned methodical

background, it is possible to focus on potential

sources of information about roughness. The current

state of remote-sensing techniques and GIS systems

development allows one to access a number of

datasets from which roughness length z0 can be
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derived. They can be, in general, classified into four

categories—three of which are remote-sensing-based

(Table 1).

The first two groups of datasets provide infor-

mation about distribution of land-coverage types

inside the selected area. Thus, the values of surface

roughness length (z0) can be assigned to the consec-

utive land-coverage classes. Therefore, the quality of

roughness information depends on the initial data

resolution, the number of included land-use types and

the accuracy of assignment of roughness length val-

ues. The last issue is considerably dependent upon the

choice of appropriate roughness values from those

proposed by various authors (e.g. Corine Land Cover

roughness length values—SILVA et al. 2007).

Regardless of the processing issues, an unquestion-

able advantage of these datasets is their accessibility.

The third group of datasets—the multi-spectral

satellite images—allows to parameterize roughness

as a derivative of vegetation indices, calculated from

the bands of particular spectrum. For instance, the use

of the normalised difference vegetation index (NDVI)

(RAMLI et al. 2009) and the leaf area index (LAI)

(SCHAUDT and DICKINSON 2000) to calculate z0 should

be mentioned in this context.

The last group contains high-resolution digital

surface models (DSMs) and digital terrain models

(DTMs). They are usually derived from data gathered

by the airborne light detection and ranging (LiDAR)

devices. Subtracting DTM from DSM results in a

dataset containing a height of surface objects (hc from

the Eq. 2) (HAMMOND et al. 2012). In consequence it

is possible to estimate z0 values within very high (2 m

or less) resolution and then recalculate it into z0eff

which represents a surface appropriate to model grid

size. Another advantage of LiDAR-based data is the

fact that obtained z0 has a continuous form. Thus, it

should give much better approximation of real sur-

face properties than pre-classified land-cover data.

In consequence, the present authors intend to

consider how the properties and the quality of

roughness data affect the results of the wind velocity

modeling. The starting point is a recent research on

using the CLC data in a case study of near ground

wind field diagnostic modeling (solver: Canyon,

LOPES 2003) in mountainous terrain. JANCEWICZ

(2014) demonstrated that including CLC-derived

input roughness information generally adjusts mod-

el’s performance, comparing to the results achieved

with spatially-uniform roughness (root mean squared

error of velocity = 1.0 m/s instead of 1.6 m/s).

However, he also concluded that raw CLC data may

generate incorrect spatial distribution of roughness

values due to the terrain complexity. Therefore, one

could cautiously suppose that the use of a more

detailed (or higher-quality) source of roughness

information may further improve the performance of

the model. An opportunity of using airborne LiDAR-

derived data and a detailed topographical database is,

in that case, especially promising.

This study concerns continued attempts of wind-

field modeling in a part of the Śnie _znik Massif, which

Table 1

Main sources of data used in the roughness length estimation

Data type Examples of studies concerning roughness determination or wind

velocity modelling

Land-use components of vector topographic databases Top10DK: HASAGER et al. (2003)

Remote-sensing-based land coverage qualitative datasets Corine Land Cover

HASAGER et al. (2003), SILVA et al. (2007), TRUHETZ (2010), JANCEWICZ

(2014) and DE MEIJ and VINUESA (2014)

Global land cover characterization

MORALES et al. (2012)

Multi-spectral satellite images Landsat TM: JASINSKI and CRAGO (1999) and RAMLI et al. (2009)

SPOT-5 TIAN et al. (2011)

NOAA-AVHRR: SCHAUDT and DICKINSON (2000)

Remote-sensing-based high-resolution digital surface models

(DSMs) and digital terrain models (DTMs)

Airborne LiDAR-based DSM and DTM COLIN and FAIVRE (2010), TIAN

et al. (2011) and HAMMOND et al. (2012)
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were undertaken in order to settle an issue of the

potential impact of roughness data properties (reso-

lution, data type) on the results of near-ground wind

velocity diagnostic modeling.

2. Study Area

The Śnie _znik Massif, divided by the border of

Poland and the Czech Republic (known there as

Králický Sněžnı́k) (Fig. 1), is the second highest

mountain terrain in the Eastern Sudetes. The highest

peak of the massif is Śnie _znik (1425 m a.s.l.). The

massif itself represents a prominent orographic bar-

rier, as it is surrounded by valleys and basins.

Therefore, its morphology, containing deep valleys

and long ridges (altitude range 1100–1300 m a.s.l.),

causes local deformations of air flow. Prevailing wind

directions are W, SW, S. If they are combined with

strong synoptic forcing, then air-flows follow valley

axes in the windward part of the massif. If conditions

are favourable, foehn winds occur and the adaptation

of flow direction may be also observed in leeward

valleys (PIASECKI 1996; PIASECKI and SAWIŃSKI 2009).

Since 2011, the Śnie _znik Massif has been an area

of studies focused on diagnostic modeling of near-

ground air-flow using GIS techniques and remote-

sensing data (JANCEWICZ 2014). The research polygon

covers an area of 120 sq km in the north-western part

of the massif (Fig. 1); within this area the altitude

varies from 421 to 1425 m a.s.l. A detailed map of

this area is presented on Fig. 2.

3. Methods

The modeling process was carried out using

WindStation 4.0.2 software. It is based on the CFD

Figure 1
Position of the study area (marked by the red rectangle)
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solver Canyon, which solves for mass conservation,

momentum conservation (Navier–Stokes equations),

energy conservation and turbulence quantities (k–e
model) (LOPES 2003, 2013). The first version of

WindStation was presented in 2003—its performance

was validated using data obtained from the Askervein

Hill site and two test areas in Portugal (LOPES 2003).

Later versions were used in several studies. COLIN and

FAIVRE (2010) applied Canyon in the process of

aerodynamic roughness length estimation in Heihe

basin (China), using high-resolution LiDAR elevation

data. ABBES and BELHADJ (2012) used it to estimate

resources of wind energy in the El-Kef region

(Tunisia). Eventually, Canyon solver was used by

JANCEWICZ (2014) in an experiment concerning the

modeling of near-ground wind velocity and direction

at the test-site in the Śnie _znik Massif (SW Poland).

The input anemological data were obtained during

short periods (6 h a day—from 9:00 to 15:00 CET/

CEST)—velocity measurements were taken at a

height of 2 m above ground at 5 min intervals, using

Kaindl Windmaster 2 anemometers. Wind direction

was estimated to the nearest of the 16 points of the

compass as a result of observation of banners

mounted on poles—in accordance with official

guidelines (WMO 2008). Spatial distribution and the

Figure 2
Distribution of wind measurement points inside the study area (after JANCEWICZ 2014)

Vol. 174, (2017) The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling… 573



list of measurement points are presented respectively

in Fig. 2 and Table 2. This distribution pattern of

anemometers was premeditated—the velocity was

recorded within a broad range of altitude, relative

exposure to mean wind direction, yet in the locations

of minimized screening by topographic objects or

vegetation (except Czarna Góra and Międzygórze 2

sites—JANCEWICZ 2014).

Similarly to the previous study, the experiment

presented here concerns three episodes of relatively

strong and constant synoptic forcing: 26 November

2011, 25 May 2012 and 26 May 2012 (Fig. 3). Dif-

ferences between the velocity ratio at Kłodzko and

Mt Šerak synoptic stations (Fig. 1) (JANCEWICZ 2014)

can be partly explained by prevailing wind direction

(November—WNW, both May days—NE/NNE),

also diurnal local convection should be considered

during May episode. A slow decrement of wind

velocity on Mt Šerak (May 26, Fig. 3c) may also be a

consequence of gradual weakening of horizontal

pressure gradient. However, field measurements did

not indicate such changes of velocity ratio between

points placed at high and low altitudes during mea-

surement periods. In consequence, these 3 days were

recognized as the most suitable for further modeling

regarding vices and virtues of the diagnostic solver.

Further anemological data preparation involved

calculation of hourly mean velocity values and pre-

vailing directions in order to create an input dataset

for the model. Wind conditions from the upper parts

of the atmospheric boundary layer were obtained

from upper air soundings performed in stations

nearest to the study area: Prague-Libus, Prostějov and

Wrocław. Those stations are relatively far from the

study area, nevertheless the mean values of upper

wind velocity and direction had to be introduced as

the only available approximation. The results of the

soundings were provided by the Department of

Atmospheric Science at the University of Wyoming

(http://www.weather.uwyo.edu/upperair/sounding.

html, access date: June 10, 2012).

The second component of the input data was a

LiDAR-based high resolution (1 m) Digital Terrain

Model (DTM)—a product of IT System of the

Table 2

Measurement points used in the wind velocity modeling case study (after JANCEWICZ 2014)

ID Measurement

point

k u Altitude

(m)

Measurements

26-11-2011 25-05-2012 26-05-2012

Mean V

(m/s)

Mean

direction

Mean V

(m/s)

Mean

direction

Mean V

(m/s)

Mean

direction

1 Czarna Góra 16�48006.30 0E 50�15021.90 0N 1122 – – – – 2.6 45

2 Hala p.

Śnie _znikiem

16�49059.60 0E 50�12024.90 0N 1229 3.6 270 3.5 0 – –

3 Idzików 16�45003.20 0E 50�16026.90 0N 567 – – – – 4.1 0

6 Jaworek 16�43052.30 0E 50�13014.30 0N 494 – – 4.3 7.5 – –

4 Jaworek Górny 16�45042.70 0E 50�13007.50 0N 759 – – – – 3.6 7.5

5 Kletno 16�52026.80 0E 50�16001.70 0N 611 – – 4.7 348.8 – –

7 Łąki

Myśliwskie

16�46037.60 0E 50�14014.00 0N 795 1.3 247.5 – – 2.8 45

8 Mariańskie

Skały

16�49012.40 0E 50�14000.10 0N 1133 3.9 225 – – 4.8 22.5

9 Międzygórze 1 16�44020.80 0E 50�13042.60 0N 520 2.8 202.5 2.2 0 – –

10 Międzygórze 2 16�46023.10 0E 50�13051.80 0N 636 – – – – 1.7 191.3

11 Puchaczówka 16�48046.40 0E 50�15050.30 0N 868 – – 3.3 45 – –

12 Śnie _znik 1 16�50049.50 0E 50�12025.50 0N 1424 3.5 213.8 – – – –

13 Śnie _znik 2 16�50049.60 0E 50�12028.10 0N 1423 – – 9.0 22.5 – –

14 Średniak 16�49016.70 0E 50�12043.90 0N 1199 5.5 247.5 4.2 22.5 – –

15 _Zmijowa

Polana

16�48051.40 0E 50�14053.10 0N 1047 2.8 202.5 – – 3.2 22.5
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Figure 3
Atmospheric pressure field over Europe (left) and wind velocity observed within study area and in Serak and Kłodzko synoptic stations (right)

during measurement time-periods : a 26 November 2011; b 25 May 2012; c 26 May 2012 (after JANCEWICZ 2014)
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Country’s protection against extreme hazards (ISOK)

Project (http://www.isok.gov.pl/en/products-of-isok-

project, access date: May 30th, 2015). The model

was resampled using cubic convolution method to

100 and 50 m in order to fit the settings of calculation

domain.

The third input data component contained

roughness information derived from four different

datasets:

1. Corine Land Cover 2006 raster dataset (CLCR)

(version 15) (2011)—100 m resolution, provided

by the European Environmental Agency (EEA);

2. Corine Land Cover 2006 vector dataset (CLCV)

(version 17) (2013)—provided by EEA;

3. Database of topographical objects (BDOT10k)—

vector database, corresponding to topographic

map scale 1:10,000—provided by the Polish Head

Office of Geodesy and Cartography.

4. LiDAR-based DSM and DTM, spatial resolution:

1 m, provided by the Polish Head Office of

Geodesy and Cartography.

Due to different properties, each dataset had to be

individually pre-processed in order to fit the domain’s

resolution and to provide input roughness information

required by WindStation—the height of surface

objects (hc). Thus, the CLCR data were resampled to

50 m with use of the majority technique, while CLCV

and BDOT10k were converted to raster format in the

appropriate resolutions using maximum combined

area approach (in consequence, the raster values

reflected a dominant type of land coverage inside

every cell). The next step was assignment of rough-

ness length, which was based on the Finnish Wind

Atlas (http://www.tuuliatlas.fi/modeling/mallinnus_3.

html, access date: March 20th, 2014) and SILVA et al.

(2007). In the case of BDOT10k, original land use

classes had to be matched with CLC classification.

Finally, the assigned z0 values allowed calculating the

hc values according to the transformed Eq. 2 (PLATE

1982; LOPES 2013):

hc ¼
z0

0:15
ð4Þ

The results of the roughness classes’ assignment

are presented in Table 3.

A different approach was required in case of

LiDAR data. Firstly, the hc was calculated, with

reference to HAMMOND et al. (2012):

hc ¼ 0:6ðDSM � DTMÞ ð5Þ

where 0.6 is the value of porosity factor P (HEISLER

and DEWALLE 1988) and approximates the porosity of

forest canopy. Secondly, the initial hc raster was

recalculated to obtain mean values of hc for every 50

and 100 m grid.

Table 3

Roughness classes assigned to CLC and BDOT10k datasets

Land-use class names z0

(m)

hc

(m)

% of total area

CLC (raster) CLC (vector) BDOT

10k

Inland water 0.0 0.0 0.0 0.0 0.1

Bare rock; dump sites; mineral extraction sites 0.01 0.07 0.0 0.0 0.2

Natural grasslands; non-irrigated arable land; pastures 0.03 0.2 17.4 17.2 24.3

Roads and associated land 0.04 0.3 0.0 0.0 0.2

Complex cultivation patterns; land principally occupied by agriculture with

significant areas of natural vegetation

0.1 0.7 9.9 10.0 0.0

Sparsely vegetated areas 0.2 1.3 0.0 0.0 0.2

Agro-forestry areas; construction sites; fruit trees and berry plantations; green

urban areas

0.3 2.0 0.0 0.0 1.3

Transitional woodland-shrub 0.4 2.7 7.2 7.2 1.1

Discontinuous urban fabric 0.6 4.0 1.4 1.4 1.0

Broad leaved forest; coniferous forest; mixed forest 1.4 9.3 64.0 64.2 71.5

Continuous urban fabric 1.5 10.0 0.0 0.0 0.1
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Figure 4
Distribution of the height of surface objects (hc) inside the study area, according to the: a CLC raster version, b CLC vector version. Yellow

dots indicate measurement/validation points
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Figure 5
Distribution of the height of surface objects (hc) inside the study area, according to the: a BDOT10k vector database, b LiDAR-based DEM

and DSM. Yellow dots indicate measurement/validation points
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The results of the foregoing procedure are pre-

sented on roughness maps (Figs. 4, 5), which clearly

demonstrate how the spatial distribution of roughness

can differ according to the source’s properties.

Unsurprisingly, the LiDAR data provided the most

detailed and realistic spatial distribution of hc

(Fig. 5), reflecting gradual decrease of forest vege-

tation height towards higher altitudes. This

phenomenon is shown by neither CLCR, CLCV nor

BDOT10k, which rely on an average roughness value

for ‘‘forest’’ class. However, both CLC datasets

include class of ‘‘transitional woodland-shrub’’,

which gives lower roughness values on the ridges

(Table 3; Fig. 4), while BDOT10k presents forest as

completely uniform. On the other hand, this dataset

provides (comparing to both CLCs) a much more

detailed spatial distribution of roughness elements in

the areas dominated by agricultural or post-agricul-

tural land-use forms (Fig. 5). Overall, the different

ways of representing roughness of forested areas by

particular datasets cause significant differences

among the range of high roughness values (Fig. 6).

The aforesaid roughness data were calculated

according to the TAYLOR’S (1987) concept of effective

roughness length, which is insensitive to the variable

of wind direction. However, the authors also recal-

culated hc values of LiDAR data basing on the

upwind fetch approach (YAMAZAWA and KONDO 1989;

HAMMOND et al. 2012). This resulted in ‘‘windward

effective hc’’ (hceff) which is a mean value for fans of

45� angle, 200 m radius from the initial cell and the

azimuth value matched to the wind direction which

was prevailing during the modeled episode.

Eventually, modeling was conducted, using con-

secutively four prepared roughness datasets. The

computational grid had 292 9 252 9 20 nodes, with

the first node placed at 4 m. Similarly to the previous

studies (LOPES 2003; JANCEWICZ 2014), a neutral

atmospheric stability was assumed. This decision was

supported by analyses of aerological soundings con-

ducted at stations in Wrocław, Prague and Prostějov.

Again, it should be emphasized that those are the

nearest stations, yet they are still very far from the

study area (ca. 100 km). Hence, the results of

Figure 6
Percentage share of roughness parameter hc classes inside the study area, depending on the initial source of roughness information
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soundings cannot be uncritically considered as a

source of detailed information on vertical changes of

atmospheric stability within the calculation domain.

Furthermore, the model setup requires choosing

between stable, neutral or unstable conditions for an

entire altitude range of the domain. In these circum-

stances, an assumption of neutral conditions seems to

be a justified simplification. Nonetheless, while

interpreting the results of modeling, one should

consider possible occurrence of shallow layers char-

acterized by low values of temperature gradient (or

even thermal inversion), especially on 26 November

2011, though it is not explicitly indicated by wind

velocity field measurements nor background data

from stations at Kłodzko and Mt Šerak. Conse-

quently, the results and the following conclusions

apply only to the aforesaid assumptions.

Raw output data were converted to a point vector

layer and, subsequently, to a raster format using the

spline interpolation method. Additionally, the mean

velocity was calculated for selected hours and dif-

ferent roughness data setups; this calculation based

on the raster representations of wind velocity at 2 m

above ground, which were a result of the model’s

consecutive runs. Finally, it was possible to present

examples of spatial variability of modeled velocity

and to compare the effects of using different rough-

ness datasets.

The model’s performance was evaluated through

the execution of a modified leave-one-out cross-val-

idation. The measured wind velocity data served as a

base to create two subsets (‘‘training’’ data and vali-

dation data). Per every observational hour, 20

different training datasets were randomly chosen with

the stipulation that all of them had to contain at least

two measurement points. In consequence, 120 runs of

the model were performed per every day and

roughness setup (JANCEWICZ 2014). As a result, the

following indices were calculated: velocity Bias (Bv),

root mean square error of velocity (RMSEv), index of

wind speed (Iv); the equations are presented in

Table 4.

4. Results and Discussion

The procedure applied created possibility to

compare spatial differences between near-ground

wind-velocity fields, which were calculated on the

basis of different roughness input data. Examples of

velocity maps are presented on Figs. 7, 8 and 9, while

maps presenting the spatial distribution of mean

velocity differences are displayed on Figs. 10 and 11.

It becomes clear that the spatial variability of velocity

strongly reflects the distribution of hc parameter (see

roughness maps in Figs. 4, 5). Therefore, it is not

surprising that the use of CLCR and CLCV roughness

data yielded very similar wind-fields (Fig. 7)—some

slight differences may be noticed only if the bound-

aries of land-use classes differ in location due to the

properties (raster/vector) of the initial datasets. Fine

examples of these differences can be observed on the

northern slopes of Jawor peak (SW part of the study

area) or on the slopes of Średniak and _Zmijowiec

(Fig. 10a).

The use of BDOT10k roughness resulted in a

wind-field characterized by relatively low velocities

above ridges and peaks at altitude of 1000–1300 m

a.s.l. (e.g. _Zmijowiec, Czarna Góra and southern

slopes of Śnie _znik) (Fig. 10b). This is because

Table 4

Error measures used in evaluation of overall wind velocity modeling results

Variable Error measure Equation Remarks

Wind

velocity

Bias error (EMERY et al. 2001) Bv ¼ 1
N

PN
i¼1 ðvm � voÞ vm—Modelled wind velocity

vo—Observed wind velocity

Root mean square error (EMERY

et al. 2001)

RMSEv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðvm � voÞ2

q
vm—Modelled wind velocity

vo—Observed wind velocity

Index of wind speed LOPES (2003) Iv ¼ 1
N

PN
i¼1 100e

�0:692
v1
v2
�1

� �h i
v1, v2—Observed and simulated velocities or vice versa,

with v1[ v2
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Figure 7
Spatial distribution of mean modeled wind velocity at height of 2 m above ground (26 May 2012; 13:00); roughness length information

derived from: a CLC raster version, b CLC vector version. The velocity values were calculated from the results of 20 simulations based on

various combinations of the input measurement points (containing at least two points). Yellow dots indicate measurement/validation points,

numbers indicate point ID—see Tables 2 and 5

Vol. 174, (2017) The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling… 581



Figure 8
Spatial distribution of mean modeled wind velocity at height of 2 m above ground (26 May 2012; 13:00); roughness length information

derived from: a BDOT10k vector database, b LiDAR-based DEM and DSM. The velocity values were calculated from the results of 20

simulations based on various combinations of the input measurement points (containing at least two points). Yellow dots indicate

measurement/validation points, numbers indicate point ID—see Tables 2 and 5

582 K. Jancewicz, M. Szymanowski Pure Appl. Geophys.



Figure 9
Spatial distribution of mean modeled wind velocity at height of 2 m above ground (26 November 2011; 13:00); roughness length information

derived from: a BDOT10k vector database, b LiDAR-based DEM and DSM. The velocity values were calculated from the results of 20

simulations based on various combinations of the input measurement points (containing at least two points). Yellow dots indicate

measurement/validation points, numbers indicate point ID—see Tables 2 and 5

Vol. 174, (2017) The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling… 583



Figure 10
Spatial distribution of mean modeled wind velocity differences (DV) at height of 2 m above ground (26 May 2012; 13:00). The comparison

concerns the following input roughness datasets: a CLC raster and CLC vector (DV = VCLCr - VCLCv); b CLC raster and BDOT10k vector

database (DV = VCLCr - VBDOT10k). Yellow dots indicate measurement/validation points, numbers indicate point ID—see Tables 2 and 5

584 K. Jancewicz, M. Szymanowski Pure Appl. Geophys.



Figure 11
Spatial distribution of mean modeled wind velocity differences (DV) at height of 2 m above ground (26 May 2012; 13:00). The comparison

concerns the following input roughness datasets: a CLC raster and LiDAR-based DEM and DSM (DV = VCLCr - VLiDAR); b BDOT10k

vector database and LiDAR-based DEM and DSM (DV = VBDOT10k - VLiDAR). Yellow dots indicate measurement/validation points, numbers

indicate point ID—see Tables 2 and 5

Vol. 174, (2017) The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling… 585



original BDOT10k land-use classes neglect ‘‘transi-

tional woodland-shrub’’ CLC category, thus sparse

coniferous forests (typical land coverage for these

altitudes in the Śnie _znik Massif and the whole

Sudetes range) are not represented properly. On the

other hand, BDOT10k data were accurate enough to

reflect the effects of linear obstacles such as trees and

bushes along the roads (e.g. a road leading westwards

from Międzygórze—Fig. 10b; see also Fig. 2) and

small vegetation canopies in foothill areas (e.g. NW

part of the area, near Idzików) (Fig. 10b). Moreover,

the distribution of velocity above the Śnie _znik dome

is completely different, comparing to CLC-based

results. This is caused by more realistic roughness

approximation due to avoidance of relief-induced

errors, as mentioned by JANCEWICZ (2014).

The wind-field modeled with use of LiDAR data

distinguishes itself by much higher velocity values at

high altitudes and relatively low velocities in densely

forested valleys (Figs. 8, 9, 11). This is an effect of

roughness data continuity which reflect details of

spatial variability of vegetation height inside the

canopies (Fig. 6).

The analysis of model performance indices

enables a more detailed insight into model’s perfor-

mance with an application of the aforementioned

roughness data. It is conspicuous that CLCR, CLCV

and BDOT10k datasets result in overall underesti-

mation of the wind velocity (Fig. 12) (Table 5),

though 100 m resolution induces greater underesti-

mation than 50 m, especially in case of CLCV and

BDOT10k. This is mostly caused by improper land

cover classification nearby measurement/validation

points (e.g. Śnie _znik 2; Mariańskie Skały, _Zmijowa

Polana). To the contrary, the LiDAR data result in

overall overestimation of the velocity (Bv = 0.11 m/s

within 100 m and 0.26 m/s within 50 m resolution).

In respect of RMSEv, Canyon model performed

best while using the LiDAR-based roughness

(RMSEv = 0.87 and 0.80 m/s for 100 and 50 m

resolution). BDOT10k and CLCV induced relatively

similar results (respectively: 1.41 and 1.42 m/s for

100 m grid; 1.09 and 1.15 m/s for 50 m grid), while

the highest error value characterized the CLCR output

(1.47 for 100 m and 1.33 for 50 m grid) (Table 5;

Fig. 12). These changes of mean error values might

be caused by emergence of some roughness details,

which were ‘‘sub-grid’’ in lower resolution—land-use

data are especially fragile to this type of effects due to

the their qualitative character. However, this cannot

be univocally stated within the presented experi-

mental setup and should be a subject of further

investigation. The detailed review of Bv and RMSEv

for particular validation points (Table 5) reveals that

the biggest differences between the results obtained

with different roughness datasets appear at Śnie _znik 2

and Mariańskie Skały locations. In the first case CLC

data lead to considerable underestimation of velocity

(up to -5.6 m/s in 50 m grid), BDOT10k results fitted

better (-1.2 m/s), while LiDAR-based results tend to

slightly overestimate it (0.4 m/s). The case of Mar-

iańskie Skały was similar—only LiDAR dataset

provided roughness information which could make

Canyon solve properly for this station. In this case,

the pre-classified land-use data do not give a proper

approximation of the pattern of roughness elements

nearby the measurement point. The big improvement

of model’s performance due to the growing number

of roughness details could be also observed at _Zmi-

jowa Polana, Jaworek, and Idzików. On the other

hand, at Czarna Góra site, the use of LiDAR data

caused a noticeable overestimation of velocity. This

single case implies conjecture of roughness under-

estimation—it can be caused by the value of porosity

factor which might be unfitting for the predominant

shapes of trees’ crowns at this altitude. Finally, the

most disturbing case is Śnie _znik 1 point, which is

characterized by high velocity overestimation

regardless of the input roughness data. This may be

caused by a local change of atmospheric stability

(shallow stable layer), which might have led to

decrement of wind velocity—if so, this problem

cannot be solved using mean parameterization for

atmospheric stability inside the whole calculation

domain. Unfortunately, there is no undeniable proof

that the aforementioned meteorological conditions

actually appeared, thus this explanation should only

be treated as a possibility.

According to the aforesaid observations, the

LiDAR data appeared to induce the best Canyon

performance. An additional application of the direc-

tion-dependent roughness parameter (hceff), applied

only for 50 m grid, resulted in further minor decre-

ment of the error values (Table 6). For instance, the
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mean RMSEV decreased by 0.04 m/s comparing to

the ‘‘standard’’ hc. This error measure also did not

change more than ±0.2 m/s in any measurement

point. Figure 13 provides the best illustration of the

subtlety of changes in the modeled velocity field.

Nonetheless, hceff-based results are characterized by

the mean Bv value of 0.17 m/s, which indicates that

the overall tendency to overestimate wind velocity is

slightly lower.

Comparing to the previous study at the Śnie _znik

Massif test site, the overall performance of the model

was improved. The mean RMSEV value was reduced

from 1.0 m/s (JANCEWICZ 2014) to little less than

0.8 m/s, while the mean Iv value increased from 82 to

85 (Table 7). However, in this study a different ele-

vation model was used than in the previous study.

Probably, there is a possibility to achieve further

improvements of model’s performance, as the

LiDAR data offer such a high level of details that

could be used in the process of roughness parame-

terization. However, a certain part of generated errors

may be a consequence of solver’s limitations.

5. Summary

This study demonstrates that the near-ground

diagnostic wind velocity modeling in mountainous

terrain (with an assumption of atmospheric neutral

stability and relatively constant wind conditions)

needs to be supported by apt roughness information.

The use of LiDAR-based input roughness dataset

improves performance of the diagnostic model,

comparing to the qualitative datasets. It is distinctly

expressed by calculated error indices. Moreover, the

change of grid resolution from 100 m up to 50 m

adjusts further model’s performance. A slight

improvement can be accomplished while modeling

with use of re-calculated ‘‘windward’’ roughness

values. One can observe that, while using various

input qualitative data, the differences between cal-

culated wind-velocity fields are caused by

interference of following key factors: data properties

(format and spatial resolution) and land-use

classification.

These observations lead to a major conclusion

that roughness information pre-processing should be

inevitably considered in relation to the qualities of the

available datasets.

On one hand there are pre-classified land coverage

sets which provide categorical information, hence the

estimated roughness is discrete. In consequence,

roughness information may contain errors due to.

(a) Insufficient number of land cover classes.

(b) Inappropriate roughness values assignment.

Figure 12
Impact of the particular roughness datasets on the overall values of

wind velocity modeling performance indices: a mean Bv, b mean

RMSEv, c mean Iv
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(c) Method of data collecting.

Accordingly, qualitative data have to be thor-

oughly analyzed (and corrected if necessary) before

being used as a source of an input roughness infor-

mation. Then, these datasets can provide a valuable

improvement of model’s performance, to be used

consistently with previous experience with empirical

roughness length estimation and classification.

On the other hand, high-resolution LiDAR-based

continuous elevation data offer plenty of possibilities

during the pre-processing stage. It is possible to

prepare a roughness dataset which is suitable for any

grid resolution. Furthermore, the continuous quanti-

tative datasets seem to be exceptionally interesting

within the scope of the optimization of ‘‘effective

roughness length’’ calculation process. Accordingly,

there are numerous issues which should be examined

in an experimental way:

(a) Calculation of roughness inside the windward

fan.

(b) Spatially variable canopy porosity.

(c) Application of solutions used in the modeling of

wind fields in urban areas.

(d) Sub-grid effects induced by micro relief.

Thus, it seems that it is still possible to refine the

roughness estimation process which may lead to

further improvements of diagnostic wind-velocity

modeling.

Table 6

Mean error measures calculated for particular validation points, considering results of modeling with use of standard LiDAR-based

roughness and its ‘‘windward’’ modification

Station name Czarna Góra Hala pod Śnie _znikiem Idzików Jaworek Jaworek

Górny

Kletno Łąki

Myśliwskie

Mariańskie

Skały

Bv

LiDAR 1.3 20.1 20.6 -0.6 0.1 0.1 -0.4 20.3

LiDAR

(windward)

1.2 -0.2 -0.7 -0.6 0.0 0.0 20.3 -0.4

RMSEv

LiDAR 1.3 0.3 0.7 0.8 0.4 0.3 0.8 0.4

LiDAR

(windward)

1.2 0.3 0.8 0.8 0.3 0.2 0.8 0.5

Iv

LiDAR 71 96 89 89 92 96 71 94

LiDAR

(windward)

73 96 87 89 94 97 73 93

Station name Międzygórze 1 Międzygórze 2 Puchaczówka Śnie _znik 1 Śnie _znik 2 Średniak _Zmijowa Polana Mean value

Bv

LiDAR 0.2 -0.6 0.2 3.4 0.4 0.9 0.1 0.26

LiDAR (windward) 20.1 -0.6 20.1 3.4 0.0 0.7 0.1 0.17

RMSEv

LiDAR 0.2 0.6 0.7 3.4 0.4 1.4 0.4 0.80

LiDAR (windward) 0.2 0.6 0.7 3.5 0.0 1.2 0.3 0.76

Iv

LiDAR 96 72 86 49 97 84 92 84.9

LiDAR (windward) 94 72 86 49 100 86 93 85.4

Bold font indicates the lowest error values
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Table 7

Comparison of Canyon CFD solver performance indices calculated for various test sites

Test

site

Poiares Region

(LOPES 2003)

Trevim Region

(LOPES 2003)

Śnie _znik Massif (constant

roughness) (JANCEWICZ 2014)

Śnie _znik Massif [CLC 2006 (2011)

roughness] (JANCEWICZ 2014)

Śnie _znik Massif

(LiDAR-based

roughness)

Mean

Iv

56 41 71 80 85

Figure 13
Spatial distribution of mean modeled wind velocity differences (DV) at height of 2 m above ground (26 May 2012; 13:00). The comparison

concerns two methods of LiDAR-based roughness parameterization: mean height inside grid cell (hc) and mean height inside windward-

placed fan of 200 m radius (hc eff) - (DV = Vhc - Vhceff). Yellow dots indicate measurement/validation points, numbers indicate point ID—

see Tables 2 and 5
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Appendix

See Table 8.

Table 8

Davenport classification of terrain roughness (WIERINGA et al. 2001)

z0 (m) Landscape description

0.0002

‘‘Sea’’

Open sea or lake (irrespective of wave size), tidal flat, snow-covered flat plain, featureless desert, tarmac and concrete, with a

free fetch of several kilometres

0.005

‘‘Smooth’’

Featureless land surface without any noticeable obstacles and with negligible vegetation; e.g. beaches, pack ice without large

ridges, marsh and snow-covered or fallow open country

0.03

‘‘Open’’

Level country with low vegetation (e.g. grass) and isolated obstacles with separations of at least 50 obstacle heights; e.g.

grazing land without wind breaks, heather, moor and tundra, runway area of airports. Ice with ridges across-wind

0.10

‘‘Roughly

open’’

Cultivated or natural area with low crops or plant covers, or moderately open country with occasional obstacles (e.g. low

hedges, isolated low buildings or trees) at relative horizontal distances of at least 20 obstacle heights

0.25

‘‘Rough’’

Cultivated or natural area with high crops or crops of varying height, and scattered obstacles at relative distances of 12–15

obstacle heights for porous objects (e.g. shelterbelts) or 8–12 obstacle heights for low solid objects (e.g. buildings)

0.5

‘‘Very rough’’

Intensively cultivated landscape with many rather large obstacle groups (large farms, clumps of forest) separated by open

spaces of about eight obstacle heights. Low densely-planted major vegetation like bush land, orchards, young forest. Also,

area moderately covered by low buildings with interspaces of 3–7 building heights and no high trees

1.0

‘‘Skimming’’

Landscape regularly covered with similar-size large obstacles, with open spaces of the same order of magnitude as obstacle

heights; e.g. mature regular forests, densely built-up area without much building height variation

C2.0

‘‘Chaotic’’

City centres with mixture of low-rise and high-rise buildings, or large forests of irregular height with many clearings
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of the Częstochowa Upland and of the Eastern Sudetes:

palaeoenviroments and protection (eds. STEFANIAK K., TYC A.,

SOCHA P.) (University of Silesia, Sosnowiec – Wrocław 2009)

pp. 423–454.

PLATE, E.J., Engineering meteorology (Elsevier, New York, 1982).

RAMLI, N.I., IDRIS ALI, M., SAAD, M.S.H., MAJID, T.A (2009),

Estimation of the roughness length (zo) in malaysia using satel-

lite image, Conference Proceedings of The Seventh Asia-Pacific

Conference on Wind Engineering, http://www.iawe.org/

Proceedings/7APCWE/T2D_1.pdf.

SCHAUDT, K.J., DICKINSON, R.E. (2000), An approach to deriving

roughness length and zero-plane displacement height from

satellite data, prototyped with BOREAS data, Agricultural and

Forest Meteorology 104, 143–155.

SILVA, J., RIBEIRO, C., GUEDES, C. (2007), Roughness length clas-

sification of Corine Land Cover Classes, Conference Proceedings

of European Wind Energy Conference 2007, http://www.ewea.

org/ewec2007/allfiles2/545_Ewec2007fullpaper.pdf.

SUDER, A., SZYMANOWSKI, M. (2014), Determination of ventilation

channels in urban area: a case study of Wrocław (Poland), Pure

and Applied Geophysics 171, 965–975.

TAYLOR, P.A. (1987), Comments and further analysis of effective

roughness lengths for use in numerical three-dimensional mod-

els, Boundary-Layer Meteorology 39, 403–418.

THOM, A.S. (1971), Momentum absorption by vegetation, Quarterly

Journal of Royal Meteorological Society 97, 414–428.

TIAN, X., LI, Z.Y, VAN DER TOL, C., SU, Z., LI, X., HE, Q.S., BAO,

Y.F., CHEN, E.X., LI, L.H. (2011), Estimating zero-plane dis-

placement height and aerodynamic roughness length using

synthesis of LiDAR and SPOT-5 data, Remote Sensing of

Environment 115, 2330–2341.

TRUHETZ, H., High resolution wind field modeling over complex

topography: analysis and future scenarios. (Wegener Center for

Climate and Global Change, Scientific Report No. 32-2010, Graz

2010).

WIERINGA, J. (1993), Representative roughness parameters for

homogenous terrain, Boundary-Layer Meteorology 63, 323–363.

Vol. 174, (2017) The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling… 593

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1
http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3
http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3
http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3
http://www.codgik.gov.pl/index.php/zasob/baza-danych-obiektow-topograficznych.html
http://www.codgik.gov.pl/index.php/zasob/baza-danych-obiektow-topograficznych.html
http://www.iawe.org/Proceedings/7APCWE/T2D_1.pdf
http://www.iawe.org/Proceedings/7APCWE/T2D_1.pdf
http://www.ewea.org/ewec2007/allfiles2/545_Ewec2007fullpaper.pdf
http://www.ewea.org/ewec2007/allfiles2/545_Ewec2007fullpaper.pdf


WIERINGA, J., DAVENPORT, A.G., GRIMMOND, C.S.B., OKE, T.R.

(2001) New revision of Davenport roughness classification.

Proceedings of the 3rd European & African Conference on Wind

Engineering.

WOOD, N., BROWN, A.R., HEWER, F.E., (2001), Parametrizing the

effects of orography on the boundary layer: An alternative to

effective roughness lengths, Q. J. R. Meteorol. Soc., 127(573),

759–777.

World Meteorological Organization, Guide to meteorological

instruments and methods of observation, Tech. Rep. 8 (Seventh

Edition). (Secretariat of World Meteorological Organization,

Geneva 2008).

YAMAZAWA, H., KONDO J. (1989), Empirical-statistical method to

estimate the surface wind speed over complex terrain, Journal of

Applied Meteorology and Climatology 28, 996–1001.

(Received November 30, 2014, revised February 17, 2016, accepted April 12, 2016, Published online April 29, 2016)

594 K. Jancewicz, M. Szymanowski Pure Appl. Geophys.


	The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling of Wind Velocity in Complex Terrain: A Case Study from the Sacuteniezdotnik Massif (SW Poland)
	Abstract
	Introduction
	Study Area
	Methods
	Results and Discussion
	Summary
	Acknowledgments
	Appendix
	References




