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Abstract. We consider the classical vacua of the Weinberg—Salam (WS)
model of electroweak forces. These are no-particle, static solutions to
the WS equations minimizing the WS energy locally. We study the WS
vacuum solutions exhibiting a non-vanishing average magnetic field of
strength b and prove that (i) there is a magnetic field threshold b, such
that for b < b,, the vacua are translationally invariant (and the magnetic
field is constant), while, for b > b, they are not, (ii) for b > b,, there
are non-translationally invariant solutions with lower energy per unit vol-
ume and with the discrete translational symmetry of a 2D lattice in the
plane transversal to b, and (iii) the lattice minimizing the energy per
unit volume approaches the hexagonal one as the magnetic field strength
approaches the threshold b.. In the absence of particles, the Weinberg—
Salam model reduces to the Yang-Mills-Higgs (YMH) equations for the
gauge group U(2). Thus, our results can be rephrased as the correspond-
ing statements about the U(2)-YMH equations.

Mathematics Subject Classification. 81T13 (primary), 35Q40, 70S15
(secondary).

1. Introduction

The Weinberg—Salam (WS) model of electroweak interactions [22,35,47] was
the first triumph of the program to unify the four fundamental forces of na-
ture. It is a key part of the standard model of elementary particles. It unifies
electromagnetic and weak interactions, two of the three forces dealt with in
the standard model. It involves particle, gauge and the Higgs fields.
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While the gauge fields describe the electroweak interactions, the role of
the Higgs field is to convert the original massless fields (zero masses are re-
quired by the relativistic invariance) to massive ones. This phenomenon is
called the Higgs mechanism. This mechanism, together with the Goldstone
theorem, leads to all gauge particles but one acquiring mass, resulting in two
massive bosons—denoted W and Z—and a massless one—the photon. The W
and Z particles where discovered experimentally 16 years after their theoretical
prediction.

In this paper, we consider the vacuum solutions of the classical WS model
with a non-vanishing average magnetic field (b). These are static, no-particle
solutions minimizing the WS energy locally for a fixed b. They are also no-
particle solutions of the entire standard model.!

We prove that (i) there is a magnetic field threshold b, such that for
|5| < by, the vacua are translationally invariant, while, for |l;\ > b, they are
not, (ii) for |l;| > b,, there are non-translationally invariant solutions with
lower energy per unit volume and with the discrete translational symmetry of
a 2D lattice in the plane transversal to the magnetic field, and (iii) the lattice
minimizing the energy of the latter solutions per unit volume approaches the
hexagonal one as the magnetic field strength approaches the threshold b,. We
expect that these solutions are stable under field fluctuations and, in fact,
minimize the energy locally.

The phenomenon above was investigated extensively in the physics litera-
ture (see, e.g. [5-12,19,26-29,32,41,42] and the references therein). It is similar
to the one occurring in superconductivity and the solutions whose existence
we establish are analogous to the superconducting Abrikosov vortex lattices
([1], see, e.g. [37], for a review). It is estimated in [26] that the spontaneous
symmetry breaking takes place at the critical average magnetic field of ap-
proximately 10%* Gauss = 102° Tesla. By comparison, the strongest magnetic
field produced on Earth is 10'* Tesla.

Note that, in the absence of particles, the WS system reduces to the
Yang-Mills-Higgs (YMH) one with the gauge group U(2). So ultimately, these
are the equations we deal with.

The only rigorous result [43,44] on the classical WS model deals with the
vortices in the self-dual regime, where the WS (or corresponding YMH) equa-
tions are equivalent to the first-order equations, and it uses this equivalence in
an essential way. (The self-dual regime in this context was discovered in [6-8],
see also [41,42].)

Open problems and further directions:
(a) Stability of the emerging solutions.

(b) Existence of vortex lattices at [b] > b,.

I The no-particle sector of the standard model splits into the U(2)-YMH (electroweak) and
U(3)-YM (strong, or QCD) parts. Correspondingly, the vacuum of the standard model is
the product of the electroweak and strong vacua and the vacuum energy is the sum of the
corresponding energies.)
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(¢) Quantum corrections to the values of the classical critical magnetic
field b, and the optimal lattice shape parameter 7.

For the stability and existence problems, (a) and (b), see, e.g. [38,40]
and [39], respectively. The last problem brings up the regime of ‘sparse’ vortex
lattices as opposite to the case of |l;| close to (and >) b, resulting in densely
packed vortices: the lattice step — 0 as |7)\ — b, and — o0 as |7)| — 00. Hence,
the existence of vortex lattices at |l;| > b, is closely related to the problem of
existence of vortices (elementary excitations).

For existence of Abrikosov lattices in the Ginzburg—Landau and Chern—
Simons equations, see [33,37].

For the quantum corrections, problem (c), it would be natural to start
with a BCS-type, or quasi-free, version of the WS model and a Bogoliubov-
type expansion of a regularized (say, lattice) WS model around it, see, e.g.
[14,15].

The paper is organized as follows: In Sect. 2, we formulate the problem
and describe results. In Sects. 3-4, we fix the gauge and pass from the original
Yang-Mills fields to the W and Z (massive boson) and A (photon) fields and
rescale the resulting equations. The proofs of the main results are given in
Sect. 5 (Theorem 2.1), Sects. 6-10 (Theorem 2.2) and Sect. 11 (Theorem 2.3).
In “Appendix A”, we discuss various covariant derivatives used in the main
text, and in “Appendix B”, we review the time-dependent YMH equations and
derive the expression for the conserved energy as well as the YMH equations
used in the main text. Furthermore, there we write the YMH equations in
coordinate form and derive a convenient expression for the energy functional.
In “Appendices D.1-D.2”, we derive the WS equations in 3D and 2D, respec-
tively, in terms of the fields W, Z, A and . In the remaining appendices, we
carry out technical computations.

Throughout the paper, we use the Einstein convention of summing over
repeated indices.

2. No-particle and Vacuum Sectors of the Weinberg—Salam
Model

The no-particle sector of the Weinberg—Salam (WS) model involves the inter-
acting Higgs and SU(2) and U(1) gauge fields, ® and V and X, while the
particle fields are set to zero. The field ® is a vector function defined on the
Minkowski space-time R3*! with values in C?, and the fields V and X are
one-forms on R3*! with values in the algebras su(2) and u(1), respectively. We
write

Q=9V+4gX,

where g and ¢’ are coupling constants, which is a one-form with values in u(2).
We consider SU(2) as a matrix group and U(1) as multiples of the identity
matrix 1 acting on C2.
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These fields satisfy the WS equations, which are the Euler-Lagrange
equations for the action functional

SQ®) = [ ((Va®. Vo), ~ sAIBIE: — 8 + (Fo. Folly).  (21)

where M is a bounded domain in spacetime R3*! equipped with the Minkowski
metric n of signature (—, +,+,+), A and g are positive parameters, and the
remaining symbols are defined as follows:

Vg is the covariant derivative mapping C2-valued functions (sections)
into C2-valued one-forms defined as

Vo=d+Q, (2.2)

with d, the exterior derivative; F(y is the curvature 2-form of the connection
one-form @, given by

1
Fo =dQ+ %[Q, dl; (2.3)
where [A, B] is defined in local coordinates {z'} as
[A, B] == [A;, Bjldz" Ada? = [B, A, (2.4)

with A = A,dz* and B = B,dz;
OF, = U®QP denotes the space of U-valued p-forms with the Minkowski,
indefinite inner product,

(A, By = (Aa(2), B*(2))u, (25)

where A = A, (z)dz® and B = B, (x)dz® are U-valued p-forms, a is a p-form
index and (-, )y is the standard, positive definite inner product on U with the
indices raised and lowered with help of the Minkowski metric n on M. For
instance, for U = su(2), the inner product is given by

(A, B)ggu(z) = 2Tr(An(2)"BY(x)) = =2 Tr(An(z)B*(x)). (2.6)

Solutions of the no-particle WS equations solve also the full WS system
as well as that for the standard model of the particle physics.

The vacuum sector of the Weinberg—Salam (WS) model consists of static,
no-particle solutions.

The static Higgs and SU(2) and U(1) gauge fields ®, V' and X are now
defined on the physical space R? with the same respective values as in the time-
dependent case. Geometrically, V, X and @ can be thought of as connection
one-forms on the trivial bundles R x SU(2),R? x U(1) and R? x U(2).

The fields @, V and X satisfy the static no-particle WS equations, which
are the Euler-Lagrange equations for the static WS energy functional origi-
nating in (2.1)2

En(Q.8) = [ (Il + AR — ) + 51Fally, ). (27

u(2)

2For a discussion of the time-dependent theory and a derivation of the energy functional
(2.7), see [24,28,34,36] and “Appendix B”.
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where N is a bounded domain in R?® with appropriate boundary conditions
(specified in (2.17) below) and || - [|qr is the standard norm on the space
OF == U ® QP of U-valued p-forms at € N (e.g. for B = B;(z)dz" € Q},,
we have ||Bllqy = (X2, | Bi(2)]|?)"/? with the usual Euclidean metric and
with the indices running through 1,2,3), while now, (2.5) (and (2.6)) become
the usual inner products. The symbols Vg and Fg are as defined above but
without the time component.

Since @Q = gV + ¢’X and X has the values in the centre, u(1), of the
algebra u(2), we have Fo = gFy + ¢'Fx, where

Fy = dV + g[v, V] and Fy :=dX (2.8)

are the curvatures of the connections V and X3 and || Fgl|2. = [Fv|3. +
Q Qu(Z) Qu(2)

2
HFXHQ;Z‘(U'

We introduce the covariant derivative dg mapping u(2)-valued k-forms
into u(2)-valued (k + 1)-forms, k > 1, as

doB :=dB + [Q,B] = dy B := dB + g[V, B]. (2.9)

This formula originates in the equation (6gFg)(B) = doB, where d¢ is
the Gateaux derivative with respect to Q. For 0-forms, we set dg = V.

The Euler-Lagrange equations for energy functional (2.7) are given by
(see “Appendix B”%)

VHVae® = A — @], (2.10)
d5Fg = J(Q, ), (2.11)

where V7, is the adjoint of V¢ and maps C2-valued one-forms into C?-valued
functions, d, is the adjoint of dg and maps u(2)-valued two-forms into u(2)-
valued one-forms, and J(Q, ®) is the electroweak current, which is the u(2)-
valued one-form given by

- !

J(Q,®) = —%Ta Im(7,®, Vo d) — %70 Im(r®, Vo &), (2.12)

where summing over repeated indices is understood, 79 := 1 and 7,,a = 1,2, 3,
are the Pauli matrices,

T = (? (1)) Ty 1= (? B’) T3 1= ((1) 01>. (2.13)

(The Pauli matrices, multiplied by —i/2, form an orthonormal basis in su(2)
with the inner product (g, h)sue2) = 2Tr(g*h) = —2Tr(gh).) We call system
(2.10)—(2.11) the (static) WS equations.

3For more discussion of covariant derivatives and their curvatures, see “Appendices A” for
the general case, or “Appendix C”, for the case of the gauge group G = U(2).

4These equations could be converted formally back into the time-dependent ones by taking
the adjoints in the Minkowski metric instead of the Euclidian one, see (B.4)—(B.5), “Appen-
dix B”.
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The energy functional (2.7) and Euler-Lagrange equations (2.10)—(2.11)
are invariant under the group of rigid motions and the gauge transformations
(gauge symmetry)

(V(2), X(2), ®(2)) = (V5 (2), X5 (2), D4 (2)), (2.14)
where v = y(z) = hy(z)h2(x), with hi(z) € SU(2), ha(x) € U(1), and
V(z) = hi(2)V(2)hy ' (2) — i2hy(2)dhy (x),
X(2) = X(2) = iZha(x)dhy ' (),
O(z) = hi(x)ha(z)®(x).

The physical quantities here are (a) the Higgs field density ||®||, (b) the
magnetic field Tr Fg and (c) the YM current J(Q, ®). It is easy to check that
these quantities are gauge invariant. We say that a solution (@, ®) to (2.10)-
(2.11) is homogeneous if || @, Tr Fy and J(Q,®) are independent of z. (We
say that Tr Fy is independent of z, if it is a multiple of a constant 2-form, see
(2.16).) Otherwise, we say that (Q, ®) is inhomogeneous.

Furthermore, we say that a solution (Q, ®) is gauge-translation invariant
if it is invariant under translations up to gauge transformations.

Clearly, a solution (@, ®) which is gauge-translation invariant is also ho-
mogeneous. The converse in general might not be true.

We are interested in the vacuum solutions of the WS equations with a
non-vanishing average magnetic field,

Rhi%s 7 / Tr Fo = —ie Z bidz? A dz*,
(ijk)

i.e. solutions minimizing the WS energy locally under the constraint above. In
physical field theories, one expects the vacua to have the maximal available
symmetry. Consequently, we first consider gauge-translation invariant solu-
tions with a fixed (constant) magnetic field.

For b = (b1,b2,b3) # 0, Egs. (2.10)—(2.11) have the gauge-translation
invariant solution given (up to a gauge symmetry) by

= (Q",9"), (2.15)
where @ is a constant field and QZ’ is a connection with a constant magnetic
field

Tr Fy; = —iewy, where wj = Z bidx? A dz”, (2.16)
(ijk)

with the sum taken over all cyclic permutations of (1,2,3), and e := 9g’

(e turns out to be the electron charge.) We specify this solution at the end
of this section in Egs. (2.23) and (2.24). (For it, Q° solves the YM equation
dolo =0.)

Fixing the average magnetic field breaks the full special Euclidean sym-
metry (i.e. translations and rotations but not reflections) but maintains the
special Euclidean symmetry in the plane orthogonal to b and the translational
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symmetry along b. Looking for the simplest non-trivial solutions, we consider
solutions which do not depend on the coordinate alongl; and look for solutions
spontaneously breaking the transversal translational symmetry.

With the notation b = |B|, we show that for appropriate perturbations:

(i) (2.15) is linearly stable for b < b, and unstable for b > b,, where b, :=
9%¢5/2e;

(ii) At b = by, anew inhomogeneous solution (breaking the gauge-translational
invariance) bifurcates, and this solution has the discrete translational
symmetry of a lattice in the plane orthogonal to b and has lower energy
per unit area;

(iii) The lattice shape minimizing the energy per unit area approaches the
hexagonal lattice as b approaches b,.

To formulate these results precisely, we introduce some deﬁnitions Since
we consider solutions which do not depend on the coordmate along b we can
restrict our analysis to the plane L b. We choose the z3-axis along b and
identify the plane L b with R2.

We fix a lattice £ in R? and say a triple (®(z), V(z), X (x)) is L-gauge-
periodic, or, L-equivariant, if and only if it satisfies the equation

(TEME)TITS(V, X, @) = (V. X, @),  Vs€L, (2.17)

for some 5 € C'(R?, SU(2) x U(1)). Here T#*"&° is given by (2.14) and T
is the group of translations, 7*" f(z) = f(x + s). (When L is clear, we omit
it from the definition above.)

We denote by H%, s € N, the Sobolev space of L-equivariant triples
U= (V,X,®) on R? with the norm

1< 3
0l = (g 2 [ 1501E)" (218)
k=0

where €2 is an arbitrary fundamental domain of L, dk is the k-th iterate of

the covariant derivative dg and || - || is the (fibre) norm in the space QFF1" x

su (2)
Qﬁzrll x Ok, see (2.5) (and (2.6)), and with corresponding the inner product.
Note that L% = HY%.

The resulting Sobolev spaces H?. are independent (up to isomorphism)
of the choice of the fundamental domain, Q. All Sobolev embedding theorems
are valid for H7. They can be proven by passing to a vector bundle over the
torus R?/L and then to the local charts and then using standard Sobolev
embedding theorems. By the Sobolev embedding HL: C LY., p < oo, and the
definitions 2.7 and 2.18,

Eq(Q,®) < 0o on Hp (2.19)

(recall that @ C R?) and is independent of a choice of ().

We say a solution U, := (Vi, X, ®,) of the WS system (2.10)—(2.11) is
energetically stable if and only if it is a local minimum of the WS energy Fy,
in the sense that the spectrum of the L?-Hessian of Ex at U, on L% (which
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is real) is non-negative. U, is said to be unstable if it is a saddle point of Ey
(so that the spectrum of its Hessian has a negative part).

For an L-equivariant triple U and a fundamental domain € of L, we

define the energy per fundamental cell by

EX(U) = @EQ(U) (2.20)
where || denotes the area of €. This energy is independent of the choice of
Q.

In what follows, © denotes an arbitrary (but fixed throughout) funda-
mental domain of £, and |L£|, the area of a fundamental cell of £, which is
independent of the choice of the cell Q and is called the covolume of L.

Let My, = \%gg@o, My = f eggoo and My = v/2\po, where 6 is
the Weinberg angle defined by cosf = W

W, Z and Higgs bosons, respectively (this nomenclature will be explained in
the discussion following Eq. (3.10)). Finally, let

These are the masses of the

2 2 M?2
b, = 9% _ W e:=gsinf. (2.21)
2e e

With the above definitions, we will prove the following:

Theorem 2.1. The gauge-translational invariant solution (2.15) is energeti-
cally stable for b < b, and unstable for b > b,.

Theorem 2.2. Let L be a lattice satisfying 0 < 1 — ]\g—fﬂﬂ < 1 and assume
that Mz < My .5 Then there exist § > 0 such that the following holds:
(a) Equations (2.10)~(2.11) have an inhomogeneous solution Uz € H% in the
6-ball By, (Uf:’; 8) in H% around the homogeneous solution (2.15);
(b) U is the unique, up to gauge symmetry transformation, inhomogeneous
solution in the 6-ball By (UE; 9);
(c) U% half) energy per unit area less than vacuum solution (2.15): E*(Ur) <
E~UY).

The solutions described in this theorem can be reinterpreted geomet-
rically as representing sections (®(z)) and connections ((V(z), X (z))) on a
U(2) vector bundle over a torus (cf. [20]). However, a vector bundle over a
torus is topologically equivalent to a direct sum of line bundles. In our case,
this equivalence follows from Eqgs. (3.5)—(3.7).

For the next result, we use the topology on the space of (normalized)
lattices induced by the standard parameterization of lattices defined as follows.
Identifying R? with C via (21, 22) < x1 +ixe and viewing a lattice £ C R? as
a subset of C and using a translation and a rotation, any lattice £ C C can
be reduced to the form £ = rL,, where r > 0, L, :=Z + 7Z and 7 € H :=
{7 € C:Im7 > 0}. Furthermore, any two 7’s produce the same lattice iff they

5This assumption is justified experimentally since Mz = 91.1876 & 0.0021GeV/c? [17] and
My = 125.09 4 0.31 GeV/c? [13]
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are related by an element the modular group SL(2,Z) acting on the Poincaré
half-plane H (see, e.g. [4]). Hence, it suffices to restrict 7 to the fundamental
domain of SL(2,7),

H/SL(?,Z):{TEH:|T|>1, —;<Re7'<;}. (2.22)

Theorem 2.3. For Mz < Mgy, the lattice L, minimizing the average energy,
EX(U), approaches the hexagonal lattice Loy as b — b, in the sense that the
shape parameter T, of the lattice L, approaches Thex = €™/ in C.

Now, we construct explicitly the solution (2.15). We define

Qb = <;’7'3Al; sinf), *%T()AE coS 9> and @ = Dp := (0, ¢0), (2.23)

where Ai’(x) be a (U(1)-) magnetic potential of the constant magnetic field
dA® = w; and 6 is Weinberg’s angle, given by tan = ¢'/g. We have

Lemma 2.4. The pair (QB,<I>0) satisfies (2.10)—(2.11). Moreover, the connec-
tion QP has the constant curvature

Foi

= —%6(7’3 + To)wy, (with the magnetic field TrFp; = —iew;). (2.24)
Proof. (2.24) follows easily from dAb = w;. To check that (QE,QO) satisfies
(2.10)-(2.11), we observe that dn;®o = (gVl + g X" Dy = (gAbsinfrs +
g’Al-7 cos 079) Py = 6A5(7'3+7’0)(I)0. Since (13+70) P = 0, this implies Vo ®¢ = 0.
This gives (2.10) and reduces (2.11) to d(’SEFQg = 0, which follows easily from
(2.24). O

Our approach is based on a careful examination of the linearization of the
WS equations on the homogeneous vacuum. The spectrum of the linearized
problem determines the domains of the linear, or energetic, stability and the
transition threshold. In the instability domain, we apply an equivariant bifur-
cation theory. This gives Theorem 2.2(a) and (b). For Theorems 2.2(c) and 2.3,
we carefully study the asymptotic behaviour of the energy functions for small
values of the bifurcation parameter.

3. Gauge Fixing and W and Z Bosons

In this section, we choose a particular gauge and pass from the fields (one-
forms) V' and X to more suitable gauge fields. We eliminate a part of the
gauge freedom by assuming that the Higgs field ® is of the form

® = (0,9), (3.1)
with ¢ real. (This can be done using only the SU(2) part of the gauge group.)
Then

7o® #0, a=0,1,2,3, (3.2)
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where, recall, 7,, a = 1,2, 3, are the Pauli matrices generating the Lie algebra
su(2), and 79 = 1. However, there is one linear combination of 7,’s (unique up
to a scalar multiple) which annihilates ®:

(73 +7'0)(I) =0. (3.3)

Thus, for the gauge ® = (0, ¢) the symmetries generated by 71, 72,73 — 70 are
broken and the U(1) symmetry generated by 73 + 79 remains unbroken. The
unbroken gauge symmetry is given by transformations (2.14) with

hy(z) = e~ 2707 € SU(2), hy(z) := e 27 @™ € U(1), (3.4)
where v € C(R3, R).
Continuing in the gauge ® = (0,¢) and writing V = —£7,V% and
X = —270X°, where X% and V?, a = 1,2, 3, are real fields (since V' takes values
in su(2) and therefore V* = —V'), we pass to the new fields corresponding to
the broken and unbroken generators, 73 — 79 and 73 + 7¢, respectively:
Z =V3cos — X%sinf and A=V3sinf+ X°cos¥, (3.5)

where recall, 0 is Weinberg’s angle, defined by tanf = ¢’/g. Note that Z and
A are real fields. Moreover, it is convenient to pass from the remaining two
components, V1, V2, of V to a single complex field

1
W=—(V"'-iV?. 3.6
\@( ) (3.6)
The gauge invariance of the original field equations with the unbroken
gauge symmetry given by transformations (2.14) with (3.4) leads to the in-
variance under following gauge transformations:

Tgauge 4 1
T’% & I(I/V,A,Z,QO)H(GPYVV,A—;d’}/,Z,(p), (37)

for v € CY(R3,R), where e"W = Y e"W;da® for W = Y Wida', e is the
electron charge. Here, we replaced @ := (0, ¢) by .

The WS energy in terms of W, Z, A and ¢ fields in 3D is given in (D.1),
“Appendix D”. The WS equations in terms of W, Z, A and ¢ in 3D can be
found by taking variational derivatives of this energy w.r.t different fields.

In terms of W, A, Z and ¢ fields, the vacua (2.15) of the Weinberg—Salam
model become (up to a gauge symmetry):

(OaAb(x)a():@O)v (38)
where recall, A’(x) is a magnetic potential for the constant magnetic field
of strength b in the z3-direction, dA®(x) = bdx; A dxy, and g is a positive
constant from (2.7). We choose the gauge so that A’(x) is of the form

b
Ab(z) = 5(—xgda:1 + x1dxs). (3.9)

6Note that the lower indices 4,7, k, as in A = A;dx’, refer to vectorial components and
run through 1,2, while the upper indices a,b,c, as in V. = —57,V%, refer to U(2)-algebra
components.
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We will show that for a large magnetic field b, these homogeneous vacua
become unstable and new, inhomogeneous vacua emerge from them. This is
a bifurcation problem from the branch of gauge-translationally invariant (ho-
mogeneous) solutions, (3.8).

Since we consider the WS system with the fields independent of the third
dimension 2?, i.e. in R?, we can choose the gauge with V3 = X3 = 0 (and
hence W5 = A3 = Z3 = 0).

Also, we will work in a fixed coordinate system, {z‘}?_,, and write the
fields as W = W;da?, Z = Z;dx' and A = A;dz’. For ease of comparing our
arguments with earlier results, and given that we use the standard Euclidean
metric in R?, we identify (complex) one-forms W, Z and A with the (complex)
vector fields (W1, Ws), (Z1, Z) and (A, A2). With this, we show in “Appen-
dix D.2” that in this case, WS energy functional (2.7) can be written as

1 1
EqW, A, Z, @) :/ U curlgys W2+ §| curl Z|? + §| curl AJ?
Q

1 1 @
+ 5 W 4 Srg* Q% 217 4 W X W2

_ 1
+igleurl VW x W+ [Vpl> + A" — 93)°],  (3.10)

where k = %, curlUW = (VU)1W2 — (VU)2W1, (VU)Z = 61 — iU,’,
0; = 0y (for a u(1)—valued vector field U), £ x ) := &1ma — Eamy and curl V3 1=
01V — 0, V3. Tt follows from (3.5) that V3 = Z cos + Asin 6.

Expanding (3.10) in ¢ around g, we see that the W, Z and ¢ (Higgs)
fields have the masses My, := %gg@o, My = mggoo and My = V2\pg,
respectively.

Using the relation & x n = J¢& - n, where - denotes the Euclidean scalar
product in R? and J is the symplectic matrix,

J = <(1) _01) : (3.11)

we find the Euler-Lagrange equations for (3.10), which give the WS system
(2.10)—(2.11) in 2D in terms of the fields W, A, Z and ¢

2
[curliys curlgys +%@2 —ig(curl V3)J + g2(W x W)J]W =0, (3.12)

curl” curl A + 2e Im[(curlyys W)JW — curl* (W1 Ws)] = 0, (3.13)
[curl® curl+r¢%] Z + 2g cos 6 Im[(curlyys W)JW — curl* (W Wa)] = 0, (3.14)
1

2
g
[—A+Mg? = )+ LW+ SnizPle =0, (3.15)

where, recall, kK = %, V3 = Zcosf+ Asinf and A is the standard Lapla-
cian. (For a derivation of (3.12)—(3.15) from (3.10), see “Appendix D.2” and
also [26,43].) Of course, (3.12)—(3.15) can also be derived directly from WS
system (2.10)—(2.11).
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In terms of the (W, A, Z, ) fields, the lattice gauge—periodicity (2.17)
is expressed as:

(T&e) " TS (W, A, Z, ¢) = (W, A, Z, ¢), (3.16)

for all s € £, where v, € CY(R?% R) for all s € L, T§auge given in (3.7)
and TS is the group of translations, T f(z) = f(z + s). We say that
(W, A, Z, ) satisfying (3.16) is an L-equivariant state. By evaluating the effect
of translation by s+t in two different ways, we see that the family of functions
~ has the co-cycle property”

Ysrt(x) —vs(z +t) — v (x) € 27Z, Vs,t € L. (3.17)

Since T is an Abelian group, the co-cycle condition (3.17) implies that,
for any basis {j1, j2} in £, the quantity
1

c(vs) = 5 (v (@ + 1) + 731 (2) = 75 (@ + J2) =752 (2)) (3.18)

is independent of & and of the choice of the basis {j1, j2}, and is an integer. This

topological invariant is equal to the degree of the corresponding line bundle.
Using Stokes’ theorem, one can show, for any A satisfying (3.16)—(3.18),

that the magnetic flux through any fundamental domain € of the lattice £ is

quantized:
%/QdA =n, (3.19)

where e is defined after (3.7) and n = ¢(y;s) € Z defined in (3.18). The left-hand
side of (3.19) is called the Chern number of the line bundle corresponding to
vs- (We note that n is independent of the choice of §2.)

The vacuum state (3.8) is L-equivariant if and only if the magnetic field

b is given by the relation
s

el
where, by definition, |£| = || for any fundamental cell Q. In particular, b is
quantized. For such b, the vector field £ A satisfies (3.19).

Furthermore, due to the reflection symmetry of the problem, we may
assume that b > 0. Clearly, we have:

b (3.20)

Lemma 3.1. Equations (2.10)—~(2.11) for L-equivariant fields (2.17) in the gauge
® = (0,¢) are equivalent to Equations (3.12)—(3.15) for L-equivariant fields
(3.16), with the equivalence realized by the transformation (3.5)—(3.6).

Finally, we use the invariance of (3.12)—(3.15) under the gauge trans-
formation (3.7) to choose a convenient gauge for the fields W (z) and A(x).
We say that the fields (W, A, Z, ¢) and (W', A', Z’, ) are gauge-equivalent if
there is v € C*(R?,R) such that

(le A/a Zl; Sﬁl) - T’%auge(vv’ A7 Za QD)

7A function s : £LxR? — G satisfying the co-cycle property (3.17) is called the automorphy
exponent and e?7s, the automorphy factor.
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Clearly, if (W, A, Z, ) and (W', A’, Z', ¢') are gauge-equivalent, then (W, A, Z,
©) solves (3.12)—(3.15) if and only if (W', A’ Z’, ¢') solves (3.12)—(3.15). The
following proposition was first used in [31] and proven in [45] (an alternate
proof is given in “Appendix A” of [46]):

Proposition 3.2. Let (W' A’ Z',©") be an L-equivariant state and let b be
given by (3.20). Then, there is a L-equivariant state (W, A, Z, ), gauge-
equivalent to (W', A, Z', '), which satisfies (3.16), with xs(z) = L sAx+k,,
i.e. such that, Vs € L,

W(x+s) = ei(E‘Tb“;/\;’H'ks)VV(ac)7 (3.21)
Az + s) :A(I)Jrng, (3.22)
div A =0, (3.23)
Za+5)=2@), olz+s) = pla). (3.24)

Here ks satisfies the condition k¢ — ks — ky — %b sAt € 2n, for all s,t € L,
the matriz J is given in (3.11).

Note that with the gauge (3.23), the homogeneous vacua (3.8) satisfy
(3.21)~(3.24).

Our goal is to prove the instability of the vacuum state (3.8) and the
existence of £L—equivariant (in the sense of (3.16)) solutions to transformed WS
system (3.12)—(3.15) having the properties described in Theorems 2.2 and 2.3.

4. Rescaling

In this section, we rescale transformed WS system (3.12)—(3.15) to keep the
lattice size fixed. Specifically, we define the rescaled fields (w, a, z, ¢) to be

(w(x),a(z), z(x), p(x)) = (rW(rx),rA(rz),rZ(rx), re(re)), (4.1)

refE =2 (12)

where in the second equality (4.2), we used (3.20). Clearly, (W (x), A(x), Z(x), p(x))

is L-equivariant if and only if (w(x),a(z), z(x)
¢(z)) is L'-equivariant, where

L= 1,/.’,.
r

Now, the rescaled lattice £ is independent of b and the size of a fundamental
domain, ', of £’ is fixed as || = 2.

Plugging the rescaled fields into (3.12)—(3.15) gives the rescaled Weinberg—
Salem equations:

2
[curl’ curl, —|—%¢2 —i(curlv)J + ¢*(W x w)Jjw = 0, (4.3)

curl” curl a + 2e Im[(curl, w)Jw — curl* (wyws)] = 0, (4.4)
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[curl® curl +k¢?)2z + 2g cos O Tm[(curl, w) Jw — curl* (W ws)] = 0, (4.5)
2
1
[— A+ @ =€)+ Tlul + 5rl=Pl6 =0, (4.6)

where £ := ryg (with r given in (4.2)), v := g(asinf + zcosf) and, recall,
curlyw = Viwy — Vows, V; := 0; — ig;, 0; = 0, (for a u(l)—valued vector-
field ig) and, recall, W X w := Wiwe — Wow;. We define the rescaled energy
by:

€Qf(w,a,z,¢;7“) = TQEQ(VV? Aa Z? 410) (47)

with (W, A, Z, @) related to (w,a,z,¢) by (4.1) and Eq(W, A, Z, ) given in
(3.10). Explicitly, we have

1 1
Ear(w,a, z, ;1) = / (| curl, w* + §| curl al® + §| curl z|?
Q/
1 1 2
+ 5920wl + 5re%zl? + L x wf?
1
+i(curlv)w x w + |Vo|? + §>\(¢2 - &)%), (4.8)

We note that after rescaling, the average magnetic flux per fundamental
domain becomes n/e and the vacuum solution (3.8),

1
m™" = (O, ea”,O,f) , (4.9)

where a"(x) = A" (z) = §Jx,. Furthermore, (3.16) and Proposition 3.2 imply
that (w,a, z, @) satisfy

w(z+s) = ei(%sx‘”“s)w(x) for all s € L', (4.10)
a(z +s) =a(z) + %Js for all s € £, (4.11)
diva =0, (4.12)
z(x+s)=z(x), élx+s)=¢(z)forall se Ll (4.13)

where ¢ satisfies the condition sy —cs — ¢y — 55 x t € 27Z, for all s,t € L.

Finally, the Sobolev spaces here, denoted again by H?%,, can be obtained
by rescaling the Sobolev spaces defined above or defined directly, again as
above, see (2.18) and the text around it. Similarly to (2.19), by a Sobolev
embedding theorem, the rescaled energy is finite,

Eo/(w,a,z,¢;7) < oo on Hz (4.14)

and is independent of a choice of §'.

5. The Linearized Problem

In this section, we prove Theorem 2.1, describing the stability properties of
the vacuum (3.8). Equivalently, we will investigate the energetic stability of
the rescaled vacuum solution (4.9) of the rescaled WS equations (4.3)—(4.6).
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Let m := (w,a, z,¢) and denote by G(b,m) = G(m) the map G : HZ, —
C7 given by the left-hand side of (4.3)—(4.6), written explicitly as

G(b,m) = Gm) = (Ga(m), .. Ga(m)), (5.1)
Gi(m) := [curlz curl, —|—%¢2 —i(curlv)J + ¢*(w x w)J} w, (5.2)
Go(m) := curl” curl a + 2¢ Im[(curl, w)Jw — curl® (wiws)], (5.3)

G3(m) := [curl* curl +k¢?]z + 2g cos O Im|[(curl, w)Jw — curl* (Wyws)], (5.4)
2
Gy(m) := [—A + M@ — €3 + %|w|2 + ;/ﬁ|z|2:| o, (5.5)

where, recall, J is the symplectic matrix given in (3.11), & := r¢g (with r
given in (4.2)), v := g(asinf 4+ zcosf), A is the standard Laplacian and the
parameter b enters through periodicity conditions (4.10)—(4.13). Now, the WS
system can be written as:

G(m) =0. (5.6)

Recall the definition of stability given above Eq. (2.20). To apply it to the
rescaled WS Eqs. (4.3)-(4.6), we observe that the map G is the L2-gradient,
grad;» Eqr, of the energy Egr, see (4.8), considered as a functional of u =
(w,a,z,¢). Namely, (G(m),&)r2 = dEq(m)E, where 6Eq(m) is the Gateau
derivative

d
0 (w)€ = ——Ear(u+78)|r=0, (5.7)
of Eq/ at m, defined on the space of variations ) tangent to the space of L2 .

functions of the form (w,a, z, ¢) satisfying the gauge—periodicity conditions
(4.10)—(4.13):

V=12 x L3 x L} x L~ (5.8)

Here L2, L3 and L? are given by
L? = {w €L} (R*C?) :w(x+s) = ei(%sxmﬂs)w(m) Vs € E'} , (5.9
Ly :={a €L} (R R*) :a(z+s)=a(z) Vs L, diva=0}, (5.10)
L?:={y € L}, (R*,R) : (z + 5) = ¢(x) Vs € L'} (5.11)

(see (4.10)—(4.12)).
Since G(m) = grad; 2 Eq/(m), the L2-Hessian for &g and m is the for-
mally symmetric operator

&G (m) := §grad 2 Egr (m) = 6G(m),
Denote the L2-Hessian at the vacuum solution m™" (see (4.9)) by
Ly, =6G(m™").

As seen from its explicit form given below, the operator L, ,, acting on the
space ), is self-adjoint, and therefore, its spectrum is real.



A. Gardner and I. M. Sigal Ann. Henri Poincaré

Thus, applied to the rescaled WS equations (4.3)—(4.6), the definition of
stability can be rephrased as:

the vacuum solution m™" is energetically stable (respectively, unstable) if
and only if inf spec(Ly, ) > 0 (respectively, inf spec(Ly, ) < 0).

We consider the operator L, , on the space ), with the domain

X = H2 x HE x HE x H?, (5.12)

where ‘HS, H§ and H® are the respective Sobolev spaces for the L2-spaces
(5.9)—(5.11), with inner products given (for s € Z>¢) by

/ L 1 2 77 Yo
0.0 = 1 0 Y [ W (Vi) (5.13)

i=1|y|<s

2
1
(a,a’)p = ] Z Z /Q/ a;0"a, (5.14)

i=1|y|<s

(W, 9 )3 = ﬁ > o VP, (5.15)

[v[<s

where w# = (w#, 11)2#)7 a¥ = (afﬁ, az#), ' is an arbitrary fundamental domain

of the lattice £’ and v is a multi-index. The L’-equivariance of the above
functions implies that these inner products do not depend on the choice of
fundamental domain €'.

We compute the linear operator L, , explicitly. In what follows we use
the notation @;A; for diagonal operator-matrices with the operators A; on
the diagonal.

Passing from the parameter & = ryg, or r, to the parameter y := g?£2/2

and using that V‘a:a"/e b0 = éa”g sinf = a™, we find
Ln,p, = @?lej, (516)
Hi(p) := curl}, curlyn +p — nid, (5.17)
Hy(p) := curl” curl, (5.18)
H3(p) := curl” curl + 29’ (5.19)
4\
Ha(p) == —A + g—;‘, (5.20)

where, recall, curl, w = (Vy)1wz — (Vg)ow1, (V)i == 0; —ig;, 0; = 0. (Note
that the matrix iJ is self-adjoint.)

The gauge invariance of Eq. (5.6) and the partial symmetry breaking of
vacuum solution (4.9) imply that L,, ,—, has the gauge zero mode:

Ln,u:nrf = 0, Ff = (0, Vf, 0, 0) (521)

For a null vector I' ¢ defined in (5.21) to be in X, f must satisfy div(V f) =
—Af = 0. This implies that f is a linear function, f(z) = c¢-z + d for some
c€R? and d € R, and so

FreX=T;=(0,c0,0). (5.22)
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In this section, we shall prove the following result implying Theorem 2.1:

Theorem 5.1. The operator L, , on the space X has purely discrete spectrum.
For v # n, L, has the multiplicity 2 eigenvalue 0 with the eigenfuctions
(0,e:,0,0), i =1,2,e13 = (1,0),e2 = (0,1) (see (5.22)).

Furthermore, the smallest non-zero eigenvalue given by p — n, having
multiplicity n. For u = n, the eigenvalue 0 has the multiplicity n + 2.

Theorem 5.1 follows from Propositions 5.2 and 5.3 given below. g

Proposition 5.2. The operators Ho(u), Hs(p) and Hy(p) have purely discrete
spectra. Furthermore, Hs(u) and Hy(p) are strictly positive and Ha(u) is non-
negative and has the null space {(0,¢,0,0) : ¢ € R?} of dimension 2.

Proof. The strict positivity of Hs(u) and Hy(p) and the non-negativity of
Hy(p) are obvious. The discreteness of the spectra and the form of the null
space of Ho(u) follow from the discreteness of the spectrum of the Laplacian

on compact domains and the identity curl® curlv = —Av when div(v) = 0. To
compute the null space of Ha (1), we observe that the solutions of the equations
Av =0 and div(v) = 0 are constant vectors in R2. O

Let Vq =V — Zq = ((Vq)l, (vq)g), (Vq)j = c'?j - i(b‘, andﬁAq = Vﬁ =
—V:V,. We also introduce the complexified covariant derivative 0, := (V)1 +
i(Vg)2.

We have

Proposition 5.3. (i) Hy(u) is a self-adjoint operator on H2 and its spectrum
s given by
o(Hi (1)) = {(m — Dn+ i m € Zso} U{u}, (5.23)
where n := eb|L|/27.
(i) The eigenspace of the eigenvalue —n + p is n-dimensional and is
spanned by functions of the form®

x = (8,i3), curlgn x = 10423 = 0, (5.24)
and the eigenspace of the eigenvalue u is of the form
Null (Hy (1) — 1) = {Van f : f € H3}. (5.25)

In the proof of this proposition, we use the following standard result
whose proof, for reader’s convenience, is given in “Appendix G”:

Proposition 5.4. The operator —Agn is self-adjoint on its natural domain and
its spectrum is given by:

o(=Agn)={(m+1)n:meZs}, (5.26)
with each eigenvalue is of the multiplicity n. Moreover,
Null(—=Agn —n) = Null 9gn. (5.27)

83 can be expressed in terms of the Jacobi theta function, see Proposition 5.4 and “Appen-
dix G”.
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In more detail, with z = (2 +i2?)/\/ 2% and T coming from L' = Z + 7Z,
we have
Null(—=Agn — n) = e 72" @ +iz)y (5.28)
where V,, is spanned by functions of the form
0(z, 1) := Z Cm€TME ] oy = €7 T (5.29)
m=—0o0

Remark 5.5. Functions of the form (5.29) are determined entirely by the values
of cg,...,c,_1 and therefore form an n-dimensional vector space..

Proof of Proposition 5.3. First, we will show that H2 = Y & Z (the Hodge
decomposition), where

YV i={w e H? : diven w = 0}, (5.30)
Z:={w € H2 :w= Vg f for some f € H>}, (5.31)
with dives w := (Van)iwy + (Van)owy = —Vi.. We write any w € H2 as

w = wy + Vgn f, where f solves the equation Agnf = divge w and wy is
defined by this relation. By Proposition 5.4, 0 is not in the spectrum of A,
and therefore the equation A, f = div,» w has the unique solution f € H3.
Then, since Agn 1= divgn Vgn, we have dives wo = 0. This proves H2 = Y& Z.

Now, recall that the operator H;(u) acts on complex vectors w = (wq, ws).
The definition H;(u) := curl’, curlyn —niJ + p and the relations curl}, =
—JVn and

Curlan van = [(van)17 (van)g] = —n
yield that (Hj () — p)Ven f = 0, which proves that the p-eigenspace of Hy ()
is of the form (5.25) giving the second part of (ii).

By the above the subspace ) is invariant under H;(u). To compute the
spectrum of the operator Hy(u) on the subspace ), we use the definitions of
curly» and curl},. and recall the relation [(Vgn)1, (Vgn)2] = —in to compute

curl’, curlyn = —Agn — niJ + Vg divgn .
By above, we have Hq(pu)wo = (—Agn — 2niJ — p)wy, for any wg € Y.

(We check using divgn (—Agn — 2niJ)wy = (—Agn) divgn wg = 0, that
Hi(p) sends Y to Y and hence, ) is invariant under H;(u).) Thus, we conclude
that

Hiy (1) (wo @ 0) = (hy — p)wgy @ 0, (5.32)
hi = —Agn — 2nilJ. (5.33)

Identifying one-forms with vector fields, we compute

U*(iJ)U = (_01 ‘D , U= % (_11 1) , (5.34)

_Aan + 2n O
0 Age—2n )

which gives

U byl = ( (5.35)
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By Proposition 5.4, we know that
o(=Agn)={(m+1)n:méeZsp} (5.36)

and so the spectrum of Hi(u) on Y is given by the first set on the r.h.s. of
(5.23). Hence, by H2 =Y & Z, (5.23) follows, giving (i).

Furthermore, by (5.35) and (5.36), any eigenvector x of h; corresponding
to the eigenvalue —n must be of the form

X =U(0.9) = —=(8.i8), (5.37)
where (3 satisfies
—Agn S = nw. (5.38)

This relation, together with the equation Null(=Ag» —n) = Null Oan (see
(5.27)), implies Oqn B = 0. Since curl,n x = i04n 3, this gives
curlyn Y = i0gnw = 0. (5.39)

Furthermore, by Proposition 5.4, the space of such functions is n-dimensional.
Thus (after rescaling w by a factor of v/2) x is of the form (5.24). This gives
also the first part of (ii) completing the proof of the proposition. O

We see that the operator Hy(u) is non-negative for the magnetic fields
satisfying b < b, = g%¢%/2e = MEV /e and acquires a negative eigenvalue
w—mn = (bi/b—1)n of multiplicity n as the magnetic field increases to b > b,.
Theorem 2.1 follows by undoing the rescaling (4.1)—(4.2).

6. Setup of the Bifurcation Problem

We substitute a = %a” + «a (with div(a) = 0), ¢ = £+, v = a™ + 7 and
& = /2u/g into (4.3)—(4.6) and relabel the unknowns w, «, z, ¥ as uy, us, us, uyg
to obtain the system

Hiu; = —Ji(p,u), i =1,...,4, (6.1)
where u = (u1, us, us, ug) = (w, e, z,v), the operators H; on the left-hand side
are defined in (5.17) - (5.20), and
Ji(p,u) == Mw + %wa + gV 2w — i(curl 9)Jw + ¢*(@ x w)Jw, (6.2)
Jo(p, u) := 2eIm|(curl, w)Jw — curl™ (wyws)], (6.3)

2V2p
g

Yz + Kz,
(6.4)

2
i)=Y x o D (Y2 ) 4 Gkl (Y2 4w,
! i ’ : ! (6.5)

J3(p,u) == 2g cos @ Im[(curl, w)Jw — curl*(wWyws)] + &
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with 7 := g(asinf+zcos ), Exn = E1ma—E&am, recall, curly w = Viws—Vawy,
V, := 0; — ig; and, recalling that w : R? — C2,

M := curl} curl, — curl}. curl;n = ( Mzs _M21> ,

=My My
with Mij = Zﬂl(van)] + iﬂj(van)i + z@lﬂj + ﬁiyj.

Note that system (6.1) can be also written as G(m™" + u)|¢_ 2/ = 0,
where G is defined in (5.1) and m™" := (0, 2a",0,€).

Applying div to the second equation in (6.1), we find that a solution
(1, u) should satisfy div Jo(u, ) = 0. To prove that a solution (u,u) satisfies
this constraint, we consider the following auxiliary problem

(6.6)

F(p,u) =0, where F(u,u):= Ly ,u+ P'J(u,u), (6.7)
where P/ = 1 ® Py ® 1 ® 1, with Py the orthogonal projection onto the
divergence-free vector fields (P, = icurl* curl), and, recall, L, , = &H;
and J(u,u) given in (5.16) and

I, u) o= (Ji(p,w), - - Ja(p, w)). (6.8)

We consider F'(u,u) as a map from the space Rsg x X, where X := H2 @
H2 @& HE DH?, to the space Y := L2 @ LE® LE D L?, and let F = (Fy,..., Fy),
where
F;;(,UJ,’U,) :Hiu—|—5i,2P0Ji(,u,u), 1= 1,...,4. (69)
In what follows, we denote the partial (real) Gateaux derivatives with respect
to # by dx.
Proposition 6.1. Assume (i, u) is a solution of the system (6.7) satisfying the
gauge—periodicity conditions (4.10)—(4.13). Then div J(u,u) = 0 and there-
fore (u,u) solves the original system (6.1).
Proof. We follow [46]. Assume x € H{ _ and is L—periodic (we say, x € Héer).
The gauge invariance implies that
Eq (e"*w,a + sV, z,¢) = Ba (w,a, 2, ¢), (6.10)
where Eq/(w, a, z, ¢) is given in (4.8). Differentiating this equation with respect
to s at s = 0 gives 0, Eq/(w,a, z,9)(ixw) + 6o Fa (w, a, z,¢)(Vx) = 0. Now,
we use the fact that the partial Gateaux derivative with respect to w vanishes,
O0wEq (w,a, z,¢) = 0, and that curl Vx = 0, and integrate by parts, to obtain
(J(p,u), Vx) = 0. (6.11)

(Due to conditions (4.10)—(4.13) and the L—periodicity of x, there are no
boundary terms.) Since the last equation holds for any x € H}lcr, we conclude
that div J(p, u) = 0. O
In Sects. 7-8, we solve Eq. (6.7), subject to conditions (4.10)—(4.13).
In conclusion of this section, we investigate properties of the map F'(u, u).
For f = (f1, f2, f3, f4) and § € R, define the global transformation

Tsf = (€ f1, fa, f3, [4). (6.12)
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Proposition 6.2. The map F(u,u) defined in (6.7) has the following properties:

(i) F:Rsg x X — Y is continuously Gateau differentiable of all orders;
(ii) F(u,0) =0 for all u € Rso;
(i11) 6,F(p,0) = Ly, for all p € Ry
(i) F(u,Tsu) = TsF(u,u) for all § € R;
(v) (u, F(p,u))y € R (respectively (w, Fi(p,u))rz € R) for all u € X (re-
spectively w € H2 ).

Proof. (i) follows because F is a polynomial in the components of u and their
first- and second-order (covariant) derivatives. (i), (ii7) and (iv) follow from
an easy calculation (in fact, u and L,, , were defined so that (4¢) and (4i¢) hold).
For (v), it suffices to show that (w, i (p,u))r2 € R. To simplify notation, we

return to the coordinates (w,a, z,¢) = (w, < Lon +a, 2, @ + ). Then

(w, Fa(p, )1 = lm/ curlywf? + o [ Lo
\Q’| o i(curl v)(w x w) + \Q’|/ 2w x wl?. (6.13)

The first, second and fourth terms are clearly real, while the third term is real
because v is real and w X w is imaginary. O

7. Reduction to a Finite-Dimensional Problem

In this section, we shall reduce solving Eq. (6.7), i.e. F(u,u) = 0, with v =
(u1,ug,usz,ug) = (w,a,2,9) and F : Ryg X X — Y defined in (6.7)-(6.8)),
to a finite-dimensional problem. To this end, we use the Lyapunov—Schmidt
reduction.

Recall that L, , is defined in (5.16). Let P be the orthogonal projection
onto K := Null(L,, ;,—n), which can be written explicitly as

P=PoPo0d0, (7.1)

Pow = ——— b () 2w (7.2)
271

Pryo = (), (7.3)

where Hi(n) is defined in (5.17), 7, is any simple closed curve in C contain-
ing the eigenvalue 0 and no other eigenvalues of Hi(n) (see Proposition 5.3),
and () is the mean value of a in &/, (a) := IQil’\ Jor @ P1 is a projection
onto Null(H;(n)) (spanned by vectors of the form (5.24)). Since Hy(n) is self-
adjoint, Py is an orthogonal projection (relative to the inner product of L?).
By Theorem 5.1, K := Null(L,, ;=) is (n + 1)-dimensional.

Let P = 1— P be the projection onto the orthogonal complement of K.
Applying P and P~ to the equation F(u,u) = 0 (see (6.7)), we split it into
two equations for two unknowns as

PF(u,v+u’) =0, (7.4)
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PLF(p,v+u') =0, (7.5)

where v := Pu, u' := Ptu.

Our next goal is to solve (7.5) for «’ in terms of g and v. For n =1, K
is two-dimensional and we write v = (v1,v2,v3,v4) = (v1,v2,0,0) € K. Let
Xt =Ptx=XocKand Y+ :=PtY=YoK, and let 9; = 0,,.

Proposition 7.1. There is a neighbourhood U C Rsg x K of (n,0) such that
for every (u,v) € U, Eq. (7.5) for v’ has a unique solution u' = u'(u,v) =
(uh, uh, ul,uly). Furthermore, this solution has the following properties:

U i Rsog x K — Xt is continuously differentiable of all orders; (
[(Van) T ll2z = O(0]|%), (
107wz = O(|v]1%), (
100, (Van )T ui (10" [l S [10° [l (
190, 07, (10 19 S N0, (7.
10’ (1, )| S vl (7.

where i =1,..4, m=0,1, j =1,2, k=2,3,4, v = (v1,v2,03,04), V' = v
and Hy = HE, H3, H? for k =2,3,4.

Vi =0

Proof. Define F : Ry x K x X+ — Y+ by
F(p,v,u) := PLF(u, v+ ). (7.12)

By Proposition 6.2 (i) and (ii), F'* is continuously differentiable of all or-
ders as a map between Banach spaces and F*(y,0,0) = 0 for all u € Ryg.
Furthermore,

S FH(11,0,0) = PYL,, , P*|x1, (7.13)

which is invertible for u = n because P+ is the projection onto the orthogonal
complement of K = Null(L,, ,—,). By the Implicit Function Theorem (see, e.g.
[16]), there exists a function «’(p,v) with continuous derivatives of all orders
such that for (u,v) in a sufficiently small neighbourhood U C Ry x K of
(n,0), (1, v,u’) solves (7.5) if and only if v’ = u/(p,v). This proves the first
statement and property (7.6).

We define the operator

Ly, =P Ly Prlys: X5 — Yh (7.14)

Then by (6.7) and (7.13), we can write equation (7.5) as L;; ,u’=—P+P"J (1, u).
By Theorem 5.1 and the relation K := Null(L,, ,—n) = Null(L, , — p + n),
for p in a neighbourhood of n, the operator Lrlw has a uniformly bounded
inverse (L;; )" : Y= — X+, Hence, equation L, ,u’ = —P+P'J(p,u), with
(u,v) € U (replacing U with a smaller neighbourhood if necessary), is equiva-
lent to

u =—(Ly,) PP (1, u); (7.15)
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hence
[l S 1T (ks ), (7.16)

uniformly in p. Recall that X = HZ@HZeHE®GH? and Y = L2 LE® L3S L2
J(u, u) is a polynomial in the components of u and their first-order (covariant)
derivatives consisting of terms of degree at least 2, so the left-hand side of
(7.16) can be bounded above by a sum of products of one £?-norm and at
least one £>-norm of these terms. H! is trivially continuously embedded in
L2, and by the Sobolev embedding theorem, H' is continuously embedded in
L. Therefore,

17 (s w)lly < Mull%- (7.17)

Recalling that u = v + «/, this proves (7.7) and (7.8) when m = 0. The
other case is proven similarly.

For v = (v1,...,v4), we let v; = v[y,—0, i = 1,...,4. By the Taylor
theorem for Banach spaces (see, e.g. [16]), we have
ul(.ua ”U) = u,(ﬂa ”L);) + 61)71 U/(p,, UZ)Ui + Ry (,LL, UZ) (vi)v (718)
1
Ro(p,v3)(vy) := / (1 —t)62 ' (p, v5 + tv;) (v, v;)dt. (7.19)
0

Let (pu,v) € U with ||v;]| = ||lvs]| = 1, and let € > 0. Then
(|00, 0" (1, €v)evi|| 0 = [[u' (1, €v) — u' (1, €v;) — Ra(p, €v;)(evs) || x
<l (s, €v) || + [ (s €v7) || 2

+Eoil* sup (1—)]|67, 0/ (1, ev; + tev;) |3 g
0<t<1

Sé (7.20)
with the norm taken in the appropriate space for v;. Taking the supremum
over all v; with ||v;|| =1 gives

160, (ks evp)l 2 S € lvglla =1, (7.21)
proving (7.9)—(7.10) for m = 0. The other cases are proven in exactly the same
way.

Again by Taylor’s theorem,

Bt (1,0) = By (1,0) + Byl (1, 0)0 + Ba(,0)(0),  (7.22)
1
Ra(p,0)(v) := /0 (1 — )06 (1, tv) (v, v)dt. (7.23)

By Egs. (7.8) and (7.9)—(7.10) with m = 0, we have «'(u,0) = 0 and d,u'(, 0)
=0, so

10,0 (1, v) | 2 = | Ra (1, 0) (v)]| 2 (7.24)
<vll3 sup (1= 8)[10u000 (11, t0) |3+ - 0 2 (7.25)

0<t<1
< llvll%, (7.26)

proving (7.11). O
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We plug the solution v = (i, v) into Eq. (7.4) to get the bifurcation
equation

v(p,v) := PF (v + o' (@, v)) = 0. (7.27)

Corollary 7.2. In a neighbourhood of (n,0) in Rsg x X, the pair (u,u) solves
(6.7) if and only if (u,v) solves the finite-dimensional Eq. (7.27). Moreover, a
solution of (6.7) can be constructed from a solution (p,v) of (7.27) by setting
u=wv+u'(u,v), where u'(u,v) is given by Proposition 7.1.

Since F : Ryg x X — Y and v’ : Ryg x K — Y+ have been shown to be
continuously differentiable of all orders, we conclude:

Corollary 7.3. v : R x K — K is continuously Gateau differentiable of all
orders.

Furthermore, v(u,v) inherits the following symmetry of F'(u,w), which
we will use to find a solution of (7.27):

Lemma 7.4. Let Ts be given by (6.12). For every § € R and (u,v) in a neigh-
bourhood of (n,0), we have

' (p, Tsv) = Tsu' (, v), (7.28)

v, Tsv) = Tsy(p, v). (7.29)
Proof. For Eq. (7.28), we note that by Proposition 6.2 (iv)
PYF(p, Tsv + Tsu/ (p,v)) = PET5F(p, v+ (1, v))

= Ts P F(p, v+ (p,v)) = 0. (7.30)

(Here we used PLTs5 = T5 P+, which follows because 75 = e ®1® 1@ 1 and
P+ =1~ P where P is defined in (7.1).) Since u' = u'(p, T5v) is the unique
solution to P+ F(u, Tsv 4+ u') = 0 for (u,v) in a neighbourhood U C R x K of
(n,0), we conlcude that u'(u, Tsv) = Tsu'(u, v).

For Eq. (7.29), we note that by (7.28) and Proposition 6.2 (iv),

v(p, Tsv) = PF(p, Tsv 4 u' (1, Tsv)) = PF(p, Ts(v + v/ (1, v)))
= T5PF(p,v +u' (1, ) = Tsy(p,v)

(where again we used PT5 = T5P). O

8. The Bifurcation Result When n = 1

Theorem 8.1. Assume that n = 1 and |1 — b./b| < 1, b, := M3, /e. Then
there exists € > 0 and a branch (ps,us) := (s, ws, g, 25, Vs ), with s € [0,/€),
of non-trivial solutions of Eq. (6.1), unique modulo a gauge symmetry in a
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sufficiently small neighbourhood of the rescaled vacuum solution (4.9) in Rs g x
X, such that

ws = sx + sg1(s?),

Qg = 92(52)3

25 = g3(s?), (8.1)

aas = ga(s?),

fs = n+ gs(s?),
where x solves the eigenvalue problem Hi(n)x = 0 (it is defined in (5.24), see
Proposition 5.3), p = g*€2/2 = ¢°r*p3/2, g1 : [0,€) — H2 and is orthogonal
to Null(Hy(n)), g2 : [0,€) — H2, g3 : [0,€) — H3, ga : [0,€) — H?, g5 : [0,¢) —
R0, and g; for j = 1,---,5 are functions, continuously differentiable of all
orders in s, such that g;(0) = 0.

Proof of Theorem 8.1. For the proof below, recall that we denote the partial
(real) Gateaux derivatives with respect to # by d4, and let 0; = 0.

By Proposition 6.1, solving Eq. (6.1) is equivalent to solving (6.7). By
Corollary 7.2, solving (6.7) is equivalent to solving the bifurcation equation
(7.27). Hence, we address the latter equation.

Recall that P is the projection onto I = Null L,, ;,—, = Null(H;(n)) x
{constants} x {0} x {0}. The projection onto constant vector fields in HZ can

be written as the mean value (o) := ﬁ Jo @. Since dim Null(Hy (n)) = 1 for
n = 1, we may choose x € Null(H;(n)) such that
P(w,a, z,¢) = (sx,¢0,0), (8.2)
s:=(x,w)r2 €C, c:=(a) € R?, (8.3)

and y satisfies ||XH%% = (|x|?) = 1 (see (5.13)), where, recall, x is described
in (5.24). Hence, we may write the v from the bifurcation equation (7.27) as
v = (71X, 72,0,0), where 71,72 : Ryg x C x R? — C are given by
T, s,0) = (x; Fi(p,v(s, ) +u'(p,v(s,0))) 2 (8.4)
Fa(it,5,¢) = (a1, 0(s,¢) + /(1 0(s,0))), (8.5)
where, recall, Fj, j = 1,...,4 are defined by (6.9), s € C, ¢ € R? and (see
(8.2))
v(s,c) = (sx,¢0,0). (8.6)
Note that 47 and 75 are continuously differentiable of all orders in u, s and ¢

by Corollary 7.3. (32 is independent of u.) The bifurcation equation (7.27) is
then equivalent to the equations

A, 8,¢) =0, (8.7)
Ao, s,¢) = 0. (8.8)

Lemma 8.2. There exists a neighbourhood U C Rsg X Rsg of (n,0) and a
unique function c : U — R? with continuous derivatives of all orders such that

5’2(/1'7570(/1782)) =0 (89)
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and
10h,c(p, )[Rz = O(|s]?), 1 =0,1. (8.10)

Proof. Recall that Fy(u,u) = Ho(p)a + PoJa(p, u) (see Equation (6.7)), with
Py the projection onto the divergence-free vector fields and
u=(w,a,z,%)=v+u, (8.11)

where v = v(s,¢) and v’ = ' (p,v) solves (7.5). By definition, (1 — Py)f =
A~V div f and therefore ((1 — Py)f) = 0. Hence (Pyf) = (f). This and the
relation (Hs(p)a) = ﬁ Jo curl” curlae = 0 give

Fa(as5,6) = (Ja (1, v(s,¢) + ' (1 0(s, ). (8.12)

Using (6.3), v = a™ + 7, curlyn w = curlgn w — i x w and that the final term
in (6.3) vanishes after taking the mean, we find

(Jo(p,u)) = 2eIm{(curlyr w — i X w)JW). (8.13)
Recall v’ = (w',a’,2',4’). Then (8.6) and (8.11) give w = sy + w’ and

(using that e = gsinf) v = ec+ /. Using these relations and curl,» x = 0 (by
(5.24)) and (8.12) and (8.13), we find for ¥,(u, s, ¢) := (2e)~ts| 22 (u, s, ¢)

Fo(pt, 8, ¢) := —e(Re[(c x x)Jx]) + Im s~ {(curlyn w')JX) (8.14)

+Im(Ry (i, 5, ¢)), (8.15)
Ry (i, 5,¢) := |s|72[~i(ec x sx)Jw —i(ec x w')Jw’ (8.16)
—i(ec x w')Jsxy —i(v x w')Jsx —i(v' x sx)Jw' (8.17)
—i(V x sx)Jsx —i(V x w')Jw + (curlg. w')Jw']. (8.18)

Note that we expect (8.14) = O(|s|?) and (8.15) = O(|s|*). We now
simplify (8.14). For the first term on the right-hand side, we use (5.24) and
the condition (|x|?) = 1 to compute

(Re[(e x x)JX]) = —%c. (8.19)

For the second term on the right-hand side of (8.14), we use (fJx) =
(fGm,m)y = (fy(i,1) = (n, f)(i,1) and integrate by parts to compute

{(curlgn w")JJx) = (n, curlyn w')(i,1) = {curl’, n,w') (i, 1). (8.20)

Abusing notation, we write in what follows w(p,s,c) = w(u,v(s,c)).
Then (8.14) becomes

1 -
Talpt5,¢) = ec+ T s eurln 1, (1, 5,¢))) (5, 1) + T {Ra(p, ,0))-(8.21)

Now, Equation (7.7), with m = 0, implies that

[ Tmcurls, 7, w! (1, 5,)))]| = O(ls[?). (8.22)
Furthermore, we show below the following estimate on the remainder:
|| Tm (0. Ra (1, 5, ¢))|[r2 = O(Js|>7Y), 1 =0, 1. (8.23)

Hence 7,(p,0,0) = 0.
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To apply the implicit function theorem to solve for ¢ as a function of
and s, we have to estimate the derivative

1
0T, 5,¢) =5 el +Tm s eurlyn 1, 0w’ (1, 5,¢)) (i, 1)
+ Im(d. Ry (i, s, ¢)). (8.24)
at (n,s,0). At the first step, we use the following

Lemma 8.3. Using Dirac’s bra-ket notation, we have
(Dew')(n, 5,0) = —n"tes| curl:, n)((1,4)| + O(|s|?). (8.25)

Proof of Lemma 8.3. By definition (7.2), P~ projects onto the orthogonal
complement of the eigenspace of Hj(n) corresponding to the eigenvalue 0 and
therefore the operator Hi-(n) is invertible on Ran Pi-.

Hence (6.1) with ¢ = 1 can be rewritten as w’ = —(Hi-(n)) "' Pi-J1(n, u)
(which is the first component of (7.15)), which gives

dew’ = —(Hi (n)) tPoeJ1(n,u), (8.26)

where u = u(s, c) := v(s,c) +u'(u,v(s,c)). By (6.2) and (6.6), we have
0.J1(n,u) = d.[curl}, curl, w]. (8.27)
Using w = sy + w', v = a" + ec + v and curl, = curlyn +iJ(ec + V'),

curl’, = curl}, —iJ(ec +v') and that v/ = O(]s|?), we compute
deJ1(n,u)c = sd.[curl’ curl,]xc’ + O(|s|?)
= sie[—Jc curl, +curl® Jc']x + O(|s]?) (8.28)
= sie[—Jc curlgn ee +curlln .. J¢]x + O(|s]?). (8.29)
Since curlgn X = V1i — Va3 = i04n8 = 0 and Jc' - x = (—ch,c,) - (3,iB) =

*

—ch3 + cyif = i(c) + ich)B and therefore curl}, J¢' - x = icurl}, B(c) + ich),
this yields

deJi(n,u)d | _, = —securly, B(c] +ich) + O(|s]?). (8.30)

=0
By Proposition 5.3(ii), Null (H1(p) —p+n) = {x = (5,i8) : curlyn x =

*

i04nm = 0}. The relation curly. x = 0 implies also (x, curl’, x) = (curlg» x, x)
= 0, which, for n = 1, gives that Pi-0.J1(n,u)c’ = 0.J1(n,u)c’ and therefore

Pr0.Jy(n,u)d = —securl’, B(c) +ich) + O(]s|?). (8.31)

By (5.24), we have curl}. n = iV, and by (5.25), we have H1(n)Vg»f3 =
nVan B3; hence, (Hi-(n)) = curl’, 8 = n~1curl’, B. This relation, together with
(8.26) and (8.31), yields

dew'd = sen™teurll, B(c) +ich) + O(|s]?), (8.32)
which gives (8.25). O
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Using Eq. (8.25), we calculate the second term on the right-hand side of
(8.24) at (n,s,0):
Im s~ {curl’,, 3,0.w' (1, s,¢)c') (i, 1)
= en” M Im({curl’, 3, curl’, B)(ch +icy)(i,1). (8.33)
The inner product term is real. Integrating it by parts and using that, by
Equation (5.38), 3 satisfies curlyn curl’, 8 = —Ayn3 = nfB and using that
1812, = YIx|Z: = 1, gives

(curly, B, curly, B) =(B, =AunB) 2 = %n (8.34)

The last two equations and the relation Im(c} +ich) (4, 1) = Im ( i _il )

¢ = 1¢ imply
Im s~ {curl’, 3, 0.w' (i, s,¢))(i,1) = %el. (8.35)
This, together with (8.24), gives
0:75(n, 5,0) :%el + %el + Im(D. Ry (n, 5,0)). (8.36)

Therefore, (8.36) and (8.23) (with I = 1) imply
0:75(n,0,0) = el, (8.37)

proving that 9.5,(n,0,0) is invertible, as required.
Recall that, by (8.21), (8.22) and (8.23) (with I = 0), we have

Since 9,75(n, 0, 0) is invertible, by the implicit function theorem there ex-
ists a unique function é : Ry gxC — R2 with continuous derivatives of all orders
such that 75 (u, s,¢é(p, s)) = 0 for (u, s) in a sufficiently small neighbourhood
of (n,0). Furthermore, the symmetry (7.29) implies that 7 (u, |s|, é(u, s)) =
o (11, €285 |s] (1, 8)) = Fo(p,8,¢(,8)) = 0, so by the uniqueness of the
branch é(u, s) we have

s 5) = &, Is). (8.39)
In particular, GLE(M, s), I = 0,1, restricted to s € R are even functions with
continuous derivatives of all orders; thus 888L6(,u7 0) = 0 and hence QZLE(u, 5) =
O(|s|?), since the first two terms of the Taylor expansion are 0. We define
c:RogxRsg — R2 by c(u, s) := &(p, /s), which is a function with continuous
derivatives of all orders satisfying ||8/,c(p,s%)||r2 = O(|s|?), I = 0,1, and
F2(py 8, c(p, 82)) = [81*45 (1, 8, ¢, 8%)) = 0, as required. O

Lemma 8.4. For € > 0 sufficiently small, there exists a unique function p :
[0,€) — R with continuous derivatives of all orders such that

T (p(s?), s, ¢c(u(s?), %)) = 0. (8.40)
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Proof. To simplify notation for this lemma, we set u = vy +u}, with v = v =
(sx,c(p, 8%),0,0), v’ = vl =u'(p,vs), c=c(p,s?).
We first show that 41 (u, s,¢) € R for s € R. Since v’ by definition solves
Pi-Fy(p,v+u') = 0, where Pitw’ = w' and Pj- is self-adjoint, we have
(W', Fy(p,v+u')) 2 = (W', P{Fy(p, v+ ')z = 0. (8.41)
Therefore, for s # 0, we find
ﬁl(/b S, C) = S_1<SX7 F](,U, v+ u/>L?l
= 5’1<sx—|—w’,F1(u,v+u’)>L%, (8.42)
which is real by Proposition 6.2 (v). Furthermore, by equations (7.29) and
(8.39), we have 31 (st, 5, (i, 52)) = €83, (u, 5], (s, |s[2)), s0 we may re-
strict s to be real.
Next, we show that

F1(n, s,¢(n, s?)) = O(|s]?) (8.43)
Indeed,
311, 5, ¢(ny 7)) < lIxllez | Fr (s 0 + )| 22
< Ixlllzz [[1H1 (n) (sx + ") 2
+ [[J1(n, v +u)|22)]. (8.44)

Recall that Hy(n)x = 0, so that

71 (n, s, ¢(n, s*))| < llxllrz [1H1(n) 2 022 )-
+ |1 (v + )| (8.45)

w'l|zz

By the definition v = vy = (sx,c(p, s%),0,0) and equation (8.10), |[v]|x =
O(]s|); hence, by Proposition 7.1,

[w' |2z < lw'llwz = O(ls]?). (8.46)
Furthermore, by equation (7.17) and recalling that Hi(n)y = 0,
[Ji(n, o+ )z < I1(nv+ )z S v +u'|7 = O(s]?).  (8.47)

This proves that 71 (n, s, ¢(n, s?)) is O(|s|?), as required.
In light of equation (8.43), we can define a function 7, : Rsg X Rsg — R
with continuous derivatives of all orders by

{s—wl (11,5, ¢(1,8%)), s #0,

8.48
0, s=0. ( )

ﬁl (/~L7 S) =

We now find a non-trivial branch of solutions (u, s) = (f1(s), s) by apply-
ing the implicit function theorem to 7. First, we prove the following proposi-
tion to bound the polynomials of functions appearing below:

Lemma 8.5. Let X be one of the spaces H2, Hy or H? defined before equa-
tion (5.9). Let p(x1,...,2,) be a polynomial with positive coefficients and let

fry s fn € X2 Then [Ip(frs oo fo)llx S pU[ 1l [ fnllx)-
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Proof. Write p(x1,...,x,) = Z\a|<Npa=Ta, where a = (ayq, ..., ) is a multi-
index, z* =[], 25" and p, > 0. Since by the Sobolev Embedding Theorem
(see, e.g. [2]), X is a Banach algebra, we have

||p(f1,,fn)||X < Z pa”fa”X

lal<N

S Z paH I£ill§

la|<N =1
=p(lfllxs - 1fnllx),
which implies the desired result. O

Lemma 8.6. There exists € > 0 and a unique function fi : (—y/€,+/€) — Rsg
with continuous derivatives of all orders such that fi(0) = n and p = fi(s) solves

1 (i, 8) = 0 for s € (—\/e,\/€). Moreover, [i is an even function: i(s) = [i(—s).
Proof. Recall that Fy (u,u) = Hy (p)w+J1(p, w) (where Hy (1) and Jy (p, u) are
defined in (5.17) and (6.2)). Using that 0, F (1, u) = (1+ ﬁd})w and setting

u = vs+ul, with v = vy = (sx, c(, 82),0,0), v = vl = (u,vs), ¢ = c(p,s?),
we compute

0,5 Filpv+ )] =57 (14 5 90 ) (ot o)

4
+s57t Z Sy, Frw(p, v + o) (0,v; + O, uf)
i=1

=51 (1 + % ’) (sx +w') + 5 0o Fy (1,0 +u')0yc

5
+s57t Z 8u, Fi(p, v + u') 0, us. (8.49)
i=1

By Lemma 8.2, [|0!,¢[|z> = O(|s|?), I = 0,1. Since ||v||x is O(|s|), by Proposi-
tion 7.1 the terms ||8Lu;|| (l=0,1,i=1,...,4, with the norms taken in the
appropriate spaces), are O(|s|?). By Lemma 8.5, this implies that all terms in
(8.49) containing ¢, w’, o, 2’, 1" or their p-derivatives vanish at (u,s) = (n,0).

Therefore,
Auls T FL (1,0 + )] () =(n,0) = X (8.50)

and hence

0u71(n,0) = (x, Ouls T Fr(k, 8)] |y =(n0)) 22 = IxlIZ2 # 0. (8.51)

Since 7, (u, s) is continuously differentiable of all orders in g and s, by the
implicit function theorem, we obtain the first statement of the lemma.

By the symmetry 7, (1, —s) = =, (1, $) of 7; and the uniqueness of the
branch fi(s), we have fi(s) = fi(—s), which gives the second statement. O
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We define pu(s) = fi(y/s), which is a function with continuous derivatives
of all orders for s € [0,¢) for the same reasons that c(u,s) := é(u, /s) was
shown to be continuously differentiable of all orders in Lemma 8.2. Further-
more, p satisfies ¥;(1u(s?), s, c(u(s?),s%)) = 57, (1u(s?), s, c(u(s?),s%)) = 0, as
required. O

We will now use the branch of solutions to (8.7)—(8.8), provided by Lem-
mas 8.2 and 8.4, and Corollary 7.2 to obtain the corresponding unique branch,
(s, us), of solutions to (6.7), with

s = u(s%), us =vs +ul, (8.52)
Vs = (SX7087 Oa 0)7 Cs = C(,“s, 82)’ (853)
ul, = ' (p,vs). (8.54)

(8.52)—(8.54) have continuous s-derivatives of all orders because each compo-
nent function has continuous derivatives of all orders. Symmetry (7.28) with
§ = m and the relation T, (f1, f2, f3, fa) = (—f1, fo, f3, f4) imply that (u});
is an odd function of s and (ul)q, (ul)s and (ul)s are even functions of s.
Arguing as in the case of Lemma 8.2 shows that the functions:

g1(s) := {f(“ﬁ)“ iig 92(5) = .5 + (U 5)a, (8.55)
93(s) == (U 5)3,  ga(s) = (Ul 5)as  95(8) = pys — 7, (8.56)

are well-defined for s > 0 and have continuous derivatives of all orders. By
Proposition 7.1, these functions have the properties listed in Theorem 8.1.
The above definitions and equations (8.52)—(8.54) imply us = (sx, %a", 0,0)+
(91(),-..,94(s)). Hence, this solution is of the form (8.1). Now, by Proposi-
tion 6.1, this also solves system (4.3)—(4.6), completing the proof. O

9. Proof of Theorem 2.2(a), (b)

Recall that My, My, My are the masses of the W, Z and Higgs bosons, re-
spectively, and that 7 is the shape parameter of the lattice £ (see the paragraph
before Theorem 2.3 of Sect.2). We introduce the notation

1
(f) 'Q’/Q,f’ (9.1)

the average of f over fundamental domain Q' = %Q Furthermore, we
introduce the function (cf. [26])

0= Ny (T) 1= [mfuamz,mh, (7) + sin® 9}_17 (9.2)
with, recall, m,, := /n, m, = c\o/EO and my, := % the masses of the rescaled

W, Z and Higgs boson fields, w, z and ¢, respectively, and
A (T) 5= (X G (IXI2)) /(X)) (9:3)
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Here x is defined in (5.24) and Gy, 4, is the operator-family on the space (5.11)
given by

Gmm =Gy — G, where G, = (=A +m?)~ L. (9.4)
Note that Gy, s > 0 for m’ < m. Recall My := %gcpo, My = mgcpo
and My = \/§A<po.

Proposition 9.1. If My < My, the parameter s of the branch (8.1) is related
to the magnetic field strength by

2 n Mg,
5% = 75 Mma,my (T)w + Rg(w), w:i=1—-—", 9.5
92<|X‘2> h( ) ( ) eb ( )
where Rg(w) is a real, smooth function of w satisfying
Ry(w) = O(lwf?). (9.6)

Before proving Proposition 9.1, we shall see how it implies statements (a)
and (b) of Theorem 2.2.

Proof of Theorem 2.2(a), (b). Since the operator Gy, ., is positivity preserv-
ing, the function G, m, (|x|?) is positive for My < My, and hence . m, (7)
and M. .m, (7) are positive. Furthermore, when the right-hand side of (9.5) is
positive, we solve (9.5) for s as a function of b, s = s(b), having continuous
derivatives of all orders. When |1 — Aﬁ—gﬂ < 1, the right-hand side of (9.5)
is positive if and only if 1 — % > 0.2 Plugging s = s(b) into (8.1) (i.e.
passing from the bifurcation parameter s to the physical parameter b), undo-
2
ing the rescaling (4.1), and recalling that b, = @, we arrive at the branch,
Ur = Wy, Ay, Zy, @p), of solutions of (3.12)—(3.15), which has the properties
listed in statements (a) and (b) of Theorem 2.2. O

The following statement follows from the proof above:

Lemma 9.2. U, is continuously differentiable of all orders in b for b in an open
right half-interval of b,

Proof of Proposition 9.1. Consider the solution branch (us,ws,as,zs) given
in equation (8.1) and described in Theorem 8.1. Using Taylor’s theorem for
Banach space-valued finctions (see, e.g. [16]) and recalling the relation & =
2/ g, we may expand this branch in s as follows:

ws = sy + s2w’' + O(|s]?),

as = éa” + s%2a’ + s*a” + O(|s|%),

zs = 822 + O(Js|*), (9.7)
Vs 1= ¢ — & = 7'+ O(|s]*),

& = V20s/9 = V2n/g + 57 + O(Js|*),

2 2
9 The condition 0 < 1 — MW « 1 is equivalent to the condition 0 < 1 — M—ZV|L| < 1 of

eb 2
Theorem 2.2.
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where w’, a’, 2,1, € and a” are the coefficients of s? and s*, respectively, in the
Taylor expansion of g;(s?), j =0, ..., 5, in (8.1), and x is defined in (5.24). Here
O(|s|?) stand for various error terms which, together with their (covariant)
derivatives, have norms of order O(|s|P) when taken in the appropriate spaces.
To rewrite the asymptotics in terms of the parameter b, we analyse how s
depends on b. For this, we use the definitions &, = /2p,/g and p := 3(g€)* =
1(greo)?, with r = \f (see (4.2)) to find the following equation for s2:

& = \/Zwo. (9.8)

To solve this equation for s2, we use the Implicit Function Theorem. By (9.7),
we can write & = v/2n/g + g¢(s?), where recall, g¢(0) = 0 and 9:(0) = ¢
Hence, we have to show that & # 0.

Lemma 9.3. We have ¢’ # 0.

Proof. We find relations between ¢, a’ and 2’ entering (9.7). Plugging (9.7)
into Equations (4.4)-(4.6), we obtain at order s*

—Ad —ecurl” [x]? =0
( A+ 5 9) 2’ — gcosfcurl” | x| =0 (9.9)
(—a+20) v+ §v/2nIx? = 0.

We solve these equations, using that curl®|x|? = curl®(|x|? — (|x]?)’) and
Ix|? — (|x|*) € Ran(A), for the first one, to find '°

a’ = ecwl” Go(|x|* — (|x[*)")
2" = gcosfcurl” G, (|x|?) (9.10)
U =—§V2n G, (IX]),

where G, := (—=A 4+ m?)~! acting on the space (5.11) (cf. (9.4)), and m, :=
C\o/sﬁa and my, == Y2 are the masses of the rescaled Z and Higgs boson (&)

fields, z and ¢, respectively. Next, we use the following relation proven in
“Appendix E”:

(gV2ng |X?) = (=gv2n/[x|? + curl V'[x|* = ¢°[x|"), (9.11)
where, recall, v’ := g(a’ sin 0+ 2’ cos 6). First, we evaluate curl /. The relations
(—A +m?)G,, = 1 and curlewrl® = —A imply curla’ = e(|x]? — (|x]?))-
Next, the second relation in (9.10) and the relation curlcurl* = —A yield
curl 2’ = gcosO(—A)(—A +m?)~tx|?, which, together with m, := C‘OCQ, gives
curl 2’ = gcos 0| x|*—g 245G, |x|*. Finally, using that e := gsin 6, we conclude
that

curl v’ = g*[x[* — e*(|Ix|?) — ¢*nGm_ (Ix]). (9.12)
Plugging the last relation and equation (9.10) into the relation (9.11), gives
gV2n€' (IXI*) = —g?[m7 (G, (IXI*) X[} + sin® O({[x[*))?], (9.13)

10To check the solutions, one may use that curl curl* = —A.
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where m,, := y/n is the mass of the rescaled W boson field w and the operator-
family Gy, is defined by (9.4). We solve for & and write the solution as

/ 9 2\, —1
=—— , 9.14
¢ =~ () (9.14)
where 1) = 9y, m,, (7) is defined in (9.2)-(9.3). The operator Gy, im,, in (9.3) is
positivity preserving and therefore the function o, m, (1) (and hence 1, m, (7))
is positive, if and only if m, < m;, (equivalently, Mz < M), in which case
& <. O
We now derive the estimate (9.5)—(9.6) for s2. Equations (9.7) and (9.8)
give &, as a function of s and b respectively, yielding
2
2 V2n 2 no o
= — 9.15
[ 2 gl )] 2k, (9.15)

which can be rearranged to give

2v/2n
g

2n
ge(s?) + ge(s?)? = g—Qw, (9.16)

where, recall, w = 1 — 24, with My = L5ggo. Recall that g¢(0) = 0 and
9¢(0) = ¢'. We have

d 2v/2n

@lﬁ:()

2vV2n

g

9¢(s%) + 9¢(s°)? | = £ (9.17)
Since ¢ # 0 and g¢(s?) is continuously differentiable of all orders (see Theo-
rem 8.1), by the implicit function theorem, we may solve (9.16) for s2, with the

solution, s? = s2(w), with continuous derivatives of all orders in w. Explicitly,
(9.16)—(9.17) give

2 g 12n 2
87 = —— —w+ O(Jw|?). 9.18
2v2n g* (k) ( )
Plugging (9.14) into (9.18) gives
s N w
5% = < —5v
9% (IxI?)

which is (9.5), with R,(w) satisfying Rs(w) = O(|w|?). Furthermore, since the
solution s? = s?(w) is continuously differentiable of all orders in w, so is the
remainder term Rg(w). O

N+ Rs(w), (9.19)

10. Asymptotics of the Weinberg—Salam Energy Near
— AJ2
b= Mg /e
Recall w = 1 — %, with My = %gg@o, and 7, m, (7) is defined in (9.2).
The main result of this section is the following:
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Theorem 10.1. If My < My, then the WS energy (3.10) of the branch of
solutions (8.1) has the following expansion:
1 1 1
@EQ(Wba Ap, Z, pp) = 552 - 552 sin 0 1. m,, (T)w? + Rp(w),  (10.1)
where Rg(w) is a real function with continuous derivatives of all orders satis-
fying

R (w) = O(Jwl?). (10.2)
Before proving Theorem 10.1, we derive from it Theorem 2.2 (c).

Proof of Theorem 2.2 (c). Since My, m, (T) is positive,!! the second term in

2
Equation (10.1) is negative, and so for 0 < 1 — Affg’ < 1, EY'S is less than the
vacuum energy 3b?|Q|. This proves Theorem 2.2 (c). O

Proof of Theorem 10.1. Let &' (ws, as, zs, s + ;1) := Wl,‘gg/(ws,as,zs,ws +
&s; 1), where &g/ is the rescaled WS energy given in (4.8). In “Appendix F”,
we derive the following expansion (to order s*) of £ evaluated at family (9.7)
of solutions:

EN(wg, ag, 25,5 + Es; 1) zln—Q —l—s4<l|curlz’|2 + 1|curla'|2
Sy sy ~Sy S S 2 62 2 2
2 / ! 2 n /2 /12
b gV + €)X + gl I
4 n g°
—5 U = I ewrl + Z[x])
+ R.(s), (10.3)
where R.(s) = O(]s]%) and has continuous derivatives of all orders, v/ :=

g(a' sinf + 2’ cos @) and, recall, & = /2us/g.
To simplify notation, in what follows, we shall suppress the argument
(ws, as, zs, Vs + &5 1) of E'.
We claim the following relation:
2 2
£ = 50 — LN + Rels). (10.4)
e 2
Proof of (10.4). We simplify the integral at order s* in (10.3) by applying eq.
(9.9) for o/, 2’ and ¢’ to convenient groupings of terms.
First, we address the 2’ terms in (10.3). Integrating by parts and factoring
out 2’ gives

% <\ curl 2/'|? + COZz 9\2’|2> = % <z/ . <7A + ﬁ) z’> . (10.5)

Applying (9.9) for 2’ gives

1 1
3 <| curl 2|2 + $|z’|2> = 5(2’ - gcos 6 curl® [x|?). (10.6)

11See the discussion following Proposition 9.1 for details.
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Integrating by parts again gives
1 n 1
3 <| curl 2|2 + mw\ > = §<g cos O(curl 2')|x|?). (10.7)
Next, we address the o term in (10.3). Integrating by parts gives

<;| curl a’2> = <;a’ : (—A)al>' (10.8)

Inserting into this expression (9.9) for o’ gives

1 72 1 / * 2

§|curla| ={ 39 ~ecurl® |x|* ). (10.9)
Integrating by parts again gives

1 1
<2|curla’2> = <2gsin0(curla’)|x|2>. (10.10)

Next, we address the ¢’ terms. Integrating by parts and factoring out v’
gives

4 n
<|V¢/|2 + gTi//Q + 9\/%1//|X|2>

4\
= <¢’ (—A + g—f +g\/%|x2> 1//> : (10.11)
Inserting into this expression (9.9) for ¢’ gives
4\
<V¢’|2 + g—gnw’Q + g\/2nw’|x|2> = <%\/%zp’|x|2> . (10.12)

For the ¢ term in (10.3), we have by (9.11) and (9.14),

(V0 IxP?) = & (gv/3n€ IXP) + 3 (9v/20¢ )
1

= 5 (=gV2n'[x|? + curl/|[x[* — g*|x[")

1 _
= 59" (), (10.13)
where, recall, v/ := g(a’ sin @ + 2z’ cos #). Finally, there are two remaining terms
of the integral at order s* in (10.3),
e
(=[xl? curl + Z-[x[%), (10.14)

which we will not presently simplify.
Adding Egs. (10.7), (10.10), (10.12), (10.13) and (10.14) and remembering
(10.3) gives Eq. (10.4), as required. O

Plugging (9.19) into (10.4) gives

1n ~
&= 77_772“}27]771,27'”% (7,7) + Re(w), (10.15)
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where R.(w) has continuous derivatives of all orders and satisfies R.(w) =

O(jwl)-
For the WS energy (3.10), evaluated at (W, Ay, Zs, ¢p), we recall that
EYS = L& = L|V|€’, which implies

1 |Q’| |Q
—Fq = &= 10.16
o= e T e ~\1o] ~ (10.16)

q. (10.1) follows by plugging (10.15) into (10.16). Since the remainder term
RE of (10.15) has continuous derivatives of all orders, so does the remainder
term Rp of (10.1). O

11. Shape of Lattice Solutions

In this section, we shall prove Theorem 2.3. Recall the shape parameter 7
described in the paragraph preceding (2.22). We return briefly to working
with the rescaled fields to prove that Eq/(u;r), u = (w, @, z,v), given in (4.8)
(and hence Fq(U)) is continuously Géteau differentiable of all orders in the
shape parameter 7 (restricted to domain (2.22)), which enters through Q' (and
), as well as the spaces containing v (and U). Below, we write

u‘l',b(‘r) = (wT,b(m)a a"r,b(l')v ZT,b(m)a ¢T,b(x))v (111)
E(r,b,u) = Eqr(u;r) =: /Q/ e(u;r), (11.2)
) = ( ('T)’AT,b('T)’ZT,b(x)"p‘r,b(m))v (11'3)

(T b,U) = Eq(U), (11.4)
X, = X, (11.5)

to emphasize the dependence of the family of solutions (9.7), the corresponding
energy (4.8) (respectively (3.10)) and the space (5.12) containing these solu-
tions on the shape parameter 7, the magnetic field strength b and the position
in space x € R2. Also, recall the notation r := y/n/eb.

To get rid of the dependency of the space X containing w,;, on the
shape parameter 7, we make the change of coordinates

1 1 Re(r))

M, : X, — X1, M,u)(x) =u(m,z), m, = —— , (11.6

1 (Mr)(@) = ume) (0 ) @0

mapping € into a square of area 2m. This allows us to define the functions

G :CxRxX -CxRxY ande' :CxRx X, — CxRx); on the fixed
space X7i:

G'(1,b,v) = M,G(b, M"v), (11.7)

'(7,b,v) = M,e(b, M~ 'v), (11.8)

where, recall, G(b,v) is the map given by the left-hand side of (4.3)—(4.6),

given explicitly in (5.1), and ews(b, u) := e(u;r) is the rescaled energy density
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given by the integrand in (4.8), see (11.2) (¢ depends on the magnetic field
strength b but does not directly depend on the shape parameter 7).

Lemma 11.1. G'(7,b,v) and &'(7,b,v) are continuously Gdteau differentiable
of all orders in Re(r), Im(7), b and v.

Proof. Since G(b,u) and e(b,u) have continuous b and w derivatives of all
orders, and M, is a linear map independent of b and v, it follows that G’ (7, b, v)
and €'(7,b,v) have continuous b- and v-derivatives of all orders.
For the T-derivatives, note that
M, 005, 0 M (0))(2) = ———8,v5(), § =1, .4, (11.9)
Tm(7)

M; 00, 0 M7 (v))(2)

= #(RE(T)axl’l}j(l') +1Im(7)0,v;(x)), j=1,...,4, (11.10)
Im(7)

are continuously differentiable of all orders in Re(7) and Im(7). Since G(b, u)
and ewg(b,u) are polynomials in the components of u and their (covari-
ant) derivatives, G’ and X are simply G and ewg with the coefficients of
the derivative-containing terms multiplied by smooth functions of Re(7) and
Im(7). Therefore G'(7,b,v) and X (7,b,v) have continuous Re(7)- and Im(7)-
derivatives of all orders. O

Lemma 11.2. v;; = M, u,y is continuously differentiable of all orders in
Re() and Im(T).

Proof. Let 79 be an arbitrary shape parameter, and recall that 64 denotes
the partial (real) Gateaux derivative with respect to #. Then G’ (79, b, vy ) =
M., G(b,uryp) =0, 6,G(70,b, 05y 5) = My, 0 0, G(b, try p) © Z\L‘O1 is invertible,
and by Lemma 11.1, G’ is continuously Gateau differentiable of all orders in 7, b
and v. Therefore, by the Implicit Function Theorem, the unique solution v, 3 to
the equation G(7,b,v) = 0 is continuously differentiable of all orders in Re(7)
and Im(7) near (Re(7),Im(7)) = (Re(79),Im(79)). Since 7y was arbitrary, this
proves the result. O

Proposition 11.3. E(7,b,U,) is continuously differentiable of all orders in
Re(T) and Im(T).

Proof. To get rid of the dependency of £(7, b, u- ) on the domain of integration
V', we again make the change of coordinates y = m_-*x. Then

E(T,b,urp) :/ e(byurp)(z) dx
Q

V2r 21
:/ / (1, b,v,0) (y)dy. (11.11)
0 0

By Lemma 11.2, v,; has continuous Re(7)- and Im(7)-derivatives of all
orders, and by Lemma 11.1, X' has continuous derivatives of all orders mapping
C xR x & to C xR x Y. In particular, the Re(7)- and Im(7)-derivatives



Instability of Electroweak Homogeneous Vacua

of €'(1,b, v, ) remain integrable, so we conclude that £(7,b,u-p) (and hence
E(7,b,U;})) is continuously differentiable of all orders in Re(7) and Im(7).
]

Theorem 11.4. When Mz < My, the minimizers 7, of E(7,b,U. ) are related

M

to the maximizers To of M, m, (T) as 7o — T = O(|1 — =

Ty — T« a8 b — b, :M‘%V/e.

2
i |2). In particular,

Proof. The minimizers (7,) of E(7,b, U, ;) are equivalent to the minimizers of
the energy functional E(7,U.) := w™?(E(7,b,U,;) — 3b%). By Theorem 10.1,
we have

~ 1
E(7,Urp) = =567 sin* 0 i m, (7) + O[],

2 ~
where, recall, w = 1— Né—g" Since 0; E(7,Urp)|r=r, = 0, we have the expansion

1 ~
E(T*, U-,—*}b) — E(Tb, U-,-b,b) = 5672_E(Tb, U-,-b)b)[T* — Tb]2 + O([T* — Tb]3)

1
=— zbz sin? 0 020, .m,, (75) [T — T
+ O([r = 7)%) + O(|w)). (11.12)
For both expansions to hold, we must have 7, — 7, = (9(\w|%)7 as required. [J

The maximizer of 9, m, (7), defined in (9.2), was found numerically in
[26] with some analytical results in [27]:

Theorem 11.5. (/26]) For My < My, the function . m, (T) has a mazimum

at T, = eim/3,

Theorem 2.3 follows from Theorems 11.4 and 11.5.

Remark 11.6. Using symmetries of 7y, m, (7), one might be able to prove that
its only critical points are 7 = €'™/3 in/2 je. the hexagonal and
square lattices, cf. [3,30].

and 7 = e
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Appendix A: Covariant Derivatives and Curvature

In this appendix, we briefly review some basic definitions from gauge theory.
For some geometrical background, see [21,25,34]. Recall that we use the Ein-
stein convention of summing over repeated indices.

Let V' be an inner product vector space, G a Lie group acting transitively
on V via a unitary representation p : g — pg, and let g be the Lie algebra of
G acting on V via the representation p : A — p4 induced by p.

To simplify notation below, we take V' = C" and G a matrix group,
acting on V' by matrix rules (and similarly for g) and write p,¥ = ¢g¥ and
pa¥ = AWU. Moreover, we assume that G is either U(m) or a Lie subgroup of
U(m).

Let M be an open subset in a finite-dimensional vector space, with a
metric h and local coordinates {z'}, and let 9; = 0.

For a g-valued connection (one-form) A = A;dz* on M, we define the
covariant derivatives:

- V 4, mapping functions (sections), ¥ : M — V, into g-valued one-forms,

. VAV :=d¥ 4+ AV = (0, ¥ + A;¥)dz’; (A.1)
- d 4, mapping g-valued functions (0-forms) f into g-valued one-forms
daf = df +[A, f] = (O:f + A, f])da; (A.2)
- d 4, mapping g-valued one-forms into g-valued two-forms
daB :=dB+ [A, B, (A.3)
with [A, B] defined in local coordinates {z'} as
[A, B] := [A;, B;lda' A d2? = [B, A, (A.4)

for A= A;dz" and B = B;dxz?.'?

12More generally, if A is a g—valued p—form and B is a g—valued g—form, written as
A= A%®~v, and B = B® ® ;, where A® and B® are p— and ¢—forms and {v,} is a basis
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The curvature form of the connection A is the g-valued two-form given
by the formula

Fa=dA+ %[A, Al (A.6)

It is related to the curvature operator (denoted by the same symbol)
Fa := dgody. As a simple computation shows, this operator is a matrix-
multiplication operator given by the matrix-valued 2-form (A.6).

Let U be a vector space (V or g in our case) and let Qf, = U @ QF
denote the space of U-valued p-forms. On QF;, one defined the inner product,

<" >Q’[} = <" >6PU as
(A, B)ay, = (A, B)gy = (Ao, B®)u, (A7)

where A = A,dx® and B = B,dz® are U -valued p-forms, « is a p-form index
and (-, )y is the inner product on U. Here the indices are raised and lowered
with help of the inner product h on M.

Above, we did not display the coupling constants. Doing so would change
the covariant derivative to da ¥ = (d+gA)V, if G is simple. If G is not simple,
then each simple component of G gets its own coupling constant, as was done
in the main text for G = SU(2) x U(1) (see also (C.2)—(C.6) below).

Appendix B: The Time-Dependent Yang—Mills-Higgs System

In this appendix, we briefly review the Yang—Mills—Higgs theory, including the
derivation of the energy functional (2.7). In what follows, we use the convention
of raising or lowering an index by contracting a tensor T with the metric tensor:

T = nyTh® (B.1)

where 7 is the Minkowski metric of signature (+, —, ..., —) on M C R*! and
«, ( are multi-indices. The same equations could be reinterpreted as stationary
equations by taking the Euclidean metric d;5, instead of 15, and letting the
indices range over 1,....d, rather than 1,...,d + 1. In this case, T}"; = Tga
Lagrangian. Let  be a bounded domain in R% and M = Q x [0, 7] C R4*! be
spacetime equipped with the Minkowski metric 7 of signature (+, —, ..., —) and
V and G be as in “Appendix A”. The theory involves a Higgs field ¥ : M — V
interacting with the gauge field A, a connection (one-form) on M with values
in the algebra g. The dynamics are given by the Lagrangian

L(T, A) ::/Q(<VA\1/,VA\1:>31V —U(W) + (Fa, Fa)gs ). (B.2)

in g, then
[A,B] :== (A% A BY @ [Ya, ] = (—=1)P9T1[B, A]. (A.S)
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with corresponding action S := fOT L(P, A)dt, T > 0, given explicitly by
S(T, A) = / (VA% VaW)h ~U(E) +{Fa, Fa)ha),  (B3)
M

where U : V — R7 is a self-interaction potential, which is assumed to be gauge
invariant: U(py¥) = U(¥). Typical examples of G,V and U(V) are U(m),C™
and U(W) = }A(1— [ W})”

Euler—Lagrange equations.The Euler-Lagrange equations (called Yang—Mills—
Higgs equations) for the fields ¥ and A are

ViIVAl =U' (D), (B.4)
Ay Fa=J(0, A), (B.5)

where VZ’ and d;” are the adjoints of V4 and d4 in the appropriate inner
products involving the metric n and J(V¥, A) is the YMH current given by

J(U,A) :=Re(1. P, Va¥l)yya (B.6)
= Re(7, ¥, V;¥)yy, @ de’, (B.7)

where 7, is an orthonormal basis of g and V; := 0; + A;, with 0; = 0,:, so
that V¥ = V,;Wdz’. (B.5) is the Yang-Mills equation.

Proof of (B.4) - (B.5). For convenience, we assume periodic or Dirichlet bound-
ary conditions and that ¥ and A are T-periodic in t and calculate the Gateaux
derivatives formally.

Recall that §4 denotes the partial (real) Gateaux derivative with respect
to #. First we calculate the (complex) Gateaux derivative of (B.3) in the
W-direction. Define 9, = %(BRCZ — 10im z) and dy = %(5ch, — 40imw). Then
SgS(V, AV = 9,8(¥,, A)|.—o, where U, = U + 20’ 2 € C. Using this, we
find

SuS(W, AU — /M (Val, VW) — (U'(0),9)y).  (B.S)
Integrating the first term by parts and factoring out ¥’ gives
50 S(W, AT’ :/ (VA AT — U(0), W)y (B.9)
M

For this derivative to be zero for every variation ¥’, (B.4) must hold.

Next we calculate the Géateaux derivative of (B.3) in the A-direction.
Using the definition §4 f(A)B = 0sf(As)|s=0, where A; = A+ sA’, s € R, we
find

5AS(U, A)B = / (B, VaW)oy + c.c.+2(daB, Fa)oz) (B.10)

= IA—T— IT. (B.11)

Writing B = By, = Bldz' ® 7, (with B¢ real) and V¥ = V,;¥dz’, so that
(BY,VaW)oy = (B, (7a¥, Vi¥)ydz')or, (B.12)



Instability of Electroweak Homogeneous Vacua

and using that BC?® = — Tr[(B°.)(C%,)] (since Tr(viv,) = — Tr(veva) =
6ca)7 giVGS

I= —/ (B, (70, VW) vy, ® dmi)glg +cc. (B.13)
M

which gives I = [, (B, J(¥, A)}g;. For the second term on the r.h.s. of (B.10),
integrating by parts yields 11 = fM (B, dj;FAmé. Collecting the last two equa-
tions gives

0AS(V,A)B = 2/ (B,—J(¥,A)+ d}FAmé. (B.14)
M
For this derivative to be zero for every variation B, (B.5) must hold. O

Conserved energy. Again, the Gateaux derivative calculations in the following
subsection are formal. Recall that M := Q x [0,T] C R4+
To find the expression for the energy, we use, as in classical mechanics,
the (partial, i.e. without passing to the momentum fields) Legendre transform
of (B.2) is given by
E(\Pa A) = aVo\I/’C(\Ilv A)VO\IJ + amﬁ(qlv A)W
d
+) " 0r, LW, A)Fy; — L(V, A). (B.15)
i=1

Proposition B.1. The (partial) Legendre transform (B.15) of Lagrangian (B.2)
yields the conserved energy

B A) = [ (V%I +U00) + [Falfy) (B.16)

where the norms are taken using the Euclidean metric on R¥TY (rather than
the Minkowski metric).

Note that for static (time-independent) fields, E(¥, A) = —L(¥, A).

Proof. Let 04 denote the partial derivative with respect to the symbol #, and
recall that d4 denotes the partial (real) Gateaux derivative with respect to #.
We calculate

Ov,u LV, A)V U = / IVo¥ |} = Og g L(¥, AV (B.17)
Q

and

d d
ZaFOi[’(\Il’A)FOi = / 22|F0i‘2- (B18)
=1 Q i=1

(B.16) results.
It remains to show that (B.16) is conserved by the YMH equations (B.4)—
(B.5). This can be done by using the (partial) Legendre transform (B.15) as
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in classical mechanics, or by a direct computation. We proceed in the second
way. Applying the chain rule gives

d _
%E(\If, A) =09 E(V,A)0y U + (;@E(\I’, A)OoU + SAE(T, A)Op A, (B.19)

where, recall, 9; = 9,:. We now calculate the first term using (B.4).

d
Sy E(T, A)dy U = / (Yo, Voo W)y + > (Vi¥, V0o ¥)v
Q

k=1
+(U'(¥),009)v ). (B.20)
Integrating the second term by parts gives
d
Sy E(U, )90 = / ((Vo¥, Vodo®)y + > (ViVi¥,00%)y
Q k=1
(U (), 0 W)y). (B.21)
By (B.4), we have
d
VeVol — Y ViVil = U' (1), (B.22)
k=1
so (B.21) becomes
5\1/E(\I/, A)aO\IJ = / (<VO\I/, Van\I/>V + <VSVQ\I/, aoq/>v) (B23)
Q

Here Vi = —0p + Al =~y — Ap, where the second equality follows because
the representation of g is unitary. Therefore,

5\1,E(\IJ,A)8O\IJ:/Q(((80+A0)\I/7(80+A0)80\I/>V

+ (=80 — Ag)(8o + Ag) ¥, W)y )

:/80<\11,A080\11>V. (B.24)
Similarly, "
SgE(V, A)oyV = ; 00 (A0, U)y, (B.25)
and so
SuE(V, AoV + 65 E(V, A)0p¥ = /QE)OJO(\I/,A), (B.26)

where Jy(¥, A) is the time component of the YMH current (B.6).
One may show using (B.5) that

SAE(T, A)OyA = —/ Ao Jo (T, A). (B.27)
Q

Hence, by (B.19) we have 4 E(¥, A) = 0, as required. O



Instability of Electroweak Homogeneous Vacua

Gauge symmetries. We define the local action, p,A4,'® of the group G on A4,
by the equation d, 4 = gdag™!, for all g € CY(N,G), where N is either M or
Q. We compute

pgA = gAg~" +gdg~". (B.28)

Proposition B.2. The Lagrangian (B.2) is invariant under the Poincaré group
and the gauge transformations

TEVE (U, A) — (g¥, pgA), Vg € CY(M,G). (B.29)

Proof. The invariance under the Poincaré group follows from the definition of
this group and the choice of the Minkowski metric on M c R*+!,

For the gauge invariance, recall that U(¥) is g-invariant, and that the
representations g — p, (on V) and the adjoint representation g — ad, (on
g) are unitary. Therefore, to prove invariance under the gauge transformation
(B.29), it suffices to show that

Vp,ag¥ = gVal¥, (B.30)
F, o4 =gFag™". (B.31)
We shall use the equation
hdh™' = —dhh™', Vhe G (B.32)
which follows from d(hh~!) = 0. For (B.30) we compute
Vp,a9¥ = d(g¥) + (gAg ™" + gdg™")(g?) (B.33)
= (dg)¥ + gd¥ + gAY + gdg~'gV. (B.34)

Since gdg~'g = —gg~'dg = —dg, this gives Vp,a9¥ = gVal.
For (B.31), computing in coordinates {z'} and writting F, a := (F,, 4)i;
dz' Adz? and Fy := (Fa);jdz" A da?, we find

1
(Fpoa)ij = 5@(9&9” +90;97") — 0;(gAig™" + g0ig™ )]

1 _ _ _ _
+5lgdig™" + 999" 945971 + 99,97, (B.35)

where, recall, 9; = 0,:. Expanding the partial derivative and commutators
gives

1 _ _ _ _ _

(Fpya)ij 25[82‘914;‘9 Y4 90iAgT + gA;0,97 " + 0,909 + 90,0;9

+(gAig™" + 0igg™ ) (9Aj97" +90597")

— (i < 7)) (B.36)
Expanding the product on the second line gives

1 _ _ _ _ ~
(Fpya)ij =510i9A;97" + g0;Ag™" + gA;0,97" + 0,90;97" + 90;0;97"

2

13Compared with the notation of “Appendix A”, to simplify the notation we omit the tilde
over pg in action of the Lie algebra g on V.
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+gAAjgT" + 0igAjgT + gAD;97" + 8,909

— (i < J)]. (B.37)
Cancelling terms symmetrical in ¢ and j and simplifying gives
1 1 _

(Fp,a)ij =g (2[82-/1]- — 05 + 5 [Aid; - Ain]> g (B.38)

= g(Fa)ijg~", (B.39)

as required. O

Specifying (B.16) to the WS model gives (2.7).
The YMH equations in coordinate form. In coordinate form, the differential
form (gauge field) entering the YMH Lagrangian (B.2) is written as A = A;dx’.
The local coordinate expression for the curvature is Fi4 = Fijdxi A dz?, where
Fij = 1(8;A; — 9;A;) + 3[A;, Aj]. Furthermore, for the covariant derivatives
V. and dg, we have V¥ = V,;Udz? and Ay Fa = —ViFijdxj, where V; U :=
(0; + A;)V and V'EF;; = 0'F; + [AY, Fyj].

For an arbitrary g-valued one-form B = B;dz*, we have dy B = V; B;dz'A
dz? and d* B = —V'B;, where

V'B; = d'B; + [A", Bj]. (B.40)

We write Fij = Fiiva for an orthonormal basis v, of g and the lower case roman
indices run over the spatial components 1,2, ...,d. Note that F;; = [V;, V;],
but Fij 75 %(VZAJ - VJAZ)

Let Q be either a bounded domain in R% or R4t1. In the former case, we
assume either periodic or Dirichlet boundary conditions.

Proposition B.3. The Lagrangian and energy for the YMH model are given in
coordinates by

1 3
LXW,A):L/<VkW,Vkth—lMQQ4—§ a osid, (B.41)
Q
1
Fo(U, A) = /Q<Vk\1a ViB)y +U(W) + SFAFS (B.42)

(with different ranges of indices as mentioned above). The YMH equations are
given in coordinates by:

— V'V, U = U (), B.43)
— V'F;; = Re(7, ¥, V,;¥) v, (B.44)

—~

Proof. Equations (B.41) and (B.42) follow from the coordinate expressions
daU =V, Uda* and Fy = nga ® dat A dad, together with the fact that dxk
and v, ® dx' A do’ form orthonormal bases for Q! and Qg, respectively.
Equations (B.43)—(B.44) follow from Egs. (B.4)—(B.6) and the coordinate
expressions for d4 and d% above. O
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Appendix C: The WS Equations in Coordinate Form

For the gauge group G = U(2) = SU(2) x U(1), we choose the standard inner
product

(7,0)u(2) :=2Try"6 = —2Trvd (C.1)

on u(2), for which —£7,, a = 0,1,2,3 (where 7,, a = 1,2,3, are the Pauli
matrices together w1th To 1= 1) form an orthonormal ba81s It is customary to
factor out the coefficient of —1 In coordinates, we write

Vod = V,ddz', Q= —%Qidxi and F = —%Qijda:i ANdz?,  (C.2)

with Q;(z), Qi;(z) € u(2). Using Eq. (2.3), we compute Q;; = 3(9;Q; —
9;Q:) — +[Q;,Q;]. Furthermore, we write @ =V + X and

V= %Vidmi and X = —%Xidxi, (C.3)
with V;(z) € isu(2) and X;(x) € iu(1). Then Q;; = V;; + X;; and
V,® = (9 — ngi - i—glxi)qm (C.4)
Vi = %(a Vi - 0vi) — 21w, vl (C.5)
X, = %(a X, - 0,X,). (C.6)
We specify Eqgs. (B.41)—(B.44) for to the Weinberg—Salam (WS) model,

which has the gauge group G = U(2) = SU(2) x U(1). As was mentioned in
“Appendix A”, in this case, there is a slight discrepancy in the definition of the
covariant derivative due to the fact that U(2) is not simple, but a (semi-)direct
product of the simple group SU(2) and U(1), with each component having a
coupling constant, see (C.2)—(C.6).

Using Eqs (C.2)-(C.6), we express the Lagrangian and the energy in
coordinates as

L0.Q)i= [ (V8T U@ +3TQ,Q% (€
B(®.Q) = [(VO.Vd)e+U®) + 5T (CH

(with indices ranging from 0 to d and 1 to d, respectively, as mentioned above),
and the Euler—Lagrange equations are written in coordinates as

— V’Vrb =U'(®), (C.9)
zQU gIm(Ta@ V;i®)c27a + 29 "Im(79®, V,;®)c270. (C.10)

Equations (C.8)—(C.10) can be expressed in terms of the W, Z, Higgs and
electromagnetic fields resulting in 2D Egs. (3.10)—(3.15), see “Appendix D.2”.
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Appendix D: The Weinberg—Salam Energy in Terms of the
Fields W, A, Z and ¢

Appendix D.1: Dimension 3
We work in a fixed coordinate system, {2'}3_, and write the fields as W =
Widat, Z = =L Z;da’ and A = —%Aidxi. We show

-2

Proposition D.1. Energy (2.7), written in terms of the fields W, A, Z and ¢
and coordinates {x'}?_,, is given by (see also [43]):

1 1 1
Eo(W, A, Z, ) i:/Q[Z(§\Wij\2+1|zij|2+Z|Aij|2)

ij

122 2 2 2 2
+= W2+ ZP2+T(W, A Z
59 ¢ WIE+ 15597 ¢" 12| (W, A, Z)

1
+ Vel + 5@ - 90)*], (D.1)

where Wij = VZW] - iji, with Vk = 3k - ngk‘s,@k = ka, Zij = alZJ -
0;Z;, Aijj = 0;A; —0;A; and T(W, A, Z) is the sum of super-quadratic terms,

2
g T2 . 5774
T(W,A,2) =" S (WiW; P = W) —ig Y VEW, W, (D.2)
ij ij
where V3 = Zcosf + Asinf and Vl‘;‘ = 0;V; — 0;Vi, with the important
property that T(W, A, Z) is invariant under the gauge transformation (3.7).

Proof of (D.1). We proceed by rewriting the terms in the coordinate expres-
sion of the WS energy (C.8),
in terms of the fields W = W;dz?, Z = —%Zidxi, A= —%Aidxi and .
For the first term, first we calculate V;®. Recall the definition V;® :=
(0; — %gVi — %Xi)é. We simplify the matrix representing the connection’s
action on ®:

ig ig' ig ig'
—Vi- 5 Xi=—ZVia— - X;
Vi 5 Vi'Ta = 5 Ximo

_ g (0 VY g (0 =i
To2\Vit o0 2 \iV? 0

_Y Ve 0 —i—gtane Xi 0
2\ 0 V3 2 0 X;

g V3cos+ X;sinf  Vi!cosf — iV cost
T 2cosf \ VitcosO+iVZcos® —V3cosh+ X;sinf )
In terms of the fields Z, A and W (see Egs. (3.5)-(3.6) for the definitions of
these fields), (D.3) becomes

ig., ig ., g Z;icos20 4+ A;sin20 /2 W; cosf

2 Vi 2 Xi= 2cosf ( V2 W, cos 6 -7, - (D4

(D.3)

Hence, for ® = (0, ¢),



Instability of Electroweak Homogeneous Vacua

_ 49
Vb = vavie ) (D.5)
(91‘(,0 —|— g Zip

2cos

Therefore, the first term of (C.8), written in terms of the fields W, A, Z and
©, becomes

(Vi®, Vid)es = Ly, 19

V2 V2
g .
) Z; VA
(a@jL 0s 0 SD) <a¢+2cose ('0>
g9 2 2 2 g9 21712
= LW +190 + 2|2 (D.6)

The second term of (C.8) becomes

U(@) = AN ~ ) = SM6* — o) (0.7)

For the third term of (C.8), we will use the fact that TrQ;;QY =
TrV;; V¥ 4+ Tr X;; X%, where V;; and X;; are defined in (C.5) and (C.6). Fur-
thermore, we have

(D.8)

3 :
Vi:ZVﬂTa:( Vi ﬂWZ)

2w, v
We recall VS = an/f — @-Vf’ and W0 = 0;W; — 9;W; and calculate
V3 V2 Wij)

AT (D.9)

1 1
HCARADE (

and, with K;; := V3W; — VjBVVi7
] ; 3 . 3 2 W.
Zj[w,vj]—zg( o ) (e, ) -6

Vew,  —vP V2w, o VP
__7 V3V3+2WW \EK” —(i<—> )
- 4 V2T, —VAVE - 2W, W, J
_ _ig (Wil — Wi V2 Ky (D.10)
2 V2 K ~WiW; + W, W; ) '

Adding (D.9) and (D.10), using that W;; = W + K;; and denoting Li; :=
Vi3 —ig(W; W, — W, W;) gives
1 Li; V2 Wi
P 7 . D.11
Vis 2 (—\/i Wi =L (D-1)
Since V;; and X;; are Hermitian, Tr VZ-jVij and Tr Xinij are the sum of the
squared absolute values of the matrix coefficients of V;; and Xj;, respectively.
Thus 1 o o N
5 TI‘ QUQ” = 5 TI' ‘/Z‘jV” + 5 TI‘ Xin”

1
§ZQ|LM|2+4|W“|2+2\Xij|2. (D.12)

ij
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Using L;; = V —ig(W;W; — W;W;) and expanding the first term gives
ij 1 2 Lz 1 2
§Ter‘jQ” = %: S IWis|” + E‘Vij‘ + 71Xl

2
g b7 74 (794 2 3
+Z E |W,W; — W, W;|* — E 2V WW WW) (D.13)
ij

Recall that A;; = Vg sinf 4+ X;jcos0 and Z;; = Vz‘;’ cos ) — X;jsin6. Writing
the first line of (D.13) in terms of these fields gives

1 ii 1 1 1

5 TrQyQY = %: §|Wij|2 + Z|Zij|2 + Z|Aij‘2

2
g . T 2 3
+IZ|Win—W¢Wj| ZV (W, W — WW,). (D.14)
ij

Expanding the first term of the second hne, and using VZ:;’ = fVZ:;’ in the second
term, (D.14) becomes

1 1 1 1
5 TrQyQY = %:§|Wij|2 + 1|Zij|2 + i|Aij|2
g9’ 21777 .12 27772 ; ;
+ZZ(|W‘ W7 = WEW 5 + (i < j))
ZQZ VAW W, + (i < 5)). (D.15)

Recalling the definition (D.2) of T(VV7 A, Z) gives
1 1 1 1
Adding (D.6), (D.7) and (D.16) gives (D.1). O

Appendix D.2: Dimension 2: Proof of (3.10)

Proof of (3.10). Now, we consider the Weinberg—Salam (WS) model in R?
with fields independent of the third dimension 3, and correspondingly choose
the gauge with V3 = X3 = 0 (and hence W3 = A3 = Z3 = 0). In this case the
summation in (D.1) contains only two terms, (ij) = (12) and (ij) = (21), and
we use this to simplify (D.1).

We proceed by simplifying the terms of (D.2) and the first line of (D.1);
the remaining terms are unchanged.

1 1 1 1 1
> (2|Wz‘j|2 + 71241 + 4|Az‘j|2) =X <|Wij|2 + 512 + 2|Az‘j|2>
1 1
= |curlyys W|* + §| curl Z)? + §| curl AJ%; (D.17)
—2
> (Ww,|* = WEW5)

j
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=W WQWlWQ — WfW; + W W1W2W1 — WQQW?
= (W1W2 — WlWQ)(WlWQ — W1W2)

=W x W (D.18)
_ Z V[;)WZWJ = Z Vi‘;’-(—Win + WJWJ
ij i<j
= (curl V)W x W. (D.19)
Replacing corresponding terms in (D.1)—(D.2) with (D.17)—(D.19) proves (3.10).
0

Proof of (3.12) - (3.15). We proceed by calculating the (complex) Gateaux
derivatives of (3.10).

Let 04 denote the partial (real) Gateaux derivative with respect to #-.
Let W, = W + 2W’, z € C, and define 0z = %(GRN + 10 ») and oy =
%(5ReW + i0imw ). Then

SwEa(W, A, Z, o)W = 0-EYS(W,, A, Z,¢)| .=

- 1 N
curlgys W - curlyys W’ + 592902W - W

S

—ig(curl VHJW - W’ 4 g*(W x W)JW - W’. (D.20)
Integrating the first term by parts and factoring out W and w gives
2
SwEa(W, A, Z, o)W’ = / [curl}ys curlgys —i—%gpQ —ig(curl V3).J
Q

+ (W x W)JJW - W". (D.21)

For the derivative to be zero for every variation W', (3.12) must hold.
Let Ay = A+ sA’, s € R. Then

5AEQ(W7 A7 Z? SD)A, = aS‘ES%VS(VV’ A87 Z7 90)|S:0

= / curlyys W(—ieA’ x W) + curlyys W(—ieA" x W)
Q

+ (curl A)(curl A’) + ie(curl AYW x W. (D.22)

Using A’ x W = —JW - A’ in the first two terms, and integrating the last two
terms by parts, gives

SaEq(W, A, Z, p)A = / [—ie(curlyys W)JW + ie(curlyys W)JW
Q

+ curl* curl A + iecurl*(W x W)] - A/, (D.23)

which simplifies to
SaEq(W, A, Z,p)A" = / [curl” curl A + 2e Im([(curl,ys W)JW
Q

—curl* (W Wa)]] - A'. (D.24)
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For the derivative to be zero for every variation A’ (3.13) must hold.

The proof of (3.14) is essentially the same as the proof of (3.13), so we
omit it.

Let s = ¢ + s¢’, s € R. Then

650EQ(W A7 Za SD)SOI = aSES%VS(W A7 Z7 S@s)lszo

2 1|2
W
/Qg pP IWIE+ 5 55
+2Vy' Vo + 2M(0? — 95)py’ (D.25)
Integrating the third term by parts and factoring out 2¢’ gives

2
g 2, 1 2
- [ |L “k|Z
G+ 3oz
A+ AP - )] w20 (D.26)

For the derivative to be zero for every variation ¢’, (3.15) must hold. O

0’| Z|?

Appendix E: Proof of (9.11)

In the proof below, we will use the following result:

Lemma E.1. Let L2, denote any of the spaces (5.9)~(5.11), and let H>,, de-
note the corresponding Sobolev space. Suppose that fs,gs : R — H2,. sat-

per
18fy ||fs||H12)er = O(|s|*) and ||93HH§8T = O(|s]") for some k,l € Z. Then for

i,j=1,2 and p,q = 0,1,
‘/ O f.0gs
Q/

Furthermore, if fs and gs have continuous derivatives of all orders in s, then
so does the above integral.

= O(|s]**1). (E.1)

Proof. Equation (E.1) follows from the following chain of inequalities:

[ orr.0ta] <100 hles, 195g.llcs,,
Q/
< sl Ngsllz,, = s+, (E2)

If f; and g, have continuous derivatives of all orders in s, then their s-
derivatives of all orders are in Hf,er. In particular, this means that 0% (f.gs), k €
Z>(, remains integrable, so the s—derivatives of the above integral (obtained
by differentiation under the integral sign) are well-defined. O

Proof of (9.11). To prove (9.11), we use the w-field Eq. (4.3), and vy :=
g(assinf 4 z; cos 0), to get

2
/ X- {curll*,s curl,, +%(¢s +&)°

—i(curlvy)J + g% (W; x w,)J] ws = 0. (E.3)
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We shall calculate each term of the integral (E.3) up to order s® using
Lemma E.1 and the Taylor expansions (9.7).
Integrating the first term of (E.3) by parts gives

s

/ X - curl), curl,, wy = / curl,, x - curl,, w. (E.4)

Plugging in the Taylor expansions (9.7) gives

/ X - curly, curl,, w, = / [curlyn x + O(]s]?)]
-[scurlyn x — s*iv'w’ + O(|s|*)], (E.5)

where, recall, v/ := g(a’sinf + 2’ cosf). Recall from Equation (5.24) that
curlgn x = 0. Therefore, applying Lemma E.1 gives

/ X - curly curl,, w, = O(|s|”). (E.6)

Plugging the Taylor expansions (9.7) into the second term of (E.3) gives

_ 92 o — 92 \/ﬁ / / :
/IX'E(% +§s)2ws—/lX'5 <g+52(7/f +§)+O(|5|4)>

x (sx +O(Js]*)). (E.7)
Expanding this product and applying Lemma E.1 gives

7.5 2, _ 2 3 / INWIE!
//X 5 (Vs + &) ws s/ﬂ/n\xl +s /Q/g\/?n(tb +&)Ixl
+33/ nx - w' + O(|s]?). (E.8)
Q/

Recall that x € Null(H;(n)) and that w’ is orthogonal to Null H;(n). Therefore
the third term vanishes:

//Y g(ws +&) ws = S/Q, nlxf? + 57 /Q gV2n(y' + ¢
+O(Js?). (E.9)
Plugging the Taylor expansions (9.7) into the third term of (E.3) gives
//y (=ifeurl vy)Jw,) = / X+ (—in — s?i(curl ') + O(Js[*))
S x (sJx + s> Jw' + O(]s]?)). (E.10)

Recall from Eq. (5.24) that y is of the form x = (w,iw)?, so
X-Jx = —i|x|? and ¥ - Jw' = —iY - w’. Therefore (E.10) simplifies to

/ly- (—i(curl vg) Jws) = //(—in — s%i(curl ') + O(|s]*))
x (—silx|* — s%ix - w + O(|s]*)). (E.11)
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Expanding this product and applying Lemma E.1 gives
/ X - (—i(curlvg)Jws) = —s/ n|x|? — 33/ (curl )| x|?
’7 QI U

- 33/,ny-w/+(’)(|s|5). (E.12)

Recall that x € Null(H;(n)) and that w’ is orthogonal to Null H; (n). Therefore
the third term vanishes:

/ X - (—i(curlvg)Jws) = —s/ n|x/|? —33/ (curl )| x|?
’ QI Q/

+O(|s]?). (E.13)
Using X - Jws = —X X ws, the fourth term of (E.3) becomes
/ X - (¢%Ws x wy)Jws :/ —g2 (X x ws) x (Ws X ws). (E.14)

Plugging in the Taylor expansions (9.7) gives
| @ cwdge, = [~ swocr 00s)

X (52 x x + O(1s|"). (E.15)

Recall from Eq. (5.24) that  is of the form x = (w,iw), so X x x = i|x|?. This
fact and Lemma E.1 gives

| @m xwga = [ @0t e
The s* terms of (E.6), (E.9), (E.13) and (E.16) must sum to 0, and so
(9.11) results. O

Appendix F: Proof of (10.3)

Proof of (10.3). We shall calculate each term in the integral (4.8) up to order

s% using Lemma E.1 and the Taylor expansions (9.7).

Plugging the Taylor expansions (9.7) into the first term of (4.8) gives

// | curl, w|* = /Q/ |s curlyn x + O([s]?)]?. (F.1)

Recall from Eq. (5.24) that curl,» x = 0. Therefore, applying Lemma E.1 gives
/ | curl, wy|? = O(|s[%). (F.2)
Plugging the Taylor expansions (9.7) into the second term of (4.8) gives
1 1
/ —|curl z,|? = / —[s? curl 2’ + O(|s|") . (F.3)
’ 2 Q/ 2
Expanding the square and applying Lemma E.1 gives

1 1
/ ~| curl z4|? 234/ ~|curl /| + O(|s[%). (F.4)
’ 2 Q/ 2
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Plugging the Taylor expansions (9.7) into the third term of (4.8) gives

1 1
—|eurlas* = [ =
’ 2 /2

Recall that curla” = n. Expanding the square gives

1 1
/ —| curl a,|? :/ fn——l—s D ewld + 542 curla”
a2 2 e? e e

1 2
curl —a™ + s? curla’ + s* curla” + O(|s[%)| . (F.5)
e

1
—|—s4§| curla’|* + (9(|s|6)} . (F.6)

The second and third terms vanish because a’ and a” are £'-periodic. There-
fore, applying Lemma E.1 gives

/ L curlag? = 27 ) +s4/ Lema2+o(sf).  ®7)
Q/ 2 s 2 62 Q/ 2 ' '
Plugging the Taylor expansions (9.7) into the fourth term of (4.8) gives
2
1 1 V2n
/ 39°0alws|” = / 59" l + %€+ )+ O(s)
ol o4 g
x |sx + s>w’ + O(]s]%)|2. (F.8)

Expanding the square terms gives
1 1 2n V2
/ 592¢3\ws\2=/ 39’ l +572—— (5 +¢') + O(ls[*)
o Q
x [s%x]? + s*2Re(x - w') + O(|s|® )] (F.9)

Expanding this product and applying Lemma E.1 gives

1o 2 _ 2 2
| ettt =s [ iy
+5t [ gVER(E + 0 + 2nRe(x- )]+ O (F.10)
Q/

Recall that x € Null(H;(n)) and that w’ is orthogonal to Null(Hy(n)). There-
fore the third term vanishes:

1
| gttt =5 [ a st [ gVam(e + o)+ O(s). (R0
Q/ (944 Q/

Plugging the Taylor expansions (9.7) into the fifth term of (4.8) and
expanding the square terms gives

L 50 2_/ L s
/9/4(305209 oslzsl = Q,4cos29‘q

< Bn + szz{n@' )+ o(s‘*)] SO (F2)
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Expanding this product and applying Lemma E.1 gives

1 2.,2) 12 _ 4
/9/4(:05299 Oslzl” = s

Plugging the Taylor expansions (9.7) into the sixth term of (4.8) gives

ik 1>+ O(|s]%). (F.13)

mxwf / 2% x x + O(ls|)P, (F.14)
Q7 Q7

Recall from Eq. (5.24) that y is of the form xy = (w,iw), so X x x = i|x/|>.
Therefore, applying Lemma E.1 gives

/ s x w, 2 = s / X" + O(s ). (F.15)
Q/ Q/

Plugging the Taylor expansions (9.7) into the seventh term of (4.8) gives

1
/ i(curl vg)ws X wg = / i [gsin@curl —a" 4 s* curl v/ + O(|s|4)}
’ ’ &
x [sx + s*w” + O(|s]?)] x [sx + 3w’ 4+ O(|s]*)]. (F.16)

where, recall, v := g(a’ sin 0+ 2’ cos ). Recall that curla™ = n and e = gsin 6.
Expanding the wedge product of the second and third terms gives

2
/ i(curl vg)ws X ws :/ 7 {n +s?curl v + (9(|s|4)}
’ ’ g
X [321 x x + st (x xw +w x x) + O(|s|6)] . (F.17)

Recall from Eq. (5.24) that  is of the form x = (w,iw), so ¥ x x = i|x|? and
X X w' = 1x - w’. Therefore

/ i(curl vg)ws X wg = / [in + s%icurl v’ 4+ O(|s|?)]
o o
x [s%i|x|* + s*2Re(ix - w') + O(|s]%)]. (F.18)

Expanding this product and using Lemma E.1 gives
/ i(curl ve)ws x wg = —32/ n|x|? — 54/ [2in Im (Y - w')

-5 /Q/(curlu’)|x|2 + O(|s]%). (F.19)

Recall that y € Null(H;(n)) and w’ is orthogonal to Null(H;(n)). Therefore
the second term vanishes:

/ i(curl vs)wWs X wg = —32/ n|x|* — 54/ (curl /)| x|?

+0O(|s]%). (F.20)
Plugging the Taylor expansions (9.7) into the eigth term of (4.8) gives

/ Vo2 = / 2V 4+ O(s|)P. (F.21)
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Expanding the square and using Lemma E.1 gives
Vol = 34/ V|2 + O(|s[°). (F.22)
o Qr

Plugging the Taylor expansions (9.7) into the ninth term of (4.8) and
expanding the inner squares gives

1
| -

2
1,12 V2 2 V2
_/ 5 [g’;ﬂ% € ) - g =2 Ol

2

:/ Iy [522\/927”1//+O(|s|4) : (F.23)

2

Expanding the outer square gives and using Lemma E.1 gives
1 4 n
| e -e)=st [ Zhum o). (F.21)
’ QI

Adding (F.2)—(F.24) and dividing by || gives (10.3), where R, collects
the O(|s]%) remainder terms. R. has continuous derivatives of all orders be-
cause it is a sum of integrals of the form (E.1) with f, and gs coming from the
continuously differentiable remainder terms O(|s|?) of (9.7). O

Appendix G: Spectral Analysis of the Operator — A=

Recall from the main text, but in vector notation, that a™ := gx{ where
(xl,xz)l- = (—CEz,.’El), Vq =V — Zq = (Vl, VQ), Vj = 8j —z'qj,aj = 830], and
Ay = V2 = —V:V,. The next proof follows Section 5 of [18].

Proof of Proposition 5.4. The self-adjointness of the operator —A,» is well-
known. To find its spectrum, we introduce the complexified covariant deriva-
tives (harmonic oscillator annihilation and creation operators), d,» and 97, =
—Ogn, with

dan = (Varn )1 +i(Var )2 = Op1 + 10,2 + %n(xl + ia?). (G.1)

One can redily verify that these operators satisfy the following relations:
[Oar s (0gn)*] = curla™ = n; (G.2)
~Agn —n = (Ogn)*Oan. (G.3)

As for the harmonic oscillator (see, e.g. [23]), this gives explicit informa-
tion about the spectrum of —Agn, namely (5.26), with each eigenvalue is of
the same multiplicity. Furthermore, the above properties imply (5.27).

We find Null 9,». A simple calculation gives the following operator equa-
tion

R OB T I T L PP
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(The transformation on the left-hand side is highly non-unique.) This imme-
diately proves that -

(9an1b == O7 (G4)
if and only if 6 = e*%(izle*(IQ)Q)z/; satisfies (9,1 +10,2)0 = 0. We now identify
2 € R? with z = 2! + 422 € C and see that this means that 6 is analytic and

™n 2 2
W (2) = e 7T =02 7)) 2 = (2 +ia?) )y | —. (G.5)
Imr
where we display the dependence of 6 on 7. The quasiperiodicity of ¥ transfers
to 0 as follows:

0(z+1,7) =6(z,7), 0(z +7,7) = e 2TMZeTINTTY (2 7).

The first relation ensures that 6 have a absolutely convergent Fourier
expansion of the form 6(z,7) = >.~_ _ ¢,,e?™™%. The second relation, on
the other hand, leads to relation for the coefficients of the expansion: ¢, 1, =
e~ nmze2mnT e which together with the previous statement implies (5.29).

O

Next, we claim that the solution (G.5) satisfies

P(x) = p(—a). (G.6)
By (G.5), it suffices to show that 0(z) = 6(—z). We show this for n = 1.
Denote the corresponding 6 by 6(z, 7). Iterating the recursive relation for the
coefficients in (5.29), we obtain the following standard representation for the

theta function
o0

Bz,r)= Y milamirme), (G.7)

We observe that 6(—z,7) = 6(z,7) and therefore 1o(—z) = o(x). Indeed,
using the expression (G.7), we find, after changing m to —m/, we find

0(7277_) _ Z eQﬂ'i(%mQTfmz) _ Z eQwi(%m/Q‘rer'z) _ 9(277_)' (G8)

m=—o0 m’'=—o0
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