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Abstract. We consider the classical vacua of the Weinberg–Salam (WS)
model of electroweak forces. These are no-particle, static solutions to
the WS equations minimizing the WS energy locally. We study the WS
vacuum solutions exhibiting a non-vanishing average magnetic field of
strength b and prove that (i) there is a magnetic field threshold b∗ such
that for b < b∗, the vacua are translationally invariant (and the magnetic
field is constant), while, for b > b∗, they are not, (ii) for b > b∗, there
are non-translationally invariant solutions with lower energy per unit vol-
ume and with the discrete translational symmetry of a 2D lattice in the
plane transversal to b, and (iii) the lattice minimizing the energy per
unit volume approaches the hexagonal one as the magnetic field strength
approaches the threshold b∗. In the absence of particles, the Weinberg–
Salam model reduces to the Yang–Mills–Higgs (YMH) equations for the
gauge group U(2). Thus, our results can be rephrased as the correspond-
ing statements about the U(2)-YMH equations.

Mathematics Subject Classification. 81T13 (primary), 35Q40, 70S15
(secondary).

1. Introduction

The Weinberg–Salam (WS) model of electroweak interactions [22,35,47] was
the first triumph of the program to unify the four fundamental forces of na-
ture. It is a key part of the standard model of elementary particles. It unifies
electromagnetic and weak interactions, two of the three forces dealt with in
the standard model. It involves particle, gauge and the Higgs fields.
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While the gauge fields describe the electroweak interactions, the role of
the Higgs field is to convert the original massless fields (zero masses are re-
quired by the relativistic invariance) to massive ones. This phenomenon is
called the Higgs mechanism. This mechanism, together with the Goldstone
theorem, leads to all gauge particles but one acquiring mass, resulting in two
massive bosons—denoted W and Z—and a massless one—the photon. The W
and Z particles where discovered experimentally 16 years after their theoretical
prediction.

In this paper, we consider the vacuum solutions of the classical WS model
with a non-vanishing average magnetic field 〈�b〉. These are static, no-particle
solutions minimizing the WS energy locally for a fixed �b. They are also no-
particle solutions of the entire standard model.1

We prove that (i) there is a magnetic field threshold b∗ such that for
|�b| < b∗, the vacua are translationally invariant, while, for |�b| > b∗, they are
not, (ii) for |�b| > b∗, there are non-translationally invariant solutions with
lower energy per unit volume and with the discrete translational symmetry of
a 2D lattice in the plane transversal to the magnetic field, and (iii) the lattice
minimizing the energy of the latter solutions per unit volume approaches the
hexagonal one as the magnetic field strength approaches the threshold b∗. We
expect that these solutions are stable under field fluctuations and, in fact,
minimize the energy locally.

The phenomenon above was investigated extensively in the physics litera-
ture (see, e.g. [5–12,19,26–29,32,41,42] and the references therein). It is similar
to the one occurring in superconductivity and the solutions whose existence
we establish are analogous to the superconducting Abrikosov vortex lattices
([1], see, e.g. [37], for a review). It is estimated in [26] that the spontaneous
symmetry breaking takes place at the critical average magnetic field of ap-
proximately 1024 Gauss = 1020 Tesla. By comparison, the strongest magnetic
field produced on Earth is 1014 Tesla.

Note that, in the absence of particles, the WS system reduces to the
Yang–Mills–Higgs (YMH) one with the gauge group U(2). So ultimately, these
are the equations we deal with.

The only rigorous result [43,44] on the classical WS model deals with the
vortices in the self-dual regime, where the WS (or corresponding YMH) equa-
tions are equivalent to the first-order equations, and it uses this equivalence in
an essential way. (The self-dual regime in this context was discovered in [6–8],
see also [41,42].)
Open problems and further directions:

(a) Stability of the emerging solutions.
(b) Existence of vortex lattices at |�b| � b∗.

1The no-particle sector of the standard model splits into the U(2)-YMH (electroweak) and
U(3)-YM (strong, or QCD) parts. Correspondingly, the vacuum of the standard model is
the product of the electroweak and strong vacua and the vacuum energy is the sum of the
corresponding energies.)
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(c) Quantum corrections to the values of the classical critical magnetic
field b∗ and the optimal lattice shape parameter τ∗.

For the stability and existence problems, (a) and (b), see, e.g. [38,40]
and [39], respectively. The last problem brings up the regime of ‘sparse’ vortex
lattices as opposite to the case of |�b| close to (and >) b∗ resulting in densely
packed vortices: the lattice step → 0 as |�b| → b∗ and → ∞ as |�b| → ∞. Hence,
the existence of vortex lattices at |�b| � b∗ is closely related to the problem of
existence of vortices (elementary excitations).

For existence of Abrikosov lattices in the Ginzburg–Landau and Chern–
Simons equations, see [33,37].

For the quantum corrections, problem (c), it would be natural to start
with a BCS-type, or quasi-free, version of the WS model and a Bogoliubov-
type expansion of a regularized (say, lattice) WS model around it, see, e.g.
[14,15].

The paper is organized as follows: In Sect. 2, we formulate the problem
and describe results. In Sects. 3–4, we fix the gauge and pass from the original
Yang–Mills fields to the W and Z (massive boson) and A (photon) fields and
rescale the resulting equations. The proofs of the main results are given in
Sect. 5 (Theorem 2.1), Sects. 6–10 (Theorem 2.2) and Sect. 11 (Theorem 2.3).
In “Appendix A”, we discuss various covariant derivatives used in the main
text, and in “Appendix B”, we review the time-dependent YMH equations and
derive the expression for the conserved energy as well as the YMH equations
used in the main text. Furthermore, there we write the YMH equations in
coordinate form and derive a convenient expression for the energy functional.
In “Appendices D.1–D.2”, we derive the WS equations in 3D and 2D, respec-
tively, in terms of the fields W , Z, A and ϕ. In the remaining appendices, we
carry out technical computations.

Throughout the paper, we use the Einstein convention of summing over
repeated indices.

2. No-particle and Vacuum Sectors of the Weinberg–Salam
Model

The no-particle sector of the Weinberg–Salam (WS) model involves the inter-
acting Higgs and SU(2) and U(1) gauge fields, Φ and V and X, while the
particle fields are set to zero. The field Φ is a vector function defined on the
Minkowski space-time R

3+1 with values in C
2, and the fields V and X are

one-forms on R
3+1 with values in the algebras su(2) and u(1), respectively. We

write

Q = gV + g′X,

where g and g′ are coupling constants, which is a one-form with values in u(2).
We consider SU(2) as a matrix group and U(1) as multiples of the identity
matrix 1 acting on C

2.
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These fields satisfy the WS equations, which are the Euler–Lagrange
equations for the action functional

S(Q,Φ) =
∫

M

(〈∇QΦ,∇QΦ〉η
Ω1

V
− 1

2
λ(‖Φ‖2

C2 − ϕ2
0)

2 + 〈FQ, FQ〉η
Ω2

g

)
, (2.1)

where M is a bounded domain in spacetime R3+1 equipped with the Minkowski
metric η of signature (−,+,+,+), λ and ϕ0 are positive parameters, and the
remaining symbols are defined as follows:

∇Q is the covariant derivative mapping C
2-valued functions (sections)

into C
2-valued one-forms defined as

∇Q = d + Q, (2.2)

with d, the exterior derivative; FQ is the curvature 2-form of the connection
one-form Q, given by

FQ = dQ +
1
2g

[Q,Q], (2.3)

where [A,B] is defined in local coordinates {xi} as

[A,B] := [Ai, Bj ]dxi ∧ dxj = [B,A], (2.4)

with A = Aidxi and B = Bidxi;
Ωp

U ≡ U⊗Ωp denotes the space of U -valued p-forms with the Minkowski,
indefinite inner product,

〈A,B〉η
Ωp

U
:= 〈Aα(x), Bα(x)〉U , (2.5)

where A = Aα(x)dxα and B = Bα(x)dxα are U -valued p-forms, α is a p-form
index and 〈·, ·〉U is the standard, positive definite inner product on U with the
indices raised and lowered with help of the Minkowski metric η on M . For
instance, for U = su(2), the inner product is given by

〈A,B〉η
Ωp

su(2)
:= 2Tr(Aα(x)∗Bα(x)) = −2Tr(Aα(x)Bα(x)). (2.6)

Solutions of the no-particle WS equations solve also the full WS system
as well as that for the standard model of the particle physics.

The vacuum sector of the Weinberg–Salam (WS) model consists of static,
no-particle solutions.

The static Higgs and SU(2) and U(1) gauge fields Φ, V and X are now
defined on the physical space R3 with the same respective values as in the time-
dependent case. Geometrically, V,X and Q can be thought of as connection
one-forms on the trivial bundles R

3 × SU(2),R3 × U(1) and R
3 × U(2).

The fields Φ, V and X satisfy the static no-particle WS equations, which
are the Euler–Lagrange equations for the static WS energy functional origi-
nating in (2.1)2

EN (Q,Φ) :=
∫

N

(‖∇QΦ‖2
Ω1

C2
+

1
2
λ(‖Φ‖2

C2 − ϕ2
0)

2 +
1
2
‖FQ‖2

Ω2
u(2)

)
, (2.7)

2For a discussion of the time-dependent theory and a derivation of the energy functional
(2.7), see [24,28,34,36] and “Appendix B”.
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where N is a bounded domain in R
3 with appropriate boundary conditions

(specified in (2.17) below) and ‖ · ‖Ωp
U

is the standard norm on the space
Ωp

U := U ⊗ Ωp of U -valued p-forms at x ∈ N (e.g. for B = Bi(x)dxi ∈ Ω1
U ,

we have ‖B‖Ω1
U

:= (
∑

i ‖Bi(x)‖2
U )1/2 with the usual Euclidean metric and

with the indices running through 1, 2, 3), while now, (2.5) (and (2.6)) become
the usual inner products. The symbols ∇Q and FQ are as defined above but
without the time component.

Since Q = gV + g′X and X has the values in the centre, u(1), of the
algebra u(2), we have FQ = gFV + g′FX , where

FV := dV +
g

2
[V, V ] and FX := dX (2.8)

are the curvatures of the connections V and X3 and ‖FQ‖2
Ω2

u(2)
= ‖FV ‖2

Ω2
u(2)

+

‖FX‖2
Ω2

u(1)
.

We introduce the covariant derivative dQ mapping u(2)-valued k-forms
into u(2)-valued (k + 1)-forms, k ≥ 1, as

dQB := dB + [Q,B] = dV B := dB + g[V,B]. (2.9)

This formula originates in the equation (δQFQ)(B) = dQB, where δQ is
the Gâteaux derivative with respect to Q. For 0-forms, we set dQ = ∇Q.

The Euler–Lagrange equations for energy functional (2.7) are given by
(see “Appendix B”4)

∇∗
Q∇QΦ = λ(ϕ2

0 − ‖Φ‖2)Φ, (2.10)

d∗
QFQ = J(Q,Φ), (2.11)

where ∇∗
Q is the adjoint of ∇Q and maps C

2-valued one-forms into C
2-valued

functions, d∗
Q is the adjoint of dQ and maps u(2)-valued two-forms into u(2)-

valued one-forms, and J(Q,Φ) is the electroweak current, which is the u(2)-
valued one-form given by

J(Q,Φ) := − ig

2
τa Im〈τaΦ,∇QΦ〉 − ig′

2
τ0 Im〈τ0Φ,∇QΦ〉, (2.12)

where summing over repeated indices is understood, τ0 := 1 and τa, a = 1, 2, 3,
are the Pauli matrices,

τ1 :=
(

0 1
1 0

)
, τ2 :=

(
0 −i
i 0

)
, τ3 :=

(
1 0
0 −1

)
. (2.13)

(The Pauli matrices, multiplied by −i/2, form an orthonormal basis in su(2)
with the inner product 〈g, h〉su(2) := 2Tr(g∗h) = −2Tr(gh).) We call system
(2.10)–(2.11) the (static) WS equations.

3For more discussion of covariant derivatives and their curvatures, see “Appendices A” for
the general case, or “Appendix C”, for the case of the gauge group G = U(2).
4These equations could be converted formally back into the time-dependent ones by taking
the adjoints in the Minkowski metric instead of the Euclidian one, see (B.4)–(B.5), “Appen-
dix B”.
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The energy functional (2.7) and Euler–Lagrange equations (2.10)–(2.11)
are invariant under the group of rigid motions and the gauge transformations
(gauge symmetry)

(V (x),X(x),Φ(x)) �→ (Vγ(x),Xγ(x),Φγ(x)), (2.14)

where γ = γ(x) = h1(x)h2(x), with h1(x) ∈ SU(2), h2(x) ∈ U(1), and⎧⎪⎨
⎪⎩

V (x) �→ h1(x)V (x)h−1
1 (x) − i 2

g h1(x)dh−1
1 (x),

X(x) → X(x) − i 2
g′ h2(x)dh−1

2 (x),

Φ(x) → h1(x)h2(x)Φ(x).

The physical quantities here are (a) the Higgs field density ‖Φ‖, (b) the
magnetic field Tr FQ and (c) the YM current J(Q,Φ). It is easy to check that
these quantities are gauge invariant. We say that a solution (Q,Φ) to (2.10)–
(2.11) is homogeneous if ‖Φ‖, TrFQ and J(Q,Φ) are independent of x. (We
say that TrFQ is independent of x, if it is a multiple of a constant 2-form, see
(2.16).) Otherwise, we say that (Q,Φ) is inhomogeneous.

Furthermore, we say that a solution (Q,Φ) is gauge-translation invariant
if it is invariant under translations up to gauge transformations.

Clearly, a solution (Q,Φ) which is gauge-translation invariant is also ho-
mogeneous. The converse in general might not be true.

We are interested in the vacuum solutions of the WS equations with a
non-vanishing average magnetic field,

lim
R→R3

1
|R|
∫

R

Tr FQ = −ie
∑
(ijk)

bidxj ∧ dxk,

i.e. solutions minimizing the WS energy locally under the constraint above. In
physical field theories, one expects the vacua to have the maximal available
symmetry. Consequently, we first consider gauge-translation invariant solu-
tions with a fixed (constant) magnetic field.

For �b = (b1, b2, b3) �= 0, Eqs. (2.10)–(2.11) have the gauge-translation
invariant solution given (up to a gauge symmetry) by

U
�b
∗ := (Q�b,Φ�b), (2.15)

where Φ�b is a constant field and Q
�b is a connection with a constant magnetic

field
Tr FQ�b = −ieω�b, where ω�b :=

∑
(ijk)

bidxj ∧ dxk, (2.16)

with the sum taken over all cyclic permutations of (1, 2, 3), and e := gg′√
g2+g′2 .

(e turns out to be the electron charge.) We specify this solution at the end
of this section in Eqs. (2.23) and (2.24). (For it, Q

�b solves the YM equation
d∗

QFQ = 0.)
Fixing the average magnetic field breaks the full special Euclidean sym-

metry (i.e. translations and rotations but not reflections) but maintains the
special Euclidean symmetry in the plane orthogonal to �b and the translational
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symmetry along �b. Looking for the simplest non-trivial solutions, we consider
solutions which do not depend on the coordinate along �b and look for solutions
spontaneously breaking the transversal translational symmetry.

With the notation b = |�b|, we show that for appropriate perturbations:
(i) (2.15) is linearly stable for b < b∗ and unstable for b > b∗, where b∗ :=

g2ϕ2
0/2e;

(ii) At b = b∗, a new inhomogeneous solution (breaking the gauge-translational
invariance) bifurcates, and this solution has the discrete translational
symmetry of a lattice in the plane orthogonal to �b and has lower energy
per unit area;

(iii) The lattice shape minimizing the energy per unit area approaches the
hexagonal lattice as b approaches b∗.
To formulate these results precisely, we introduce some definitions. Since

we consider solutions which do not depend on the coordinate along �b, we can
restrict our analysis to the plane ⊥ �b. We choose the x3-axis along �b and
identify the plane ⊥ �b with R

2.
We fix a lattice L in R

2 and say a triple (Φ(x), V (x),X(x)) is L-gauge-
periodic, or, L-equivariant, if and only if it satisfies the equation

(T gauge
γs

)−1T trans
s (V,X,Φ) = (V,X,Φ), ∀s ∈ L, (2.17)

for some γs ∈ C1(R2, SU(2)×U(1)). Here T gauge
γ is given by (2.14) and T trans

s

is the group of translations, T trans
s f(x) = f(x + s). (When L is clear, we omit

it from the definition above.)
We denote by Hs

L, s ∈ N, the Sobolev space of L-equivariant triples
U ≡ (V,X,Φ) on R

2, with the norm

‖U‖Hs
L :=

( 1
|Ω|

s∑
k=0

∫
Ω

‖dk
QU‖2

) 1
2
, (2.18)

where Ω is an arbitrary fundamental domain of L, dk
Q is the k-th iterate of

the covariant derivative dQ and ‖ · ‖ is the (fibre) norm in the space Ωk+1
su(2) ×

Ωk+1
u(1) × Ωk

C2 , see (2.5) (and (2.6)), and with corresponding the inner product.
Note that L2

L = H0
L.

The resulting Sobolev spaces Hs
L are independent (up to isomorphism)

of the choice of the fundamental domain, Ω. All Sobolev embedding theorems
are valid for Hs

L. They can be proven by passing to a vector bundle over the
torus R

2/L and then to the local charts and then using standard Sobolev
embedding theorems. By the Sobolev embedding H1

L ⊂ Lp
L, p < ∞, and the

definitions 2.7 and 2.18,

EΩ(Q,Φ) < ∞ on H1
L (2.19)

(recall that Ω ⊂ R
2) and is independent of a choice of Ω.

We say a solution U∗ := (V∗,X∗,Φ∗) of the WS system (2.10)–(2.11) is
energetically stable if and only if it is a local minimum of the WS energy EN ,
in the sense that the spectrum of the L2-Hessian of EN at U∗ on L2

L (which
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is real) is non-negative. U∗ is said to be unstable if it is a saddle point of EN

(so that the spectrum of its Hessian has a negative part).
For an L-equivariant triple U and a fundamental domain Ω of L, we

define the energy per fundamental cell by

EL(U) :=
1

|Ω|EΩ(U), (2.20)

where |Ω| denotes the area of Ω. This energy is independent of the choice of
Ω.

In what follows, Ω denotes an arbitrary (but fixed throughout) funda-
mental domain of L, and |L|, the area of a fundamental cell of L, which is
independent of the choice of the cell Ω and is called the covolume of L.

Let MW := 1√
2
gϕ0, MZ := 1√

2 cos θ
gϕ0 and MH :=

√
2λϕ0, where θ is

the Weinberg angle defined by cos θ = g√
g2+g′2 . These are the masses of the

W, Z and Higgs bosons, respectively (this nomenclature will be explained in
the discussion following Eq. (3.10)). Finally, let

b∗ :=
g2ϕ2

0

2e
=

M2
W

e
, e := g sin θ. (2.21)

With the above definitions, we will prove the following:

Theorem 2.1. The gauge-translational invariant solution (2.15) is energeti-
cally stable for b < b∗ and unstable for b > b∗.

Theorem 2.2. Let L be a lattice satisfying 0 < 1 − M2
W

2π |L| � 1 and assume
that MZ < MH .5 Then there exist δ > 0 such that the following holds:
(a) Equations (2.10)–(2.11) have an inhomogeneous solution UL ∈ H2

L in the
δ-ball BH2

L(U �b
∗ ; δ) in H2

L around the homogeneous solution (2.15);
(b) UL is the unique, up to gauge symmetry transformation, inhomogeneous

solution in the δ-ball BH2
L(U �b

∗ ; δ);
(c) UL has energy per unit area less than vacuum solution (2.15): EL(UL) <

EL(U b
∗).

The solutions described in this theorem can be reinterpreted geomet-
rically as representing sections (Φ(x)) and connections ((V (x),X(x))) on a
U(2) vector bundle over a torus (cf. [20]). However, a vector bundle over a
torus is topologically equivalent to a direct sum of line bundles. In our case,
this equivalence follows from Eqs. (3.5)–(3.7).

For the next result, we use the topology on the space of (normalized)
lattices induced by the standard parameterization of lattices defined as follows.
Identifying R

2 with C via (x1, x2) ↔ x1 + ix2 and viewing a lattice L ⊂ R
2 as

a subset of C and using a translation and a rotation, any lattice L ⊂ C can
be reduced to the form L = rLτ , where r > 0, Lτ := Z + τZ and τ ∈ H :=
{τ ∈ C : Im τ > 0}. Furthermore, any two τ ’s produce the same lattice iff they

5This assumption is justified experimentally since MZ = 91.1876 ± 0.0021GeV/c2 [17] and
MH = 125.09 ± 0.31 GeV/c2 [13]
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are related by an element the modular group SL(2,Z) acting on the Poincaré
half-plane H (see, e.g. [4]). Hence, it suffices to restrict τ to the fundamental
domain of SL(2,Z),

H/SL(2,Z) =
{

τ ∈ H : |τ | ≥ 1, −1
2

< Re τ ≤ 1
2

}
. (2.22)

Theorem 2.3. For MZ < MH , the lattice L∗ minimizing the average energy,
EL(UL), approaches the hexagonal lattice Lhex as b → b∗ in the sense that the
shape parameter τ∗ of the lattice L∗ approaches τhex = eiπ/3 in C.

Now, we construct explicitly the solution (2.15). We define

Q
�b =

(
− i

2
τ3A

�b sin θ,− i

2
τ0A

�b cos θ

)
and Φ�b ≡ Φ0 := (0, ϕ0), (2.23)

where A
�b(x) be a (U(1)-) magnetic potential of the constant magnetic field

dA
�b = ω�b and θ is Weinberg’s angle, given by tan θ = g′/g. We have

Lemma 2.4. The pair (Q�b,Φ0) satisfies (2.10)–(2.11). Moreover, the connec-
tion Q

�b has the constant curvature

FQ�b = − i

2
e(τ3 + τ0)ω�b, (with the magnetic field Tr FQ�b = −ieω�b). (2.24)

Proof. (2.24) follows easily from dA
�b = ω�b. To check that (Q�b,Φ0) satisfies

(2.10)–(2.11), we observe that dQ�bΦ0 = (gV
�b + g′X �b)Φ0 = (gA

�b sin θτ3 +

g′A�b cos θτ0)Φ0 = eA
�b(τ3+τ0)Φ0. Since (τ3+τ0)Φ0 = 0, this implies ∇QΦ0 = 0.

This gives (2.10) and reduces (2.11) to d∗
Q�bFQ�b = 0, which follows easily from

(2.24). �
Our approach is based on a careful examination of the linearization of the

WS equations on the homogeneous vacuum. The spectrum of the linearized
problem determines the domains of the linear, or energetic, stability and the
transition threshold. In the instability domain, we apply an equivariant bifur-
cation theory. This gives Theorem 2.2(a) and (b). For Theorems 2.2(c) and 2.3,
we carefully study the asymptotic behaviour of the energy functions for small
values of the bifurcation parameter.

3. Gauge Fixing and W and Z Bosons

In this section, we choose a particular gauge and pass from the fields (one-
forms) V and X to more suitable gauge fields. We eliminate a part of the
gauge freedom by assuming that the Higgs field Φ is of the form

Φ = (0, ϕ), (3.1)

with ϕ real. (This can be done using only the SU(2) part of the gauge group.)
Then

τaΦ �= 0, a = 0, 1, 2, 3, (3.2)
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where, recall, τa, a = 1, 2, 3, are the Pauli matrices generating the Lie algebra
su(2), and τ0 = 1. However, there is one linear combination of τa’s (unique up
to a scalar multiple) which annihilates Φ:

(τ3 + τ0)Φ = 0. (3.3)

Thus, for the gauge Φ = (0, ϕ) the symmetries generated by τ1, τ2, τ3 − τ0 are
broken and the U(1) symmetry generated by τ3 + τ0 remains unbroken. The
unbroken gauge symmetry is given by transformations (2.14) with

h1(x) := e− i
2γ(x)τ3 ∈ SU(2), h2(x) := e− i

2γ(x)τ0 ∈ U(1), (3.4)

where γ ∈ C1(R3,R).
Continuing in the gauge Φ = (0, ϕ) and writing V = − i

2τaV a6 and
X = − i

2τ0X
0, where X0 and V a, a = 1, 2, 3, are real fields (since V takes values

in su(2) and therefore V ∗ = −V ), we pass to the new fields corresponding to
the broken and unbroken generators, τ3 − τ0 and τ3 + τ0, respectively:

Z = V 3 cos θ − X0 sin θ and A = V 3 sin θ + X0 cos θ, (3.5)

where recall, θ is Weinberg’s angle, defined by tan θ = g′/g. Note that Z and
A are real fields. Moreover, it is convenient to pass from the remaining two
components, V 1, V 2, of V to a single complex field

W =
1√
2
(V 1 − iV 2). (3.6)

The gauge invariance of the original field equations with the unbroken
gauge symmetry given by transformations (2.14) with (3.4) leads to the in-
variance under following gauge transformations:

T̃ gauge
γ : (W,A,Z, ϕ) �→ (eiγW,A − 1

e
dγ, Z, ϕ), (3.7)

for γ ∈ C1(R3,R), where eiγW =
∑

eiγWidxi for W =
∑

Widxi, e is the
electron charge. Here, we replaced Φ := (0, ϕ) by ϕ.

The WS energy in terms of W,Z,A and ϕ fields in 3D is given in (D.1),
“Appendix D”. The WS equations in terms of W,Z,A and ϕ in 3D can be
found by taking variational derivatives of this energy w.r.t different fields.

In terms of W,A,Z and ϕ fields, the vacua (2.15) of the Weinberg–Salam
model become (up to a gauge symmetry):

(0, Ab(x), 0, ϕ0), (3.8)

where recall, Ab(x) is a magnetic potential for the constant magnetic field
of strength b in the x3-direction, dAb(x) = bdx1 ∧ dx2, and ϕ0 is a positive
constant from (2.7). We choose the gauge so that Ab(x) is of the form

Ab(x) =
b

2
(−x2dx1 + x1dx2). (3.9)

6Note that the lower indices i, j, k, as in A = Aidxi, refer to vectorial components and
run through 1, 2, while the upper indices a, b, c, as in V = − i

2
τaV a, refer to U(2)-algebra

components.
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We will show that for a large magnetic field b, these homogeneous vacua
become unstable and new, inhomogeneous vacua emerge from them. This is
a bifurcation problem from the branch of gauge-translationally invariant (ho-
mogeneous) solutions, (3.8).

Since we consider the WS system with the fields independent of the third
dimension x3, i.e. in R

2, we can choose the gauge with V3 = X3 = 0 (and
hence W3 = A3 = Z3 = 0).

Also, we will work in a fixed coordinate system, {xi}2
i=1, and write the

fields as W = Widxi, Z = Zidxi and A = Aidxi. For ease of comparing our
arguments with earlier results, and given that we use the standard Euclidean
metric in R

2, we identify (complex) one-forms W,Z and A with the (complex)
vector fields (W1,W2), (Z1, Z2) and (A1, A2). With this, we show in “Appen-
dix D.2” that in this case, WS energy functional (2.7) can be written as

EΩ(W,A,Z, ϕ) =
∫

Ω

[| curlgV 3 W |2 +
1
2
| curl Z|2 +

1
2
| curl A|2

+
1
2
g2ϕ2|W |2 +

1
2
κg2ϕ2|Z|2 +

g2

2
|W × W |2

+ ig(curlV 3)W × W + |∇ϕ|2 +
1
2
λ(ϕ2 − ϕ2

0)
2
]
, (3.10)

where κ := g2

2 cos2 θ , curlU W := (∇U )1W2 − (∇U )2W1, (∇U )i := ∂i − iUi,
∂i ≡ ∂xi (for a u(1)−valued vector field U), ξ×η := ξ1η2 −ξ2η1 and curlV 3 :=
∂1V

3
2 − ∂2V

3
1 . It follows from (3.5) that V 3 = Z cos θ + A sin θ.

Expanding (3.10) in ϕ around ϕ0, we see that the W , Z and φ (Higgs)
fields have the masses MW := 1√

2
gϕ0, MZ := 1√

2 cos θ
gϕ0 and MH =

√
2λϕ0,

respectively.
Using the relation ξ × η = Jξ · η, where · denotes the Euclidean scalar

product in R
2 and J is the symplectic matrix,

J :=
(

0 −1
1 0

)
, (3.11)

we find the Euler–Lagrange equations for (3.10), which give the WS system
(2.10)–(2.11) in 2D in terms of the fields W , A, Z and ϕ

[ curl∗gV 3 curlgV 3 +
g2

2
ϕ2 − ig(curlV 3)J + g2(W × W )J ]W = 0, (3.12)

curl∗ curlA + 2e Im[(curlgV 3 W )JW − curl∗(W 1W2)] = 0, (3.13)

[curl∗ curl+κϕ2]Z + 2g cos θ Im[(curlgV 3 W )JW − curl∗(W 1W2)] = 0, (3.14)

[−Δ + λ(ϕ2 − ϕ2
0) +

g2

2
|W |2 +

1
2
κ|Z|2]ϕ = 0, (3.15)

where, recall, κ = g2

2 cos2 θ , V 3 = Z cos θ + A sin θ and Δ is the standard Lapla-
cian. (For a derivation of (3.12)–(3.15) from (3.10), see “Appendix D.2” and
also [26,43].) Of course, (3.12)–(3.15) can also be derived directly from WS
system (2.10)–(2.11).
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In terms of the (W,A,Z, ϕ) fields, the lattice gauge—periodicity (2.17)
is expressed as:

(T̃ gauge
γs

)−1T trans
s (W,A,Z, ϕ) = (W,A,Z, ϕ), (3.16)

for all s ∈ L, where γs ∈ C1(R2,R) for all s ∈ L, T̃ gauge
γ given in (3.7)

and T trans
s is the group of translations, T trans

s f(x) = f(x + s). We say that
(W,A,Z, ϕ) satisfying (3.16) is an L-equivariant state. By evaluating the effect
of translation by s+ t in two different ways, we see that the family of functions
γs has the co-cycle property7

γs+t(x) − γs(x + t) − γt(x) ∈ 2πZ, ∀s, t ∈ L. (3.17)

Since T trans
s is an Abelian group, the co-cycle condition (3.17) implies that,

for any basis {j1, j2} in L, the quantity

c(γs) =
1
2π

(γj2(x + j1) + γj1(x) − γj1(x + j2) − γj2(x)) (3.18)

is independent of x and of the choice of the basis {j1, j2}, and is an integer. This
topological invariant is equal to the degree of the corresponding line bundle.

Using Stokes’ theorem, one can show, for any A satisfying (3.16)–(3.18),
that the magnetic flux through any fundamental domain Ω of the lattice L is
quantized:

e

2π

∫
Ω

dA = n, (3.19)

where e is defined after (3.7) and n = c(γs) ∈ Z defined in (3.18). The left-hand
side of (3.19) is called the Chern number of the line bundle corresponding to
γs. (We note that n is independent of the choice of Ω.)

The vacuum state (3.8) is L-equivariant if and only if the magnetic field
b is given by the relation

b =
2π

e|L|n, (3.20)

where, by definition, |L| = |Ω| for any fundamental cell Ω. In particular, b is
quantized. For such b, the vector field 1

eAb satisfies (3.19).
Furthermore, due to the reflection symmetry of the problem, we may

assume that b ≥ 0. Clearly, we have:

Lemma 3.1. Equations (2.10)–(2.11) for L-equivariant fields (2.17) in the gauge
Φ = (0, ϕ) are equivalent to Equations (3.12)–(3.15) for L-equivariant fields
(3.16), with the equivalence realized by the transformation (3.5)–(3.6).

Finally, we use the invariance of (3.12)–(3.15) under the gauge trans-
formation (3.7) to choose a convenient gauge for the fields W (x) and A(x).
We say that the fields (W,A,Z, ϕ) and (W ′, A′, Z ′, ϕ′) are gauge-equivalent if
there is γ ∈ C1(R2,R) such that

(W ′, A′, Z ′, ϕ′) = T̃ gauge
γ (W,A,Z, ϕ).

7A function γs : L×R2 → G satisfying the co-cycle property (3.17) is called the automorphy
exponent and eiγs , the automorphy factor.
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Clearly, if (W,A,Z, ϕ) and (W ′, A′, Z ′, ϕ′) are gauge-equivalent, then (W,A,Z,
ϕ) solves (3.12)–(3.15) if and only if (W ′, A′, Z ′, ϕ′) solves (3.12)–(3.15). The
following proposition was first used in [31] and proven in [45] (an alternate
proof is given in “Appendix A” of [46]):

Proposition 3.2. Let (W ′, A′, Z ′, ϕ′) be an L-equivariant state and let b be
given by (3.20). Then, there is a L-equivariant state (W,A,Z, ϕ), gauge-
equivalent to (W ′, A′, Z ′, ϕ′), which satisfies (3.16), with χs(x) = eb

2 s∧x+ks,
i.e. such that, ∀s ∈ L,

W (x + s) = ei( eb
2 s∧x+ks)W (x), (3.21)

A(x + s) = A(x) +
b

2
Js, (3.22)

div A = 0, (3.23)

Z(x + s) = Z(x), ϕ(x + s) = ϕ(x). (3.24)

Here ks satisfies the condition ks+t − ks − kt − eb
2 s ∧ t ∈ 2πZ, for all s, t ∈ L,

the matrix J is given in (3.11).

Note that with the gauge (3.23), the homogeneous vacua (3.8) satisfy
(3.21)–(3.24).

Our goal is to prove the instability of the vacuum state (3.8) and the
existence of L−equivariant (in the sense of (3.16)) solutions to transformed WS
system (3.12)–(3.15) having the properties described in Theorems 2.2 and 2.3.

4. Rescaling

In this section, we rescale transformed WS system (3.12)–(3.15) to keep the
lattice size fixed. Specifically, we define the rescaled fields (w, a, z, φ) to be

(w(x), a(x), z(x), φ(x)) := (rW (rx), rA(rx), rZ(rx), rϕ(rx)), (4.1)

r :=
√

n

eb
=

√
|Ω|
2π

. (4.2)

where in the second equality (4.2), we used (3.20). Clearly, (W (x), A(x), Z(x), ϕ(x))
is L-equivariant if and only if (w(x), a(x), z(x),
φ(x)) is L′-equivariant, where

L′ :=
1
r
L.

Now, the rescaled lattice L′ is independent of b and the size of a fundamental
domain, Ω′, of L′ is fixed as |Ω′| = 2π.

Plugging the rescaled fields into (3.12)–(3.15) gives the rescaled Weinberg–
Salem equations:

[ curl∗ν curlν +
g2

2
φ2 − i(curl ν)J + g2(w × w)J ]w = 0, (4.3)

curl∗ curl a + 2e Im[(curlν w)Jw − curl∗(w1w2)] = 0, (4.4)
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[ curl∗ curl+κφ2]z + 2g cos θ Im[(curlν w)Jw − curl∗(w1w2)] = 0, (4.5)

[ − Δ + λ(φ2 − ξ2) +
g2

2
|w|2 +

1
2
κ|z|2]φ = 0, (4.6)

where ξ := rϕ0 (with r given in (4.2)), ν := g(a sin θ + z cos θ) and, recall,
curlq w = ∇1w2 − ∇2w1, ∇i := ∂i − iqi, ∂i ≡ ∂xi (for a u(1)−valued vector-
field iq) and, recall, w × w := w1w2 − w2w1. We define the rescaled energy
by:

EΩ′(w, a, z, φ; r) := r2EΩ(W,A,Z, ϕ). (4.7)

with (W,A,Z, ϕ) related to (w, a, z, φ) by (4.1) and EΩ(W,A,Z, ϕ) given in
(3.10). Explicitly, we have

EΩ′(w, a, z, φ; r) =
∫

Ω′

(| curlν w|2 +
1
2
| curl a|2 +

1
2
| curl z|2

+
1
2
g2φ2|w|2 +

1
2
κφ2|z|2 +

g2

2
|w × w|2

+ i(curl ν)w × w + |∇φ|2 +
1
2
λ(φ2 − ξ2)2

)
. (4.8)

We note that after rescaling, the average magnetic flux per fundamental
domain becomes n/e and the vacuum solution (3.8),

mn,r :=
(

0,
1
e
an, 0, ξ

)
, (4.9)

where an(x) ≡ An(x) = n
2 Jx,. Furthermore, (3.16) and Proposition 3.2 imply

that (w, a, z, φ) satisfy

w(x + s) = ei(n
2 s×x+cs)w(x) for all s ∈ L′, (4.10)

a(x + s) = a(x) +
n

2e
Js for all s ∈ L′, (4.11)

div a = 0, (4.12)

z(x + s) = z(x), φ(x + s) = φ(x) for all s ∈ L′, (4.13)

where cs satisfies the condition cs+t − cs − ct − n
2 s × t ∈ 2πZ, for all s, t ∈ L′.

Finally, the Sobolev spaces here, denoted again by Hs
L′ , can be obtained

by rescaling the Sobolev spaces defined above or defined directly, again as
above, see (2.18) and the text around it. Similarly to (2.19), by a Sobolev
embedding theorem, the rescaled energy is finite,

EΩ′(w, a, z, φ; r) < ∞ on H1
L′ (4.14)

and is independent of a choice of Ω′.

5. The Linearized Problem

In this section, we prove Theorem 2.1, describing the stability properties of
the vacuum (3.8). Equivalently, we will investigate the energetic stability of
the rescaled vacuum solution (4.9) of the rescaled WS equations (4.3)–(4.6).
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Let m := (w, a, z, φ) and denote by G(b,m) ≡ G(m) the map G : H2
L′ →

C
7 given by the left-hand side of (4.3)–(4.6), written explicitly as

G(b,m) ≡ G(m) = (G1(m), . . . , G4(m)), (5.1)

G1(m) :=
[
curl∗ν curlν +

g2

2
φ2 − i(curl ν)J + g2(w × w)J

]
w, (5.2)

G2(m) := curl∗ curl a + 2e Im[(curlν w)Jw − curl∗(w1w2)], (5.3)

G3(m) := [curl∗ curl +κφ2]z + 2g cos θ Im[(curlν w)Jw − curl∗(w1w2)], (5.4)

G4(m) :=
[
−Δ + λ(φ2 − ξ2) +

g2

2
|w|2 +

1
2
κ|z|2

]
φ, (5.5)

where, recall, J is the symplectic matrix given in (3.11), ξ := rϕ0 (with r
given in (4.2)), ν := g(a sin θ + z cos θ), Δ is the standard Laplacian and the
parameter b enters through periodicity conditions (4.10)–(4.13). Now, the WS
system can be written as:

G(m) = 0. (5.6)

Recall the definition of stability given above Eq. (2.20). To apply it to the
rescaled WS Eqs. (4.3)–(4.6), we observe that the map G is the L2-gradient,
gradL2 EΩ′ , of the energy EΩ′ , see (4.8), considered as a functional of u =
(w, a, z, φ). Namely, 〈G(m), ξ〉L2 = δEΩ′(m)ξ, where δEΩ′(m) is the Gâteau
derivative

δEΩ′(u)ξ ≡ d

dτ
EΩ′(u + τξ)|τ=0, (5.7)

of EΩ′ at m, defined on the space of variations Y tangent to the space of L2
loc

functions of the form (w, a, z, φ) satisfying the gauge—periodicity conditions
(4.10)–(4.13):

Y := L2
n × L2

0 × L2
0 × L2. (5.8)

Here L2
n, L2

0 and L2 are given by

L2
n :=

{
w ∈ L2

loc(R
2,C2) : w(x + s) = ei(n

2 s×x+cs)w(x) ∀s ∈ L′
}

, (5.9)

L2
0 :=

{
α ∈ L2

loc(R
2,R2) : α(x + s) = α(x) ∀s ∈ L′, div α = 0

}
, (5.10)

L2 := {ψ ∈ L2
loc(R

2,R) : ψ(x + s) = ψ(x) ∀s ∈ L′} (5.11)

(see (4.10)–(4.12)).
Since G(m) = gradL2 EΩ′(m), the L2-Hessian for EΩ′ and m is the for-

mally symmetric operator

E ′′
Ω′(m) := δ gradL2 EΩ′(m) = δG(m),

Denote the L2-Hessian at the vacuum solution mn,r (see (4.9)) by

Ln,μ := δG(mn,r).

As seen from its explicit form given below, the operator Ln,μ, acting on the
space Y, is self-adjoint, and therefore, its spectrum is real.
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Thus, applied to the rescaled WS equations (4.3)–(4.6), the definition of
stability can be rephrased as:

the vacuum solution mn,r is energetically stable (respectively, unstable) if
and only if inf spec(Ln,μ) ≥ 0 (respectively, inf spec(Ln,μ) < 0).

We consider the operator Ln,μ on the space Y, with the domain

X := H2
n × H2

0 × H2
0 × H2, (5.12)

where Hs
n, Hs

0 and Hs are the respective Sobolev spaces for the L2-spaces
(5.9)–(5.11), with inner products given (for s ∈ Z≥0) by

〈w,w′〉Hs
n

:=
1

|Ω′|
2∑

i=1

∑
|γ|≤s

∫
Ω′

(∇an)γwi(∇an)γw′
i, (5.13)

〈a, a′〉Hs
0

:=
1

|Ω′|
2∑

i=1

∑
|γ|≤s

∫
Ω′

∂γai∂
γa′

i, (5.14)

〈ψ,ψ′〉Hs :=
1

|Ω′|
∑

|γ|≤s

∫
Ω′

∂γψ∂γψ′, (5.15)

where w# = (w#
1 , w#

2 ), a# = (a#
1 , a#

2 ), Ω′ is an arbitrary fundamental domain
of the lattice L′ and γ is a multi-index. The L′-equivariance of the above
functions implies that these inner products do not depend on the choice of
fundamental domain Ω′.

We compute the linear operator Ln,μ explicitly. In what follows we use
the notation ⊕jAj for diagonal operator-matrices with the operators Aj on
the diagonal.

Passing from the parameter ξ = rϕ0, or r, to the parameter μ := g2ξ2/2
and using that ν

∣∣
a=an/e,z=0

= 1
eang sin θ = an, we find

Ln,μ = ⊕4
j=1Hj , (5.16)

H1(μ) := curl∗an curlan +μ − niJ, (5.17)

H2(μ) := curl∗ curl, (5.18)

H3(μ) := curl∗ curl +
μ

cos2 θ
, (5.19)

H4(μ) := −Δ +
4λμ

g2
, (5.20)

where, recall, curlq w = (∇q)1w2 − (∇q)2w1, (∇q)i := ∂i − iqi, ∂i ≡ ∂xi . (Note
that the matrix iJ is self-adjoint.)

The gauge invariance of Eq. (5.6) and the partial symmetry breaking of
vacuum solution (4.9) imply that Ln,μ=n has the gauge zero mode:

Ln,μ=nΓf = 0, Γf := (0,∇f, 0, 0). (5.21)

For a null vector Γf defined in (5.21) to be in X , f must satisfy div(∇f) =
−Δf = 0. This implies that f is a linear function, f(x) = c · x + d for some
c ∈ R

2 and d ∈ R, and so

Γf ∈ X =⇒ Γf = (0, c, 0, 0). (5.22)
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In this section, we shall prove the following result implying Theorem 2.1:

Theorem 5.1. The operator Ln,μ on the space X has purely discrete spectrum.
For μ �= n, Lμ,n has the multiplicity 2 eigenvalue 0 with the eigenfuctions
(0, ei, 0, 0), i = 1, 2, e1 = (1, 0), e2 = (0, 1) (see (5.22)).

Furthermore, the smallest non-zero eigenvalue given by μ − n, having
multiplicity n. For μ = n, the eigenvalue 0 has the multiplicity n + 2.

Theorem 5.1 follows from Propositions 5.2 and 5.3 given below. �

Proposition 5.2. The operators H2(μ), H3(μ) and H4(μ) have purely discrete
spectra. Furthermore, H3(μ) and H4(μ) are strictly positive and H2(μ) is non-
negative and has the null space {(0, c, 0, 0) : c ∈ R

2} of dimension 2.

Proof. The strict positivity of H3(μ) and H4(μ) and the non-negativity of
H2(μ) are obvious. The discreteness of the spectra and the form of the null
space of H2(μ) follow from the discreteness of the spectrum of the Laplacian
on compact domains and the identity curl∗ curl v = −Δv when div(v) = 0. To
compute the null space of H2(μ), we observe that the solutions of the equations
Δv = 0 and div(v) = 0 are constant vectors in R

2. �

Let ∇q := ∇ − iq = ((∇q)1, (∇q)2), (∇q)j := ∂j − iqj , and Δq := ∇2
q =

−∇∗
q∇q. We also introduce the complexified covariant derivative ∂̄q := (∇q)1+

i(∇q)2.
We have

Proposition 5.3. (i) H1(μ) is a self-adjoint operator on H2
n and its spectrum

is given by
σ(H1(μ)) = {(m − 1)n + μ : m ∈ Z≥0} ∪ {μ}, (5.23)

where n := eb|L|/2π.
(ii) The eigenspace of the eigenvalue −n + μ is n-dimensional and is

spanned by functions of the form8

χ = (β, iβ), curlan χ = i∂̄anβ = 0, (5.24)

and the eigenspace of the eigenvalue μ is of the form

Null (H1(μ) − μ) = {∇anf : f ∈ H3
n}. (5.25)

In the proof of this proposition, we use the following standard result
whose proof, for reader’s convenience, is given in “Appendix G”:

Proposition 5.4. The operator −Δan is self-adjoint on its natural domain and
its spectrum is given by:

σ(−Δan) = { (m + 1)n : m ∈ Z≥0 }, (5.26)

with each eigenvalue is of the multiplicity n. Moreover,

Null(−Δan − n) = Null ∂̄an . (5.27)

8β can be expressed in terms of the Jacobi theta function, see Proposition 5.4 and “Appen-
dix G”.
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In more detail, with z = (x1 + ix2)/
√

2π
Im τ and τ coming from L′ = Z + τZ,

we have

Null(−Δan − n) = e
in
2 x2(x1+ix2)Vn, (5.28)

where Vn is spanned by functions of the form

θ(z, τ) :=
∞∑

m=−∞
cmei2πmz, cm+n = e−inπzei2mπτ cm. (5.29)

Remark 5.5. Functions of the form (5.29) are determined entirely by the values
of c0, . . . , cn−1 and therefore form an n-dimensional vector space..

Proof of Proposition 5.3. First, we will show that H2
n = Y ⊕ Z (the Hodge

decomposition), where

Y :={w ∈ H2
n : divan w = 0}, (5.30)

Z :={w ∈ H2
n : w = ∇anf for some f ∈ H3

n}, (5.31)

with divan w := (∇an)1w1 + (∇an)2w2 = −∇∗
an . We write any w ∈ H2

n as
w = w0 + ∇anf , where f solves the equation Δanf = divan w and w0 is
defined by this relation. By Proposition 5.4, 0 is not in the spectrum of Δan

and therefore the equation Δanf = divan w has the unique solution f ∈ H3
n.

Then, since Δan := divan ∇an , we have divan w0 = 0. This proves H2
n = Y⊕Z.

Now, recall that the operator H1(μ) acts on complex vectors w = (w1, w2).
The definition H1(μ) := curl∗an curlan −niJ + μ and the relations curl∗an =
−J∇an and

curlan ∇an = [(∇an)1, (∇an)2] = −in

yield that (H1(μ) − μ)∇anf = 0, which proves that the μ-eigenspace of H1(μ)
is of the form (5.25) giving the second part of (ii).

By the above the subspace Y is invariant under H1(μ). To compute the
spectrum of the operator H1(μ) on the subspace Y, we use the definitions of
curlan and curl∗an and recall the relation [(∇an)1, (∇an)2] = −in to compute

curl∗an curlan = −Δan − niJ + ∇an divan .

By above, we have H1(μ)w0 = (−Δan − 2niJ − μ)w0, for any w0 ∈ Y.
(We check using divan(−Δan − 2niJ)w0 = (−Δan) divan w0 = 0, that

H1(μ) sends Y to Y and hence, Y is invariant under H1(μ).) Thus, we conclude
that

H1(μ)(w0 ⊕ 0) = (h1 − μ)w0 ⊕ 0, (5.32)

h1 := −Δan − 2niJ. (5.33)

Identifying one-forms with vector fields, we compute

U∗(iJ)U =
(−1 0

0 1

)
, U :=

1√
2

(
1 1
−i i

)
, (5.34)

which gives

U∗h1U =
(−Δan + 2n 0

0 −Δan − 2n

)
. (5.35)
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By Proposition 5.4, we know that

σ(−Δan) = { (m + 1)n : m ∈ Z≥0} (5.36)

and so the spectrum of H1(μ) on Y is given by the first set on the r.h.s. of
(5.23). Hence, by H2

n = Y ⊕ Z, (5.23) follows, giving (i).
Furthermore, by (5.35) and (5.36), any eigenvector χ of h1 corresponding

to the eigenvalue −n must be of the form

χ = U(0, β) =
1√
2
(β, iβ), (5.37)

where β satisfies
− Δanβ = nω. (5.38)

This relation, together with the equation Null(−Δan − n) = Null ∂̄an (see
(5.27)), implies ∂anβ = 0. Since curlan χ = i∂anβ, this gives

curlan χ = i∂anω = 0. (5.39)

Furthermore, by Proposition 5.4, the space of such functions is n-dimensional.
Thus (after rescaling ω by a factor of

√
2) χ is of the form (5.24). This gives

also the first part of (ii) completing the proof of the proposition. �

We see that the operator H1(μ) is non-negative for the magnetic fields
satisfying b < b∗ := g2ϕ2

0/2e = M2
W /e and acquires a negative eigenvalue

μ − n = (b∗/b − 1)n of multiplicity n as the magnetic field increases to b > b∗.
Theorem 2.1 follows by undoing the rescaling (4.1)–(4.2).

6. Setup of the Bifurcation Problem

We substitute a = 1
ean + α (with div(α) = 0), φ = ξ + ψ, ν = an + ν̃ and

ξ =
√

2μ/g into (4.3)–(4.6) and relabel the unknowns w,α, z, ψ as u1, u2, u3, u4

to obtain the system

Hiui = −Ji(μ, u), i = 1, . . . , 4, (6.1)

where u = (u1, u2, u3, u4) ≡ (w,α, z, ψ), the operators Hi on the left-hand side
are defined in (5.17) - (5.20), and

J1(μ, u) := Mw +
g2

2
ψ2w + g

√
2μψw − i(curl ν̃)Jw + g2(w × w)Jw, (6.2)

J2(μ, u) := 2e Im[(curlν w)Jw − curl∗(w1w2)], (6.3)

J3(μ, u) := 2g cos θ Im[(curlν w)Jw − curl∗(w1w2)] + κ
2
√

2μ

g
ψz + κψ2z,

(6.4)

J4(μ, u) := 3λ
√

2μ

g
ψ2 + λψ3 +

g2

2
|w|2

(√
2μ

g
+ ψ

)
+

1
2
κ|z|2

(√
2μ

g
+ ψ

)
,

(6.5)
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with ν̃ := g(α sin θ+z cos θ), ξ×η := ξ1η2−ξ2η1, recall, curlq w = ∇1w2−∇2w1,
∇i := ∂i − iqi and, recalling that w : R2 → C

2,

M := curl∗ν curlν − curl∗an curlan =
(

M22 −M21

−M12 M11

)
, (6.6)

with Mij := iν̃i(∇an)j + iν̃j(∇an)i + i∂iν̃j + ν̃iνj .
Note that system (6.1) can be also written as G(mn,r + u)|ξ=√

2μ/g = 0,
where G is defined in (5.1) and mn,r := (0, 1

ean, 0, ξ).
Applying div to the second equation in (6.1), we find that a solution

(μ, u) should satisfy div J2(μ, u) = 0. To prove that a solution (μ, u) satisfies
this constraint, we consider the following auxiliary problem

F (μ, u) = 0, where F (μ, u) := Ln,μu + P ′J(μ, u), (6.7)

where P ′ = 1 ⊗ P0 ⊗ 1 ⊗ 1, with P0 the orthogonal projection onto the
divergence-free vector fields (P0 = 1

−Δ curl∗ curl), and, recall, Ln,μ = ⊕Hi

and J(μ, u) given in (5.16) and

J(μ, u) := (J1(μ, u), . . . , J4(μ, u)). (6.8)

We consider F (μ, u) as a map from the space R>0 ×X , where X := H2
n ⊕

H2
0 ⊕H2

0 ⊕H2, to the space Y := L2
n ⊕L2

0 ⊕L2
0 ⊕L2, and let F = (F1, . . . , F4),

where
Fi(μ, u) = Hiu + δi,2P0Ji(μ, u), i = 1, . . . , 4. (6.9)

In what follows, we denote the partial (real) Gâteaux derivatives with respect
to # by δ#.

Proposition 6.1. Assume (μ, u) is a solution of the system (6.7) satisfying the
gauge—periodicity conditions (4.10)–(4.13). Then div J(μ, u) = 0 and there-
fore (μ, u) solves the original system (6.1).

Proof. We follow [46]. Assume χ ∈ H1
loc and is L−periodic (we say, χ ∈ H1

per).
The gauge invariance implies that

EΩ′(eisχw, a + s∇χ, z, φ) = EΩ′(w, a, z, φ), (6.10)

where EΩ′(w, a, z, φ) is given in (4.8). Differentiating this equation with respect
to s at s = 0 gives δwEΩ′(w, a, z, φ)(iχw) + δaEΩ′(w, a, z, φ)(∇χ) = 0. Now,
we use the fact that the partial Gâteaux derivative with respect to w vanishes,
δwEΩ′(w, a, z, φ) = 0, and that curl∇χ = 0, and integrate by parts, to obtain

〈J(μ, u),∇χ〉 = 0. (6.11)

(Due to conditions (4.10)–(4.13) and the L−periodicity of χ, there are no
boundary terms.) Since the last equation holds for any χ ∈ H1

per, we conclude
that div J(μ, u) = 0. �

In Sects. 7–8, we solve Eq. (6.7), subject to conditions (4.10)–(4.13).
In conclusion of this section, we investigate properties of the map F (μ, u).

For f = (f1, f2, f3, f4) and δ ∈ R, define the global transformation

Tδf = (eiδf1, f2, f3, f4). (6.12)
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Proposition 6.2. The map F (μ, u) defined in (6.7) has the following properties:
(i) F : R>0 × X → Y is continuously Gâteau differentiable of all orders;
(ii) F (μ, 0) = 0 for all μ ∈ R>0;
(iii) δuF (μ, 0) = Ln,μ for all μ ∈ R>0;
(iv) F (μ, Tδu) = TδF (μ, u) for all δ ∈ R;
(v) 〈u, F (μ, u)〉Y ∈ R (respectively 〈w,F1(μ, u)〉L2

n
∈ R) for all u ∈ X (re-

spectively w ∈ H2
n).

Proof. (i) follows because F is a polynomial in the components of u and their
first- and second-order (covariant) derivatives. (ii), (iii) and (iv) follow from
an easy calculation (in fact, u and Ln,μ were defined so that (ii) and (iii) hold).
For (v), it suffices to show that 〈w,F1(μ, u)〉L2

n
∈ R. To simplify notation, we

return to the coordinates (w, a, z, φ) = (w, 1
ean + α, z,

√
2μ
g + ψ). Then

〈w,F1(μ, u)〉L2
n

=
1

|Ω′|
∫

Ω′
| curlν w|2 +

1
|Ω′|

∫
Ω′

g2

2
φ2|w2|

+
1

|Ω′|
∫

Ω′
i(curl ν)(w × w) +

1
|Ω′|

∫
Ω′

g2|w × w|2. (6.13)

The first, second and fourth terms are clearly real, while the third term is real
because ν is real and w × w is imaginary. �

7. Reduction to a Finite-Dimensional Problem

In this section, we shall reduce solving Eq. (6.7), i.e. F (μ, u) = 0, with u =
(u1, u2, u3, u4) ≡ (w,α, z, ψ) and F : R>0 × X → Y defined in (6.7)–(6.8)),
to a finite-dimensional problem. To this end, we use the Lyapunov–Schmidt
reduction.

Recall that Ln,μ is defined in (5.16). Let P be the orthogonal projection
onto K := Null(Ln,μ=n), which can be written explicitly as

P = P1 ⊕ P2 ⊕ 0 ⊕ 0, (7.1)

P1w := − 1
2πi

∮
γn

(H1(n) − z)−1w dz, (7.2)

P2α := 〈α〉, (7.3)

where H1(n) is defined in (5.17), γn is any simple closed curve in C contain-
ing the eigenvalue 0 and no other eigenvalues of H1(n) (see Proposition 5.3),
and 〈α〉 is the mean value of α in Ω′, 〈α〉 := 1

|Ω′|
∫
Ω′ α. P1 is a projection

onto Null(H1(n)) (spanned by vectors of the form (5.24)). Since H1(n) is self-
adjoint, P1 is an orthogonal projection (relative to the inner product of L2

n).
By Theorem 5.1, K := Null(Ln,μ=n) is (n + 1)-dimensional.

Let P⊥ = 1−P be the projection onto the orthogonal complement of K.
Applying P and P⊥ to the equation F (μ, u) = 0 (see (6.7)), we split it into
two equations for two unknowns as

PF (μ, v + u′) = 0, (7.4)
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P⊥F (μ, v + u′) = 0, (7.5)

where v := Pu, u′ := P⊥u.
Our next goal is to solve (7.5) for u′ in terms of μ and v. For n = 1, K

is two-dimensional and we write v = (v1, v2, v3, v4) ≡ (v1, v2, 0, 0) ∈ K. Let
X ⊥ := P⊥X = X � K and Y⊥ := P⊥Y = Y � K, and let ∂i ≡ ∂xi

.

Proposition 7.1. There is a neighbourhood U ⊂ R>0 × K of (n, 0) such that
for every (μ, v) ∈ U , Eq. (7.5) for u′ has a unique solution u′ = u′(μ, v) =
(u′

1, u
′
2, u

′
3, u

′
4). Furthermore, this solution has the following properties:

u′ : R>0 × K → X ⊥ is continuously differentiable of all orders; (7.6)

‖(∇an)m
j u′

1‖H2
n

= O(‖v‖2
X ), (7.7)

‖∂m
j u′

k‖H2
k

= O(‖v‖2
X ), (7.8)

||∂vi
(∇an)m

j u′
1(μ, vi)‖H2

n
� ‖vi‖X , (7.9)

‖∂vi
∂m

j u′
k(μ, vi)‖H2

0
� ‖vi‖X , (7.10)

‖∂μu′(μ, v)||X � ‖v‖2
X ; (7.11)

where i = 1, ...4, m = 0, 1, j = 1, 2, k = 2, 3, 4, v = (v1, v2, v3, v4), vi ≡ v|vi=0

and H2
k = H2

0, H2
0, H2 for k = 2, 3, 4.

Proof. Define F⊥ : R>0 × K × X ⊥ → Y⊥ by

F⊥(μ, v, u′) := P⊥F (μ, v + u′). (7.12)

By Proposition 6.2 (i) and (ii), F⊥ is continuously differentiable of all or-
ders as a map between Banach spaces and F⊥(μ, 0, 0) = 0 for all μ ∈ R>0.
Furthermore,

δu′F⊥(μ, 0, 0) = P⊥Ln,μP⊥|X ⊥ , (7.13)

which is invertible for μ = n because P⊥ is the projection onto the orthogonal
complement of K = Null(Ln,μ=n). By the Implicit Function Theorem (see, e.g.
[16]), there exists a function u′(μ, v) with continuous derivatives of all orders
such that for (μ, v) in a sufficiently small neighbourhood U ⊂ R>0 × K of
(n, 0), (μ, v, u′) solves (7.5) if and only if u′ = u′(μ, v). This proves the first
statement and property (7.6).

We define the operator

L⊥
n,μ := P⊥Ln,μP⊥|X ⊥ : X ⊥ → Y⊥. (7.14)

Then by (6.7) and (7.13), we can write equation (7.5) as L⊥
n,μu′ =−P⊥P ′J(μ, u).

By Theorem 5.1 and the relation K := Null(Ln,μ=n) = Null(Ln,μ − μ + n),
for μ in a neighbourhood of n, the operator L⊥

n,μ has a uniformly bounded
inverse (L⊥

n,μ)−1 : Y⊥ → X ⊥. Hence, equation L⊥
n,μu′ = −P⊥P ′J(μ, u), with

(μ, v) ∈ U (replacing U with a smaller neighbourhood if necessary), is equiva-
lent to

u′ = −(L⊥
n,μ)−1P⊥P ′J(μ, u); (7.15)
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hence

‖u′‖X � ‖J(μ, u)‖Y , (7.16)

uniformly in μ. Recall that X = H2
n⊕H2

0⊕H2
0⊕H2 and Y = L2

n⊕L2
0⊕L2

0⊕L2.
J(μ, u) is a polynomial in the components of u and their first-order (covariant)
derivatives consisting of terms of degree at least 2, so the left-hand side of
(7.16) can be bounded above by a sum of products of one L2-norm and at
least one L∞-norm of these terms. H1 is trivially continuously embedded in
L2, and by the Sobolev embedding theorem, H1 is continuously embedded in
L∞. Therefore,

‖J(μ, u)‖Y � ‖u‖2
X . (7.17)

Recalling that u = v + u′, this proves (7.7) and (7.8) when m = 0. The
other case is proven similarly.

For v = (v1, . . . , v4), we let vî ≡ v|vi=0, i = 1, . . . , 4. By the Taylor
theorem for Banach spaces (see, e.g. [16]), we have

u′(μ, v) = u′(μ, vî) + δvi
u′(μ, vî)vi + R2(μ, vî)(vi), (7.18)

R2(μ, vî)(vi) :=
∫ 1

0

(1 − t)δ2
vi

u′(μ, vî + tvi)(vi, vi)dt. (7.19)

Let (μ, v) ∈ U with ‖vî‖ = ‖vi‖ = 1, and let ε > 0. Then

‖δvi
u′(μ, εvî)εvi‖X = ‖u′(μ, εv) − u′(μ, εvî) − R2(μ, εvî)(εvi)‖X

≤ ‖u′(μ, εv)‖X + ||u′(μ, εvî)‖X

+ ε2‖vi‖2 sup
0≤t≤1

(1 − t)‖δ2
vi

u′(μ, εvî + tεvi)‖2
X ∗⊗X ∗⊗X

� ε2. (7.20)

with the norm taken in the appropriate space for vi. Taking the supremum
over all vi with ||vi|| = 1 gives

‖δvi
u′(μ, εvî)‖X � ε, ‖vî‖X = 1, (7.21)

proving (7.9)–(7.10) for m = 0. The other cases are proven in exactly the same
way.

Again by Taylor’s theorem,

∂μu′(μ, v) = ∂μu′(μ, 0) + ∂μδvu
′(μ, 0)v + R̃2(μ, 0)(v), (7.22)

R̃2(μ, 0)(v) :=
∫ 1

0

(1 − t)∂μδ2
vu′(μ, tv)(v, v)dt. (7.23)

By Eqs. (7.8) and (7.9)–(7.10) with m = 0, we have u′(μ, 0) = 0 and δvu′(μ, 0)
= 0, so

‖∂μu′(μ, v)‖X = ‖R̃2(μ, 0)(v)‖X (7.24)

≤ ‖v‖2
X sup

0≤t≤1
(1 − t)‖∂μδ2

vu′(μ, tv)‖2
X ∗⊗X ∗⊗X (7.25)

� ‖v‖2
X , (7.26)

proving (7.11). �
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We plug the solution u′ = u′(μ, v) into Eq. (7.4) to get the bifurcation
equation

γ(μ, v) := PF (μ, v + u′(μ, v)) = 0. (7.27)

Corollary 7.2. In a neighbourhood of (n, 0) in R>0 × X , the pair (μ, u) solves
(6.7) if and only if (μ, v) solves the finite-dimensional Eq. (7.27). Moreover, a
solution of (6.7) can be constructed from a solution (μ, v) of (7.27) by setting
u = v + u′(μ, v), where u′(μ, v) is given by Proposition 7.1.

Since F : R>0 × X → Y and u′ : R>0 × K → Y⊥ have been shown to be
continuously differentiable of all orders, we conclude:

Corollary 7.3. γ : R × K → K is continuously Gâteau differentiable of all
orders.

Furthermore, γ(μ, v) inherits the following symmetry of F (μ, u), which
we will use to find a solution of (7.27):

Lemma 7.4. Let Tδ be given by (6.12). For every δ ∈ R and (μ, v) in a neigh-
bourhood of (n, 0), we have

u′(μ, Tδv) = Tδu
′(μ, v), (7.28)

γ(μ, Tδv) = Tδγ(μ, v). (7.29)

Proof. For Eq. (7.28), we note that by Proposition 6.2 (iv)

P⊥F (μ, Tδv + Tδu
′(μ, v)) = P⊥TδF (μ, v + u′(μ, v))

= TδP
⊥F (μ, v + u′(μ, v)) = 0. (7.30)

(Here we used P⊥Tδ = TδP
⊥, which follows because Tδ = eiδ ⊕ 1 ⊕ 1 ⊕ 1 and

P⊥ = 1 − P where P is defined in (7.1).) Since u′ = u′(μ, Tδv) is the unique
solution to P⊥F (μ, Tδv + u′) = 0 for (μ, v) in a neighbourhood U ⊂ R × K of
(n, 0), we conlcude that u′(μ, Tδv) = Tδu

′(μ, v).
For Eq. (7.29), we note that by (7.28) and Proposition 6.2 (iv),

γ(μ, Tδv) = PF (μ, Tδv + u′(μ, Tδv)) = PF (μ, Tδ(v + u′(μ, v)))

= TδPF (μ, v + u′(μ, v)) = Tδγ(μ, v)

(where again we used PTδ = TδP ). �

8. The Bifurcation Result When n = 1

Theorem 8.1. Assume that n = 1 and |1 − b∗/b| � 1, b∗ := M2
W /e. Then

there exists ε > 0 and a branch (μs, us) := (μs, ws, αs, zs, ψs), with s ∈ [0,
√

ε),
of non-trivial solutions of Eq. (6.1), unique modulo a gauge symmetry in a
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sufficiently small neighbourhood of the rescaled vacuum solution (4.9) in R>0×
X , such that ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ws = sχ + sg1(s2),
αs = g2(s2),
zs = g3(s2),
ααs = g4(s2),
μs = n + g5(s2),

(8.1)

where χ solves the eigenvalue problem H1(n)χ = 0 (it is defined in (5.24), see
Proposition 5.3), μ := g2ξ2/2 = g2r2ϕ2

0/2, g1 : [0, ε) → H2
n and is orthogonal

to Null(H1(n)), g2 : [0, ε) → H2
0, g3 : [0, ε) → H2

0, g4 : [0, ε) → H2, g5 : [0, ε) →
R>0, and gj for j = 1, · · · , 5 are functions, continuously differentiable of all
orders in s, such that gj(0) = 0.

Proof of Theorem 8.1. For the proof below, recall that we denote the partial
(real) Gâteaux derivatives with respect to # by δ#, and let ∂i ≡ ∂xi

.
By Proposition 6.1, solving Eq. (6.1) is equivalent to solving (6.7). By

Corollary 7.2, solving (6.7) is equivalent to solving the bifurcation equation
(7.27). Hence, we address the latter equation.

Recall that P is the projection onto K = Null Ln,μ=n = Null(H1(n)) ×
{constants} × {0} × {0}. The projection onto constant vector fields in H2

0 can
be written as the mean value 〈α〉 := 1

|Ω′|
∫
Ω′ α. Since dim Null(H1(n)) = 1 for

n = 1, we may choose χ ∈ Null(H1(n)) such that

P (w,α, z, ψ) = (sχ, c, 0, 0), (8.2)

s := 〈χ,w〉L2
n

∈ C, c := 〈α〉 ∈ R
2, (8.3)

and χ satisfies ‖χ‖2
L2

n
= 〈|χ|2〉 = 1 (see (5.13)), where, recall, χ is described

in (5.24). Hence, we may write the γ from the bifurcation equation (7.27) as
γ = (γ̃1χ, γ̃2, 0, 0), where γ̃1, γ̃2 : R>0 × C × R

2 → C are given by

γ̃1(μ, s, c) := 〈χ, F1(μ, v(s, c) + u′(μ, v(s, c))〉L2
n
, (8.4)

γ̃2(μ, s, c) := 〈F2(μ, v(s, c) + u′(μ, v(s, c))〉, (8.5)

where, recall, Fj , j = 1, . . . , 4 are defined by (6.9), s ∈ C, c ∈ R
2 and (see

(8.2))

v(s, c) := (sχ, c, 0, 0). (8.6)

Note that γ̃1 and γ̃2 are continuously differentiable of all orders in μ, s and c
by Corollary 7.3. (γ̃2 is independent of μ.) The bifurcation equation (7.27) is
then equivalent to the equations

γ̃1(μ, s, c) = 0, (8.7)

γ̃2(μ, s, c) = 0. (8.8)

Lemma 8.2. There exists a neighbourhood U ⊂ R>0 × R>0 of (n, 0) and a
unique function c : U → R

2 with continuous derivatives of all orders such that

γ̃2(μ, s, c(μ, s2)) = 0 (8.9)
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and
‖∂l

μc(μ, s2)‖R2 = O(|s|2), l = 0, 1. (8.10)

Proof. Recall that F2(μ, u) = H2(μ)α + P0J2(μ, u) (see Equation (6.7)), with
P0 the projection onto the divergence-free vector fields and

u = (w,α, z, ψ) = v + u′, (8.11)

where v = v(s, c) and u′ = u′(μ, v) solves (7.5). By definition, (1 − P0)f =
Δ−1∇div f and therefore 〈(1 − P0)f〉 = 0. Hence 〈P0f〉 = 〈f〉. This and the
relation 〈H2(μ)α〉 = 1

|Ω′|
∫
Ω′ curl∗ curl α = 0 give

γ̃2(μ, s, c) = 〈J2(μ, v(s, c) + u′(μ, v(s, c)))〉. (8.12)

Using (6.3), ν = an + ν̃, curlan w = curlan w − iν̃ × w and that the final term
in (6.3) vanishes after taking the mean, we find

〈J2(μ, u)〉 = 2e Im〈(curlan w − iν̃ × w)Jw〉. (8.13)

Recall u′ = (w′, α′, z′, ψ′). Then (8.6) and (8.11) give w = sχ + w′ and
(using that e = g sin θ) ν̃ = ec + ν′. Using these relations and curlan χ = 0 (by
(5.24)) and (8.12) and (8.13), we find for γ2(μ, s, c) := (2e)−1|s|−2γ̃2(μ, s, c)

γ2(μ, s, c) := −e〈Re[(c × χ)Jχ]〉 + Im s−1〈(curlan w′)Jχ〉 (8.14)

+ Im〈R̄2(μ, s, c)〉, (8.15)

R̄2(μ, s, c) := |s|−2[−i(ec × sχ)Jw′ − i(ec × w′)Jw′ (8.16)

− i(ec × w′)Jsχ − i(ν′ × w′)Jsχ − i(ν′ × sχ)Jw′ (8.17)

− i(ν′ × sχ)Jsχ − i(ν′ × w′)Jw′ + (curlan w′)Jw′]. (8.18)

Note that we expect (8.14) = O(|s|2) and (8.15) = O(|s|4). We now
simplify (8.14). For the first term on the right-hand side, we use (5.24) and
the condition 〈|χ|2〉 = 1 to compute

〈Re[(c × χ)Jχ]〉 = −1
2
c. (8.19)

For the second term on the right-hand side of (8.14), we use 〈fJχ〉 =
〈f(iη, η)〉 = 〈fη̄〉(i, 1) = 〈η, f〉(i, 1) and integrate by parts to compute

〈(curlan w′)Jχ〉 = 〈η, curlan w′〉(i, 1) = 〈curl∗an η, w′〉(i, 1). (8.20)

Abusing notation, we write in what follows w(μ, s, c) ≡ w(μ, v(s, c)).
Then (8.14) becomes

γ2(μ, s, c) =
1
2
ec + Im s−1〈curl∗an η, w′(μ, s, c)〉〉(i, 1) + Im〈R̃2(μ, s, c)〉. (8.21)

Now, Equation (7.7), with m = 0, implies that

| Im〈curl∗an η, w′(μ, s, c)〉〉| = O(|s|2). (8.22)

Furthermore, we show below the following estimate on the remainder:

|| Im〈∂l
cR̃2(μ, s, c)〉||R2 = O(|s|2−l), l = 0, 1. (8.23)

Hence γ2(μ, 0, 0) = 0.
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To apply the implicit function theorem to solve for c as a function of μ
and s, we have to estimate the derivative

∂cγ2(μ, s, c) =
1
2
e1 + Im s−1〈curl∗an η, ∂cw

′(μ, s, c)〉(i, 1)

+ Im〈∂cR̃2(μ, s, c)〉. (8.24)

at (n, s, 0). At the first step, we use the following

Lemma 8.3. Using Dirac’s bra-ket notation, we have

(∂cw
′)(n, s, 0) = −n−1es| curl∗an η〉〈(1, i)| + O(|s|2). (8.25)

Proof of Lemma 8.3. By definition (7.2), P⊥
1 projects onto the orthogonal

complement of the eigenspace of H1(n) corresponding to the eigenvalue 0 and
therefore the operator H⊥

1 (n) is invertible on RanP⊥
1 .

Hence (6.1) with i = 1 can be rewritten as w′ = −(H⊥
1 (n))−1P⊥

1 J1(n, u)
(which is the first component of (7.15)), which gives

∂cw
′ = −(H⊥

1 (n))−1P⊥
1 ∂cJ1(n, u), (8.26)

where u ≡ u(s, c) := v(s, c) + u′(μ, v(s, c)). By (6.2) and (6.6), we have

∂cJ1(n, u) = ∂c[curl∗ν curlν w]. (8.27)

Using w = sχ + w′, ν = an + ec + ν′ and curlν = curlan +iJ(ec + ν′)·,
curl∗ν = curl∗an −iJ(ec + ν′) and that ν′ = O(|s|2), we compute

∂cJ1(n, u)c′ = s∂c[curl∗ν curlν ]χc′ + O(|s|2)
= sie[−Jc′ curlν + curl∗ν Jc′·]χ + O(|s|2) (8.28)

= sie[−Jc′ curlan+ec + curl∗an+ec Jc′·]χ + O(|s|2). (8.29)

Since curlan χ = ∇1iβ − ∇2β = i∂̄anβ = 0 and Jc′ · χ = (−c′
2, c

′
1) · (β, iβ) =

−c′
2β + c′

1iβ = i(c′
1 + ic′

2)β and therefore curl∗an Jc′ · χ = i curl∗an β(c′
1 + ic′

2),
this yields

∂cJ1(n, u)c′∣∣
c=0

= −se curl∗an β(c′
1 + ic′

2) + O(|s|2). (8.30)

By Proposition 5.3(ii), Null (H1(μ) − μ + n) = {χ = (β, iβ) : curlan χ =
i∂̄anη = 0}. The relation curlan χ = 0 implies also 〈χ, curl∗an χ〉 = 〈curlan χ, χ〉
= 0, which, for n = 1, gives that P⊥

1 ∂cJ1(n, u)c′ = ∂cJ1(n, u)c′ and therefore

P⊥
1 ∂cJ1(n, u)c′ = −se curl∗an β(c′

1 + ic′
2) + O(|s|2). (8.31)

By (5.24), we have curl∗an η = i∇anβ, and by (5.25), we have H1(n)∇anβ =
n∇anβ; hence, (H⊥

1 (n))−1 curl∗an β = n−1 curl∗an β. This relation, together with
(8.26) and (8.31), yields

∂cw
′c′ = sen−1 curl∗an β(c′

1 + ic′
2) + O(|s|2), (8.32)

which gives (8.25). �
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Using Eq. (8.25), we calculate the second term on the right-hand side of
(8.24) at (n, s, 0):

Im s−1〈curl∗an β, ∂cw
′(μ, s, c)c′〉(i, 1)

= en−1 Im〈curl∗an β, curl∗an β〉(c′
1 + ic′

2)(i, 1). (8.33)

The inner product term is real. Integrating it by parts and using that, by
Equation (5.38), β satisfies curlan curl∗an β = −Δanβ = nβ and using that
‖β‖2

L2
n

= 1
2‖χ‖2

L2
n

= 1
2 , gives

〈curl∗an β, curl∗an β〉 =〈β,−Δanβ〉L2
n

=
1
2
n. (8.34)

The last two equations and the relation Im(c′
1+ic′

2)(i, 1) = Im
(

i −1
1 i

)

c′ = 1c′ imply

Im s−1〈curl∗an β, ∂cw
′(μ, s, c)〉(i, 1) =

1
2
e1. (8.35)

This, together with (8.24), gives

∂cγ2(n, s, 0) =
1
2
e1 +

1
2
e1 + Im〈∂cR̃2(n, s, 0)〉. (8.36)

Therefore, (8.36) and (8.23) (with l = 1) imply

∂cγ2(n, 0, 0) = e1, (8.37)

proving that ∂cγ2(n, 0, 0) is invertible, as required.
Recall that, by (8.21), (8.22) and (8.23) (with l = 0), we have

γ2(n, 0, 0) = 0. (8.38)

Since ∂cγ2(n, 0, 0) is invertible, by the implicit function theorem there ex-
ists a unique function c̃ : R>0×C → R

2 with continuous derivatives of all orders
such that γ2(μ, s, c̃(μ, s)) = 0 for (μ, s) in a sufficiently small neighbourhood
of (n, 0). Furthermore, the symmetry (7.29) implies that γ2(μ, |s|, c̃(μ, s)) =
γ2(μ, ei arg s|s|, c̃(μ, s)) = γ2(μ, s, c̃(μ, s)) = 0, so by the uniqueness of the
branch c̃(μ, s) we have

c̃(μ, s) = c̃(μ, |s|). (8.39)

In particular, ∂l
μc̃(μ, s), l = 0, 1, restricted to s ∈ R are even functions with

continuous derivatives of all orders; thus ∂s∂
l
μc̃(μ, 0) = 0 and hence ∂l

μc̃(μ, s) =
O(|s|2), since the first two terms of the Taylor expansion are 0. We define
c : R>0×R>0 → R

2 by c(μ, s) := c̃(μ,
√

s), which is a function with continuous
derivatives of all orders satisfying ||∂l

μc(μ, s2)||R2 = O(|s|2), l = 0, 1, and
γ̃2(μ, s, c(μ, s2)) = |s|2γ2(μ, s, c(μ, s2)) = 0, as required. �

Lemma 8.4. For ε > 0 sufficiently small, there exists a unique function μ :
[0, ε) → R>0 with continuous derivatives of all orders such that

γ̃1(μ(s2), s, c(μ(s2), s2)) = 0. (8.40)
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Proof. To simplify notation for this lemma, we set u = vs + u′
s, with v ≡ vs ≡

(sχ, c(μ, s2), 0, 0), u′ ≡ u′
s ≡ u′(μ, vs), c ≡ c(μ, s2).

We first show that γ̃1(μ, s, c) ∈ R for s ∈ R. Since u′ by definition solves
P⊥

1 F1(μ, v + u′) = 0, where P⊥
1 w′ = w′ and P⊥

1 is self-adjoint, we have

〈w′, F1(μ, v + u′)〉L2
n

= 〈w′, P⊥
1 F1(μ, v + u′)〉L2

n
= 0. (8.41)

Therefore, for s �= 0, we find

γ̃1(μ, s, c) = s−1〈sχ, F1(μ, v + u′〉L2
n

= s−1〈sχ + w′, F1(μ, v + u′)〉L2
n
, (8.42)

which is real by Proposition 6.2 (v). Furthermore, by equations (7.29) and
(8.39), we have γ̃1(μ, s, c(μ, s2)) = eiarg(s)γ̃1(μ, |s|, c(μ, |s|2)), so we may re-
strict s to be real.

Next, we show that

γ̃1(n, s, c(n, s2)) = O(|s|2) (8.43)

Indeed,

|γ̃1(n, s, c(n, s2))| ≤ ‖χ‖L2
n
‖F1(n, v + u′)‖L2

n

≤ ‖χ|‖L2
n

[‖H1(n)(sχ + w′)‖L2
n

+ ‖J1(n, v + u′)‖L2
n
)
]
. (8.44)

Recall that H1(n)χ = 0, so that

|γ̃1(n, s, c(n, s2))| ≤ ‖χ‖L2
n

[‖H1(n)‖L2
n⊗(L2

n)∗‖w′‖L2
n

+ ‖J1(n, v + u′)‖ (8.45)

By the definition v ≡ vs ≡ (sχ, c(μ, s2), 0, 0) and equation (8.10), ‖v‖X =
O(|s|); hence, by Proposition 7.1,

‖w′‖L2
n

≤ ‖w′‖H2
n

= O(|s|2). (8.46)

Furthermore, by equation (7.17) and recalling that H1(n)χ = 0,

‖J1(n, v + u′)‖L2
n

≤ ‖J1(n, v + u′)‖H2
n

� ‖v + u′‖2
X = O(|s|2). (8.47)

This proves that γ̃1(n, s, c(n, s2)) is O(|s|2), as required.
In light of equation (8.43), we can define a function γ1 : R>0 ×R>0 → R

with continuous derivatives of all orders by

γ1(μ, s) ≡
{

s−1γ̃1(μ, s, c(μ, s2)), s �= 0,

0, s = 0.
(8.48)

We now find a non-trivial branch of solutions (μ, s) = (μ̃(s), s) by apply-
ing the implicit function theorem to γ1. First, we prove the following proposi-
tion to bound the polynomials of functions appearing below:

Lemma 8.5. Let X be one of the spaces H2
n, H0 or H2 defined before equa-

tion (5.9). Let p(x1, ..., xn) be a polynomial with positive coefficients and let
f1, ..., fn ∈ X. Then ‖p(f1, ..., fn)‖X � p(‖f1‖X , ..., ‖fn‖X).
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Proof. Write p(x1, ..., xn) =
∑

|α|≤N pαxα, where α = (α1, ..., αn) is a multi-
index, xα =

∏n
i=1 xαi

i and pα ≥ 0. Since by the Sobolev Embedding Theorem
(see, e.g. [2]), X is a Banach algebra, we have

‖p(f1, ..., fn)‖X ≤
∑

|α|≤N

pα‖fα‖X

�
∑

|α|≤N

pα

n∏
i=1

‖fi‖αi

X

= p(‖f1‖X , ..., ‖fn‖X),

which implies the desired result. �

Lemma 8.6. There exists ε > 0 and a unique function μ̃ : (−√
ε,

√
ε) → R>0

with continuous derivatives of all orders such that μ̃(0) = n and μ = μ̃(s) solves
γ1(μ, s) = 0 for s ∈ (−√

ε,
√

ε). Moreover, μ̃ is an even function: μ̃(s) = μ̃(−s).

Proof. Recall that F1(μ, u) = H1(μ)w+J1(μ, u) (where H1(μ) and J1(μ, u) are
defined in (5.17) and (6.2)). Using that ∂μF1(μ, u) = (1+ g

2
√

2μ
ψ)w and setting

u = vs +u′
s, with v ≡ vs ≡ (sχ, c(μ, s2), 0, 0), u′ ≡ u′

s ≡ u′(μ, vs), c = c(μ, s2),
we compute

∂μ[s−1F1(μ, v + u′)] = s−1

(
1 +

g

2
√

2μ
ψ′
)

(sχ + w′)

+ s−1
4∑

i=1

δui
F1w(μ, v + u′)(∂μvi + ∂μu′

i)

= s−1

(
1 +

g

2
√

2μ
ψ′
)

(sχ + w′) + s−1δαF1(μ, v + u′)∂μc

+ s−1
5∑

i=1

δui
F1(μ, v + u′)∂μu′

i. (8.49)

By Lemma 8.2, ‖∂l
μc‖R2 = O(|s|2), l = 0, 1. Since ||v||X is O(|s|), by Proposi-

tion 7.1 the terms ‖∂l
μu′

i‖ (l = 0, 1, i = 1, . . . , 4, with the norms taken in the
appropriate spaces), are O(|s|2). By Lemma 8.5, this implies that all terms in
(8.49) containing c, w′, α′, z′, ψ′ or their μ-derivatives vanish at (μ, s) = (n, 0).
Therefore,

∂μ[s−1F1(μ, v + u′)]|(μ,s)=(n,0) = χ (8.50)

and hence

∂μγ1(n, 0) = 〈χ, ∂μ[s−1F1(μ, s)] |(μ,s)=(n,0)〉L2
n

= ‖χ‖2
L2

n
�= 0. (8.51)

Since γ1(μ, s) is continuously differentiable of all orders in μ and s, by the
implicit function theorem, we obtain the first statement of the lemma.

By the symmetry γ1(μ,−s) = −γ1(μ, s) of γ1 and the uniqueness of the
branch μ̃(s), we have μ̃(s) = μ̃(−s), which gives the second statement. �
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We define μ(s) ≡ μ̃(
√

s), which is a function with continuous derivatives
of all orders for s ∈ [0, ε) for the same reasons that c(μ, s) := c̃(μ,

√
s) was

shown to be continuously differentiable of all orders in Lemma 8.2. Further-
more, μ satisfies γ̃1(μ(s2), s, c(μ(s2), s2)) = sγ1(μ(s2), s, c(μ(s2), s2)) = 0, as
required. �

We will now use the branch of solutions to (8.7)–(8.8), provided by Lem-
mas 8.2 and 8.4, and Corollary 7.2 to obtain the corresponding unique branch,
(μs, us), of solutions to (6.7), with

μs ≡ μ(s2), us ≡ vs + u′
s, (8.52)

vs ≡ (sχ, cs, 0, 0), cs ≡ c(μs, s
2), (8.53)

u′
s ≡ u′(μ, vs). (8.54)

(8.52)–(8.54) have continuous s-derivatives of all orders because each compo-
nent function has continuous derivatives of all orders. Symmetry (7.28) with
δ = π and the relation Tπ(f1, f2, f3, f4) = (−f1, f2, f3, f4) imply that (u′

s)1
is an odd function of s and (u′

s)2, (u′
s)3 and (u′

s)4 are even functions of s.
Arguing as in the case of Lemma 8.2 shows that the functions:

g1(s) :=

{
1√
s
(u′√

s
)1, s �= 0,

0, s = 0,
g2(s) := c√

s + (u′√
s)2, (8.55)

g3(s) := (u′√
s)3, g4(s) := (u′√

s)4, g5(s) := μ√
s − n, (8.56)

are well-defined for s ≥ 0 and have continuous derivatives of all orders. By
Proposition 7.1, these functions have the properties listed in Theorem 8.1.
The above definitions and equations (8.52)–(8.54) imply us = (sχ, 1

ean, 0, 0)+
(g1(s), . . . , g4(s)). Hence, this solution is of the form (8.1). Now, by Proposi-
tion 6.1, this also solves system (4.3)–(4.6), completing the proof. �

9. Proof of Theorem 2.2(a), (b)

Recall that MW , MZ , MH are the masses of the W , Z and Higgs bosons, re-
spectively, and that τ is the shape parameter of the lattice L (see the paragraph
before Theorem 2.3 of Sect. 2). We introduce the notation

〈f〉 :=
1

|Ω′|
∫

Ω′
f, (9.1)

the average of f over fundamental domain Ω′ =
√

2π
|Ω|Ω. Furthermore, we

introduce the function (cf. [26])

η ≡ ηmz,mh
(τ) := [m2

wαmz,mh
(τ) + sin2 θ]−1, (9.2)

with, recall, mw :=
√

n, mz :=
√

n
cos θ and mh :=

√
4λn
g the masses of the rescaled

W, Z and Higgs boson fields, w, z and φ, respectively, and

αmz,mh
(τ) := 〈|χ|2Gmz,mh

(|χ|2)〉/(〈|χ|2〉)2. (9.3)
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Here χ is defined in (5.24) and Gm,m′ is the operator-family on the space (5.11)
given by

Gm,m′ := Gm′ − Gm, where Gm := (−Δ + m2)−1. (9.4)

Note that Gm,m′ > 0 for m′ < m. Recall MW := 1√
2
gϕ0, MZ := 1√

2 cos θ
gϕ0

and MH :=
√

2λϕ0.

Proposition 9.1. If MZ < MH , the parameter s of the branch (8.1) is related
to the magnetic field strength by

s2 =
n

g2〈|χ|2〉ηmz,mh
(τ)ω + Rs(ω), ω := 1 − M2

W

eb
, (9.5)

where Rs(ω) is a real, smooth function of ω satisfying

Rs(ω) = O(|ω|2). (9.6)

Before proving Proposition 9.1, we shall see how it implies statements (a)
and (b) of Theorem 2.2.

Proof of Theorem 2.2(a), (b). Since the operator Gmz,mh
is positivity preserv-

ing, the function Gmz,mh
(|χ|2) is positive for MZ < MH , and hence αmz,mh

(τ)
and ηmz,mh

(τ) are positive. Furthermore, when the right-hand side of (9.5) is
positive, we solve (9.5) for s as a function of b, s = s(b), having continuous
derivatives of all orders. When |1 − M2

W

eb | � 1, the right-hand side of (9.5)

is positive if and only if 1 − M2
W

eb > 0.9 Plugging s = s(b) into (8.1) (i.e.
passing from the bifurcation parameter s to the physical parameter b), undo-
ing the rescaling (4.1), and recalling that b∗ = M2

W

e , we arrive at the branch,
UL ≡ (Wb, Ab, Zb, ϕb), of solutions of (3.12)–(3.15), which has the properties
listed in statements (a) and (b) of Theorem 2.2. �

The following statement follows from the proof above:

Lemma 9.2. UL is continuously differentiable of all orders in b for b in an open
right half-interval of b∗

Proof of Proposition 9.1. Consider the solution branch (μs, ws, as, zs) given
in equation (8.1) and described in Theorem 8.1. Using Taylor’s theorem for
Banach space-valued finctions (see, e.g. [16]) and recalling the relation ξ =√

2μ/g, we may expand this branch in s as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ws = sχ + s3w′ + O(|s|5),
as = 1

ean + s2a′ + s4a′′ + O(|s|6),
zs = s2z′ + O(|s|4),
ψs := φs − ξs = s2ψ′ + O(|s|4),
ξs :=

√
2μs/g =

√
2n/g + s2ξ′ + O(|s|4),

(9.7)

9 The condition 0 < 1 − M2
W

eb
� 1 is equivalent to the condition 0 < 1 − M2

W
2π

|L| � 1 of

Theorem 2.2.
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where w′, a′, z′, ψ′, ξ′ and a′′ are the coefficients of s2 and s4, respectively, in the
Taylor expansion of gj(s2), j = 0, ..., 5, in (8.1), and χ is defined in (5.24). Here
O(|s|p) stand for various error terms which, together with their (covariant)
derivatives, have norms of order O(|s|p) when taken in the appropriate spaces.

To rewrite the asymptotics in terms of the parameter b, we analyse how s
depends on b. For this, we use the definitions ξs =

√
2μs/g and μ := 1

2 (gξ)2 =
1
2 (grϕ0)2, with r :=

√
n
eb (see (4.2)) to find the following equation for s2:

ξs =
√

n

eb
ϕ0. (9.8)

To solve this equation for s2, we use the Implicit Function Theorem. By (9.7),
we can write ξs =

√
2n/g + gξ(s2), where recall, gξ(0) = 0 and g′

ξ(0) = ξ′.
Hence, we have to show that ξ′ �= 0.

Lemma 9.3. We have ξ′ �= 0.

Proof. We find relations between ψ′, a′ and z′ entering (9.7). Plugging (9.7)
into Equations (4.4)–(4.6), we obtain at order s4

⎧⎪⎪⎨
⎪⎪⎩

−Δa′ − e curl∗ |χ|2 = 0(−Δ + n
cos2 θ

)
z′ − g cos θ curl∗ |χ|2 = 0(

−Δ + 4λn
g2

)
ψ′ + g

2

√
2n|χ|2 = 0.

(9.9)

We solve these equations, using that curl∗ |χ|2 = curl∗(|χ|2 − 〈|χ|2〉′) and
|χ|2 − 〈|χ|2〉′ ∈ Ran(Δ), for the first one, to find 10

⎧⎪⎨
⎪⎩

a′ = e curl∗ G0(|χ|2 − 〈|χ|2〉′)
z′ = g cos θ curl∗ Gmz

(|χ|2)
ψ′ = − g

2

√
2n Gmh

(|χ|2),
(9.10)

where Gm := (−Δ + m2)−1 acting on the space (5.11) (cf. (9.4)), and mz :=√
n

cos θ and mh :=
√

4λn
g are the masses of the rescaled Z and Higgs boson (Φ)

fields, z and φ, respectively. Next, we use the following relation proven in
“Appendix E”:

〈g
√

2nξ′|χ|2〉 = 〈−g
√

2nψ′|χ|2 + curl ν′|χ|2 − g2|χ|4〉, (9.11)

where, recall, ν′ := g(a′ sin θ+z′ cos θ). First, we evaluate curl ν′. The relations
(−Δ + m2)Gm = 1 and curl curl∗ = −Δ imply curl a′ = e(|χ|2 − 〈|χ|2〉).
Next, the second relation in (9.10) and the relation curl curl∗ = −Δ yield
curl z′ = g cos θ(−Δ)(−Δ+m2

z)
−1|χ|2, which, together with mz :=

√
n

cos θ , gives
curl z′ = g cos θ|χ|2−g n

cos θGmz
|χ|2. Finally, using that e := g sin θ, we conclude

that

curl ν′ = g2|χ|2 − e2〈|χ|2〉 − g2nGmz
(|χ|2). (9.12)

Plugging the last relation and equation (9.10) into the relation (9.11), gives

g
√

2nξ′〈|χ|2〉 = −g2[m2
w〈Gmz,mh

(|χ|2)|χ|2〉 + sin2 θ(〈|χ|2〉)2], (9.13)

10To check the solutions, one may use that curl curl∗ = −Δ.
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where mw :=
√

n is the mass of the rescaled W boson field w and the operator-
family Gm,m′ is defined by (9.4). We solve for ξ′ and write the solution as

ξ′ = − g√
2n

〈|χ|2〉η−1, (9.14)

where η ≡ ηmz,mh
(τ) is defined in (9.2)–(9.3). The operator Gmz,mh

in (9.3) is
positivity preserving and therefore the function αmz,mh

(τ) (and hence ηmz,mh
(τ))

is positive, if and only if mz < mh (equivalently, MZ < MH), in which case
ξ′ < 0. �

We now derive the estimate (9.5)–(9.6) for s2. Equations (9.7) and (9.8)
give ξs as a function of s and b respectively, yielding

ξ2
s =

[√
2n

g
+ gξ(s2)

]2

=
n

eb
ϕ2

0, (9.15)

which can be rearranged to give

2
√

2n

g
gξ(s2) + gξ(s2)2 =

2n

g2
ω, (9.16)

where, recall, ω = 1 − M2
W

eb , with MW = 1√
2
gϕ0. Recall that gξ(0) = 0 and

g′
ξ(0) = ξ′. We have

d

ds2
|s2=0

[
2
√

2n

g
gξ(s2) + gξ(s2)2

]
=

2
√

2n

g
ξ′. (9.17)

Since ξ′ �= 0 and gξ(s2) is continuously differentiable of all orders (see Theo-
rem 8.1), by the implicit function theorem, we may solve (9.16) for s2, with the
solution, s2 = s2(ω), with continuous derivatives of all orders in ω. Explicitly,
(9.16)–(9.17) give

s2 =
g

2
√

2n
ξ′−1 2n

g2
ω + O(|ω|2). (9.18)

Plugging (9.14) into (9.18) gives

s2 =
n

g2

ω

〈|χ|2〉η + Rs(ω), (9.19)

which is (9.5), with Rs(ω) satisfying Rs(ω) = O(|ω|2). Furthermore, since the
solution s2 = s2(ω) is continuously differentiable of all orders in ω, so is the
remainder term Rs(ω). �

10. Asymptotics of the Weinberg–Salam Energy Near
b = M2

W /e

Recall ω = 1 − M2
W

eb , with MW = 1√
2
gϕ0, and ηmz,mh

(τ) is defined in (9.2).
The main result of this section is the following:
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Theorem 10.1. If MZ < MH , then the WS energy (3.10) of the branch of
solutions (8.1) has the following expansion:

1
|Ω|EΩ(Wb, Ab, Zb, ϕb) =

1
2
b2 − 1

2
b2 sin2 θ ηmz,mh

(τ)ω2 + RE(ω), (10.1)

where RE(ω) is a real function with continuous derivatives of all orders satis-
fying

RE(ω) = O(|ω|3). (10.2)

Before proving Theorem 10.1, we derive from it Theorem 2.2 (c).

Proof of Theorem 2.2 (c). Since ηmz,mh
(τ) is positive,11 the second term in

Equation (10.1) is negative, and so for 0 < 1 − M2
W

eb � 1, EWS
Ω is less than the

vacuum energy 1
2b2|Ω|. This proves Theorem 2.2 (c). �

Proof of Theorem 10.1. Let E ′(ws, as, zs, ψs + ξs; r) := 1
|Ω′|EΩ′(ws, as, zs, ψs +

ξs; r), where EΩ′ is the rescaled WS energy given in (4.8). In “Appendix F”,
we derive the following expansion (to order s4) of E ′ evaluated at family (9.7)
of solutions:

E ′(ws, as, zs, ψs + ξs; r) =
1
2

n2

e2
+ s4〈1

2
| curl z′|2 +

1
2
| curl a′|2

+ g
√

2n(ψ′ + ξ′)|χ|2 +
n

2 cos2 θ
|z′|2 + |∇ψ′|2

+
4λn

g2
ψ′2 − |χ|2 curl ν′ +

g2

2
|χ|4〉

+ Rε(s), (10.3)

where Rε(s) = O(|s|6) and has continuous derivatives of all orders, ν′ :=
g(a′ sin θ + z′ cos θ) and, recall, ξs =

√
2μs/g.

To simplify notation, in what follows, we shall suppress the argument
(ws, as, zs, ψs + ξs; r) of E ′.

We claim the following relation:

E ′ =
1
2

n2

e2
− s4 g2

2
〈|χ|2〉2η−1 + Rε(s). (10.4)

Proof of (10.4). We simplify the integral at order s4 in (10.3) by applying eq.
(9.9) for a′, z′ and ψ′ to convenient groupings of terms.

First, we address the z′ terms in (10.3). Integrating by parts and factoring
out z′ gives

1
2

〈
| curl z′|2 +

n

cos2 θ
|z′|2

〉
=

1
2

〈
z′ ·
(
−Δ +

n

cos2 θ

)
z′
〉

. (10.5)

Applying (9.9) for z′ gives
1
2

〈
| curl z′|2 +

n

cos2 θ
|z′|2

〉
=

1
2
〈z′ · g cos θ curl∗ |χ|2〉. (10.6)

11See the discussion following Proposition 9.1 for details.
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Integrating by parts again gives
1
2

〈
| curl z′|2 +

n

cos2 θ
|z′|2

〉
=

1
2
〈g cos θ(curl z′)|χ|2〉. (10.7)

Next, we address the a′ term in (10.3). Integrating by parts gives〈
1
2
| curl a′|2

〉
=
〈

1
2
a′ · (−Δ)a′

〉
. (10.8)

Inserting into this expression (9.9) for a′ gives〈
1
2
| curl a′|2

〉
=
〈

1
2
a′ · e curl∗ |χ|2

〉
. (10.9)

Integrating by parts again gives〈
1
2
| curl a′|2

〉
=
〈

1
2
g sin θ(curl a′)|χ|2

〉
. (10.10)

Next, we address the ψ′ terms. Integrating by parts and factoring out ψ′

gives 〈
|∇ψ′|2 +

4λn

g2
ψ′2 + g

√
2nψ′|χ|2

〉

=
〈

ψ′
(

−Δ +
4λn

g2
+ g

√
2n|χ|2

)
ψ′
〉

. (10.11)

Inserting into this expression (9.9) for ψ′ gives〈
|∇ψ′|2 +

4λn

g2
ψ′2 + g

√
2nψ′|χ|2

〉
=
〈g

2

√
2nψ′|χ|2

〉
. (10.12)

For the ξ′ term in (10.3), we have by (9.11) and (9.14),

〈g
√

2nξ′|χ|2〉 =
1
2
〈g

√
2nξ′|χ|2〉 +

1
2
〈g

√
2nξ′|χ|2〉

=
1
2
〈−g

√
2nψ′|χ|2 + curl ν′|χ|2 − g2|χ|4〉

− 1
2
g2〈|χ|2〉2η−1, (10.13)

where, recall, ν′ := g(a′ sin θ + z′ cos θ). Finally, there are two remaining terms
of the integral at order s4 in (10.3),

〈−|χ|2 curl ν′ +
g2

2
|χ|4〉, (10.14)

which we will not presently simplify.
Adding Eqs. (10.7), (10.10), (10.12), (10.13) and (10.14) and remembering

(10.3) gives Eq. (10.4), as required. �

Plugging (9.19) into (10.4) gives

E ′ =
1
2

n2

e2
−1

2
n2

g2
ω2ηmz,mh

(τ, r) + R̃ε(ω), (10.15)
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where R̃ε(ω) has continuous derivatives of all orders and satisfies R̃ε(ω) =
O(|ω|3).

For the WS energy (3.10), evaluated at (Wb, Ab, Zb, ϕb), we recall that
EWS

Ω = 1
r2 EΩ′ = 1

r2 |Ω′|E ′, which implies

1
|Ω|EΩ =

|Ω′|
r2|Ω|E

′ =
e2b2

n2
E ′, r =

√
|Ω|
|Ω′| =

√
n

eb
. (10.16)

Eq. (10.1) follows by plugging (10.15) into (10.16). Since the remainder term
R̃ε of (10.15) has continuous derivatives of all orders, so does the remainder
term RE of (10.1). �

11. Shape of Lattice Solutions

In this section, we shall prove Theorem 2.3. Recall the shape parameter τ
described in the paragraph preceding (2.22). We return briefly to working
with the rescaled fields to prove that EΩ′(u; r), u = (w,α, z, ψ), given in (4.8)
(and hence EΩ(U)) is continuously Gâteau differentiable of all orders in the
shape parameter τ (restricted to domain (2.22)), which enters through Ω′ (and
Ω), as well as the spaces containing u (and U). Below, we write

uτ,b(x) ≡ (wτ,b(x), aτ,b(x), zτ,b(x), φτ,b(x)), (11.1)

E(τ, b, u) ≡ EΩ′(u; r) =:
∫

Ω′
e(u; r), (11.2)

Uτ,b(x) ≡ (Wτ,b(x), Aτ,b(x), Zτ,b(x), ϕτ,b(x)), (11.3)

E(τ, b, U) ≡ EΩ(U), (11.4)

Xτ ≡ X , (11.5)

to emphasize the dependence of the family of solutions (9.7), the corresponding
energy (4.8) (respectively (3.10)) and the space (5.12) containing these solu-
tions on the shape parameter τ , the magnetic field strength b and the position
in space x ∈ R

2. Also, recall the notation r :=
√

n/eb.
To get rid of the dependency of the space Xτ containing uτ,b, on the

shape parameter τ , we make the change of coordinates

Mτ : Xτ → X1, (Mτu)(x) = u(mτx), mτ =
1√

Im(τ)

(
1 Re(τ)
0 Im(τ)

)
, (11.6)

mapping Ω′ into a square of area 2π. This allows us to define the functions
G′ : C×R× X1 → C×R× Y1 and ε′ : C×R× X1 → C×R× Y1 on the fixed
space X1:

G′(τ, b, v) = MτG(b,M−1
τ v), (11.7)

ε′(τ, b, v) = Mτε(b,M−1
τ v), (11.8)

where, recall, G(b, v) is the map given by the left-hand side of (4.3)–(4.6),
given explicitly in (5.1), and εWS(b, u) := ε(u; r) is the rescaled energy density
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given by the integrand in (4.8), see (11.2) (ε depends on the magnetic field
strength b but does not directly depend on the shape parameter τ).

Lemma 11.1. G′(τ, b, v) and ε′(τ, b, v) are continuously Gâteau differentiable
of all orders in Re(τ), Im(τ), b and v.

Proof. Since G(b, u) and ε(b, u) have continuous b and u derivatives of all
orders, and Mτ is a linear map independent of b and v, it follows that G′(τ, b, v)
and ε′(τ, b, v) have continuous b- and v-derivatives of all orders.

For the τ -derivatives, note that

Mτ ◦ ∂x1 ◦ M−1
τ (vj)(x) =

1√
Im(τ)

∂x1vj(x), j = 1, ..., 4, (11.9)

Mτ ◦ ∂x2 ◦ M−1
τ (vj)(x)

=
1√

Im(τ)
(Re(τ)∂x1vj(x) + Im(τ)∂x2vj(x)), j = 1, ..., 4, (11.10)

are continuously differentiable of all orders in Re(τ) and Im(τ). Since G(b, u)
and εWS(b, u) are polynomials in the components of u and their (covari-
ant) derivatives, G′ and Σ are simply G and εWS with the coefficients of
the derivative-containing terms multiplied by smooth functions of Re(τ) and
Im(τ). Therefore G′(τ, b, v) and Σ(τ, b, v) have continuous Re(τ)- and Im(τ)-
derivatives of all orders. �

Lemma 11.2. vτ,b := Mτuτ,b is continuously differentiable of all orders in
Re(τ) and Im(τ).

Proof. Let τ0 be an arbitrary shape parameter, and recall that δ# denotes
the partial (real) Gâteaux derivative with respect to #. Then G′(τ0, b, vτ0,b) =
Mτ0G(b, uτ0,b) = 0, δvG(τ0, b, vτ0,b) = Mτ0 ◦ δuG(b, uτ0,b) ◦ M−1

τ0 is invertible,
and by Lemma 11.1, G′ is continuously Gâteau differentiable of all orders in τ , b
and v. Therefore, by the Implicit Function Theorem, the unique solution vτ,b to
the equation G(τ, b, v) = 0 is continuously differentiable of all orders in Re(τ)
and Im(τ) near (Re(τ), Im(τ)) = (Re(τ0), Im(τ0)). Since τ0 was arbitrary, this
proves the result. �

Proposition 11.3. E(τ, b, Uτ,b) is continuously differentiable of all orders in
Re(τ) and Im(τ).

Proof. To get rid of the dependency of E(τ, b, uτ,b) on the domain of integration
Ω′, we again make the change of coordinates y = m−1

τ x. Then

E(τ, b, uτ,b) =
∫

Ω′
ε(b, uτ,b)(x) d2x

=
∫ √

2π

0

∫ √
2π

0

ε′(τ, b, vτ,b)(y)d2y. (11.11)

By Lemma 11.2, vτ,b has continuous Re(τ)- and Im(τ)-derivatives of all
orders, and by Lemma 11.1, Σ has continuous derivatives of all orders mapping
C × R × X1 to C × R × Y1. In particular, the Re(τ)- and Im(τ)-derivatives
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of ε′(τ, b, vτ,b) remain integrable, so we conclude that E(τ, b, uτ,b) (and hence
E(τ, b, Uτ,b)) is continuously differentiable of all orders in Re(τ) and Im(τ).

�
Theorem 11.4. When MZ < MH , the minimizers τb of E(τ, b, Uτ,b) are related
to the maximizers τ∗ of ηmz,mh

(τ) as τb − τ∗ = O(|1 − M2
W

eb | 1
2 ). In particular,

τb → τ∗ as b → b∗ = M2
W /e.

Proof. The minimizers (τb) of E(τ, b, Uτ,b) are equivalent to the minimizers of
the energy functional Ẽ(τ, Uτ,b) := ω−2(E(τ, b, Uτ,b)− 1

2b2). By Theorem 10.1,
we have

Ẽ(τ, Uτ,b) = −1
2
b2 sin2 θ ηmz,mh

(τ) + O(|ω|),

where, recall, ω = 1− M2
W

eb . Since ∂τ Ẽ(τ, Uτ,b)|τ=τb
= 0, we have the expansion

Ẽ(τ∗, Uτ∗,b) − Ẽ(τb, Uτb,b) =
1
2
∂2

τ Ẽ(τb, Uτb,b)[τ∗ − τb]2 + O([τ∗ − τb]3)

= − 1
4
b2 sin2 θ ∂2

τηmz,mh
(τb)[τ∗ − τb]2

+ O([τ∗ − τb]3) + O(|ω|). (11.12)

For both expansions to hold, we must have τb −τ∗ = O(|ω| 1
2 ), as required. �

The maximizer of ηmz,mh
(τ), defined in (9.2), was found numerically in

[26] with some analytical results in [27]:

Theorem 11.5. ([26]) For MZ < MH , the function ηmz,mh
(τ) has a maximum

at τ∗ = eiπ/3.

Theorem 2.3 follows from Theorems 11.4 and 11.5.

Remark 11.6. Using symmetries of ηmz,mh
(τ), one might be able to prove that

its only critical points are τ = eiπ/3 and τ = eiπ/2, i.e. the hexagonal and
square lattices, cf. [3,30].
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Appendix A: Covariant Derivatives and Curvature

In this appendix, we briefly review some basic definitions from gauge theory.
For some geometrical background, see [21,25,34]. Recall that we use the Ein-
stein convention of summing over repeated indices.

Let V be an inner product vector space, G a Lie group acting transitively
on V via a unitary representation ρ : g �→ ρg, and let g be the Lie algebra of
G acting on V via the representation ρ̃ : A �→ ρ̃A induced by ρ.

To simplify notation below, we take V = C
m and G a matrix group,

acting on V by matrix rules (and similarly for g) and write ρgΨ = gΨ and
ρ̃AΨ = AΨ. Moreover, we assume that G is either U(m) or a Lie subgroup of
U(m).

Let M be an open subset in a finite-dimensional vector space, with a
metric h and local coordinates {xi}, and let ∂i ≡ ∂xi .

For a g-valued connection (one-form) A ≡ Aidxi on M , we define the
covariant derivatives:

- ∇A, mapping functions (sections), Ψ : M → V , into g-valued one-forms,
as

∇AΨ := dΨ + AΨ ≡ (∂iΨ + AiΨ)dxi; (A.1)

- dA, mapping g-valued functions (0-forms) f into g-valued one-forms

dAf := df + [A, f ] ≡ (∂if + [Ai, f ])dxi; (A.2)

- dA, mapping g-valued one-forms into g-valued two-forms

dAB := dB + [A,B], (A.3)

with [A,B] defined in local coordinates {xi} as

[A,B] := [Ai, Bj ]dxi ∧ dxj ≡ [B,A], (A.4)

for A = Aidxi and B = Bjdxj .12

12More generally, if A is a g−valued p−form and B is a g−valued q−form, written as
A = Aa ⊗ γa and B = Bb ⊗ γb, where Aa and Bb are p− and q−forms and {γa} is a basis

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The curvature form of the connection A is the g-valued two-form given
by the formula

FA = dA +
1
2
[A,A]. (A.6)

It is related to the curvature operator (denoted by the same symbol)
FA := dA ◦ dA. As a simple computation shows, this operator is a matrix-
multiplication operator given by the matrix-valued 2-form (A.6).

Let U be a vector space (V or g in our case) and let Ωp
U ≡ U ⊗ Ωp

denote the space of U -valued p-forms. On Ωp
U , one defined the inner product,

〈·, ·〉Ωp
U

≡ 〈·, ·〉h
Ωp

U
as

〈A,B〉Ωp
U

≡ 〈A,B〉h
Ωp

U
:= 〈Aα, Bα〉U , (A.7)

where A = Aαdxα and B = Bαdxα are U -valued p-forms, α is a p-form index
and 〈·, ·〉U is the inner product on U . Here the indices are raised and lowered
with help of the inner product h on M .

Above, we did not display the coupling constants. Doing so would change
the covariant derivative to dAΨ = (d+gA)Ψ, if G is simple. If G is not simple,
then each simple component of G gets its own coupling constant, as was done
in the main text for G = SU(2) × U(1) (see also (C.2)–(C.6) below).

Appendix B: The Time-Dependent Yang–Mills–Higgs System

In this appendix, we briefly review the Yang–Mills–Higgs theory, including the
derivation of the energy functional (2.7). In what follows, we use the convention
of raising or lowering an index by contracting a tensor T with the metric tensor:

Tα
i,β = ηijT

j,α
β (B.1)

where η is the Minkowski metric of signature (+,−, ...,−) on M ⊂ R
d+1 and

α, β are multi-indices. The same equations could be reinterpreted as stationary
equations by taking the Euclidean metric δij , instead of ηij , and letting the
indices range over 1, . . . , d, rather than 1, . . . , d + 1. In this case, Tα

i,β = T i,α
β .

Lagrangian. Let Ω be a bounded domain in R
d and M = Ω× [0, T ] ⊂ R

d+1 be
spacetime equipped with the Minkowski metric η of signature (+,−, ...,−) and
V and G be as in “Appendix A”. The theory involves a Higgs field Ψ : M → V
interacting with the gauge field A, a connection (one-form) on M with values
in the algebra g. The dynamics are given by the Lagrangian

L(Ψ, A) :=
∫

Ω

(〈∇AΨ,∇AΨ〉η
Ω1

V
− U(Ψ) + 〈FA, FA〉η

Ω2
g

)
, (B.2)

in g, then

[A, B] := (Aa ∧ Bb) ⊗ [γa, γb] = (−1)pq+1[B, A]. (A.5)



A. Gardner and I. M. Sigal Ann. Henri Poincaré

with corresponding action S :=
∫ T

0
L(Ψ, A)dt, T > 0, given explicitly by

S(Ψ, A) =
∫

M

(〈∇AΨ,∇AΨ〉η
Ω1

V
− U(Ψ) + 〈FA, FA〉η

Ω2
g

)
, (B.3)

where U : V → R
+ is a self-interaction potential, which is assumed to be gauge

invariant: U(ρgΨ) = U(Ψ). Typical examples of G,V and U(Ψ) are U(m),Cm

and U(Ψ) = 1
2λ(1 − ‖Ψ‖2

V )2.
Euler–Lagrange equations.The Euler–Lagrange equations (called Yang–Mills–
Higgs equations) for the fields Ψ and A are

∇∗η

A ∇AΨ = U ′(Ψ), (B.4)

d
∗η

A FA = J(Ψ, A), (B.5)

where ∇∗η

A and d
∗η

A are the adjoints of ∇A and dA in the appropriate inner
products involving the metric η and J(Ψ, A) is the YMH current given by

J(Ψ, A) := Re〈γaΨ,∇AΨ〉V γa (B.6)

= Re〈γaΨ,∇iΨ〉V γa ⊗ dxi, (B.7)

where γa is an orthonormal basis of g and ∇i := ∂i + Ai, with ∂i ≡ ∂xi , so
that ∇AΨ = ∇iΨdxi. (B.5) is the Yang–Mills equation.

Proof of (B.4) - (B.5). For convenience, we assume periodic or Dirichlet bound-
ary conditions and that Ψ and A are T -periodic in t and calculate the Gâteaux
derivatives formally.

Recall that δ# denotes the partial (real) Gâteaux derivative with respect
to #. First we calculate the (complex) Gâteaux derivative of (B.3) in the
Ψ-direction. Define ∂z ≡ 1

2 (∂Re z − i∂Im z) and δΨ ≡ 1
2 (δRe Ψ − iδIm Ψ). Then

δΨS(Ψ, A)Ψ′ = ∂zS(Ψz, A)|z=0, where Ψz = Ψ + zΨ′, z ∈ C. Using this, we
find

δΨS(Ψ, A)Ψ′ =
∫

M

(〈∇AΨ,∇AΨ′〉Ω1
V

− 〈U ′(Ψ),Ψ′〉V

)
. (B.8)

Integrating the first term by parts and factoring out Ψ′ gives

δΨS(Ψ, A)Ψ′ =
∫

M

〈∇∗
A∇AΨ − U ′(Ψ),Ψ′〉V . (B.9)

For this derivative to be zero for every variation Ψ′, (B.4) must hold.
Next we calculate the Gâteaux derivative of (B.3) in the A-direction.

Using the definition δAf(A)B = ∂sf(As)|s=0, where As = A + sA′, s ∈ R, we
find

δAS(Ψ, A)B =
∫

M

(〈BΨ,∇AΨ〉Ω1
V

+ c.c. + 2〈dAB,FA〉Ω2
g

)
(B.10)

= I + II. (B.11)

Writing B = Baγa = Ba
i dxi ⊗ γa (with Ba

i real) and ∇AΨ = ∇iΨdxi, so that

〈BΨ,∇AΨ〉Ω1
V

= 〈Ba, 〈γaΨ,∇iΨ〉V dxi〉Ω1 , (B.12)
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and using that BaCa = −Tr[(Bcγc)(Caγa)] (since Tr(γ∗
c γa) = −Tr(γcγa) =

δca), gives

I = −
∫

M

〈B, 〈γaΨ,∇iΨ〉V γa ⊗ dxi〉Ω1
g

+ c.c.. (B.13)

which gives I =
∫

M
〈B, J(Ψ, A)〉Ω1

g
. For the second term on the r.h.s. of (B.10),

integrating by parts yields II =
∫

M
〈B, d∗

AFA〉Ω1
g
. Collecting the last two equa-

tions gives

δAS(Ψ, A)B = 2
∫

M

〈B,−J(Ψ, A) + d∗
AFA〉Ω1

g
. (B.14)

For this derivative to be zero for every variation B, (B.5) must hold. �

Conserved energy. Again, the Gâteaux derivative calculations in the following
subsection are formal. Recall that M := Ω × [0, T ] ⊂ R

d+1.
To find the expression for the energy, we use, as in classical mechanics,

the (partial, i.e. without passing to the momentum fields) Legendre transform
of (B.2) is given by

E(Ψ, A) = ∂∇0ΨL(Ψ, A)∇0Ψ + ∂∇0Ψ
L(Ψ, A)∇0Ψ

+
d∑

i=1

∂F0i
L(Ψ, A)F0i − L(Ψ, A). (B.15)

Proposition B.1. The (partial) Legendre transform (B.15) of Lagrangian (B.2)
yields the conserved energy

E(Ψ, A) :=
∫

Ω

(‖∇AΨ‖2
Ω1

V
+ U(Ψ) + ‖FA‖2

Ω2
g

)
, (B.16)

where the norms are taken using the Euclidean metric on R
d+1 (rather than

the Minkowski metric).

Note that for static (time-independent) fields, E(Ψ, A) = −L(Ψ, A).

Proof. Let ∂# denote the partial derivative with respect to the symbol #, and
recall that δ# denotes the partial (real) Gâteaux derivative with respect to #.
We calculate

∂∇0ΨL(Ψ, A)∇0Ψ =
∫

Ω

‖∇0Ψ‖2
V = ∂∇0Ψ

L(Ψ, A)∇0Ψ (B.17)

and
d∑

i=1

∂F0i
L(Ψ, A)F0i =

∫
Ω

2
d∑

i=1

|F0i|2. (B.18)

(B.16) results.
It remains to show that (B.16) is conserved by the YMH equations (B.4)–

(B.5). This can be done by using the (partial) Legendre transform (B.15) as
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in classical mechanics, or by a direct computation. We proceed in the second
way. Applying the chain rule gives

d

dt
E(Ψ, A) = δΨE(Ψ, A)∂0Ψ + δΨE(Ψ, A)∂0Ψ + δAE(Ψ, A)∂0A, (B.19)

where, recall, ∂i ≡ ∂xi . We now calculate the first term using (B.4).

δΨE(Ψ, A)∂0Ψ =
∫

Ω

(〈∇0Ψ,∇0∂0Ψ〉V +
d∑

k=1

〈∇kΨ,∇k∂0Ψ〉V

+ 〈U ′(Ψ), ∂0Ψ〉V

)
. (B.20)

Integrating the second term by parts gives

δΨE(Ψ, A)∂0Ψ =
∫

Ω

(〈∇0Ψ,∇0∂0Ψ〉V +
d∑

k=1

〈∇∗
k∇kΨ, ∂0Ψ〉V

+ 〈U ′(Ψ), ∂0Ψ〉V

)
. (B.21)

By (B.4), we have

∇∗
0∇0Ψ −

d∑
k=1

∇∗
k∇kΨ = U ′(Ψ), (B.22)

so (B.21) becomes

δΨE(Ψ, A)∂0Ψ =
∫

Ω

(〈∇0Ψ,∇0∂0Ψ〉V + 〈∇∗
0∇0Ψ, ∂0Ψ〉V

)
. (B.23)

Here ∇∗
0 = −∂0 + A†

0 = −∂0 − A0, where the second equality follows because
the representation of g is unitary. Therefore,

δΨE(Ψ, A)∂0Ψ =
∫

Ω

(〈(∂0 + A0)Ψ, (∂0 + A0)∂0Ψ〉V

+ 〈(−∂0 − A0)(∂0 + A0)Ψ, ∂0Ψ〉V

)

=
∫

Ω

∂0〈Ψ, A0∂0Ψ〉V . (B.24)

Similarly,

δΨE(Ψ, A)∂0Ψ =
∫

Ω

∂0〈A0∂0Ψ,Ψ〉V , (B.25)

and so

δΨE(Ψ, A)∂0Ψ + δΨE(Ψ, A)∂0Ψ =
∫

Ω

∂0J0(Ψ, A), (B.26)

where J0(Ψ, A) is the time component of the YMH current (B.6).
One may show using (B.5) that

δAE(Ψ, A)∂0A = −
∫

Ω

∂0J0(Ψ, A). (B.27)

Hence, by (B.19) we have d
dtE(Ψ, A) = 0, as required. �



Instability of Electroweak Homogeneous Vacua

Gauge symmetries. We define the local action, ρgA,13 of the group G on A,
by the equation dρgA = gdAg−1, for all g ∈ C1(N,G), where N is either M or
Ω. We compute

ρgA = gAg−1 + gdg−1. (B.28)

Proposition B.2. The Lagrangian (B.2) is invariant under the Poincaré group
and the gauge transformations

T gauge
g : (Ψ, A) �→ (gΨ, ρgA), ∀g ∈ C1(M,G). (B.29)

Proof. The invariance under the Poincaré group follows from the definition of
this group and the choice of the Minkowski metric on M ⊂ R

d+1.
For the gauge invariance, recall that U(Ψ) is g-invariant, and that the

representations g �→ ρg (on V ) and the adjoint representation g �→ adg (on
g) are unitary. Therefore, to prove invariance under the gauge transformation
(B.29), it suffices to show that

∇ρgAgΨ = g∇AΨ, (B.30)

FρgA = gFAg−1. (B.31)

We shall use the equation

hdh−1 = −dhh−1, ∀h ∈ G (B.32)

which follows from d(hh−1) = 0. For (B.30) we compute

∇ρgAgΨ = d(gΨ) + (gAg−1 + gdg−1)(gΨ) (B.33)

= (dg)Ψ + gdΨ + gAΨ + gdg−1gΨ. (B.34)

Since gdg−1g = −gg−1dg = −dg, this gives ∇ρgAgΨ = g∇AΨ.
For (B.31), computing in coordinates {xi} and writting FρgA := (FρgA)ij

dxi ∧ dxj and FA := (FA)ijdxi ∧ dxj , we find

(FρgA)ij =
1
2
[∂i(gAjg

−1 + g∂jg
−1) − ∂j(gAig

−1 + g∂ig
−1)]

+
1
2
[gAig

−1 + g∂ig
−1, gAjg

−1 + g∂jg
−1], (B.35)

where, recall, ∂i ≡ ∂xi . Expanding the partial derivative and commutators
gives

(FρgA)ij =
1
2
[∂igAjg

−1 + g∂iAg−1 + gAj∂ig
−1 + ∂ig∂jg

−1 + g∂i∂jg
−1

+ (gAig
−1 + ∂igg−1)(gAjg

−1 + g∂jg
−1)

− (i ↔ j)]. (B.36)

Expanding the product on the second line gives

(FρgA)ij =
1
2
[∂igAjg

−1 + g∂iAg−1 + gAj∂ig
−1 + ∂ig∂jg

−1 + g∂i∂jg
−1

13Compared with the notation of “Appendix A”, to simplify the notation we omit the tilde
over ρg in action of the Lie algebra g on V .
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+ gAiAjg
−1 + ∂igAjg

−1 + gAi∂jg
−1 + ∂ig∂jg

−1

− (i ↔ j)]. (B.37)

Cancelling terms symmetrical in i and j and simplifying gives

(FρgA)ij = g

(
1
2
[∂iAj − ∂jAi] +

1
2
[AiAj − AjAi]

)
g−1 (B.38)

= g(FA)ijg
−1, (B.39)

as required. �

Specifying (B.16) to the WS model gives (2.7).
The YMH equations in coordinate form. In coordinate form, the differential
form (gauge field) entering the YMH Lagrangian (B.2) is written as A = Aidxi.
The local coordinate expression for the curvature is FA = Fijdxi ∧ dxj , where
Fij := 1

2 (∂iAj − ∂jAi) + 1
2 [Ai, Aj ]. Furthermore, for the covariant derivatives

∇A and dA, we have ∇AΨ = ∇iΨdxi and d∗
AFA = −∇iFijdxj , where ∇iΨ :=

(∂i + Ai)Ψ and ∇iFij := ∂iFij + [Ai, Fij ].
For an arbitrary g-valued one-form B = Bidxi, we have dAB = ∇iBjdxi∧

dxj and d∗
AB = −∇iBi, where

∇iBj := ∂iBj + [Ai, Bj ]. (B.40)

We write Fij = F a
ijγa for an orthonormal basis γa of g and the lower case roman

indices run over the spatial components 1, 2, . . . , d. Note that Fij = [∇i,∇j ],
but Fij �= 1

2 (∇iAj − ∇jAi).
Let Ω be either a bounded domain in R

d or Rd+1. In the former case, we
assume either periodic or Dirichlet boundary conditions.

Proposition B.3. The Lagrangian and energy for the YMH model are given in
coordinates by

L(Ψ, A) =
∫

Ω

〈∇kΨ,∇kΨ〉V − U(Ψ) +
1
2
F a

ijF
a,ij , (B.41)

EΩ(Ψ, A) =
∫

Ω

〈∇kΨ,∇kΨ〉V + U(Ψ) +
1
2
F a

ijF
a
ij (B.42)

(with different ranges of indices as mentioned above). The YMH equations are
given in coordinates by:

− ∇i∇iΨ = U ′(Ψ), (B.43)

− ∇iFij = Re〈γaΨ,∇jΨ〉V γa. (B.44)

Proof. Equations (B.41) and (B.42) follow from the coordinate expressions
dAΨ = ∇kΨdxk and FA = F a

ijγa ⊗ dxi ∧ dxj , together with the fact that dxk

and γa ⊗ dxi ∧ dxj form orthonormal bases for Ω1 and Ω2
g, respectively.

Equations (B.43)–(B.44) follow from Eqs. (B.4)–(B.6) and the coordinate
expressions for dA and d∗

A above. �
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Appendix C: The WS Equations in Coordinate Form

For the gauge group G = U(2) = SU(2) × U(1), we choose the standard inner
product

〈γ, δ〉u(2) := 2Tr γ∗δ = −2Tr γδ (C.1)

on u(2), for which − i
2τa, a = 0, 1, 2, 3 (where τa, a = 1, 2, 3, are the Pauli

matrices together with τ0 := 1) form an orthonormal basis. It is customary to
factor out the coefficient of − i

2 . In coordinates, we write

∇QΦ = ∇iΦdxi, Q = − i

2
Qidxi and FQ = − i

2
Qijdxi ∧ dxj , (C.2)

with Qi(x), Qij(x) ∈ iu(2). Using Eq. (2.3), we compute Qij = 1
2 (∂iQj −

∂jQi) − i
4 [Qi, Qj ]. Furthermore, we write Q = V + X and

V = − i

2
Vidxi and X = − i

2
Xidxi, (C.3)

with Vi(x) ∈ isu(2) and Xi(x) ∈ iu(1). Then Qij = Vij + Xij and

∇iΦ := (∂i − ig

2
Vi − ig′

2
Xi)Φ, (C.4)

Vij :=
1
2
(∂iVj − ∂jVi) − ig

4
[Vi, Vj ], (C.5)

Xij :=
1
2
(∂iXj − ∂jXi). (C.6)

We specify Eqs. (B.41)–(B.44) for to the Weinberg–Salam (WS) model,
which has the gauge group G = U(2) = SU(2) × U(1). As was mentioned in
“Appendix A”, in this case, there is a slight discrepancy in the definition of the
covariant derivative due to the fact that U(2) is not simple, but a (semi-)direct
product of the simple group SU(2) and U(1), with each component having a
coupling constant, see (C.2)–(C.6).

Using Eqs (C.2)–(C.6), we express the Lagrangian and the energy in
coordinates as

L(Φ, Q) :=
∫

Ω

〈∇iΦ,∇iΦ〉C2 − U(Φ) +
1
2

Tr QijQ
ij , (C.7)

E(Φ, Q) :=
∫

Ω

〈∇iΦ,∇iΦ〉C2 + U(Φ) +
1
2

Tr QijQij , (C.8)

(with indices ranging from 0 to d and 1 to d, respectively, as mentioned above),
and the Euler–Lagrange equations are written in coordinates as

− ∇i∇iΦ = U ′(Φ), (C.9)

∇iQij =
1
2
g Im〈τaΦ,∇jΦ〉C2τa +

1
2
g′ Im〈τ0Φ,∇jΦ〉C2τ0. (C.10)

Equations (C.8)–(C.10) can be expressed in terms of the W , Z, Higgs and
electromagnetic fields resulting in 2D Eqs. (3.10)–(3.15), see “Appendix D.2”.
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Appendix D: The Weinberg–Salam Energy in Terms of the
Fields W , A, Z and ϕ

Appendix D.1: Dimension 3

We work in a fixed coordinate system, {xi}3
i=1 and write the fields as W =

Widxi, Z = − i
2Zidxi and A = − i

2Aidxi. We show

Proposition D.1. Energy (2.7), written in terms of the fields W,A,Z and ϕ
and coordinates {xi}3

i=1, is given by (see also [43]):

EΩ(W,A,Z, ϕ) :=
∫

Ω

[∑
ij

(1
2
|Wij |2 +

1
4
|Zij |2 +

1
4
|Aij |2

)

+
1
2
g2ϕ2|W |2 +

1
4 cos2 θ

g2ϕ2|Z|2 + T (W,A,Z)

+ |∇ϕ|2 +
1
2
λ(ϕ2 − ϕ2

0)
2
]
, (D.1)

where Wij := ∇iWj − ∇jWi, with ∇k := ∂k − igV 3
k , ∂k ≡ ∂xk , Zij := ∂iZj −

∂jZi, Aij := ∂iAj − ∂jAi and T (W,A,Z) is the sum of super-quadratic terms,

T (W,A,Z) :=
g2

2

∑
ij

(|WiWj |2 − W 2
i W

2

j ) − ig
∑
ij

V 3
ijWiW j , (D.2)

where V 3 := Z cos θ + A sin θ and V 3
ij := ∂iVj − ∂jVi, with the important

property that T (W,A,Z) is invariant under the gauge transformation (3.7).

Proof of (D.1). We proceed by rewriting the terms in the coordinate expres-
sion of the WS energy (C.8),

in terms of the fields W = Widxi, Z = − i
2Zidxi, A = − i

2Aidxi and ϕ.
For the first term, first we calculate ∇iΦ. Recall the definition ∇iΦ :=

(∂i − ig
2 Vi − ig′

2 Xi)Φ. We simplify the matrix representing the connection’s
action on Φ:

− ig

2
Vi − ig′

2
Xi = − ig

2
V a

i τa − ig′

2
Xiτ0

= − ig

2

(
0 V 1

i

V 1
i 0

)
− ig

2

(
0 −iV 2

i

iV 2
i 0

)

− ig

2

(
V 3

i 0
0 −V 3

i

)
− ig

2
tan θ

(
Xi 0
0 Xi

)

= − ig

2 cos θ

(
V 3

i cos θ + Xi sin θ V 1
i cos θ − iV 2

i cos θ
V 1

i cos θ + iV 2
i cos θ −V 3

i cos θ + Xi sin θ

)
. (D.3)

In terms of the fields Z, A and W (see Eqs. (3.5)–(3.6) for the definitions of
these fields), (D.3) becomes

− ig

2
Vi − ig′

2
Xi = − ig

2 cos θ

(
Zi cos 2θ + Ai sin 2θ

√
2 Wi cos θ√

2 W i cos θ −Zi

)
. (D.4)

Hence, for Φ = (0, ϕ),
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∇iΦ =

(
− ig√

2
Wiϕ

∂iϕ + ig
2 cos θZiϕ

)
. (D.5)

Therefore, the first term of (C.8), written in terms of the fields W,A,Z and
ϕ, becomes

〈∇iΦ,∇iΦ〉C2 =
ig√
2
Wi

ig√
2
W i

+
(

∂iϕ +
ig

2 cos θ
Ziϕ

)(
∂iϕ +

ig

2 cos θ
Ziϕ

)

=
g2

2
ϕ2|W |2 + |∇ϕ|2 +

g2

4 cos2 θ
ϕ2|Z|2. (D.6)

The second term of (C.8) becomes

U(Φ) =
1
2
λ(‖Φ‖2 − ϕ2

0)
2 =

1
2
λ(ϕ2 − ϕ2

0)
2. (D.7)

For the third term of (C.8), we will use the fact that Tr QijQ
ij =

Tr VijV
ij + Tr XijX

ij , where Vij and Xij are defined in (C.5) and (C.6). Fur-
thermore, we have

Vi := V a
i τa =

(
V 3

i

√
2 Wi√

2 W i −V 3
i

)
. (D.8)

We recall V 3
ij = ∂iV

3
j − ∂jV

3
i and W 0

ij = ∂iWj − ∂jWi and calculate
1
2
(∂iVj − ∂jVi) =

1
2

(
V 3

ij

√
2 Wij√

2 W
0

ji −V 3
ij

)
, (D.9)

and, with Kij := V 3
i Wi − V 3

j Wi,

− ig

4
[Vi, Vj ] = − ig

4

(
V 3

i

√
2 Wi√

2 W i −V 3
i

)(
V 3

j

√
2 Wj√

2 W j −V 3
j

)
− (i ↔ j)

= − ig

4

(
V 3

i V 3
j + 2WiW j

√
2 Kij√

2 Kij −V 3
i V 3

j − 2WiW j

)
− (i ↔ j)

= − ig

2

(
WiW j − W iWj

√
2 Kij√

2 Kji −WiW j + W iWj

)
. (D.10)

Adding (D.9) and (D.10), using that Wij = W 0
ij + Kij and denoting Lij :=

V 3
ij − ig(WiW j − W iWj) gives

Vij =
1
2

(
Lij

√
2 Wij

−√
2 W ij −Lij

)
. (D.11)

Since Vij and Xij are Hermitian, TrVijV
ij and TrXijX

ij are the sum of the
squared absolute values of the matrix coefficients of Vij and Xij , respectively.
Thus 1

2
Tr QijQ

ij =
1
2

Tr VijV
ij +

1
2

Tr XijX
ij

=
1
8

∑
ij

2|Lij |2 + 4|Wij |2 + 2|Xij |2. (D.12)
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Using Lij = V 3
ij − ig(WiW j − W iWj) and expanding the first term gives

1
2

Tr QijQ
ij =

∑
ij

1
2
|Wij |2 +

1
4
|V 3

ij |2 +
1
4
|Xij |2

+
g2

4

∑
ij

|WiW j − W iWj |2 − ig

4

∑
ij

2V 3
ij(WiW j − W iWj). (D.13)

Recall that Aij = V 3
ij sin θ + Xij cos θ and Zij = V 3

ij cos θ − Xij sin θ. Writing
the first line of (D.13) in terms of these fields gives

1
2

Tr QijQ
ij =

∑
ij

1
2
|Wij |2 +

1
4
|Zij |2 +

1
4
|Aij |2

+
g2

4

∑
ij

|WiW j − W iWj |2 − ig

2

∑
ij

V 3
ij(WiW j − W iWj). (D.14)

Expanding the first term of the second line, and using V 3
ij = −V 3

ij in the second
term, (D.14) becomes

1
2

Tr QijQ
ij =

∑
ij

1
2
|Wij |2 +

1
4
|Zij |2 +

1
4
|Aij |2

+
g2

4

∑
ij

(|Wi|2|W j |2 − W 2
i W

2

j + (i ↔ j))

− ig

2

∑
ij

(V 3
ijWiW j + (i ↔ j)). (D.15)

Recalling the definition (D.2) of T (W,A,Z) gives
1
2

Tr QijQ
ij =

∑
ij

1
2
|Wij |2 +

1
4
|Aij |2 +

1
4
|Zij |2 + T (W,A,Z). (D.16)

Adding (D.6), (D.7) and (D.16) gives (D.1). �

Appendix D.2: Dimension 2: Proof of (3.10)

Proof of (3.10). Now, we consider the Weinberg–Salam (WS) model in R
2

with fields independent of the third dimension x3, and correspondingly choose
the gauge with V3 = X3 = 0 (and hence W3 = A3 = Z3 = 0). In this case the
summation in (D.1) contains only two terms, (ij) = (12) and (ij) = (21), and
we use this to simplify (D.1).

We proceed by simplifying the terms of (D.2) and the first line of (D.1);
the remaining terms are unchanged.
∑
ij

(
1
2
|Wij |2 +

1
4
|Zij |2 +

1
4
|Aij |2

)
=
∑
i<j

(
|Wij |2 +

1
2
|Zij |2 +

1
2
|Aij |2

)

= | curlgV 3 W |2 +
1
2
| curl Z|2 +

1
2
| curl A|2; (D.17)

∑
ij

(|WiWj |2 − W 2
i W

2

j )



Instability of Electroweak Homogeneous Vacua

= W1W2W 1W 2 − W 2
1 W

2

2 + W2W1W 2W 1 − W 2
2 W

2

1

= (W 1W2 − W1W 2)(W 1W2 − W1W 2)

= |W × W |2; (D.18)

−
∑
ij

V 3
ijWiW j =

∑
i<j

V 3
ij(−WiW j + WjW i)

= (curlV 3)W × W. (D.19)

Replacing corresponding terms in (D.1)–(D.2) with (D.17)–(D.19) proves (3.10).
�

Proof of (3.12) - (3.15). We proceed by calculating the (complex) Gâteaux
derivatives of (3.10).

Let δ# denote the partial (real) Gâteaux derivative with respect to #.
Let Wz = W + zW ′, z ∈ C, and define ∂z ≡ 1

2 (∂Re z + i∂Im z) and δW ≡
1
2 (δRe W + iδIm W ). Then

δW EΩ(W,A,Z, ϕ)W ′ = ∂zE
WS
Ω (Wz, A, Z, ϕ)|z=0

=
∫

Ω

curlgV 3 W · curlgV 3 W ′ +
1
2
g2ϕ2W · W ′

− ig(curlV 3)JW · W ′ + g2(W × W )JW · W ′. (D.20)

Integrating the first term by parts and factoring out W and W
′
gives

δW EΩ(W,A,Z, ϕ)W ′ =
∫

Ω

[curl∗gV 3 curlgV 3 +
g2

2
ϕ2 − ig(curlV 3)J

+ g2(W × W )J ]W · W ′. (D.21)

For the derivative to be zero for every variation W ′, (3.12) must hold.
Let As = A + sA′, s ∈ R. Then

δAEΩ(W,A,Z, ϕ)A′ = ∂sE
WS
Ω (W,As, Z, ϕ)|s=0

=
∫

Ω

curlgV 3 W (−ieA′ × W ) + curlgV 3 W (−ieA′ × W )

+ (curlA)(curl A′) + ie(curl A′)W × W. (D.22)

Using A′ × W = −JW · A′ in the first two terms, and integrating the last two
terms by parts, gives

δAEΩ(W,A,Z, ϕ)A′ =
∫

Ω

[−ie(curlgV 3 W )JW + ie(curlgV 3 W )JW

+ curl∗ curl A + ie curl∗(W × W )] · A′, (D.23)

which simplifies to

δAEΩ(W,A,Z, ϕ)A′ =
∫

Ω

[curl∗ curlA + 2e Im[(curlgV 3 W )JW

− curl∗(W 1W2)]] · A′. (D.24)
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For the derivative to be zero for every variation A′, (3.13) must hold.
The proof of (3.14) is essentially the same as the proof of (3.13), so we

omit it.
Let ϕs = ϕ + sϕ′, s ∈ R. Then

δϕEΩ(W,A,Z, ϕ)ϕ′ = ∂sE
WS
Ω (W,A,Z, ϕs)|s=0∫

Ω

g2ϕϕ′|W |2 +
g2

2 cos2 θ
ϕϕ′|Z|2

+ 2∇ϕ′ · ∇ϕ + 2λ(ϕ2 − ϕ2
0)ϕϕ′ (D.25)

Integrating the third term by parts and factoring out 2ϕ′ gives

=
∫

Ω

[
g2

2
|W |2 +

1
2
κ|Z|2

−Δ + λ(ϕ2 − ϕ2
0)
]
ϕ · 2ϕ′. (D.26)

For the derivative to be zero for every variation ϕ′, (3.15) must hold. �

Appendix E: Proof of (9.11)

In the proof below, we will use the following result:

Lemma E.1. Let L2
per denote any of the spaces (5.9)–(5.11), and let H2

per de-
note the corresponding Sobolev space. Suppose that fs, gs : R → H2

per sat-
isfy ||fs||H2

per
= O(|s|k) and ||gs||H2

per
= O(|s|l) for some k, l ∈ Z. Then for

i, j = 1, 2 and p, q = 0, 1, ∣∣∣∣
∫

Ω′
∂p

i fs∂
q
j gs

∣∣∣∣ = O(|s|k+l). (E.1)

Furthermore, if fs and gs have continuous derivatives of all orders in s, then
so does the above integral.

Proof. Equation (E.1) follows from the following chain of inequalities:∣∣∣∣
∫

Ω′
∂p

i fs∂
q
j gs

∣∣∣∣ � ||∂p
i fs||L2

per
||∂q

j gs||L2
per

� ||fs||H2
per

||gs||H2
per

= O(|s|k+l). (E.2)

If fs and gs have continuous derivatives of all orders in s, then their s-
derivatives of all orders are in H2

per. In particular, this means that ∂k
s (fsgs), k ∈

Z≥0, remains integrable, so the s−derivatives of the above integral (obtained
by differentiation under the integral sign) are well-defined. �

Proof of (9.11). To prove (9.11), we use the w-field Eq. (4.3), and νs :=
g(as sin θ + zs cos θ), to get∫

Ω′
χ ·
[
curl∗νs

curlνs
+

g2

2
(ψs + ξs)2

−i(curl νs)J + g2(ws × ws)J
]
ws = 0. (E.3)
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We shall calculate each term of the integral (E.3) up to order s3 using
Lemma E.1 and the Taylor expansions (9.7).

Integrating the first term of (E.3) by parts gives∫
Ω′

χ · curl∗νs
curlνs

ws =
∫

Ω′
curlνs

χ · curlνs
w. (E.4)

Plugging in the Taylor expansions (9.7) gives∫
Ω′

χ · curl∗νs
curlνs

ws =
∫

Ω′
[curlan χ + O(|s|2)]

· [s curlan χ − s3iν′w′ + O(|s|5)], (E.5)

where, recall, ν′ := g(a′ sin θ + z′ cos θ). Recall from Equation (5.24) that
curlan χ = 0. Therefore, applying Lemma E.1 gives∫

Ω′
χ · curl∗νs

curlνs
ws = O(|s|5). (E.6)

Plugging the Taylor expansions (9.7) into the second term of (E.3) gives

∫
Ω′

χ · g2

2
(ψs + ξs)2ws =

∫
Ω′

χ · g2

2

(√
2n

g
+ s2(ψ′ + ξ′) + O(|s|4)

)2

× (sχ + O(|s|5)). (E.7)

Expanding this product and applying Lemma E.1 gives∫
Ω′

χ · g2

2
(ψs + ξs)2ws = s

∫
Ω′

n|χ|2 + s3

∫
Ω′

g
√

2n(ψ′ + ξ′)|χ|2

+ s3

∫
Ω′

nχ · w′ + O(|s|5). (E.8)

Recall that χ ∈ Null(H1(n)) and that w′ is orthogonal to Null H1(n). Therefore
the third term vanishes:∫

Ω′
χ · g2

2
(ψs + ξs)2ws = s

∫
Ω′

n|χ|2 + s3

∫
Ω′

g
√

2n(ψ′ + ξ′)|χ|2

+ O(|s|5). (E.9)

Plugging the Taylor expansions (9.7) into the third term of (E.3) gives∫
Ω′

χ · (−i(curl νs)Jws) =
∫

Ω′
χ · (−in − s2i(curl ν′) + O(|s|4))

× (sJχ + s3Jw′ + O(|s|5)). (E.10)

Recall from Eq. (5.24) that χ is of the form χ = (ω, iω)T , so
χ · Jχ = −i|χ|2 and χ · Jw′ = −iχ · w′. Therefore (E.10) simplifies to∫

Ω′
χ · (−i(curl νs)Jws) =

∫
Ω′

(−in − s2i(curl ν′) + O(|s|4))

× (−si|χ|2 − s3iχ · w′ + O(|s|5)). (E.11)
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Expanding this product and applying Lemma E.1 gives∫
Ω′

χ · (−i(curl νs)Jws) = −s

∫
Ω′

n|χ|2 − s3

∫
Ω′

(curl ν′)|χ|2

− s3

∫
Ω′

nχ · w′ + O(|s|5). (E.12)

Recall that χ ∈ Null(H1(n)) and that w′ is orthogonal to Null H1(n). Therefore
the third term vanishes:∫

Ω′
χ · (−i(curl νs)Jws) = −s

∫
Ω′

n|χ|2 − s3

∫
Ω′

(curl ν′)|χ|2

+ O(|s|5). (E.13)

Using χ · Jws = −χ × ws, the fourth term of (E.3) becomes∫
Ω′

χ · (g2ws × ws)Jws =
∫

Ω′
−g2(χ × ws) × (ws × ws). (E.14)

Plugging in the Taylor expansions (9.7) gives∫
Ω′

χ · (g2ws × ws)Jws =
∫

Ω′
−g2(sχ × χ + O(|s|3))

× (s2χ × χ + O(|s|4)). (E.15)

Recall from Eq. (5.24) that χ is of the form χ = (ω, iω), so χ×χ = i|χ|2. This
fact and Lemma E.1 gives∫

Ω′
χ · (g2ws × ws)Jws = s3

∫
Ω′

g2|χ|4 + O(|s|5). (E.16)

The s3 terms of (E.6), (E.9), (E.13) and (E.16) must sum to 0, and so
(9.11) results. �

Appendix F: Proof of (10.3)

Proof of (10.3). We shall calculate each term in the integral (4.8) up to order
s6 using Lemma E.1 and the Taylor expansions (9.7).

Plugging the Taylor expansions (9.7) into the first term of (4.8) gives∫
Ω′

| curlν ws|2 =
∫

Ω′
|s curlan χ + O(|s|3)|2. (F.1)

Recall from Eq. (5.24) that curlan χ = 0. Therefore, applying Lemma E.1 gives∫
Ω′

| curlν ws|2 = O(|s|6). (F.2)

Plugging the Taylor expansions (9.7) into the second term of (4.8) gives∫
Ω′

1
2
| curl zs|2 =

∫
Ω′

1
2
|s2 curl z′ + O(|s|4)|2. (F.3)

Expanding the square and applying Lemma E.1 gives∫
Ω′

1
2
| curl zs|2 = s4

∫
Ω′

1
2
| curl z′|2 + O(|s|6). (F.4)
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Plugging the Taylor expansions (9.7) into the third term of (4.8) gives
∫

Ω′

1
2
| curl as|2 =

∫
Ω′

1
2

∣∣∣∣curl
1
e
an + s2 curl a′ + s4 curl a′′ + O(|s|6)

∣∣∣∣
2

. (F.5)

Recall that curl an = n. Expanding the square gives∫
Ω′

1
2
| curl as|2 =

∫
Ω′

[
1
2

n2

e2
+ s2 n

e
curl a′ + s4 n

e
curl a′′

+s4 1
2
| curl a′|2 + O(|s|6)

]
. (F.6)

The second and third terms vanish because a′ and a′′ are L′-periodic. There-
fore, applying Lemma E.1 gives∫

Ω′

1
2
| curl as|2 =

1
2

n2

e2
|Ω′| + s4

∫
Ω′

1
2
| curl a′|2 + O(|s|6). (F.7)

Plugging the Taylor expansions (9.7) into the fourth term of (4.8) gives

∫
Ω′

1
2
g2φ2

s|ws|2 =
∫

Ω′

1
2
g2

[√
2n

g
+ s2(ξ′ + ψ′) + O(|s|4)

]2

× |sχ + s3w′ + O(|s|6)|2. (F.8)

Expanding the square terms gives
∫

Ω′

1
2
g2φ2

s|ws|2 =
∫

Ω′

1
2
g2

[
2n

g2
+ s22

√
2n

g
(ξ′ + ψ′) + O(|s|4)

]

× [s2|χ|2 + s42Re(χ · w′) + O(|s|6)]. (F.9)

Expanding this product and applying Lemma E.1 gives∫
Ω′

1
2
g2φ2

s|ws|2 = s2

∫
Ω′

n|χ|2

+ s4

∫
Ω′

[g
√

2n(ξ′ + ψ′)|χ|2 + 2nRe(χ · w′)] + O(|s|6). (F.10)

Recall that χ ∈ Null(H1(n)) and that w′ is orthogonal to Null(H1(n)). There-
fore the third term vanishes:∫

Ω′

1
2
g2φ2

s|ws|2 = s2

∫
Ω′

n|χ|2 + s4

∫
Ω′

g
√

2n(ξ′ + ψ)|χ|2 + O(|s|6). (F.11)

Plugging the Taylor expansions (9.7) into the fifth term of (4.8) and
expanding the square terms gives∫

Ω′

1
4 cos2 θ

g2φ2
s|zs|2 =

∫
Ω′

1
4 cos2 θ

g2

×
[

2n

g2
+ s22

√
2n

g
(ξ′ + ψ′) + O(|s|4)

]
[s4|z′|2 + O(|s|6)]. (F.12)
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Expanding this product and applying Lemma E.1 gives∫
Ω′

1
4 cos2 θ

g2φ2
s|zs|2 = s4

∫
Ω′

n

2 cos2 θ
|z′|2 + O(|s|6). (F.13)

Plugging the Taylor expansions (9.7) into the sixth term of (4.8) gives∫
Ω′

|ws × ws|2 =
∫

Ω′
|s2χ × χ + O(|s|4)|2, (F.14)

Recall from Eq. (5.24) that χ is of the form χ = (ω, iω), so χ × χ = i|χ|2.
Therefore, applying Lemma E.1 gives∫

Ω′
|ws × ws|2 = s4

∫
Ω′

|χ|4 + O(|s|6). (F.15)

Plugging the Taylor expansions (9.7) into the seventh term of (4.8) gives∫
Ω′

i(curl νs)ws × ws =
∫

Ω′
i

[
g sin θ curl

1
e
an + s2 curl ν′ + O(|s|4)

]

× [sχ + s3w′ + O(|s|5)] × [sχ + s3w′ + O(|s|5)]. (F.16)

where, recall, ν′ := g(a′ sin θ+z′ cos θ). Recall that curl an = n and e = g sin θ.
Expanding the wedge product of the second and third terms gives∫

Ω′
i(curl νs)ws × ws =

∫
Ω′

i

[
n

g

2
+ s2 curl ν′ + O(|s|4)

]

× [s2χ × χ + s4(χ × w′ + w′ × χ) + O(|s|6)] . (F.17)

Recall from Eq. (5.24) that χ is of the form χ = (ω, iω), so χ × χ = i|χ|2 and
χ × w′ = iχ · w′. Therefore∫

Ω′
i(curl νs)ws × ws =

∫
Ω′

[in + s2i curl ν′ + O(|s|4)]

× [s2i|χ|2 + s42Re(iχ · w′) + O(|s|6)]. (F.18)

Expanding this product and using Lemma E.1 gives∫
Ω′

i(curl νs)ws × ws = −s2

∫
Ω′

n|χ|2 − s4

∫
Ω′

[2in Im(χ · w′)

− s4

∫
Ω′

(curl ν′)|χ|2 + O(|s|6). (F.19)

Recall that χ ∈ Null(H1(n)) and w′ is orthogonal to Null(H1(n)). Therefore
the second term vanishes:∫

Ω′
i(curl νs)ws × ws = −s2

∫
Ω′

n|χ|2 − s4

∫
Ω′

(curl ν′)|χ|2

+ O(|s|6). (F.20)

Plugging the Taylor expansions (9.7) into the eigth term of (4.8) gives∫
Ω′

|∇φs|2 =
∫

Ω′
|s2∇ψ′ + O(|s|4)|2. (F.21)
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Expanding the square and using Lemma E.1 gives∫
Ω′

|∇φs|2 = s4

∫
Ω′

|∇ψ′|2 + O(|s|6). (F.22)

Plugging the Taylor expansions (9.7) into the ninth term of (4.8) and
expanding the inner squares gives∫

Ω′

1
2
λ(φ2

s − ξ2
s )

=
∫

Ω′

1
2
λ

[
2n

g2
+ s22

√
2n

g
(ξ′ + ψ′) − 2n

g2
− s22

√
2n

g
ξ′ + O(|s|4)

]2

=
∫

Ω′

1
2
λ

[
s22

√
2n

g
ψ′ + O(|s|4)

]2

. (F.23)

Expanding the outer square gives and using Lemma E.1 gives∫
Ω′

1
2
λ(φ2

s − ξ2
s ) = s4

∫
Ω′

4λn

g2
ψ′2 + O(|s|6). (F.24)

Adding (F.2)–(F.24) and dividing by |Ω′| gives (10.3), where Rε collects
the O(|s|6) remainder terms. Rε has continuous derivatives of all orders be-
cause it is a sum of integrals of the form (E.1) with fs and gs coming from the
continuously differentiable remainder terms O(|s|p) of (9.7). �

Appendix G: Spectral Analysis of the Operator −Δan

Recall from the main text, but in vector notation, that an := n
2 x⊥, where

(x1, x2)⊥ = (−x2, x1), ∇q := ∇ − iq = (∇1,∇2), ∇j := ∂j − iqj , ∂j ≡ ∂xj , and
Δq := ∇2

q = −∇∗
q∇q. The next proof follows Section 5 of [18].

Proof of Proposition 5.4. The self-adjointness of the operator −Δan is well-
known. To find its spectrum, we introduce the complexified covariant deriva-
tives (harmonic oscillator annihilation and creation operators), ∂̄an and ∂̄∗

an =
−∂an , with

∂̄an := (∇an)1 + i(∇an)2 = ∂x1 + i∂x2 +
1
2
n(x1 + ix2). (G.1)

One can redily verify that these operators satisfy the following relations:

[∂̄an , (∂̄an)∗] = curl an = n; (G.2)

−Δan − n = (∂̄an)∗∂̄an . (G.3)

As for the harmonic oscillator (see, e.g. [23]), this gives explicit informa-
tion about the spectrum of −Δan , namely (5.26), with each eigenvalue is of
the same multiplicity. Furthermore, the above properties imply (5.27).

We find Null ∂̄an . A simple calculation gives the following operator equa-
tion

e− n
2 (ix1x2−(x2)2)∂̄ane

n
2 (ix1x2−(x2)2) = ∂x1 + i∂x2 .
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(The transformation on the left-hand side is highly non-unique.) This imme-
diately proves that

∂̄anψ = 0, (G.4)

if and only if θ = e− n
2 (ix1x2−(x2)2)ψ satisfies (∂x1 +i∂x2)θ = 0. We now identify

x ∈ R
2 with z = x1 + ix2 ∈ C and see that this means that θ is analytic and

ψ (x) = e− πn
2 Im τ (|z|2−z2)θ(z, τ), z = (x1 + ix2)/

√
2π

Im τ
. (G.5)

where we display the dependence of θ on τ . The quasiperiodicity of ψ transfers
to θ as follows:

θ(z + 1, τ) = θ(z, τ), θ(z + τ, τ) = e−2πinze−inπτθ(z, τ).

The first relation ensures that θ have a absolutely convergent Fourier
expansion of the form θ(z, τ) =

∑∞
m=−∞ cme2πmiz. The second relation, on

the other hand, leads to relation for the coefficients of the expansion: cm+n =
e−inπzei2mπτ cm, which together with the previous statement implies (5.29).

�

Next, we claim that the solution (G.5) satisfies

ψ(x) = ψ(−x). (G.6)

By (G.5), it suffices to show that θ(z) = θ(−z). We show this for n = 1.
Denote the corresponding θ by θ(z, τ). Iterating the recursive relation for the
coefficients in (5.29), we obtain the following standard representation for the
theta function

θ(z, τ) =
∞∑

m=−∞
e2πi( 1

2m2τ+mz). (G.7)

We observe that θ(−z, τ) = θ(z, τ) and therefore ψ0(−x) = ψ0(x). Indeed,
using the expression (G.7), we find, after changing m to −m′, we find

θ(−z, τ) =
∞∑

m=−∞
e2πi( 1

2m2τ−mz) =
∞∑

m′=−∞
e2πi( 1

2m′2τ+m′z) = θ(z, τ). (G.8)
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