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Limit Theorems for the Cubic Mean-Field
Ising Model

Pierluigi Contucci, Emanuele Mingione and Godwin Osabutey

Abstract. We study a mean-field spin model with three- and two-body
interactions. The equilibrium measure for large volumes is shown to have
three pure states, the phases of the model. They include the two with
opposite magnetization and an unpolarized one with zero magnetization,
merging at the critical point. We prove that the central limit theorem
holds for a suitably rescaled magnetization, while its violation with the
typical quartic behavior appears at the critical point.

1. Introduction

In this paper, we investigate the mean-field Ising spin model with quadratic
and cubic interactions. The interest in such a model comes from two large
fields of research. The first is condensed matter physics, where the three-body
interaction plays a role in the description of the phase separation phenomena
of some magnetic alloys [1] lacking spin-flip symmetry. Those physical sys-
tems cannot be described by the sole use of a two-body interaction, while a
three-body term captures some features of their behavior [2]. This fact is well
paralleled by the Ginibre theorem about functions of spin configurations that
are fully classified by an orthonormal base of k-body interactions [3]. Those
physical phenomena are well described by statistical mechanics models on reg-
ular lattices in finite (d = 2, 3) dimensions. While some of those models have an
exact solution in very special cases [4,5], it is well known that the mean-field
approximation provides an analytically viable setting and a fair description
of the phase separation. In those cases, the term mean-field approximation is
understood in the sense of a special class of probability measure where the
Boltzmann–Gibbs variational principle is optimised: instead of minimizing the
free energy over all probability measures, one restricts it to product measures
on single spins [6,7].
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The other field in which the three-body interactions came to play a role
is that of the applications to complex systems, in particular those of socio-
technical nature [8] where the social network structure with long-range in-
teraction represents a realistic description of the phenomenon and not an
approximation of its finite-dimensional version [9–12]. In this case, from a
mathematical perspective, the introduction of the three-body interaction en-
tails moving from a graph-theoretical environment of vertices and edges to a
richer hypergraph setting where the three-body terms, representing the faces
of the hypergraph, are also taken into account.

The presence of the cubic interactions brings technical difficulties in the
analysis of the model. In particular, the non-convex energy contribution due
to the cubic power prevents the use of the Hubbard–Stratonovich transform,
which instead is very efficient in the case of quadratic interactions. More pre-
cisely, even if the thermodynamic limit of the free energy can be easily com-
puted by large deviation arguments, the fluctuations of the order parameter
cannot be analysed with the classical rigorous methods for a mean-field system
with pairwise interaction [13–15]. In order to overcome this obstacle we need
a fine control on the N -asymptotic behavior of the partition function that is
obtained by a method similar to that recently introduced in [16].

This paper presents a rigorous analysis of the mean-field model with
three- and two-body interactions in a zero magnetic field. We show that the
infinite-volume properties of the model display new phenomena that are ab-
sent in the quadratic mean-field case. In particular, we prove that the equilibria
of the system include not only positively and negatively polarized states but
also an unpolarized stable state in the presence of a non-zero cubic term that
breaks the spin-flip symmetry. Finally, we also study the fluctuation of the
magnetization in the entire phase space, specifying the behavior at phase sep-
aration and at the critical point. The critical exponent for the magnetization,
moreover, takes on a value of zero towards the unpolarized directions of the
phase space, and phase transitions can occur in the antiferromagnetic region.

This paper is organised as follows: Sect. 2 contains the formal definition
of the model as well as a statement of the main results. In Sect. 3, we study
the properties of the consistency equation that describes the system in its
stationary equilibrium state. These properties provide an analytical description
of the system’s phase diagram and the magnetization’s limiting behavior, as
well as the computation of the critical exponents. Finally, Sect. 4 contains
conclusions and perspectives, and the Appendices A and B contain technical
and concentration results used throughout the work.

2. Definitions and Main Results

Let us consider N spins σ = (σi)i≤N ∈ {−1,+1}N interacting through an
Hamiltonian of the form

HN (σ) = − K

3N2

N∑

i,j,k=1

σiσjσk − J

2N

N∑

i,j=1

σiσj − h

N∑

i=1

σi , (1)
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where (K,J, h) ∈ R
3, K and J tune the interactions among triples and pairs

of spins, respectively, while h represents an external field acting on the system.
When K = 0, the previous Hamiltonian reduces to the well-know Curie–Weiss
case. In this work we will concentrate on the case h = 0 and use the parameter
K as a spin-flip symmetry breaking term reducing (1) to an Hamiltonian that
can be represented as

HN (σ) = −N

(
K

3
m3

N (σ) +
J

2
m2

N (σ)
)

(2)

where mN is the magnetization per particle:

mN (σ) =
1
N

N∑

i=1

σi. (3)

The expression (2) highlights the mean-field nature of the model. The
Boltzmann–Gibbs probability measure associated to HN is

μN (σ) =
e−HN (σ)

ZN
, (4)

where ZN =
∑

σ∈{−1,+1}N exp (−HN (σ)) is the partition function. In Eq. (4),
we set the usual inverse temperature β to 1 without loss since it has been
reabsorbed in the parameters of the model. Notice that since the Hamiltonian
(2) is invariant under the transformation K �→ −K, and σi �→ −σi for i =
1, . . . , N , one can study the model only for K > 0 without loss.

Our aim is to obtain a complete characterization of the model’s phase
diagram, an analysis of the asymptotic distribution of the magnetization in
the presence and absence of phase transitions, the fluctuations of the suitably
rescaled magnetization (3) w.r.t. the Boltzmann–Gibbs measure (4) at and
away from the critical point, and the computation of the critical exponents.

All the above properties are strictly related to the analytical properties
of the free energy of the system, which is the starting point of our analysis.
Let us define the thermodynamic pressure, i.e., the generating functional as:

pN =
1
N

log ZN . (5)

Notice that pN equals the free energy up to a minus sign. The thermodynamic
limit of (5) can be easily computed applying Varadhan’s integral lemma [13,
17], obtaining:

Proposition 2.1. Given (K,J) ∈ R
2 the limiting pressure of (5) admits the

following variational representation:

p := lim
N→∞

pN = sup
m∈[−1,1]

φ(m), (6)

where φ(m) = u(m) − I(m) with

u(m) =
K

3
m3 +

J

2
m2 (7)
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is the energy contribution and

I(m) =
1 − m

2
log

(
1 − m

2

)
+

1 + m

2
log

(
1 + m

2

)
(8)

is the binary entropy contribution.

The critical points of (6) satisfy the consistency equation,

m = tanh(Km2 + Jm). (9)

A careful analysis shows that, among the solutions of (9), the function φ(m)
in (6) can have one or two global maximizers in the interval (−1, 1) for fixed
(K,J) (see Fig. 1).

In particular, we can divide the parameter space (K,J) ∈ R+ × R ac-
cordingly to the following:

Proposition 2.2 (Phase diagram). For any K > 0, there exists J = γ(K)
defined in Proposition 3.3 such that the function m �→ φ(m) has a unique
maximum point m∗ for (K,J) ∈ (R+ × R)\γ. Moreover, on the curve γ there
are two global maximizers, 0 = m0 < m1 and the limit as K → 0 of γ(K)
identifies the critical point (Kc, Jc) = (0, 1) where the magnetization takes the
value mc = 0.

Figure 1. Stable solutions of the mean-field equation as a
function of K and J . There are three stable phases presented
here: the positive polarized phase depicted in red, the unpo-
larized phase given as the gray plateau, and the negative po-
larized phase denoted by the blue color. At the critical point,
(K,J) = (0, 1), the three phases of the cubic model as well as
the two phases of the Curie–Weiss plane (K = 0) coalesce
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In physical terms, the presence of two global maximizers corresponds to
the existence of two different thermodynamic equilibrium phases, whereas the
curve γ represents the coexistence curve. Let’s note that m0 and m1 represent
a stable paramagnetic state and a positively polarised state, respectively. The
paramagnetic state is characterized by the absence of spontaneous magnetic
order and the presence of symmetry between the up and down spin, with
no preference for either direction. The jump from the paramagnetic state to
the polarized state, namely when the magnetization jumps from m0 to m1,
represents a first-order phase transition, which is markedly different from the
quadratic mean-field model (K = 0) having a second-order phase transition in
J . More precisely if we denotes by m∗(K,J) the unique maximizer of φ, for
any K̄ > 0 there exists J̄ = γ(K̄) ∈ (−∞, 1) such that

0 = lim
J→J̄−

m(J, K̄) �= lim
J→J̄+

m(J, K̄) > 0.

This behavior is somehow reminiscent of the Curie–Weiss Potts model analyzed
in [18] where for any value of the parameter q a first order phase transition is
observed. Numerical simulations of the phase diagram described in Proposition
2.2 can be seen in Fig. 2.

In the standard Curie–Weiss model, when J > 0 we know that as soon
as h > 0 one obtains a positive magnetization. The reason is that the energy
contribution due to h favors only spins aligned with sign(h). On the contrary,
in our system, J,K > 0, the energy contribution due to K can be minimized
by configurations containing both up and down spin signs. This implies that
the entropy contribution can dominate also for small but non-zero K, giving
a zero magnetization.

Figure 2. Phase diagram of the model with coexistence
curve γ and the critical point (Kc, Jc) in the (K,J) plane
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The next theorem contains the law of large numbers and the central limit
theorem for the distribution of mN (σ) with respect to the Boltzmann–Gibbs
measure.

Theorem 2.1 (Asymptotic distribution of the magnetization). Consider the
Hamiltonian in (2), then the following holds:

1. For (K,J) ∈ (R+ × R)\(γ ∪ (Kc, Jc)) the function φ(m) in (6) has a
unique global maximizer m∗ such that φ′′(m∗) < 0 and

mN
D−−−−→

N→∞
δm∗ . (10)

Moreover,

N
1
2 (mN − m∗) D−−−−→

N→∞
N
(

0,− 1
φ′′(m∗)

)
. (11)

2. Given (K,J) ∈ γ we denote by m0 < m1 the two global maximizers of
φ(m). For i ∈ {0, 1} we define the quantity

ρi :=
[(m2

i − 1)φ′′(mi)]−
1
2

[(m2
0 − 1)φ′′(m0)]−

1
2 + [(m2

1 − 1)φ′′(m1)]−
1
2
. (12)

Then we have that

mN
D−−−−→

N→∞

∑

i∈{0,1}
ρiδmi

. (13)

Moreover let Ai ⊆ [−1, 1] be an interval containing mi in its interior such
that φ(mi) > φ(m) for all m ∈ cl(Ai)\{mi}, then

N
1
2 (mN − mi)

∣∣{mN ∈ Ai} D−−−−→
N→∞

N
(

0,− 1
φ′′(mi)

)
. (14)

3. At the critical point (Kc, Jc), we have that

mN
D−−−−→

N→∞
δ0. (15)

Moreover,

N
1
4 mN

D−−−−→
N→∞

C exp
(

φ(4)(0)
24

x4

)
dx = C exp

(−x4

12

)
dx, (16)

where φ(4)(0) = −2 denote the fourth derivative of φ(m) evaluated at

m = 0 and C−1 =
∫ ∞

−∞
exp

(−x4

12

)
dx =

4√3 Γ( 1
4 )√

2
.

Finally, we study the behavior of the limiting value of the magnetiza-
tion near the critical point (Kc, Jc) = (0, 1) namely the critical exponents of
the model. The average value of the magnetization is given by the LLN in
Theorem 2.1 and will be denoted by m∗(K,J). The following proposition de-
scribes the critical behavior of m∗(K,J) when (K,J) → (Kc, Jc) from various
directions.
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Proposition 2.3. Let m∗(K,J) be the unique maximizer of φ(m) defined in
Corollary 3.1. Given α ∈ R consider the lines

J(K) = 1 + αK , K > 0 (17)

and the function m∗(K) ≡ m∗(K,J(K)). Then, for K → 0+, the following
holds

m∗(K) ∼

⎧
⎪⎨

⎪⎩

√
3α

√
K, for α > 0

3K, for α = 0
0, for α < 0.

(18)

Remark 2.2. Notice that when α < 0 the critical exponent is 0. The case
K = 0 and J → 1+ corresponds to the classical Curie–Weiss model and is well
known that

m∗(0, J) ∼
√

3(J − 1)
J3

. (19)

3. Proofs

This section contains the proofs of the above results and is organised as follows:
In Sect. 3.1, we prove Proposition 2.2 by studying the properties of the

function φ(m) appearing in the variational problem (6). Section 3.2 contains
the proof of Theorem 2.1 and is based on the asymptotic expansion given in
Appendix B. Finally, in Sect. 3.3, we derive the critical exponents of the model.

3.1. Proof of Proposition 2.2

The complete proof of Proposition 2.2 follows from Propositions 3.1, 3.2, 3.3
and 3.4 below.

Let us start studying in detail the variational principle (6) and observe
that the function φ(m) satisfies

∂

∂m
φ(m) = Km2 + Jm − 1

2
log

(
1 + m

1 − m

)
,

∂2

∂m2
φ(m) = 2Km + J − 1

1 − m2
.

(20)

Therefore the variational pressure φ(m) attains it maximum in at least one
point m = m(K,J) ∈ (−1, 1), which satisfy

∂

∂m
φ(m) = 0, i.e., m = tanh (Km2 + Jm). (21)

Indeed, from (20) limm→−1+ φ′(m) = +∞ and limm→1− φ′(m) = −∞. There-
fore, there exists ε > 0 such that φ(m) is strictly increasing on [−1,−1 + ε]
and strictly decreasing on [1 − ε, 1]. This implies that, the local maximizers of
φ(m) does not include −1 and +1. Notice also that, since K > 0, if m̄ > 0
then φ(m̄) > φ(−m̄) therefore the supremum of φ(m) cannot be reached at
negative values.

A complete classification of the critical points of φ(m) is contained in the
following proposition:
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Proposition 3.1 (Classification of critical points). For all K > 0 and J ∈ R,
the solutions to equation (21) can be described as follow:

Define the function

Ψ(K) := min
m∈[0,1]

g(m,K)
m

< 1 (22)

where g(m,K) := arctanh(m) − Km2 and set Jc = 1. Then:

(a) for J < Ψ(K), there exist a unique solution, m0 = 0, and it is the
maximum point of φ(m),

(b) for Ψ(K) < J < Jc, Eq. (21) has three solutions i.e., m0,m1 > m3 >
0. Furthermore, m0,m1 are local maximum points while m3 is a local
minimum point of φ(m),

(c) for J = Ψ(K), there exist two solutions, m0 and m1 > 0. Where m0 is
the maximum point of φ(m) and m1 is an inflection point.

(d) If J ≥ Jc, there exist a unique positive solution m2 which is the only
maximum point of φ(m) in Eq. (6).

Proof. Let us start by noticing that m = 0 is always a solution of (21). More-
over,

φ′′(0)

{
< 0, if J < 1
> 0, if J > 1.

Now, let’s rewrite (21) as

mJ =

[
arctanh(m) − Km2

]

︸ ︷︷ ︸
=g(m,K)

. (23)

The solutions of (21) are the intersections between the line mJ and the
function g(m,K). Therefore the function Ψ(K) in (22) is a benchmark to study
the number of solutions of φ′(m) = 0 when J varies. Indeed by definition, Ψ(K)
represents the smallest value of J in order to have a positive solution for (23).
Let us start collecting some properties of the function g(m,K). By definition
we have that

g′(m,K) =

[
1

1 − m2
− 2Km

]

g′′(m,K) =

[
2m

(1 − m2)2
− 2K

]
.

(24)

This implies that,
{

g′(0,K) = 1,
g′′(0,K) = −2K < 0 for all K > 0.
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Since the function m �→ 2m

(1 − m2)2
is strictly increasing on [0, 1), then g′′(m,K)

= 0 has only one solution, namely g(m,K) has only one inflection point. More-
over, observe that, as m → 1−, g(m,K) → +∞.

a. If J < Ψ(K) then it’s clear that (21) has a unique solution m0 = 0 which
is a maximum point since in this case φ′′(0) < 0.

b. If Ψ(K) < J < Jc, continuity of g and the fact that for m → 1−,
g(m,K) → +∞, imply that (21) has three solutions, m0,m1 and m3,
where m1 and m3 are positive. It’s also easy to check using the properties
of the function g(m,K) that m0 and m1 are local maxima while m3 is a
local minima.

c. If J = Ψ(K), then there is only one intersection point m4 between the
line mJ and the function g(m,K). Standard reasoning allows to conclude
that m4 is an inflection point for φ.

d. Finally suppose that J ≥ Jc. The fact that g′(0,K) = 1 and g′′(0,K) =
−2K < 0 for K > 0, means that the line mJ starts above the function
g. Now, since g has at most one inflection point and g(m,K) → +∞ as
m → 1−, one can conclude that there exist a unique positive solution
m2 ∈ (0, 1) of φ′(m) = 0.

�

The solutions made mention in Proposition 3.1 are displayed in Fig. 3.
In the next proposition we obtain the differentiability of the solution(s)

of the consistency equation (21) with respect to the parameters J and K.

Proposition 3.2 (Regularity properties). Let m0,m1 and m2 be the (local)
maxima of φ described in Proposition 3.1. Then for K > 0, the following
properties hold:

(a) m1 is continuous in its domain namely Ψ(K) ≤ J < Jc and C∞ in its
interior, while m2 is C∞ in its domain, namely J ≥ Jc.

(b) φ′′(m0) = φ′′(0) < 0, φ′′(m1) < 0 for Ψ(K) < J < Jc, and φ′′(m2) < 0
for J ≥ Jc.

Moreover, for any i ∈ {0, 1, 2} it holds that

∂

∂J
φ(mi) =

1
2
m2

i ,
∂

∂K
φ(mi) =

1
3
m3

i (25)

∂mi

∂J
= − mi

φ′′(mi)
,

∂mi

∂K
= − m2

i

φ′′(mi)
. (26)

Remark 3.1. Notice that (b) implies that there are no degenerate maximum
points of φ(m) for K > 0. Therefore the only degenerate maximum is obtained
for (K,J) = (Kc, Jc) = (0, 1), that is the critical point of a Curie–Weiss model,
here the magnetization takes the value mc = 0.

Proof. (a) Let’s start with m1 and take (K,J) in its domain, namely D :=

{(K,J)|K > 0,Ψ(K) ≤ J < Jc}. We define τ(K,J) =
(

1
J

− 1
)

J

K
> 0 and
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Figure 3. The points of intersection between the blue curve
g(m,K) as defined in (23) and red curve f(m) = Jm. The
solution of the equation (21) are the points of intersection
between g(m,K) and f(m)

φ̃(m) := φ(m)|[τ(K,J),1]. Observe from (21) that,

m1 =
1
J

[
arctanh(m1)︸ ︷︷ ︸

≥m1

−Km2
1

]

=⇒ m1 ≥
(

1
J

− 1
)

J

K
= τ(K,J).

Hence, m1 is the unique maximum point of φ̃(m), then by the Berge’s max-
imum Theorem A.1 (see [19,20]), m1 is continuous for (K,J) ∈ D. To prove
the smoothness of m1 on the interior of its domain it’s enough to show that
φ′′(m1) < 0 and then apply the implicit function Theorem A.2 (see [20,21]).
Let G(m) := φ ′′(m) then,

∂G

∂m
(m) = 2K − 2m

(1 − m2)2

∂2G

∂m2
(m) = −2(3m2 + 1)

(1 − m2)3
< 0 ∀ m ∈ [0, 1)
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and hence,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(0) = J − 1 < 0, ∀ J < Jc

G ′(0) = 2K > 0, ∀ K > 0
G ′′(0) = −2
limm→1− G(m) = −∞ ∀ K > 0 and J < Jc.

(27)

We want to prove that G(m1) < 0 if Ψ(K) < J < Jc. Clearly since m1 is a local
maximizer it’s enough to show that G(m1) �= 0. Recall that m1 is the biggest
positive solution of φ′(m) = 0. It’s easy to check that G(m) = 0 has at most
two solutions. Assume by contradiction that G(m1) = 0 if Ψ(K) < J < Jc,
then G(m) < 0 or G(m) > 0 in a left neighbourhood of m1.

• Suppose that G(m) < 0 in a left neighbourhood of m1 then G(m) cannot
be always negative, otherwise φ′(m) is decreasing and, since φ′(0) = 0
then φ′(m) = 0 can not have more than one solution. This contra-
dicts point b) of Proposition 3.1. Therefore there exist an interval where
G(m) > 0 but keeping in mind the properties of G in (27) and the fact
that G is continuous, this implies that there are at least three solutions
for G(m) = 0, but this is impossible because we already observed that
G(m) = 0 has at most two solutions.

• Suppose that G(m) > 0 in a left neighbourhood of m1, then G(m) = 0 has
in addition to m1 another solution that we denote by m̄. Clearly m̄ < m3

otherwise m3 cannot satisfies φ′(m3) = 0. Therefore G(m) ≡ φ′′(m) > 0
if m3 < m < m1 and this contradicts the fact that φ′(m3) = φ′(m1) = 0.

Let’s focus on m2. Since for K > 0 and J ≥ Jc, m2 is the only maximizer
of φ(m) it’s enough to show that φ′′(m2) < 0 to get smoothness of m2 by
using the implicit function theorem. Let’s note that if J ≥ Jc then φ′′(0) ≥
0 and φ′′(m) = 0 has a unique positive solution. Furthermore, φ(m) has a
unique maximum point, m2 ∈ (0, 1) and φ′(m2) = 0. It is easy to show that
φ′′(m2) �= 0 by contradiction. Let’s assume that φ′′(m2) = 0 then φ′′(m) > 0
for m < m2, therefore, using the Taylor’s series expansion of φ(m) around
m2 one gets φ(m) > φ(m2) which contradicts the fact that m2 is the global
maximum.

Therefore by the implicit function Theorem A.2, since φ′′(m) �= 0 on the
interior of the domains of m1 and m2, we can conclude that m1 and m2 are
C∞.

(b) We already proved that for any i ∈ {0, 1, 2}, φ′′(mi) < 0 for suitable
K,J . For the second part a direct computation shows that:

∂

∂J
φ(mi) =

∂

∂m
φ(m)

∣∣∣∣
m=mi

∂mi

∂J
+

m2
i

2

=
m2

i

2

(28)
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and similarly,

∂

∂K
φ(mi) =

∂

∂m
φ(m)

∣∣∣∣
m=mi

∂mi

∂K
+

m3
i

3

=
m3

i

3
.

(29)

Using the fact that mi, i = {0, 1, 2} are the stationary points of φ(·), we have

that
∂mi

∂K
satisfies

1
1 − m2

i

∂mi

∂K
− m2

i − 2Kmi
∂mi

∂K
− J

∂mi

∂K
= 0

∂mi

∂K

[
1

1 − m2
i

− 2Kmi − J

]
= m2

i

∂mi

∂K
= − m2

i

φ′′(mi)

(30)

and similarly for
∂mi

∂J
one obtains

1
1 − m2

i

∂mi

∂J
− 2Kmi

∂mi

∂J
− mi − J

∂mi

∂J
= 0

∂mi

∂J

[
1

1 − m2
i

− 2Kmi − J

]
= mi

∂mi

∂J
= − mi

φ′′(mi)

(31)

and this concludes the proof. �

Now we study which of the stationary points described by Proposition 3.1
are global maximizers of φ(m) and show the existence of a phase transition.
These stationary points are: m0,m1, and m2. Let us start by recalling the
result of Proposition 3.1:

• if J < Ψ(K), then m0 is the only global maximum point of φ
• if Ψ(K) < J < Jc then φ(m) has two local maximizers m0 and m1

• if J ≥ Jc then m2 is the only the global maximum point of φ(m)

To identify the coexistence of two global maximum points of φ(m) when
Ψ(K) < J < Jc, consider the following function:

Δ(K,J) = φ(m1,K, J) − φ(m0,K, J). (32)

Notice that Δ(K,J) can be extended by continuity at J = Ψ(K) and J = Jc.
In the above equation we use φ(·,K, J) to emphasis the dependence of φ on
the parameters.
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Proposition 3.3 (Existence and uniqueness). For all K > 0 there exists a
unique J = γ(K) ∈ (Ψ(K), Jc) such that Δ(K,J) = 0. Furthermore,

Δ(K,J)

{
< 0, if Ψ(K) ≤ J < γ(K)
> 0, if γ(K) < J ≤ Jc.

(33)

Proof. Let us start by observing that

• Δ(K,Ψ(K)) < 0, since for J = Ψ(K), m0 is the only maximum point of
φ(m,K, J).

• Δ(K,Jc) > 0, since limJ→1− m1(K,J) = m2(K, 1) and m2(K, 1) is the
only global maximum for φ(m,K, J).

Now, by continuity of φ(m) and m1, we have that J �→ Δ(K,J) is a
continuous function, and then the existence of the wall J = γ(K) follows from
the application of the intermediate value theorem. For the uniqueness part we
observe that J �→ Δ(K,J) is strictly increasing. Indeed from Proposition 3.2
we know that φ(m1),m1 are smooth functions and

∂Δ
∂J

(K,J) =
∂

∂J
φ(m1) − ∂

∂J
φ(m0)

=
1
2
m1

2 − 1
2
m0

2

=
1
2
m1

2 > 0

(34)

for J ∈ (Ψ(K), Jc). �

Corollary 3.1. The function φ(m) has a unique global maximum point m∗(K,J)
given by:

m∗(K,J) :=

⎧
⎪⎨

⎪⎩

m0 = 0, if J < γ(K)
m1(K,J), if γ(K) < J < Jc,

m2(K,J), if J ≥ Jc,

(35)

where the function γ(K) is defined by Proposition 3.3 and φ′′(m∗) < 0.

Note that on the curve γ there are two global maximum points of φ(m).
Let us define

γ(K) :=

{
γ(K), if K > 0
Jc, if K = Kc = 0.

(36)

Therefore by Proposition 3.2 one can conclude that m∗(K,J) is continuous on
its domain (R+ × R)\γ and it is C∞ on (R+ × R)\γ. Moreover the following
holds:

Proposition 3.4 (Regularity properties). The function γ(K) is C∞(R+ \ {0})
and at least C1 for K = 0. In particular,

γ ′(K) := −2
3
m1(K, γ(K)) ∀ K > 0 (37)



P. Contucci et al. Ann. Henri Poincaré

and

γ ′(Kc) := −2
3
mc. (38)

Proof. i. We begin by showing that γ(K) ∈ C∞(R+). By Proposition 3.3,
J = γ(K) is a unique solution of the equation

Δ(K,J) = 0,

where Δ is defined by Eq. (32) for Ψ(K) ≤ J < Jc and K > 0. Furthermore,
observe that Δ is C∞ in its domain by the smoothness of φ and m1. Recall
from the proof of Proposition 3.3 that

∂

∂J
Δ(K,J) �= 0 ∀ (K,J) s.t. J = γ(K), (39)

hence, by the implicit function Theorem A.3 γ(K) ∈ C∞(R+). Therefore

Δ(K, γ(K)) ≡ 0 =
d

dK
Δ(K, γ(K))

=
∂Δ
∂J

(K, γ(K))γ ′(K) +
∂Δ
∂K

(K, γ(K))

=⇒ γ ′(K) = − ∂Δ
∂K

/
∂Δ
∂J

(K, γ(K))

(40)

From Eqs. (28) and (29), we have that,

∂Δ
∂K

=
m3

1

3
− m3

0

3
and

∂Δ
∂J

=
m2

1

2
− m2

0

2
,

hence

γ ′(K) = −2
3
m1(K, γ(K)) (41)

since m0(K, γ(K)) = 0, ∀K > 0. Notice that, by (9), m1(K, γ(K)) −−−−→
K→∞

1

which implies that

lim
K→∞

γ ′(K) = −2
3
.

A consequence of this property is that also when J < 0 (antiferromagnetic
case) and very large there is always going to be phase transition between a
polarized and unpolarized state.

ii. Now we prove that the extended function γ ∈ C1(R+). Recall that
γ(K) ∈ [Ψ(K), Jc] and observe that limK→K+

c
Ψ(K) = Jc then

lim
K→K+

c

γ(K) = Jc

which implies that γ is continuous at Kc. Now we have that

γ ′(K) = −2
3
m1(K, γ(K)) −−−−−→

K→K+
c

−2
3
mc = 0 (42)

which implies that γ′(Kc) = − 2
3mc = 0 by the application of mean value

theorem. �



Limit Theorems for the Cubic Mean-Field

3.2. Proof of Theorem 2.1

In this section we provide the details of the proof for Theorem 2.1 following
closely the argument in [16].

Proof. 1. By proposition 2.2 we know that if (K,J) ∈ (R+ ×R)\(γ ∪ (Kc, Jc))
then φ(m) has a unique global maximizer m∗ with φ′′(m∗) < 0. It’s easy to
check that φ(m) satisfies the hypothesis of Lemma B.1, therefore (64) gives
concentration inequality for mN in a suitable neighbourhood of m∗ under the
probability measure (4). More precisely, for any α ∈ (0, 1

6 ] and N large enough
one has

μN (mN ∈ Bc
N,α(m∗)) = exp

{
1
2
N2αφ′′(m∗)

}
O(N

3
2 ) (43)

where Bc
N,α(m∗) = {m ∈ R : |m − m∗| ≤ N− 1

2+α}. Therefore the con-
vergence in distribution (10) follows from (43) by standard approximation
arguments.

To obtain the central limit for mN , it is enough to compute the limit of the
moment generating function of the rescaled random variable N

1
2 (mN − m∗).

For a fixed t ∈ R, the moment generating function of N
1
2 (mN − m∗) can be

expressed as

E

[
etN

1
2 (mN −m∗)

]
= e−tN

1
2 m∗ Z̄N (t)

ZN
. (44)

where Z̄N (t) is a perturbed partition function associated to an Hamil-
tonian

H̄N (σ) = HN (σ) +
√

N tmN (σ). (45)

We start by noticing that H̄N (σ) = −NfN (mN (σ)) where fN (x) =
K
3 x3 + J

2 x2 + 1√
N

tx and then fN together with all its derivatives tends uni-
formly to f(x) = K

3 x3 + J
2 x2. Therefore one can use Lemma B.1 to obtain an

asymptotic expansion for both ZN and Z̄N (t). More precisely one gets

Z̄N (t)
ZN

= eN
(
φN (m∗

N (t))−φ(m∗)
)
(1 + O(N− 1

2+3α)), (46)

where φN (x) = fN (x)− I(x) and for N large enough m∗
N (t) is its unique

maximizer. Now, let’s observe that m∗
N (0) = m∗ and m∗

N (t) satisfies the equa-
tion

m∗
N (t) = tanh

(
Km∗

N (t)2 + Jm∗
N (t) +

t√
N

)
. (47)

Hence, it’s easy to check that ∂m∗
N (t)
∂t |t=0 = − 1√

Nφ′′(m∗)
and ∂2m∗

N (t)
∂t2 =

O(N−1). Therefore the Taylor’s expansion of m∗
N (t) around t = 0 is

m∗
N (t) = m∗

N (0) − t√
Nφ′′(m∗)

+ O(N−1). (48)
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Moreover one can easily check that φN (m∗
N (t)) = φ(m∗

N (t)) +
t√
N

m∗
N (t).

Hence the Taylor expansion of φ(m∗
N (t)) around m∗ is

N

(
φN (m∗

N (t)) − φ(m∗)
)

=
N

2

[
(m∗

N (t)) − (m∗)
]2

φ′′(m∗)

+
√

Ntm∗
N (t) + o(1). (49)

Finally using Eqs. (48) and (49) in the above, one gets

N

(
φN (m∗

N (t)) − φ(m∗)
)

= t
√

Nm∗ − t2

2φ′′(m∗)
+ o(1) (50)

and by (46) the limiting moment generating function is given as

lim
N→∞

E

[
etN

1
2 (mN (σ)−m∗)

]
= exp

{
− t2

2φ′′(m∗)

}
, (51)

which implies (11).
2. Let’s recall that by Proposition 2.2 there exist two global maximizers

mi of φ(m) for i ∈ {0, 1} on γ. Moreover by point b) of Proposition 3.2 we
know that φ′′(mi) < 0 for i ∈ {0, 1}. Now, following the same argument as
before, formula (73) in Lemma B.2 gives the concentration inequality for mN

within a suitable neighbourhood of mi with respect to the Gibbs measure (4).
Therefore the convergence in distribution (13) and (12) follows the asymptotic
expansions of the (restricted) partition function in Lemma B.2.

To obtain the local central limit theorem for mN around the global max-
imizers mi, we will show that the moment generating function of N

1
2 (mN −

mi)
∣∣{mN ∈ Ai} with respect to the measure μN converges pointwise in dis-

tribution to the moment generating function of N
(

0,− 1
φ′′(mi)

)
. Here Ai ⊂

[−1, 1] is such that mi is the unique maximizer of φ(m) on its interior. The
moment generating function of N

1
2 (mN − mi)

∣∣{mN ∈ Ai} at a fixed t ∈ R is

E

[
etN

1
2 (mN −mi)

∣∣∣∣{mN ∈ Ai}
]

= e−tN
1
2 mi

Z̄N (t)
∣∣
Ai

ZN

∣∣
Ai

. (52)

Following the asymptotic expansion of the partition function in (74) (see
Lemma B.2), the fraction on the right side of Eq. (52) reduces to

Z̄N (t)
∣∣
Ai

ZN

∣∣
Ai

∼ eN
(
φN (mi,N (t))−φ(mi)

)
. (53)

Now, taking Taylor’s expansion of φN (mi,N (t)) at mi up to the second order,
one can repeat the same arguments as in the unique maximum case, obtaining

E

[
etN

1
2 (mN −mi)

∣∣∣∣{mN ∈ Ai}
]

−−−−→
N→∞

exp
{

− t2

2φ′′(mi)

}
. (54)

This completes the proof of (14).
3. Notice that the critical point (Kc, Jc) = (0, 1) is a degenerate maximum

point for φ(m) in the sense that φ′′(m∗(K,J))
∣∣
(K,J)=(0,1)

= 0. This does not
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allow the use of the asymptotic expansions in Lemma B.1. However, one can
simply notice that the Hamiltonian HN of the model at the critical point
(Kc, Jc) = (0, 1) coincides at any N ∈ N with the Hamiltonian function of
the standard Curie–Weiss model at the critical temperature J = 1 and zero
external field. Therefore (15) and (16) are a well known results and their proof
can be found in [14]. �

3.3. Proof of Proposition 2.3

Proof. Let us start with the case α ≥ 0. This implies from Eq. (17) that
J(K) ≥ Jc = 1 and then m∗(K) ≡ m2(K,J(K)) where m2 is the only positive
solution of the consistency equation (21).

Clearly m∗(K) → 0 as K → 0+, hence by Taylor’s expansion we have
that

m∗(K) = J(K)m∗(K) + Km∗(K)2 − J(K)3m∗(K)3

3
+ O(m∗(K)4)

= (1+αK)m∗(K)+Km∗(K)2− (1 + αK)3m∗(K)3

3
+O(m∗(K)4).

(55)

Hence
(1 + α3K3 + 3α2K2 + 3αK)m∗(K)2

3
− Km∗(K) − αK = O(m∗(K)3).

From the above equation, neglecting higher order corrections we have

m∗(K) ∼ 3
2

(
K +

√
K2 +

4
3
αK + 4α2K2

)
. (56)

Now, if α > 0 then

m∗(K) ∼
√

3αK. (57)

Otherwise if α = 0, then

m∗(K) ∼ 3
2

(
K +

√
K2

)
∼ 3K. (58)

Let’s turn on the case α < 0. From Proposition 3.4 we know that γ(K) is
at least C1 at K = 0. Since limK→0+ γ ′(K) = 0 we know that if J(K) < γ(K)
for K small enough, then m∗(K) ≡ m0(K,J) = 0. �

4. Conclusion and Perspectives

In this work, we have studied how the three-body interaction, which provides
a spin-flip symmetry-breaking parameter, induces phase transitions with novel
properties in the mean-field setting. In particular, we derived all the critical
exponents and the limiting distribution of a suitably rescaled magnetization in
the entire phase space. The presence of a stable paramagnetic phase and the
fact that, also in the antiferromagnetic regime, the model presents phase tran-
sitions and phase coexistence are interesting for applications in socio-technical
environments [8] and possibly in other fields [22,23].
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A possible research development will be to extend the results of the
present work to multi-populated models [8,24–32]. In these models, the in-
variance of the Hamiltonian with respect to permutations among sites is re-
placed by a weaker one that takes into account the existence of different
species of spins. This setting is particularly useful in social science applica-
tions [8,27,30,31]. Moreover, as mentioned in the introduction, the mean-field
approximation involved in the study of some finite-dimensional lattices pro-
vides a natural emergence of the multi-populated models. It is well known, for
instance, that a system on a simple cubic lattice [33,34] with ferromagnetic
and antiferromagnetic couplings has a factorized equilibrium measure that cor-
responds to a two-populated mean-field model. Similarly, it has been shown in
[7] that on a regular square lattice, a system with cubic interaction has a prod-
uct state equilibrium described by a two-populated mean-field model, while on
a regular triangular lattice [6], by a three-populated mean-field model.

We also mention that in the case of quadratic interaction, Stein’s method
provides stronger results (Berry-Esseen type bounds) on the rate at which the
convergence to the normal distribution takes place (see [35,36]). The exten-
sion of the above method to our model and more generally to higher order
interaction is an interesting open problem. We plan to develop those research
directions in the future.
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A. Technical Results

This section of the appendix presents some useful technical results applied in
the work. We begin by stating the Berge’s maximum theorem in the following
Proposition.

Proposition A.1. Let f : [−1, 1] ×R
n → R and c : Rm → [−1, 1] be continuous

functions.
(a) The following function is continuous:

F : Rn × R
m → R, F (x, y) = max

v∈[−1,c(y)]
f(v, x).

(b) Suppose that for all x, y ∈ R
n the function v �→ f(v, x) achieves its max-

imum on [−1, c(y)] in a unique point. Then also the following function is
continuous:

V : Rn × R
m → [−1, 1], V (x, y) = argmax

v∈[−1,c(y)]

f(v, x).

The following proposition partially states Dini’s implicit function theo-
rem. Then we provide two simple corollaries that are used in the paper.

Proposition A.2. Let F : Rn ×R → R be a C∞ function. Let (x0, y0) ∈ R
n ×R

such that F (x0, y0) = 0 and ∂F
∂y (x0, y0) �= 0. Then there exist δ > 0, ε > 0 and

a C∞ function f : B(x0, δ) → B(y0, ε) such that for all (x, y) ∈ B(x0, δ) ×
B(y0, ε)

F (x, y) = 0 ⇐⇒ y = f(x)

Corollary A.3. Let F : Rn × R → R be a C∞ function. Let ϕ : Rn → R be
a continuous function such that for all x ∈ R

n such that F (x, ϕ(x)) = 0 and
∂F
∂y (x, ϕ(x)) �= 0, then ϕ(x) ∈ C∞(Rn).

Corollary A.4. Let F : Rn × R → R be a C∞ function. Let a, b : Rn → R be a
continuous function such that for all a < b. Suppose that for all x ∈ R

n there
exists a unique y = ϕ(x) ∈ (a(x), b(x)) such that F (x, ϕ(x)) = 0. Moreover,

suppose that for all x ∈ R
n,

∂F

∂y
(x, ϕ(x)) �= 0, then ϕ(x) ∈ C∞(Rn).

B. Concentration Results and Asymptotic Expansions

In this section of the appendix, we state concentration properties of the mag-
netization and asymptotic expansions of the partition function for a large class
of Ising mean-field models and give proofs using the same methods and argu-
ments recently introduced in [16].

Consider a mean-field spin model with energy density fN , namely

HN (σ) = −NfN (mN (σ)), σ ∈ {−1, 1}N (59)

where mN = 1
N

∑
i≤N σi is the magnetization density. We assume that

(fN ) is a sequence of continuous functions fN : [−1, 1]N → R converging uni-
formly to f . We assume also that fN has bounded derivatives up to order 4
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converging uniformly to f ′, f ′′, f ′′′, f ′′′′. We denote the law of the magnetiza-
tion under the Gibbs measure by

μN (σ) =
e−HN (σ)

ZN
. (60)

The partition function ZN can be written as

ZN =
∑

x∈RN

AN (x)eNfN (x), (61)

where RN = {−1 + 2k
N , k = 0, . . . , N} and AN (x) = card{σ ∈ {−1, 1}N :

mN (σ) = x}. Now, it follows from [37] that, for some universal constant L

1
L

√
N

e−NI(x) ≤ AN ≤ e−NI(x) (62)

where I(x) is defined in (8). Define the sequence φN as

φN (x) = fN (x) − I(x). (63)

Notice the assumption on (fN ) that φN → φ = f − I uniformly on (−1, 1), as
well as its derivarites up to order 4 on (−1, 1).

The following lemmata contains concentration properties of the magne-
tization mN w.r.t. the Gibbs measure μN and asymptotic expansions of the
partition function ZN . For any α > 0 and y ∈ R we denote by BN,α(y) the
open ball with center y and radius N−1/2+α and by Bc

N,α(y) its complement.

Lemma B.1. Assume that φ(x) has a unique global maximizer x∗ ∈ (−1, 1)
such that φ′′(x∗) < 0. Then for N large enough φN has a unique maximizer
x∗

N → x∗ such that φ′′
N (x∗

N ) < 0. Moreover for α ∈ (
0, 1

6

]
and N large enough

we have that

μN (mN ∈ Bc
N,α(x∗

N )) = exp
{

1
2
N2αφ′′

N (x∗
N )
}

O(N
3
2 ) (64)

and the partition function (61) can be expanded as,

ZN =
eNφN (x∗

N )

√
(x∗2

N − 1)φ′′
N (x∗

N )

(
1 + O

(
N− 1

2+α

))
, (65)

Proof. Let x∗
N be any maximizer of φN which exists since [−1, 1] is compact.

Then there exist a subsequence {Nl}l≥1 such that x∗
Nl

converges to some y.
We know that φNl

(x∗
Nl

) ≥ φNl
(x) for all x ∈ [−1, 1], therefore by uniform

convergence and taking l → ∞ we obtain φ(y) ≥ φ(x) for all x ∈ [−1, 1] and
this implies that y is a global maximizer of φ(x). But x∗ is the unique global
maximizer of φ(x), hence y = x∗.

Since φ′′(x∗) < 0 one has, for ε small enough, φ(x) < 0 for any x ∈ [x∗ −
ε, x∗+ε]. Let xN and yN be two global maximizers of φN . We already know that
xN → x∗ and yN → x∗. Therefore for N large enough xN , yN ∈ [x∗ −ε, x∗ +ε].
Using the fact that φ′′

N converges uniformly to φ′′ one can show that for N
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large enough φN it is strongly convex on [x∗ − ε, x∗ + ε] and therefore has
unique maximizer which implies that xN = yN .

In order to lighten the notation set BN,α = BN,α(x∗
N ). From Eqs. (60),

(61) and (62) we have that,

μN (mN ∈ Bc
N,α) =

∑
x∈RN ∩Bc

N,α
AN exp

{
N
(
fN (x)

)}

∑
x∈RN

AN exp
{
N
(
fN (x)

)}

≤
LN

1
2 (N + 1) supx∈Bc

N,α
eNφN (x)

supx∈[−1,1] e
NφN (x)

= exp
{

N

(
sup

x∈Bc
N,α

φN (x) − φN (x∗
N )
)}

O(N
3
2 ).

(66)

Now by Lemma B.11 in [16] we know that for x ∈ Bc
N,α the maximizer of φN (x)

is, for N large enough, either x∗
N −N− 1

2+α or x∗
N +N− 1

2+α. This implies that
supx∈Bc

N,α(x∗
N ) φN (x) is either φN (x∗

N − N− 1
2+α) or φN (x∗

N + N− 1
2+α). Note

that φ′
N (x∗

N ) = 0 since x∗
N is the maximizer and φ

(3)
N (x∗

N ) is uniformly bounded
on any closed interval in (−1, 1). Hence by a second-order Taylor expansion of
φN (x∗

N ± N− 1
2+α) at the point x∗

N , we have that

φ(x∗
N ± N− 1

2+α) = φN (x∗
N ) +

1
2
N−1+2αφ′′

N (x∗
N ) + O(N− 3

2+3α), (67)

where φ′′(x∗
N ) < 0. This completes the proof of equation (64) following from

Eq. (66).
To complete the proof of Lemma B.1, let’s start by observing that almost

all the contribution to ZN comes from spin configurations having magnetiza-
tion in a vanishing neighbourhood of the maximizer x∗

N , i.e., μN (mN (σ) ∈
BN,α) = 1 − O(e−Nα

). Hence,

ZN = (1 + O(e−Nα

))
∑

x∈RN ∩BN,α

(
N

N(1+x)
2

)
exp

{
N
(
fN (x)

)}
.

︸ ︷︷ ︸
=ζ(x)

(68)

where ζ : [−1, 1] → R. With this, one can accurately approximate the par-
tition function over all configurations σ whose mean lies within a vanishing
neighbourhood of x∗ using standard approximation techniques.

We begin by applying the Laplace approximation of an integral over a
shrinking interval BN,α via the Riemann approximation of the sum in Eq. (68)
with an integral and the binomial coefficient can be approximated by the
Stirling’s approximation method. Notice that by the Riemann approximation
(see Appendix Lemma A.2 and B.7 of [16]) of the sum, we have that
∣∣∣∣∣

∫

BN,α

ζ(x)dx − 2
N

∑

x∈RN ∩BN,α

ζ(x)

∣∣∣∣∣ ≤ 1
2 (N− 1

2+α) · N−1 supx∈BN,α
|ζ ′(x)|

= O(N− 1
2+α · N−1 · N

1
2+α)ζ(x∗

N )
= O(N−1+2α)ζ(x∗

N ) (69)
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and the binomial coefficient in (68) can be approximated as
(

N
N(1+x)

2

)
=

√
2

πN(1 − x2)
e−NI(x) (1 + O(N−1)). (70)

It follows from Eqs. (69) and (70) and the Laplace approximation (see
Appendix Lemma A.3 of [16]) of an integral over a shrinking interval BN,α

that:
∑

x∈RN ∩BN,α

ζ(m) =
N

2

∫

BN,α

ζ(x)dx + O(N2α)ζ(x∗
N )

=
N

2

∫

BN,α

√
2

πN(1 − x2)
eNφN (x)(1 + O(N−1))dx

+O(N2α) ·
[√

2

πN(1 − x∗2

N )
eNφN (x∗

N ) (1 + O(N−1))

]

=

√
N

2

√
2π

N |φ′′
N (x∗

N )|

√
2

π(1 − x∗2

N )
eNφN (x∗

N ) (1 + O(N− 1
2+3α))

=
eNφN (x∗

N )

√
(x∗2

N − 1)φ′′
N (x∗

N )
· (1 + O(N− 1

2+3α)). (71)

Therefore,

ZN =
eNφN (x∗

N )

√
(x∗2

N − 1)φ′′(x∗
N )

· (1 + O(N− 1
2+3α)). (72)

This completes the proof of Lemma B.1. �

Lemma B.2. Suppose φ(x) has S ∈ N global maximizers xi such that φ′′(xi) <
0. For i ≤ S, let Ai ⊂ [−1, 1] be an interval such that xi ∈ int(Ai) is the
unique maximizer of φ on cl(Ai). Then for N large enough φN has a unique
global maximizer xi,N → xi on Ai with φ′′

N (xi,N ) < 0 and for α ∈ (
0, 1

6

]
, one

has

μN (mN ∈ Bc
N,α,S) = exp

{
1
2
N2α max

i≤S
φ′′

N (xi,N )
}

O(N
3
2 ) (73)

where BN,α,S =
⋃

i≤S BN,α(xi,N ), moreover the restricted partition function
on Ai can be expanded as,

ZN

∣∣
Ai

=
eNφN (xi,N )

√
(x2

i,N − 1)φ′′
N (xi,N )

(
1 + O

(
N− 1

2+α

))
(74)

and the unrestricted partition function can be expanded as,

ZN =
∑

i≤S

eNφN (xi,N )

√
(x2

i,N − 1)φ′′
N (xi,N )

(
1 + O

(
N− 1

2+α

))
. (75)

Note that, here, int(Ai) and cl(Ai) denote the interior and closure of Ai,
respectively.
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Proof. The fact that for N large enough φN has a unique maximizer xi,N → xi

with φ′′(xi,N ) < 0 can be proved applying to the function φN restricted to
cl(Ai) and using the same argument of Lemma B.1.

Clearly, for N large enough, BN,α(xi,N ) ⊂ Ai and

μN (mN (σ) ∈ Bc
N,α(xi,N )|mN (σ) ∈ Ai) = exp

{
1
2
N2αφ′′

N (xi,N )
}

O(N
3
2 )

(76)

following a step-by-step argument used to prove equation (64).
Now, for i ≤ S and N large enough, one has that Ai\BN,α(xi,N ) =

Ai\BN,α,S and then μN (mN (σ) ∈ Bc
N,α(xi,N )

∣∣mN (σ) ∈ Ai) = μN (mN (σ) ∈
Bc

N,α,S |mN (σ) ∈ Ai). Therefore,

μN (mN (σ) ∈ Bc
N,α,S) =

∑

1≤i≤S

μN (mN (σ) ∈ Bc
N,α,S

∣∣mN (σ) ∈ Ai)μN (mN (σ) ∈ Ai)

≤ exp

{
1

2
N2α max

1≤i≤S
φ′′(xi)

}
O(N

3
2 )

∑

1≤i≤S

μN (mN (σ) ∈ Ai)

= exp

{
1

2
N2α max

1≤i≤S
φ′′(xi)

}
O(N

3
2 ). (77)

This completes the proof of equation (73) following from Eq. (77).
The proof for the asymptotic expansion of the partition function when

there are multiple global maximizers of φ follows exactly the same argument
for the case with unique global maximizer. Note that for fixed i ≤ S and N
large, mN (σ) concentrates around xi ∈ Ai as it was shown in Eq. (76). Hence,

μN (mN (σ) ∈ BN,α

∣∣mN (σ) ∈ Ai) =
1

ZN

∣∣
Ai

∑

x∈RN ∩BN,α

( N
N(1+x)

2

)
exp

{
N
(
fN (x)

)}
.

(78)

Now, following the exact computation and argument in Lemma B.1, we have
that the restricted partition function for each of the global maximizers xi can
be expanded as

ZN

∣∣
Ai

=
eNφN (xi,N )

√
(x2

i,N − 1)φ′′(xi,N )
· (1 + O(N− 1

2+3α)). (79)

Assuming that mN (σ) concentrates around S global maximizers xi,N for i ≤ S
then, Eq. (75) follows from (79). Hence, we have

ZN =
∑

i≤S

ZN

∣∣
Ai

. (80)

�
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