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On the Number of Eigenvalues of the Dirac
Operator in a Bounded Interval

Jason Holt and Oleg Safronov

Abstract. Let H0 be the free Dirac operator and V � 0 be a positive
potential. We study the discrete spectrum of H(α) = H0 − αV in the
interval (−1, 1) for large values of the coupling constant α > 0. In partic-
ular, we obtain an asymptotic formula for the number of eigenvalues of
H(α) situated in a bounded interval [λ, μ) as α → ∞.

1. Statement of the Main Theorem

Let H0 be the free Dirac operator

H0 = −i

3∑

1

γj
∂

∂xj
+ γ0,

where γj are 4 × 4 self-adjoint matrices obeying the conditions

γjγk + γkγj =

{
0, if j �= k;
2 I, if j = k.

The operator H0 is self-adjoint in the space L2(R3; C4) consisting of func-
tions on R

3 that take values in C
4. The spectrum of H0 is the set σ(H0) =

(−∞,−1] ∪ [1,∞).
Let V � 0 be a bounded potential on R

3. Define H(α) to be the operator

H(α) = H0 − αV, α > 0.

In the formula above, V is understood as the operator of multiplication by a
matrix-valued function V ·I. The case of a more general matrix-valued function
will not be considered due to its little relation to Physics. Throughout the
paper, we always assume that

V ∈ L3(R3) ∩ L∞(R3). (1.1)
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In this case, besides having a continuous spectrum that coincides with σ(H0),
the operator H(α) may only have a discrete spectrum in the interval (−1, 1).
Choose λ and μ so that −1 < λ < μ < 1. We define N(α) to be the number
of eigenvalues of H(α) inside [λ, μ).

Our main result is the theorem below which establishes the rate of growth
of N(α) at infinity. The symbol f+ denotes the positive part f+ = (|f | + f)/2
of f , which can be either a real number or a real-valued function.

Theorem 1.1. Let Φ be a continuous nonnegative function on the unit sphere
in R

d and 1 < ν < 4/3. Let V � 0 be a bounded real-valued potential such
that

V (x) =
Φ(θ)
|x|ν

(
1 + o(1)

)
, as |x| → ∞,

uniformly in θ = x/|x|. Then for any q ∈ (9/4, 3/ν) and any subinterval
[λ, μ] ⊂ (−1, 1),

lim
α→∞α−3/ν+q

∫ α

0

N(t)t−q−1dt

=
ν

3π2(3 − νq)

∫

R3

[(
(Φ(θ)|x|−ν + μ)2+ − 1

)3/2

+

−
(
(Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+

]
dx.

(1.2)

Remark. If N(α) ∼ Cα3/ν as α → ∞, then the right hand side of (1.2)
becomes

ν

3 − νq
·C. Thus, formula (1.2) determines the value of the constant C.

The question about the number of eigenvalues of the Dirac operator in a
bounded interval is considered here for the first time. This theorem is new.

Perturbations V ∈ L3(R3) were studied in [17] by M. Klaus and, later,
in [5] by M. Birman and A. Laptev. However, the object of the study in [17]
and [5] was different from N(α), considered in this article. The main results of
[17] and [5] imply that if V ∈ L3(R3), then the number N (λ, α) of eigenvalues
of H(t) passing a point λ ∈ (−1, 1) as t increases from 0 to α satisfies

N (λ, α) ∼ 1
3π2

α3

∫

R3
V 3dx, as α → ∞. (1.3)

In addition, M. Klaus proved in [17] that if V ∈ L3∩L3/2, then the asymptotic
formula (1.3) holds even for λ = 1. In this case, N (λ, α) is interpreted as the
number of eigenvalues of H(t) that appear at the right edge of the gap as t
increases from 0 to α.

The crux of the problem. Observe that N(α) = N (μ, α) − N (λ, α). However,
since the expression on the right hand side of (1.3) does not depend on λ, this
formula only implies that

N(α) = o(α3), as α → ∞.
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In order to obtain an asymptotic formula for N(α), one would need to know the
second term in the asymptotics of N (λ, α). The second term in (1.3) has never
been obtained. This explains why the problem is challenging. Another reason
why the problem is challenging is that the Dirichlet–Neumann bracketing that
is often used for Schrödinger operators cannot be applied to Dirac operators.
To prove Theorem 1.1, one needs to develop a new machinery rich in tools
that allow us to obtain the estimate of N(α) stated below.

Theorem 1.2. Let V ∈ Lq(R3) ∩ L∞(R3) with 9/4 < q � 3, and let N(α) be
the number of eigenvalues of H(α) in the interval [λ, μ). Then,

∫ ∞

0

N(α)α−q−1dα � C

∫

R3
V q(x)dx

with a constant C > 0 depending on λ and μ but independent of V .

Theorems 1.1 and 1.2 involve averaging of the function N(α). Averaging
of eigenvalue counting functions also appeared in the papers [28] and [29]. How-
ever, the operators that were studied in these two papers are Schrödinger oper-
ators. These are the publications in which one discusses a periodic Schrödinger
operator perturbed by a decaying potential αV . The same model is discussed
in [26,27,30], but the asymptotics of N(α) is established in [26,27,30] without
any averaging. To obtain such strong results, the authors in these articles im-
pose very restrictive conditions on the derivatives of V . The remaining papers
[1–4,6,7,10,12–16,21,25], devoted to Schrödinger operators, do not even deal
with N(α). Instead of that, they deal with the number N (λ, α) of eigenvalues
passing the point λ.

Finally, we would like to mention the paper [11]. While the problems
discussed in [11] are related to the discrete spectrum of a Dirac operator, they
are very different from the questions studied here.

2. Compact Operators

For a compact operator T , the symbols sk(T ) denote the singular values of
T enumerated in the non-increasing order (k ∈ N) and counted in accordance
with their multiplicity. Observe that s2

k(T ) are eigenvalues of T ∗T . We set

n(s, T ) = #{k : sk(T ) > s}, s > 0.

For a self-adjoint compact operator T , we also set

n±(s, T ) = #{k : ±λk(T ) > s}, s > 0.

where λk(T ) are eigenvalues of T . Observe that (see [8])

n±(s1 + s2, T1 + T2) � n±(s1, T1) + n±(s2, T2), s1, s2 > 0.

A similar inequality holds for the function n. Also,

n(s1s2, T1T2) � n(s1, T1) + n(s2, T2), s1, s2 > 0.
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Theorem 2.1. Let A and B be two compact operators on the same Hilbert space.
Then for any r ∈ N,

r∑

1

sp
k(A + B) �

r∑

1

sp
k(A) +

r∑

1

sp
k(B), ∀p ∈ (0, 1], (2.1)

and
r∑

1

sp
k(AB) �

r∑

1

sp
k(A)sp

k(B), ∀p > 0. (2.2)

The first inequality was discovered by S. Rotfeld [23]. The second estimate
is called Horn’s inequality (see Section 11.6 of the book [8]).

Below we use the following notation for the positive and negative part of
a self-adjoint operator T :

T± =
1
2
(|T | ± T ).

We also define sgn(T ) as a unitary operator having the property

T = sgn(T )|T |.
Theorem 2.2. Let 0 < p � 1. Let q � p. Let A and B be two compact self-
adjoint operators. Then for any s > 0,

q

∫ ∞

s

(
n+(t, A) − n+(t, B)

)
tq−1dt

� ‖B‖q +
n+(s,A)+1∑

k=1

sp
k

(
|A|q/psgn(A) − |B|q/psgn(B)

)
. (2.3)

Moreover, if B � A, then

q

∫ ∞

s

(
n+(t, A) − n+(t, B)

)
tq−1dt

�
n+(s,A)+1∑

k=1

sp
k

(
|A|q/psgn(A) − |B|q/psgn(B)

)
, ∀s > 0.

A proof of Theorem 2.2 can be found in [29].
Let H0 and V � 0 be two self-adjoint operators acting on the same Hilbert

space. Assume that V is bounded. For λ ∈ R \ σ(H0), define the operator Xλ

by

Xλ = W (H0 − λ)−1W, W =
√

V . (2.4)

Two points λ and μ are said to be in the same spectral gap of H0 provided
[λ, μ] ⊂ R \ σ(H0).

Proposition 2.3. Let 0 < p � 1. Let q � p. Suppose the operators Xλ, Xμ are
compact for the two points λ < μ that belong to the same spectral gap of H0.
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Then for any s > 0,

q

∫ ∞

s

(
n+(t,Xμ) − n+(t,Xλ)

)
tq−1dt

�
n+(s,Xμ)+1∑

k=1

sp
k

(
|Xμ|q/psgn(Xμ) − |Xλ|q/psgn(Xλ)

)
.

Proof. Here, one needs to apply Theorem 2.2 and use the fact that Xλ � Xμ.
Indeed,

Xμ − Xλ = (μ − λ)W (H0 − λ)−1(H0 − μ)−1W

is a nonnegative operator, because

(μ − λ)(t − λ)−1(t − μ)−1 > 0, for t ∈ σ(H0) ⊂ R \ [λ, μ].

�

Let S∞ be the class of compact operators. Note that the condition

W |H0 − λ0|−1/2 ∈ S∞, for some λ0 /∈ σ(H0), (2.5)

implies that operators (2.4) are compact for all λ ∈ R \ σ(H0). This is a
consequence of the fact that

Xλ = W |H0 − λ0|−1/2Ω
(
W |H0 − λ0|−1/2

)∗
,

where Ω is a bounded operator. Moreover, (2.5) implies that, for each α > 0,
the spectrum of H(α) = H0 − αV is discrete outside of σ(H0) because the
difference of resolvent operators (H(α) − z)−1 and (H0 − z)−1 is compact for
Im z > 0.

The following proposition is called the Birman-Schwinger principle (see
[3,31]):

Proposition 2.4. Let H0 and V � 0 be self-adjoint operators in a Hilbert space.
Assume that V is a bounded operator and (2.5) holds for some λ0. Let N (λ, α)
be the number of eigenvalues of H(t) = H0 − tV passing through a point
λ /∈ σ(H0) as t increases from 0 to α. Then,

N (λ, α) = n+(s,Xλ), for sα = 1, and W =
√

V . (2.6)

The idea of the proof of (2.6) is the following. First, one shows that
λ ∈ σ(H(α)), if and only if α−1 ∈ σ(W (H −λ)−1W ). This relation holds with
multiplicities taken into account. After that, one simply uses the definition of
the distribution function n+(s,Xλ).

Corollary 2.5. Let H0 and V � 0 be self-adjoint operators in a Hilbert space.
Assume that V is a bounded operator and (2.5) holds for some λ0. Let N(α)
be the number of eigenvalues of the operator H(α) in [λ, μ) contained in a gap
of the spectrum σ(H0). Then,

N(α) = n+(s,Xμ) − n+(s,Xλ), sα = 1. (2.7)



J. Holt, O. Safronov Ann. Henri Poincaré

Let p > 0. The class of compact operators T whose singular values satisfy

‖T‖p
Sp

:=
∑

k

sp
k(T ) < ∞

is called the Schatten class Sp.
The following statement provides a Hölder type inequality for products

of compact operators that belong to different Schatten classes.

Proposition 2.6. Let T1 ∈ Sp and T2 ∈ Sq where p > 0 and q > 0. Then
T1T2 ∈ Sr, where 1/r = 1/p + 1/q, and

‖T1T2‖Sr
� ‖T1‖Sp

‖T2‖Sq
.

A proof of this proposition can be found in [8].
Consider the following important example of an integral operator on

L2(Rd):
(
Y u

)
(x) = (2π)−d/2

∫

Rd

a(x)eiξxb(ξ)u(ξ)dξ. (2.8)

If F is the Fourier transform operator, [a] and [b] are operators of multiplication
by the functions a and b, then

Y = [a]F ∗[b].

The symbol Q below is used to denote the unit cube [0, 1)d.

Theorem 2.7. If a and b belong to Lp(Rd) with 2 � p < ∞, then Y ∈ Sp and

‖Y ‖Sp
� C‖a‖Lp‖b‖Lp . (2.9)

If 0 < p < 2 and
∑

ν∈Zd

(‖a‖p
L∞(Q+ν) + ‖b‖p

L∞(Q+ν)

)
< ∞,

then Y ∈ Sp and

‖Y ‖Sp
� C

( ∑

ν∈Zd

‖a‖p
L∞(Q+ν)

)1/p( ∑

ν∈Zd

‖b‖p
L∞(Q+ν)

)1/p

.

The constants in both inequalities depend only on d and p.

The proof of this theorem can be found in [7].
Let p > 0. Besides the classes Sp, we will be dealing with the so-called

weak Schatten classes Σp of compact operators T obeying the condition

‖T‖p
Σp

:= sup
s>0

spn(s, T ) < ∞.

It turns out that Y defined by (2.8) belongs to Σp if a ∈ Lp and the other
factor b satisfies the condition

‖b‖p
Lp

w
:= sup

s>0

(
sp measure{ξ ∈ R

d : |b(ξ)| > s}) < ∞.

Such functions b are said to belong to the space Lp
w(Rd). The following result

is the so-called Cwikel’s inequality (see [9]).
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Theorem 2.8. Let p > 2. Assume that a ∈ Lp(Rd) and b ∈ Lp
w(Rd). Then, Y

defined by (2.8) belongs to the class Σp and

‖Y ‖Σp
� C‖a‖Lp‖b‖Lp

w

with a constant C that depends only on d and p.

3. Preliminary Estimates

For the sake of brevity, the norms in the spaces Sp and Lp (quasinorms for
0 < p < 1) will be often denoted by the symbol ‖ · ‖p.

Theorem 3.1. Let p satisfy the condition p > 9
2 . Assume that W ∈ Lp(R3) ∩

L∞(R3). Let also

Xλ = W (H0 − λ)−1W

be the family of Birman-Schwinger operators with H0 being the free Dirac
operator. Then, the operator

Tλ,μ = X3
μ − X3

λ

belongs to the Schatten class S p
6
and

‖Tλ,μ‖ p
6

� C‖W‖6
p, (3.1)

with a constant C > 0 that does not depend on W but might depend on λ and
μ.

Proof. It is easy to see that

Tλ,μ = X3
μ − X3

λ = (Xμ − Xλ)X2
μ + Xλ(Xμ − Xλ)Xμ + X2

λ(Xμ − Xλ)

is a finite linear combination of operators of the form

Fn,m =
(
WRλW

)n(
WRλRμW

)(
WRμW

)m

where Rλ = (H0 − λ)−1 and n + m = 2. If the factors W were written before
the factors Rλ and Rμ, then this term would be the operator

W 6Rn+1
λ Rm+1

μ ,

and Theorem 2.7 would imply an estimate that is similar to (3.1). We have to
show that the position of the factors does not matter that much.

For that purpose, we observe that

F2,0 =
(
WRλW

)2(
WRλRμW

)

=
(
W |Rλ|2/3

)
Jλ

(|Rλ|1/3W
1
2
)(

W
3
2 Rλ

)(
W 2RλRμW

)

where Jλ = sign(Rλ). Using inequality (2.9), we estimate the Shatten norm of
the product

Θ :=
(
W |Rλ|2/3

)
Jλ

(|Rλ|1/3W
1
2
)(

W
3
2 Rλ

)
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Namely, we obtain that

‖Θ‖p/3 � ‖W |Rλ|2/3‖p‖|Rλ|1/3W
1
2 ‖2p‖W

3
2 Rλ‖2p/3.

This leads to the estimate

‖Θ‖p/3 � C‖W‖3
p (3.2)

Besides (3.2) that provides an estimate of the Schatten norm of the first factor
in the representation

F2,0 = Θ
(
W 2RλRμW

)
,

we need an estimate for the norm of

B := W 2RλRμW.

This operator can be written as

W 2RλRμW = W 2|Rλ|4/3Jλ,μ|Rμ|2/3W,

where

Jλ,μ = |H0 − λ|4/3RλRμ|H0 − μ|2/3

is a bounded operator. Consequently,

‖B‖p/3 � ‖Jλ,μ‖ ‖W 2|Rλ|4/3‖ p
2
‖|Rμ|2/3W‖p.

Therefore, by inequality (2.9),

‖B‖p/3 � C‖W‖3
p. (3.3)

Combining the relations (3.2)–(3.3), we obtain that

‖F2,0‖p/6 � C‖W‖6
p.

The estimate

‖F0,2‖p/6 � C‖W‖6
p.

is obtained in the same way.
Similarly, since

F1,1 =
(
W |Rλ|2/3

)
Jλ

(|Rλ|1/3W
1
2
)(

W 3/2RλRμW 3/2
)

(
W

1
2 |Rμ|1/3

)
Jμ

(|Rμ|2/3W
)
,

we obtain that

‖F1,1‖p/6 � ‖W |Rλ|2/3‖p‖|Rλ|1/3W
1
2 ‖2p‖|Rμ|2/3W‖p‖

W
1
2 |Rμ|1/3‖2p‖W 3/2RλRμW 3/2‖p/3,

which leads to the inequality

‖F1,1‖p/6 � C‖W‖3
p‖W 3/2RλRμW 3/2‖p/3. (3.4)

Thus, we need to estimate the Schatten norm of the operator

B0 = W 3/2RλRμW 3/2 = W 3/2|Rλ| · Sλ,μ · |Rμ|W 3/2
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where

Sλ,μ = |H0 − λ|RλRμ|H0 − μ|
is a bounded operator. Since

‖B0‖p/3 � ‖Sλ,μ‖ ‖W 3/2|Rλ|‖2p/3‖|Rμ|W 3/2‖2p/3,

we may apply inequality (2.9) to obtain that

‖B0‖p/3 � C‖W‖3
p. (3.5)

Finally, combining the relations (3.2)–(3.5), we conclude that

‖Tλ,μ‖p/6 � C‖W‖6
p.

�

It follows from Proposition 2.3 that

p

∫ ∞

0

N(α)α−p/2−1dα � 2
∑

k

s
p/6
k (Tλ,μ) = 2‖Tλ,μ‖p/6

p/6.

As a consequence, applying Theorem 3.1, we obtain Theorem 1.2, saying that

q

∫ ∞

0

N(α)α−q−1dα � C‖W‖2q
2q, q ∈ (9/4, 3].

4. Splitting

For ε > 0, we introduce two parts V1 and V2 of the potential V by setting

V1(x) =

{
V (x) if |x| < ε · α1/ν ;

0 if |x| � ε · α1/ν ,

and

V2 = V − V1.

Let Nj(t) be the number of eigenvalues of the operator H0 − tVj in the interval
[λ, μ), j = 1, 2. We want to show that
∫ α

0

N(t)t−q−1dt ∼
∫ α

0

N1(t)t−q−1dt +
∫ α

0

N2(t)t−q−1dt, as α → ∞.

We introduce X̃λ by

X̃λ = W1(H0 − λ)−1W1 + W2(H0 − λ)−1W2,

where Wj =
√

V j for j = 1, 2. Note that

n+(t, X̃μ) − n+(t, X̃λ) = N1(t) + N2(t), for 0 < t � α.

As we know from (2.3), for s = α−1,

q
∣∣∣
∫ ∞

s

(
n+(t,Xλ) − n+(t, X̃λ)

)
tq−1dt

∣∣∣ � ‖Xλ‖q + ‖X̃λ‖q+

+
∑

1�k�cα3+1

s
q/3
k

(
X3

λ − X̃3
λ

)
.

(4.1)
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Here, the value of the parameter q is the same as in Theorem 1.2. The constant
c in the last term is the same as in the inequality n+(s,Xλ) � cs−3 (a con-
sequence of Cwikel’s estimate). The next proposition and its corollaries show
that the right hand side is of order o(α3/ν−q) as α → ∞. That allows us to
replace Xλ and Xμ by the operators X̃λ and X̃μ and claim that

∫ α

0

N(t)t−q−1dt =
∫ ∞

α−1

(
n+(t,Xμ) − n+(t,Xλ))

)
tq−1dt

∼
∫ ∞

α−1

(
n+(t, X̃μ) − n+(t, X̃λ))

)
tq−1dt, as α → ∞.

Proposition 4.1. Let p > 9/2 and γ � 2. Let W ∈ Lp(R3) ∩ L∞(R3). Assume
that the support of the function W2 is contained in the set

{x ∈ R
3 : |x| > εα1/ν + 1}.

Let also

q =
3γp

6γ + p
.

Then, there is an α0 > 0 such that

‖X3
λ − X̃3

λ‖q/3 � C‖W‖6
p(ε

2α2/ν + 1)1/γ , for α > α0,

with a constant C > 0 independent of α and W .

Proof. The operator X3
λ − X̃3

λ is a finite linear combination of operators of the
form

X̃n
λ

(
W1RλW2 + W2RλW1

)
Xm

λ

where Rλ = (H0 − λ)−1 and n + m = 2.
Repeating the arguments that lead to the estimate (3.2), we obtain

‖X̃n
λ W− n

2 ‖r � C

n∏

j=1

‖W‖3/2
p = C‖W‖p/r

p (4.2)

with r = 2p
3n . Similarly, we obtain that

‖W− m
2 Xm

λ ‖τ � C‖W‖p/τ
p (4.3)

with τ = 2p
3m . Negative powers of W in(4.2) and (4.3) are always multiplied by

W . Therefore, the resulting products are bounded operators.
It remains to estimate norms of the operators

B1,2 := W
1+ n

2
1 RλW

1+ m
2

2 and B2,1 := W
1+ n

2
2 RλW

1+ m
2

1

in the classes Sκ with 1
κ

= 3
p + 1

γ . Clearly, it is enough to estimate only the
norm of B1,2, because the adjoint of B1,2 looks similar to B2,1.

Let ζ be a smooth function on the real line R such that

ζ(t) =

{
1 for t � 0;
0 for t � 1.
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Define ζα on R
3 by

ζα(x) = ζ(|x| − εα1/ν).

Then, obviously, ζαW1 = W1 and ζαW2 = 0. Using the identity

[B,A−1] = A−1 [A,B]A−1,

we obtain that

W1RλW2 = W1ζαRλW2 = W1Rλ[H0, ζα]RλW2

The middle operator [H0, ζα] is an operator of multiplication by a bounded
matrix-valued function supported in the layer

Ωα = {x ∈ R
3 : εα1/ν � |x| � εα1/ν + 1}.

Repeating this trick several times, we obtain by induction that

W1RλW2 = j W1

(
Rλ[H0, ζα]

)j
RλW2, for any j ∈ N.

Similarly, we derive the equality

W
1+ n

2
1 RλW

1+ m
2

2 = j W
1+ n

2
1

(
Rλ[H0, ζα]

)j
RλW

1+ m
2

2 , j ∈ N,

which will be needed only in the case j = 5. Observe now that by (2.9), the
operator

Kλ := Rλ[H0, ζα]Rλ

belongs to the Schatten class Sγ for γ > 3/2 (hence, for γ � 2) and

‖Kλ‖γ
Sγ

� C0vol Ωα � C(ε2α2/ν + 1), ∀α > 0.

Indeed,

Kλ = RλχΩα
[H0, ζα]χΩα

Rλ,

where χΩα
is the characteristic function of the set Ωα. Since the partial deriva-

tives of ζα are bounded by ‖ζ ′‖L∞ , the inequality ‖[H0, ζα]‖ � C holds for some
constant C independent of α. Therefore, we can estimate the Schatten norm
of Kλ using (2.9) as follows

‖Kλ‖γ � C‖RλχΩα
‖2
2γ � C0‖χΩα

‖2
2γ .

On the other hand, one can show that the norm of the operator

Gλ := (H0 − λ)2
(
Rλ[H0, ζα]

)2 = (H0 − λ)[H0, ζα]Rλ[H0, ζα] (4.4)

is bounded uniformly in α. Indeed, the operator Rλ is a continuous mapping
from L2 = L2(R3; C4) to the Sobolev space H1 = H1(R3; C4). Moreover, since
the derivatives of ζα are bounded by the L∞-norms of the derivatives of ζ,
the operator of multiplication [H0, ζα] can be viewed not only as an operator
from L2 to L2 but also as a bounded operator from H1 to H1. The norms of
these two different operators [H0, ζα] are bounded uniformly in α. Therefore,
the mapping

[H0, ζα]Rλ[H0, ζα] : L2(R3) → H1(R3)
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is a bounded linear operator whose norm is bounded by a constant independent
of α. This implies that the norm of the operator (4.4) is bounded uniformly in
α. Now, since

B1,2 = W
1+ n

2
1 R2

λGλKλG∗
λR2

λW
1+ m

2
2 ,

we can obtain the needed estimate of the norm of B1,2 in Sκ . For that purpose,
we write it as

B1,2 = W
1+ n

2
1 |Rλ|(n+2)/3Qλ|Rλ|(m+2)/3W

1+ m
2

2

where

Qλ = |H0 − λ|(n+2)/3R2
λGλKλG∗

λR2
λ|H0 − λ|(m+2)/3

belongs to Sγ and ‖Qλ‖Sγ
� C‖Kλ‖Sγ

.
Obviously,

‖B1,2‖κ � ‖W 1+ n
2 |Rλ|(n+2)/3‖ 2p

(2+n)
‖|Rλ|(m+2)/3W 1+ m

2 ‖ 2p
(2+m)

‖Qλ‖γ

with 1
κ

= 3
p + 1

γ . Therefore, by (2.9),

‖B1,2‖κ � C‖W‖3
p(ε

2α2/ν + 1)1/γ (4.5)

Observe now that
1
r

+
1
τ

+
1
κ

=
6
p

+
1
γ

=
3
q
. (4.6)

Combining the relations (4.2)–(4.6), we obtain that

‖X3
λ − X̃3

λ‖q/3 � C‖W‖6
p(ε

2α2/ν + 1)1/γ .

�

In fact we proved more: exactly the same arguments can be used to justify
the following statement.

Corollary 4.2. Let p > 9/2, γ � 2 and

q =
3γp

6γ + p
.

Let W ∈ Lp(Rd)∩L∞(Rd). Let the operator T (α) be a finite linear combination
of products of three factors of the form

χ−
j Xλχ+

j , j = 1, 2, 3, (4.7)

where χ±
j are characteristic functions of some subsets of R

3 (that may depend
on α). Assume that, at least for one of the three factors (4.7) in each product,
the supports of χ−

j and χ+
j are separated from each other by a spherical layer

of the form

{x ∈ R
3 : εα1/ν + a � |x| � εα1/ν + b}, with a < b. (4.8)

Then, there is an α0 > 0 such that

‖T (α)‖q/3 � C‖W‖6
p(ε

2α2/ν + 1)1/γ , for α > α0,

with a constant C > 0 independent of α and W .
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Proof. Let

T0(α) =
(
χ−

1 Xλχ+
1

)(
χ−

2 Xλχ+
2

)(
χ−

3 Xλχ+
3

)

where the supports of χ−
j and χ+

j are separated from each other by a spherical
layer of the form (4.8) at least for one of the indices j.

Repeating the arguments that lead to the estimate (4.2), we obtain

‖
(
χ−

1 Xλχ+
1

)(
χ−

2 Xλχ+
2

)
W−1‖p/3 � C‖W‖3

p (4.9)

and

‖
(
χ−

1 Xλχ+
1

)
W−1/2‖2p/3 � C‖W‖3/2

p (4.10)

Similarly, we obtain that

‖W−1
(
χ−

2 Xλχ+
2

)(
χ−

3 Xλχ+
3

)
‖p/3 � C‖W‖3

p (4.11)

and

‖W−1/2
(
χ−

3 Xλχ+
3

)
‖2p/3 � C‖W‖3/2

p (4.12)

Negative powers of W in (4.9)–(4.12) are always multiplied by W . Therefore,
the resulting products are bounded operators.

It remains to estimate the Schatten norms of the operators

Bj,n,m := χ−
j W 1+ n

2 RλW 1+ m
2 χ+

j , n + m = 2,

in the case that the supports of χ−
j and χ+

j are separated from each other by
a spherical layer of the form (4.8). The norms that are needed are the norms
in the class Sκ with 1

κ
= 3

p + 1
γ .

Let ζ̃ be a smooth function on the real line R such that

ζ̃(t) =

{
1 for t � a;
0 for t � b.

Define ζ̃α on R
3 by

ζ̃α(x) = ζ̃(|x| − εα1/ν).

To be clearly defined, assume that ζ̃αχ−
j = χ−

j and ζ̃αχ+
j = 0. Then

χ−
j W 1+ n

2 RλW 1+ m
2 χ+

j = 5χ−
j W 1+ n

2
(
Rλ[H0, ζ̃α]

)5
RλW 1+ m

2 χ+
j .

Repeating the arguments that lead to the estimate (4.5) word by word, we
obtain

‖Bj,n,m‖κ � C‖W‖3
p(ε

2α2/ν + 1)1/γ (4.13)

Observe now that
3
p

+
1
κ

=
3
q
. (4.14)

Combining the relations (4.9)–(4.14), we obtain that

‖T0(α)‖q/3 � C‖W‖6
p(ε

2α2/ν + 1)1/γ .
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�

As a consequence, we immediately obtain the next result, in which Rλ is
the same as before, i.e., Rλ = (H0 − λ)−1.

Corollary 4.3. Let p > 9/2, γ � 2 and

q =
3γp

6γ + p
.

Let χj be the characteristic functions of the sets

{x ∈ R
3 : εα1/ν − j � |x| � εα1/ν + j}, j = 1, 2, 3,

and Yλ,α be the operator defined by

Yλ,α = χ3X̃λχ2X̃λχ1

(
W1RλW2 + W2RλW1

)
χ1 + χ2X̃λχ1

(
W1RλW2

+ W2RλW1

)
χ1Xλχ2 + χ1

(
W1RλW2 + W2RλW1

)
χ1Xλχ2Xλχ3.

(4.15)
Then, there is an α0 > 0 such that

‖X3
λ − X̃3

λ − Yλ,α‖q/3 � C‖W‖6
p(ε

2α2/ν + 1)1/γ , for α > α0,

with a constant C > 0 independent of α and W .

Proof. One only needs to realize that the operator T (α) := X3
λ − X̃3

λ − Yλ,α

satisfies conditions of Corollary 4.2. �

On the other hand, applying Cwikel’s inequality, one can easily show
that

‖Yλ,α‖Σ1 � C

∫

R3
χ3(x)V 3(x)dx � Cεα

2/ν−3 for α > α0. (4.16)

Indeed, Yλ,α is a finite linear combination of products of three factors of the
form χAXλχB , where χA and χB are the characteristic functions of sets con-
tained in the support of χ3. Therefore,

‖χAXλχB‖Σ3 � ‖χ3W |Rλ|1/2‖2
Σ6

� C‖χ3W‖2
L6 = C

(∫

R3
χ3(x)V 3(x)dx

)1/3

,

which implies (4.16).
Now we rewrite (4.16) as

sk

(
Yλ,α

)
� Cεα

2/ν−3k−1 for α > α0.

Consequently, for any positive constant c > 0,

[cα3]+1∑

1

s
q/3
k

(
Yλ,α

)
� Cεα

2/ν−q, for α > α0, (4.17)

where [cα3] denotes the integer part of cα3.
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Corollary 4.4. Let 9
4 < q < 3

ν where ν > 1. Assume that conditions of Theo-
rem 1.1 are satisfied. Then,

∫ ∞

α−1

(
n+(t,Xλ) − n+(t, X̃λ)

)
tq−1dt = o(α3/ν−q), as α → ∞.

Proof. Choose γ > q
3−νq and define p by

6
p

=
3
q

− 1
γ

.

Then, p > 6/ν. Therefore, W ∈ Lp(R3). Using Rotfeld’s inequality, we obtain

[cα3]+1∑

1

s
q/3
k

(
X3

λ − X̃3
λ

)
�

[cα3]+1∑

1

s
q/3
k

(
Yλ,α

)
+ ‖X3

λ − X̃3
λ − Yλ,α‖q/3

q/3.

(4.18)

The inequality (4.18) estimates the last term on the right hand side of (4.1).
It remains to apply Corollary 4.3 and the relation (4.17). �

5. Other Consequences

The preceding discussion of the splitting principle involves a decomposition of
the space R

3 into two domains. It is easy to see that the same arguments work
for all piecewise smooth domains obtained similarly by scaling by a factor of
α1/ν . In particular, one of the domains that we have already considered can
be decomposed further into smaller sets. Namely, let Qj be bounded disjoint
cubes contained in the region {x ∈ R

3 : |x| � ε}, 1 � j � n−1. Let {φj,α}n−1
j=1

be the characteristic functions of the cubes α1/νQj . Define φn,α to be the
characteristic function of the complement

{x ∈ R
3 : |x| � εα1/ν} \ ∪n−1

j=1 α1/νQj .

Theorem 5.1. Let 9
4 < q < 3

ν where ν > 1. Assume that conditions of Theo-
rem 1.1 are satisfied. Then

∫ ∞

α−1

(
n+

(
t,W2(H0 − λ)−1W2

) −
n∑

j=1

n+

(
t, φj,αW (H0 − λ)−1Wφj,α

))
tq−1dt

= o(α3/ν−q),

as α → ∞.

To prove Theorem 5.1, it is enough to repeat the steps that were needed
to prove Corollary 4.4.

Clearly, to obtain an asymptotic formula for
∫ ∞

α−1 n+

(
t,W2(H0−λ)−1W2

)

tq−1dt one has to obtain an asymptotic formula for
∫ ∞

α−1 n+

(
t, φj,αW (H0 −
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λ)−1Wφj,α

)
tq−1dt for each j. The latter integral can be written as
∫ ∞

α−1
n+

(
t, φj,αW (H0 − λ)−1Wφj,α

)
tq−1dt

= α−q

∫ ∞

1

n+

( τ

α
, φj,αW (H0 − λ)−1Wφj,α

)
τ q−1dτ

Observe now that, if

V (x) =
Φ(θ)
|x|ν , for |x| > 1,

then the maximum and minimum values of α V on the cubes α1/νQj do not
depend on α:

mj � α V (x) � Mj , for all α > ε−ν and all x ∈ α1/νQj .

The potential αV can be squeezed between the constant functions mjφj,α and
Mjφj,α on each cube α1/νQj .

So, due to the monotonicity of the counting function n+,

n+

(
τ

mj
, φj,α(H0 − λ)−1φj,α

)
� n+

( τ

α
, φj,αW (H0 − λ)−1Wφj,α

)

� n+

(
τ

Mj
, φj,α(H0 − λ)−1φj,α

)
,

for any τ > 0.
Consequently, it remains to obtain an asymptotic formula for the quan-

tity

n+

(
t, φj,α(H0 − λ)−1φj,α

)
as α → ∞

for any fixed t > 0. We are going to prove the following result.

Proposition 5.2. For any fixed t > 0,

n+

(
t, φj,α(H0 − λ)−1φj,α

)

∼ 3−1π−2α3/ν
(
(t−1 + λ)2+ − 1

)3/2

+
vol Qj as α → ∞.

Proof. Note that

4
3
π
(
(t−1 + λ)2+ − 1

)3/2

+
= vol

{
ξ ∈ R

3 :
(√|ξ|2 + 1 − λ

)−1
> t

}
.

Taking into account the fact that ±√|ξ|2 + 1 are eigenvalues of the symbol

A(ξ) :=
3∑

1

γjξj + γ0

of the operator H0, we conclude that we need to prove that

tr Ψ
(
φj,α(H0 − λ)−1φj,α

) ∼ tr
[
φj,αΨ

(
(H0 − λ)−1

)
φj,α

]
as α → ∞,

(5.1)
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for Ψ being the characteristic function of the interval (t,∞). Since such a
function Ψ can be squeezed between two different functions of the form

Ψε(s) =

⎧
⎪⎨

⎪⎩

0, if s < τ

(s − τ)/ε, if τ � s � τ + ε

1, if s > τ + ε,

and the quantity
(
(t−1 + λ)2+ − 1

)3/2

+

depends on t continuously, we only need to prove (5.1) for Ψ that are continuous
and vanishing near zero.

Any such function Ψ can be written as

Ψ(s) = s5η(s),

where η is a continuous function on the real line R. Notice that, in this case,
∣∣∣tr Ψ

(
φj,α(H0 − λ)−1φj,α

)∣∣∣ � ‖φj,α(H0 − λ)−1φj,α‖5
S5

‖η‖∞ � Cα3/ν‖η‖∞.

Moreover, since Ψ((H0 − λ)−1) = (H0 − λ)−2η(Rλ)(H0 − λ)−3,
∣∣∣tr φj,αΨ

(
(H0 − λ)−1)φj,α

∣∣∣ � ‖φj,α(H0 − λ)−2‖S5/2‖(H0 − λ)−3φj,α‖S5/3‖η‖∞

� Cα3/ν‖η‖∞.

Thus, both sides of (5.1) can be estimated by Cα3/ν‖η‖∞. Note now that func-
tions of a given self-adjoint operator only need to be defined on the spectrum
of the operator. On the other hand, the spectrum of (H0 − λ)−1 is contained
in [−L,L], where L = 1/(1 − |λ|). Therefore, the functional ‖η‖∞ in the last
inequality is the L∞-norm of the function on the interval [−L,L]. Since on a
finite interval, η can be uniformly approximated by polynomials, it is enough
to prove (5.1) under the assumption that η is a polynomial. Put differently, it
is enough to prove (5.1) for

Ψ(s) = sk, k � 5,

because polynomials are finite linear combinations of power functions.
Denote Rλ = (H0 − λ)−1, χ+ = φj,α and χ− = 1 − φj,α. We are going to

prove that

‖(χ+Rλχ+)k − χ+Rk
λχ+‖S1 = o(α3/ν), as α → ∞. (5.2)

For that purpose, we write χ+Rk
λχ+ as

χ+Rk
λχ+ = (χ+Rλχ+)k +

k−1∑

j=0

(χ+Rλχ+)jχ+Rλχ−Rk−j−1
λ χ+. (5.3)

While the norm of the operator χ+Rλχ− does not tend to zero, it is still
representable in the form

χ+Rλχ− = T1 + T2, where ‖T1‖ → 0, and ‖T2‖Sk
= o(α3/(kν)),

as α → ∞.
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To see that, we define T2 to be the operator

T2 = Θχ+Rλχ−Θ,

where Θ is the operator of multiplication by the characteristic function of the
layer

{
x ∈ R

3 : dist(x, α1/ν∂Qj) < α1/(2ν)
}

. (5.4)

Then, the volume of the support of the function Θ does not exceed Cα5/(2ν)

at least for large values of α. Therefore,

‖T2‖Sk
� Cα5/(2kν) = o(α3/(kν)), as α → ∞.

On the other hand, since the explicit expression for the integral kernel of
(H0 −λ)−1 shows that the latter decays exponentially fast as |x− y| → ∞, we
have the following estimate for the integral kernel k(x, y) of the operator T1:

|k(x, y)| � C
(
(1 − Θ(x)) + (1 − Θ(y))

)
e−c|x−y|χ+(x)χ−(y). (5.5)

This implies that ‖T1‖ → 0 as α → ∞, because x and y for which k(x, y) �= 0
are distance α1/(2ν) apart from each other, while

‖T1‖ �
(
sup

x

∫
|k(x, y)|dy × sup

y

∫
|k(x, y)|dx

)1/2

.

Thus, we have the following estimate

‖(χ+Rλχ+)jχ+Rλχ−Rk−j−1
λ χ+‖S1 � ‖(χ+Rλχ+)jT1Rk−j−1

λ χ+‖S1

+ ‖(χ+Rλχ+)jT2Rk−j−1
λ χ+‖S1 � ‖χ+Rλχ+‖j

Sk−1
‖T1‖‖Rk−j−1

λ χ+‖S(k−1)/(k−j−1)

+ ‖χ+Rλχ+‖j
Sk

‖T2‖Sk
‖Rk−j−1

λ χ+‖Sk/(k−j−1) = o(α3/ν), as α → ∞.

Combining this relation with (5.3), we obtain (5.2). �

As a consequence, we obtain

Proposition 5.3. For any constant M � 0, we have

lim
α→∞ α−3/ν+q

∫ ∞

α−1
n+

(
αt,Mφj,α(H0 − λ)−1φj,α

)
tq−1dt

= 3−1π−2vol Qj

∫ ∞

1

(
(t−1M + λ)2+ − 1

)3/2

+
tq−1dt

(5.6)

Proof. Changing the variables αt → t, we obtain

lim
α→∞ α−3/ν+q

∫ ∞

α−1
n+

(
αt,Mφj,α(H0 − λ)−1φj,α

)
tq−1dt

= lim
α→∞ α−3/ν

∫ ∞

1

n+

(
t,Mφj,α(H0 − λ)−1φj,α

)
tq−1dt

(5.7)

The integrand on the right hand side can be estimated according to Cwikel’s
inequality:

n+(t,Mφj,α(H0 − λ)−1φj,α) � Ct−3

∫

R3
φ6

j,α(x)dx � Cα3/νt−3vol Qj .
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Consequently, the limit on the right hand side of (5.7) can be computed by
the Lebesgue dominated convergence theorem. The relation (5.6) follows now
from Proposition 5.2. �

To state the next result, we need to introduce the notation

T(M,λ) = 3−1π−2

∫ ∞

1

(
(t−1M + λ)2+ − 1

)3/2

+
tq−1dt

Theorem 5.4. Assume that

V (x) =
Φ(θ)
|x|ν , for |x| > 1, (5.8)

where Φ is a continuous function on the unit sphere. Then

lim
α→∞ α−3/ν+q

∫ ∞

α−1
n+

(
t,W2(H0 − λ)−1W2

)
tq−1dt

=
∫

|x|>ε

T
(
Φ(θ)|x|−ν , λ

)
dx. (5.9)

Proof. Let mj and Mj be the maximum and the minimum values of V on the
cube Qj . Then, according to Proposition 5.3, we have

3−1π−2vol Qj

∫ ∞

1

(
(t−1mj + λ)2+ − 1

)3/2

+
tq−1dt

� lim
α→∞ α−3/ν+q

∫ ∞

α−1
n+

(
t, φj,αW (H0 − λ)−1Wφj,α

)
tq−1dt

� 3−1π−2vol Qj

∫ ∞

1

(
(t−1Mj + λ)2+ − 1

)3/2

+
tq−1dt, (5.10)

by the monotonicity of the counting function n+. Taking the sum over j on
the three sides of (5.10) and using Theorem 5.1, we obtain that

n∑

j=1

T(mj , λ)vol Qj � lim
α→∞ α−3/ν+q

∫ ∞

α−1
n+

(
t,W2(H0 − λ)−1W2

)
tq−1dt

�
n∑

j=1

T(Mj , λ)vol Qj ,

It remains to realize that the left and the right hand sides are the Riemann
sums of the integral on the right hand side of (5.9). �

Obviously, the condition (5.8) of the theorem can be replaced by the
assumption that

V (x) =
Φ(θ)
|x|ν

(
1 + o(1)

)
, as |x| → ∞, (5.11)

uniformly in θ = x/|x|.
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Theorem 5.5. Let V � 0 be a bounded real-valued potential such that (5.11)
holds uniformly in θ for some continuous function Φ defined on the unit sphere.
Let 9/4 < q < 3/ν and ν > 1. Then,

lim
α→∞ α−3/ν+q

∫ ∞

α−1
n+(t,W2(H0 − λ)−1W2)tq−1dt

= 3−1π−2

∫ ∞

1

(∫

|x|>ε

(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+
dx

)
tq−1dt.

(5.12)

6. The End of the Proof

Proposition 6.1. Let V � 0 be a bounded real-valued potential such that (5.11)
holds uniformly in θ for some continuous function Φ defined on the unit sphere.
Let 9/4 < q < 3/ν and ν > 1. Let also −1 < λ < μ < 1. Then, It is enough to
appl

lim sup
α→∞

α−3/ν+q

∫ ∞

α−1

(
n+(t,W1(H0 − μ)−1W1)

−n+(t,W1(H0 − λ)−1W1)
)
tq−1dt

� 4πε3−νq

3 − νq
‖Φ‖∞. (6.1)

Proof. It is enough to apply the estimate established in Theorem 1.2 with V
replaced by the potential V1. �

Corollary 6.2. Let V � 0 be a bounded real-valued potential such that (5.11)
holds uniformly in θ for some continuous function Φ defined on the unit sphere.
Let 9/4 < q < 3/ν and ν > 1. Let also −1 < λ < μ < 1. Then,

3−1π−2

∫ ∞

1

(∫

|x|>ε

(
((t−1Φ(θ)|x|−ν + μ)2+ − 1)3/2

+

−(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+

)
dx

)
tq−1dt

� lim inf
α→∞ α−3/ν+q

∫ ∞

α−1

(
n+(t, X̃μ) − n+(t, X̃λ)

)
tq−1dt, (6.2)

while

lim sup
α→∞

α−3/ν+q

∫ ∞

α−1

(
n+(t, X̃μ) − n+(t, X̃λ)

)
tq−1dt

� 4πε3−νq

3 − νq
‖Φ‖∞ + 3−1π−2

∫ ∞

1

(∫

|x|>ε

(
((t−1Φ(θ)|x|−ν + μ)2+ − 1)3/2

+

−(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+

)
dx

)
tq−1dt. (6.3)
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Theorem 6.3. Let V � 0 be a bounded real-valued potential such that (5.11)
holds uniformly in θ for some continuous function Φ defined on the unit sphere.
Let 9/4 < q < 3/ν and ν > 1. Let also −1 < λ < μ < 1. Then,

lim
α→∞ α−3/ν+q

∫ ∞

α−1

(
n+(t,Xμ) − n+(t,Xλ)

)
tq−1dt

= 3−1π−2

∫ ∞

1

(∫

R3

[(
(t−1Φ(θ)|x|−ν + μ)2+ − 1

)3/2

+

−
(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+

]
dx

)
tq−1dt. (6.4)

Proof. According to Corollary 4.4, X̃λ and X̃μ in (6.2) and (6.3) can be re-
placed by the operatorsXλ and Xμ. After this replacement, we can pass to the
limit as ε → 0. �

Theorem 1.1 is now a consequence of Theorem 6.3.
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