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Kasner-Like Behaviour for Subcritical
Einstein-Matter Systems

T. Damour, M. Henneaux, A.D. Rendall and M. Weaver

Abstract. Confirming previous heuristic analyses à la Belinskii-Khalatnikov-Lifshitz,
it is rigorously proven that certain “subcritical” Einstein-matter systems exhibit a
monotone, generalized Kasner behaviour in the vicinity of a spacelike singularity.
The D-dimensional coupled Einstein-dilaton-p-form system is subcritical if the dila-
ton couplings of the p-forms belong to some dimension-dependent open neighbor-
hood of zero [1], while pure gravity is subcritical if D ≥ 11 [13]. Our proof relies, like
the recent Theorem [15] dealing with the (always subcritical [14]) Einstein-dilaton
system, on the use of Fuchsian techniques, which enable one to construct local,
analytic solutions to the full set of equations of motion. The solutions constructed
are “general” in the sense that they depend on the maximal expected number of
free functions.

1 Introduction

1.1 The problem

In recent papers [1, 2, 3], the dynamics of the coupled Einstein-dilaton-p-form
system in D spacetime dimensions, with action (in units where 8πG = 1),

S[gαβ , φ, A
(j)
γ1···γnj

]

= SE [gαβ ] + Sφ[gαβ, φ] +
k∑

j=1

Sj [gαβ, φ, A
(j)
γ1···γnj

] + “more”, (1.1)

SE [gαβ] =
1
2

∫
R
√−g dDx, (1.2)

Sφ[gαβ , φ] = −1
2

∫
∂µφ∂

µφ
√−g dDx, (1.3)

Sj [gαβ , φ, A
(j)
γ1···γnj

] = − 1
2(nj + 1)!

∫
F

(j)
µ1···µnj+1F

(j) µ1···µnj+1eλjφ√−g dDx,

(1.4)

was investigated in the vicinity of a spacelike (“cosmological”) singularity along
the lines initiated by Belinskii, Khalatnikov and Lifshitz (BKL) [4]. In (1.1), gαβ is
the spacetime metric, φ is a massless scalar field known as the “dilaton”, while the
A

(j)
γ1···γnj

are a collection of k exterior form gauge fields (j = 1, . . . , k), with expo-
nential couplings to the dilaton, each coupling being characterized by an individual
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constant λj (“dilaton coupling constant”). The F (j)’s are the exterior derivatives
F (j) = dA(j), whereas “more” stands for possible coupling terms among the p-
forms which can be either of the Yang-Mills type (1-forms), Chern-Simons type
[5] or Chapline-Manton type [6, 7]. The degrees of the p-forms are restricted to be
smaller than or equal to D−2 since a (D−1)-form (or D-form) gauge field carries
no local degree of freedom. In particular, scalars (nj = 0) are allowed among the
A(j)’s but we then require that the corresponding dilaton coupling λj be non-zero,
so that there is only one “dilaton”. Similarly, we require λj �= 0 for the (D − 2)-
forms (if any), since these are “dual”1 to scalars. This restriction to a single dilaton
is mostly done for notational convenience: if there were other dilatons among the
0-forms, then, these must be explicitly treated on the same footing as φ and sep-
arated off from the p-forms because they play a distinct rôle. In particular, they
would appear explicitly in the generalized Kasner conditions given below and in
the determination of what we call the subcritical domain. The discussion would
proceed otherwise in the same qualitative way.

The main motivation for studying actions of the class (1.1) is that these arise
as bosonic sectors of supergravity theories related to superstring or M-theory. In
fact, in view of various no-go theorems, p-form gauge fields appear to be the only
massless, higher spin fields that can be consistently coupled to gravity. Further-
more, there can be only one type of graviton [8]. With this observation in mind,
the Action (1.1) is actually quite general. The only restriction concerns the scalar
sector: we assume the coupling to the dilaton to be exponential because this cor-
responds to the tree-level couplings of the dilaton field of string theory. Note,
however, that string-loop effects are expected to generate more general couplings
exp(λφ) → B(φ) which can exhibit interesting “attractor” behaviours [9]. We also
restrict ourselves by not including scalar potentials; see, however, the end of the
article for some remarks on the addition of a potential for the dilaton, which can
be treated by our methods.

Two possible general, “competing” behaviours of the fields in the vicinity of
the spacelike singularity have been identified2:

1. The simplest is the “generalized Kasner behaviour”, in which the spatial
scale factors and the field exp(φ) behave at each spatial point in a monotone,
power-law fashion in terms of the proper time as one approaches the singu-
larity, while the effect of the p-form fields A(j)’s on the evolution of gµν and φ
can be asymptotically neglected. In that regime the spatial curvature terms
can be also neglected with respect to the leading order part of the extrinsic
curvature terms. In other words, as emphasized by BKL, time derivatives
asymptotically dominate over space derivatives so that one sometimes uses
the terminology “velocity-dominated” behaviour [11], instead of “general-

1We recall that the Hodge duality between a (nj + 1)-form and a (D − nj − 1)-form allows

one to replace (locally) a nj-form potential A(j) by a (D − nj − 2)-form potential A(j′) (with
dilaton coupling λ′

j = −λj).
2For a recent extension of these ideas to the brane-worlds scenarios, see [10].
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ized Kasner behaviour”. We shall use both terminologies indifferently in this
paper, recalling that in the presence of p-forms, which act as potentials for
the evolution of the spatial metric and the dilaton (as do the spatial curva-
ture terms), “velocity-dominance” means not only that the spatial curvature
terms can be neglected, but also that the p-forms can be neglected in the
Einstein-dilaton evolution equations.3

2. The second regime, known as “oscillatory” [4], or “generalized mixmaster”
[12] behaviour, is more complicated. It can be described as the succession
of an infinite number of increasingly shorter Kasner regimes as one goes to
the singularity, one following the other according to a well-defined “collision”
law. This asymptotic evolution is presumably strongly chaotic. It is expected
that, at each spatial point, the scale factors of a general inhomogeneous
solution essentially behave as in certain homogeneous models. For instance,
for D = 4 pure gravity this guiding homogeneous model is the Bianchi IX
model [4, 12], while for D = 11 supergravity it is its naive one-dimensional
reduction involving space-independent metric and three-forms [2].

Whether it is the first or the second behaviour that is relevant depends on:
(i) the spacetime dimension D, (ii) the field content (presence or absence of the
dilaton, types of p-forms), and (iii) the values of the various dilaton couplings λj .
Previous work reached the following conclusions:

• The oscillatory behaviour is general for pure gravity in spacetime dimension
4 [4], in fact, in all spacetime dimensions 4 ≤ D ≤ 10, but is replaced by a
Kasner-like behaviour in spacetime dimensions D ≥ 11 [13]. (The sense in
which we use “general” will be made precise below.)

• The Kasner-like behaviour is general for the gravity-dilaton system in all
spacetime dimensions D ≥ 3 (see [14, 15] for D = 4).

• The oscillatory behaviour is general for gravity coupled to p-forms, in absence
of a dilaton or of a dual (D− 2)-form (0 < p < D− 2) [2]. In particular, the
bosonic sector of 11-dimensional supergravity is oscillatory [1]. Particular
instances of this case have been studied in [16, 17, 18].

• The case of the gravity-dilaton-p-form system is more complicated to discuss
because its behaviour depends on a combination of several factors, namely
the dimension D, the menu of p-forms, and the numerical values of the
dilaton couplings. For a given D and a given menu of p-forms there exists a
“subcritical” domain D (an open neighborhood of the origin λj = 0 for all
j’s) such that: (i) when the λj belong to D the general behaviour is Kasner-

3The Kasner solution is generalized in two ways: first, the original Kasner exponents include
a dilaton exponent (if there is a dilaton), which appears in the Kasner conditions; second, the
exponents are not assumed to be constant in space. We shall shorten “exhibits generalized Kasner
behaviour” to Kasner-like. We stress that we do not use this term to indicate that the solution
becomes asymptotically homogeneous in space.
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like, but (ii) when the λj do not belong to D the behaviour is oscillatory. Note
that D is open. Indeed, the behaviour is oscillatory when the λj are on the
boundary of D, as happens for instance for the low-energy bosonic sectors
of type I or heterotic superstrings [1]. For a single p-form, the subcritical
domain D takes the simple form |λj | < λc

j , where λc
j depends on the form-

degree and the spacetime dimension. (λc
j can be infinite.) For a collection of

p-forms, D is more complicated and not just given by the Cartesian product
of the subcritical intervals associated with each individual p-form.

The above statements were derived by adopting a line of thought analogous to
that followed by BKL. Now, as understood by BKL themselves, these arguments,
although quite convincing, are somewhat heuristic. It is true that the original ar-
guments have received since then a considerable amount of both numerical and
analytical support [19, 20, 21, 22, 23]. Yet, they still await a complete proof. One
notable exception is the four-dimensional gravity-dilaton system, which has been
rigorously demonstrated in [15] to be indeed Kasner-like, confirming the original
analysis [14]. Using Fuchsian techniques, the authors of [15] have proven the exis-
tence of a local (analytic) Kasner-like solution to the Einstein-dilaton equations in
four dimensions that contains as many arbitrary, physically relevant functions of
space as there are local degrees of freedom, namely 6 (counting q and q̇ indepen-
dently). To our knowledge, this was the first construction, in a rigorous mathe-
matical sense, of a general singular solution for a coupled Einstein-matter system.
Note in this respect several previous works in which formal solutions had been
constructed near (Kasner-like) cosmological singularities by explicit perturbative
methods, to all orders of perturbation theory [24, 25].

The situation concerning the more complicated (and in some sense more
interesting) generalized mixmaster regime is unfortunately – and perhaps not sur-
prisingly – not so well developed. Rigorous results are scarce (note [26]) and even
in the case of the spatially homogeneous Bianchi IX model only partial results
exist in the literature [27].

The purpose of this paper is to extend the Fuchsian approach of [15] to the
more complicated class of models described by the Action (1.1) and to prove that
those among the above models that were predicted in [13, 1, 2] to be Kasner-like are
indeed so. This provides many new instances where one can rigorously construct
a general singular solution for a coupled Einstein-matter (or pure Einstein, in
D ≥ 11) system. In fact, our (Fuchsian-system-based) results prove that the formal
perturbative solutions that can be explicitly built for these models do converge to
exact solutions. This provides a further confirmation of the general validity of
the BKL ideas. We shall also explicitly determine the subcritical domain D for a
few illustrative models. For all the relevant systems, we construct local (near the
singularity) analytic solutions, which are “general” in the sense that they contain
the right number of freely adjustable arbitrary functions of space (in particular,
these solutions have generically no isometries), and which exhibit the generalized
(monotone) Kasner time dependence.
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1.2 Strategy and outline of the paper

Our approach is the same as in [15], and results from that work will be used
frequently here without restating the arguments. Here is an outline of the key
steps.

A d + 1 decomposition is used, for d spatial dimensions, d = D − 1. A
Gaussian time coordinate, t, is chosen such that the singularity occurs at t = 0.
The first step in the argument consists of identifying the leading terms for all the
variables. This is accomplished by writing down a set of evolution equations which
is obtained by truncating the full evolution equations, and then solving this simpler
set of evolution equations. This simpler evolution system is called the Kasner-
like4 evolution system (or, alternatively, the velocity-dominated system). It is a
system of ordinary differential equations with respect to time (one at each spatial
point) which coincides with the system that arises when investigating metric-
dilaton solutions that depend only on time. The precise truncation rules are given
in Subsection 2.2 below. The second step is to write down constraint equations
for the Kasner-like system (called “velocity-dominated” constraints) and to show
that these constraints propagate, i.e., that if they are satisfied by a solution to the
Kasner-like evolution equations at some time t0 > 0, then they are satisfied for all
time t > 0. In the set of Kasner-like solutions, one expects that there is a subset,
denoted by V , of solutions which have the property of being asymptotic to solutions
of the complete Einstein-dilaton-p-form equations as t→ 0, i.e., as one goes to the
singularity. This subset is characterized by inequalities on some of the initial data,
which, however, are not always consistent. The existence of a non-empty V requires
the dilaton couplings to belong to some range, the “subcritical range”. When V
is non-empty and open, the solutions in V involve as many arbitrary functions of
space as a “general solution” of the full Einstein equations should. On the other
hand, if V is empty the construction given in this paper breaks down and the
dynamical system is expected to be not Kasner-like but rather oscillatory.

To show that indeed, the solutions in V (when it is non-empty) are asymp-
totic to true solutions, the third step is to identify decaying quantities such that
these decaying quantities along with the leading terms mentioned above uniquely
determine the variables, and to write down a Fuchsian system for the decaying
quantities which is equivalent to the Einstein-matter evolution system. As the use
of Fuchsian systems is central to our work let us briefly recall what a Fuchsian
system is and how such a system is related to familiar iterative methods. For a
more detailed introduction to Fuchsian techniques see [15, 28, 29, 30] and refer-
ences therein. Note that we shall everywhere restrict ourselves to the analytic case.
We expect that our results extend to the C∞ case, but it is a non-trivial task to
prove that they do.

4Note that we use the terms “Kasner-like solutions” to label both exact solutions of the
truncated system and solutions of the full system that are asymptotic to such solutions. Which
meaning is relevant should be clear from the context.
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The general form of a Fuchsian system for a vector-valued unknown function
u is

t ∂tu+ A(x)u = f(t, x, u, ux), (1.5)

where the matrix A(x) is required to satisfy some positivity condition (see below),
while the “source term” f on the right-hand side is required to be “regular.” (See
[15] for precise criteria allowing one to check when the positivity assumption on
A(x) is satisfied and when f is regular.) A key point is that f is required to be
bounded by terms of order O(tδ) (with t → 0, δ > 0) as soon as u and their
space derivatives ux are in a bounded set (a simple, concrete example of a source
term satisfying this condition is f = tδ1 + tδ2u + tδ3ux, with δi’s larger than δ).
A convenient form of positivity condition to be satisfied by the matrix A(x) is
that the operator norm of τA(x) be bounded when 0 < τ < 1 (and when x varies
in any open set). Essentially this condition restricts the eigenvalues of the matrix
A(x) to have positive real parts. The basic property of Fuchsian systems that we
shall use is that there is a unique solution to the Fuchsian equation which vanishes
as t tends to zero [28]. One can understand this theorem as a mathematically
rigorous version of the recursive method for solving the Equation (1.5). Indeed,
when confronted with Equation (1.5), it is natural to construct a solution by an
iterative process, starting with the zeroth order approximation u0 = 0 (which is
the unique solution of (1.5) with f ≡ 0 that tends to zero as t → 0), and solving
a sequence of equations of the form t∂tu

(n) + A(x)u(n) = f(t, x, u(n−1), u
(n−1)
x ).

At each step in this iterative process the source term is a known function which
essentially behaves (modulo logarithms) like a sum of powers of t (with space-
dependent coefficients). The crucial step in the iteration is then to solve equations
of the type t∂tu+A(x)u = C(x)tδ(x). The positivity condition on A(x) guarantees
the absence of homogeneous solutions remaining bounded as t→ 0, and ensures the
absence of “small denominators” in the (unique bounded) inhomogeneous solution
generated by each partial source term: uinhom = (δ + A)−1Ctδ. (See, e.g., [25] for
a concrete iterative construction of a Kasner-like solution and the proof that it
extends to all orders.) This link between Fuchsian systems and “good systems”
that can be solved to all orders in a formal iteration makes it a priori probable that
all cases which the heuristic approach à la BKL has shown to be asymptotic to a
Kasner-like solution (by checking that the leading “post-Kasner” contribution is
asymptotically sub-dominant) can be cast in a Fuchsian form. The main technical
burden of the present work will indeed be to show in detail how this can be
carried out for the evolution systems corresponding to all the sub-critical (i.e.,
non-oscillatory) Einstein-matter systems. Our Fuchsian formulation proves that
(in the analytic case) the formal all-orders iterative solutions for the models we
consider do actually converge to the unique, exact solution having a given leading
Kasner asymptotic behaviour as t→ 0.

Finally, the fourth step of our strategy is to prove that the constructed so-
lution does satisfy also all the Einstein and Gauss-like constraints so that it is
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a solution of the full set of Einstein-matter equations. We shall deal successively
with the matter (Gauss-like) constraints, and the Einstein constraints.

Our paper is organized as follows. In Section 2, we first consider the paradig-
matic example of gravity coupled to a massless scalar field and to a Maxwell field
in 4 spacetime dimensions. The Action (1.1) reads in this case

S[gαβ, φ, Aγ ] =
1
2

∫
{R− ∂µφ∂

µφ− 1
2
FµνF

µνeλφ}√−g d4x. (1.6)

For this simple example, we shall explicitly determine the subcritical domain D,
i.e., the critical value λc such that the system is Kasner-like when −λc < λ < λc.
Because this case is exemplary of the general situation, while still being technically
rather simple to handle, we shall describe in some detail the explicit steps of the
Fuchsian approach.

In Section 3, vacuum solutions governed by the pure Einstein Action (1.2)
with D ≥ 11 are considered. This system was argued in [13] to be Kasner-like and
we show here how this rigorously follows from the Fuchsian approach. Note that,
contrary to what happens when a dilaton is present, Fuchsian techniques apply
here even though not all Kasner exponents can be positive.

In Sections 4–8, the results of the previous sections are generalized to the
wider class of systems (1.1). First, in Section 4, to solutions of Einstein’s equation
with spacetime dimension D ≥ 3 and a matter source consisting of a massless
scalar field, governed by the action SE [gαβ]+Sφ[gαβ , φ]. This is the generalization
to any D ≥ 3 of the case D = 4 treated in [15]. In Section 5, we turn to the general
situation described by the Action (1.1), without, however, including the additional
terms represented there by “more”. We then give some general rules for computing
the subcritical domain of the dilaton couplings guaranteeing velocity-dominance
(Section 6). The inclusion of interaction terms is considered in the last sections.
It is shown that they do not affect the asymptotic analysis. This is done first for
the Chern-Simons and Chapline-Manton interactions in Section 7, and next, in
Section 8, for the Yang-Mills couplings (for some gauge group G), for which the
action reads

S[gαβ , φ, Aγ ] =
1
2

∫
{R− ∂µφ∂

µφ− 1
2
Fµν · Fµνeλφ}√−g dDx. (1.7)

Here the dot product, F · F , is a time-independent, Ad-invariant, non-degenerate
scalar product on the Lie algebra of G (such a scalar product exists if the algebra
is compact, or semi-simple). Contrary to what is done in Sections 2, 5 and 7, we
must work now with the vector potential (and not just with the field strength),
since it appears explicitly in the coupling terms.

In Section 9 we show that self-interactions of a rather general type for the
scalar field can be included without changing the asymptotics of the solutions.
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Explicitly, we add a (nonlinear) potential term,

SNL[gαβ , φ] = −
∫
V (φ)

√−g dDx, (1.8)

to the Action (1.1), where V (φ) must fulfill some assumptions given in Section 9.
V (φ) may, for example, be an exponential function of φ, a constant, or a suitable
power of φ. Similar forms for V (φ) were considered with D = 4 in [31].

Finally, in Section 10, we state two theorems that summarize the main results
of the paper and give concluding remarks.

1.3 On the generality of our construction

As we shall see the number of arbitrary functions contained in solutions to the
velocity-dominated constraint equations is equal to the number of arbitrary func-
tions for solutions to the Einstein-matter constraints. In this function-counting
sense, our construction describes what is customarily called a “general” solution
of the system. Intuitively speaking, our construction concerns some “open set”
of the set of all solutions (indeed, the Kasner-like behaviour of the solution is
unchanged under arbitrary, small perturbations of the initial data, because this
simply amounts to changing the integration functions). Note that, in the physics
literature, such a “general” solution is often referred to as being a “generic” so-
lution. However, in the mathematics literature the word “generic” is restricted to
describing either an open dense subset of the set of all solutions, or (when this can
be defined) a subset of measure unity of the set of all solutions. In this work we
shall stick to the mathematical terminology. We shall have nothing rigorous to say
about whether our general solution is also generic. However, we wish to emphasize
the following points.

First, let us mention that the set V of solutions to the velocity-dominated
equations that are asymptotic to solutions of the complete equations is not iden-
tical to the set U of all solutions to the velocity-dominated constraint equations.
The subset V ⊂ U is defined by imposing some inequalities on the free data. These
inequalities do not change the number of free functions. Therefore the solutions
in V are still “general”. One can wonder whether there could be a co-existing
general behaviour, corresponding to initial data that do not fulfill the inequali-
ties. For instance, could such “bad” initial data lead to a generalized mixmaster
regime? This is a difficult question and we shall only summarize here what is the
existing evidence. There are heuristic arguments, supported by numerical study,
[14, 32, 33, 34] that suggest that if one starts with initial data that do not fulfill
the inequalities, one ends up, after a finite transient period (with a finite num-
ber of “collisions” with potential walls), with a solution that is asymptotically
velocity-dominated, for which the inequalities are fulfilled almost everywhere. In
that sense, the inequalities would not represent a real restriction since there is
a dynamical mechanism that drives the solution to the regime where they are
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satisfied. For the subcritical values of the dilaton couplings that make the inequal-
ities defining V consistent, there is thus no evidence for an alternative oscillatory
regime corresponding to a different (open) region in the space of initial data5.
It has indeed been shown that the inequalities defining V are no restriction in a
large spatially homogeneous class [27]. Such rigorous results are, however, lacking
in the inhomogeneous case. In fact, an interesting subtlety might take place in the
inhomogeneous case. The heuristic arguments and numerical studies of [33, 34]
suggest the possibility that the mechanism driving the system to V may be sup-
pressed at exceptional spatial points in general spacetimes, with the result that
the asymptotic data at the exceptional spatial points are not consistent with the
inequalities we assume and lead to so-called “spikes”. This picture has been given
a firm basis in a scalar field model with symmetries [35] but the status of the spikes
in a general context remains unclear.

Finally, since we only deal with spacelike singularities, the classes of solutions
we consider do not contain all solutions governed by the Action (1.1). Other types
of singularities (e.g. timelike or null ones) are known to exist. Whether these other
types of singularities are general is, however, an open question.

1.4 Billiard picture

At each spatial point, the solution of the coupled Einstein-matter system can be
pictured, in the vicinity of a spacelike singularity, as a billiard motion in a re-
gion of hyperbolic space [36, 37, 3, 38]. Hyperbolic billiards are chaotic when they
have finite volume and non chaotic otherwise. In this latter case, the “billiard
ball” generically escapes freely to infinity after a finite number of collisions with
the bounding walls. Subcritical Einstein-matter systems define infinite-volume bil-
liards. The velocity-dominated solutions correspond precisely to the last (as t→ 0)
free motion (after all collisions have taken place), in which the billiard ball moves
to infinity in hyperbolic space.

1.5 Conventions

We adopt a “mostly plus” signature (− + + + . . .). The spacetime dimension is
D ≡ d + 1. Greek indices range from 0 to d, while Latin indices ∈ {1, . . . , d}.
The spatial Ricci tensor is labeled R and the spacetime Ricci tensor is labeled
(D)R. Our curvature conventions are such that the Ricci tensor of a sphere is pos-
itive definite. Einstein’s equations read Gαβ = Tαβ, where Gαβ = Rαβ − Rgαβ/2
denotes the Einstein tensor and Tαβ denotes the matter stress-energy tensor,
Tαβ = −(2/

√−g)δSmatter/δg
αβ, and units such that 8πG = 1. The spatial metric

compatible covariant derivative is labeled ∇a and the spacetime metric compatible
covariant derivative is labeled (D)∇α. The velocity-dominated metric compatible

5The oscillatory regime may however be present for peculiar initial data, presumably forming
a set of zero measure. For instance, gravity + dilaton is generically Kasner-like, but exhibits an
oscillatory behaviour for initial data with φ = 0 (in D < 11 spacetime dimensions).
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covariant derivative is labeled 0∇a. According to the context, g denotes the (pos-
itive) determinant of gab in d + 1-decomposed expressions, and the (negative)
determinant of gµν in spacetime expressions. Whenever tδ or t−δ appears, δ de-
notes a strictly positive number, arbitrarily small. We use Einstein’s summation
convention on repeated tensor indices of different variances. (When the need arises
to suspend the summation conventions for some non-tensorial indices, we shall ex-
plicitly mention it.) In expressions where there is a sum that the indices do not
indicate, all sums in the expression are indicated explicitly by a summation sym-
bol. Indices on the velocity-dominated metric and the velocity-dominated extrinsic
curvature are raised and lowered with the velocity-dominated metric.

1.6 d+ 1 decomposition

Consider a solution to the Einstein’s equations following from (1.1), consisting
of a Lorentz metric and matter fields on a D-dimensional manifold M which is
diffeomorphic to (0, T )× Σ for a d-dimensional manifold, Σ, such that the metric
induced on each t = constant hypersurface is Riemannian, for t ∈ (0, T ). Here D is
an integer strictly greater than two. Furthermore, consider a d+ 1 decomposition
of the Einstein tensor, Gαβ , and the stress-energy tensor, Tαβ, with a Gaussian
time coordinate, t ∈ (0, T ), and a local frame {ea} on Σ. Note that the frame
ea = ei

a(x)∂i is time-independent. The spacetime metric reads ds2 = −dt2 +
gab(t, x)eaeb, where ea = ea

i (x)dxi (with ea
i e

i
b = δa

b ) is the co-frame. Let ρ = T00,
ja = −T0a and Sab = Tab. Define

C = 2G00 − 2T00 (1.9)
= −ka

b k
b
a + (tr k)2 +R− 2ρ.

C = 0 is the Hamiltonian constraint. Similarly, Ca = 0 is the momentum con-
straint, where

Ca = −G0a + T0a (1.10)
= ∇bk

b
a −∇a(tr k) − ja.

In Gaussian coordinates, the relation between the metric and the extrinsic curva-
ture is

∂tgab = −2kab. (1.11)

The evolution equation for the extrinsic curvature is obtained by setting Ea
b = 0,

with

Ea
b = (D)Ra

b − T a
b +

1
(D − 2)

T δa
b (1.12)

⇒ ∂tk
a

b = Ra
b + (tr k) ka

b −Ma
b. (1.13)

Here
Ma

b = Sa
b − 1

D − 2
((tr S) − ρ)δa

b.
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2 Scalar and Maxwell fields in four dimensions

2.1 Equations of motion

As said above, let us start by considering in detail, as archetypal system, the
system defined by the Action (1.6), i.e., the spacetime dimension is D = 4 and
the matter fields are a massless scalar field exponentially coupled to a Maxwell
field, with the magnitude of the dilaton coupling constant smaller in magnitude
than some positive real number determined below, 0 ≤ |λ| < λc. The stress-energy
tensor of the matter fields is

Tµν = (4)∇µφ
(4)∇νφ− 1

2
gµν

(4)∇αφ
(4)∇αφ+ [FµαFν

α − 1
4
gµνFαβF

αβ ]eλφ.

The matter fields satisfy the following equations.

(4)∇α
(4)∇αφ =

λ

4
FαβF

αβeλφ,

(4)∇µ(Fµνeλφ) = 0,
(4)∇[αFβγ] = 0.

The 3+1 decomposition of the stress-energy tensor is best expressed in terms of the
electric spatial vector density Ea =

√
g F 0aeλφ and the magnetic antisymmetric

spatial tensor Fab.

ρ =
1
2
{(∂tφ)2 + gabea(φ)eb(φ) +

1
g
gabEaEbe−λφ +

1
2
gabgchFacFbhe

λφ},

ja = −∂tφ ea(φ) +
1√
g
Eb Fab,

Ma
b = gaceb(φ) ec(φ) − 1

g
{gbcEaEc − 1

2
δa

bgchEcEh}e−λφ

+{gacghiFchFbi − 1
4
δa

bg
chgijFciFhj}eλφ. (2.1)

The matter constraint equations are

ea(Ea) + f b
ba Ea = 0 (2.2)

e[a(Fbc]) + fh
[abFc]h = 0. (2.3)

Here f c
ab are the (time-independent) structure functions of the frame, [ea, eb] =

f c
abec. The matter evolution equations are

∂2
t φ− (trk)∂tφ = gab∇a∇bφ+

λ

2g
gabEaEbe−λφ − λ

4
gabgchFacFbhe

λφ, (2.4)

∂tEa = eb(
√
ggacgbhFche

λφ) + (f i
ibg

ac +
1
2
fa

big
ic)

√
ggbhFche

λφ, (2.5)

∂tFab = −2e[a(
1√
g
gb]cEce−λφ) + f c

ab

1√
g
gchEhe−λφ. (2.6)
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2.2 Velocity-dominated evolution equations and solution

The Kasner-like, or velocity-dominated, evolution equations are obtained from
the full evolution equations by: (i) dropping the spatial derivatives from the right-
hand sides of (1.13), (2.4), (2.5) and (2.6) (note that f c

ab-terms count as derivatives
and that we keep the time derivatives of the magnetic field in (2.6) even though
Fab = ∂aAb − ∂bAa); and (ii) dropping the p-form terms in both the Einstein and
dilaton evolution equations. This is a general rule and yields in this case

∂t
0gab = −2 0kab, (2.7)

∂t
0ka

b = (tr 0k) 0ka
b, (2.8)

∂2
t

0φ− (tr 0k) ∂t
0φ = 0, (2.9)

∂t
0Ea = 0, (2.10)

∂t
0Fab = 0. (2.11)

(As we shall see below, interaction terms of Yang-Mills or other types – if any –
should also be dropped.)

It is easy to find the general analytic solution of the evolution system (2.7)–
(2.11) since the equations are the same as for “Bianchi type I” homogeneous models
(one such set of equations per spatial point). Taking the trace of (2.8) shows that
−1/tr 0k = t+C(x). By a suitable redefinition of the time variable one can set C(x)
to zero. Then (2.8) shows that −t 0ka

b ≡ Ka
b is a constant matrix (which must

satisfy trK = Ka
a = 1, and be such that 0gac(t0)Kc

b is symmetric in a and b),

0ka
b(t) = −t−1Ka

b. (2.12)

Injecting this information into (2.7) leads to a linear evolution system for 0gab:
t ∂t

0gab = 2 0gacK
c
b, which is solved by exponentiation,

0gab(t) = 0gac(t0)

[(
t

t0

)2K
]c

b

. (2.13)

The other evolution equations are also easy to solve,

0φ(t) = A ln t+B, (2.14)
0Ea(t) = 0Ea (2.15)

0Fab(t) = 0Fab. (2.16)

In (2.13) (t/t0)2K denotes the exponentiation of a matrix. Quantities on the left-
hand side of (2.12)–(2.16) may be functions of both time and space, while all
the time dependence of the right-hand side is made explicit. For instance, (2.16)
is saying that the spacetime dependence of the general magnetic field 0Fab(t, x)
(solution of the velocity-dominated evolution system) is reduced to a simple space
dependence 0Fab(x) (where 0Fab is an antisymmetric spatial tensor). Let pa denote
the eigenvalues of Ka

b, ordered such that p1 ≤ p2 ≤ p3. Since trK = 1, we have
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the constraint
p1 + p2 + p3 = 1. (2.17)

In the works of BKL the matrix Solution (2.13) is simplified by using a special
frame {ea} with respect to which the matrices 0gab(t0) and Ka

b are diagonal.
However, as emphasized in [15], this choice can not necessarily be made analytically
on neighborhoods where the number of distinct eigenvalues of Ka

b is not constant.
To obtain an analytic solution, while still controlling the relation of the solution
to the eigenvalues of Ka

b, a special construction was introduced in [15]. This
construction is based on some (possibly small) neighborhood U0 of an arbitrary
spatial point x0 ∈ Σ and uses a set of auxiliary exponents qa(x). These auxiliary
exponents remain numerically close to the exact “Kasner exponents” pa(x), are
analytic and enable one to define an analytic frame (see below). To construct the
auxiliary exponents qa(x) one distinguishes three cases:

Case I (near isotropic): If all three eigenvalues are equal at x0, choose a
number ε > 0 so that for x ∈ U0, maxa,b |pa(x) − pb(x)| < ε/2. In this case define
qa = 1/3 on U0, a = 1, 2, 3.

Case II (near double eigenvalue): If the number of distinct eigenvalues
at x0 is two, choose ε > 0 so that for x ∈ U0, maxa,b |pa − pb| > ε/2, and
|pa′ −pb′ |< ε/2 for some pair, a′, b′, a′ �= b′, shrinking U0 if necessary. Denote
by p⊥ the distinguished exponent not equal to pa′ , pb′ . In this case define q⊥=p⊥
and qa′ =qb′ =(1−q⊥)/2 on U0.

Case III (near diagonalizable): If all eigenvalues are distinct at x0, choose
ε > 0 so that for x ∈ U0, min a,b

a�=b
|pa(x) − pb(x)| > ε/2, shrinking U0 if necessary.

In this case define qa = pa on U0.
The frame {ea}, called the adapted frame, is required to be such that the re-

lated (time-dependent) frame {ẽa(t) ≡ t−qaea} is orthonormal with respect to the
velocity-dominated metric at some time t0 > 0, i.e., such that 0gab(t0) = t2qa

0 δab.
(Here and in the rest of the paper, the Einstein summation convention does not
apply to indices on qa and pa. These indices should be ignored when determining
sums. Furthermore, quantities with a tilde will refer to the frame {ẽa(t)}.)

In addition, in Case II it is required that e⊥ be an eigenvector of K corre-
sponding to q⊥ and that ea′ , eb′ span the eigenspace of K corresponding to the
eigenvalues pa′ , pb′ . In case III it is required that the ea be eigenvectors of K
corresponding to the eigenvalues qa(≡ pa). In all cases it is required that {ea}
be analytic. The auxiliary exponents, qa, are analytic, satisfy the Kasner rela-
tion

∑
qa = 1, are ordered (q1 ≤ q2 ≤ q3), and satisfy q1 ≥ p1, q3 ≤ p3 and

maxa |qa − pa| < ε/2. If qa �= qb, then 0gab, 0gab, 0g̃ab and 0g̃ab all vanish, and the
same is true with g replaced by k.

Equations (2.12)–(2.16), with the form of gab(t0) andKa
b specialized as given

just above, are the general analytic solution to the velocity-dominated evolution
equations in the sense that any analytic solution to the velocity-dominated evolu-
tion equations takes this form near any x0 ∈ Σ by choice of (global) time coordinate
and (local) spatial frame.
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2.3 Velocity-dominated constraint equations

When written in terms of the velocity-dominated variables, the velocity-dominated
constraints take the same form as the full constraint equations, except the Hamil-
tonian constraint, which is obtained by dropping spatial gradients and electromag-
netic contributions to the energy-density. This is a general rule, valid also for the
more general models considered below. Thus, if we define

0ρ =
1
2
(∂t

0φ)2,

0ja = −∂t
0φ ea( 0φ) +

1√
0g

0Eb 0Fab,

we get 0C = 0 and 0Ca = 0 for the velocity-dominated constraints corresponding
to the Hamiltonian and momentum constraints, with

0C = − 0ka
b

0kb
a + (tr 0k)2 − 2 0ρ, (2.18)

0Ca = 0∇b
0kb

a − ea(tr 0k) − 0ja. (2.19)

The velocity-dominated matter constraint equations read

ea( 0Ea) + f b
ba

0Ea = 0,
e[a( 0Fbc]) + fh

[ab
0Fc]h = 0.

For the Solution (2.12)–(2.14) the velocity-dominated Hamiltonian constraint
equation is equivalent to ∑

pa
2 +A2 = 1. (2.20)

The conditions (2.17) and (2.20) are the famous Kasner conditions when the dila-
ton is present. While p1 is necessarily non-positive when A = 0, this is no longer
the case when the dilaton is nontrivial (A �= 0): all pa’s can then be positive. This is
the major feature associated with the presence of the dilaton, which turns the mix-
master behaviour of (4-dimensional) vacuum gravity into the velocity-dominated
behaviour. We shall call (pa, A) the Kasner exponents (because they are the expo-
nents of the proper time in the solution for the scale factors and expφ) and refer
to (2.17) and (2.20) as the Kasner conditions (note that A is often denoted pφ to
emphasize its relation to the kinetic energy of φ, and its similarity with the other
exponents).

A straightforward calculation shows that

∂t
0C − 2(tr 0k) 0C = 0, (2.21)

∂t
0Ca − (tr 0k) 0Ca = −1

2
ea( 0C). (2.22)

Thus if the velocity-dominated Hamiltonian and momentum constraints are satis-
fied at some t0 > 0, then they are satisfied for all t > 0. Similarly, since 0Ea and
0Fab are independent of time, if the matter constraints are satisfied at some time
t0 > 0, then they are clearly satisfied for all time.
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2.4 Critical value of dilaton coupling λc

Our ultimate goal is to show that the velocity-dominated solutions asymptotically
approach (as t → 0) solutions of the original system of equations. We shall prove
that this is the case provided the Kasner exponents pi, A, subject to the Kasner
conditions ∑

pa
2 −

(∑
pa

)2

+ A2 = 0,
∑

pa = 1 (2.23)

obey additional restrictions. These restrictions are inequalities on the Kasner ex-
ponents and read explicitly

2p1 − λA > 0, p1 > 0, 2p1 + λA > 0. (2.24)

As explained in [1], and rigorously checked below, these restrictions are necessary
and sufficient to ensure that the terms that are dropped when replacing the full
Einstein-dilaton-Maxwell equations by the velocity-dominated equations become
indeed negligible as t → 0. More precisely, the first condition (respectively the
third) among (2.24) guarantees that one can neglect the electric (respectively,
magnetic) part of the energy-momentum tensor of the electromagnetic field in
the Einstein equations, whereas the condition p1 > 0 is necessary for the spatial
curvature terms to be asymptotically negligible. The conditions (2.24) define the
set V of velocity-dominated solutions referred to in the introduction.

It is clear that if |λ| is small enough – in particular, if λ = 0 – the Inequali-
ties (2.24) can be fulfilled since the Kasner exponents can be all positive when the
dilaton is included. But if |λ| is greater that some critical value λc, it is impossible
to fulfill simultaneously the Kasner conditions (2.23) and the Inequalities (2.24),
because one of the terms ±λA becomes more negative than 2p1 is positive. In that
case, the set V is empty and our construction breaks down. For |λ| < λc, however,
the set V is non-empty and, in fact, stable under small perturbations of the Kasner
exponents since (2.24) defines an open region on the Kasner sphere. We determine
in this subsection the critical value λc such that (2.23) and (2.24) are compatible
whenever |λ| < λc.

To that end, we follow the geometric approach of [3, 39]. In the 4-dimensional
space of the Kasner exponents (pa, A), we consider the “wall chamber” W defined
to be the conical domain where

p1 ≤ p2 ≤ p3, 2pa − λA ≥ 0, pa ≥ 0, 2pa + λA ≥ 0. (2.25)

These inequalities are not all independent since the four conditions

p1 ≤ p2 ≤ p3, 2p1 − λA ≥ 0, 2p1 + λA ≥ 0 (2.26)

imply all others. The quadratic Kasner condition (2.23) can be rewritten

Gµνp
µpν = 0, (pµ) ≡ (pa, A) (2.27)

where Gµν defines a metric in “Kasner-exponent space”

dS2 = Gµνdp
µdpν =

∑
dpa

2 −
(∑

dpa

)2

+ (dA)2 (2.28)
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The metric (2.28) has Minkowskian signature (−,+,+,+). An example of timelike
direction is given by p1 = p2 = p3, A = 0. Inside or on the light cone, the function∑
pa does not vanish. The upper light cone (in the space of the Kasner exponents)

is conventionally defined by (2.27) and the extra condition
∑
pa > 0. It is clear

from our discussion that the Kasner conditions (2.23) and the Inequalities (2.24)
are compatible if and only if there are light like directions in the interior of the
wall chamber W (by rescaling pµ → αpµ, α > 0, one can always make

∑
pa = 1

for any point in the interior of the wall chamber so that this condition does not
bring a restriction). The problem amounts accordingly to determining the relative
position of the light cone (2.27) and the wall chamber (2.26).

This is most easily done by computing the edges of (2.26), i.e., the one-
dimensional intersections of three faces among the four faces (2.26) of W . There
are four of them: (i) p1 = p2 = A = 0, p3 = α; (ii) p1 = A = 0; p2 = p3 = α;
(iii) 2p1 = 2p2 = 2p3 = λA = α; and (iv) 2p1 = 2p2 = 2p3 = −λA = α, where
in each case, α ≥ 0 is a parameter along the edge (α = 0 being the origin).
The vectors eµ

A (A = 1, 2, 3, 4) along the edges corresponding to α = 1, namely
(0, 0, 1, 0), (0, 1, 1, 0), (1/2, 1/2, 1/2, 1/λ) and (1/2, 1/2, 1/2,−1/λ) form a basis
in Kasner-exponent space. Any vector vµ can thus be expanded along the eµ

A,
vµ = vAeµ

A. A point P in Kasner-exponent space is on or inside the wall chamber
W if and only if its coordinates pA in this basis fulfill pA ≥ 0 with P inside when
pA > 0 for all A′s. Thus, if all the edge vectors eµ

A are timelike or lightlike, the
Kasner conditions are incompatible with the Inequalities (2.24) since any linear
combination of causal vectors with non-negative coefficients is on or inside the
forward light cone (the eµ

A’s are future-directed since p1 + p2 + p3 > 0 for all of
them). If, however, one (or more) of the edge vectors lies outside the light cone,
then, the Kasner conditions and the Inequalities (2.24) are compatible. The nature
of some of the edge vectors depends on the value of the dilaton coupling λ: while
the first one is always lightlike and the second one always timelike, the squared
norm of the last two is −3/2 + 1/λ2 = (2 − 3λ2)/(2λ2). This determines the
critical value

λc =

√
2
3

(2.29)

such that the edge vectors are timelike or null (incompatible inequalities) if |λ| ≥
λc, but spacelike (compatible inequalities) if |λ| < λc. Note that the value of λ
that arises from dimensionally reducing 5-dimensional vacuum gravity down to 4
dimensions is λ =

√
6 and exceeds the critical value. This “explains” the conclusion

reached in [14] that the gravity-dilaton-Maxwell system obtained by Kaluza-Klein
reduction of 5-dimensional gravity is oscillatory.

We shall assume from now on that |λ| < λc and that the Kasner exponents
fulfill the above inequalities. For later use, we choose a number σ > 0 so that, for
all x ∈ U0, σ < 2p1−λA, σ < 2p1+λA and σ < p1/2. Reduce ε if necessary so that
ε < σ/7. If ε is reduced, it may be necessary to shrink U0 so that the conditions
imposed in Section 2.2 remain satisfied. In Section 2.5 it is assumed that ε and U0
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are such that the conditions imposed in Section 2.2 and the conditions imposed in
this paragraph are all satisfied.

2.5 Fuchsian system which is equivalent to the
Einstein-matter evolution equations

2.5.1 Rewriting of equations

Theorem 3 in [15] (Theorem 4.2 in preprint version), on which we rely for our
result, states that a Fuchsian equation (i.e., as we mentioned above, an equation
of the form (1.5) where A satisfies a positivity condition and f is regular, which
includes a boundedness property) has a unique solution u that vanishes as t ↓ 0,
and furthermore spatial derivatives of u of any order vanish as t ↓ 0, as shown in
[28]. Our goal is to recast the Einstein-matter evolution equations as a Fuchsian
equation for the deviations from the velocity-dominated solutions. Thus, we denote
the unknown vector u as

u = (γa
b, λ

a
bc, κ

a
b, ψ, ωa, χ, ξ

a, ϕab) (2.30)

where the variables γa
b etc. are related to the Einstein-matter variables by

gab = 0gab + 0gact
αc

bγc
b, (2.31)

ec(γa
b) = t−ζλa

bc, (2.32)
kab = gac( 0kc

b + t−1+αc
bκc

b), (2.33)
φ = 0φ+ tβψ, (2.34)

ea(ψ) = t−ζωa, (2.35)
t ∂tψ + β ψ = χ, (2.36)

Ea = 0Ea + tβξa, (2.37)
Fab = 0Fab + tβϕab. (2.38)

In the first of these equations tα
c

b is not the exponentiation of a matrix with
components αc

b such as occurs in (2.13). The expression tα
c

b is for each fixed
value of c and b the number which is t raised to the power given by the number αc

b

(defined below). In Equations (2.31) and (2.33) there is no summation on the index
b (but there is a summation on c). In (2.38) ϕab is a totally antisymmetric spatial
tensor, which contributes three independent components to u. This assumption is
consistent with the form of the evolution equation for ϕab, Equation (2.46) below.
The exponents appearing in (2.31)–(2.38) are as follows. Define α0 = 4ε, β = ε/100
and ζ = ε/200 (where ε is the same (small) quantity which entered the definition
of the auxiliary exponents qa in Section 2.2 and which was further restricted at
the end of Section 2.4). All of these quantities are independent of t and x. Finally
define

αa
b = 2 max(qb − qa, 0) + α0 = 2qmax{a,b} − 2qa + α0.
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Note that the numbers αa
b are all strictly positive. In the second definition of

αa
b we have used the fact that the qa’s are ordered. The role of αa

b is to shift
the spectrum of the Fuchsian-system matrix A, in Equation (1.5), to be positive.
It is not clear to what extent the choice of αa

b is fixed by the requirement of
getting a Fuchsian system. It seems that the (triangle-like) Inequality (42) of [15]
(Inequality (5.9) in preprint version) is a key property of these coefficients. We
shall further comment below on the specific choice of αa

b and its link with the
BKL-type approach to the cosmological behaviour near t = 0.

When writing the first-order evolution system for u we momentarily abandon
the restriction that gab and kab be symmetric, as in [15]. Thus we need to define
gab, and we do so by requiring that gabg

bc = δa
c. This implies that gabgbc =

δa
c. We lower indices on tensors by contraction with the second index of gab and

also raise indices on tensors by contraction with the second index of gab. This
choice is so that raising and then lowering a given index results in the original
tensor, and the same for lowering and then raising an index. The position of the
indices on quantities appearing in u and other such quantities is fixed. Repeated
indices on these quantities imply a summation. On the other hand, as we already
mentioned above, one qualifies the summation convention by insisting that indices
repeated only because of their occurrence on pa, qa, αa

b and other such non-
tensorial quantities should be ignored when determining sums.

Substituting (2.31)–(2.38) in the evolution equations yields equations of mo-
tion for u of the form (1.5)

t ∂tγ
a

b + αa
bγ

a
b + 2κa

b − 2(t 0ka
c)γc

b + 2γa
c(t

0kc
b) =

−2 tα
a

c+αc
b−αa

bγa
cκ

c
b (2.39)

t ∂tλ
a

bc = tζec(t ∂tγ
a

b) + ζ tζec(γa
b) (2.40)

t ∂tκ
a

b + αa
bκ

a
b − (t 0ka

b)(trκ) = tα0(trκ)κa
b + t2−αa

b( SRa
b −Ma

b) (2.41)

t ∂tψ + βψ − χ = 0 (2.42)

t ∂tωa = tζ{ea(χ) + (ζ − β)ea(ψ)} (2.43)

t ∂tχ+ βχ = tα0−β(tr κ)(A+ tβχ) + t2−βgab∇a∇b
0φ+ t2−ζ∇aωa

+t2−β{ λ
2g
gabEaEbe−λφ − λ

4
gabgchFacFbhe

λφ} (2.44)

t ∂tξ
a + βξa = t1−β{eb(

√
ggacgbhFche

λφ)

+(f i
ibg

ac +
1
2
fa

big
ic)

√
ggbhFche

λφ} (2.45)

t ∂tϕab + βϕab = t1−β{−2e[a(
1√
g
gb]cEce−λφ) + f c

ab

1√
g
gchEhe−λφ} (2.46)

All the quantities entering these equations have been defined, except SRa
b. This

is done by taking the Ricci tensor of the symmetric part g(ab) of gab [15]. More
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explicitly, SRa
b = gac SRcb, with

SRab = tqa+qb SR̃ h
ahb (2.47)

= tqa+qb{ẽh( S Γ̃h
ab) − ẽa( S Γ̃h

hb) + SΓ̃i
ab

SΓ̃h
hi − SΓ̃i

hb
SΓ̃h

ai + f̃ i
ah

SΓ̃h
ib},

and the connection coefficients in the frame {ẽa},
SΓ̃c

ab =
1
2

S g̃ch
{
ẽa(g̃(bh)) + ẽb(g̃(ha)) − ẽh(g̃(ab)) − g̃(ia)f̃

i
bh − g̃(bi)f̃

i
ah

}
+

1
2
f̃ c

ab.

(2.48)
Here, S g̃ab is defined as the inverse of g̃(ab). Once it is shown that the tensor
gab in Equation (2.31) is symmetric, then it follows that SRa

b = Ra
b and that

Equations (2.39)–(2.46) are equivalent to the Einstein-matter equations.

2.5.2 The system (2.39)–(2.46) is Fuchsian

A good deal of the work needed to show that Equation (1.5) (as written out in
Equations (2.39)–(2.46)) is Fuchsian was done in [15], in the massless scalar field
case considered there. The form of the velocity-dominated evolution and the form
of the function u are the same in the two cases except for the crucial addition of
new source terms and new evolution equations involving the Maxwell field. The
presence of the new components does not alter already existing parts of the matrix
A, nor already existing terms in f . The difference between A here and A in the
massless scalar field case considered in [15] is that here there are additional rows
and columns, such that the only non-vanishing new entries are on the diagonal and
strictly positive. Therefore the argument in [15] that their A satisfies the appro-
priate positivity condition implies that our A satisfies the appropriate positivity
condition.

On the other hand, it is crucial to control in detail the new source terms in
f , connected to the Maxwell field, which were absent in [15]. It is for the study of
these terms that the results of [1], and in particular the Inequalities (2.24) which
were shown there to guarantee that Maxwell source terms become asymptotically
subdominant near the singularity, become important. Recall that the crucial cri-
terion for the source f(t, x, u, ux) is that it be O(tδ), for some strictly positive δ.
In regard to this estimate, we use the notation “big O,” “�” and “small o” as
follows. Given two functions F (t, x, u, ux) and G(t, x, u, ux) we use the notation
F � G, to denote that, for every compact set K, there exists a constant C and
a number t0 > 0 such that |F (t, x, u, ux)| ≤ C|G(t, x, u, ux)| when (x, u, ux) ∈ K
and 0 < t ≤ t0 (see Definition 1 in [15]). If G is a function only of t (e.g. a power
of t), then we replace F � G with F = O(G). If f(t, x, u, ux) = O(tδ), then by
reducing the value of δ (keeping it positive) we have that f(t, x, u, ux) = o(tδ) with
a “small o” which denotes that f/tδ tends to zero uniformly on compact sets K
as t→ 0.

The new source terms involving the Maxwell field are: the last four terms
in Ma

b (see Equation (2.1)), the last two terms on the right-hand side of Equa-
tion (2.44) and the terms of the right-hand sides of Equations (2.45) and (2.46).
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The calculation of the estimates starts in the frame, {ẽa}, defined in Sec-
tion 2.2. For more details concerning the basic estimates, we refer the reader to
[15]. In the frame {ẽa} the Kasner-like metric is (cf. (2.13))

0g̃ab = 0g̃ac(t0)

[(
t

t0

)2(K−Q)
]c

b

, (2.49)

0g̃ab =

[(
t

t0

)−2(K−Q)
]a

c

0g̃cb(t0), (2.50)

where the matrix Q is the diagonal matrix Qa
b ≡ qaδ

a
b which commutes with

K. With our choice of frame, 0g̃ab(t0) = δab and 0g̃ab(t0) = δab. In Lemma 2 in
[15] (Lemma 5.1 in preprint version), the form of (2.49) and (2.50) is considered
and it is shown that 0g̃ab = O(t−ε) and 0g̃ab = O(t−ε). It is useful to write down
expressions for the proposed metric and extrinsic curvature in the frame {ẽa}. The
components in terms of this frame are

g̃ab = 0g̃ab + 0g̃act
α̃c

bγc
b,

k̃ab = g̃ac( 0k̃c
b + t−1+α̃c

bκc
b).

Here, α̃a
b = αa

b + qa − qb = |qa − qb|+ α0 is symmetric in a, b, α̃a
b = α̃b

a. To get
an estimate for the inverse metric, we note first that the inverse of gac

0gcb is given
by gca0gcb. Thus it is possible to express the latter quantity algebraically in terms
of 0gab and γa

b. Now define

γ̄a
b = −t−α̃a

b (δa
b − g̃ac0g̃cb), (2.51)

which, from what we just observed, can be expressed algebraically in terms of
known quantities and γa

b. Then one has

g̃ab =0 g̃ab + tα̃
a

c γ̄a
c

0g̃cb. (2.52)

As a consequence of an argument given in [15] which uses the (triangle-like) In-
equality (42) of that paper ((5.9) in preprint version) and the matrix identity
preceding it, this exhibits γ̄a

b as a regular function of γa
b. In particular, if it is

known that γa
b is o(1) then the same is true of γ̄a

b.
To better grasp the usefulness of the introduction of the exponents αa

b and
α̃a

b, and the link of the Fuchsian estimates with the approximate estimates used
in the BKL-like works, let us consider more closely the simple case where all
the Kasner exponents are distinct (Case III). In this case pa = qa and one can
diagonalize the Kasner-metric, so that, in the rescaled frame ẽa, we have simply
(for all t ≤ t0) 0g̃ab(t) = δab. In such a case, the BKL-type estimates would be
obtained (in the time-dependent rescaled frame ẽa) by approximating the exact
metric by its Kasner limit, i.e., simply g̃BKL

ab (t) = δab. By contrast, the estimates
of the Fuchsian analysis are made with the exact metric, g̃ab(t) = δab + tα̃

a
bγa

b,
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in which γa
b, being part of u, is considered to be in a compact set and hence is

bounded. As the diagonal α̃a
a = α0 > 0, we see that (in the frame ẽa) the diagonal

components of the “Fuchsian” metric asymptote those of the “BKL” metric, and
that both are close to one. Concerning the non-diagonal components (in the frame
ẽa) of the “Fuchsian” metric we see that they are constrained, by construction
(i.e., by the choice α̃a

b = |qa − qb| + α0), to tend to zero faster than t|qa−qb|.
This closeness between the metrics used in the two types of estimates explains the
parallelism between the rigorous results derived here and the heuristic estimates
used in BKL-type works. If we come back to the general case where the Kasner
metric cannot be diagonalized in an analytic fashion, the optimal estimates become
worse by a negative power of t (coming from the estimate of the matrix difference
2(K − Q) in Equations (2.49), (2.50) above). The proposed metric in the frame
{ẽa} satisfies then

g̃ab � t|qa−qb|−ε and g̃ab � t|qa−qb|−ε.

The proposed inverse metric in the adapted frame is

gab = 0gab + tα
a

c γ̄a
c

0gcb.

The proposed metric in the adapted frame satisfies

gab � t2qmax{a,b}−ε and gab � t−2qmin{a,b}−ε. (2.53)

Estimates of spatial derivatives of the proposed metric are also needed.

ec(g̃ab) � t|qa−qb|−δ−ε and ec(g̃ab) � t|qa−qb|−δ−ε,

ec(gab) � t2qmax{a,b}−δ−ε and ec(gab) � t−2qmin{a,b}−δ−ε (2.54)

for some strictly positive δ.
The determinant of the proposed metric also appears in some of the new

source terms. From (2.13), the form of 0gab(t0) and trK = 1, one gets 0g = t2.
From (2.49) and 0g̃ab(t0) = δab one gets 0g̃ = 1. The expression for the determinant
is a sum of terms of the form gabgcdgef , such that in each term, each index, 1,
2, 3, occurs exactly twice. From the Kasner relation for the qa’s and the relation
between the two frames, it follows that g = t2g̃. Considering the form of the various
expressions, one then obtains 1/g = O(t−2),

√
g = O(t), 1/

√
g = O(t−1), and

1/
√
g−1/

√
0g = O(t−1+α0−3ε) = O(t−1+ε). Spatial derivatives of the determinant

also appear in f . Considering the form of g̃ − 0g̃ and that ea( 0g̃) = 0, it follows
that ea(g̃) = O(tα0−δ−3ε), and

ea(g) = O(t2+α0−δ−3ε). (2.55)

Finally,

ea(g−1/2) = −ea(g)
2g3/2

= O(t−1+α0−δ−3ε).
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Let us now consider the new source terms in f , beginning with the last four
terms of t2−αa

bMa
b. To estimate the contributions of Ea and Fab it is sufficient to

note from (2.37) and (2.38) that Ea = O(1) and Fab = O(1). Then we get, using
the definition of αa

b and (2.53),

t2−αa
b
1
g
{gbcEaEc − 1

2
δa

bgchEcEh}e−λφ

�
∑

c

t−2qmax{a,b}+2qa+2qmax{b,c}−λA−α0−ε +
∑
c,h

t+2qmax{c,h}−λA−α0−ε

� t2q1−λA−α0−ε = O(t−α0−ε+σ) = O(tδ),

t2−αa
b{gacghiFchFbi − 1

4
δa

bg
chgijFciFhj}eλφ

�
∑

c,h �=c,i�=b

t2−2qmax{a,b}+2qa−2qmin{a,c}−2qmin{h,i}+λA−α0−2ε

+
∑

c,h,i�=c,j �=h

t2−2qmin{c,h}−2qmin{i,j}+λA−α0−2ε

� t2q1+λA−α0−2ε = O(t−α0−2ε+σ) = O(tδ)

for some strictly positive δ. The crucial inputs in getting these estimates are the
Inequalities (2.24). We recall also that the quantity σ (linked to (2.24) being sat-
isfied) was introduced at the end of Subsection 2.4. The estimate of the last two
terms on the right-hand side of (2.44) is

t2−β 1
g
gabEaEbe−λφ = O(t−β−ε+σ) = O(tδ),

t2−βgabgchFacFbhe
λφ = O(t−β−2ε+σ) = O(tδ)

The right-hand side of (2.45) is O(tα0−β−δ−5ε+σ) = O(tδ). The right-hand side
of (2.46) is O(tα0−β−δ−4ε+σ) = O(tδ). The other terms which occur in f were
estimated in [15], resulting in f = O(tδ).

To show that we indeed have a Fuchsian equation, we need to check not
only that f = O(tδ), but also that ∂uf = O(tδ) and ∂uxf = O(tδ), along with
other regularity conditions [15, 28]. In [15] it is shown that f is regular with
Equation (31) in that paper and the remarks following Equation (31). In our case
there is a factor involving the determinant of the metric in various of the terms in
f which are not present in the case considered in [15]. The discussion surrounding
Equation (31) in [15] applies to our case as well, even for terms in f containing
g±1/2. The Kasner-like contribution is the leading term, and this function of t and
x can be factored out. What is left is of the form w(t, x, u, ux)(1 + h(t, x, u))±1/2,
which is analytic in h at h = 0. The conditions listed following Equation (31) hold.
Thus we conclude that (1.5) as written out in (2.39)–(2.46) is a Fuchsian equation.
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2.5.3 Symmetry of metric

It remains to show that gab is symmetric, so that Equation (1.5) as written out in
(2.39)–(2.46) is equivalent to the Einstein-matter evolution equations. The struc-
ture of the argument is the same in any dimension and so it will be written down
for general d6. The number of distinct eigenvalues of Ka

b is maximal almost ev-
erywhere. Thus it is enough to show that g[ab] and k[ab] vanish in the case that the
Kasner-like metric is diagonal, since then by analytic continuation they vanish on
the entire domain. We therefore consider the case that the Kasner-like metric is
diagonal.

The redefinitions (2.31), (2.33) from the variables gab, kab to the variables γa
b,

κa
b were viewed in the previous subsections as a change between variables with no

particular symmetry properties in their indices (18 on each side). One can, however
enforce g[ab] = 0 by assuming that γa

b is symmetric and vice versa. Indeed, under
our diagonality assumption for the Kasner-like metric, g̃ab(t) = δab +tα̃

a
bγa

b where
α̃a

b = |qa − qb| + α0 is symmetric in (a, b). Accordingly, imposing the symmetry
γa

b = γb
a algebraically ensures the symmetry of gab. Similarly, one can enforce k[ab]

to vanish by imposing consistent constraints on κa
b: inserting (2.31) into (2.33)

(with the velocity-dominated solution diagonal) and writing out the constraint
kab − kba = 0 gives the following condition on κa

b

κa
b − κb

a − γa
bpb + γb

apa + tα(ab)c (γa
cκ

c
b − γb

cκ
c
a) = 0, (2.56)

with α(ab)c = 2pmax{a,c}+2pmax{b,c}−2pmax{a,b}−2pc+α0. These conditions show
that there are only six independent components among the κa

b, which can be taken
to be those with a ≤ b. This is because, the relation (2.56) can be solved uniquely
for the components κa

b with a > b, given the other ones, at least for t small.
That this is true can be seen as follows. Rearrange the Equations (2.56) so that
the terms containing κa

b with a > b are on the left-hand side and all other terms
are on the right-hand side. The result is an inhomogeneous linear system of the
form A(t, x)v(t, x) = w(t, x) where A(t, x) and w(t, x) are known quantities and v
denotes the components κa

b with a > b which we want to determine. Furthermore
A(t, x) = I + o(1), where I denotes the identity matrix. It follows that A(t) is
invertible for t small, which is what we wanted to show. The solution κa

b (a > b)
remains moreover bounded when γb

a and κa
b are in a compact set. We shall

assume from now on that γa
b is symmetric and κa

b constrained by (2.56), so that
symmetry of the metric is automatic. The redefinitions (2.31), (2.33) from gab,
kab to γa

b, κa
b can now be viewed as an invertible change of variables, from 12

6The argument for the symmetry of the metric in [15] is not valid as written since some terms
were omitted in the evolution equation for the antisymmetric part of the extrinsic curvature. The
correct equation is

∂t(kab − kba) = (trk)(kab − kba) − 2(kackc
b − kbckc

a).

In the following a proof of the symmetry of the tensors gab and kab is supplied with the help of
a different method.
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independent variables to 12 independent variables. We can also clearly assume
λa

bc in (2.32) to be symmetric in a, b.
With these conventions, there are less components in u than in the previous

subsections. The independent components can be taken to be γa
b, κa

b and λa
bc

with a ≤ b, together with the matter variables. An independent system of evolution
equations is given by (2.39)–(2.41) with a ≤ b for the gravitational variables, and
the same evolution equations as before for the matter variables. These evolution
equations are equivalent to all the original evolution equations, since the Equa-
tions (2.39)–(2.41) with a > b are then automatically fulfilled, as can be shown
using the fact that the Einstein tensor and the stress-energy tensor are symmetric
for symmetric metrics. To see this it must be shown that given a symmetric tensor
Sab, the vanishing of Sa

b = gacScb for a ≤ b implies that Sab = 0. Consider the
linear map which takes a symmetric tensor Sab, raises an index, and keeps the
components of the result with a ≤ b. This is a mapping between vector spaces of
dimension d(d+1)/2 and can be shown to be an isomorphism by elementary linear
algebra. This proves the desired result.

Now, this reduced evolution system is also Fuchsian. This follows from the
same reasoning as above, which still holds because all components of u, including
the non-independent ones, can still be assumed to be bounded. Therefore, there
is a unique u that goes to zero, which must be equal to the one considered in the
previous subsections. The metric considered previously is thus indeed symmetric.

2.5.4 Unique solution on a neighborhood of the singularity

Given an analytic solution to the velocity-dominated evolution equations on
(0,∞) × Σ, such that Inequalities (2.24) are satisfied, we now have a solution
u to a Fuchsian equation (and a corresponding solution to the Einstein-matter
evolution equations) in the intersection of a neighborhood of the singularity with
(0,∞)×U0 where U0 is a neighborhood of an arbitrary point on Σ. These local so-
lutions can be patched together to get a solution to the Einstein-matter evolution
equations everywhere in space near the singularity. It may seem like there could
be a problem patching together the solutions obtained on distinct neighborhoods
with non-empty intersection because the Fuchsian equation is not the same for
different allowed choices of ε and adapted local frame. The construction is possi-
ble because different allowed choices of ε and local frame result in a well-defined
relationship between the different solutions u which are obtained, such that the
corresponding Einstein-matter variables agree on the intersection (up to change of
basis). It therefore follows that given an analytic solution to the velocity-dominated
evolution equations on (0,∞) × Σ, such that Inequalities (2.24) are satisfied, our
construction uniquely determines a solution to the Einstein-matter evolution equa-
tions everywhere in space, near the singularity.
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2.6 Einstein-matter constraints

2.6.1 Matter constraints

The time derivative of the matter constraint quantities (the left-hand side of Equa-
tions (2.2) and (2.3)) vanishes. If the velocity-dominated matter constraints are
satisfied, the matter constraint quantities are o(1). A quantity which is constant
in time and o(1) must vanish. Therefore the matter constraints are satisfied.

2.6.2 Diagonal Kasner metrics

It remains to show that the Hamiltonian and momentum constraints are satisfied,
that C and Ca, defined in (1.9) and (1.10), vanish. Since we now have a metric, gµν ,
it follows that ∇µG

µν = 0. Since the matter evolution and constraint equations
are satisfied, it follows that ∇µT

µν = 0. From the vanishing of the right-hand side
of (1.12) and the vanishing of the covariant divergence of both the Einstein tensor
and the stress-energy tensor, it follows that

∂tC = 2(trk)C − 2∇aCa (2.57)

∂tCa = (trk)Ca − 1
2
∇aC. (2.58)

Now define C̄ = t2−η1C and C̄a = t1−η2Ca, with 0 < η2 < η1 < β.

t ∂tC̄ + η1C̄ = 2(1 + t tr k)C̄ − 2t2−η1+η2∇aC̄a (2.59)

t ∂tC̄a + η2C̄a = (1 + t tr k)C̄a − 1
2
tη1−η2∇aC̄ (2.60)

On the right-hand side of (2.59) and (2.60) C̄ and C̄a are to be considered as
components of u = (C̄, C̄a). If it is shown that (2.59) and (2.60) is a Fuchsian
system, then there is a unique solution u such that u = o(1). It is clear that u = 0
is a solution to (2.59) and (2.60). If it is shown that C̄ = o(1) and C̄a = o(1), (i.e.,
that C = o(t−2+η1 ) and Ca = o(t−1+η2 )), then they must be this unique solution.
Furthermore, it is sufficient to consider the case that the Kasner-like metric is
diagonal, since the number of distinct eigenvalues of Ka

b is maximal on an open
set of Σ. If the constraints vanish on an open set of their domain, then by analytic
continuation they vanish everywhere on their domain.

Therefore we consider the case that the Kasner-like metric is diagonal and
show first that

1 + t tr k = O(tδ) (2.61)
∇aC̄a = O(t−2+δ+η1−η2) (2.62)

(when C̄a is bounded) so that the system (2.59), (2.60) is Fuchsian (the complete
regularity of f(t, x, u, ux) defined by (2.59) and (2.60) can be easily verified); and
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second, that

C = o(t−2+η1) (2.63)
Ca = o(t−1+η2). (2.64)

Some facts which will be used to show this follow. Consider indices a ∈
{1, 2, 3}. The following inequalities hold for some positive integer n and for real
numbers, qa, ordered such that if a < b, then qa ≤ qb. (In later sections we define
ordered auxiliary exponents, qa, for a ∈ {1, . . . , d}, for arbitrary fixed d ≥ 2. Then
(2.65)–(2.67) hold more generally for indices in {1, . . . , d}.)

qa0 +
n∑

i=1

|qai−1 − qai | − qan ≥ 0 (2.65)

qa0 +
n∑

i=1

|qai−1 − qai | + qan ≥ 2qmax{ak,aj} (2.66)

−qa0 +
n∑

i=1

|qai−1 − qai | − qan ≥ −2qmin{ak,aj} (2.67)

The latter two inequalities hold for any k, j in {0, . . . , n}.
In the case that the Kasner-like metric is diagonal, qa = pa. The metric in

the frame {ẽa} is 0g̃ab = δab,

g̃ab = δab + tα̃
a

bγa
b � t|pa−pb|,

g̃ab = δab + tα̃
a

b γ̄a
b � t|pa−pb|.

The extrinsic curvature satisfies t 0ka
b = −δa

b pb,

t ka
b = −δa

b pb + tα
a

bκa
b,

t (k̃a
b − 0k̃a

b) = tα̃
a

bκa
b,

and t tr 0k = −1,

t tr k = −1 + tα0 trκ, (2.68)
t2{(tr k)2 − (tr 0k)2} = O(tα0 ). (2.69)

The following estimates will also be useful.

−ka
b k

b
a + 0ka

b
0kb

a = −2t−2+α0κa
a pa − t−2+αa

b+αb
aκa

b κ
b
a

= O(t−2+α0 ), (2.70)

and
ea(tr k − tr 0k) = ea(t−1+α0tr κ) = O(t−1+α0). (2.71)
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The structure functions of the frame {ẽa} are

f̃ c
ab = tpc−pa−pbf c

ab − ln t ea(pb) t−paδc
b + ln t eb(pa) t−pbδc

a

� tpc−pa−pb−δ.

It is convenient to have an estimate of Γ̃c
ab, the connection coefficients (2.48) in

the frame {ẽa}, term by term.

Term A: g̃chẽa(g̃bh) �
∑

h

t|pc−ph|−pa+|pb−ph|−δ, (2.72)

Term B: g̃chẽb(g̃ha) �
∑

h

t|pc−ph|−pb+|ph−pa|−δ, (2.73)

Term C: g̃chẽh(g̃ab) �
∑

h

t|pc−ph|−ph+|pa−pb|−δ, (2.74)

Term D: g̃cig̃haf̃
h
bi �

∑
h,i�=b

t|pc−pi|+|ph−pa|+ph−pb−pi−δ, (2.75)

Term E: g̃cig̃bhf̃
h
ai �

∑
h,i�=a

t|pc−pi|+|pb−ph|+ph−pa−pi−δ, (2.76)

Term F: f̃ c
ab � tpc−pa−pb−δ. (2.77)

The difference between the connection coefficients for the metric g̃ab and those for
the Kasner-like metric is ∆Γ̃c

ab = Γ̃c
ab − 0Γ̃c

ab. It is useful to have the estimates

Γ̃a
ac =

1
2
g̃abẽc(g̃ab) + f̃a

ac � t−pc−δ,

and
∆Γ̃a

ac =
1
2
g̃abẽc(g̃ab) � t−pc+α0−δ. (2.78)

2.6.3 Momentum and Hamiltonian constraints

First, we show (2.61) and (2.62). From equation (2.68), 1 + t tr k = O(tα0 ). Simi-
larly, we can estimate ∇aC̄a,

∇aC̄a = g̃ab ∇̃a
˜̄Cb

= g̃ab{t−pa ea(C̄b t
−pb) − Γ̃c

ab C̄c t
−pc}

The first term is

g̃abt−pa ea(C̄b t
−pb) � t|pa−pb|−pa−pb−δ � t−2pmin{a,b}−δ. (2.79)

From (2.72)–(2.76) the second term is

g̃abΓ̃c
ab C̄c t

−pc � t−2p3−δ. (2.80)
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From (2.79) and (2.80), the desired estimate, ∇aC̄a = O(t−2+η1−η2) is obtained.
Thus, the system (2.59), (2.60) is Fuchsian.

Next we turn to (2.63) and (2.64). A term that appears in the momentum
constraint is ∇ak

a
b. The estimate is needed in the adapted frame, and the covariant

derivative is calculated in the frame {ẽa}. This adds a factor of tpb ,

∇ak
a

b = {ẽa(k̃a
b) + Γ̃a

ack̃
c
b − Γ̃c

abk̃
a
c} tpb

Furthermore, the quantity whose estimate will be required is the difference between
this term and the corresponding term in the velocity-dominated constraint,

∇ak
a

b − 0∇a
0ka

b = {ẽa(k̃a
b − 0k̃a

b) + ∆Γ̃a
ac

0k̃c
b + Γ̃a

ac(k̃
c
b − 0k̃c

b)}tpb (2.81)

− Γ̃c
abk̃

a
ct

pb + 0Γ̃c
ab

0k̃a
c t

pb (2.82)

The right-hand side of (2.81) is O(t−1+α0−δ). The terms in line (2.82) orig-
inating from Term E of the connection coefficients (see (2.76)) are cancelled in
the sum, due to the antisymmetry of f̃h

ai and the symmetry of k̃ai and 0k̃ai. For
estimating the rest of the terms in line (2.82), it is convenient to rewrite this line
as,

−Γ̃c
abk̃

a
ct

pb + 0Γ̃c
ab

0k̃a
c t

pb = −∆Γ̃c
ab

0k̃a
c t

pb − Γ̃c
ab(k̃

a
c − 0k̃a

c) t
pb , (2.83)

with

∆Γ̃c
ab =

1
2
{ẽa(tα̃

b
cγb

c) + ẽb(tα̃
c

aγc
a) − ẽc(tα̃

a
bγa

b) (2.84)

+
∑

h

tα̃
c

h γ̄c
h[ẽa(tα̃

b
hγb

h) + ẽb(tα̃
h

aγh
a) − ẽh(tα̃

a
bγa

b)] (2.85)

−
∑

i

tα̃
i

aγi
af̃

i
bc −

∑
h

tα̃
c

h γ̄c
hf̃

a
bh −

∑
hi

tα̃
c

h γ̄c
ht

α̃i
aγi

af̃
i
bh (2.86)

−tα̃b
iγb

if̃
i
ac −

∑
h

tα̃
c

h γ̄c
hf̃

b
ah −

∑
hi

tα̃
c

h γ̄c
ht

α̃b
iγb

if̃
i
ah}. (2.87)

The terms in line (2.87) need not be considered since they originate from Term E
of the connection coefficients and as stated above the contribution from this term
is cancelled by terms in Λ = Γ̃c

ab
0k̃a

c t
pb . So considering only lines (2.84)–(2.86),

the first term on the right-hand side of (2.83) is

∆Γ̃a
ab pa t

−1+pb = O(t−1+α0−δ) + terms which are cancelled by Λ. (2.88)

Since the terms in the sum come with different weights, pa, (2.78) cannot be used
in (2.88). But the estimate is straightforward. For example, the term in (2.88) origi-
nating from the 3rd term in line (2.86) � ∑

a,h,i t
−1+|pa−ph|+|pi−pa|+pi−ph+2α0−δ =

O(t−1+α0−δ). Finally consider the rest of the right-hand side of (2.83),

−1
2

[
g̃ch{ẽa(g̃bh) + ẽb(g̃ha) − ẽh(g̃ab) − g̃iaf̃

i
bh − g̃bif̃

i
ah} + f̃ c

ab

]
tα̃

a
cκa

c t
−1+pb .

(2.89)
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For all terms except the 5th term in (2.89), the estimate, O(t−1+α0−δ) can be ob-
tained from (2.72)–(2.77). The fifth term originates from Term E of the connection
coefficients, and was already considered above. Therefore

∇ak
a

b − 0∇a
0ka

b = O(t−1+α0−δ). (2.90)

Next the matter terms are estimated. For the Hamiltonian constraint, an
estimate of ρ− 0ρ is needed.

(∂tφ)2 − (∂t
0φ)2 = {2 ∂t

0φ+ t−1+β(βψ + t∂tψ)} t−1+β(βψ + t∂tψ)
= {2A+ tβ(βψ + t∂tψ)} t−2+β(βψ + t∂tψ)
= o(t−2+η1),

gabea(φ)eb(φ) � t−2p3−δ−ε = o(t−2+η1 ),
1
g
gabEaEbe−λjφ = O(t−2−ε+σ) = o(t−2+η1),

gabgchFacFbhe
λjφ = O(t−2−2ε+σ) = o(t−2+η1).

Therefore,
ρ− 0ρ = o(t−2+η1). (2.91)

The difference between the matter terms in the momentum constraint and in 0Ca is

−∂tφ ea(φ) + ∂t
0φ ea( 0φ) = −∂t

0φ ea(tβψ) − ∂t(tβψ)ea(φ) = O(t−1+β−δ),

(
1√
g
− 1√

0g
) 0Eb 0Fab +

1√
g
(Eb Fab − 0Eb 0Fab) = o(t−1+η2 ). (2.92)

Estimates related to the determinant which are relevant to (2.92) can be found
immediately preceding Equation (2.55). From the estimates just obtained,

ja − 0ja = o(t−1+η2). (2.93)

From R = O(t−2+α0 ) (shown in [15]) and from 0C = 0, (2.70), (2.69), (2.91)
and the relative magnitude of the various exponents, it follows that C = o(t−2+η1).
From 0Ca = 0, (2.90), (2.71), (2.93) and the relative magnitude of the various
exponents, it follows that Ca = o(t−1+η2).

Since (2.63)–(2.64) are satisfied, the Hamiltonian and momentum constraints
are satisfied.

2.7 Counting the number of arbitrary functions

The number of degrees of freedom of the Einstein-Maxwell-dilaton system in 4
spacetime dimensions is 5 : 2 for the gravitational field, 2 for the electromagnetic
field and 1 for the dilaton. Hence, a general solution to the equations of motion
should contain 10 freely adjustable, physically relevant, functions of space (each
degree of freedom needs two initial data, q and q̇). This is exactly the number that
appears in the above Kasner-like solutions.
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• The metric carries four, physically relevant, distinct functions of space. This
is the standard calculation [4].

• The scalar field carries two functions of space, A and B.

• The electromagnetic field carries six functions of space, 0Ea and 0Fab. These
are physically relevant because they are gauge invariant, but they are subject
to two constraints, leaving four independent functions.

A different way to arrive at the same conclusions is to observe that the respective
number of fields, dynamical equations and (first class) constraints are the same
for the velocity-dominated system and the full system. Hence, a general solution
of the velocity-dominated system (in the sense of function counting) will contain
the same number of physically distinct, arbitrary functions as a general solution
of the full system. This general argument applies to all systems considered below
and hence will not be repeated.

In [15] a different way of assessing the generality of the solutions constructed
was used. This involved exhibiting a correspondence between solutions of the
velocity-dominated constraints and solutions of the full constraints using the con-
formal method. That method starts with certain free data and shows the existence
of a unique solution of the constraints corresponding to each set of free data. It is
a standard method for exploring the solution space of the full Einstein constraints
[42] and in [15] it was shown how to modify it to apply to the velocity-dominated
constraints. While it is likely that the conformal method can be applied in some
way to all the matter models considered in this paper, the details will only be
worked out in two cases which suffice to illustrate the main aspects of the pro-
cedure. These are the Einstein-Maxwell-dilaton system with D = 4 (this section)
and the Einstein vacuum equations with arbitrary D ≥ 4 (next section). Even in
those cases no attempt will be made to give an exhaustive treatment of all issues
arising. It will, however, be shown that the strategies presented for solving the
velocity-dominated constraints are successful in some important situations.

The procedure presented in the following is slightly different from that used
in [15]. Even for the case of the Einstein-scalar field system with D = 4 it gives
results which are in principle stronger than those in [15] since they are not con-
fined to solutions which are close to isotropic ones. In the presence of exponential
dilaton couplings a change of method seems unavoidable. One part of the confor-
mal method concerns the construction of symmetric second rank tensors which
are traceless and have prescribed divergence from the truly free data. In this step
there is no difference between the full constraints and the velocity-dominated ones.
An account of the methods applied to the full constraints in the case D = 4 can
be found in [42]. (These arguments generalize in a straightforward way to other
D. It is merely necessary to find the correct conformal rescalings. For D ≥ 4 and
vacuum these are written down in the next section.) In view of this we say, with a
slight abuse of terminology, that the free data consists of a collection g̃ab, k̃ab, H ,
φ, φ̃t, Ea, Fab where g̃ab is a Riemannian metric, k̃ab is a symmetric tensor with
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vanishing trace and prescribed divergence with respect to g̃ab, H is a non-zero con-
stant, φ and φ̃t are scalar functions and Ea and Fab are objects of the same kind
as elsewhere in this section. All these objects are defined on a three-dimensional
manifold. Next we introduce a positive real-valued function ω which is used to
construct solutions of the constraints from the free data. Define gab = ω4g̃ab,
kab = ω−2k̃ab +Hgab, φt = ω−6φ̃t. The objects gab, kab, φ, φt, Ea and Fab satisfy
the constraints provided the divergence of k̃ab is prescribed as ω6ja and ω satisfies
a nonlinear equation which in the case of the full Einstein equations is known as
the Lichnerowicz equation. In the case of the velocity-dominated constraints it is
an algebraic equation. The Lichnerowicz equation is of the form

∆g̃ω − 1
8
Rg̃ω +

3∑
i=1

aiω
αi − 3

4
H2ω5 = 0 (2.94)

Here α1 = 1, α2 = −3 and α3 = −7. The functions ai depend on the free data
and their exact form is unimportant. All that is of interest are that each ai is
non-negative and that at any point of space a1 = 0 iff ∇aφ = 0 , a2 = 0 iff
the electromagnetic data vanish and a3 = 0 iff φt and k̃ab vanish. Next consider
the velocity-dominated constraints for d = 3. The analogue of the elliptic Equa-
tion (2.94) is the algebraic equation

bω−7 − 3
4
H2ω5 = 0 (2.95)

Here b is a non-negative function which vanishes at a point of space iff φt and
k̃ab vanish. This can be solved trivially for ω > 0 provided b does not vanish at
any point since the mean curvature H is non-zero. For each choice of free data
satisfying this non-vanishing condition there is a unique solution ω of (2.95).

In order to compare the sets of solutions of the full and velocity-dominated
constraints in these two cases it remains to investigate the solvability of the elliptic
Equation (2.94) for ω. A discussion of this type of problem in any dimension can
be found in [43]. We would like to show that for suitable metrics on a compact
manifold the equation for ω always has a unique solution, i.e., the situation is
exactly as in the case of the velocity-dominated equations. The problem can be
simplified by the use of the Yamabe theorem, which says that any metric can be
conformally transformed to a metric of constant scalar curvature −1, 0 or 1. In the
following only the cases of negative and vanishing scalar curvature of the metric
supplied by the Yamabe theorem will be considered. A key role in the existence
and uniqueness theorems for Equation (2.94) is played by the positive zeros of
the algebraic expressions x + 8

∑3
i=1 aix

αi − 6H2x5 and 8
∑3

i=1 aix
αi − 6H2x5.

Provided
∑3

a=1 ai does not vanish anywhere it is possible to show that each of the
algebraic expressions has a unique positive zero for each value of the parameters.

The significance of the information which has been obtained concerning the
zeros of certain algebraic expressions is that it guarantees the existence of a positive
solution of the corresponding elliptic equations for any set of free data satisfying
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the inequalities already stated using the method of sub- and supersolutions (cf.
[43]). In the case of Equation (2.94) uniqueness also holds. For in that case the
equation has a form considered in [44] for which uniqueness is demonstrated in
that paper. The advantage of the three-dimensional case is that there the problem
reduces to the analysis of the roots of a cubic equation, a relatively simple task
compared to the analysis of the zeros of the more complicated algebraic expressions
occurring in higher dimensions.

For the purpose of analyzing Kasner-like (monotone) singularities it is not
enough to know about producing just any solutions of the constraints. What we
have shown is that (i) if the Kasner constraints are satisfied at time t0, then they
are propagated at all times by the velocity-dominated evolution equations; and (ii)
if the Kasner constraints are satisfied, the exact constraints are also satisfied. It is
also necessary to verify, however, that one can satisfy simultaneously the Kasner
constraints and the inequalities necessary for applying the Fuchsian arguments, i.e.,
we must make sure that we can produce a sufficiently large class of solutions which
satisfy the inequalities necessary to make them consistent with Kasner behaviour.
Because of the indirect nature of the way of solving the momentum constraint
(which has not been explained here) it is not easy to control the generalized Kasner
exponents of the resulting spacetime. There is however, one practical possibility.
Choose a spatially homogeneous solution with Abelian isometry group (for d = 3
this means Bianchi type I) which satisfies the necessary inequalities. Take the
free data from that solution and deform it slightly. Then the generalized Kasner
exponents of the final solution of the velocity-dominated equations will also only
be changed slightly. If the homogeneous solution is defined on the torus T 3 then
it is known that any other metric of constant scalar curvature has non-positive
scalar curvature. Therefore we are in the case for which existence and uniqueness
is discussed above. We could also start with a negatively curved Friedmann model.

3 Vacuum solutions with D ≥ 11

The second class of solutions we consider is governed by the Action (1.2), with
D ≥ 11. The d + 1 decomposition is as in Section 1.6, with the matter terms
vanishing. The Kasner-like evolution equations are (2.7) and (2.8). The general
analytic solution of these equations is given by (2.12) and (2.13). To obtain this
form, we again adapt a global time coordinate such that the singularity is at
t = 0. We label the eigenvalues of K, p1, . . . , pd, such that pa ≤ pb if a < b. The
eigenvalues again satisfy

∑d
i=1 pi = 1, coming from trK = 1. As in the D = 4 case,

in order to preserve analyticity even near the points where some of the eigenvalues
coincide, while retaining control of the solution in terms of the eigenvalues, we
introduce a special construction involving auxiliary exponents and an adapted
frame.

In higher dimensions, there are more possibilities to take care of, but the
idea is the same as in the D = 4 case. Consider an arbitrary point x0 ∈ Σ. Let
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n be the number of distinct eigenvalues of K at x0. Let mi be the multiplicity of
pAi , i ∈ {1, . . . , n}, with pAi such that pb is strictly less than pAi if b < Ai. Thus
pAi , . . . , pAi+mi−1 are equal at x0. For each integer a ∈ {Ai, . . . , Ai + mi − 1},
define

qa =
1
mi

Ai+mi−1∑
j=Ai

pj

on a neighborhood of x0, U0. Note that if mi = 1, then qAi = pAi . Shrinking U0

if necessary, choose ε > 0 such that for x ∈ U0, for a ∈ {Ai, . . . , Ai + mi − 1}
and for b ∈ {Aj , . . . , Aj + mj − 1}, if i = j, then |pa − pb| < ε/2, while if i �= j,
|pa − pb| > ε/2.

The adapted frame {ea} is again required to be analytic and such that the
related frame {ẽa} is orthonormal with respect to the Kasner-like metric at some
time t0 > 0, with ẽa = t−qaea. In addition, it is required that eAi , . . . , eAi+mi−1

span the eigenspace ofK corresponding to the eigenvalues pAi , . . . , pAi+mi−1. Note
that if mi = 1 then eAi is an eigenvector of K corresponding to the eigenvalue qAi .
The auxiliary exponents, qa, are analytic, satisfy the Kasner relation (

∑
qa = 1),

are ordered (qa ≤ qb for a < b), and satisfy q1 ≥ p1, qd ≤ pd and maxa |qa − pa| <
ε/2. If qa �= qb, then 0gab, 0gab, 0g̃ab and 0g̃ab all vanish, and the same is true with
g replaced by k.

The velocity-dominated constraints corresponding to the Hamiltonian and
momentum constraints are 0C = 0 and 0Ca = 0, with 0C and 0Ca as in Equa-
tions (2.18) and (2.19), with the matter terms vanishing. For the Solution (2.12)–
(2.13) the velocity-dominated Hamiltonian constraint equation is equivalent to∑
p2

a = 1. Equations (2.21)–(2.22) are satisfied, so if the velocity-dominated con-
straints are satisfied at some t0, then they are satisfied for all t > 0.

For this class of solutions, the Inequality [13], 2p1 + p2 + · · · + pd−2 > 0, or
equivalently,

1 + p1 − pd − pd−1 > 0, (3.1)

defines the set V which was referred to in the introduction. As shown in [13],
this inequality can be realized when the spacetime dimension D is equal to or
greater than 11. As in our Maxwell archetypal example above, we expect that this
inequality will be crucial to control the effect of the source terms (here linked to
the spatial curvature) near the singularity. It is again convenient to introduce a
number σ > 0 so that, for all x ∈ U0, 4σ < 1+p1−pd−pd−1. Reduce ε if necessary
so that ε < σ/(2d+1). If ε is reduced, it may be necessary to shrink U0 so that the
conditions imposed above remain satisfied. It is assumed that ε and U0 are such
that the conditions imposed above and the condition imposed in this paragraph
are all satisfied.

We again recast the evolution equations in the form (1.5) and show, for
D ≥ 11, that (1.5) is Fuchsian and equivalent to the vacuum Einstein equation,
with quantities u, A and f as follows. Let u = (γa

b, λ
c
ef , κ

h
i) be related to the Ein-

stein variables by (2.31)–(2.33). For general d define α0 = (d+ 1)ε and define αa
b
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in terms of α0 as in Section 2. Let A and f , be given by Equations (2.39)–(2.41),
with Ma

b = 0. The argument that A in Equation (1.5) satisfies the appropriate
positivity condition is analogous to the part of the argument concerning the sub-
matrix of A corresponding to (γ, κ) in [15]. A transformation to a frame in which
0gab is diagonal induces a similarity transformation of A. The eigenvalues of the
submatrix are calculated in this representation in [15], and the generalization of
the calculation to integer d ≥ 2 is straightforward.

To obtain f = O(tδ) requires the estimate t2−αa
b SRa

b = O(tδ). The strategy
used here is different from that used to estimate the curvature in [15]. The general
problem is one of organization. There are many terms to be estimated, each of
which on its own is not too difficult to handle. The difficulty is to maintain an
overview of the different terms. The procedure in [15] made essential use of the
fact that the indices only take three distinct values and in the case of higher
dimensions, where this simplification is not available, an alternative approach had
to be developed.

First SRa
b is estimated by considering each of the five terms in the Expres-

sion (2.47). These five terms are expanded by considering each of the six terms in
(2.48) if the indices on SΓc

ab are distinct, but carrying out the summation before
estimating SΓa

ab. There are thus 55 terms to estimate. While many of these terms
are actually identical up to numerical factors, the ease with which each term can
be estimated, using the Inequalities (2.65)–(2.67), led to estimation of all 55 terms,
rather than first combining terms. We do however, take into account that f i

jk = 0
if j = k for obtaining the estimates.

Once an equation such as (1.5) is shown to be Fuchsian, then it follows that
spatial derivatives of u of any order are o(1). At the stage of the argument we are
at here, we cannot assume uxx = O(1). This means that t−ζλa

bc must be used for
eb(γa

c) in places where a spatial derivative of eb(γa
c) occurs. This makes a slight

difference, compared to Section 2.6, in what estimate of the terms in the connection
coefficients is used for the first and second terms of (2.47) (t−δ is replaced by t−ζ).
There are additional differences from (2.72)–(2.77), because there it is assumed
that the Kasner-like metric is diagonal. The estimates 0g̃ab = O(t−ε) and 0g̃ab =
O(t−ε), obtained in Lemma 2 of [15], hold in the case we are considering, so that
g̃(ab) � t|qa−qb|−ε and (see [15]) S g̃ab � t|qa−qb|−ε. This adds factors of t−ε to the
estimate of terms in the connection coefficients.

With these considerations, from (2.48),

SΓ̃a
ac =

1
2

S g̃abẽc(g̃(ab)) + f̃a
ac � t−qc−2ε−ζ . (3.2)

Here we do not write out the estimates of all 55 terms, but instead give some
examples, with a number designating which term of (2.47) is being considered
(1–5), and a letter designating which term of (2.48) is being considered (A–F).
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Thus, for example, term 1C is

t−qa+qb g̃acẽh( S g̃hiẽi(g̃(cb)))

�
∑
c,h,i

t−qa+qb+|qa−qc|−qh+|qh−qi|−qi+|qc−qb|−δ−3ε−ζ

� t−2qa+2qmax{a,b}−2qd−δ−3ε−ζ. (3.3)

Term 3E is

t−qa+qb g̃ac S g̃ikg̃(bj)f̃
j
ck

SΓ̃h
hi

�
∑

c,i,j,k �=c

t−qa+qb+|qa−qc|+|qi−qk|+|qb−qj |+qj−qc−qk−qi−δ−5ε

�
∑

c,k �=c

t−2qmin{a,c}+2qb−2qmin{d,k}−δ−5ε. (3.4)

In term 4, t−qa+qb g̃ac SΓ̃h
ib

SΓ̃i
ch, the terms resulting from expanding SΓ̃h

ib are des-
ignated by small letters a–f, and those from SΓ̃i

ch are designated by capital letters
A–F. Term 4dA is

t−qa+qb g̃ac S g̃hlg̃(ji)f̃
j
bl

S g̃ikẽc(g̃(hk))

�
∑

c,h,i,j,k,l

t−qa+qb+|qa−qc|+|qh−ql|+|qj−qi|+qj−qb−ql+|qi−qk|−qc+|qh−qk|−δ−5ε

� t−2qa−δ−5ε. (3.5)

Term 4eD is

t−qa+qb g̃ac S g̃hng̃(bj)f̃
j
in

S g̃ilg̃(kc)f̃
k
hl

�
∑

c,h,i,j,k,l �=h,n�=i

t−qa+qb+|qa−qc|+|qh−qn|+|qb−qj |+qj−qi−qn+|qi−ql|+|qk−qc|+qk−qh−ql−δ−5ε

� t2qb−2qd−2qd−1−δ−5ε (3.6)

Term 5D is

t−qa+qb g̃acf̃ i
cj

S g̃jkg̃(hi)f̃
h
bk

�
∑

c,h,i,j �=c,k �=b

t−qa+qb+|qa−qc|+qi−qc−qj+|qj−qk|+|qh−qi|+qh−qb−qk−δ−3ε

�
∑

c,j �=c,k �=b

t−2qmin{a,c}+2q1−2qmin{j,k}−δ−3ε. (3.7)

The estimates of the remaining terms are obtained as these. The examples include
one of the terms which limits the estimate for each possible choice of indices
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a and b. The result is,

SRa
b � t2qb−2qd−2qd−1−δ−5ε +

∑
c,j �=c,k �=b

t−2qmin{a,c}+2q1−2qmin{j,k}−δ−5ε. (3.8)

And

t2−αa
b SRa

b � {t2qmin{a,b}−2qd−2qd−1

+
∑

c≥a,j �=c,k �=b

t−2qmax{a,b}+2q1−2qmin{j,k}}t2−α0−δ−5ε

� t2−2qd−2qd−1+2q1−(d+7)ε � t8σ−(d+7)ε = O(tδ). (3.9)

The estimate of the rest of the terms in f is obtained straightforwardly by
checking that the exponent of t in each case is strictly positive. The other reg-
ularity conditions that f should satisfy are shown to hold by Equation (31) in
[15] and the remarks following Equation (31). The symmetry of gab is shown for
all d’s in Subsection 2.5.3. That the Hamiltonian and momentum constraints are
satisfied is shown by the direct analogue of argument made in Section 2.6 and the
estimate R = o(t−2+η1) obtained from Equation (3.8). The only change is that
Equation (2.80) is replaced by

g̃abΓ̃c
ab C̄c t

−pc � t−2pd−δ. (3.10)

To conclude this section we discuss the solution of the velocity-dominated
constraints for the vacuum equations and D ≥ 4. The case D = 3 could be
discussed in a similar way but the analogue of the Lichnerowicz equation has a
different form and so for brevity that case will be omitted. The discussion proceeds
in a way which is parallel to that of the last section. As already indicated there,
the essential task is the analysis of the Lichnerowicz equation. In the present case
we start with free data g̃ab, k̃ab and H where k̃ab has zero divergence. The actual
data are defined by gab = ω4/(d−2)g̃ab and kab = ω−2k̃ab +Hgab. The constraints
will be satisfied is ω satisfies the following analogue of the Lichnerowicz equation:

∆g̃ω +
d− 2

4(d− 1)
(−Rg̃ω + k̃abk̃abω

3d−2
d−2 ) − d(d− 2)

4
H2ω

d+2
d−2 = 0 (3.11)

The corresponding equation in the velocity-dominated case is

d− 2
4(d− 1)

k̃abk̃abω
3d−2
d−2 − d(d− 2)

4
H2ω

d+2
d−2 = 0 (3.12)

As in the case of (2.95) it is trivial to solve (3.12) provided k̃ab does not vanish at
any point. To determine the solvability of Equation (3.11) it is necessary to study
the positive zeros of the algebraic expressions x + bx

3d−2
d−2 − ax

d+2
d−2 and bx

3d−2
d−2 −

ax
d+2
d−2 where a > 0 and b > 0. The second expression is very close to what we
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had in the velocity-dominated case and clearly has a unique positive zero for any
values of a and b satisfying the inequalities assumed. Looking for positive zeros
of the first algebraic expression is equivalent to looking for positive solutions of
x−

d+2
d−2 +ax−2−b = 0. Note that the function on the left-hand side of this equation

is evidently decreasing for all positive x, tends to infinity as x→ 0 and tends to −b
as x→ ∞. Hence as long as the constant b is non-zero this function has exactly one
positive zero, as desired. This is what is needed to obtain an existence theorem. It
would be desirable to also obtain a uniqueness theorem for the solution of (3.11).
To obtain solutions of the velocity-dominated constraints of the right kind to be
consistent with Kasner-like behaviour we can use the same approach as in the
last section, starting with Kasner solutions with an appropriate set of Kasner
exponents.

4 Massless scalar field, D ≥ 3

Consider Einstein’s equations, D ≥ 3, with a massless scalar field as source, the
action given by SE [gαβ ] + Sφ[gαβ , φ], and d + 1 decomposition as in Section 1.6.
The stress-energy tensor is

Tµν = (D)∇µφ
(D)∇νφ− 1

2
gµν

(D)∇αφ
(D)∇αφ. (4.1)

Thus ρ = 1
2{(∂tφ)2 + gabea(φ)eb(φ)}, ja = −∂tφ ea(φ), and Ma

b = gaceb(φ) ec(φ).
A crucial step in the generalization to arbitrary D ≥ 3 is that the cancellation
of terms involving ∂tφ in the expression for Ma

b is not particular to D = 4. The
scalar field satisfies (D)∇α

(D)∇αφ = 0, which has d+ 1 decomposition

∂2
t φ− (trk)∂tφ = gab∇a∇b φ. (4.2)

Let the Kasner-like evolution equations be Equations (2.7)–(2.9), with Solu-
tions (2.12)–(2.14) for time coordinate as in Section 3. Given a point x0 ∈ Σ, let the
neighborhood U0, the (local) adapted frame and the constant ε be as in Section 3.
Define 0ρ = 1

2 (∂t
0φ)2 and 0ja = −∂t

0φ ea( 0φ). The velocity-dominated con-
straints corresponding to the Hamiltonian and momentum constraints are 0C = 0
and 0Ca = 0, with 0C and 0Ca given by Equations (2.18) and (2.19). For the So-
lution (2.12)–(2.14) the velocity-dominated Hamiltonian constraint is equivalent
to

∑
pa

2 + A2 = 1. Equations (2.21) and (2.22) are satisfied so if the velocity-
dominated constraints are satisfied at some t0, then they are satisfied for all t > 0.
The restriction defining the set V is the Inequality (3.1). (If D < 11, then satis-
fying simultaneously (3.1),

∑
pa = 1 and

∑
pa

2 + A2 = 1 requires A �= 0. Note
that conversely, for D = 3, the restrictions defining V are simply equivalent to
A �= 0, since (3.1) is in this case a consequence of p1 + p2 = 1 and p2

1 + p2
2 < 1).

The constant σ > 0 is chosen so that, for all x ∈ U0, 4σ < 1 + p1 − pd − pd−1 from
which it follows that

σ < 2 − 2pd . (4.3)
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Now reduce ε if necessary so that ε < σ/(2d + 1). As before, this may in turn
require shrinking U0.

The unknown u = (γa
b, λ

a
bc, κ

a
b, ψ, ωa, χ) is related to the Einstein-matter

variables by (2.31)–(2.36). The quantities A and f appearing in Equation (1.5)
are given by the evolution Equations (2.39)–(2.43) and

t ∂tχ+ βχ = tα0−β(tr κ)(A+ tβχ) + t2−β Sgab S∇a
S∇b

0φ+ t2−ζ S∇aωa. (4.4)

The argument that the matrix A satisfies the appropriate positivity condition is
analogous to the argument in [15]. Regarding the estimate f = O(tδ), the estimate
t2−αa

b SRa
b = O(tδ) was obtained in Equation (3.9). The estimate t2−αa

bMa
b =

O(tδ) follows from the Inequality (4.3) and from qd < pd. The only other terms
in f whose estimates are not immediate from the estimates made in [15] are the
last two terms on the right-hand side of Equation (4.4). The covariant derivative
compatible with the symmetrized metric is used in Equation (4.4) for convenience.
From the estimate S g̃ab � t|qa−qb|−ε [15], Equations (2.53) and (2.54),

Sgab � t−2qmin{a,b}−ε and ec(g(ab)) � t2qmax{a,b}−δ−ε.

Therefore,

Sgab SΓc
ab = Sgab Sgch

(
ea(g(bh)) − 1

2
eh(g(ab))

)
− Sgchfa

ah

� t−2qd−δ−3ε

and

t2−β Sgab S∇a
S∇b

0φ = t2−β Sgab{ea(eb( 0φ)) − SΓc
abec( 0φ)}

� t2−2qd−β−δ−3ε = O(tδ),
t2−ζ S∇aωa = t2−ζ Sgab{ea(wb) − SΓc

abwc}
� t2−2qd−ζ−δ−3ε = O(tδ)

The other regularity conditions that f should satisfy are again shown to hold
by Equation (31) in [15] and the remarks following Equation (31). That gab is
symmetric (so that Equation (4.4) and Equation (4.2) are equivalent) is shown as
in Subsection 2.5.3. That the Hamiltonian and momentum constraints are satisfied
is shown by the analogue of the argument made in Section 2.6 and the estimate
R = o(t−2+η1 ) obtained from Equation (3.8).

Note that the case D = 3 of this result has an interesting connection to the
Einstein vacuum equations in D = 4. As it follows from standard Kaluza-Klein
lines, the solutions of the latter with polarized U(1) symmetry are equivalent to
the Einstein-scalar field system in D = 3 (see e.g. [40] and [41], Section 5). Hence
the result of this section implies that we have constructed the most general known
class of singular solutions of the Einstein vacuum equations in four spacetime
dimensions. These spacetimes have one spacelike Killing vector.
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5 Matter fields derived from n-form potentials

5.1 Equations of motion

We now turn to the general system (1.1), but without the interaction terms “more”.
These are considered in Section 7 below. The action is the sum of (1.2), (1.3) and
k additional terms, each of the form (1.4). The argument is based on that of
Section 4. It is enough here to note the differences. Furthermore, since there is
no coupling between additional matter fields, the differences from the argument
made in Section 4 can be noted for each additional matter field independently of
the others. Therefore consider the jth additional matter field,

Fµ0···µnj
= (nj + 1)∇[µ0Aµ1···µnj

],

with A an nj-form. This matter field contributes the following additional terms to
the stress-energy tensor, Equation (4.1),

Tµν = · · · +
{

1
nj !

Fµα1···αnj
Fν

α1···αnj − 1
2(nj + 1)!

gµνFα0···αnj
Fα0···αnj

}
eλjφ.

Define Ea1···anj =
√
g F 0a1···anj eλjφ. If nj = 0, E is a spatial scalar density.

Throughout this section and the next we use the following conventions. If nj = 0,
then Pa1···anj

is a scalar, ga1b1 · · · ganj
bnj

= 1, etc. The d+ 1 decomposition of the
contribution of this matter field to the stress-energy tensor is

ρ = · · · + 1
2 g nj !

ga1b1 · · · ganj
bnj

Ea1···anj Eb1···bnj e−λjφ

+
1

2(nj + 1)!
ga0b0 · · · ganj

bnjFa0···anj
Fb0···bnj

eλjφ, (5.1)

ja = · · · + 1√
g nj!

Eb1···bnj Fab1···bnj
, (5.2)

Ma
b = · · · − 1

g

( nj

nj !
gbh1gc2h2 · · · gcnj

hnj
Eac2···cnj Eh1···hnj

− nj

(d− 1)nj!
δa

b gc1h1 · · · gcnj
hnj

Ec1···cnj Eh1···hnj

)
e−λjφ

+
( 1
nj !

gacgh1i1 · · · ghnj
injFch1···hnj

Fbi1···inj

− nj

(d− 1)(nj + 1)!
δa

b g
c0h0 · · · gcnj

hnjFc0···cnj
Fh0···hnj

)
eλjφ.

The jth matter field satisfies

(D)∇µ(Fµν1···νnj eλjφ) = 0, (5.3)
(D)∇[µFν0···νnj

] = 0, (5.4)
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with d+ 1 decomposition into constraint equations,

ea(Eab2···bnj ) + f c
ca Eab2···bnj +

1
2

nj∑
i=2

f bi
acEab2···c···bnj = 0, (5.5)

e[a(Fb0···bnj
]) − (nj + 1)

2
f c
[ab0

F|c|b1···bnj
] = 0, (5.6)

and evolution equations,

∂tEa1···anj = −eb(
√
ggbc0ga1c1 · · · ganj

cnjFc0···cnj
eλjφ) − {fh

hbg
bc0ga1c1 · · · ganj

cnj

+
1
2

nj∑
i=1

fai

bhg
bc0ga1c1 · · · ghci · · · ganj

cnj }√gFc0···cnj
eλjφ, (5.7)

∂tFa0···anj
= −(nj + 1)e[a0(

1√
g
ga1|b1| · · · ganj

]bnj
Eb1···bnj e−λjφ)

+
(nj + 1)nj

2
√
g

f c
[a0a1

g|c||b1|ga2|b2| · · · ganj
]bnj

Eb1···bnj e−λjφ. (5.8)

The jth matter field contributes the following terms to the evolution Equation (4.2)
for φ.

∂2
t φ− (trk)∂tφ = · · · + λj

2 g nj!
ga1b1 · · · ganj

bnj
Ea1···anj Eb1···bnj e−λjφ

− λj

2(nj + 1)!
ga0b0 · · · ganj

bnjFa0···anj
Fb0···bnj

eλjφ (5.9)

5.2 Velocity-dominated system

The Kasner-like evolution equations corresponding to this matter field are
∂t

0Ea1···anj = 0 and ∂t
0Fa0···anj

= 0. The quantities 0Ea1···anj and 0Fa0···anj

are constant in time with analytic spatial dependence and both are totally anti-
symmetric.

The velocity-dominated matter constraint equations are Equations (5.5) and
(5.6) with 0E and 0F substituted for E and F . Since all quantities in the velocity-
dominated matter constraints are independent of time, if the matter constraints
are satisfied at some time t0 > 0, then they are satisfied for all t > 0. This
matter field does not contribute to 0ρ. Its contribution to 0ja is the term shown
on the right-hand side of Equation (5.2) with 0g, 0E and 0F substituted for g,
E and F . The velocity-dominated constraints corresponding to the Hamiltonian
and momentum constraints are 0C = 0 and 0Ca = 0, with 0C and 0Ca given by
Equations (2.18) and (2.19). Equations (2.21) and (2.22) are satisfied, so as before,
if the velocity-dominated constraints are satisfied at some t0 > 0, then they are
satisfied for all t > 0.
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The presence of the matter field A(j) puts the following restrictions on the
set V [1].

2p1 + · · · + 2pnj − λjA > 0 and 2p1 + · · · + 2pd−nj−1 + λjA > 0. (5.10)

The restrictions generalize the Inequalities (2.24) found for a Maxwell field in 4
dimensions and, like them, guarantee that one can asymptotically neglect the p-
form A(j) in the Einstein-dilaton dynamical equations. (For nj = 0, the inequality
on the left of (5.10) is −λjA > 0 while for nj = 1 it is 2p1−λjA > 0. For nj = d−1,
the inequality on the right is λjA > 0, while for nj = d− 2 it is 2p1 + λjA > 0.)

The constant σ is reduced from its value in Section 4, if necessary, so that,
for all x ∈ U0, σ < 2p1 + · · ·+ 2pnj − λjA and σ < 2p1 + · · ·+ 2pd−nj−1 + λjA. If
σ is reduced, it may be necessary to reduce ε, and in turn shrink U0, so that the
conditions imposed in Section 4 are still all satisfied.

5.3 Fuchsian property – estimates

The jth matter field contributes the following components to the unknown u in
the Fuchsian Equation (1.5).

Ea1···anj = 0Ea1···anj + tβξa1···anj , (5.11)
Fa0···anj

= 0Fa0···anj
+ tβϕa0···anj

. (5.12)

Here, β = ε/100 as above, ξa1···anj is a totally antisymmetric spatial tensor den-
sity, so contributes

(
d
nj

)
independent components to u, and ϕa0···anj

is a totally

antisymmetric spatial tensor, so contributes
(

d
nj+1

)
components to u. This is con-

sistent with the form of the evolution equations. Note that Ea1···anj = O(1) and
Fa0···anj

= O(1).
This matter field contributes additional rows and columns to the matrix A

such that the only non-vanishing new entries are on the diagonal and strictly
positive. Therefore, the presence of this matter field does not alter that A satisfies
the appropriate positivity condition.

The terms in the source f which must be estimated on account of the jth
matter field are the following. It contributes terms to the components of f corre-
sponding to κ through its contribution to Ma

b.

t2−αa
b
1
g
gbh1gc2h2 · · · gcnj

hnj
Eac2···cnj Eh1···hnj e−λjφ

�
∑

t
−2qmax{a,b}+2qa+2qmax{b,h1}+···+2qmax{cnj

,hnj
}−λjA−α0−njε

� t2q1+···+2qnj
−λjA−α0−njε = O(t−α0−njε+σ) = O(tδ) (5.13)

t2−αa
bgacgh1i1 · · · ghnj

injFch1···hnj
Fbi1···inj

eλjφ

�
∑

t
2−2qmax{a,b}+2qa−2qmin{a,c}−2qmin{h1,i1}−···−2qmin{hnj

,inj
}+λjA−α0−(nj+1)ε

� t2q1+···+2qd−nj−1+λjA−α0−(nj+1)ε = O(t−α0−(nj+1)ε+σ) = O(tδ) (5.14)
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Here it is used that both Ea1···anj and Fa0···anj
are totally antisymmetric, so that

the sums indicated by a summation symbol are not over all indices. Note that the
Inequalities (5.10) have been crucially used in getting the Estimates (5.13) and
(5.14). The desired estimates for the other two terms are obtained similarly.
The terms contributed to the component of f corresponding to χ by the jth matter
field are obtained by multiplying the right-hand side of Equation (5.9) by t2−β.

t2−β 1
g
ga1b1 · · · ganj

bnj
Ea1···anj Eb1···bnj e−λjφ = O(t−β−njε+σ) = O(tδ) (5.15)

t2−βga0b0 · · · ganj
bnjFa0···anj

Fb0···bnj
eλjφ = O(t−β−(nj+1)ε+σ) = O(tδ). (5.16)

The terms in f corresponding to ξa1···anj for the jth matter field are obtained
by multiplying the right-hand side of Equation (5.7) by t1−β. These terms are
O(t−β−δ−(nj+1)ε+σ) = O(tδ). The terms in f corresponding to ϕa0···anj

for the jth
matter field are obtained by multiplying the right-hand side of Equation (5.8) by
t1−β . These terms are O(t−β−δ−njε+σ) = O(tδ). Thus the terms which occur in f
due to the jth matter field are O(tδ).

The time derivative of the matter constraint quantities for the jth field (the
left-hand side of Equations (5.5) and (5.6)) vanishes. If the velocity-dominated
matter constraints are satisfied, the matter constraint quantities are o(1). A quan-
tity which is both constant in time and o(1) must vanish. Therefore the matter
constraints for the jth field are satisfied.

Next the matter terms due to the jth field in the Einstein constraints are
estimated, in order to verify that they are consistent with Equations (2.63) and
(2.64). The contribution to the Hamiltonian constraint is, from Equation (5.1),

1
g
ga1b1 · · · ganj

bnj
Ea1···anj Eb1···bnj e−λjφ = O(t−2−njε+σ) = o(t−2+η1), (5.17)

ga0b0 · · · ganj
bnjFa0···anj

Fb0···bnj
eλjφ = O(t−2−(nj+1)ε+σ) = o(t−2+η1 ). (5.18)

The contribution to the momentum constraint is

ja −0 ja = · · · + (
1√
g
− 1√

0g
) 0Eb1···bnj 0Fab1···bnj

(5.19)

+
1√
g
(Eb1···bnj Fab1···bnj

− 0Eb1···bnj 0Fab1···bnj
) = o(t−1+η2).

Estimates related to the determinant which are relevant to (5.19) are analogues
of the estimates for d = 3 immediately preceding Equation (2.55). The form of
these estimates for general d will now be presented. These are 1/

√
g − 1/

√
0g =

O(t−1+α0−dε), ea(g̃) = O(tα0−δ−dε),

ea(g) = O(t2+α0−δ−dε), (5.20)

and

ea(g−1/2) = −ea(g)
2g3/2

= O(t−1+α0−δ−dε).
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6 Determination of subcritical domain

The explicit determination of the subcritical range of the dilaton couplings for
which the inequalities on the Kasner exponents are consistent so that V exists
may be a complicated matter. We consider in this section a few cases and give
some general rules. As in Subsection 2.4, we introduce the metric

dS2 = Gµνdp
µdpν =

∑
dpa

2 − (
∑

dpa)2 + (dA)2 (6.1)

in theD-dimensional space of the Kasner exponents (pa, A) ≡ (pµ). This metric has
again Minkowskian signature (−,+,+, · · · ,+). The forward light cone is defined
by

Gµνp
µpν = 0,

∑
pa > 0. (6.2)

The Kasner conditions met in the previous section are equivalent to the conditions
that the Kasner exponents be on the forward light cone (since

∑
pa = 1 can always

be achieved by positive rescalings).
The wall chamber W is now defined by

p1 ≤ p2 ≤ · · · ≤ pd (6.3)
2p1 + p2 + · · · + pd−2 ≥ 0 (6.4)

and, for each p-form,

p1 + p2 + · · · + pnj −
λj

2
A ≥ 0 (6.5)

p1 + p2 + · · · + pd−nj−1 +
λj

2
A ≥ 0. (6.6)

These inequalities may not be all independent. The question is to determine the
“allowed” values of the dilaton couplings for which the wall chamber contains in
its interior future-directed lightlike vectors. It is clear that this set is non-empty
since the inequalities can be all fulfilled when the couplings are zero (the pa’s can
be chosen to be positive in the presence of a dilaton).

6.1 Einstein-dilaton-Maxwell system in D dimensions

We consider first the case of a single 1-form in D ≥ 4 dimensions. This case is
simple because the Inequalities (6.4) are then consequences of (6.5) and (6.6),
which read

p1 − λ

2
A ≥ 0, p1 + p2 + · · · + pd−2 +

λ

2
A ≥ 0. (6.7)

Furthermore, the number of faces of the wall chamber (defined by these inequalities
and (6.3)) is exactly D and the edge vectors form a basis. Thus, the analysis of
Subsection 2.4 can be repeated.
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A basis of edge vectors can be taken to be

(0,0,···,0,1,0) (6.8)(− d−k−2
k+1

,···,−d−k−2
k+1

,1,···,1,−2(d−k−2)
λ(k+1)

)
, k=1,2,···,d−2 (6.9)

(1,1,···,1, 2
λ

) (6.10)

(1,1,···,1,−2(d−2)
λ

) (6.11)

In (6.9), the first k components are equal to − d−k−2
k+1 and the next d−k components

are equal to 1.
The first vector is lightlike. The kth vector in the group (6.9) has squared

norm

− (d− 1)[k2 − k(d− 3) + d]
(k + 1)2

+
4(d− k − 2)2

λ2(k + 1)2
, k = 1, 2, · · · , d− 2 (6.12)

while (6.10) and (6.11) have norm squared equal to

−d(d− 1) +
4
λ2

(6.13)

and

−d(d− 1) +
4(d− 2)2

λ2
, (6.14)

respectively. The subcritical values of λ must (by definition) be such that at least
one of the Expressions (6.12), (6.13) or (6.14) is positive. To determine the bound-
aries ±λc of the subcritical interval, we first note that (6.13) is positive whenever
|λ| < Λ1, with Λ1 = 2/

√
d(d− 1). Similarly, (6.14) is positive whenever |λ| < Λ2

with Λ2 = 2(d − 2)/
√
d(d− 1). To analyze the sign of (6.12), we must consider

two cases, according to whether k2 − k(d− 3) + d is positive or negative.
If d < 9, the factor k2 − k(d − 3) + d is always positive (for any choice of k,

k = 1, 2, · · · , d− 2) and the Expression (6.12) is positive provided |λ| < Πk, with

Πk =
2(d− k − 2)√

(d− 1)[k2 − k(d− 3) + d]
. (6.15)

The critical value λc is equal to the largest number among Λ1, Λ2 and Πk. This
largest number is Λ2 for d = 3, 4, 5, 6, Π1 for d = 7 and Π2 for d = 8. We thus
have the following list of critical couplings:

λc =

√
2
3
, d = 3

λc =
2√
3
, d = 4
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λc =
3√
5
, d = 5

λc =
4
√

2√
15
, d = 6

λc =
2
√

2√
3
, d = 7

λc =
4
√

2√
7
, d = 8. (6.16)

Note that the value of the dilaton coupling that comes from dimensional reduction
of vacuum gravity in one dimension higher

λKK = 2

√
d

d− 1
(6.17)

is always strictly greater than the critical value, except for d = 8, where λKK = λc.
(The corresponding values of the Kasner exponents are those of the point on the
Kasner sphere exhibited in [13] for D = 10, where all gravitational inequalities are
marginally fulfilled.)

If d ≥ 9, the factor k2 − k(d− 3) + d is non-positive for

d− 3 − √
(d− 9)(d− 1)
2

≤ k ≤ d− 3 +
√

(d− 9)(d− 1)
2

(6.18)

(this always occurs for k = 3). Thus, the Expression (6.12) is positive for such k’s
no matter what λ is. This implies that the critical value of λ is infinite,

λc = ∞, d ≥ 9. (6.19)

The fact that D = 10 appears as a critical dimension for the Einstein-dilaton-
Maxwell system, above which the system is velocity-dominated no matter what
the value of the dilaton coupling is in the line of the findings of [13], since the edges
(6.9) differ from those of the pure gravity wall chambers only by an additional
component along the spacelike dilaton direction.

6.2 Einstein-dilaton system with one p-form (p �= 0, p �= D − 2)

The same geometrical procedure for determining the critical values of the dilaton
couplings can be followed when there is only one p-form in the system (p �= 0,
p �= D − 2), because in that case the wall chamber has exactly D faces and the
edge vectors form a basis. Indeed, the gravitational Inequalities (6.4) are always
consequences of the symmetry Inequalities (6.3) and the form Inequalities (6.5)
and (6.6) (for nj �= 0 and nj �= D − 2),

2p1+p2+· · ·+pd−2 = (p1+· · ·+pnj−
λj

2
A)+(p1+pnj+1+· · ·+pd−2+

λj

2
A). (6.20)
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So, if there is only one p-form (with p �= 0 and p �= D − 2), the D − 2 symmetry
Inequalities (6.3) together with the two form Inequalities (6.5) and (6.6) completely
define the wall chamber, which has D faces. We shall not provide an explicit
example of a calculation of λc for such a system, since it proceeds as for a 1-form.

When there is more than one exterior form, one can still drop the gravitational
inequalities (if there is at least one p-form with p �= 0 and p �= D − 2), but the
situation is more involved because the inequalities corresponding to different forms
are usually independent, so that the wall chamber has more than D faces (its
intersection with the hyperplane

∑
pa = 1 is not a simplex). The calculation is

then more laborious. The same feature arises for a 0-form, which we now examine.

6.3 0-form in 4 dimensions

We consider the case of a 0-form in 4 spacetime dimensions. As explained above,
we impose the condition λ �= 0 to the corresponding dilaton coupling7. Without
loss of generality (in view of the φ → −φ symmetry), we can assume λ > 0. The
inequalities defining the subcritical domain relevant to the 0-form case can be
brought to the form

p1 > 0 (6.21)
A > 0 (6.22)

p1 + p2 − λ

2
A > 0 (6.23)

p2 − p1 > 0 (6.24)
p3 − p2 > 0 (6.25)

We denote by α, β, γ, δ and ε the corresponding border hyperplanes (i.e., α : p1 =
0, β : A = 0 etc). The Inequalities (6.21)–(6.25) guarantee that all potential walls
are negligible asymptotically. They are independent. The five faces α, β, γ, δ and
ε intersect along the 7 one-dimensional edges generated by the vectors:

e1 = (0, 0, 1, 0) ∈ α ∩ β ∩ γ = α ∩ β ∩ δ = α ∩ γ ∩ δ = β ∩ γ ∩ δ (6.26)
e2 = (0, 1, 1, 0) ∈ α ∩ β ∩ ε (6.27)

e3 = (0, 1, 1,
2
λ

) ∈ α ∩ γ ∩ ε (6.28)

e4 = (0, 0, 0, 1) ∈ α ∩ δ ∩ ε (6.29)
e5 = (−1, 1, 1, 0) ∈ β ∩ γ ∩ ε (6.30)
e6 = (1, 1, 1, 0) ∈ β ∩ δ ∩ ε (6.31)

e7 = (1, 1, 1,
4
λ

) ∈ γ ∩ δ ∩ ε (6.32)

7The case λ = 0 is clearly in the subcritical region but must be treated separately because there
are then two dilatons. The Kasner conditions read p1+p2+· · ·+pd = 1 and p2

1+· · · p2
d+A2

1+A2
2 =

1, where the scalar fields behave as φ1 ∼ A1 ln t, φ2 ∼ A2 ln t. This allows positive pi’s, which
enables one to drop spatial derivatives as t → 0. The system is velocity-dominated.
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Among these vectors, neither e4 nor e5 bound the subcritical domain since e4 is
such that p1 + p2 − (λ/2)A < 0 (changing its sign would make A < 0), while e5 is
such that p1 < 0 (changing its sign would make p2 − p1 < 0).

The edge-vectors {e1, e2, e3, e6, e7} form a complete (but not linearly inde-
pendent) set. Any vector can be expanded as

v = v1e1 + v2e2 + v3e3 + v6e6 + v7e7 (6.33)

The coefficients v1, v2, v3, v6, v7 are not independent but can be changed as

v2 → v2 + 2k, v3 → v3 − 2k, v6 → v6 − k, v7 → v7 + k (6.34)

For (6.33) to be interior to the wall chamber, the coefficients v1, v2, v3, v6 and v7
must fulfill

v1 > 0, v2 + v3 > 0, v2 + 2v6 > 0, v3 + 2v7 > 0, v6 + v7 > 0. (6.35)

Using the above redefinitions, which leave the inequalities invariant, we can make
vA ≥ 0, A = 1, 2, 3, 6, 7, with at most two vA’s equal to zero. Indeed, let s =
min(v2, v3, 2v6, 2v7). Assume for definiteness that s = v2 (the other cases are
treated in exactly the same way). One has then v2 ≤ 2v7. Take 2k = −s in the
redefinitions (6.34). This makes v2 equal to zero and makes v7 equal to v7−(v2/2) ≥
0. Because of (6.35), the new v3 and v6 are strictly positive, as claimed. Thus, one
sees that any vector in the wall chamber can be expanded as in (6.33) with non-
negative coefficients. But the vectors e1, e2, e3, e6 and e7 are all future-pointing and
timelike or null when λ ≥ √

8/3. It follows that for such λ’s, there is no lightlike
direction in the interior of the wall chamber. Conversely, if λ <

√
8/3, the vector

e7 is spacelike and one can find an interior vector αe1 + βe2 + e7 (α, β > 0) that
is lightlike. We can thus conclude:

λc =

√
8
3

for a 0-form in 4 dimensions, (6.36)

i.e., the system is velocity-dominated for |λ| < √
8/3.

The action for the matter fields in the case of a 0-form A coupled to a dilaton
φ is

Sφ[gαβ , φ, A] = −1
2

∫
(∂µφ∂

µφ+ eλφ∂µA∂
µA)

√−g d4x (6.37)

Note that this is the action for a wave map (also known as a nonlinear σ-model
or hyperbolic harmonic map) with values in a two-dimensional Riemannian man-
ifold of constant negative curvature. Its curvature is proportional to λ2. Thus we
obtain an interesting statement on velocity-dominated behaviour for the Einstein
equations coupled to certain wave maps. Note for comparison that wave maps in
flat space occurring naturally in the context of solutions of the vacuum Einstein
equations with symmetry, for instance in Gowdy spacetimes (cf. [34]), are defined
by a Lagrangian of the above type (using the flat metric) with λ = 2.
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6.4 Collection of 1-forms

We now turn to a system of several 1-forms. It is clear that if these have all the
same dilaton coupling, as in the Yang-Mills Action (1.7), then, the critical value
of λ is just that computed in (6.16) and (6.19) since each form brings in the same
walls. The situation is more complicated if the dilaton couplings are different. One
could naively think that the subcritical domain is then just the Cartesian product
of the individual subcritical intervals [−λ(j)

c , λ
(j)
c ], but this is not true because the

intersection of the wall chambers associated with each 1-form may have no interior
lightlike direction, even if each wall chamber has some.

This is best seen on the example of two 1-forms in D spacetime dimensions
with opposite dilaton couplings. The relevant inequalities, from which all others
follow, are in this case

p1 − λ

2
A > 0, p1 +

λ

2
A > 0 (6.38)

p1 < p2 < · · · < pd (6.39)

and can be easily analyzed because they determine, in this particular instance, a
simplex in the hyperplane

∑
pa = 1. It follows from (6.38) that p1 > 0. The edge-

vectors can be taken to be (0, . . . , 0, 1, . . . , 1, 0) (k zeros, d−k ones, k = 1, . . . , d−1)
and (1, 1, . . . , 1,±2/λ). The first d− 1 edge-vectors are timelike or null, while the
last two are spacelike provided −d(d− 1)λ2 + 4 > 0. This yields

λc =
2√

d(d− 1)
for two 1-forms with opposite dilaton couplings (6.40)

Accordingly, λc is finite for any spacetime dimension (and in fact, tends to zero as
d→ ∞), even though λc = ∞ for a single 1-form whenever d > 8.

7 Coupling between the matter fields

The actions for the bosonic sectors of the low-energy limits of superstring theories
or M-theory contain coupling terms between the p-forms, indicated by “more” in
(1.1). These coupling terms are of the Chern-Simons or the Chapline-Manton type.
In this section, we show that these terms are consistent with the results obtained in
Section 5, in that they are also asymptotically negligible in the dynamical equations
of motion when the Kasner exponents are subject to the above Inequalities (6.3)–
(6.6).

More precisely, the form of the velocity-dominated evolution equations and
solutions are in each case exactly as in Section 5. The velocity-dominated matter
constraints have additional terms, but as before, the velocity-dominated matter
variables (besides the dilaton) are constant in time, so if the constraints are sat-
isfied at some t > 0 they are satisfied for all t > 0. The quantities 0ρ and 0ja are
defined exactly as in Section 5. Since the velocity-dominated evolution equations
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are also the same, there is nothing additional to check concerning the velocity-
dominated Hamiltonian and momentum constraints.

Turning now to the exact equations, the restrictions defining the set V are
unchanged from Section 5. The form of the evolution equation for the dilaton
is unchanged. The form of the stress-energy tensor is also unchanged, and so the
form of the Einstein evolution equations and the Einstein constraints is unchanged.
The additional matter field variables considered in Section 5 are still all O(1), so
estimates of terms involving the matter fields do not need to be reconsidered, as
long as their form has not changed, for instance, in the argument that the Einstein
constraints are satisfied. That the matter constraints are satisfied follows as in the
other cases, once it is verified that their time derivative vanishes and that they
are o(1). Since so much of the argument is identical to that of Section 5, we only
point out the few places where there are differences.

7.1 Chern-Simons terms

First we consider the coupling of i of the additional matter fields via a Chern-
Simons term in the action. These additional matter fields should be such that

i− 1 +
i∑

j=1

nj = D. (7.1)

The Chern-Simons term which is added to the action is

SCS[A(1)
γ1···γn1

, · · · , A(i)
γ1···γni

] =
∫
A(1) ∧ dA(2) ∧ · · · ∧ dA(i). (7.2)

The variation of this term with respect to both the metric and the dilaton field,
φ, vanishes. The matter Equation (5.4) is unchanged, since it is still the case that
F (j) = dA(j) for all j. But Equation (5.3) for each of the i coupled matter fields
acquires a non-vanishing right-hand side.

(D)∇µ(F (j)µν1···νnj eλjφ)
√−g

= Cj ε
···ν1···νnj

···F (1)
··· · · ·F (j−1)

··· F
(j+1)
··· · · ·F (i)

··· (7.3)

Here ε0...d = 1 and Cj is a numerical factor. Next, considering the d+ 1 decompo-
sition of Equation (7.3), the constraint Equation (5.5), for the jth coupled matter
field, acquires the following term on its right-hand side,

−Cjε
···0b1···F (1)

··· · · ·F (j−1)
··· F

(j+1)
··· · · ·F (i)

··· (7.4)

Here all indices which are not explicit are spatial. So, only magnetic fields ap-
pear in (7.4). The following term is added to the right-hand side of the evolution



1098 T. Damour, M. Henneaux, A.D. Rendall and M. Weaver Ann. Henri Poincaré

Equation (5.7) for the jth coupled matter field.

−Cj

{ j−1∑
m=1

(nm + 1)ε···0c1···cnm ···a1···anj
···F (1)

··· · · ·

×
( 1√

g
gc1h1 · · · gcnmhnm

E(m)h1···hnm e−λmφ
)
· · ·F (j−1)

··· F
(j+1)
··· · · ·F (i)

···
}

−Cj

{ i∑
m=j+1

(nm + 1)ε···a1···anj
···0c1···cm···F (1)

··· · · ·F (j−1)
··· F

(j+1)
··· · · · (7.5)

×
( 1√

g
gc1h1 · · · gcnmhnm

E(m)h1···hnm e−λmφ
)
· · ·F (i)

···
}
.

Again, all indices which are not explicit are spatial. There is in each term only one
electric field.

The velocity-dominated matter constraint equations for the jth coupled mat-
ter field can be obtained from the “full” matter constraint equations for the same
field by substituting the velocity-dominated quantities for all variables.

The only additional terms occurring in f are due to Equation (7.5). The form
of the mth term on the right-hand side of Equation (7.5) is just like the form of
the terms on the right-hand side of Equation (5.8) for the mth coupled field. The
factors which differ, comparing the mth term of (7.5) to Equation (5.8) for the
mth field, are 0(1). Since in both cases a factor of t1−β is added in order to obtain
the terms appearing in f , the estimate that the additional terms in f due to the
Chern-Simons coupling are O(tδ) is obtained just as the corresponding previously
obtained estimates.

7.2 Chapline-Manton couplings

Next we consider Chapline-Manton couplings. For definiteness, we treat two ex-
plicit examples, leaving to the reader the task of checking that the general case
works in exactly the same way. The first coupling is between an n-form A and
an (n + 1)-form B and is equivalent to making B massive. Let F = dA + B and
H = dB. The gauge transformations are B → B + dη, for arbitrary n-form η, and
A → A − η + dγ, for arbitrary (n − 1)-form γ. (If n = 0, then dγ is replaced by
a constant scalar and we require that the corresponding constant, λA, in the cou-
pling to the dilaton be nonzero.) The form of the action is the same as in Section 5,
but since F now depends on B and not just on A, the variation of the action with
respect to B acquires an additional term. Also, it is now the case that dF = H .

The matter Equation (5.3) is unchanged for F and Equation (5.4) is un-
changed for H . Equation (5.3) for H and Equation (5.4) for F are now as follows.

(D)∇µ(Hµν0···νneλBφ) = F ν0···νneλAφ, (7.6)

(D)∇[µFν0···νn] =
1

(n+ 2)
Hµν0···νn . (7.7)
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Define Ea1···an =
√
g F 0a1···aneλAφ and Da0···an =

√
g H0a0···aneλBφ. The matter

constraint equations which are affected are

ea(Dab1···bn) + f c
ca Dab1···bn +

1
2

n∑
i=1

f bi
acDab1···c···bn = −Eb1···bn , (7.8)

e[a(Fb0···bn]) − (n+ 1)
2

f c
[ab0

F|c|b1···bn] =
1

n+ 2
Hab0···bn , (7.9)

The additional term which appears on the right-hand side of Equation (5.7) for
Da0···an is √

gga0b0 · · · ganbnFb0···bne
λAφ. (7.10)

The additional term which appears on the right-hand side of Equation (5.8) for
Fa0···an is

−1√
g
ga0b0 · · · ganbnDb0···bne−λBφ. (7.11)

The velocity-dominated matter constraint equations which are affected can be
obtained from Equation (7.8) and (7.9) by substituting the corresponding velocity-
dominated quantities for all variables. The only additional terms occurring in f are
due to Equations (7.10) for D and (7.11) for F . The form of the additional terms in
these equations is just like the form of the terms which appear in Equations (5.7)
for E and in (5.8) for H . Therefore the estimate that the additional terms are
O(tδ) is obtained just as the corresponding previously obtained estimates.

The second Chapline-Manton type coupling is between an n-form A and a
(2n)-form B. Let F = dA and H = dB + A ∧ F . The gauge transformations
are A → A + dγ, for arbitrary (n − 1)-form γ, and B → B + dη − γ ∧ F , for
arbitrary (2n − 1)-form η. (If n = 0 the gauge transformations are A → A + C
and B → B +D − CA for constant scalars C and D and we require both λA �= 0
and also λB �= 0.) The form of the action is again the same as in Section 5.
Define Ea1···an =

√
g F 0a1···aneλAφ and Da1···a2n =

√
g H0a1···a2neλBφ. The matter

Equations (5.3) for F and (5.4) for H are affected, only if n is odd. The equation
for F which is affected (if n is odd) and its d+ 1 decomposition are

(D)∇µ(Fµν1···νneλAφ) =
2

(n+ 1)!
Hµν1···νnσ1···σnFµσ1···σne

λBφ, (7.12)

ea(Eab2···bn) + f c
ca Eab2···bn +

1
2

n∑
i=2

f bi
acEab2···c···bn =

2
(n+ 1)!

Dab2···bnh1···hnFah1···hn ,

(7.13)

∂tEa1···an = · · · − 2√
g n!

Da1···anb1···bngb1c1 · · · gbncnEc1···cn (7.14)

+
2

(n+ 1)!
√
ggbh0ga1h1 · · · ganhngc1hn+1 · · · gcnh2nHh0···h2nFbc1···cne

λBφ.
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The equation for H which is affected (if n is odd) and its d+ 1 decomposition are

(D)∇[µ0Hµ1···µ2n+1] =
(2n+ 1)!

(n+ 1)!(n+ 1)!
F[µ0···µn

Fµn+1···µ2n+1], (7.15)

e[a(Hb0···b2n]) − (2n+ 1)
2

f c
[ab0

H|c|b1···b2n] =
(2n+ 1)!

(n+ 1)!(n+ 1)!
F[ab0···bn−1Fbn···b2n],

(7.16)

∂tHa0···a2n = · · · + (2n+ 2)!√
g (n+ 1)!(n+ 1)!

g[a0|b1| · · · gan−1|bn|Eb1···bne−λAφFan···a2n].

(7.17)
The velocity-dominated matter constraint equations which are affected can be ob-
tained from Equation (7.13) and (7.16) by substituting the corresponding velocity-
dominated quantities for all variables. The only additional terms occurring in f
are due to Equations (7.14) for E and (7.17) for H . Here again, the estimate that
the additional terms in f are O(tδ), is just as the estimate of terms appearing
already in Section 5, either in Equation (5.7) for D or in Equation (5.8) for F .

8 Yang-Mills

We complete our analysis by proving that Yang-Mills couplings also enjoy the prop-
erty of not modifying the conclusions. The action is (1.7), with a Yang-Mills field
as source in addition to the scalar field considered in Section 4 and with |λ| < λc.
The argument is again based on that of Sections 2–5 and it is enough here to note
differences. The main one is that one must work with the vector potential instead
of the fields themselves, because bare A’s appear in the equations. We could, in
fact, have developed the entire previous analysis in terms of the vector potentials,
thereby reducing the number of matter constraint equations. We followed a man-
ifestly gauge-invariant approach for easing the physical understanding, but this
was not mandatory. The stress-energy tensor is

Tµν = (D)∇µφ
(D)∇νφ− 1

2
gµν

(D)∇αφ
(D)∇αφ+ [Fµα · Fν

α − 1
4
gµνFαβ · Fαβ ]eλφ.

(8.1)
We work in the temporal gauge, A0 = 0. The matter fields satisfy the following
equations.

(D)∇α
(D)∇αφ− λ

4
Fαβ · Fαβeλφ = 0 (8.2)

(D)∇µ(Fµνeλφ) + [Aµ, F
µν ]eλφ = 0, (8.3)

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (8.4)

The Lie Bracket has no intrinsic time dependence. The d+1 decomposition
of the stress-energy tensor is expressed in terms of the spatial tensor density
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Ea =
√
g F 0aeλφ and the antisymmetric spatial tensor Fab.

ρ =
1
2
{(∂tφ)2 + gabea(φ)eb(φ) +

1
g
gabEa · Ebe−λφ +

1
2
gabgchFac · Fbhe

λφ},
(8.5)

ja = −∂tφ ea(φ) +
1√
g
Eb · Fab, (8.6)

Ma
b = gaceb(φ) ec(φ) − 1

g
{gbcEa · Ec − 1

2
δa

bgchEc · Eh}e−λφ

+{gacghiFch · Fbi − 1
4
δa

bg
chgijFci · Fhj}eλφ. (8.7)

The matter constraint equation is

ea(Ea) + f b
ba Ea + [Aa, Ea] = 0. (8.8)

The matter evolution equations are

∂2
t φ− (trk)∂tφ = gab∇a∇bφ+

λ

2g
gabEa · Ebe−λφ − λ

4
gabgchFac · Fbhe

λφ, (8.9)

∂tEa = eb(
√
ggacgbhFche

λφ) + (f i
ibg

ac +
1
2
fa

big
ic)

√
ggbhFche

λφ (8.10)

∂tAa = − 1√
g
gabEbe−λφ. (8.11)

Note that we use as basic matter variables Aa and Eb (the quantity Fab being then
defined in terms of Aa as Fab = ∂aAb − ∂bAa + [Aa, Ab]).

The Kasner-like evolution equations are Equations (2.7)–(2.10) and ∂t
0Aa =

0. We consider analytic solutions of the Kasner-like evolution equations of the
form (2.12)–(2.15) along with the quantity 0Aa which is constant in time. Given
a point x0 ∈ Σ, we use an adapted spatial frame on a neighborhood of x0, U0, as
in Section 3. Thus, 0gab(t0) and Ka

b are specialized as in that section. There is
one velocity-dominated matter constraint equation, obtained from Equations el-
constraintym) by replacing Ea and Aa with 0Ea and 0Aa. If the velocity-dominated
matter constraint is satisfied at some time t0 > 0, then it is satisfied for all t > 0.
Define

0ρ =
1
2
(∂t

0φ)2, (8.12)

0ja = −∂t
0φ ea( 0φ) +

1√
0g

0Eb · 0Fab. (8.13)

The velocity-dominated Einstein constraints are defined as in the other cases.
Equations (2.21) and (2.22) are again satisfied, so if the velocity-dominated con-
straints are satisfied at some t0, then they are satisfied for all t > 0. The restrictions
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defining the set V are as in Section 5, with nj = 1. The relation of the unknown,
u, in Equation (1.5) to the Einstein-matter variables is given by Equations (2.31)–
(2.37) and

Aa = 0Aa + tβϕa. (8.14)

The quantities A and f in Equation (1.5) are given by Equations (2.39)–(2.43)
and

t ∂tχ+ βχ = tα0−β(tr κ)(A+ tβχ) + t2−β Sgab S∇a
S∇b

0φ+ t2−ζ S∇aωa

+t2−β{ λ
2g
gabEa · Ebe−λφ − λ

4
gabgchFac · Fbhe

λφ}, (8.15)

t ∂tξ
a + βξa = t1−β{eb(

√
ggacgbhFche

λφ)

+(f i
ibg

ac +
1
2
fa

big
ic)

√
ggbhFche

λφ}, (8.16)

t ∂tϕa + βϕa = −t1−β 1√
g
gabEbe−λφ. (8.17)

The estimate that f = O(tδ) is obtained as before, using Ea = O(1) and Fab =
O(1). The matter constraint quantity, the left-hand side of Equation (8.8), is o(1)
and its time derivative vanishes, so the matter constraint is satisfied. The estimate
of the matter terms in the Einstein constraints is obtained as in Section 5 for
nj = 1.

To conclude: the whole analysis goes through even in the presence of the
Yang-Mills coupling terms and the system is asymptotically Kasner-like provided
|λ| < λc, where λc is the same as in the abelian case and explicitly given by (6.16)
and (6.19).

9 Self-interacting scalar field

Consider Einstein’s equations, D ≥ 3, with sources as in Sections 4, 5, 7 or 8,
except that the massless scalar field, φ, is replaced by a self-interacting scalar
field. That is, the Expression (1.8) is added to the action. Solutions with a mono-
tone singularity can be constructed as in Sections 4–8, with assumptions regard-
ing the function V (φ) which appears in (1.8) given below. There is no change
in the velocity-dominated evolution equations and solutions, nor in the velocity-
dominated constraints. The only change to Equation (1.5) is that two new terms
appear in f . There is a new term, t2−α0δa

b 2V (φ)/(D − 2), on the right-hand
side of the evolution equation for κa

b (through Ma
b). There is also a new term,

−t2−βV ′(φ), on the right-hand side of the evolution equation for χ. For Equa-
tion (1.5) to be Fuchsian, it must be the case that f = O(tδ) and, in addition,
that f satisfy other regularity conditions [15, 28].

Some examples were considered in [31]. A trivial example is obtained by
taking V to be a constant. Then the equation for the scalar field is not changed
by the potential while its effect on the Einstein equations is equivalent to the
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addition of a cosmological constant. Thus we see that the analysis of [15] generalizes
directly to the case of the Einstein-scalar field system with non-zero cosmological
constant. Of course the analogous statement applies to the other dimensions and
matter fields considered in previous sections. To get another simple example take
V (φ) = λφp for a constant λ and an integer p ≥ 2. Showing that the equation is
Fuchsian involves examining the expression

V (A ln t+B + tβψ) = λ(A ln t+B + tβψ)p (9.1)

and corresponding expressions for the first and second derivatives of V . Of course
in this particular case these are given by multiples of smaller powers of t. The
aim is to estimate these quantities by suitable powers of t. In this case a Fuchsian
system is always obtained. A linear massive scalar field is obtained by choosing
p = 2. Another interesting possibility is to choose V (φ) = eλφ for a constant λ, in
which case the derivatives of V are also exponentials. Then

V (A ln t+B + tβψ) = eλBtλA exp(λtβψ) (9.2)

Note that such an exponential potential can be (formally) generated by adding, as
matter field, a d-form Aµ1···µd

with dilaton coupling λd = −λ. Indeed, eliminating
the field-strength F = dA (which satisfies eλdφF = Cη, where C is a constant
and η the volume form), leads to a term in the action proportional to e−λdφC2. A
Fuchsian system is obtained provided the general “electric” p-form condition (5.10)
(with nj = d), 2p1+· · ·+2pd−λdA > 0 is satisfied, i.e., (after using p1+· · ·+pd = 1
and λd = −λ) provided λA > −2. This therefore yields a restriction on the data.

More generally, it is enough to have a function V on the real line which has
an analytic continuation to the whole complex plane and which satisfies estimates
of the form

t2−c1 Ṽ (Ã ln t+ B̃ + tβψ̃) = O(1),
t2−c2 Ṽ ′(Ã ln t+ B̃ + tβψ̃) = O(1), (9.3)
t2−c3 Ṽ ′′(Ã ln t+ B̃ + tβψ̃) = O(1),

for some positive numbers c1, c2 and c3. Here Ã and B̃ are the analytic continua-
tions of A(x) and B(x), to some (small, simply connected) complex neighborhood
of the range of a coordinate chart. And ψ̃ lies in some region of the complex plane
containing the origin. For f to be regular, it must be the case that c1 ≥ α0 and
c2 ≥ β, which can be achieved by reducing ε, if necessary, and also possibly U0, so
that previous assumptions are satisfied. By taking suitable account of the domains
of the functions involved it is also possible to obtain an analogue of this result
when the functions V and Ṽ are only defined on some open subsets of R and C.

The only other change to the construction given in Sections 4–8 is that ρ→
ρ + V (φ). It is still the case that (D)∇µT

µν = 0, so Equations (2.59) and (2.60)
are satisfied. Equation (2.63) is satisfied due to the assumptions concerning V (φ),
so the Einstein constraints are satisfied.
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10 Conclusions

Our paper establishes the Kasner-like behaviour for vacuum gravity in spacetime
dimensions greater than or equal to 11, as well as the Kasner-like behaviour for
the Einstein-dilaton-matter systems with subcritical dilaton couplings. Our results
can be summarized as follows

Theorem 10.1 Let Σ be a d-dimensional analytic manifold, d ≥ 10 and let
( 0gab,

0kab) be a Cω solution of the Kasner-like vacuum Einstein equations on
(0,∞)×Σ such that t tr 0k = −1 and such that the ordered eigenvalues of −t 0kab

satisfy 1 + p1 − pd − pd−1 > 0.
Then there exists an open neighborhood U of {0}×Σ in [0,∞)×Σ and a Cω

solution (gab, kab) of the Einstein vacuum field equations on U ∩ ((0,∞)×Σ) such
that for each compact subset K ⊂ Σ there are positive real numbers αa

b for which
the following estimates hold uniformly on K:

1. 0gacgcb = δa
b + o(tα

a
b)

2. ka
b = 0ka

b + o(t−1+αa
b)

Theorem 10.2 Let Σ be a d-dimensional analytic manifold, d ≥ 2 and let

X = ( 0gab,
0kab,

0φ, 0E(j)a1···anj , 0F
(j)
a0···anj

),

with j taking on values 1 through k for some non-negative integer k (possibly 0, in
which case j takes on no values), 0 ≤ nj ≤ d−1. Let λj be constants in the subcrit-
ical range. Let X be a Cω solution of the Kasner-like Einstein-matter equations on
(0,∞)×Σ such that t tr 0k = −1, and such that the ordered eigenvalues of −t 0kab

satisfy 1+ p1 − pd − pd−1 > 0 and, for each j, 2p1 + · · ·+ 2pnj −λj t ∂t
0φ > 0 and

2p1 + · · · + 2pd−nj−1 + λj t ∂t
0φ > 0.

Then there exists an open neighborhood U of {0}×Σ in [0,∞)×Σ and a Cω

solution (gab, kab, φ, E(j)a1···anj , F
(j)
a0···anj

) of the Einstein-matter field equations on
U ∩ ((0,∞) × Σ) such that for each compact subset K ⊂ Σ there are positive real
numbers β, αa

b, with β < αa
b, for which the following estimates hold uniformly

on K:

1. 0gacgcb = δa
b + o(tα

a
b)

2. ka
b = 0ka

b + o(t−1+αa
b)

3. φ = 0φ+ o(tβ)

4. E(j)a1···anj = 0E(j)a1···anj + o(tβ)

5. F (j)
a0···anj

= 0F
(j)
a0···anj

+ o(tβ)
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Remarks

1. Corresponding estimates hold for certain first order derivatives of the basic
unknowns in Theorems 10.1 and 10.2 (cf. Theorem 2.1 in [15]). These are the
derivatives which arise in the definition of new unknowns when second order
equations are reduced to first order so as to produce a first order Fuchsian
system.

2. Our analysis shows that a solution of the full subcritical Einstein-matter
equations satisfying the estimates given in the theorems and the correspond-
ing estimates for first order derivatives just mentioned is uniquely determined
by the solution of the velocity-dominated equations (the integration functions
are included in the zeroth order, Kasner-like solutions; the deviation from
them is uniquely determined).

3. The Einstein-matter field equations may include interaction terms of Chern-
Simons, Chapline-Manton and Yang-Mills type, and the scalar field may
be self-interacting, with assumptions on V (φ) as stated in Section 9. If the
jth field is a Yang-Mills field, then F

(j)
ab is obtained from A

(j)
a and 0F

(j)
ab is

obtained from 0A
(j)
a through Equation (8.4). Note that the condition on tr 0k

which is assumed in both theorems can always be arranged by means of a
time translation.

4. The spacetimes of the class whose existence is established by these theorems
have the desirable property that it is possible to determine the detailed
nature of their singularities by algebraic calculations. This allows them to be
checked for consistency with the cosmic censorship hypothesis. What should
be done from this point of view is to check that some invariantly defined
physical quantity is unbounded as the singularity at t = 0 is approached.
This shows that t = 0 is a genuine spacetime singularity beyond which no
regular extension of the spacetime is possible. For this purpose it is common
to examine curvature invariants but in fact it is just as good if an invariant of
the matter fields can be found which is unbounded in the approach to t = 0.
This is particularly convenient in the cases where a dilaton is present. Then
∇αφ∇αφ is equal in leading order to the corresponding velocity-dominated
quantity and the latter is easily seen to diverge like t−4 for t → 0. The
vacuum case is more difficult. It will be shown below that the approximation
of the full solution by the velocity-dominated solution is sufficiently good
that it is enough to do the calculation for the velocity-dominated metric.
This means that it is enough to do the calculation for the Kasner metric
in D dimensions. Note that the Kasner metric is invariant under reflection
in each of the spatial coordinates. Hence curvature components of the form
R0abc vanish, as do components of the form R0a0b with a �= b. Hence the
Kretschmann scalar RαβγδRαβγδ is a sum of non-negative terms of the form
RabcdRabcd and (Ra

0a0)2. In order to show that the Kretschmann scalar
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is unbounded it is enough to show that one of these terms is unbounded.
A simple calculation shows that (Ra

0a0)2 = p2
a(1 − pa)2t−4 in a Kasner

spacetime. Thus the curvature invariant under consideration can only be
bounded as t → 0 if all Kasner exponents are zero or one, which does not
occur for the solutions we construct. To see that the approximation of the
full solution by the velocity-dominated solution is valid for determining the
asymptotics of the Kretschmann scalar it is enough to note that all terms
appearing in the Kretschmann scalar which were not just considered are
o(t−4). Only two estimates additional to those already obtained are needed
– for these, the estimates R̃ h

abc = O(t−2+ε) and ∇̃ak̃
b
c = O(t−2+ε) are

sufficient. Both of these estimates are straightforward to obtain. The main
input is Γ̃c

ab = O(t−1+4σ−2ε−δ) (i.e., the connection coefficients do not need
to be expanded). The expression for the Kretschmann scalar is

4((tr k)ka
b − ka

cκ
c
b)((tr k)kb

a − kb
hk

h
a)

+(ka
bk

c
h − ka

hk
c
b)(kb

ak
h

c − kh
ak

b
c)

+4{(Ra
b −Ma

b)(Rb
a −M b

a) + 2(Ra
b −Ma

b)((tr k)kb
a − kb

hk
h

a)
−2(∇̃ak̃

b
c)(∇̃hk̃

c
b)g̃

ah − 2(∇̃ak̃
b
c)(∇̃bk̃

a
h)g̃ch} − g̃abg̃chR̃ j

aci R̃ i
bhj

+2R̃ h
abc (k̃a

ik̃
b
h − k̃a

hk̃
b
i)g̃

ci.

Apart from the Kasner terms (which can each be written as two factors, with
each factor O(t−2)), the remaining terms can each be written as two factors,
with each factor O(t−2) and at least one of the two factors o(t−2).

5. We have constructed large classes of solutions of the Einstein-matter equa-
tions with velocity-dominated singularities for matter models defined by
those field theories where the BKL picture predicts that solutions of this
kind should exist. No symmetry assumptions were made. When symmetry as-
sumptions are made there are more possibilities of finding specialized classes
of spacetimes with velocity-dominated singularities. See for instance [45],
where there are results for the Einstein-Maxwell-dilaton and other systems
under symmetry assumptions. There are also results for the case where the
Einstein equations are coupled to phenomenological matter models such as
a perfect fluid and certain symmetry assumptions are made. For one of the
most general results of this kind so far see [46].

6. When solutions are constructed by Fuchsian methods as is done is this paper
there is the possibility of algorithmically constructing an expansion of the
solution about the singularity to all orders which is convergent when the
input data are analytic, as in this paper. (If the input data are only C∞ the
expansion is asymptotic in a rigorous sense when Fuchsian techniques can
be applied.) At the same time, there is the possibility of providing a rigorous
confirmation of the reliability of existing expansions such as those of [24] and
[25]. This is worked out for the case of [24] in [28].
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nauté Française de Belgique”, by a “Pôle d’Attraction Interuniversitaire” (Bel-
gium) and by IISN-Belgium (convention 4.4505.86). The research of MH is also
supported by Proyectos FONDECYT 1970151 and 7960001 (Chile) and by the Eu-
ropean Commission RTN programme HPRN-CT-00131, in which he is associated
to K. U. Leuven. MW would also like to thank the organizers of the Mathematical
Cosmology Program at the Erwin Schrödinger Institute, Summer 2001, where a
portion of this work was completed.

References

[1] T. Damour and M. Henneaux, Chaos in superstring cosmology, Phys. Rev.
Lett. 85, 920 (2000) [arXiv:hep-th/0003139].

[2] T. Damour and M. Henneaux, Oscillatory behaviour in homogeneous string
cosmology models, Phys. Lett. B 488, 108 (2000) [arXiv:hep-th/0006171].

[3] T. Damour and M. Henneaux, E(10), BE(10) and arithmetical chaos in su-
perstring cosmology, Phys. Rev. Lett. 86, 4749 (2001) [arXiv:hep-th/0012172].

[4] V.A. Belinskii, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to
a singular point in the relativistic cosmology, Adv. Phys. 19, 525 (1970); A
general solution of the Einstein equations with a time singularity, Adv. Phys.
31, 639 (1982).

[5] S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories,
Annals Phys. 140, 372 (1982) [Erratum-ibid. 185, 406.1988 APNYA,281,409
(1982)].

[6] G.F. Chapline and N.S. Manton, Unification Of Yang-Mills Theory And Su-
pergravity In Ten-Dimensions, Phys. Lett. B 120, 105 (1983).

[7] E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-
Dimensional Maxwell-Einstein Supergravity, Its Currents, And The Issue Of
Its Auxiliary Fields, Nucl. Phys. B 195, 97 (1982).

[8] N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of
interacting, multigraviton theories, Nucl. Phys. B 597, 127 (2001) [arXiv:hep-
th/0007220].

[9] T. Damour and A.M. Polyakov, The String dilaton and a least cou-
pling principle, Nucl. Phys. B 423, 532 (1994) [arXiv:hep-th/9401069];
T. Damour and A. Vilenkin, String theory and inflation, Phys. Rev. D 53, 2981



1108 T. Damour, M. Henneaux, A.D. Rendall and M. Weaver Ann. Henri Poincaré
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[44] N.Ó. Murchadha and J.W. York, Existence and uniqueness of solutions of the
Hamiltonian constraint of general relativity on compact manifolds, J. Math.
Phys. 14, 1551–1557, 1973.

[45] M. Narita, T. Torii and K. Maeda, Asymptotic singular behaviour of Gowdy
spacetimes in string theory, Class. Quantum Grav 17, 4597–4613 (2000)
[arXiv:gr-qc/0003013].

[46] K. Anguige, A class of perfect-fluid cosmologies with polarized Gowdy sym-
metry and a Kasner-like singularity, arXiv:gr-qc/0005086.

Thibault Damour
Institut des Hautes Etudes Scientifiques
35, Route de Chartres
F-91440 Bures-sur-Yvette
France
email: damour@ihes.fr

Marc Henneaux
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