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Deformation and Quantisation Condition of
the Q-Top Recursion

Kento Osuga

Abstract. We consider a deformation of a family of hyperelliptic refined
spectral curves and investigate how deformation effects appear in the
hyperelliptic refined topological recursion as well as the Q-top recur-
sion. We then show a coincidence between a deformation condition and
a quantisation condition in terms of the Q-top recursion on a degenerate
elliptic curve. We also discuss a relation to the corresponding Nekrasov–
Shatashivili effective twisted superpotential.
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1. Introduction

The purpose of the present paper is twofold. One is to describe the so-called
variational formula in the framework of the hyperelliptic refined topological
recursion as well as the Q-top recursion proposed in [25,33]. The other is
to reveal an intriguing coincidence between a deformation condition and a
quantisation condition in terms of the Q-top recursion as an application of the
variational formula.

1.1. Motivations and Backgrounds

Since motivations and backgrounds of a refinement of topological recursion are
discussed in [25,33] in detail, we only give a brief review of recent developments
in this direction.

As defined in [33] (and in [25] for a special class of genus-zero curves),
a hyperelliptic refined spectral curve Sκ,μ consists of three data: a compacti-
fied and normalised Torelli-marked hyperelliptic curve C = (Σ, x, y) of genus
g̃,1 complex parameters κ associated with the Torelli markings, and complex
parameters μ associated with non-ramified zeroes and poles of a differential
ydx.2 We often drop ‘hyperelliptic’ for brevity. Taking a refined spectral curve
as initial data, the refined topological recursion constructs an infinite sequence
of multidifferentials ωg,n on Σn labeled by n ∈ Z≥0 and g ∈ 1

2Z≥0—g is dif-
ferent from the genus of Σ. Kidwai and Osuga [25] and Osuga [33] proved or
conjectured properties of ωg,n. Several results based on matrix models have
also been discussed in, e.g. [5,6,8,9,28].

The multidifferentials ωg,n polynomially depend on the refinement pa-
rameter Q, up to Q2g. It is easy to see that the Q-independent part precisely
corresponds to the Chekhov–Eynard–Orantin topological recursion [7,10,15].
As shown in [33], it turns out that the Q-top degree part also give rise to a
self-closed recursion, and we call it the Q-top recursion. That is, the Chekhov–
Eynard–Orantin topological recursion and the Q-top recursion are a subsector
of the full refined topological recursion, and we, respectively, denote differ-
entials in each subsector by ωCEO

g,n and �g,n to notationally distinguish from
ωg,n.

1We abuse the terminology and include curves of g̃ = 0, 1.
2Strictly speaking, ydx has to be anti-symmetrised in terms of the hyperelliptic involution
σ.
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For a family of hyperelliptic curves C(t) with some complex parameters
t, one can consider the corresponding family of refined spectral curves Sκ,μ(t)
(with mild restrictions, e.g. ramification points should not collide each other
under deformation of parameters). As a consequence, ωg,n also depend on the
parameters t, and one may ask: how do ωg,n vary under a deformation with
respect to t?

In the unrefined setting, this point has already been addressed in [13,15],
and we know how ωCEO

g,n (t) varies which is known as the variational formula.3

It can be thought of as a generalisation of the Seiberg–Witten relation [35,36].
However, it turns out that there is a subtlety and difficulty when one tries
to apply the original Eynard-Orantin proof to the refined setting. Thus, we
provide an equivalent interpretation of the variational formula (Definition 3.1)
which becomes easier to apply to the refined topological recursion. With this
perspective, we are able to state a refined analogue of the variational formula.

1.2. Summary of Main Results

The first achievement of the present paper is to prove the variational formula
for the refined topological recursion, when Σ = P

1 (Theorem 3.5). However,
since we have to fix several notations and technical aspects in order to remove
the subtlety mentioned above, it is hard to state the variational formula here
and we leave all the details to Sect. 3. Roughly speaking, it states that a certain
deformation δt ∗ ωg,n with respect to t ∈ t is related to an integral of ωg,n+1

as follows:

δt ∗ ωg,n =
∫

p∈γ

Λ(p) · ωg,n+1, (1.1)

where (γ,Λ) is defined in Definition 3.3. Let us emphasise that, in contrast to
the unrefined setting, the variational formula (1.1) holds only when a refined
spectral curve Sκ,μ(t) satisfies a certain condition which we call the refined
deformation condition (Definition 3.4). See Sect. 3 for more details. Note that
some properties of the refined topological recursion are still conjectural when
Σ �= P

1 [33], hence the variational formula also remains conjectural in this case.
We also note that [9] discuss a similar formula in a different refined setting.

Another achievement of the present paper is to uncover an intriguing
coincidence between the refined deformation condition and what we call the Q-
top quantisation condition defined as follows. It is shown in [33] that the Q-top
recursion naturally constructs a second-order ordinary differential operator,
called the Q-top quantum curve. For a refined spectral curve Sκ,μ(t) whose
underlying curve is given by y2 = Q0(x), the associated Q-top quantum curve
is written in the following form⎛

⎝ε21
d2

dx2
− Q0(x) −

∑
k∈Z≥1

εk
1 · Qk(x)

⎞
⎠ ψQ−top(x) = 0, (1.2)

3The variational formula in the unrefined setting is not limited to hyperelliptic curves.
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where ε1 is a formal parameter, Qk(x) is a rational function of x determined
by {�h}h for 2h < k, and the logarithmic derivative of ψQ−top(x) is a formal
sum of ε2g−1

1 · �g,1 over g. In the context of topological recursion, one may
sometime require a condition on quantisation that the set of poles of Qk(x)
should be a subset of poles of Q0(x). Therefore, we say that a refined spectral
curve Sκ,μ(t) satisfies the Q-top quantisation condition, if the Q-top quantum
curve respects the pole structure of Q0(x) (Definition 4.5) — existence of a
quantum curve in the full refined setting is proven only for a special class of
genus-zero curves [25] and in this case one can analogously consider the refined
quantisation condition.

In order to deliver a clear picture about the coincidence between the
refined deformation condition and the Q-top quantisation condition, let us
focus on the following example. For t ∈ C

∗, we consider a one-parameter
family of curves Ct = (P1, x, y) where meromorphic functions (x, y) satisfy:

y2 − Q0(x; t) = 0, Q0(x; t) = 4 (x − q0)
2 · (x + 2q0) , q0 =

√
− t

6
.

(1.3)

This is the curve associated with the zero-parameter solution of the Painlevé I
equation, and t plays the role of the Painlevé time [24]. Since ydx has a simple
zero at the preimages of x = q0, the corresponding refined spectral curve Sμ(t)
carries one parameter μ ∈ C, and ωg,n depend both on t and μ.

In this example, it turns out that Sμ(t) satisfies the refined deformation
condition if and only if μ is set to a special value μ = μ0 (Proposition 4.4).
On the other hand, one can show that Qk≥2(x; t, μ) has a pole at x = q0 for a
generic μ, which is a zero of Q0(x; t). However, it turns out that when μ = μ0,
such poles disappear for all k, and thus, the Q-top quantisation condition is
satisfied (Proposition 4.6). Therefore, we observe that the refined deformation
condition and the Q-top quantisation condition precisely agree, even though
they originated from two different requirements. It is interesting to see whether
this coincidence holds in other curves, e.g. curves discussed in [23] in relation
to other Painlevé equations.

When μ = μ0, the variational formula gives a relation between Qk(x; t, μ0)
in (1.2) and a derivative of FQ-top

g := �g,0 with respect to t — the former ap-
pears in the Q-top quantisation and the latter is a consequence of a deformation
of a refined spectral curve:

Theorem 1.1 (Theorem 4.7). Consider the above family of refined spectral curves
Sμ0(t) satisfying the refined deformation condition and also the Q-top quan-
tisation condition. Then, the associated Q-top quantum curve is given in the
following form:

⎛
⎝ε21

d2

dx2
− 4x3 − 2tx − 2

∑
g∈ 1

2Z≥0

ε2g
1

∂FQ−top
g

∂t

⎞
⎠ ψQ−top(x) = 0. (1.4)
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It is crucial to remark that there is no ε21∂/∂t term in (1.4), in contrast to
the quantum curve derived in [18,24] within the framework of the Chekhov–
Eynard–Orantin topological recursion. Instead, a similar differential operator
to (1.4) has appeared in the context of conformal blocks in the semi-classical
limit, or the so-called Nekrasov–Shatashivili limit, e.g. [2,26,27]. Note that they
consider a genus-one curve whose singular limit becomes (1.3), and we expect
that the form of (1.4) remains the same for the corresponding genus-one curve.
Importantly, their arguments and Theorem 1.1 suggest a conjectural statement
that FQ−top

g agrees with the so-called Nekrasov–Shatashivili effective twisted
superpotential Weff

g [32], when a refined spectral curve is chosen appropriately:
∑

g∈ 1
2Z≥0

ε2g
1 FQ−top

g
?=

∑
g∈ 1

2Z≥0

ε2g
1 Weff

g := ε1ε2 log ZNek
∣∣
ε2=0

, (1.5)

where ZNek is the corresponding Nekrasov partition function [31] and the
equality should be considered as a formal series in ε1. See, e.g. [16,17,30] for
more about Nekrasov–Shatashivili effective twisted superpotentials. Note that
for the curve associated with the Painlevé I equation, the Nekrasov partition
function is not defined from an irregular conformal block perspective, whereas
FQ−top

g is perfectly well-defined. We hope that the present paper together
with the notion of the Q-top recursion [33] sheds light on verifying the above
statement and also triggers a new direction between topological recursion, the
Q-top recursion, and invariants in the Nekrasov–Shatashivili limit (e.g. a role
of �g,n≥2).

2. Definitions

We briefly review the refined topological recursion proposed in [25,33]. We
refer to the readers [33, Section 2] for more details.

Definition 2.1 ([25,33]). A hyperelliptic refined spectral curve Sμ,κ consists of
the collection of the following data:

• (Σ, x, y): a connected compact Riemann surface of genus g̃ with two mero-
morphic functions (x, y) satisfying

y2 − Q0(x) = 0, (2.1)

where Q0(x) is a rational function of x which is not a complete square.
We denote by σ : Σ → Σ the hyperelliptic involution of x : Σ → P

1 and
by R the set of ramification points of x, i.e. set of σ-fixed points.

• (Ai,Bi, κi): a choice of a canonical basis Ai,Bi ∈ H1(Σ,Z) and associated
parameters κi ∈ C for i ∈ {1, . . . , g̃},

• (P̃+, μp): a choice of a decomposition P̃+ � σ(P̃+) = P̃ and associated
parameters μp ∈ C for all p ∈ P̃+ where P̃ is the set of unramified zeroes
and poles of ydx.

Let us fix some notation before defining the refined topological recursion.
First of all, throughout the present paper, g, h are in 1

2Z≥0, n,m in Z≥0, i, j in
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{1, . . . , g̃} and a, b in {0, . . . , n}. We denote by B the fundamental bidifferential
of the second kind, and for a choice of representatives Ai of Ai for each i,
we denote by ηp

A the fundamental differential of the third kind for p ∈ Σ
normalised along each Ai-cycle. We write pa ∈ Σ for each a, J := (p1, . . . , pn) ∈
(Σ)n, and J0 := {p0} ∪ J ∈ (Σ)n+1. Assuming pa �∈ R ∪ σ(P+) for all a, we
denote by C+ a connected and simply-connected closed contour such that it
contains all points in J0 ∪ P+ and no points in R ∪ σ(J0 ∪ P+). With the
assumption on pa, one can always find such a contour and we drop the n-
dependence on C+ for brevity. Similarly, we denote by C− a connected and
simply-connected closed contour containing all points in R∪σ(J0∪P+) but not
points in J0∪P+. We call p ∈ R ineffective if ydx is singular at p, and effective
otherwise. We denote by R∗ the set of effective ramification points. We denote
by P0,∞

+ ∪σ(P0,∞
+ ) the set of unramified zeroes and poles of ydx, respectively,

and denote by Cp
− a connected and simply-connected closed contour inside C−

but not containing points in σ(P∞
+ ). Finally, we fix Q ∈ C and we call it the

refinement parameter.

Definition 2.2 ([25,33]). Given a hyperelliptic refined spectral curve Sμ,κ , the
hyperelliptic refined topological recursion is a recursive definition of multidif-
ferentials ωg,n+1 on (Σ)n+1 by the following formulae:

ω0,1(p0) : = y(p0) · dx(p0), (2.2)

ω0,2(p0, p1) : = −B(p0, σ(p1)), (2.3)

ω 1
2 ,1(p0) : =

Q
2

⎛
⎝−dΔy(p0)

Δy(p0)
+

∑
p∈P̃+

μp · ηp
A(p0) +

g̃∑
i=1

κi ·
∫

Bi

B(·, p0)

⎞
⎠ ,

(2.4)

and for 2g − 2 + n ≥ 0,

ωg,n+1(J0) :=
1

2πi

(∮
p∈C+

−
∮

p∈C−

)
ηp

A(p0)
4ω0,1(p)

· RecQ
g,n+1(p, J), (2.5)

where

RecQ
g,n+1(p0;J) :=

∗∑
g1+g2=g
J1�J2=J

ωg1,n1+1(p0, J1) · ωg2,n2+1(p0, J2)

+
∑

t�I=J

dx(p0) · dx(t)
(x(p0) − x(t))2

· ωg,n(p0, I)

+ ωg−1,n+2(p0, p0, J) + Q · dx · d0

ωg− 1
2 ,n+1(p0, J)

dx(p0)
, (2.6)

and the ∗ in the sum denotes that we remove terms involving ω0,1.

As expected, it is shown in [33] that {ωg,n+1}g,n satisfies the Chekhov–
Eynard–Orantin topological recursion when Q = 0. However, it is important
to remark that it is conjectural that the above definition makes sense for
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2g − 2 + n ≥ 1 when Σ �= P
1 or Q �= 0 — there is no issue when 2g −

2 + n = 0. In particular, it has not been proven whether the above formula
constructs symmetric multidifferentials ωg,n+1 on (Σ)n+1 — the definition only
ensures the well-definedness within a fundamental domain due to ηp

A(p0) in the
formula. When Σ = P

1, [25,33] proved several properties on ωg,n+1 which are
summarised as below:

Theorem 2.3 ([25,33]). When Σ = P
1, ωg,n+1 are well-defined multidifferen-

tials on (Σ)n+1 and they satisfy the following properties:
• ωg,n+1 are symmetric multidifferentials
• For 2g − 2 + n ≥ 0, ωg,n+1(p0, J) has no residues as a differential in p0,

and their poles only lie in R∗ ∪ σ(J ∪ P0
+).

• For 2g − 2 + n ≥ 0, let φ be any primitive of ω0,1, then

(2 − 2g − n − 1) · ωg,n+1(J0) =
1

2πi

∮
p∈Cp

−

φ(p) · ωg,n+2(p, J0) (2.7)

Conjecture 2.4 ([33]). Theorem 2.3 holds for any Σ.

As discussed in [33], it is easy to see for each g, n that ωg,n+1 polynomially
depends on Q up to Q2g, and the recursion for the Q-top degree part is self-
closed, i.e. they can be constructed without the information of lower degree
parts. We call it the Q-top recursion, and explicitly it is defined as follows:

Definition 2.5 ([33]). Given a hyperelliptic refined spectral curve Sμ,κ , the Q-
top recursion is a recursive definition of multidifferentials �g,n+1 on (Σ)n+1

by the following formulae:

�0,1(p0) : = y(p0) · dx(p0), (2.8)

�0,2(p0, p1) : = −B(p0, σ(p1)), (2.9)

� 1
2 ,1(p0) : =

1
2

⎛
⎝−dΔy(p0)

Δy(p0)
+

∑
p∈P̃+

μp · ηp
A(p0) +

g̃∑
i=1

κi ·
∫

Bi

B(·, p0)

⎞
⎠ ,

(2.10)

and for 2g − 2 + n ≥ 0,

�g,n+1(J0) :=
1

2πi

(∮
p∈C+

−
∮

p∈C−

)
ηp

A(p0)
4ω0,1(p)

· RecQ-top
g,n+1(p, J), (2.11)

where

RecQ-top
g,n+1(p0;J) :=

∗∑
g1+g2=g
J1�J2=J

�g1,n1+1(p0, J1) · �g2,n2+1(p0, J2)

+
∑

t�I=J

dx(p0) · dx(t)
(x(p0) − x(t))2

· �g,n(p0, I)

+ dx · d0

�g− 1
2 ,n+1(p0, J)

dx(p0)
. (2.12)
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Note that there is no �g−1,n+2 in QQ-top
g,n+1, unlike QQ

g,n+1. Since the Q-top
recursion is a subsector of the refined topological recursion, Theorem 2.3 holds
for �g,n+1 too, as long as Σ = P

1. We note that it is meaningful to define
the Q-top recursion independently and study it on its own. For example, as
discussed in [33], the Q-top recursion would be relevant to the Nekrasov–
Shatashivili limit which is an active research area in mathematics and physics.
In particular, [33] proved the following property for any Σ, not limited to
Σ = P

1:

Theorem 2.6 ([33]). �g,1 are well-defined residue-free differentials on Σ whose
poles only lie in R∗ ∪ σ(P0

+), and there exists an ordinary second-order differ-
ential equation of the following form:⎛

⎝ε21
d2

dx(p)2
− Q0(x(p)) −

∑
k∈Z≥1

εk
1Qk(x(p))

⎞
⎠ ψQ-top(p) = 0 (2.13)

where Qk(x) is a rational function of x explicitly constructed by �h,1 for 2h <
k, and ψQ-top is a formal series in ε1 defined by

ε1 · d log ψQ-top(p) :=
∑
g≥0

ε2g
1 · �g,1(p). (2.14)

The associated differential operator (2.13) is called the Q-top quantum
curve. Except for a special class of genus-zero curves investigated in [25], exis-
tence of the refined quantum curve in full generality is still an open question.

When the underlying hyperelliptic curve depends on complex parameters
t = {t1, . . . , tn}, one can consider a t-parameter family Sκ,μ(t) of refined
spectral curves as long as t are in a domain such that no points in R ∪ P
collide. All the above definitions and theorems hold for Sκ,μ(t). In the next
section, we will consider how ωg,n+1(t) behave while one varies t.

Before turning to the variational formula, let us define the free energy
Fg, except F0, F 1

2
, F1 which will be defined later:

Definition 2.7 ([25,33]). For g > 1, the genus- g free energy Fg, F
Q-top
g of the

refined topological recursion and the Q-top recursion is defined, respectively,
as follows:

Fg : = ωg,0 :=
1

2 − 2g

1
2πi

∮
p∈Cp

−

φ(p) · ωg,1(p), (2.15)

FQ-top
g : = �g,0 :=

1
2 − 2g

1
2πi

∮
p∈Cp

−

φ(p) · �g,1(p). (2.16)

3. Variation

The variational formula is proven in [15] and originally it is explained as fol-
lows. Consider a one-parameter family of spectral curves S(t) in the unrefined
setting. Then, x and y as functions on Σ depend on the parameter t and so do
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all ωg,n+1(t). Then, [15] considers a special type of deformation, namely, vari-
ation for fixed x. This may sound contradictory with the fact that x depends
on t, but what it really means is the following.

Set Q = 0. By choosing one of the branched sheet, one projects ωg,n+1

down to P
1 away from ramification points and treat them locally as multid-

ifferentials on P
1. The variation for fixed x means that we apply the partial

derivative with respect to t for these multidifferentials on P
1 with the under-

standing that ∂
∂tdxa = 0, and apply the local inverse x−1 to pull them back to

differentials on Σ. That is, the variation symbol δEO
t in [15] acting on ωg,n+1

means (c.f. [3,22]):

δEO
t ∗ ωg,n+1(p0, . . . , pn; t) :=

(
∂

∂t
ωg,n+1(pt(x0), . . . , pt(xn); t)

) ∣∣∣∣
xa=x(pa)

,

(3.1)

where on the right-hand side we think of x as independent of t and instead pt

depends on both t and x. We will denote by ∗ the action of the variation in
order to distinguish from the standard product symbol · which we are using
throughout the paper. The standard partial derivative notation ∂t is com-
monly used in, e.g. [13,14,29] but we avoid this notation to emphasise that
the operation is not just a partial derivative.

We will provide another equivalent description of the variation operation
without considering the projection and inverse. The motivation of introducing
such a new perspective is for the clarity of the proof of the variational formula
when Q �= 0. The original proof by Eynard and Orantin is based on a graphical
interpretation whose analogue does not exist in the refined setting, at least at
the moment of writing. As a consequence, we need to directly evaluate the
variation of the refined recursion formula (2.5), and in this case, taking the
projection and the inverse becomes subtle because C± contains J0 and σ(J0).

Definition 3.1. Given Sμ,κ(t), the topological recursion variational operator
δ
(n)
t is a differential operator acting on meromorphic functions on (Σ)n de-

fined by

δ
(n)
t :=

d
dt

−
n∑

a=1

∂x(pa)
∂t

1
dx(pa)

dpa
, (3.2)

where (p1, . . . , pn) ∈ (Σ\R)n and dpa
denotes the exterior derivative with

respect to pa. We extend the action of δ
(n)
t to a meromorphic multidifferential

ω on (Σ)n by

δ
(n)
t ∗ ω(p1, . . . , pn; t) :=

(
δ
(n)
t ∗ ω(p1, . . . , pn; t)

dx(p1) · · · dx(pn)

)
· dx(p1) · · · dx(pn).

(3.3)

Note that this definition is valid not only for hyperelliptic curves but also
for any algebraic curves. It can be generalised to a multi-parameter family in
an obvious way. δ

(n)
t is defined only when each pa �∈ R which resonates with
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the fact that one has to choose a branch in the Eynard-Orantin description.
Importantly, the above definition implies

δ
(1)
t ∗ x = 0, δ

(1)
t ∗ dx = 0, (3.4)

and for a differential w on (P1)n, its pullback to (Σ)n satisfies

δ
(n)
t ∗ w(x(z1), . . . , x(zn); t) =

∂

∂t
w(x(z1), . . . , x(zn); t). (3.5)

Thus, δ
(n)
t in fact serves as the variation for fixed x. Furthermore, we have

δ
(1)
t ∗ ydx =

∂y

∂t
dx − ∂x

∂t
dy, (3.6)

which corresponds to [15, Equation 5-2]. From now on, we omit writing the
t-dependence of functions and multidifferentials.

Remark 3.2. Perhaps, the conceptual motivation of the action of δ
(n)
t becomes

clearer when one thinks of the underlying hyperelliptic curve from the Hitchin
perspective [11–13]. A Hitchin spectral curve (of rank 2) is given by a triple
(Σo, ϕ, π) where π : Σo → P

1, ϕ is a quadratic differential on P
1, and Σo is

embedded in T ∗
P

1 as

Σo = {λ ∈ T ∗Σo|λ⊗2 = π∗ϕ} ⊂ T ∗
P

1. (3.7)

Our Σ would be obtained after normalisation and compactification of Σo. By
interpreting π = x and ϕ = (ydx)⊗2, variation for fixed x means that one
varies the quadratic differential ϕ while keeping the projection π = x invariant.

Given an unrefined spectral curve S(t), let us assume existence of a pair
(γ,Λ) such that γ is a path in Σ\R and Λ is a function holomorphic along γ
satisfying

δ
(1)
t ∗ ω0,1(p1) =:

∫
p∈γ

Λ(p) · ω0,2(p, p1). (3.8)

Then, [15] showed that the following relation holds for g, n ∈ Z≥0 by using the
graphical interpretation of the unrefined topological recursion formula, which
is known as the variational formula:

δ
(n+1)
t ∗ ωg,n+1(J0) =

∫
p∈γ

Λ(p) · ωg,n+2(p, J0). (3.9)

The difficulty to generalise the variational formula into the refined setting
arises due to the more complicated pole structure of {ωg,n+1}g,n. Nevertheless,
if we restrict the pair (γ,Λ) to certain classes as below, a refined analogue still
holds when Σ = P

1, and we expect that it works for any Σ in general.
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For s ∈ P∞\R and r ∈ P∞ ∩ R, let x(s) = xs, x(r) = xr and suppose
ω0,1 behaves locally

ω0,1 = ±
(

ms∑
k=0

ts,k

(x − xs)k+1
+ O(1)

)
dx,

ω0,1 =

(
mr∑
k=1

tr,k
(x − xr)k

+ O(1)

)
dx

2
√

x − xr
(3.10)

Let Λs,k,Λr,k be the corresponding meromorphic function on Σ such that

1
2

(
Res
p=s

− Res
p=σ(s)

)
Λs,k(p)−1 · ω0,1(p) = ts,k, Res

p=r
Λr,k(p)−1 · ω0,1(p) = tr,k.

(3.11)

Eynard and Orantin [15] and Eynard [13] show a construction of each Λs,k,Λr,k,
at least locally. Note that their pole is at most of order ms −1,mr −1, respec-
tively.

Definition 3.3 ([13]). Given Sκ,μ(t), (γ,Λ) is said to be a generalised cycle if
it falls into one of the following kinds:

I γ ∈ {Bi}i∈{1,...,g̃} and Λ = 1
II Let p ∈ Σ be an mp-th order pole of ω0,1 where mp ≥ 2. Then, for

k ∈ {1, . . . , mp − 1}, Λp,k is given as in (3.11), and γp,k is a union of
contours encircling p and σ(p) in the opposite orientation if p �∈ R, and
γp,k is a contour encircling p if p ∈ R.

III Let p ∈ Σ be a location of a residue of ω0,1 which necessarily means
p �∈ R. Then, γp is an open path from σ(p) to p within a fundamental
domain, and Λp = 1.

The corresponding parameters t(γ,Λ) defined by the expansion (3.10) are called
2nd kind times or 3rd kind times, whereas 1st kind times are defined by

ti :=
1

2πi

∮
Ai

ω0,1, (3.12)

1st, 2nd, and 3rd kind times are, respectively, called filling fractions,
temperatures, and moduli of the poles in [15]. All generalised cycles (γ,Λ) are
anti-invariant under σ when it applies to integration. 2nd and 3rd kind times
are often refered to as KP times and their relation to KP systems are discussed
in [13].

We consider a refined spectral curve Sκ,μ(t) such that t1, . . . , t|t| ∈ t
are defined as above, which are independent of each other, and we denote by
(γ1,Λ1), . . . , (γ|t|,Λ|t|) associated generalised cycles. In this setting, the varia-
tional formula (3.9) holds in the unrefined setting as shown in [15]. However,
when Q �= 0, it turns out that an analogous statement holds if Sκ,μ(t) satisfies
an additional condition, which we call the refined deformation condition:

Definition 3.4. Consider Sκ,μ(t) parameterised by times of the 1st, 2nd, and
3rd kind t = (t1, . . . , t|t|). We say that Sκ,μ(t) satisfies the refined deformation
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condition with respect to tl for l ∈ {1, . . . , |t|} if the following holds:

δ
(1)
tl

∗ ω 1
2 ,1(p1) =

∫
q∈γl

Λl(q) · ω 1
2 ,2(q, p1). (3.13)

We say that Sκ,μ(t) satisfies the refined deformation condition if the above
holds for all l.

Note that in the unrefined setting the variational formula (3.9) for (g, n) =
(0, 1) automatically holds if ω0,2 = B. Even if ω0,2 is defined differently, it is
then observed in, e.g. [3] that the variational formula still works for the rest
of ωg,n+1, as long as the variational relation (3.9) holds for (g, n) = (0, 1). In
other words, it has to be rather imposed as a supplemental condition in addi-
tion to (3.8). The refined deformation condition (Definition 3.4) is analogous
to this observation.

Finally, we will state the variational formula in the refined setting, whose
proof is entirely given in “Appendix A.1 and A.2” because it is lengthy:

Theorem 3.5. When Σ = P
1, assume that Sκ,μ(t) satisfies the refined defor-

mation condition with respect to tl for l ∈ {1, . . . , |t|}. Then, ωg,n+1 and Fg

(g > 1 for Fg) satisfy:
∂Fg

∂tl
=

∫
p∈γl

Λl(p) · ωg,1, δ
(n+1)
tl

∗ ωg,n+1(J0) =
∫

p∈γl

Λl(p) · ωg,n+2(p, J0).

(3.14)

Conjecture 3.6. Theorem 3.5 holds for any Σ.

4. Examples

We will now apply the variational formula to several examples

4.1. Hypergeometric Type Curves

Hypergeometric type curves are the classical limit of a confluent family of
Gauss hypergeometric differential equations, and they are discussed in [19–
22] in relation to the BPS invariants and Stokes graphs. Hypergeometric type
curves are classified into nine types based on their pole structure, and seven of
them depend on parameters. Iwaki et al. [21] already write all the seven types
of curves in terms of 3rd kind times, which they denote by mp rather than tp.
Then, the question one should ask is whether the corresponding refined spectral
curve Sμ(t) satisfies the refined deformation condition. Hypergeometric type
curves are main examples considered in [25].

Proposition 4.1. Every refined spectral curve Sμ(t) associated with a hypergeo-
metric type curve in the form of [21] satisfies the refined deformation condition.

Proof. The proof is done by explicit computations. Since they are genus-zero
curves, a rational expression of x, y is given in, e.g. [21] in terms of a coordinate
z on P

1, from which one can construct the variational operator δ
(1)
t for all

t ∈ t with respect to z. Then, all one has to do is to compute ω 1
2 ,1(z0) and
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ω 1
2 ,2(z0, z1) from the refined topological recursion and explicitly check the

refined deformation condition. See “Appendix A.3” where we present explicit
computations for a few examples. �

One can use the variational formula as the defining equation for F 1
2

and
F1 as follows — since all ω0,n is independent of the refinement parameter Q,
we can define F0 as [15] does:

Definition 4.2. For a refined spectral curve Sμ(t) associated with a hyper-
geometric type curve, F 1

2
and F1 are defined as a solution of the following

differential equations for all k, l ∈ {1, . . . , |t|}:
∂F 1

2

∂tk∂tl
:=

∫
p1∈γk

∫
p2∈γl

ω 1
2 ,2(p1, p2),

∂F1

∂tk
:=

∫
p1∈γk

ω1,1(p1), (4.1)

where F 1
2

is defined up to linear terms in tl and F1 is defined up to constant
terms.

Since Λ = 1 for the 3rd kind, we immediately obtain the following:

Corollary 4.3. For a refined spectral curve Sμ(t) associated with a hypergeo-
metric type curve, we have the following for 2g − 2 + n ≥ 1:

n∏
a=1

∂

∂tla
Fg =

n∏
a=1

∫
pa∈γla

ωg,n(p1, . . . , pn). (4.2)

Corollary 4.3 becomes useful to derive a relation between refined BPS
structures [1,4] and the refined topological recursion, as a generalisation of [20–
22]. For a general refined spectral curve Sκ,μ(t), not limited to hypergeometric
type curves, we will define F 1

2
, F1 in a similar way to Definition 4.2. See Remark

A.7.

4.2. A Degenerate Elliptic Curve

Let us consider the case where x and y satisfy the following algebraic equation:

y2 − Q0(x) = 0, Q0(x) := 4 (x − q0)
2 (x + 2q0)

= 4x3 + 2tx + 8q3
0 , q0 =

√
− t

6
. (4.3)

A convenient rational expression of x, y in terms of a coordinate z on Σ = P
1

is

x(z) = z2 − 2q0, y(z) = 2z(z2 − 3q0) = 2z(z2 − q2
z), (4.4)

where for brevity, we set qz :=
√

3q0. It appears in a singular limit (as an
algebraic curve) of the following elliptic curve,

y2 = 4x3 − g2x − g3, (4.5)

where for generic g2, g3 we can write x, y in terms of the Weierstrass ℘-function
as x = ℘ and y = ℘′. In [18,24], the curve (4.3) or (4.5) is chosen as a spectral
curve of the Chekhov–Eynard–Orantin topological recursion, and a relation
between the free energy and a τ -function of the Painlevé I equation is proven.
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With the above parameterisation, the hyperelliptic involution σ acts as
σ : z �→ −z, and R = {0,∞} with R∗ = {0}. Note that ω0,1(z) has a simple
zero at z = ±qz, hence we choose P+ = {qz} and we assign μ ∈ C to z = qz.
Since H1(Σ,Z) = 0 in this example, the above choice uniquely defines a refined
spectral curve Sμ(t). Theorem 2.3 then implies that ωg,n+1(z0, J) have poles,
as a differential in z0, at z0 = 0,−z1, . . . ,−zn,−qz when 2g − 2 + n ≥ 0.

As shown in [24], t in (4.3) plays the role of a 2nd kind time, and the
corresponding generalised cycle can be decoded from the following equations

Λt(z) := −z +
cq0

z
, Res

z=∞ Λt(z)−1 · ω0,1(z) = t,

δ
(1)
t ∗ ω0,1(z0) = Res

z=∞ ·Λt(z) · ω0,2(z, z0), (4.6)

where c is one of the roots of 2c2 − 6c + 3 = 0. The second term in Λt is
irrelevant in the last equation in (4.6), and it is indeed absent in [24], though
it is necessary for the second equation. Now one may ask: does every Sμ(t)
satisfy the refined deformation condition similar to hypergeometric type curves
(Proposition 4.1)? Here is the answer to that question:

Proposition 4.4. Let Sμ(t) be a refined spectral curve defined as above. Then,
it satisfies the refined deformation condition if and only if μ = 1.

Proof. The proof is again by explicit computations, similar to Proposition 4.1.
That is, we explicitly write the variational operator δ

(1)
t in terms of t and z, and

confirm when (3.13) is satisfied. Since everything can be expressed as rational
functions, it is easy to find that μ = 1 is the only solution. See “Appendix
A.3” for computations. �

Note that, unlike ωg,n+1 for 2g−2+n ≥ 0, poles of ω 1
2 ,1(z0) are all simple

and they are located not only at z0 = 0,−qz but also at z0 = qz,∞ whose
residues are given as:

Res
z=0

ω 1
2 ,1(z) = −Q

2
, Res

z=∞ ω 1
2 ,1(z) =

3Q
2

, Res
z=±qz

ω 1
2 ,1(z) =

Q
2

(−1 ± μ)

(4.7)

Therefore, the refined deformation condition is satisfied exactly when ω 1
2 ,1

becomes regular at P+. Even if we choose P+ = {−qz} instead, this aspect
remains correct. That is, the refined deformation condition for this curve is
equivalent to the condition such that ω 1

2 ,1 becomes regular at P+, no matter
how P+ is chosen.

4.2.1. Q-Top Quantum Curve. Theorem 2.6 shows that the Q-top recursion
can be utilised to quantise a refined spectral curve. For a general refined spec-
tral curve Sκ,μ(t), not limited to the above example, we introduce the following
terminology:

Definition 4.5. We say that a refined spectral curve Sκ,μ(t) satisfies the Q-top
quantisation condition if for each k the set of poles of QQ−top

k≥1 is a subset of
that of QQ−top

0 .
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We return to our example, and consider the Q-top quantisation condition
for Sμ(t).

Proposition 4.6. The above refined spectral curve Sμ(t) satisfies the Q-top
quantisation condition if and only if μ = 1.

Proof. The proof is again by computations. The formula in [33] gives

QQ−top
1 (z0) :=

�0,1(z0)
dx(z0)2

· μ · ηqz (z0) = 2qz · μ, (4.8)

QQ−top
k≥2 (z0) :=

2�0,1(z0) · RQ−top
k
2 ,1

(p0)

dx(p0) · dx(p0)
,

RQ−top
k
2 ,1

(z0) = Res
z=qz

ηz(z0)
2ω0,1(z)

· RecQ−top
k
2 ,1

(z). (4.9)

The if part is easy to see. By setting set μ = 1, then (4.7) implies that ω 1
2 ,1

becomes regular at z = qz hence QQ−top
k≥2 becomes regular at x = q0. See

“Appendix A.3” for the only-if part. �
Therefore, the refined deformation condition and the Q -top quantisa-

tion condition agree for this example. Note that any refined spectral curve of
hypergeometric type satisfies the Q-top, and in fact the refined quantisation
condition. We expect that no additional condition will appear in the full re-
fined quantisation, and it is interesting to see whether this coincidence holds
for other curves, e.g. curves related to other Painlevé equations [23].

To close, we prove that the Q-top quantum curve for Sμ=1(t) is written in
terms of the Q-top free energy FQ−top

g whose proof will be given in “Appendix
A”. Lisovyy and Naidiuk [26,27] discuss a similar equation in the context of
accessory parameters and conformal blocks in the Nekrasov–Shatashivili limit.
Thus, we conjecture that the Q-top free energy FQ−top

g coincides with the
Nekrasov–Shatashivili effective twisted superpotential [32] even when Σ �= P

1

as long as an appropriate refined spectral curve is chosen.

Theorem 4.7. For Sμ=1(t) described above, the Q-top quantum curve is given
as:⎛
⎝ε21

d2

dx(p)2
− 4x3 − 2tx − 2

∑
g∈ 1

2Z≥0

ε2g
1

∂FQ−top
g

∂t

⎞
⎠ ψQ−top(p) = 0, (4.10)

where FQ−top
1
2

and FQ−top
1 are defined as a solution of the following differential

equation:

∂2

∂t2
FQ−top

1
2

= Res
z1=0

Res
z0=0

·Λt(z1) · Λt(z0) · ω 1
2 ,2(z0, z1),

FQ−top
1
2

∣∣
t=0

=
∂

∂t
FQ−top

1
2

∣∣∣∣
t=0

= 0. (4.11)

∂

∂t
FQ−top

1 = Res
z0=0

·Λt(z0) · ω1,1(z0), FQ−top
1

∣∣
t=1

= 0. (4.12)
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Appendix A: Proofs

Throughout Appendix, we set Σ = P
1. We will give detailed computations for

most of propositions and theorems of the present paper.

A.1 Proof of Theorem 3.5: for ωg,n+1

We assume that a refined spectral curve Sμ(t) carries one time t of either 2nd
or 3rd kind, and we denote by (γ,Λ) the associated generalised cycle. The
arguments below can be easily generalised to curves with several times.

Let us first introduce convenient notations. First, for any multidifferential
ω(p, J), we denote its anti-invariant part under σ by

Δpω(p, J) := ω(p, J) − ω(σ(p), J), (A.1)

where the subscript shows the variable we are considering for the above op-
eration. Next, in order to specify variables for the variational operator, we
sometime use the following notation

δ
(p1,...,pn)
t = δ

(n)
t =

d
dt

−
n∑

a=1

∂x(pa)
∂t

1
dx(pa)

dpa
. (A.2)

Then, we can extend the action of the variational operator to meromorphic
functions on (Σ)m for m �= n without any issue.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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A.1.1 Useful Lemmas. We show how the variational operator δ
(n)
t behaves on

a product of functions and differentials:

Lemma A.1. Let f(p, p0) be a meromorphic function of p and differential in
p0 and ω(p, p1) a meromorphic bidifferential on Σ. Then, for any o ∈ Σ, we
have the following:

δ
(p,p0,p1)
t ∗ (

f(p, p0) · ω(p, p1)
)

= δ
(p,p0)
t ∗ (

f(p, p0)
) · ω(p, p1)

+f(p, p0) · δ
(p,p1)
t ∗ ω(p, p1) (A.3)

δ
(p0,p1)
t ∗ Res

p=a
f(p, p0) · ω(p, p1) = Res

p=o
δ
(p,p0,p1)
t ∗ (f(p, p0) · ω(p, p1))

(A.4)

Proof. (A.3) is just a Leibniz rule for the variational operator, and it is straight-
forward.

On the other hand, we need a more careful consideration to prove (A.4).
Let us first show that δ

(p0,p1)
t commutes with Resp=o, no matter if o depends

on p0, p1 or t. Let z be local coordinates around a, and suppose the integrand
of the left-hand side is expanded at z(p) = z(o) as

f(p, p0) · ω(p, p1) =
∑
k∈Z

hk(p0, p1, o) · dz(p)
(z(p) − z(o))k+1

, (A.5)

where hk(p0, p1, o) are bidifferential in p0, p1. Then, after taking the residue,
the left-hand side of (A.4) is simply

L.H.S. of (A.4) = δ
(p0,p1)
t ∗ h0(p0, p1, o). (A.6)

On the other hand, since z(p) can be thought of as a constant in terms of
δ
(p0,p1)
t , we find

δ
(p0,p1)
t ∗ (f(p, p0) · ω(p, p1)) =

∑
k∈Z

(
δ
(p0,p1)
t ∗ (hk(p0, p1, o)) · dz(p)

(z(p) − z(o))k+1

− hk(p0, p1, o) · δ
(p0,p1)
t ∗ (z(o)) · (k + 1)dz(p)

(z(p) − z(o))k+2

)
,

(A.7)

where δ
(p0,p1)
t ∗ (z(o)) can be nonzero if o depends on p0, p1, or t. Nevertheless,

the second term in (A.7) will have no contributions after taking the residue,
and we have shown that δ

(p0,p1)
t commutes with Resp=o. One may interpret this

result such that a closed contour encircling p = o can be chosen independently
from the time t.

Our last task is to transform δ
(p0,p1)
t into δ

(p,p0,p1)
t , that is, the variational

operator becomes effective with respect to the variable of integration p as well.
In fact, by the chain rules, we find

δ
(p0,p1)
t ∗ (f(p, p0) · ω(p, p1)) = δ

(p,p0,p1)
t ∗ (f(p, p0) · ω(p, p1))

+dp

(
f(p, p1) · ω(p, p1)

dx(p)
∂x(p)

∂t

)
. (A.8)
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Then since f and ω are both meromorphic, the last term vanishes after taking
residue. �

Lemma A.1 can be easily generalised to δ
(p0,p1,...,pn)
t for any n. We next

recall useful results given in [15] (see also [34]):

Lemma A.2 ([15, Section 5.1]). For Sμ(t), we have

δ(2)
ε ∗ ω0,2(p0, p1) = δ(2)

ε ∗ B(p0, p1)

= −
∑
r∈R

Res
p=r

ηp(p0)
4ω0,1(p)

·
(
B(p, p1) − B(σ(p), p1)

)
· δ(1)

ε ∗ ω0,1(p)

=
∫

γ

Λ(p) · ω0,3(p, p0, p1), (A.9)

δ(2)
ε ∗ ηp(p0) =

∑
r∈R

Res
q=r

ηq(p0)
2ω0,1(q)

· ηp(q) · δ(1)
ε ∗ ω0,1(q)

= − 1
2πi

∮
q∈C+

ηq(p0)
ω0,1(q)

· ηp(q) · δ(1)
ε ∗ ω0,1(q), , (A.10)

where p ∈ Σ is independent of t and p0, . . . , pn and C+ is defined in Sect. 2.

Note that, strictly speaking, Eynard and Orantin [15] only shows the first
line of (A.10), and the second equality is a consequence due to [33, Lemma
2.3] and the invariance of the integrand under σ on q. With this property, we
will show another lemma which is equivalent to, e.g. [3, Lemma 3.14]:

Lemma A.3. Let ω(p; p1, . . . , pn) a meromorphic quadratic differential in p and
multidifferential in p1, . . . , pn for some n ∈ Z≥0. Then, we have

1
2πi

∫
p∈C+

ω(p;J) · δ
(2)
t ∗

(
ηp(p0)

2ω0,1(p)

)

=
1

2πi

∫
p∈C+

ηp(p0)
2ω0,1(p)

· 2δ(1)
ε ∗ ω0,1(p) ·

(
1

2πi

∫
q∈C+

ηq(p)
2ω0,1(q)

· ω(q;J)

)
.

(A.11)

Proof. Let us focus on the contribution from the action of δ
(2)
t on ηp(p0).

Thanks to Lemma A.2, the corresponding term becomes
(

1
2πi

)2 ∫
p∈C+

∫
q∈C+

ω(p;J)
2ω0,1(p)

· ηq(p0)
ω0,1(q)

· ηp(q) · δ(1)
ε ∗ ω0,1(q), (A.12)

where C+ with respect to q contains q = p inside. We now exchange the order
of residues as follows (c.f. [15, Appendix A], [33, Appendix A.1])

∫
p∈C+

∫
q∈C+

=
∫

q∈C+

(∫
p∈C+

−2πiRes
p=q

)
, (A.13)
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where C+ with respect to p on the right-hand side contains p = q inside. Thus,
we have

(A.12) =
1

2πi

∫
q∈C+

ηq(p0)
2ω0,1(q)

· 2δ(1)
ε ∗ ω0,1(q) ·

(
1

2πi

∫
p∈C+

ηp(q)
2ω0,1(p)

· ω(p;J)

)

+
1

2πi

∫
q∈C+

ω(q;J) · ηq(p0)
2ω0,1(q)2

· δ
(2)
t ∗ ω0,1(q) (A.14)

After relabeling p ↔ q, one notices that the second term in (A.14) precisely
cancels the contribution of the action of δ

(1)
t on ω0,1(p) on the left-hand side

of (A.11). �

Recall that every time of the 2nd or 3rd kind is associated with a pole
of ω0,1, and we denote by p− ∈ σ(P∞

+ ) the corresponding pole inside C−, and
as a consequence p+ := σ(p−) is inside C+ if it is not a ramification point
whereas p+ = p− is inside C− if it is a ramification point — recall that we
are not allowing a deformation such that p± approach to each other. Then, we
can show the following property:

Lemma A.4. The following function in p0

δ
(1)
t ∗ ω0,1(p0)

ω0,1(p0)
(A.15)

is holomorphic at p0 = p±, and for 2g − 2 + n ≥ −1, the following differential
in p0 is regular at p0 = p±:∫

q∈γ

Λ(q) · ωg,n+2(q, p0, J). (A.16)

Proof. (A.15) means that the pole order of ω0,1 does not get higher even after
taking the variation. This is because we are only considering generalised cycles
(γ,Λ), which by definition guarantees that the pole order of Λ(q) at q = p±
is at most m − 1 for an m-th order pole of ω0,1. Then, since ω0,2(q, p0) has a
double pole at q = σ(p0), we find that δ

(1)
t ∗ ω0,1 has at most an m-th order

pole, hence (A.15) is regular as a function in p0 at p0 = p±.
As for (A.17), Theorem 2.3 shows that all poles of ωg,n+2(q, p0, J) for

2g−2+n ≥ −1 with respect to q lie in R∗ ∪σ(J0 ∪P0
+). Thus, a pole of (A.16)

at p0 = p+ can only come from the pole of the integrand ωg,n+2(q, p0, J) at
q = σ(p0), hence we focus on this contribution.

As derived in [33, Section 3.3], the pole of ω 1
2 ,2(q, p0) at q = σ(p0) arises

from the following term:

ω 1
2 ,2(q, p0) = −Q

4

(
dq

Δqω0,2(q, p0)
ω0,1(q)

+ dp0

Δp0ω0,2(q, p0)
ω0,1(p0)

)
+ reg. atq = σ(p0).

(A.17)

Recall from Definition 3.3 that Λ(q) has a pole at q = p+ of order at most
m − 1 if p+ is an m-th order pole of ω0,1. Then, since there is ω0,1 in the
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denominator of (A.17), one notices that (A.16) becomes regular at p0 = p±
after integration.

We now proceed by induction in χ = 2g − 2 + n ≥ −1. Since Σ = P
1,

the integrand of the refined topological recursion formula is a meromorphic
differential in p. Thus, by using the property that the sum of all residues of
a meromorphic differential is zero on a compact Riemann surface, one can
rewrite the recursion formula as

ωg,n+2(p0, q, J) =
1

2πi

∫
p∈C+

ηp(p0)
2ω0,1(p)

Recg,n+2(p, q, J)

= − 1
2ω0,1(p0)

· Recg,n+2(p0, q, J) + Rg,n+2(p0, q, J), (A.18)

where

Rg,n+2(p0, q, J) =
1

2πi

∫
p∈C+\{p0}

ηp(p0)
2ω0,1(p)

Recg,n+1(p, q, J)

= dq

(
ηq(p0)

2ω0,1(q)
· ωg,n+1(q, J)

)

+
1

2πi

∫
p∈C+\{p0,q}

ηp(p0)
2ω0,1(p)

Recg,n+1(p, q, J), (A.19)

and C+\{p0} denotes the resulting contour after evaluating residue at p0 =
p± which gives the first term in the second line of (A.18), and similarly for
C+\{p0, q}. (A.18) is indeed called the refined loop equation of type (g, n + 2)
[33].

Then, by the induction ansatz, we have

1
2ω0,1(p0)

·
∫

q∈γ

Λ(q) · Recg,n+2(p0, q, J)

=
1

2ω0,1(p0)
·
∫

q∈γ

Λ(q) · 2ω0,2(p0, q) · ωg,n+1(p0, J) + reg atp0 = p±

=
1

ω0,1(p0)
·
(
δ
(1)
t ∗ ω0,1(p0)

)
· ωg,n+1(p0, J)

+ reg atp0 = p±. (A.20)

Thus, this contribution is non-singular at p0 = p± thanks to the first statement
of this lemma. On the other hand, the contribution from Rg,n+2 can be written
as ∫

q∈γ

Λ(q) · Rg,n+2(p0, q, J) =
∫

q∈γ

Λ(q) · dq

(
ηq(p0)

2ω0,1(q)
· ωg,n+1(q, J)

)

+ reg atp0 = p±. (A.21)

The first term vanishes no matter if t is of the 2nd kind or 3rd kind due to
the pole structure of Λ(q). Therefore, we conclude that (A.17) is regular at
p0 = p±. �
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A.1.2 Proof of Theorem 3.5 for ωg,n+1. We now prove Theorem 3.5 for ωg,n+1

by induction in χ = 2g − 2 + n ≥ −2. For χ = −2, i.e, (g, n) = (0, 0), it
holds because we only consider parameters associated with generalised cycles
(c.f. [13,15]). For χ = −1, the theorem also holds because it is shown for
δ
(2)
t ∗ ω0,2(p0, p1) in [15], and also because we assume that a refined spectral

curve Sμ(t) satisfies the refined deformation condition. Our approach is similar
to the technique shown in [3,9] to some extent.

Let us assume that the variational formula holds up to χ = k for some
k ≥ −1, and we consider the case for (g, n) with χ = 2g − 2 + n = k + 1. Then
by applying the variational operator to the recursion formula in the form of
the first line of (A.18), Lemma A.3 imply

δ
(n+1)
t ∗ ωg,n+1(p0, J)

=
1

2πi

∫
p∈C+

ηp(p0)
2ω0,1(p)

· δ
(n+1)
t ∗ Recg,n+1(p, J)

+
1

2πi

∫
p∈C+

ηp(p0)
2ω0,1(p)

· 2δ(1)
ε ∗ ω0,1(p)

·
(

1
2πi

∫
q∈C+

ηq(p)
2ω0,1(q)

Recg,n+1(q, J)

)

=
1

2πi

∫
p∈C+

∫
q∈γ

Λ(q) · ηp
A(p0)

2ω0,1(p)
Recg,n+2(p, q, J), (A.22)

where at the second equality we used the induction ansatz on δ
(n+1)
t ∗

Recg,n+1(p, J) and also we applied the recursion formula in the third line to ob-
tain
ωg,n+1(p, J).

Let us simplify (A.22). Consider a decomposition C+ = C0 ∪ Cγ such
that Cγ contains p+ inside but no other poles of the integrand. Then, C0 and
γ do not intersect and one can freely exchange the order of integration. In
particular, one obtains:

δ
(n+1)
t ∗ ωg,n+1(p0, J) −

∫
q∈γ

Λ(q) · ωg,n+2(p, q, J) = ρg,n+1(p0, J), (A.23)

where

ρg,n+1(p0, J) :=
(

Res
p=p+

∫
q∈γ

−
∫

q∈γ

Res
p=q

)
Λ(q) · ηp(p0)

2ω0,1(p)
Recg,n+2(p, q, J).

(A.24)

Note that the first term in (A.24) is the remnant contribution from Cγ whereas
the second term is the counter effect of applying the refined recursion formula
(A.18) to obtain ·ωg,n+2(p, q, J) on the left-hand side of (A.23). As shown in
(A.20) in Lemma A.4, the integrand of the first term in (A.24) as a differ-
ential in p becomes regular at p = p±, hence it vanishes. Furthermore, since
ω0,2(p, σ(q)) is the only term that has a pole at p = q in the integrand in
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(A.24), the second term can be written as
∫

q∈γ

Res
p=q

Λ(q) · ηp(p0)
2ω0,1(p)

Recg,n+2(p, q, J)

=
∫

q∈γ

Λ(q) · dq

(
ηq(p0)

2ω0,1(q)
ωg,n+1(q, J)

)
. (A.25)

This always vanishes for any generalised cycle due to the pole order of Λ(q) at
q = p± (see Definition 3.3). This completes the proof for ωg,n+1.

A.2 Proof of Theorem 3.5: for Fg

Notice that the above proof was based on the pole structure of the refined
topological recursion formula, or equivalently, refined loop equations. Since Fg

does not appear in the recursion formula, we need a different approach to prove
for Fg.4

For g > 1, we directly take the derivative of the definition of Fg which
gives

∂Fg

∂t
=

1

2 − 2g

1

2πi

∮
p∈Cp

−

((
δ
(1)
t ∗ φ(p)

)
· ωg,1(p) + φ(p) ·

(
δ
(1)
t ∗ ωg,1(p)

))

=
1

2 − 2g

1

2πi

∮
p∈Cp

−

∫
q∈γ

Λ(q) ·
((∫ p

ω0,2(q·)
)

· ωg,1(p) + φ(p) · ωg,2(p, q)

)

(A.26)

where we used Lemma A.1, and we used the variational formula for δ
(1)
t ∗ ωg,1

at the second equality. Then, since Cp
− does not contain any point in P∞, we

can exchange the order of integration with respect to p and q in (A.26). After
some manipulation by using the dilaton equation (2.7), we find

∂Fg

∂t
−

∫
q,∈γ

Λ(q) · ωg,1(q) =
1

2 − 2g

∫
q,∈γ

Λ(q) · Res
p=σ(q)

φ(p) · ωg,2(p, q),

(A.27)

where the right-hand side is the counter effect of applying the dilaton equation,
similar to (A.24). Therefore, what we have to show is that the right-hand side of
(A.27) vanishes. This is straightforward when Q = 0 because ωg,n+1(p0, J)|Q=0

have no poles at p0 = σ(pi). However, since the pole structure is different in
the refined setting, the proof involves more careful considerations.

4Strictly speaking, the original proof in [15] is based on the rooted-graph interpretation of
the Eynard-Orantin recursion formula which works only for ωg,n+1, but not for Fg . The
statement itself still stands for Fg too as one can easily see in (A.27) whose computation
is valid beyond hyperelliptic curves. Alternatively, one can simply introduce a non-tooted
graphical interpretation for the defining equation of Fg and properly make sense of the action

of the variation, which is perhaps just omitted in [15].
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A.2.1 Proof for the 2nd kind. We first consider the case where t is a 2nd kind
time (Definition 3.3). That is, for m ≥ 2, we assume that ω0,1 has a pole at p±
of order m, Λ(q) is meromorphic at q = p± of order l where l ∈ {1, . . . , m−1},
and γ is a small contour encircling p± in the prescribed orientation. Therefore,
the integral simply reduces to taking residue at q = p±, and as a consequence,
it is sufficient to check the order of the zero of Resp=σ(q) φ(p) · ωg,2(p, q). This
is a clear contrast from the 3rd kind cases at which one has to consider open-
contour integrals.

Our task is to show the following property which immediately implies the
variational formula for the 2nd kind:

Proposition A.5. Let us define a multidifferential Ig,n+1 as follows:

Ig,n+1(q, J) := Res
p=σ(q)

φ(p) · ωg,n+2(q, J, p). (A.28)

Then, we have I0,1 = ω0,1, I0,2 = 0, I 1
2 ,1 = 0, and for 2g − 2 + n ≥ 0, it can

be written as follows:

Ig,n+1(q, J) = −1
2
ωg,n+1(q, J) − 1

2
ωg,n+1(σ(q), J) − Q · dq

Ig− 1
2 ,n+1(q, J)

2ω0,1(q)

+Ĩg,n+1(q, J), (A.29)

where Δq Ĩg,n+1(q, J) has at least an m-th zero at q = p±.

Proof. It is trivial to see that I0,1 = ω0,1 and I0,2 = 0. As discussed in (A.17),
the pole structure of ω 1

2 ,2(p, p0) at p = σ(p0) also immediately implies that
I 1

2 ,1 = 0. For 2g − 2 + n ≥ 0, we proceed by induction and consider refined
loop equations (A.18) for ωg,n+2(q, J, p) by treating q as the first variable. Let
us only give a few useful techniques in order to avoid tedious computational
arguments.

As shown in (A.19) (see also [33, Proposition 3.17]), the singular term of
Rg,n+2(q, J, p) at p = σ(q) is written as

Rg,n+2(q, J, p) = dp

(
ηp(q)

2ω01,(p)
· ωg,n+1(p, J)

)
+ reg. atp = σ(q). (A.30)

Thus, we have

Res
p=σ(q)

φ(p) · Rg,n+2(q, J, p) = −1
2
ωg,n+1(σ(q), J). (A.31)

Notice that the above term is the only contribution from Rg,n+2(q, J, p) to
Ig,n+1, which is the second term in (A.29). Therefore, the other terms in (A.29)
are all coming from Recg,n+2(q, J, p) in (A.18).

The first term in (A.29) is the contribution of ω0,2(q, p) in Recg,n+2(q, J, p),
more explicitly,

Res
p=σ(q)

φ(p) ·
(

− 1
2ω0,1(q)

(
2ω0,2(q, p) +

dx(q)dx(p)
(x(q) − x(p))2

)
· ωg,n+1(q, J)

)

= −1
2
ωg,n+1(q, J). (A.32)
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Next, terms involving ω 1
2 ,1 in Recg,n+2(q, J, p) give

Res
p=σ(q)

φ(p) ·
(

− 1
2ω0,1(q)

(
2ω 1

2 ,1(q) · ωg− 1
2 ,n+2(q, J, p)

+ Q · dx(q) · dq

ωg− 1
2 ,n+2(q, J, p)

dx(q)

))

= −
Δω 1

2 ,1(q)

2ω0,1(q)
· Ig− 1

2 ,n+1(q, J) − Q · dq

Ig− 1
2 ,n+1(q, J)

2ω0,1(q)
. (A.33)

The last term in (A.33) coincides with the third term in (A.29). Note that
the first term in (A.33) only has an (m − 1)-order zero at q = p± due to the
presence of ω 1

2 ,1(q), but

Δω 1
2 ,1(q)

2ω0,1(q)
· ΔqIg− 1

2 ,n+1(q, J) (A.34)

has a higher order zeroe thanks to the induction ansatz. Then, one can easily
see that all other terms have the prescribed zero behaviour thanks to the
ω0,1(q) in the denominator in the refined loop equation (A.18). �

A.2.2 Proof for the 3rd kind. We will show an analogous proposition to Propo-
sition A.5 but in a slightly different form. First recall that ωg,n+1(p0, J) for
2g − 2 + n ≥ 0 has no residue with respect to p0. Thus, the following residue
makes sense:

I∗
g,n+1(q, J) :=

(
Res
p=p+

+ Res
p=p−

)
ω0,1(p) ·

∫ p

σ(p)

ωg,n+2(q, J, ·), (A.35)

where the integral is taken with respect to the last variable.

Lemma A.6. I∗
0,1(q)/ω0,1(q) and Ig,n+1(q, J) for 2g − 2 + n ≥ −1 are regular

at q = p±.

Proof. For I∗
0,1(q), we have

I∗
0,1(q) =

(
Res
p=p+

+ Res
p=p−

)
ω0,1(p) · ηp(q). (A.36)

Thus, I∗
0,1 picks up the singular part of ω0,1 at q = p+ and q = p− (c.f. [33,

Section 2]). Thus, it becomes regular after dividing by ω0,1(q).
For Ig,n+1(q, J) for 2g − 2 + n ≥ −1, since the proposition only concerns

a local behaviour at q = p±, potentially singular terms may appear only from
the pole of ωg,n+2(q, J, p) at p = σ(q) and we only focus on these poles similar
to above discussions. Then, for the rest of the proof we apply the same tech-
nique as the proof of Lemma A.4 and Proposition A.5. That is, we treat the
contributions from ω0,2 and ω 1

2 ,1 differently, and check the singular behaviour
at q = p± by induction. Since arguments will be almost parallel to the one
given in Lemma A.4 and Proposition A.5, we omit it. �



Deformation and Quantisation Condition

We now prove the variational formula for the 3rd kind. Lemma A.6 im-
plies that I∗

g,n+1(q, J) as a differential in q has no residue everywhere on Σ.
This is because ωg,n+2(q, J, p) has no residue with respect to q (Theorem 2.3),
and thus residues can only potentially appear at q = p± after taking the inte-
gral (A.35) which we have just shown that this is not the case. Thus, we can
consider integration once more:

I∗∗
g,n(J) :=

(
Res
q=p+

+ Res
q=p−

)
ω0,1(q) ·

∫ q

σ(q)

I∗
g,n+1(·, J)

=
(

Res
q=p+

+ Res
q=p−

)(
Res
p=p+

+ Res
p=p−

)
ω0,1(q) · ω0,1(p)

·
∫ q

σ(q)

∫ p

σ(p)

ωg,n+2(·, ·, J). (A.37)

Since ωg,n+2 is symmetric multidifferential, one can simply relabel p ↔ q in
(A.37). On the other hand, as discussed in [33, Appendix A], exchanging the
order of residues would give(

Res
p=p+

+ Res
p=p−

)(
Res
q=p+

+ Res
q=p−

)

=
(

Res
q=p+

+ Res
q=p−

) (
Res
p=p+

+ Res
p=p−

+ Res
p=q

+ Res
p=σ(q)

)
. (A.38)

Therefore, we find(
Res
q=p+

+ Res
q=p−

) (
Res
p=q

+ Res
p=σ(q)

)
ω0,1(q) · ω0,1(p)

·
∫ q

σ(q)

∫ p

σ(p)

ωg,n+2(·, ·, J) = 0. (A.39)

Now notice that(
Res
p=q

+ Res
p=σ(q)

)
ω0,1(p) ·

∫ p

σ(p)

ωg,n+2(·, q, J) = 2 Res
p=σ(q)

φ(p) · ωg,n+2(p, q, J)

= 2Ig,n+1(q, J). (A.40)

Thus, with the help of Proposition A.5, the left-hand side of (A.39) can be
written as

L.H.S. of (A.39) = 2
(

Res
q=p+

+ Res
q=p−

)
ω0,1(q) ·

∫ q

σ(q)

Ig,n+1(·, J)

= 4t

∫ p+

p−
Ig,n+1(·, J), (A.41)

where t is the 3rd kind time at p±. Note that there is no contribution from
higher order poles of ω0,1(q) thanks to Proposition A.5. Combining (A.39) and
(A.41), we conclude that the right-hand side of (A.27) vanishes for the 3rd kind
as well.

This completes the proof of Theorem 3.5 for both ωg,n+1 and Fg.
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A.3 Explicit computations

We will provide explicit computational results for Proposition 4.1, 4.4, and
4.6.

A.3.1 Proof of Proposition 4.1. We will give computations for the Weber,
Whittaker, and Bessel curve as evidence of Proposition 4.1. The statement for
other curves can be similarly checked. Throughout Sect. 4.2.1, we let z be a
coordinate on Σ = P

1, and we parameterise y(z), x(z) such that R = {1,−1}
and P = {0,∞}, some of which are different from rational expressions in [21]
but they are related by an appropriate Möbius transformation. As shown in
[21], the corresponding generalised cycle (Λ, γ) is given such that Λ = 1 and
γ is a contour from 0 to ∞. We denote by t the corresponding 3rd kind time,
which is none other than λ in [21]. Furthermore, we choose P+ = {∞} to
define a refined spectral curve and denote by μ for the associated complex
parameter.

Weber The underlying curve is given by

y2 − x2

4
+ t = 0, y(z) =

√
t

2

(
z − 1

z

)
, x(z) =

√
t

(
z +

1
z

)
. (A.42)

Then, the variational operator and ω 1
2 ,1 are, respectively, given as

δ
(1)
t =

∂

∂t
− z

(
z2 + 1

)
2(z − 1)(z + 1)t

∂

∂z
(A.43)

ω 1
2 ,1(z0) =

Q
2

(
− z2

0 + 1
(z0 − 1)z0(z0 + 1)

− μ

z0

)
dz0. (A.44)

ω 1
2 ,2 itself is lengthy to write down here, but we have

δ
(1)
t ∗ ω 1

2 ,1(z0) =
∫ ∞

0

ω 1
2 ,2(·, z0) = −Qz0

(−μ + μz2
0 + 2z2

0 + 2
)

(z0 − 1)3(z0 + 1)3t
dz0.

(A.45)

Whittaker The underlying curve is given by

xy2 − x

4
+ t = 0, y(z) =

z − 1
2(z + 1)

, x(z) =
t(z + 1)2

z
. (A.46)

Then, the variational operator and ω 1
2 ,1 are, respectively, given as

δ
(1)
t =

∂

∂t
− z(z + 1)

t(z − 1)
∂

∂z
(A.47)

ω 1
2 ,1(z0) =

Q
2

(
1

1 − z2
0

− μ

z0

)
dz0. (A.48)

ω 1
2 ,2 itself is lengthy to write down here, but we have

δ
(1)
t ∗ ω 1

2 ,1(z0) =
∫ ∞

0

ω 1
2 ,2(·, z0) = −Q−μ + μz0 + z0 + 1

t (z0 − 1)3
dz0. (A.49)
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Bessel The underlying curve is given by

x2y2 − x

4
− t2 = 0, y(z) = −z2 − 1

16tz
, x(z) = − 16t2z

(z + 1)2
. (A.50)

Then, the variational operator and ω 1
2 ,1 are, respectively, given as

δ
(1)
t =

∂

∂t
+

2z(z + 1)
t(z − 1)

∂

∂z
(A.51)

ω 1
2 ,1(z0) =

Q
2

(
z2
0 + 1

z0(1 − z2
0)

− μ

z0

)
dz0. (A.52)

ω 1
2 ,2 itself is lengthy to write down here, but we have

δ
(1)
t ∗ ω 1

2 ,1(z0) =
∫ ∞

0

ω 1
2 ,2(·, z0) = −2Q−μ + μz0 + z0 + 1

t (z0 − 1)3
dz0. (A.53)

A.3.2 Proof of Proposition 4.4. Recall that the parametrisation of the curve
is given in (4.4) as

x(z) = z2 − 2q0, y(z) = 2z(z2 − 3q0) = 2z(z2 − q2
z),

q0 =

√
− t

6
, qz :=

√
3q0. (A.54)

Then, we can explicitly construct the variational operator and ω 1
2 ,1 as

δ
(1)
t =

∂

∂t
− 1

2z
√

6t

∂

∂z
(A.55)

ω 1
2 ,1(z0) = Q

(
− 1

2z0
+

μ − 1
2 (z0 − qz)

+
−μ − 1

2 (qz + z0)

)
dz0. (A.56)

ω 1
2 ,2 itself is complicated to write down here, but we have

δ
(1)
t ω 1

2 ,1(z0) = Q
(

− 2(μ + 2)z0q
2
z + 2(2μ + 1)z2

0qz + 2q3
z + (2μ + 1)z3

0

8z3
0q3

z (qz + z0) 2

+
(μ − 1)

(
q2
z + z2

0

)
8q3

z (q2
z − z2

0)2

)
dz0, (A.57)

Res
z=∞ Λt(z) · ω 1

2 ,2(z, z0)

= Q
(

−2(μ + 2)z0q
2
z + 2(2μ + 1)z2

0qz + 2q3
z + (2μ + 1)z3

0

8z3
0q3

z (qz + z0)
2

)
dz0. (A.58)

Therefore, they become the same if and only if μ = 1. It is worth noting that
the second term in (A.57) is singular at z0 = −qz whereas ω 1

2 ,2 will never have
a pole at ±qz due to Theorem 2.3 and Lemma A.4. This is a clear contrast from
hypergeometric type curves that ω 1

2 ,1 has residue at σ(P+), but its variation
δt∗ω 1

2 ,1 is regular as shown in Sect. 4.2.1. It is interesting to investigate whether
this phenomenon arises from the difference between P0 and P∞, or difference
between 2nd kind and 3rd kind.
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A.3.3 Proof of Proposition 4.6. Without explicit computation, it is not hard to
see from the definition of RQ−top

1,1 (z) that it has a triple pole at p = p± whose
coefficient is proportional to (μ − 1)(μ − 3). This can be checked by looking
at the contribution of ω 1

2 ,1 whose pole structure is given in (4.7). What is less
straightforward without explicit computation is to show that the subleading
order coefficient is still proportional to (μ− 1) but not to (μ− 3) anymore. By
explicit computations, we have

RQ−top
1,1 (z) =

(
(1 − μ)

(
6μz2q2

z − 18z2q2
z + 9μq4

z − 11q4
z − 7μz4 + 5z4

)
64q4

z (qz − z) 3 (qz + z) 3

− 15μ2 + 7
64q4

z (qz − z) (qz + z)

)
dz. (A.59)

This clearly shows that the Q-top quantisation condition is satisfied only if
μ = 1. Once we set μ = 1, then RecQ−top

g,1 (z) is regular at z = qz for all g > 1
so is RQ−top

g,1 (z) because ω 1
2 ,1(z) is regular at z = qz. This completes the proof

of Proposition 4.6.

A.4 Proof of Theorem 4.7

We will consider the contribution of Fg for each g ≥ 0.

A.4.1 F0. It is already shown in [24] that

F0 = −48
5

q5
0 , (A.60)

from which we find
∂F0

∂t
= 4q3

0 . (A.61)

This is consistent with the ε01 term in Theorem 2.6, and also consistent with
the unrefined quantum curve in [24].

A.4.2 F 1
2
. We take the definition of F 1

2
as in Theorem 4.7, which gives

∂2

∂t2
FQ−top

1
2

:= Res
z0=0

Res
z1=0

·Λt(z0) · Λt(z1) · � 1
2 ,2(z0, z1) =

1
4

(
−3

2

) 1
4

t
1
4 .

(A.62)

Then from the boundary condition set in Theorem 4.7, one finds that

FQ−top
1
2

=
4
5

(
−3

2

) 1
4

t
5
4 , QQ−top

1 (z0)
∣∣
μ=1

= 2
∂FQ−top

1
2

∂t
. (A.63)

One may wonder why we do not consider a solution F̃Q−top
1
2

by respecting
the variational formula for ω 1

2 ,1 as:

∂F̃ 1
2

∂t
:= Res

z=∞ Λt(z) · � 1
2 ,1(z) = μ · qz, (A.64)
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with unfixed μ. In fact, the condition F̃ 1
2
(0) = 0 implies that

F̃Q−top
1
2

=
4
5

(
−3

2

) 1
4

t
5
4 · μ, QQ−top

1 (z0) = 2
∂F̃ 1

2

∂t
, (A.65)

for any value of μ. One of the issues of taking this definition is that it does not
work for the 3rd kind times, because ω 1

2 ,1 has a pole at the end points of the
associated path γ. Another problem is that if we take (A.64) as the defining
equation for a general spectral curve Sκ,μ(t), then one cannot show that

∂2FQ−top
1
2

∂tk∂tl
=

∮
p0∈γl

δ
(1)
tl

∗
(
Λk(p0) · � 1

2 ,1(p0)
)

(A.66)

is symmetric in k ↔ l or not.

Remark A.7. The above observation may motivate one to propose a definition
of F 1

2
as:

∀k, l ∈ {1, . . . , |t|}
∂2F 1

2

∂tk∂tl
:=

∫
p∈γk

∫
q∈γl

Λk(p) · Λl(q) · ω 1
2 ,2(p, q).

(A.67)

for a general refined spectral curve Sκ,μ(t) satisfying the refined deformation
condition. The above definition makes sense, that is, one can show that it
is symmetric under k ↔ l by utilising (A.17) and the anti-invariantness of
generalised cycles under the involution σ. Indeed, this definition works for all
hypergeoemtric curves as well as this example. Therefore, we propose that F 1

2

is defined as (A.67), which is defined uniquely up to a constant and linear
dependence in t. Similarly, up to constant, we propose that F1 for a refined
spectral curve satisfying the refined deformation condition is defined by

∀k ∈ {1, . . . , |t|} ∂F1

∂tk
:=

∫
p∈γk

Λk(p) · ω1,1(p). (A.68)

A.4.3 Proof of Theorem 4.7. We will show that

g ≥ 1
∂Fg

∂t
= Res

z=∞ Λt(z) · ωg,1(z) =
1
2
QQ−top

2g≥2 (z0), (A.69)

where the first equality is merely the variational formula. The second equality
means that QQ−top

2g≥2 is indeed a constant which we will show below.
The proof is similar to that in [24]. For a refined spectral curve Sμ=1(t)

satisfying the Q-top quantisation condition, ω 1
2 ,1 and RecQ−top

g,1 (z) are regular
at z = qz, hence (4.9) implies that there should exist a function Rg(t) such
that

RQ−top
g,1 (z0) = Rg(t) · dz0

z2
0 − q2

z

. (A.70)

Thus, by using the explicit rational expression of x(z) and y(z) given in (4.4),
we have

QQ−top
2g (z) = 2Rg(t). (A.71)
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Finally, since ω0,1(z0) has a 5-th order pole at z0 = ∞, the Q-top loop equation
(the Q-top degree part of the refined loop equation (A.18)) implies that

Res
z=∞ Λt(z) · ωg,1(z) = Res

z=∞ Λt(z) · Rg,1(z) = Rg(t). (A.72)

Note that from (A.59), one finds that
∂F1

∂t
= − 11

48t
, F1 = −11

48
log t (A.73)

Therefore, (A.69) holds, and this completes the proof.
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