On the Existence of Ground States for Massless Pauli-Fierz Hamiltonians

C. Gérard

I Introduction

We consider in this paper the problem of the existence of a ground state for a class of Hamiltonians used in physics to describe a confined quantum system ("matter") interacting with a massless bosonic field. These Hamiltonians were called *Pauli-Fierz Hamiltonians* in [DG]. Examples, like the spin-boson model or a simplified model of a confined atom interacting with a bosonic field are given in [DG, Sect. 3.3].

Pauli-Fierz Hamiltonians can be described as follows: Let \mathcal{K} and K be respectively the Hilbert space and the Hamiltonian describing the matter. The assumption that the matter is confined is expressed mathematically by the fact that $(K+\mathrm{i})^{-1}$ is *compact* on \mathcal{K} .

The bosonic field is described by the Fock space $\Gamma(\mathfrak{h})$ with the one-particle space $\mathfrak{h} = L^2(\mathbb{R}^d, \mathrm{d}k)$, where \mathbb{R}^d is the momentum space, and the free Hamiltonian

$$d\Gamma(\omega(k)) = \int \omega(k)a^*(k)a(k)dk.$$

The positive function $\omega(k)$ is called the dispersion relation. The constant $m := \inf \omega$ can be called the mass of the bosons, and we will consider here the case of massless bosons, ie we assume that m = 0.

The interaction of the "matter" and the bosons is described by the operator

$$V = \int v(k) \otimes a^*(k) + v^*(k) \otimes a(k) dk,$$

where $\mathbb{R}^d \ni k \to v(k)$ is a function with values in operators on \mathcal{K} . Thus, the system is described by the Hilbert space $\mathcal{H} := \mathcal{K} \otimes \Gamma(\mathfrak{h})$ and the Hamiltonian

$$H = K \otimes \mathbb{1} + \mathbb{1} \otimes d\Gamma(\omega(k)) + gV, \tag{I.1}$$

g being a coupling constant.

If $\mathcal{K}=\mathbb{C}$, the Hamiltonian H is solvable (see eg [Be, Sect. 7]) and H is defined as a selfadjoint operator if

$$\int \frac{1}{\omega(k)} |v(k)|^2 \mathrm{d}k < \infty,$$

and admits a ground state in \mathcal{H} if and only if

$$\int \frac{1}{\omega(k)^2} |v(k)|^2 \mathrm{d}k < \infty.$$

In this paper we show that H admits a ground state in \mathcal{H} for all values of the coupling constant under corresponding assumptions in the general case.

The existence of a ground state of H in the Hilbert space \mathcal{H} is an important physical property of the system described by H. For example it has the following consequence for the scattering theory of H: assume that $\omega \in C^{\infty}(\{k|\omega(k)>0\})$ and $\nabla \omega(k) \neq 0$ in $\{k|\omega(k)>0\}$. Assume also that

$$\mathbb{R}^d \ni k \mapsto \|v(k)(K+1)^{-\frac{1}{2}}\|_{B(K)}$$

is locally in the Sobolev space H^s in $\{k|\omega(k>0\}$ for some s>1 (a short-range condition on the interaction). Then under the conditions (H0), (H1), (I1) below, it is easy to prove the existence of the limits

$$W^{\pm}(h) := \operatorname{s-} \lim_{t \to \pm \infty} e^{\mathrm{i}tH} e^{\mathrm{i}\phi(h_t)} e^{-\mathrm{i}tH}$$

for $h \in \mathfrak{h}_0 := \{h \in \mathfrak{h} | \omega^{-\frac{1}{2}} h \in \mathfrak{h}\}$ and $h_t = e^{-\mathrm{i}t\omega}h$. The operators $W^{\pm}(h)$ are called asymptotic Weyl operators. They satisfy

$$W^{\pm}(h)W^{\pm}(g) = e^{-i\frac{1}{2}Im(h|g)}W(h+g), h, g \in \mathfrak{h}_0,$$

and

$$e^{itH}W^{\pm}(h)e^{-itH} = W^{\pm}(h_{-t}).$$

In particular they form two regular CCR representations over the preHilbert space \mathfrak{h}_0 . It is easy to show that the space of bound states $\mathcal{H}_{pp}(H)$ of H is included into the space of vacua for these representations (see for example [DG]). Hence the existence of a ground state for H implies that the CCR representations defined by the asymptotic Weyl operators admit Fock subrepresentations. As a consequence wave operators can be defined.

When the Hamiltonian H admits no ground state in the Hilbert space \mathcal{H} , the ground state of H has to be interpreted as a state ω on some C^* -algebra of field observables. Similarly the scattering theory for H has to be significantly modified. These phenomena have been extensively studied by Froehlich [Fr]. In particular the arguments in the proof of Lemma IV.5 are inspired by [Fr, Sect. 2.3], where it is shown that the state ω is locally normal.

Let us end the introduction by making some comments on related works. In [AH], the existence of a ground state is shown under rather similar conditions, if the coupling constant g is sufficiently small. In [Sp], the same problem is considered in the case the small system described by (\mathcal{K}, K) is a confined atom, and the coupling function $k \mapsto v(k)$ is a real multiplication operator in the atomic variables (ie $v^*(k) = v(-k)$ is a multiplication operator on \mathcal{K}). Using functional integral

methods and Perron-Frobenius arguments, the existence of a ground state is shown for all values of the coupling constant.

Our result is hence a generalization of the results both of [AH] and [Sp].

If we drop the assumption that the small system is confined (mathematically this amounts to drop the hypothesis (H0) below), then the only result is the one of [BFS], where the existence of a ground state is shown for small coupling constant if K is an atomic Hamiltonian and assumptions similar to (I1), (I2) are made.

\mathbf{II} Result

II.1 Introduction

In this section we introduce the class of Hamiltonians that we will study in this paper. We have stated our result under rather general hypotheses, allowing for a mild UV divergency of the interaction. Clearly the behavior of the interaction for large momenta should not be important for the existence of a ground state, which essentially depends only on the low momentum behavior of the interaction. Therefore the reader wishing to avoid some technicalities can for example assume that the operator K is bounded and that the function $\mathbb{R}^d \ni k \mapsto v(k)$ is compactly supported.

II.2 Hamiltonian

Let K be a separable Hilbert space representing the degrees of freedom of the atomic system. The Hamiltonian describing the atomic system is denoted by K. We assume that K is selfadjoint on $\mathcal{D}(K) \subset \mathcal{K}$ and bounded below. Without loss of generality we can assume that K is positive. We assume

$$(H0)$$
 $(K+i)^{-1}$ is compact.

The physical interpretation is that the atomic system is confined.

Let $\mathfrak{h} = L^2(\mathbb{R}^d, dk)$ be the 1-particle Hilbert space in the momentum representation and let $\Gamma(\mathfrak{h})$ be the bosonic Fock space over \mathfrak{h} , representing the field degrees of freedom. We will denote by k the momentum operator of multiplication by k on $L^2(\mathbb{R}^d, dk)$, and by $x = i\nabla_k$ the position operator on $L^2(\mathbb{R}^d, dk)$. Let $\omega \in C(\mathbb{R}^d, \mathbb{R})$ be the boson dispersion relation. We assume

(H1)
$$\begin{cases} \nabla \omega \in L^{\infty}(\mathbb{R}^d), \\ \lim_{|k| \to \infty} \omega(k) = +\infty, \\ \inf \omega(k) = 0. \end{cases}$$

To stay close to the usual physical situation, we will also assume that $\omega(0) =$ $0, \omega(k) \neq 0$ for $k \neq 0$, although the results below hold also in the general case. The typical example is of course the massless relativistic dispersion relation $\omega(k) = |k|$. The Hamiltonian describing the field is equal to $d\Gamma(\omega)$. The Hilbert space of the interacting system is

$$\mathcal{H} := \mathcal{K} \otimes \Gamma(\mathfrak{h}).$$

The Hamiltonian $H_0 := K \otimes \mathbb{1} + \mathbb{1} \otimes d\Gamma(\omega)$ of the non-interacting system is associated with the quadratic form

$$Q_0(u,u) := (K^{\frac{1}{2}} \otimes \mathbb{1}u, K^{\frac{1}{2}} \otimes \mathbb{1}u) + \int \omega(k) (\mathbb{1} \otimes a(k)u, \mathbb{1} \otimes a(k)u) dk,$$

with $D(Q_0) = D((K + d\Gamma(\omega))^{\frac{1}{2}}).$

The interaction between the atom and the boson field is described with a coupling function \boldsymbol{v}

$$\mathbb{R}^d \ni k \mapsto v(k)$$
,

such that for a.e. $k \in \mathbb{R}^d$, v(k) is a bounded operator from $D(K^{\frac{1}{2}})$ into \mathcal{K} and from \mathcal{K} into $D(K^{\frac{1}{2}})^*$. We associate to the coupling function v the quadratic form

$$V(u,u) = \int (\mathbb{1} \otimes a(k)u, v(k) \otimes \mathbb{1} u) + (v(k) \otimes \mathbb{1} u, \mathbb{1} \otimes a(k)u) dk,$$
 (II.1)

A rather minimal assumption under which the quadratic form $Q = Q_0 + V$ gives rise to a selfadjoint operator is

for a.e.
$$k \in \mathbb{R}^d v(k)(K+1)^{-\frac{1}{2}}$$
, $(K+1)^{-\frac{1}{2}}v(k) \in B(\mathcal{K})$,
 $\forall u_1, u_2 \in \mathcal{K}, k \mapsto (u_2, v(k)(K+1)^{-\frac{1}{2}}u_1), k \mapsto (u_2, (K+1)^{-\frac{1}{2}}v(k)u_1)$

(I1) are measurable,

$$C(R):=\int \frac{1}{\omega(k)}(\|v(k)(K+R)^{-\frac{1}{2}}\|^2+\|(K+R)^{-\frac{1}{2}}v(k)\|^2)\mathrm{d}k<\infty,$$
 $\lim_{R\to+\infty}C(R)=0.$

Note that it follows from the results quoted in the Appendix that the functions $k \mapsto \|v(k)(K+R)^{-\frac{1}{2}}\|, k \mapsto \|(K+R)^{-\frac{1}{2}}v(k)\|$ are measurable, and hence the last condition in (11) has a meaning.

Proposition II.1 Assume hypothesis (I1). Then the quadratic form V is Q_0 -form bounded with relative bound 0. Consequently one can associate with the quadratic form $Q = Q_0 + V$ a unique bounded below selfadjoint operator H with $D(H^{\frac{1}{2}}) = D(H_0^{\frac{1}{2}})$.

The Hamiltonian H is called a Pauli-Fierz Hamiltonian. Proof. We apply the estimate (A.1) in Lemma A.1 with $B=K, m=\omega$.

II.3 Results

Under assumption (II), one can associate a bounded below, selfadjoint Hamiltonian H to the quadratic form Q. Let us introduce the following assumption on the behavior of v(k) near $\{k|\omega(k)=0\}$:

$$(I2) \int \frac{1}{\omega(k)^2} \|v(k)(K+1)^{-\frac{1}{2}}\|^2 dk < \infty.$$

Theorem 1 Assume hypotheses (H0), (H1), (I1), (I2). Then $\inf \operatorname{spec}(H)$ is an eigenvalue of H. In other words H admits a ground state in \mathcal{H} .

IIIThe cut-off Hamiltonians

III.1 Operator bounds

Let us introduce the following assumption:

$$(I1') \quad \begin{array}{l} C'(R) := \int (1 + \frac{1}{\omega(k)}) (\|v(k)(K+R)^{-\frac{1}{2}}\|^2 + \|(K+1)^{-\frac{1}{2}}v(k)\|^2) \mathrm{d}k < \infty, \\ \lim_{R \to +\infty} C'(R) = 0. \end{array}$$

Proposition III.1 Assume (I1), (I1'). Then the operator

$$V = a^*(v) + a(v) = \int v(k) \otimes a^*(k) + v^*(k) \otimes a(k)d \ k$$

is H_0 -bounded with relative bound 0. Consequently $H = H_0 + V$ is a bounded below selfadjoint operator with $D(H) = D(H_0)$.

Proof. We apply the estimates (A.2), (A.3) in Lemma A.1 with B = K, $m = \omega$.

III.2 **Cut-off Hamiltonians**

In the sequel we will need to introduce various cut-off Hamiltonians. For $0 < \sigma \ll 1$ an infrared cutoff parameter and $\tau \gg 1$ an ultraviolet cutoff parameter, we denote by V_{σ} , $V_{\sigma,\tau}$ the quadratic forms defined as V in (II.1) with the coupling function v replaced respectively by v_{σ} , $v_{\sigma,\tau}$ for

$$v_{\sigma} = \mathbb{1}_{\{\sigma \leq \omega\}}(k)v, \ v_{\sigma,\tau} = \mathbb{1}_{\{\sigma \leq \omega \leq \tau\}}(k)v.$$

We denote by $H_{\sigma}, H_{\sigma,\tau}$ the selfadjoint operators associated with the quadratic forms $Q_0 + V_{\sigma}$, $Q_0 + V_{\sigma,\tau}$. Note that since $v_{\sigma,\tau}$ satisfies (11'), we have $D(H_{\sigma,\tau}) =$ $D(H_0)$.

Applying Lemma A.2 in the Appendix and the fact that $D(H^{\frac{1}{2}}) = D(H_0^{\frac{1}{2}})$ we obtain

$$\lim_{\tau \to +\infty} (H_{\sigma,\tau} - \lambda)^{-1} = (H_{\sigma} - \lambda)^{-1},$$

$$\lim_{\sigma \to 0} (H_{\sigma} - \lambda)^{-1} = (H - \lambda)^{-1},$$

(III.1)

for $\lambda \in \mathbb{R}, \lambda \ll -1$, and

$$\| ((H_{\sigma,\tau} - z)^{-1} - (H_{\sigma} - z)^{-1}) (H_0 + 1)^{\frac{1}{2}} \| \in o(1) |Imz|^{-1} \tau \to +\infty,$$

$$\| ((H_{\sigma} - z)^{-1} - (H - z)^{-1}) (H_0 + 1)^{\frac{1}{2}} \| \in o(1) |Imz|^{-1} \sigma \to 0,$$
(III.2)

for $z \in \mathbb{C} \backslash \mathbb{R}$.

III.3 Existence of ground states for the cut-off Hamiltonians

Let $\tilde{\omega}_{\sigma}: \mathbb{R}^d \to \mathbb{R}$ be a dispersion relation satisfying

$$\begin{cases}
\nabla \tilde{\omega}_{\sigma} \in L^{\infty}(\mathbb{R}^{d}), \\
\tilde{\omega}_{\sigma}(k) = \omega(k) \text{ if } \omega(k) \geq \sigma, \\
\tilde{\omega}_{\sigma}(k) \geq \sigma/2.
\end{cases}$$
(III.3)

Let \tilde{H}_{σ} be the operator associated to the quadratic form $||K^{\frac{1}{2}}u||^2 + \int \tilde{\omega}_{\sigma}(k) ||a(k)u||^2 dk + V_{\sigma}(u, u)$.

Lemma III.2 H_{σ} admits a ground state in \mathcal{H} if and only if \tilde{H}_{σ} admits a ground state in \mathcal{H} .

Proof. Let $\mathfrak{h}_{\sigma} := L^2(\{k|\omega(k) < \sigma\}, \mathrm{d}k), \ \mathfrak{h}_{\sigma}^{\perp} = L^2(\{k|\omega(k) \geq \sigma\}, \mathrm{d}k).$ Let U be the canonical unitary map

$$U:\Gamma(\mathfrak{h})\to\Gamma(\mathfrak{h}_{\sigma}^{\perp})\otimes\Gamma(\mathfrak{h}_{\sigma})$$

(see for example [DG, Sect. 2.7]). Let us still denote by U the unitary map $\mathbb{1}_{\mathcal{K}} \otimes U$ from $\mathcal{H} = \mathcal{K} \otimes \Gamma(\mathfrak{h})$ into $\mathcal{K} \otimes \Gamma(\mathfrak{h}_{\sigma}^{\perp}) \otimes \Gamma(\mathfrak{h}_{\sigma})$. By [DG, Sect. 2.7], the operator $UH_{\sigma}U^*$ is equal to

$$\mathbb{1}_{\mathcal{K}\otimes\Gamma(\mathfrak{h}^{\perp})}\otimes\mathrm{d}\Gamma(\omega_{\sigma,1})+H_{\sigma}^{2}\otimes\mathbb{1}_{\Gamma(\mathfrak{h}_{\sigma})},$$

where $\omega_{\sigma,1} = \omega_{|\mathfrak{h}_{\sigma}}$ and H_{σ}^2 is the operator associated with the quadratic form $\|K^{\frac{1}{2}}u\|^2 + \int_{\{\omega(k)>\sigma\}} \omega_{\sigma}(k) \|a(k)u\|^2 dk + V_{\sigma}(u,u)$. Similarly $U\tilde{H}_{\sigma}U^*$ is equal to

$$\mathbb{1}_{\mathcal{K}\otimes\Gamma(\mathfrak{h}_{\sigma}^{\perp})}\otimes\mathrm{d}\Gamma(\tilde{\omega}_{\sigma,1})+H_{\sigma}^{2}\otimes\mathbb{1}_{\Gamma(\mathfrak{h}_{\sigma})},$$

where $\tilde{\omega}_{\sigma,1} = \tilde{\omega}_{\sigma|\mathfrak{h}_{\sigma}}$. Now H_{σ}^2 has a ground state ψ if and only if $U\tilde{H}_{\sigma}U^*$ or $UH_{\sigma}U^*$ have a ground state (equal to $\psi \otimes \Omega$, where $\Omega \in \Gamma(\mathfrak{h}_{\sigma})$ is the vacuum vector). This proves the lemma.

The following result is essentially well known (see [AH], [BFS]) and rather easy to show.

Proposition III.3 Assume hypotheses (H0), (H1), (I1). Then for any $\sigma > 0$ H_{σ} admits a ground state.

Proof. By Lemma III.2 it suffices to show that \tilde{H}_{σ} admits a ground state. Let for $\tau \in \mathbb{N}$ $H_{\sigma,\tau}$ be the Hamiltonian associated with the quadratic form $||K^{\frac{1}{2}}u||^2 +$ $\int \tilde{\omega}_{\sigma}(k) \|a(k)u\|^2 dk + V_{\sigma,\tau}(u,u)$. Let

$$\tilde{E}_{\sigma,\tau} = \inf \operatorname{spec}(\tilde{H}_{\sigma,\tau}), \ \tilde{E}_{\sigma} = \inf \operatorname{spec}(\tilde{H}_{\sigma}).$$

Applying Lemma A.2, we have for $z \in \mathbb{C} \backslash \mathbb{R}$

$$(z - \tilde{H}_{\sigma})^{-1} = \lim_{n \to +\infty} (z - \tilde{H}_{\sigma,n})^{-1}.$$
 (III.4)

On the other hand applying the bounds in Lemma A.1 we have $D(\tilde{H}_{\sigma,\tau}) = D(K +$ $d\Gamma(\tilde{\omega}_{\sigma})$). The Hamiltonian $H_{\sigma,\tau}$ is very similar to the class of massive Pauli-Fierz Hamiltonians studied in [DG]. It is easy to see that the arguments of [DG] extend to $H_{\sigma,\tau}$. In particular, following the proofs of [DG, Lemma 3.4], [DG, Thm. 4.1], we obtain that $\chi(\tilde{H}_{\sigma,\tau})$ is compact if $\chi \in C_0^{\infty}(]-\infty, \tilde{E}_{\sigma,\tau}+\sigma/2[)$. Using (III.4) and the fact that $\tilde{E}_{\sigma} = \lim_{n \to +\infty} \tilde{E}_{\sigma,\tau}$, we obtain that $\chi(\tilde{H}_{\sigma})$ is compact if $\chi \in C_0^{\infty}(]-\infty, \tilde{E}_{\sigma}+\sigma/2[)$. This implies that \tilde{H}_{σ} and hence H_{σ} admit a ground state.

III.4 The pullthrough formula

As in [BFS], we shall use the pullthrough formula to get control on the ground states of H_{σ} . Since the domain H_{σ} is not explicitly known under assumption (II), some care is needed to prove the pullthrough formula in our situation.

Proposition III.4 As an identity on $L^2_{loc}(\mathbb{R}^d \setminus \{0\}, dk; \mathcal{H})$, we have:

$$(H_{\sigma} + \omega(k) - z)^{-1} a(k) \psi =$$

$$a(k) (H_{\sigma} - z)^{-1} \psi + (H_{\sigma} + \omega(k) - z)^{-1} v_{\sigma}(k) (H_{\sigma} - z)^{-1} \psi, \ \psi \in \mathcal{H}.$$

Proof. For $u_1, u_2 \in D(H_0)$, the following identity makes sense as an identity on $L^2_{loc}(\mathbb{R}^d\setminus\{0\},\mathrm{d}k)$:

$$(a^*(k)u_1, (H_{\sigma,\tau} - z)u_2) = ((H_{\sigma,\tau} + \omega(k) - \overline{z})u_1, a(k)u_2) + (u_1, v_{\sigma,\tau}(k)u_2).$$

Setting $u_2 = (H_{\sigma,\tau} - z)^{-1}v_2$, we obtain that for $v_2 \in \mathcal{H}$, $a(k)v_2 \in L^2_{loc}(\mathbb{R}^d \setminus \{0\},$ dk; $D(H_0)^*$) and

$$a(k)v_2 = (H_{\sigma,\tau} + \omega(k) - z)a(k)(H_{\sigma,\tau} - z)^{-1}v_2 + v_{\sigma,\tau}(k)(H_{\sigma,\tau} - z)^{-1}v_2.$$

Hence for $\psi \in \mathcal{H}$, $(H_{\sigma} + \omega(k) - z)^{-1} a(k) \psi \in L^2_{loc}(\mathbb{R}^d \setminus \{0\}, dk; \mathcal{H})$ and

$$(H_{\sigma,\tau} + \omega(k) - z)^{-1} a(k) \psi$$

$$= a(k) (H_{\sigma,\tau} - z)^{-1} \psi + (H_{\sigma,\tau} + \omega(k) - z)^{-1} v_{\sigma,\tau}(k) (H_{\sigma,\tau} - z)^{-1} \psi,$$
(III.5)

holds as an identity in $L^2_{loc}(\mathbb{R}^d \setminus \{0\}, dk; \mathcal{H})$.

By (I1), $(v_{\sigma,\tau}(k) - v_{\sigma}(k))(H_0 + 1)^{-\frac{1}{2}}$ tends to 0 in $L^2(\mathbb{R}^d \setminus \{0\}, dk; B(\mathcal{K}))$ when $\tau \to +\infty$. Using also (III.2) and letting $\tau \to +\infty$ we obtain

$$(H_{\sigma} + \omega(k) - z)^{-1} a(k) \psi = a(k) (H_{\sigma} - z)^{-1} \psi + (H_{\sigma} + \omega(k) - z)^{-1} v_{\sigma}(k) (H_{\sigma} - z)^{-1} \psi,$$
as claimed.

IV Proof of Thm. 1

Let

$$E_{\sigma} := \inf \operatorname{spec}(H_{\sigma}), E := \inf \operatorname{spec}(H).$$

We denote by ψ_{σ} , $\sigma > 0$ a normalized ground state of H_{σ} . Applying the pullthrough formula to ψ_{σ} , we obtain easily the following identity on $L^{2}(\mathbb{R}^{d}, dk; \mathcal{H})$:

$$a(k)\psi_{\sigma} = (E_{\sigma} - H_{\sigma} - \omega(k))^{-1} v_{\sigma}(k)\psi_{\sigma}. \tag{IV.1}$$

The first rather obvious bound on the family of ground states ψ_{σ} is the following.

Lemma IV.1 Assume hypotheses (H0), (H1), (I1). Then

$$(\psi_{\sigma}, H_0 \psi_{\sigma}) \le C$$
, uniformly in $\sigma > 0$. (IV.2)

The bound (IV.2) follows immediately from the fact that the quadratic forms Q_{σ} are equivalent to Q_0 , uniformly in σ . The following lemma is also well-known (see eg [BFS, Thm. II.5], [AH, Lemma 4.3]). We denote by N the number operator on $\Gamma(\mathfrak{h})$.

Lemma IV.2 Assume hypotheses (H0), (H1), (I1), (I2). Then

$$(\psi_{\sigma}, N\psi_{\sigma}) \le C$$
, uniformly in $\sigma > 0$. (IV.3)

Proof. We have using (IV.1)

$$\begin{aligned} (\psi_{\sigma}, N\psi_{\sigma}) &= \int \|a(k)\psi_{\sigma}\|^{2} dk \\ &= \int \|(E_{\sigma} - H_{\sigma}(k) - \omega(k))^{-1} v_{\sigma}(k)\psi_{\sigma}\|^{2} dk \\ &\leq \|(H_{0} + 1)^{\frac{1}{2}} \psi_{\sigma}\|^{2} \int \frac{1}{\omega(k)^{2}} \|v_{\sigma}(k)(K + 1)^{-\frac{1}{2}}\|^{2} dk \\ &\leq C, \end{aligned}$$

uniformly in $\sigma > 0$ using (I2) and (IV.2).

Lemma IV.3 Assume hypotheses (H0), (H1), (I1), (I2). Then

$$E - E_{\sigma} \in o(\sigma).$$
 (IV.4)

Proof. Let $0 < \sigma' < \sigma$. We have

$$E_{\sigma'} - E_{\sigma} \le (Q_{\sigma'} - Q_{\sigma})(\psi_{\sigma}, \psi_{\sigma}) = (V_{\sigma'} - V_{\sigma})(\psi_{\sigma}, \psi_{\sigma}),$$

$$E_{\sigma} - E_{\sigma'} \le (Q_{\sigma} - Q_{\sigma'})(\psi_{\sigma'}, \psi_{\sigma'}) = (V_{\sigma} - V_{\sigma'})(\psi_{\sigma'}, \psi_{\sigma'}),$$
(IV.5)

Applying (A.1) with m(k) = 1, we obtain

$$|(V_{\sigma'} - V_{\sigma})(u, u)| \le C(\sigma', \sigma)(u, Nu)^{\frac{1}{2}}(u, (K+1)u)^{\frac{1}{2}},$$
 (IV.6)

for

$$C(\sigma', \sigma) = \left(\int_{\{\sigma' < \omega(k) \le \sigma\}} \|v(k)(K+R)^{-\frac{1}{2}}\|^2 dk \right)^{\frac{1}{2}}$$

Using (IV.6) for $u = \psi_{\sigma}$ or $\psi_{\sigma'}$, the right hand side of (IV.5) is bounded by $C_0C(\sigma',\sigma)$, uniformly in σ,σ' , using (IV.2) and (IV.3). We note that by (III.1) $E = \lim_{\sigma' \to 0} E_{\sigma'}$. Hence letting σ' tend to 0 we get $|E - E_{\sigma}| \leq C_0 C(0, \sigma) \in o(\sigma)$, using hypothesis (I2).

Proposition IV.4 Assume hypotheses (H0), (H1), (I1), (I2). Then

$$a(k)\psi_{\sigma} - (E - H - \omega(k))^{-1}v(k)\psi_{\sigma} \rightarrow 0$$

when $\sigma \to 0$ in $L^2(\mathbb{R}^d, dk; \mathcal{H})$.

Proof. We have, using (IV.1)

$$a(k)\psi_{\sigma} - (E - H - \omega(k))^{-1}v(k)\psi_{\sigma}$$

$$= (E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma} - (E - H - \omega(k))^{-1}v(k)\psi_{\sigma}$$

$$= -\mathbb{1}_{\{\omega(k) \le \sigma\}}(k)(E - H - \omega(k))^{-1}v(k)\psi_{\sigma}$$

$$+ (E - H - \omega(k))^{-1}(H - H_{\sigma})(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}$$

$$+ (E_{\sigma} - E)(E - H - \omega(k))^{-1}(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}$$

$$=: R_{\sigma,1}(k) + R_{\sigma,2}(k) + R_{\sigma,3}(k).$$

We will estimate separately $R_{\sigma,i}$, $1 \le i \le 3$. First

$$||R_{\sigma,1}(k)||_{\mathcal{H}} \leq \mathbb{1}_{\{\omega(k) \leq \sigma\}}(k) \frac{1}{\omega(k)} ||v(k)(K+1)^{-\frac{1}{2}}||_{B(\mathcal{K})} ||(K+1)^{\frac{1}{2}} \psi_{\sigma}||_{\mathcal{H}},$$

which shows using hypothesis (I2) and (IV.2) that

$$R_{\sigma,1} \in o(\sigma^0) \text{ in } L^2(\mathbb{R}^d, dk; \mathcal{H}).$$
 (IV.7)

Let us next estimate $R_{\sigma,2}$. Using the fact that $(v-v_{\sigma})(k)(K+1)^{-\frac{1}{2}}$ belongs to $L^2(\mathbb{R}^d, \mathrm{d}k; \mathcal{H})$, it is easy to verify that

$$(E - H - \omega(k))^{-1}(H - H_{\sigma})(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}$$

$$= (E - H - \omega(k))^{-1}(a^{*}(v - v_{\sigma}) + a(v - v_{\sigma}))(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}.$$

Note that it follows from functional calculus that

$$\|(E - H - \omega(k))^{-1}(H + b)^{\frac{1}{2}}\| \le C \sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}).$$
 (IV.8)

Using also the fact that $(K+1)^{\frac{1}{2}}(H+b)^{-\frac{1}{2}}$ is bounded, we have:

$$\|(E - H - \omega(k))^{-1}(a^*(v - v_{\sigma}) + a(v - v_{\sigma}))(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}\|$$

$$\leq C \sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}) \|(K+1)^{-\frac{1}{2}}(a^*(v - v_{\sigma}) + a(v - v_{\sigma}))$$

$$(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}\|$$

$$\leq C \sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}) \left(\int_{\{\omega(k) \leq \sigma\}} \|v(k)(K+1)^{-\frac{1}{2}}\|^2 + \|(K+1)^{-\frac{1}{2}} \|v(k)\|^2 dk \right)^{\frac{1}{2}} \times \|(N+1)^{\frac{1}{2}}(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}\|,$$

applying the estimates (A.2), (A.3) in Lemma A.1 to B=1, $m=1, v(k)=(K+1)^{-\frac{1}{2}}(v-v_{\sigma})(k)$.

To bound $\|(N+1)^{\frac{1}{2}}(E_{\sigma}-H_{\sigma}-\omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}\|$, we write using again the pullthrough formula (IV.1):

$$a(k')(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}$$

$$= (E_{\sigma} - H_{\sigma} - \omega(k) - \omega(k'))^{-1}a(k')v_{\sigma}(k)\psi_{\sigma}$$

$$+ (E_{\sigma} - H_{\sigma} - \omega(k'))^{-1}v_{\sigma}(k')(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}$$

$$= (E_{\sigma} - H_{\sigma} - \omega(k) - \omega(k'))^{-1}v_{\sigma}(k)(E_{\sigma} - H_{\sigma} - \omega(k'))^{-1}v_{\sigma}(k')\psi_{\sigma}$$

$$+ (E_{\sigma} - H_{\sigma} - \omega(k'))^{-1}v_{\sigma}(k')(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}.$$

This gives

$$||N^{\frac{1}{2}}(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}||^{2}$$

$$= \int ||a(k')(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}||^{2}dk'$$

$$\leq 2\int ||(E_{\sigma} - H_{\sigma} - \omega(k) - \omega(k'))^{-1}v_{\sigma}(k)(E_{\sigma} - H_{\sigma} - \omega(k'))^{-1}v_{\sigma}(k')\psi_{\sigma}||^{2}dk'$$

$$+2\int ||(E_{\sigma} - H_{\sigma} - \omega(k'))^{-1}v_{\sigma}(k')(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}||^{2}dk'$$

$$\leq C\int \frac{1}{\omega(k)^{2}}||v_{\sigma}(k)(K+1)^{-\frac{1}{2}}||^{2}||(K+1)^{\frac{1}{2}}(E_{\sigma} - H_{\sigma} - \omega(k'))^{-1}||^{2} \times$$

$$||v_{\sigma}(k')(K+1)^{-\frac{1}{2}}||^{2}||(K+1)^{\frac{1}{2}}\psi_{\sigma}||^{2}dk'$$

$$+C\int \frac{1}{\omega(k')^{2}}||v_{\sigma}(k')(K+1)^{-\frac{1}{2}}||^{2}||(K+1)^{\frac{1}{2}}\psi_{\sigma}||^{2}dk'.$$

$$||v_{\sigma}(k)(K+1)^{-\frac{1}{2}}||^{2}||(K+1)^{\frac{1}{2}}\psi_{\sigma}||^{2}dk'.$$

We use the bound (IV.8) and we obtain

$$||N^{\frac{1}{2}}(E_{\sigma} - H_{\sigma} - \omega(k))^{-1}v_{\sigma}(k)\psi_{\sigma}||^{2}$$

$$\leq C(\sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}))^{2}||v_{\sigma}(k)(K+1)^{-\frac{1}{2}}||^{2} \times \int (\sup(\omega(k')^{-1}, \omega(k')^{-\frac{1}{2}}))^{2}||v_{\sigma}(k')(K+1)^{-\frac{1}{2}}||^{2} dk' \times ||(K+1)^{\frac{1}{2}}\psi_{\sigma}||^{2}$$

$$\leq C(\sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}))^{2}||v_{\sigma}(k)(K+1)^{-\frac{1}{2}}||^{2},$$

using (IV.2) and hypothesis (I2). Hence

$$||R_{\sigma,2}(k)||_{\mathcal{H}} \leq$$

$$C(\sup(\omega(k)^{-1},\omega(k)^{-\frac{1}{2}}))^2 \|v_{\sigma}(k)(K+1)^{-\frac{1}{2}}\|(\int_{\{\omega(k)\leq\sigma\}} \|(K+1)^{-\frac{1}{2}}v(k)\|^2 dk)^{\frac{1}{2}}.$$

By (I2),

$$\left(\int_{\{\omega(k) \le \sigma\}} \|(K+1)^{-\frac{1}{2}} v(k)\|^2 dk\right)^{\frac{1}{2}} \in o(\sigma),$$

and since $\operatorname{supp} v_{\sigma} \subset \{\omega(k) \geq \sigma\}$, we obtain

$$||R_{\sigma,2}(k)|| \le o(\sigma^0) \sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}) ||v(k)(K+1)^{-\frac{1}{2}}||.$$
 (IV.9)

Finally using Lemma IV.3, (IV.2) and the fact that $supp v_{\sigma} \subset \{\omega(k) \geq \sigma\}$, we obtain

$$||R_{3,\sigma}(k)|| \le o(\sigma^0) \sup(\omega(k)^{-1}, \omega(k)^{-\frac{1}{2}}) ||v(k)(K+1)^{-\frac{1}{2}}||.$$
 (IV.10)

Combining (IV.7), (IV.9), (IV.10) and using (I2) we obtain the proposition. \Box As a consequence of Prop. IV.4, we have the following lemma, which is the main part of the proof of Thm. 1. We recall that $x := i\nabla_k$ is the position operator on $L^2(\mathbb{R}^d, \mathrm{d}k)$.

Lemma IV.5 Let $F \in C_0^{\infty}(\mathbb{R})$ be a cutoff function with $0 \le F \le 1$, F(s) = 1 for $|s| \le \frac{1}{2}$, F(s) = 0 for $|s| \ge 1$. Let $F_R(x) = F(\frac{|x|}{R})$. Then

$$\lim_{\sigma \to 0, R \to +\infty} (\psi_{\sigma}, d\Gamma(1 - F_R)\psi_{\sigma}) = 0.$$
 (IV.11)

Proof. Recall that if B is a bounded operator on $\mathfrak h$ with distribution kernel b(k,k'), we have

$$(u,\mathrm{d}\Gamma(B)u)=\int\int b(k,k')(a(k)u,a(k')u)\mathrm{d}k\mathrm{d}k',\ u\in D(N^{\frac{1}{2}}).$$

Using this identity, we obtain

$$(\psi_{\sigma}, \mathrm{d}\Gamma(1-F_R)\psi_{\sigma}) = (a(\cdot)\psi_{\sigma}, (1-F(\frac{|D_k|}{R}))a(\cdot)\psi_{\sigma})_{L^2(\mathbb{R}^d, \mathrm{d}k; \mathcal{H})}.$$

By Prop. IV.4, we have

$$(\psi_{\sigma}, \mathrm{d}\Gamma(1 - F_R)\psi_{\sigma}) = ((E - H - \omega(\cdot))^{-1}v(\cdot)\psi_{\sigma}, (1 - F(\frac{|D_k|}{R}))(E - H - \omega(\cdot))^{-1}v(\cdot)\psi_{\sigma}) + o(\sigma^0),$$

uniformly in R. This yields

$$(\psi_{\sigma}, \mathrm{d}\Gamma(1 - F_R)\psi_{\sigma}) \leq \|(E - H - \omega(\cdot))^{-1}v(\cdot)\|_{L^2(\mathbb{R}^d, \mathrm{d}k, B(\mathcal{H}))} \times \|(1 - F(\frac{|D_k|}{R}))(E - H - \omega(\cdot))^{-1}v(\cdot)\|_{L^2(\mathbb{R}^d, \mathrm{d}k, B(\mathcal{H}))} + o(\sigma^0).$$

Now it follows from hypothesis (I2) and (IV.8) that $(E - H - \omega(\cdot))^{-1}v(\cdot)$ belongs to $L^2(\mathbb{R}^d, dk, B(\mathcal{H}))$, and hence

$$\|(1 - F(\frac{|D_k|}{R}))(E - H - \omega(\cdot))^{-1}v(\cdot)\|_{L^2(\mathbb{R}^d, dk, B(\mathcal{H}))} \in o(R^0).$$

This proves (IV.11).

We can now prove Theorem 1.

Proof of Theorem 1. Let us first recall the a priori bounds on the family of ground states $\{\psi_{\sigma}\}$. From (IV.2), (IV.3), we have

$$||N^{\frac{1}{2}}\psi_{\sigma}|| \le C$$
, $||H_0^{\frac{1}{2}}\psi_{\sigma}|| \le C$, uniformly in σ . (IV.12)

Let also F be a cutoff function as in Lemma IV.5. Then it is easy to verify, using the fact that $0 \le F \le 1$, that

$$(1 - \Gamma(F_R))^2 \le (1 - \Gamma(F_R)) \le d\Gamma(1 - F_R).$$

Using Lemma IV.5, we obtain

$$\lim_{\sigma \to 0, R \to \infty} \|1 - \Gamma(F_R)\psi_\sigma\| = 0. \tag{IV.13}$$

Let us denote by $\chi(s \leq s_0)$ a cutoff function supported in $\{|s| \leq s_0\}$, equal to 1 in $\{|s| \le s_0/2\}$.

Since the unit ball in \mathcal{H} is compact for the weak topology, there exist a sequence $\sigma_n \to 0$ and a vector $\psi \in \mathcal{H}$ such that ψ_{σ_n} tends weakly to ψ . By Lemma A.3 in the Appendix, it suffices to show that $\psi \neq 0$ to prove the theorem.

Assume that $\psi = 0$. Note using hypotheses (H0), (H1), that for any λ , R the operator $\chi(N \leq \lambda)\chi(H_0 \leq \lambda)\Gamma(F_R)$ is compact on \mathcal{H} . Then

$$\lim_{n \to \infty} \chi(N \le \lambda) \chi(H_0 \le \lambda) \Gamma(F_R) \psi_{\sigma_n} = 0, \tag{IV.14}$$

for any λ , R. By (IV.13), we can pick R large enough such that for $n > n_0$

$$\|(1 - \Gamma(F_R))\psi_{\sigma_n}\| \le 10^{-2}.$$
 (IV.15)

Since $(1 - \chi(s \le s_0)) \le s_0^{-\frac{1}{2}} s^{\frac{1}{2}}$, we can using (IV.12) pick λ large enough such

$$\|(1 - \chi(N \le \lambda))\psi_{\sigma_n}\| \le 10^{-2}, \ \|(1 - \chi(H_0 \le \lambda))\psi_{\sigma_n}\| \le 10^{-2}.$$
 (IV.16)

But (IV.15), (IV.16) and (IV.14) imply that for n large enough $\|\psi_{\sigma_n}\| \leq 10^{-1}$ which is a contradiction. Hence $\psi \neq 0$ and the theorem is proved.

Appendix

We use the notations of Sect. II. The following lemma is well known if the coupling function v(k) is of the form $v\lambda(k)$ for v a fixed linear operator on K and $k\mapsto \lambda(k)$ a scalar function. In our general setting it seems not to be in the literature.

Let us first recall some terminology and results about measurability of vector and operator-valued functions. Let \mathcal{K} be a Hilbert space. A map $k \mapsto \psi(k) \in \mathcal{K}$ is said measurable if it is measurable if we equip K with the norm topology. Let now $\mathbb{R}^d \ni k \mapsto T(k) \in B(\mathcal{K})$ be defined for a.e. k. The map $k \mapsto T(k)$ is said weakly measurable if for all $\psi_1, \psi_2 \in \mathcal{K}$ the map $k \mapsto (\psi_2, T(k)\psi_1)$ is measurable. If \mathcal{K} is separable the following facts are true (see eg [Di, Chap. II §2]):

- i) the function $k \mapsto ||T(k)||$ is measurable,
- ii) for any $k \mapsto \psi(k) \in \mathcal{K}$ measurable, the function $k \mapsto T(k)\psi(k)$ is measurable.

In particular for $\psi \in \mathcal{K}$ the function $k \mapsto T(k)\psi$ is measurable. These facts will be used in the proof of Lemma A.1 below.

Lemma A.1 Let $B \geq 0$ be a selfadjoint operator on the separable Hilbert space K, $v: \mathbb{R}^d \ni k \mapsto v(k)$ a function such that for a.e. $k \in \mathbb{R}^d$, $v(k)(B+1)^{-\frac{1}{2}} \in B(\mathcal{K})$, $\mathbb{R}^d \ni k \mapsto v(k)(B+1)^{-\frac{1}{2}} \in B(\mathcal{K})$ is weakly measurable and $m : \mathbb{R}^d \ni k \mapsto m(k) \in \mathbb{R}^+$ be a measurable function. Then

$$|\int (v(k)u, a(k)u)dk| \le C(R)(u, d\Gamma(m)u)^{\frac{1}{2}}(u, (B+R)u)^{\frac{1}{2}},$$
 (A.1)

for

$$C(R) = \left(\int \frac{1}{m(k)} \|v(k)(B+R)^{-\frac{1}{2}}\|^2 dk\right)^{\frac{1}{2}}.$$

If moreover for a.e. $k \in \mathbb{R}^d$, $(B+1)^{-\frac{1}{2}}v(k) \in B(\mathcal{K})$ and $\mathbb{R}^d \ni k \mapsto (B+1)^{-\frac{1}{2}}v(k) \in B(\mathcal{K})$ is weakly measurable, then

$$\| \int v^*(k) \otimes a(k)u \, dk \| \le C_1(R) \| (B+R)^{\frac{1}{2}} \otimes d\Gamma(m)^{\frac{1}{2}} u \|, \tag{A.2}$$

for

$$C_1(R) = \left(\int \frac{1}{m(k)} \|(B+R)^{-\frac{1}{2}} v(k)\|^2 dk\right)^{\frac{1}{2}},$$

and

$$\| \int v(k) \otimes a^*(k) u \, dk \| \le C_2(R) \| (B+R)^{\frac{1}{2}} \otimes d\Gamma(m)^{\frac{1}{2}} u \| + C_3(R) \| u \|, \quad (A.3)$$

for

$$C_2(R) = \left(\int \frac{1}{m(k)} \|v(k)(B+R)^{-\frac{1}{2}}\|^2 dk\right)^{\frac{1}{2}},$$

$$C_3(R) = \left(\int \|v(k)(B+R)^{-\frac{1}{2}}\|^2 dk\right)^{\frac{1}{2}}.$$

Proof. The estimate (A.1) follows directly from Cauchy-Schwarz inequality. (We use the fact that for $u \in \mathcal{K} \otimes D(N^{\frac{1}{2}}) \cap D(\mathrm{d}\Gamma(m)^{\frac{1}{2}})$ the map $k \mapsto a(k)u \in \mathcal{H}$ is measurable). To prove (A.2), we consider the operator

$$w_R: \mathcal{K} \ni u \mapsto w_R(k)u := m(k)^{-\frac{1}{2}}(B+R)^{-\frac{1}{2}}v(k)u \in L^2(\mathbb{R}^d, \mathrm{d}k; \mathcal{K}) = \mathcal{K} \otimes \mathfrak{h}.$$

Clearly $||w_R||_{B(\mathcal{K},\mathcal{K}\otimes\mathfrak{h})} \leq C_1(R)$ and hence $||w_Rw_R^*||_{B(\mathcal{K}\otimes\mathfrak{h})} \leq C_1(R)^2$. This gives

$$|\int \int (w_R^*(k)\psi(k), w_R^*(k')\psi(k'))_{\mathcal{K}} dk dk'| \le C_1(R)^2 \int ||\psi(k)||_{\mathcal{K}}^2 dk, \tag{A.4}$$

for $\psi \in L^2(\mathbb{R}^d, dk; \mathcal{K})$. The bound (A.4) still holds for $\psi \in L^2(\mathbb{R}^d, dk; \mathcal{H})$ if we replace the scalar product $(.,.)_{\mathcal{K}}$ by the scalar product $(.,.)_{\mathcal{H}}$. We have:

$$||a(v)u||^{2} = ||\int v^{*}(k)a(k)u \, dk||^{2}$$

$$= \int \int (v^{*}(k)a(k)u, v^{*}(k')a(k')u)_{\mathcal{H}} dk dk'$$

$$= \int \int (w_{R}^{*}(k)\psi(k), w_{R}^{*}(k')\psi(k'))_{\mathcal{H}} dk dk,'$$

for
$$\psi(k) = m(k)^{\frac{1}{2}}a(k)(B+R)^{\frac{1}{2}}u$$
. Using (A.4) we obtain
$$\|a(v)u\|^2 \le C_1(R)^2 \int \omega(k) \|a(k)(B+R)^{\frac{1}{2}}u\|^2 dk$$
$$= C_1(R)^2 \|(B+R)^{\frac{1}{2}} \otimes d\Gamma(m)^{\frac{1}{2}}u\|^2.$$

This proves (A.2).

Similarly, introducing the operator

$$\tilde{w}_R: \mathcal{K} \ni u \mapsto \tilde{w}_R(k)u = m(k)^{-\frac{1}{2}}v(k)(B+R)^{-\frac{1}{2}} \in L^2(\mathbb{R}^d, \mathrm{d}k; \mathcal{K}) = \mathcal{K} \otimes \mathfrak{h},$$

we have $\|\tilde{w}_R\|_{B(\mathcal{K},\mathcal{K}\otimes\mathfrak{h})} \leq C_2(R)$ and hence $\|\tilde{w}_R^*\tilde{w}_R\|_{B(\mathcal{K})} \leq C_2(R)^2$. This yields

$$\|\int \tilde{w}_R^*(k)\tilde{w}_R(k)\mathrm{d}k\|_{B(\mathcal{K})} \le C_2(R)^2. \tag{A.5}$$

(The integral in (A.5) should be considered in the weak sense on $B(\mathcal{K})$, ie as a quadratic form on \mathcal{K}). We have

$$\begin{aligned} \|a^*(v)u\|^2 &= \int \int (v(k)a^*(k)u, v(k')a^*(k')u)_{\mathcal{H}} \mathrm{d}k \mathrm{d}k' \\ &= \int \int (v(k)a(k')u, v(k')a(k)u)_{\mathcal{H}} \mathrm{d}k \mathrm{d}k' \\ &+ \int (v(k)u, v(k)u) \mathrm{d}k. \end{aligned}$$

The second term in the r.h.s. is bounded by

$$\int \|v(k)(B+R)^{-\frac{1}{2}}\|^2 \|(B+R)^{\frac{1}{2}}u\|^2 dk$$

$$\leq C_3^2(R)\|(B+R)^{\frac{1}{2}}u\|^2.$$

We write then the first term as

$$\int \int (\tilde{w}_R(k)\psi(k'), \tilde{w}_R(k')\psi(k))_{\mathcal{H}} dk dk'
\leq \int \int \|\tilde{w}_R(k)\psi(k')\|_{\mathcal{H}}^2 dk dk'
\leq \|\int \tilde{w}_R^*(k)\tilde{w}_R(k) dk\| \int \|\psi(k')\|_{\mathcal{H}}^2 dk'
\leq C_2(R)^2 \|(B+R)^{\frac{1}{2}} \otimes d\Gamma(m)^{\frac{1}{2}} u\|^2,$$

which proves (A.3).

Lemma A.2 Let Q be a closed, positive quadratic form, Q_n be closed quadratic forms on D(Q) such that Q_n converges to Q when $n \to +\infty$ in the topology of D(Q). Let H, H_n be the associated selfadjoint operators. Then for z in a bounded set $U \subset \mathbb{C} \backslash \mathbb{R}$, we have:

$$\|((H-z)^{-1}-(H_n-z)^{-1})(H+1)^{-\frac{1}{2}}\| \in o(1)|Imz|^{-1}, \text{ when } n \to +\infty.$$

and for $\lambda \in \mathbb{R}, \lambda \ll -1$

$$\|((H-\lambda)^{-1}-(H_n-\lambda)^{-1})(H+1)^{-\frac{1}{2}}\| \in o(1) \text{ when } n \to +\infty.$$

Proof. Let for $z \in \mathbb{C}$, $u \in \mathcal{H}$, $R_n(z) = (H_n - z)^{-1}$, $R(z) = (H - z)^{-1}$, $r = R_n(z)u - R(z)u$. We have for $v \in D(Q)$:

$$(v, u) = Q(v, R(z)u) - z(v, R(z)u)$$

= $Q_n(v, R_n(z)u) - z(v, R_n(z)u).$

Hence for v = r we obtain

$$Q(r, R(z)u) - Q_n(r, R_n(z)u) + z||r||^2 = 0,$$

or

$$Q(r,r) - z||r||^2 = (Q - Q_n)(r, R(z)u).$$
(A.6)

If $\lambda \in \mathbb{R}$, $\lambda \ll -1$, we deduce from (A.6) that

$$(Q+1)(r,r) \in o(1)(Q+1)(r,r)^{\frac{1}{2}}(Q+1)(R(\lambda)u,R(\lambda)u)^{\frac{1}{2}}.$$

This implies that (Q+1)(r,r) is o(1)||u||, as claimed.

Let now $z \in U \subset \mathbb{C}\backslash\mathbb{R}$. Taking the imaginary part of (A.6) we obtain

$$\begin{split} \|r\|^2 &\in o(1)|Imz|^{-1}(Q+1)(r,r)^{\frac{1}{2}}(Q+1)(R(z)u,R(z)u)^{\frac{1}{2}} \\ &\in o(1)|Imz|^{-2}(Q+1)(r,r)^{\frac{1}{2}}\|u\|^2, \end{split}$$

since (Q+1)(R(z)u,R(z)u) is bounded by $|Imz|^{-2}||u||^2$ for $z\in U$. Taking then the real part of (A.6) we obtain

$$\begin{split} |Q(r,r)| &\in o(1)(Q+1)(r,r)^{\frac{1}{2}}(Q+1)(R(z)u,R(z)u)^{\frac{1}{2}} + o(1)|Imz|^{-2} \\ &\qquad \qquad (Q+1)(r,r)^{\frac{1}{2}}\|u\|^2 \\ &\in o(1)|Imz|^{-2}(Q+1)^{\frac{1}{2}}(r,r)\|u\|^2. \end{split}$$

This implies that $(Q+1)(r,r)^{\frac{1}{2}} \in o(1)|Imz|^{-1}||u||$ as claimed. The following result is shown in [AH, Lemma 4.9]

Lemma A.3 Let H, H_n for $n \in \mathbb{N}$ be selfadjoint operators on a Hilbert space \mathcal{H} . Let ψ_n be a normalized eigenvector of H_n with eigenvalue E_n . Assume that

i)
$$H_n \to H$$
 when $n \to \infty$ in strong resolvent sense,

$$ii$$
) $\lim_{n\to\infty} E_n = E$,

$$iii)$$
 w- $\lim_{n\to\infty} \psi_n = \psi \neq 0$.

Then ψ is an eigenvector of H with eigenvalue E.

Acknowledgement

We would like to thank J.M. Bony, J. Fröhlich and G.M. Graf for useful discussions.

References

- Arai, A., Hirokawa, M.: On the existence and uniqueness of ground states of a generalized spin-boson model. J. Funct. Anal. 151 (1997) 455–503.
- [BFS] Bach, V., Fröhlich, J., Sigal, I.: Quantum electrodynamics of confined nonrelativistic particles, Sonderforschungsbereich 288 preprint, 1996.
- [Be] Berezin, F.A.: The Method of Second Quantization, Academic Press New York San Francisco London, 1966.
- Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians, Rev. Math. Phys. 11 (4) (1999) p383-450.
- [Di] Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
- Fröhlich, J.: On the infrared problem in a model of scalar electrons and [Fr]massless scalar bosons, Ann. Inst. Henri Poincaré A19 (1973) 1–103.
- [Sp]Spohn, H.: Ground state of a quantum particle coupled to a scalar Bose field. Lett. Math. Phys. 44 (1998), no. 1, 9–16.

C. Gérard Centre de Mathématiques URA 7640 CNRS Ecole Polytechnique 91128 Palaiseau Cedex FRANCE e-mail: gerard@math.polytechnique.fr

Communicated by Gian Michele Graf submitted 25/06/99, accepted 14/12/99