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Analytic States in Quantum Field Theory
on Curved Spacetimes

Alexander Strohmaier and Edward Witten

Abstract. We discuss high energy properties of states for (possibly inter-
acting) quantum fields in curved spacetimes. In particular, if the space-
time is real analytic, we show that an analogue of the timelike tube the-
orem and the Reeh–Schlieder property hold with respect to states satis-
fying a weak form of microlocal analyticity condition. The former means
the von Neumann algebra of observables of a spacelike tube equals the
von Neumann algebra of observables of a significantly bigger region that
is obtained by deforming the boundary of the tube in a timelike manner.
This generalizes theorems by Araki (Helv Phys Acta 36:132–139, 1963)
and Borchers (Nuovo Cim (10) 19:787–793, 1961) to curved spacetimes.

1. Introduction

A quantum field on d-dimensional Minkowski spacetime can be thought of
as an operator-valued distribution Φ on R

d. For a quantum field Φ acting
on a dense domain D ⊂ H in a Hilbert space H with vacuum vector Ω, the
spectrum condition implies that in case a test function f has Fourier trans-
form f̂ supported away from the backward light cone, the smeared out field
Φ(f) annihilates the vacuum, i.e., Φ(f)Ω = 0. More generally, if f1, . . . , fn

are test functions whose Fourier transforms f̂1, . . . , f̂n have the property that
supp f̂1 + · · · + supp f̂n does not intersect the backward light cone, we again
have Φ(f1) . . . Φ(fn)Ω = 0. This is a manifestation of the fact that only states
with non-negative energy can be created out of the vacuum; hence, test func-
tions that do not contain a positive energy component yield an operator that
annihilates the vacuum vector.

In a general curved spacetime (M, g), due to the absence of a translational
symmetry, there is no notion of energy or the Fourier transform. Positivity
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of energy in the above sense can only be expected in an asymptotic sense.
To explain this, we consider families of test functions fh that depend on a
parameter h ∈ (0, 1]. As h ↘ 0 these test functions need not converge, but
they will have localization properties in phase space that transform covariantly
under a change of coordinates. In this paper we are interested in the analytic
category, i.e., we assume that the spacetime (M, g) has a real analytic set of
coordinates with respect to which the metric g is real analytic. Hence, we only
need to consider analytic coordinate changes. The notion of microsupport of
the family fh captures the localization properties of the family of functions fh

as h ↘ 0 in a manifestly covariant way. Roughly speaking, the microsupport is
the set of elements (x, ξ) in the cotangent space T ∗M with the property that
the inner product

〈ψx,ξ,h, fh〉 = (πh)− d
4

∫
e− (x−y)2

2h e
i
h (x−y)ξfh(y)dx

in local coordinates with a coherent state ψx,ξ,h(y) = (πh)− d
4 e− 1

2 h (x−y)2

e− i
h (x−y)·ξ localized at the point (x, ξ) is not exponentially small as h ↘ 0

(see Sect. 2.2 for the precise mathematical definition). Here we say a function
is exponentially small if it is of order e−δh−1

for some δ > 0 in some appropri-
ate norm or semi-norm. The observation at the heart of microlocal analysis in
the analytic category is that this notion is covariant under analytic change of
coordinates, and it therefore makes sense on an analytic curved spacetime. The
microsupport in this way becomes a subset of the cotangent bundle. Similar
notions exist in the category of smooth manifolds, but the exponential decay
needs to be replaced by decay faster than any power of h. The role of h is
that of a scaling parameter. As h ↘ 0 the wave packet ψx,ξ,h localizes at the
phase space point (x, ξ) at a scale h

1
2 after a rescaling (x, ξ) �→ (x, hξ) has

been applied. The physical intuition is that this corresponds to the regime of
high energy in which asymptotic localization in phase space is possible. This is
ultimately the reason why the corresponding notions make sense on manifolds.

For a quantum field in a curved spacetime, it is therefore natural to
hypothesize the existence of states Ω for which

Φ(f1,h) . . . Φ(fn,h)Ω

is exponentially small as soon the microsupport of the family f1,h(x1) . . . fn,h

(xn) of functions on M ×· · ·×M is contained only in a set that does not corre-
spond to an allowed physical process. To be more precise, if the microsupport
of f1,h is contained in a region of phase space that cannot be reached by classi-
cal scattering processes from the microsupports of fk,h, k = 2, . . . , n the vector
Φ(f1,h) . . . Φ(fn,h)Ω should be exponentially small. In scattering theory the set
of admissible processes is restricted by Landau diagrams (see [20,24]) and one
expects similar restrictions for correlations in curved spacetimes. For example
it has been conjectured [22] that for certain types of quantum fields in curved
spacetimes analytic singularities only propagate along null-lines and scatter
classically. In the generality of the Wightman framework, this seems to be too
strong and excludes various generalized free fields. Another condition that is
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more likely to include general Wightman fields in Minkowski space is that an-
alytic singularities propagate along causal curves and scatter classically. Other
even weaker propositions have been stated in [9].

In this paper we are concerned with a very weak form of such a physical
condition. Namely, we call a state Ω analytic if Φ(f1,h) . . . Φ(fn,h)Ω is expo-
nentially small as soon as the microsupport of f1,h has positive distance from
the backward light cone, and the microsupports of the fk,h, k = 2, . . . , n are
contained in the zero section of the cotangent bundle in a uniform manner.
Roughly, it is not possible asymptotically to extract energy from such a state.
The name “analytic state” is motivated by analogy from properties of analytic
vectors with respect to group actions.

We show that for such states we have the timelike tube theorem and the
Reeh–Schlieder theorem. We give here informal versions of the two theorems,
assuming there exists a cyclic analytic vector.

Timelike tube theorem, (Theorem 5.3): Let R(O) be the local von Neumann
algebra associated to the spacetime region O ⊂ M . Let OT be a larger space-
time region obtained from O by deforming timelike curves in O in a timelike
manner with fixed endpoints. Then R(O) = R(OT ).

In case O is an infinite timelike tube then the set OT is in some cases the
entire spacetime.

Reeh–Schlieder theorem, (Theorem 5.1): R(O)Ω is dense in the Hilbert space
for any non-empty open subset O ⊂ M .

Both theorems are of structural importance in rigorous treatments in
algebraic quantum field theory. The Reeh–Schlieder theorem is the basic result
governing entanglement in quantum field theory that opened the path for the
use of modular theory. The timelike tube theorem shows that in defining a net
of algebras associated to open sets, only open sets that are their own timelike
envelopes need to be considered. Combining this with relativistic causality
leads to further conditions, as originally discussed by Araki [2].

We state and prove both of the theorems as they are similar in nature,
but note that the validity of the Reeh–Schlieder theorem in this context has
been known under similar conditions [29]. To our knowledge, the validity of
the timelike tube theorem has not been noted in this general context that is
thought to include interacting fields.

Whether or not the timelike tube theorem holds for even the free Klein–
Gordon field on a general non-necessarily analytic globally hyperbolic space-
time remains an open question. A counterexample by Alinhac and Baouendi
[1] shows that there exists a smooth complex-valued potential V ∈ C∞(R3,C)
on three-dimensional Minkowski space, and a smooth function u ∈ C∞(R3,C)
with support supp(u) equal to the half-plane {(t, x, y) ∈ R

3 | x > 0} such that
�u+V u = 0 in an open neighborhood of zero. It is currently unknown if such
an example can also be constructed for the metric wave operator or a real po-
tential. Under a partial analyticity assumption, the case of the Klein–Gordon
field was treated in [30].
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It is likely that all of our analysis carried out in the analytic category
works also if one replaces the class of analytic functions with the quasi-analytic
Denjoy–Carleman class which is slightly more general. A great deal of the
geometric framework for this class has indeed been worked out in [14].

The article is organized as follows. In Sect. 2 we discuss various notions
of microlocal analysis such as the FBI (Fourier–Bros–Iagolnitzer) transform,
the microsupport, and the analytic wavefront set. We briefly explain in Sect. 3
how these notions come up naturally in quantum theory and link with the
notion of analytic vectors for the time evolution operator.

In Sect. 4 we give the mathematical framework for treating quantum fields
in curved spacetimes and introduce and discuss the notions of analyticity and
tempered analyticity. Section 5 contains the statement and proof of the timelike
tube and the Reeh–Schlieder theorem. The appendices provide details of the
mathematical framework.

2. Microlocal Analysis and the FBI Transform

Schrödinger quantum mechanics of a single particle on R
d is described by the

Hilbert space H = L2(Rd) and the Schrödinger time evolution U(t) which is
explicitly determined by the Schrödinger equation U(t) = exp(−itH), where H
is a self-adjoint operator, the Hamiltonian. The Hilbert space is concretely re-
alized here as space of square integrable functions which encodes the quantum
mechanical interpretation of a state Ψ ∈ H, namely |Ψ(x)|2dx is a probabil-
ity measure that describes the probability distribution measuring the presence
of the particle in a space region. The above is the position representation of
the Hilbert space. Using the Fourier transform F : L2(Rd) → L2(Rd), f �→
f̂ , f̂(ξ) = (2π)− d

2
∫
Rd f(x)e−ix·ξdx one can pass to the momentum represen-

tation. The probability distribution |Ψ̂(ξ)|2dξ describes the probability distri-
bution measuring the momentum of a particle in a region. Whereas precise
localization in phase space is not possible due to the Heisenberg uncertainty
relation, there are still various asymptotic notions of phase space localization.
An example is the coherent states

ψx,ξ,h(y) = (πh)− d
4 e− (y−x)2

2h e− i
h (x−y)ξ,

which localize in a rescaled version of phase space at the point (x, ξ) as h ↘ 0.
Here h ∈ (0,∞) serves as formal parameter which should not be confused with
Planck’s constant. The idea of asymptotic localization in phase space has had
a profound influence on the theory of partial differential equations and the
corresponding analysis is more commonly referred to as microlocal analysis. It
can be used to describe regularity properties of distributions in phase space.
There are various approaches to microlocal analysis which we review and link
in the appendix. We will focus here on an approach based on semi-classical
analysis and the FBI transform, which is motivated by developments in the
theory of partial differential equations. Remarkably, the original ideas linking
analyticity and the FBI transform were in parts discovered in the analysis of
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the analytic properties of the scattering matrix in quantum field theory (see,
e.g., [24]).

As usual we let S(Rd) be the space of Schwartz functions. Its topological
dual is the space S ′(Rd) of tempered distributions. As above it is convenient
to let transforms depend on an extra parameter h ∈ (0,∞). One defines the
semi-classical Fourier transform Fh, by

(Fhf)(ξ) =
1

(2πh)
d
2

∫
Rd

f(x)e− i
h x·ξdx. (1)

For fixed h this defines a continuous map Fh : S(Rd) → S(Rd) that contin-
uously extends as Fh : S ′(Rd) → S ′(Rd) and a unitary map Fh : L2(Rd) →
L2(Rd). Given a Schwartz function f ∈ S(Rd), and a number h ∈ (0,∞),
one defines the semi-classical FBI transform (Thf)(x, ξ) at the point (x, ξ) ∈
R

d × R
d as

(Thf)(x, ξ) = αh

∫
Rd

e− 1
2h (x−y)2e

i
h (x−y)·ξf(y)dy, αh = 2− d

2 (πh)− 3d
4 . (2)

The FBI transform defines for every h > 0 an isometry L2(Rd) → L2(Rd×R
d).

We also have the continuous mapping properties

Th : S(Rd) → S(Rd × R
d), Th : S ′(Rd) → S ′(Rd × R

d),

T ∗
h : S(Rd × R

d) → S(Rd), T ∗
h : S ′(Rd × R

d) → S ′(Rd),

for fixed h. We have T ∗
hTh = id on L2(Rd),S(Rd), and S ′(Rd) respectively.

Moreover, one checks directly that e
ξ2
2 h (Thf)(x, ξ) is holomorphic in z = x− iξ.

This transform is closely related to the Bargman transform and in fact
achieves an expansion of the state into coherent states. Indeed,

ψx,ξ,h(y) = (πh)− d
4 e− 1

2h (x−y)2e
i
h (y−x)·ξ,

is an L2-normalized coherent state centered at the point (x, ξ) in phase space.
For fixed h > 0, the formula T ∗

hTh = 1 can be expressed as

u(y) = (2πh)− d
2

∫
R2d

(Thu)(x, ξ)ψx,ξ,h(y)dxdξ. (3)

In other words, the FBI transform allows to superpose the distribution from
a family of coherent states. Another inversion formula that is useful in this
context is

u(x) = 2− d
2 −1(π)− d

4

∫
|ξ|=1

∫ ∞

0

h−1− d
4

(
1 + ξ · h

i
gradx

)
(Thu)(x, ξ)dh dξ,

(4)
the proof of which can be found in [19]*Sect. 9.6.

As h ↘ 0 the function e− 1
2 h (x−y)2+ i

h (y−x)·ξ localizes more and more at
the phase space point (y, ξ). If a distribution u ∈ S′(Rd) vanishes near the
point y in fact the FBI transform is exponentially decaying in h−1 as h ↘ 0.
It is this localization property that makes it useful to study local properties of
distributions. The FBI transform is also essentially the same as the wavepacket
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transform of [10] introduced to study mapping properties of Fourier integral
operators.

2.1. Families of Test Functions and Distributions

It will be convenient to work with general h-dependent families of test functions
and distributions. In case (fh) is a family of Schwartz functions, we say that
this family is polynomially bounded if for every Schwartz semi-norm p we
have that p(fh) = O(h−N ) as h ↘ 0 for some N > 0 potentially depending on
the semi-norm. We call a family (uh) of tempered distributions uh ∈ S ′(Rd)
polynomially bounded if there exists a continuous semi-norm p : S(Rd) →
[0,∞) such that for some N > 0 we have ‖uh(f)‖ ≤ h−Np(f) for all f ∈
S(Rd), h ∈ (0, 1].

The notions discussed here such as polynomial boundedness for families of
distributions carry over to families of distributions (uh), uh ∈ S ′(Rd, V ) taking
values in a Banach space V . We do not write this out explicitly in an attempt
to not overload the notation, but we write ‖u(f)‖ to remind the reader that
these definitions carry over to Banach space-valued families of distributions,
where the norm ‖ · ‖ is the norm on V .

The two notions of polynomial boundedness are compatible as the pairing
of a polynomially bounded family of distributions and a polynomially bounded
family of test functions is a polynomially bounded function of h.

We will denote by S ′
h(Rd) the vector space of polynomially bounded

families of tempered distributions and by Sh(Rd) the algebra of polynomi-
ally bounded families of Schwartz functions. In the examples we have in mind
the restriction to the class of polynomially bounded families is not a serious
one. The advantage of restricting to the class of polynomially bounded func-
tions is that it is stable under forming tensor products and does not change
exponential decay rates. We call a family of test function (fh) ∈ Sh(Rd) ex-
ponentially small with decay rate δ > 0 if for every Schwartz semi-norm p we
have p(fh) = O(e−δh−1

) as h ↘ 0. For example, a sufficient condition for a
family of the form f1,h ⊗ · · · ⊗ fn,h ∈ Sh(Rd × · · · × R

d) to be exponentially
small with decay rate δ > 0 is that one of the tensor factors is exponentially
small with that decay rate. Similarly, an element in u ∈ S ′

h(Rd) paired with
an exponentially small test function results in an exponentially small function
of h.

The semi-classical Fourier transform Fh and the FBI transform Th can
be viewed as maps

Th : Sh(Rd) → Sh(Rd × R
d), Th : S ′

h(Rd) → S ′
h(Rd × R

d),

Fh : Sh(Rd) → Sh(Rd), Fh : S ′
h(Rd) → S ′

h(Rd)

by applying the maps pointwise, i.e.,

(Thfh)h(x, ξ) = αh

∫
Rd

e− 1
2h (x−y)2e

i
h (x−y)·ξfh(y)dy.
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2.2. Uniform Microlocalization of a Family

For a polynomially bounded family of test functions (uh) ∈ Sh(Rd), consider
the FBI transform (Thuh). This is again a polynomially bounded family of test
functions in Sh(Rd × R

d).

Definition 2.1. We say (uh) ∈ Sh(Rd) is microlocally uniformly exponentially
small in U ⊆ R

d × R
d if there exists a δ > 0 such that for all N > 0 we have

the estimate

|((1 + x2 + ξ2)NThuh)(x, ξ)| ≤ CNe−δh−1
for all (x, ξ) ∈ U

for some CN > 0.

This definition is very natural when working with Schwartz functions as
test functions, in fact the decay requirements can be expressed in terms of
Schwartz semi-norms, as we explain in Proposition E.1. The complementary
notion is that of being uniformly microsupported in a set K, which essentially
means we have microlocal uniform exponential smallness for all points that
have a positive distance to K.

Definition 2.2. We say that (uh) ∈ S(Rd) is uniformly microsupported in K ⊂
R

d × R
d if it is microlocally uniformly exponentially small in Uε = {(x, ξ) ∈

R
d × R

d | dist((x, ξ),K) > ε} for all ε > 0. In this case we also say uh is
uniformly microsupported away from the complement of K.

This is intimately related to the notion of microsupport of a polynomially
bounded family of distributions.

Definition 2.3. The microsupport μS(uh) of a polynomially bounded family of
distributions (uh) ∈ S ′

h(Rd) is the complement of the set of points (x0, ξ0) ∈
R

d × R
d such that we have

‖Thuh(x, ξ)‖ < Ce−δh−1
,

uniformly for all (x, ξ) near (x0, ξ0).

The microsupport measures the (exponential) localization properties of
(uh) in phase space as h ↘ 0. As an example, one can consider the family of
coherent states

ψx0,ξ0,h(x) = (πh)− d
4 e− 1

2h (x−x0)
2
e

i
h (x−x0)·ξ0 ,

which is a family of real analytic Schwartz functions. As an h-dependent fam-
ily the microsupport is given by {(x0, ξ0)} as the functions localize in phase
space to this point as h ↘ 0. Another example is χ(x)ψx0,ξ0,h(x) with ξ0 = 0
and χ a compactly supported smooth test function that equals one near x0.
As this example shows a family of smooth functions may also have nonzero
microsupport, and we can therefore investigate how the field operator behaves
on an h-dependent family fh of smooth compactly supported test functions.

The notion of being uniformly microsupported captures more than the
notion of the microsupport. As an example let

ψxh,ξh,h(x) = (πh)− d
4 e− 1

2h (x−xh)2e
i
h (x−xh)·ξh
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be a family of coherent states with centered at a point (xh, ξh) that also de-
pends on h and escapes to ∞ at a fast enough rate as h → 0. Then the
microsupport of ψxh,ξh,h(x) + ψx0,ξ0,h(x) equals {(x0, ξ0)}, but the family is
not microlocally uniformly exponentially small away in the complement of any
ball Bε((x0, ξ0)) and is therefore not uniformly microsupported at {(x0, ξ0)}.

If we pass to the test function space C∞
0 (Rd), there is an inherited notion

of uniform microlocalization that generalizes to real analytic manifolds. To
make this precise, we need to consider families of compactly supported h-
dependent polynomially bounded test functions fh. We do this for a general
manifold M . We say a family (fh), fh ∈ C∞

0 (M) is polynomially bounded if
• there exists a compact subset K ⊂ M such that supp(fh) ⊂ K for all

values of the parameter h,
• for any smooth cut-off function χ ∈ C∞

0 (M) compactly supported in a
chart domain the family (χfh) is polynomially bounded in S(Rd) with
respect to the local coordinates of the chart.

The space of polynomially bounded families (fh) of test functions fh ∈ C∞
0 (M)

will be denoted by C∞
0,h(M). For such families of distributions the notion of

being uniformly exponentially small in a subset of the cotangent bundle make
sense. The reason is that by Proposition E.5 the notion of exponential smallness
transforms covariantly under an analytic change of coordinates. A mildly subtle
point is that upon localization into a chart domain using a cut-off function χ
we can expect uniform exponential smallness only where the cutoff function
is constant, because outside this set it is not real analytic. This leads to the
following definition.

Definition 2.4. Given a compact set K ⊂ M and a subset N ⊂ π−1(K) ⊂
T ∗M , we say (fh) is uniformly microlocally exponentially small in N if for
any analytic coordinate chart ρ : M ⊃ O → ρ(O) ⊂ R

d, any relatively com-
pact open set U ⊂ O and any test function χ ∈ C∞

0 (M) that equals one
near U the family (χfh) ◦ ρ−1 is uniformly microlocally exponentially small in
(ρ−1)∗(π−1(U) ∩ N).

Whereas this definition requires the function to be uniformly exponen-
tially small with respect to any coordinate charts, it is sufficient to check this in
a system of charts as long as the sets U cover K, again by Proposition E.5. By
compactness it is therefore sufficient to check this in finitely many coordinate
charts. The notion of uniform microlocalization and microsupport for analytic
manifolds and families in C∞

0,h(M) is therefore consistent with the notion on
R

d as above. We note, however, that the requirement for all the test functions
of the family to be supported in a fixed compact set is essential here.

Proposition 2.5. Let (uh) ∈ S ′
h(Rd) be a polynomially bounded family of tem-

pered distributions, and let (x, ξ) ∈ R
d × R

d. Then (x,−ξ) /∈ μS(uh) if and
only if there exists an ε > 0 such that the following holds. For all families
(fh) ∈ C∞

0,h(Rd), uniformly microsupported in the ball Bε(x, ξ) about the point
(x, ξ), we have ‖uh(fh)‖ = O(e−δh−1

) for some δ > 0 as h ↘ 0.
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Proof. Let χ̃ ∈ C∞
0 (Rd) be a cut-off function that equals one in a neighborhood

of x. Replacing uh by χ̃uh, we can assume that (uh) is supported near the point
(x,−ξ). Note that by Proposition E.3, if (fh) is uniformly microsupported at
the point (x, ξ), then so is (χ̃fh). Assume first that (x,−ξ) /∈ μS(uh), or
equivalently (x, ξ) /∈ μS(uh). Then, for some ε > 0 we have, uniformly for all
(y, η) ∈ B2ε(x, ξ), the estimate ‖Thuh(y, η)‖ ≤ Ce−δh−1

for some C, δ > 0
and all h ∈ (0, 1]. Suppose that (fh) ∈ C∞

0,h(Rd) is microlocally uniformly
exponentially small outside Bε(x, ξ). We have

uh(fh) = 〈χ1Th(uh), Thfh〉L2(R2d) + 〈Thuh, χ2Th(fh)〉L2(R2d),

where χ1, χ2 are real-valued cut-off functions with χ1+χ2 = 1, with supp(χ1) ⊂
B2ε(x, ξ), and supp(χ2) ∩ Bε(x, ξ) = ∅. Then χ1Th(uh) is uniformly exponen-
tially small and compactly supported, whereas Thfh is polynomially bounded
in S(Rd ×R

d). Hence, the first term is exponentially small. Similarly, Thuh is
polynomially bounded in S ′(Rd × R

d) and χ2Th(fh) is exponentially small in
S(Rd ×R

d). Therefore, also the second term is exponentially small. Note that
this proof also works when uh takes values in a Hilbert space H, in which case
the L2-pairing above takes values in H.

Now assume conversely, that for all families (fh) ∈ C∞
0,h(Rd), uniformly

microsupported in the ball Bε(x, ξ) about the point (x, ξ), we have ‖uh(fh)‖ =
O(e−δh−1

) for some δ > 0 as h ↘ 0. We need to show that the FBI transform
fh(y, η) = Th(uh)(y, η) of uh is exponentially small uniformly in (y, η) in a
neighborhood U of (x, ξ) ∈ R

d × R
d. Here uh is the complex conjugate of the

distribution uh. Note that in case uh takes values in a Hilbert space uh takes
values in the complex conjugate Hilbert space. In B ε

2
(x, ξ) we can pick for

each h a point (xh, ξh) at which the maximum of ‖Thuh(x, ξ)‖ on B ε
2
(x, ξ) is

attained. Now define fh(x) = ψxh,ξh,h(x). Then

(Thuh)(xh, ξh) = uh(ψxh,ξh,h) = uh(fh).

Since ψxh,ξh,h is microlocal uniformly exponentially small in the complement
of Bε(x, ξ), this shows that Thuh is uniformly exponentially small on B ε

2
(x, ξ).

�
This shows that the microsupport of a polynomially bounded family of

distributions is a well-defined subset of the cotangent bundle, and in fact we
can use it to define the microsupport of a polynomially bounded family (uh) ∈
D′

h(M) on a general real analytic manifold (M, g). We note that there are
other coordinate independent approaches to the microsupport, in particular
the theory by Sjöstrand that defines coherent states on manifolds by their
analytic properties [28].

Definition 2.6. Let (uh) be a polynomially bounded family of distributions
(uh) ∈ D′

h(M). Then μS(uh) is the complement in T ∗M of the set of points
(x, ξ) such that there exists an open neighborhood O ⊂ T ∗M of (x, ξ) and
a function χ ∈ C∞

0 (M) that equals one near π(O) ⊂ M and the following
holds. For all families (fh) ∈ C∞

0,h(M), uniformly microsupported in O, we
have ‖uh(χfh)‖ = O(e−δh−1

) for some δ > 0 as h ↘ 0.
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The proposition above simply states that this can also be defined in local
coordinates using the notion of microsupport for Schwartz distributions by
multiplying with an appropriate cut-off function.

2.3. Analytic Wavefront Sets

Definition 2.7. The analytic wavefront set WFa(u) of a distribution u ∈ D′(M)
is the set of all (x, ξ) ∈ T ∗M\0 such that (x, ξ) ∈ μS(u). Here u is considered
as a constant family.

In fact, for a constant family of distribution the microsupport equals

μS(u) = supp(u) × {0} ∪ WFa(u).

The analytic wavefront set is a conic set, just as the wavefront set
([23]*Prop. 3.2.5). The above definition is part of a zoo of definitions that
we review and link in Appendix B. Roughly speaking the analytic wavefront
set captures in which direction a distribution fails to be a real analytic func-
tion. In particular, if the analytic wavefront set WFa(u) contains no points
over an open neighborhood of a point x0, then u is a real analytic function
near x0. The analytic wavefront set transforms like a subset of the cotangent
bundle under analytic changes of coordinates and is therefore well suited as a
notion for distributions on real analytic manifolds. We now refer to Appendix
B and C for further properties of the analytic wavefront set.

The following lemma can be interpreted, intuitively, as showing that test
functions with compactly supported Fourier transforms carry asymptotically
no energy and therefore are microlocally exponentially small away from zero.
This can be made quite precise as follows.

Proposition 2.8. If f ∈ S(Rd) is independent of h and f̂ has compact support,
then f = fh is uniformly microsupported in the set Rd × {0} ⊂ R

d × R
d.

Proof. Let c > 0. The support properties of f̂ and Fhf = h− d
2 f̂(h−1ξ) imply

that there exist a c > 0 such that Fhf(ξ0) = 0 when |ξ0| ≥ ch. We have
Thf(x, ξ) = e

i
h xξ(ThFhf)(ξ,−x), and therefore,

Thf(x, ξ) = αh

∫
Rd

e− (ξ−ξ0)2

2h e− i
h xξ0 f̂(h−1ξ0)dξ0

= αhh− d
2

∫
|ξ0|≤c·h

e− (ξ−ξ0)2

2h e− i
h xξ0 f̂(h−1ξ0)dξ0.

For multi-indices α, β ∈ N
d
0 integration by parts actually gives

ξβxαThf(x, ξ) = ξβαh

∫
Rd

e− (ξ−ξ0)2

2h

(
(ih∂ξ0)

αe− i
h xξ0

)
f̂(h−1ξ0)dξ0

= ξβαhh− d
2

∫
|ξ0|≤c·h

e− i
h xξ0(−ih∂ξ0)

α

(
e− (ξ−ξ0)2

2h f̂(h−1ξ0)
)

dξ0.

Using |ξ − ξ0| ≥ ||ξ| − |ξ0|| this implies for |ξ| > δ̃ + c · h > c · h that

‖ξβxαThf(x, ξ)‖ ≤ Cα,βαhh− 3d
2 (1 + |ξ|)|β|+|α|e− (|ξ|−c·h)2

2h

∑
γ≤α

‖∂γ f̂‖L1(Rd).
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We have applied the product rule to the expression

(−ih∂ξ0)
α

(
e− (ξ−ξ0)2

2h f̂(h−1ξ0)
)

and accumulated extra appearing factors into Cα,β . This implies the claimed
exponential decay uniformly when |ξ| ≥ ε > 0. �

2.4. The Algebra of Zero Energy Functions

For a general analytic manifold, we define the space C∞
0,h,O(M) of families

of compactly supported test functions that are uniformly exponentially small
away from any neighborhood of the zero section in T ∗M . Intuitively, these
test functions asymptotically do not carry energy. By Proposition E.3 the
space C∞

0,h,O(M) is a subalgebra of C∞
0,h(M). If M is compact the functions in

C∞
0,h,O(M) that are independent of h are precisely the real analytic functions.

In case M is connected and not compact the zero function is the only function
in C∞

0,h,O(M) that is independent of h. There are, however, a lot of families
of functions in C∞

0,h,O(M) that depend on h. Given a compactly supported
smooth function χ ∈ C∞

0 (Rd) that is one in a neighborhood of a point y ∈ R
d,

the family

χ(x)e− (x−y)2

2h

is an example of a family in C∞
0,h,O(Rd). Using analytic coordinate charts, one

can use these cut-off Gaussians to construct such families on general analytic
manifolds M . More generally, we have the following.

Lemma 2.9 (Existence of bump functions). Let M be a real analytic mani-
fold, and let K ⊂ M be a compact subset. Then there exists a family (χh) ∈
C∞

0,h,O(M) such that χh = 1 in an open neighborhood of K.

Proof. We first show this for M = R
d. Since every compact subset is contained

in a compact ball it is sufficient to construct such a family for a closed ball
centered at 0. To show this we construct a family (χh) ∈ C∞

0,h,O(Rd) such
that χh = 1 on a ball BR(0) of radius R > 0 centered at zero. We choose a
compactly supported bump function b ∈ C∞

0 (Rd) that equals one on BR+δ(0).
We choose another bump function χ̃ ∈ C∞

0 (Rd) such that χ̃ is one near x = 0
and supported in the ball Bδ(0). Then the family χ̃h(x) = χ̃(x)(2πh)− d

2 e− x2
2 h

is supported in Bδ(0), and is an element of C∞
0,h,O(Rd). Note that

ch =
∫
Rd

χh(x)dx = 1 + rh,

with an exponentially small remainder term rh. Hence, c−1
h −1 is exponentially

small. Now define χh as the convolution

χh = c−1
h χ̃h ∗ b.

This function will be one on BR(0). To see that (χh) ∈ C∞
0,h,O(Rd) observe

that the FBI transform of the convolution is Th(χh)(x, ξ) =
∫
Rd(Thχ̃h)(x −

y, ξ)b(y)dy.
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To construct such a function on a general manifold, we choose an analytic
proper embedding M → R

d. Such an embedding always exists (see [17]). The
statement then follows from the fact that restrictions of functions in C∞

0,h,O(Rd)
to M are automatically in C∞

0,h,O(M). This is an immediate consequence of
Proposition E.5. �

We also define the space C∞
h,O(Rd) as the space of functions fh in C∞

h (Rd)
with the property that for any compact subset K ⊂ M and any compactly sup-
ported smooth function χ ∈ C∞

0 (M) that equals one in an open neighborhood
of K we have for any ε > 0 the estimate

‖(1 + |ξ|)NTh(χfh)(x, ξ)‖ ≤ CNe−δh−1

uniformly on K × (Rd \ Bε). Again, using local charts one can define the
algebra C∞

h,O(M). For fh ∈ C∞
h,O(M) and uh ∈ C∞

0,h,O(M) we then have fhuh ∈
C∞

0,h,O(M).
Recall that a time function is a function whose gradient is everywhere

timelike, and whose level surfaces are Cauchy hypersurfaces.

Lemma 2.10 . Let (M, g) be a globally hyperbolic analytic spacetime. Suppose
that ι : M → R

d, x �→ (ι1(x), . . . , ιd(x)) is a proper analytic embedding such
that t(x) = ι1(x) is a proper time function. Then, for any δ > 0 there exists
a family of functions (ρh) ∈ C∞

h,O(M) such that ρh(x) = 1 for all x ∈ M with
ι1(x) ≥ δ and ρh(x) = 0 for all x ∈ M with ι1(x) ≤ −δ.

Proof. We construct such a function on R
d with the time function (x1, . . . , xd)

�→ x1, as in the more general case this function can simply be restricted to M .
The estimate

‖(1 + |ξ|)NTh(u)(x, ξ)‖ ≤ CNe−δh−1

is easily checked to hold for the constant function u = 1. The FBI transform
of a function of product type of the form f(x1, . . . , xd) = f1(x1) . . . fd(xd) is
the product of the individual FBI transforms. It is sufficient to construct the
family of functions (ρh) in the case d = 1. In the higher dimensional case we
simply take the pull-back under the projection map (x1, . . . , xd) → x1. This
results in a product-type function of the above form, with all the functions
except the first being the constant function one. Therefore, assume without
loss of generality that d = 1.

Next we observe that the above estimate is local in the sense that if a
function u vanishes near a point x, then the FBI transform satisfies the above
estimate near that point. This also implies that it is sufficient to check the
estimate for an open cover. We now use a bump function ρ̃h ∈ C∞

0,h,O(R) as
constructed in Lemma 2.9 that equals one on the interval [0, 1] and has support
in [−1, 2]. Now simply define

ρh(x) =

{
ρ̃h(x) x ≤ 1
1 x > 1

.
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By the above, this function satisfies locally the above estimate and therefore is
in C∞

h,O(R). This function satisfies the required properties with δ = 1. A simple
rescaling argument shows that such a function exists for arbitrary δ > 0. �

3. Analytic States in Quantum Theory

We now look at time evolution in quantum physics from a microlocal point of
view. It is instructive to look at the various wavefront sets that are naturally
associated to this setting. First consider a unit vector (state) ψ ∈ H in a Hilbert
space. Let H be a self-adjoint operator, the Hamiltonian that we think of as
the generator of time translations. A typical stability assumption of quantum
physics is that H should be semi-bounded below, i.e., the spectrum of H should
be contained in the set [−C,∞) for some constant C. With

U(t)ψ = e−itHψ

we then have WFa(U(t)ψ) ⊆ R×(−∞, 0]. To see this, note that by the spectral
theorem for self-adjoint operators we can pass via a unitary transformation to a
Hilbert space on which H is a multiplication operator by a function f on some
measure space (X,μ) that acts by multiplication on the Hilbert space L2(X,μ).
Then, U(t)ψ is unitarily equivalent to the Hilbert space-valued function

e−itf(x)ψ(x),

and we can compute the FBI transform in the t-variable at the point t0

Th(e−itf(x)ψ(x))(t0, η)

= αh

∫
R

e− 1
2h (t−t0)

2
e−itf(x)ψ(x)e− i

h (t−t0)ηdt

= αh

√
2πhe− 1

2h (hf(x)+η)(hf(x)+η+2it0)+
i
h t0ηψ(x),

and therefore

‖Th(e−itf(x)ψ(x))(t0, η)‖ = αh

√
2πh‖e− 1

2h (hf(x)+η)2ψ(x)‖.

Since f(x) > −C, this is exponentially fast decaying independent of t0 as
h → 0 as soon as η > 0. Consequently, the analytic wavefront set is contained
in R× (−∞, 0]. Note that the analytic wavefront set is, however, empty if and
only if the vector Ψ is an analytic vector with respect to the time evolution. It
is a general result that there is always a dense set of analytic vectors for any
self-adjoint operator, and more generally for any Lie group represented in a
strongly continuous fashion on the Hilbert space. A generic vector is typically
not analytic.

It is instructive to investigate the model of Schrödinger quantum me-
chanics, which we think of as a quantum field in one spacetime dimension. In
the following let H be the Friedrichs extension of the operator

−Δ + V (x),
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on S(R�), where V is a polynomially bounded smooth potential satisfying
V (x) ≥ ax2 for some a > 0. It is easy to check, using the explicit description
of the domain of the Friedrichs extension, that

dom(H) = {φ ∈ L2(R) | φ ∈ H2(R), V φ ∈ L2(R)},

and it follows from the variational principle that there is a spectral gap spec(H)
⊂ [σ0,∞) for some σ0 > 0. Recall that a vector ψ is analytic for Hα if and
only if

∞∑
n=0

‖Hnαψ‖
n!

tn

converges for some t > 0.
Since the spectral measure dEλ is supported on [σ0,∞), we have for any

α ∈ (0, 1] the estimate

‖Hnαψ‖2 =
∫ ∞

σ0

λ2nα〈ψ,dEλψ〉

≤ σ
2n(α−1)
0

∫ ∞

σ0

λ2n〈ψ,dEλψ〉 = σ
2n(α−1)
0 ‖Hnψ‖2.

This shows that, for any α ∈ (0, 1], the set of analytic vectors for the operator
Hα is contained in the set of analytic vectors for the operator H. We will
now refer to this set simply as the set of analytic vectors without reference
to α ∈ (0, 1]. We note, however, that there is a dense set of vectors which is
analytic for all positive powers of the operator H. Any analytic vector ψ is in
the domain of the operator esH

1
2 for s ∈ (−δ, δ) and sufficiently small δ > 0.

This implies that ψs = esH
1
2 ψ satisfies the elliptic equation (−∂2

s + H)ψs = 0
and therefore ψs(x) is smooth in s and x. In case V is real analytic we can
conclude, by the same argument, that ψ a real analytic L2-function on R.
We now consider the time evolution U(t) = e−itHα

. The case α = 1 corre-
sponds to non-relativistic Schrödinger mechanics, whereas the case α = 1

2 is a
relativistic counterpart. Since α will be fixed throughout, we will suppress it
in the notations.

The domain of x, regarded as a multiplication operator in L2(R), contains
the domain of H. Hence, the operator A = H−1xH−1 is a bounded self-adjoint
operator. Given f ∈ S(R) we define Af =

∫
R

f(s)U(−s)H−1xH−1U(s)ds as a
Bochner integral. Since U(s) commutes with H, the unbounded operator de-
fined by xf = HAfH defines the formal expression xf =

∫
R

f(s)U(−s)xU(s)ds
avoiding the discussion of integrals of unbounded operators.

Proposition 3.1. If f ∈ S(R) is a Schwartz function, then xf leaves the domain
of smoothness dom(H∞) of H invariant. For any ψ ∈ dom(H∞) and m ∈ N

the map

S(R) → dom(Hm), f �→ xfψ
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is continuous and therefore defines a tempered vector-valued distribution. If in
addition f has a compactly supported Fourier transform f̂ ∈ C∞

0 (R), then xf

leaves the set of analytic vectors invariant.

Proof. We first note that the group Uα(t) and the operators Hβ leave the set
of analytic vectors and the domain of smoothness invariant for all α, β > 0.
Therefore, we only need to show that these sets are invariant under the action
of Af . We prove first that the set of analytic vectors is invariant under Af if
f is the Fourier transform of a compactly supported smooth function. Let ψ
be an analytic vector. We need to show that U(t)Afψ is real analytic in t near
zero. We have

U(t)Afψ =

∫
R

f(s)U(−s + t)AU(s)ds ψ =

(∫
R

f(s + t)U(−s)AU(s)ds

)
U(t)ψ.

(5)

By assumption the function U(t)ψ is real analytic in t. It is therefore sufficient
to establish that B(t) =

∫
R

f(s + t)U(−s)AU(s)ds is an analytic function
of t with values in the bounded operators. Since ‖U(−s)AU(s)‖ = ‖A‖ is a
bounded function of s, the integrand is Bochner-integrable. Analyticity of B(z)
now follows from the fact that f is entire and f(x + z) is a complex analytic
family of L1-functions.
The invariance of the domain of smoothness is shown in a completely analogous
way, replacing analyticity by differentiability. In case of general f ∈ S(R), the
function B(t) is infinitely differentiable. That xfψ is a tempered dom(Hm)-
valued distribution follows from the fact that Af is a tempered distribution
taking values in the bounded operators from dom(Hm) to dom(Hm). One
infers this directly from

‖HmAfψ‖ = ‖ dm

dtm
|t=0U(t)Afψ‖ ≤ Cm

(
‖f‖W m,1(R) · ‖(H + 1)mψ‖L2(R)

)
,

for some constant Cm, by (5) and the product rule. �

The operator x corresponds to the physical measurement of position and
x(t) = U(−t)xU(t) is the time-dependent family of operators in the Heisenberg
picture. For a test function f ∈ S(R), then xf plays the role of the smeared out
field operator. Given ψ ∈ L2(R), we can think of x(t)ψ as a distribution with
respect to the t-variable on R and analyze its analytic wavefront set. We claim
that if ψ is an analytic vector for the group U(t) then WFa(x(t)ψ) = R×[0,∞).
To see this, note that U(t)ψ is an analytic function in the variable t taking
values in the domain of H and hence in the domain of x. Thus, U(−t)xU(t)ψ
is the boundary value of a holomorphic function near the real axis in the upper
half space. This implies, by Proposition B.3, that WFa(x(t)ψ) ⊆ R × [0,∞).
If the vector ψ is not analytic x(t)ψ generically has wavefront set equal to
R×R\{0}. In this example we have a dense set of states ψ with the property
that WFa(U(t)ψ) is contained in R × [0,∞).

A stronger statement is obtained by considering products of these op-
erators and their analytic wavefront sets. Given a vector in the domain of
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smoothness dom(H∞) = ∩kdom(Hk), the formal expression

x(t1) . . . x(tm)ψ

can be viewed as a Hilbert space-valued distribution on R
m. A priori, this

expression does not make sense pointwise because ψ may not be in the domain
of x(t1) . . . x(tm). By Proposition 3.1 the smeared out operators xf leave the
domain of smoothness invariant, and therefore, the expression is well defined
as a tempered distribution. Assuming that ψ is an analytic vector, the analytic
wavefront of x(t1) . . . x(tm)ψ can only contain vectors of the form

(t1, ξ1, t2, ξ2, . . . , tm, ξm)

where the rightmost nonzero number ξj is non-negative. This can be inferred
from the following proposition.

Proposition 3.2. Assume that ψ is an analytic vector. Then the analytic wave-
front set of the distribution x(t1) . . . x(tm)ψ is contained in the set

{(t1, ξ1, . . . , tm, ξm) | ξ1 + . . . + ξm ≥ 0, ξ2 + · · · + ξm ≥ 0, · · · , ξm ≥ 0}.

Proof. It is convenient to change coordinates to

z1 = t1, z2 = t2 − t1, . . . , zm = tm − tm−1.

This is a linear change and therefore induces a continuous map on Schwartz
space. In this coordinate system we have in the sense of distributions

x(t1) . . . x(tm)ψ = U(−z1)xU(−z2)xU(−z3)x . . . U(−zm)xU(z1 + . . . zm)ψ.

By assumption the function U(z1 + · · · + zm)ψ is an analytic functions in the
variables z1, . . . , zm taking values in the domain of H. We now consider the
wavefront set of the distribution U(−z1)xU(−z2)xU(−z3)x . . . U(−zm)x that
we regard as a tempered distribution taking values in the bounded operators
from dom(H) to odom(H). To do this, consider HU(−z1)xU(−z2)xU(−z3)
x . . . U(−zm)xH−1 as a distribution with values in the bounded operators on
L2(R). This distribution can be written as the distributional derivative as
∂1 . . . ∂mK(z1, . . . , xm) of the distribution

K(z1, . . . , zm) = U(−z1)BU(−z2)BU(−z3)B . . . U(−zm)B,

where B is the bounded operator xH−1. Since U(−z) is a bounded holomorphic
function of z taking values in the bounded operators in the region Im(z) > 0,
we have that K is the distributional boundary value of a function, holomorphic
in small region V around the real axis intersected with

{(z1, . . . , zm) | Im(z1), . . . , Im(zm) > 0}.

Hence, by Proposition B.3, the analytic wavefront set is contained in

{(t1, ξ1, . . . , tm, ξm) | ξ1, . . . , ξm ≥ 0}.

Pull back with respect to the above change of coordinates shows that the
analytic wavefront set is contained in the set

{(t1, ξ1, . . . , tm, ξm) | ξ1 + · · · + ξm ≥ 0, ξ2 + · · · + ξm ≥ 0, . . . , ξm ≥ 0}.

The same must be true for all distributional derivatives of K. �
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4. Quantum Fields on Spacetimes

In the following we assume that (M, g) is a connected n-dimensional spacetime
(time-oriented, oriented Lorentzian manifold). We assume further that M has
a real analytic atlas with respect to which the metric g is real analytic. The
purpose of the metric g is twofold. It provides an analytic volume form which is
needed to identify functions with distributions. Secondly, it provides a causal
structure in the form of a bundle of light cones. In principle it is not strictly
necessary to derive these structures from a metric, but we assume so here for
simplicity of the presentation.

We briefly explain the notations, assuming the signature convention is
(+,−, . . . ,−). First, for a point x ∈ M we denote by Vx ⊆ T ∗

x M the closed
light cone in cotangent space with respect to the metric g, i.e., the set of
covectors ξ ∈ T ∗

x M with g−1(ξ, ξ) ≥ 0. Then Vx\{0} is the disjoint union
of the future/past light cone V ±

x . A covector ξ ∈ T ∗
x M is called causal if it

is in Vx\{0}. A causal covector is called future directed if it is contained in
V +

x . We write V ± for the corresponding bundles, i.e., V ± = �xV ±
x . Therefore,

(x, ξ) ∈ V + will mean that ξ is a future directed causal covector. Recall that
T ∗(M × . . .×M) is canonically isomorphic to T ∗Mm and we will write typical
elements as (x1, ξ1, . . . , xm, ξm).

4.1. Quantum Field Theory

A quantum field theory on (M, g) will be defined as an operator-valued distri-
bution Φ, which we will call the field. To be more precise, let H be a Hilbert
space with a dense set D. Then Φ is a map Φ : C∞

0 (M) → End(D) such
that f �→ Φ(f)v is continuous for every v ∈ D. The operator Φ(f) can be un-
bounded. It is referred to as the smeared out field. One requires that Φ(f) is
symmetric on D if f is real-valued. We will assume for convenience and with-
out loss of generality that D is complete with respect to the locally convex
topology induced by the family of semi-norms

pf1,...,fm
(φ) = ‖Φ(f1) · · · Φ(fm)φ‖,

where m ∈ N0 and (f1, . . . , fm) is an arbitrary m-tupel of compactly supported
smooth functions. We refer to this locally convex topology as the graph topol-
ogy, as it is generated by the graph norms of all the elements of the algebra.
Since the adjoints are densely defined the operators Φ(f1) · · · Φ(fm) are clos-
able. Therefore, one can always pass to the completion of the domain, which
is then still contained in H.

Given a spacetime region O ⊆ M one can form the ∗-algebra A(O) gener-
ated by the elements Φ(f), f ∈ C∞

0 (O). In case Φ(f) is essentially self-adjoint
for any real-valued f ∈ C∞

0 (O) one can then consider the weak-∗-closure of
the set of all bounded operators generated by the spectral projections of Φ(f).
By von Neumann’s bi-commutant theorem, this algebra can be characterized
as

R(O) = {A ∈ L(H) | ∀f ∈ C∞
0 (O), A commutes with Φ(f)}′.
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Here R′ = {B ∈ L(H) | ∀A ∈ R, AB = BA} as usual is the commutant of R.
Recall that a bounded operator A commutes with a self-adjoint operator T if
and only if AT = TA as an inequality of unbounded operators with equality of
domains. In particular, A leaves the domain of T invariant. If T is essentially
self-adjoint on a dense set D ⊆ H then an operator A ∈ L(H) commutes with
T therefore if and only if for all v, w ∈ D we have 〈Tw,Av〉 = 〈w,ATv〉.

For a general symmetric unbounded operator T defined on a dense set D,
we turn this into a definition and say a bounded operator A ∈ L(H) commutes
(weakly) with T if for all v, w ∈ D we have 〈w,ATv〉 = 〈Tw,A v〉. The set
of operators commuting with T is then a set that is invariant under the map
∗. It is called the weak commutant of T . It is easy to see that if A commutes
with T then it also commutes with its closure. It is therefore sufficient to check
commutation on a subset of the domain that is dense in the graph norm, so
that the closure of the operator on this subset coincides with the operator. It
is not sufficient to check this on a dense subset of the domain. As an example,
consider the Laplace operator Δ on the real line and the Laplace operator
ΔD on the real line with Dirichlet boundary conditions at the point x = 0.
If we take T = Δ and A = (−ΔD + 1)−1, then T and A do not commute.
However, we have the relation 〈w,ATv〉 = 〈Tw,A v〉 for all v, w in the dense
set of smooth compactly supported functions that vanish to infinite order at
the point 0. The reason is here that Δ and ΔD restrict to the same operator on
this space of functions, but the self-adjoint extensions are completely different.
This shows that one has to consider domain issues carefully when using this
definition and associated conclusions. For the functional analytic details, we
refer to [25] as well as [8] for a discussion in the context of quantum field
theory.

The von Neumann algebra (weakly) associated with the algebra generated
by Φ(f), f ∈ C∞

0 (O) is then defined by

R(O) = {A ∈ L(H) | ∀(f ∈ C∞
0 (O), v, w ∈ D), 〈w,AΦ(f)v〉 = 〈Φ(f)w,Av〉}′.

In this way every quantum field defines a net of von Neumann algebras,
i.e., a von Neumann algebra R(O) associated to every spacetime region O. Due
to the nature of the weak commutant there are further technical conditions
that ensure that this is again a local net, i.e., that it satisfies Einstein causality
and the algebras of causally separated regions commute. We will, however, not
discuss this here any further but refer to [11] for a detailed discussion of this
in the context of Wightman fields on Minkowski space.

We now discuss a mild assumption about the quantum field.

4.2. Physical Conditions on States

Whereas on a curved spacetime there is no meaningful notion of momentum
and energy and hence no preferred vacuum state, the notion of energy mo-
mentum should still exist in an asymptotic sense as a scaling limit. The notion
of uniform microsupport for test functions is extremely well suited to capture
this. On physical grounds one expects from a reasonably passive state Ω to
not allow for non-physical energy transfer. Assume that (fh) localizes in phase
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space to a point (x, ξ) as t ↘ 0. For the moment we also allow families (φh)
of states in D describing an asymptotic physical situation. We think of φh as
a physical configuration that may become singular as h ↘ 0. In QFT we then
expect the following behavior depending on where in T ∗M the point (x, ξ) is
localized. If (x, ξ) ∈ V − we expect the state Φ(fh)Ω to have added energy
momentum −h−1ξ near x in an asymptotic sense. If (x, ξ) ∈ V + we expect
the operator Φ(fh) to erase the energy momentum h−1ξ near x from the state
φh. A state Ω ∈ D not asymptotically carrying energy should not allow for
asymptotic energy extraction. Hence, Φ(fh)Ω should be exponentially small if
(x, ξ) /∈ V −.

The mathematically precise statement depends on the space of test func-
tions employed and we would like to consider two versions.

4.3. Fields Defined on Compactly Supported Smooth Test Functions

Recall that C∞
0,h,O(M) is the space of families of test functions that are uni-

formly exponentially small away from any neighborhood of the zero section
in T ∗M . Given (q1,h, . . . , qn,h) ∈ C∞

0,h,O(M) we expect intuitively that the
state Φ(q1,h) . . . Φ(qn,h)Ω contains no asymptotically extractable energy. We
therefore should have that

Φ(fh)Φ(q1,h) . . . Φ(qn,h)Ω

is exponentially small if fh microlocalizes uniformly at a point (x, ξ) /∈ V −.
This motivates the following definition.

Definition 4.1. A vector Ω ∈ D is called analytic if the following holds. If
fh ∈ C∞

h (M) is microlocally uniformly supported in a compact set K ⊂ T ∗M
with K ∩ V − = ∅ then, for all families (q1,h), . . . , (qn,h) ∈ C∞

0,h,O(M), we have
the bound

‖Φ(fh)Φ(q1,h) . . . Φ(qn,h)Ω‖ ≤ Ce−δh−1

for some C > 0, δ > 0.
The subspace of analytic vectors will be denoted by Da ⊂ D.

Using Proposition 2.5 the above condition can be completely paraphrased
in terms of analytic wavefront sets.

Proposition 4.2. A vector Ω ∈ D is analytic if and only if for all n ∈ N the
Hilbert space-valued distribution Φ(·) . . . Φ(·)Ω on Mn defined by

f1 ⊗ · · · ⊗ fn �→ Φ(f1) . . . Φ(fn)Ω

has its analytic wavefront set contained in the set of nonzero covectors (x1,
ξ1, . . . xn, ξn) satisfying for all 1 ≤ k ≤ n that

(if ξj = 0 for all j > k) then ξk ∈ V +,

In other words, the first nonzero covector from the right must be future directed
and causal.
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Proof. That the wavefront set condition for k = 1 implies analyticity is a
direct consequence of Proposition 2.5. We therefore only need to show that
analyticity implies the analytic wavefront set condition for any 1 < k ≤ n.
To show that the wavefront set condition is satisfied, it is sufficient, again by
Proposition 2.5, to show that for families f1,h, . . . fn,h ∈ C∞

0,h(M) with the
properties

• (fk,h) is uniformly microsupported in a compact set of positive distance
to V −,

• (fj,k) ∈ C∞
0,h,O(M) for all j > k,

we have that the family of vectors Φ(f1,h) · · · Φ(fk−1,h)Φ(fk,h)Φ(fk+1,h) · · ·
Φ(fn,h)Ω is exponentially small in the norm as h ↘ 0. This is equivalent to

〈Φ(f1,h) . . . Φ(fk−1,h)Φ(fk,h) . . . Φ(fn,h)Ω, Φ(f1,h) . . . Φ(fk−1,h)Φ(fk,h) . . . Φ(fn,h)Ω〉
= 〈Φ(fk−1,h) . . . Φ(f1,h)Φ(f1,h) . . . Φ(fk−1,h)Φ(fk,h) . . . Φ(fn,h)Ω,

Φ(fk,h) . . . Φ(fn,h)Ω〉
being exponentially small. Since the family of test functions

fk−1,h ⊗ · · · ⊗ f1,h ⊗ f1,h ⊗ · · · ⊗ fk−1,h ⊗ fk,h ⊗ · · · ⊗ fn,h

is polynomially bounded, the Cauchy–Schwarz inequality shows that exponen-
tial smallness is implied by exponential smallness of the family

Φ(fk,h) . . . Φ(fn,h)Ω.

By Proposition 2.5 exponential smallness of this vector as h ↘ 0 is a conse-
quence of analyticity. �

For a realistic quantum field, we expect the set Da to be dense in the
Hilbert space and in the domain of the field in the following sense. For every
v ∈ D there exists a sequence vn ∈ Da such that for all f1, . . . , fm ∈ C∞

0 (M)
we have in the Hilbert space norm

vn → v, and Φ(f1) . . . Φ(fm)vn → Φ(f1) . . . Φ(fm)v.

This means that Da is a dense subset in each of the domains of Φ(f1) . . . Φ(fm)
with respect to the graph norm.

Remark 4.3. We note that whereas we assume that D is invariant under φ(f)
this cannot be assumed for Da, as this is not compatible with Einstein causal-
ity. To illustrate this, we restrict this discussion to bosonic fields, for which the
fields commute at spacelike separation. Assume φ was a vector in Da such that
Φ(f)φ ∈ Da for all f ∈ C∞

0 (M). Then the distribution [Φ(·),Φ(f)]φ vanishes
in the causal complement of the support of f and has its analytic wavefront
set in V +. Since V + is one-sided, this distribution has the unique continua-
tion property and must therefore vanish (c.f. Proposition D.2). It follows that
[Φ(·),Φ(f)]φ vanishes. Since this is true for all f with sufficiently small sup-
port it follows for all compactly supported f . Hence, [Φ(f1),Φ(f2)]φ = 0 for
all test functions f1, f2 ∈ C∞

0 (M). The existence of the dense and invariant
set of analytic vectors therefore implies that the field algebra is commutative.
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To keep the notations short, we write A for the algebra generated by
Φ(f), f ∈ C∞

0 (M). Given an open set O ⊆ M we write A(O) for the algebra
generated by Φ(f), f ∈ C∞

0 (O). Recall that a vector φ ∈ D is called cyclic
for an algebra of operators B on D if the set Bφ is dense in H. In Minkowski
theories, one usually assumes that the vacuum Ω is a cyclic vector for the field
algebra, and in fact that AΩ is dense in D with respect to the graph topology.
It is also natural to assume that there are many vacuum-like states Ω ∈ Da in
the sense that there is a dense set of cyclic analytic vectors.

The existence of an analytic vector Ω ∈ Da with AΩ being dense in
D with respect to the graph topology is one of the weaker conditions one can
make, and it readily implies two important properties of the quantum field: the
Reeh–Schlieder property and the timelike tube property. The Reeh–Schlieder
property means that the vector Ω is a cyclic vector for the local algebra A(O)
for any non-empty open O ⊂ M . The timelike tube property is that the local
von Neumann algebra R(O) of region O coincides with the local von Neumann
algebra of a potentially much bigger region, ET (O), the timelike hull of O. We
will state the precise theorems in Sect. 5.1.

We will see below that in case the theory satisfies a certain temperedness
assumption the existence of a cyclic tempered analytic vector implies that
there is a dense set of tempered analytic vectors.

4.4. Tempered Fields

In Minkowski space a good choice of test function space is the space of Schwartz
functions S(Rd). This space is particularly suited for spectral considerations as
it contains the space F(C∞

0 (Rd)) of functions that are localized in momentum
space. Moreover, this space treats configuration and momentum space on an
equal footing.

To define an analogue of Schwartz space on a general analytic manifold
(M, g), one needs to specify some extra structure such as a special coordinate
chart near infinity. We will choose here a more flexible path, by embedding
the spacetime analytically into R

d′
.

Any real analytic manifold (M, g) can be analytically embedded into
R

d′
in such a way that the embedding is proper (see [17]). Given such an

embedding, and restricting the space of functions to M ⊂ R
d′

, we can define
Schwartz spaces and spaces of analytic functions on a general real analytic
manifold. In the following we fix a proper analytic embedding ι : M → R

d′
. We

denote by S(M) the space ι∗(S(Rd′
)) of the restrictions of Schwartz functions.

We equip S(M) with the natural quotient topology. The resulting topology is
stronger than the C∞(M)-topology of uniform convergence of all derivatives
on compact subsets. We have now constructed nuclear Frechét space S(M) in
which C∞

0 (M) is dense. Of course, also Sa(M) = ι∗(F(C∞
0 (Rd′

)) is dense in
S(M). This space is subspace of the space of real analytic Schwartz functions
that arise from restrictions of entire functions to M .

It is worth noting that the map ι̃ : Rd → R
d defined as

ι̃(x1, . . . , xd) = (x1 exp(x2
1), . . . , xd exp(x2

d′))
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is also a proper analytic embedding and the pull-back ι∗S(Rd) then consists of
exponentially decaying real analytic functions. This means the embedding can
always be modified so that S(M) consists of extremely fast decaying functions.

For Schwartz functions a uniform notion of localization at the zero section
can be defined as follows. We say fh ∈ Sh,O(Rd) if fh microlocalizes uniformly
away from any tubular neighborhood of the form {(x, ξ) ∈ R

d × R
d | ‖ξ‖ <

ε}, ε > 0. Now define Sh,O(M) = ι∗Sh,O(Rd′
) and Sa(M) = ι∗Sa(Rd′

) by re-
striction. This definition is well behaved under various canonical constructions.

• In case d′ > d we have for the standard embedding ι : Rd → R
d′

, (x1, . . . ,

xd) �→ (x1, . . . , xd, 0, . . . , 0) that ι∗Sh,O(Rd′
) = Sh,O(Rd).

• If N is closed (compact without boundary), then Sh,O(N) is independent
of the embedding and equal to C∞

0,h,O(N).

The notion of (fh) ∈ C∞
0,h,O(M) is defined with respect to local ana-

lytic coordinates, whereas the notion of (fh) ∈ Sh,O(M) is defined relative
to an analytic embedding. However, for families (fh) ∈ C∞

0,h(M) we have
(fh) ∈ Sh,O(M) if and only if (fh) ∈ C∞

0,h,O(M). Hence, the notions by analytic
coordinates and by embeddings coincide. In particular, this also implies that
the dependence of the space Sh,O(M) on the embedding disappears upon re-
striction to C∞

0,h,O(M). The main purpose of the embedding is thus to control
the microlocal properties of the functions near infinity.

Example 4.4. The Schwarzschild–Kruskal spacetime is a four-dimensional an-
alytic spacetime which is analytic-diffeomorphic to O × S

2, where O is the
region {(T,X) ∈ R

2 | T 2 − X2 < 1} in R
2. The equation

T 2 − X2 =
(
1 − r

2M

)
e

r
2M

implicitly defines a function r(T,X). Then the metric is given by

g =
32M3

r
e− r

2M (dT 2 − dX2) − r2gS2 .

The above description is called the Kruskal–Szekerez coordinate system. We
can embed this spacetime analytically in R

6 as follows. We choose the canonical
embedding ρ̃ : S2 → R

3. We embed O into R
3 by the map

ρ : O → R
3, (T,X) �→

(
T

r
, T,X

)
.

Then ι = ρ ⊕ ρ̃ embeds the entire spacetime analytically into R
6. A function

in S(M) with respect to this embedding is a function f : M → C that can be
written in the form

f(T,X, y) = g

(
T

r
, T,X, y

)

where g ∈ S(R6). One can check that the function ι1 = T
r is a global time

function whose level surfaces are spacelike Cauchy hypersurfaces.
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Definition 4.5. A vector Ω ∈ D is called tempered analytic if the following
holds. If fh ∈ Sh(M) is microlocally uniformly supported in a compact set
K ⊂ T ∗M with K ∩V − = ∅ then, for all families (q1,h), . . . , (qn,h) ∈ Sh,O(M),
we have the bound

‖Φ(fh)Φ(q1,h) . . . Φ(qn,h)Ω‖ ≤ Ce−δh−1

for some C > 0, δ > 0. The subspace of analytic vectors will be denoted by
Dta ⊂ D.

It is clear that Dta ⊆ Da ⊆ D. The condition of being tempered analytic
seems to be a stronger condition than that of being analytic. In particular, the
existence of a tempered analytic vector readily implies that there are many
other tempered analytic vectors. The following theorem should be compared
with Proposition 3.1.

Theorem 4.6. Suppose that there is a proper embedding ι : M → R
d′

such that
the quantum field Φ(·) extends as an operator-valued distribution to the test
function space S(M). Assume that Ω ⊂ Dta is tempered analytic. Then for any
collection of test functions g1, . . . , gm ∈ Sa(M) the vector Φ(g1) · · · Φ(gm)Ω is
also tempered analytic.

Proof. This follows immediately from the inclusion Sa(M) ⊆ Sh,O(M) and
Proposition 2.8. �

This means the set of analytic vectors is invariant under the action of
fields smeared out with certain real analytic test functions. Since Sa(M) is
dense in S(M) the continuity assumption implies that the sets

{Φ(g1) · · · Φ(gm)Ω | g1, . . . , gm ∈ Sa(M)},

{Φ(g1) · · · Φ(gm)Ω | g1, . . . , gm ∈ S(M)}
have the same closure. In particular, if Ω is cyclic, the existence of a single
tempered analytic vector implies that there is a dense set of tempered analytic
vectors. The counterexample at the end of Appendix C shows the difficulty of
proving such a statement based on a restriction on the analytic wavefront set,
as in Proposition 4.2, without a hypothesis of temperedness.

We now discuss the relation to Minkowski theories in more detail.

4.5. Wightman Fields in Minkowski Spacetime as an Example

It is instructive to understand the above assumption in the context of Wight-
man field theories on Minkowski space, where it is automatically satisfied.
Indeed, let (Φ,H,Ω) be a Wightman quantum field theory on d-dimensional
Minkowski spacetime. In this case the invariant domain D would be cyclically
generated from the vacuum vector Ω, i.e., is the graph-closure of the span of
the set of vectors of the form

Φ(f1) . . . Φ(fn)Ω, f1, . . . , fn ∈ S(Rd).

This domain is invariant by definition. It is known that the set D̃a defined as
the span of

Φ(f1) . . . Φ(fn)Ω, f1, . . . , fn ∈ Sa(Rd).
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is a dense set in the sense discussed before, and we have

WFa(Φ(·)φ) ⊆ V +, for all φ ∈ D̃a.

The set of vectors D̃a can be interpreted as the set of the states with finite
spacetime momentum. Of course, functions that are compactly supported in
Fourier (momentum) space cannot be compactly supported in spacetime. It is
therefore necessary to use Schwartz functions rather than compactly supported
smooth functions as test functions. In fact, a stronger statement is true.

Theorem 4.7. Let (Φ(·),D ⊂ H,Ω) be a (tempered) Wightman quantum field
in d-dimensional Minkowski spacetime satisfying the spectrum condition. Then
the vector Ω is a tempered analytic vector.

Proof. We assume that the family (fk,h) is uniformly microsupported in the
zero section R

d × {0} if k = 2, . . . , n, and that (f1,h) is a family uniformly
microsupported in a subset U that has positive distance from the backward
light cone V − = {(x, ξ) | g(ξ, ξ) ≤ 0, ξ0 ≤ 0}. For brevity we write N = n · d
and we introduce the following sets

K = {((x1, ξ1), . . . , (xn, ξn)) ∈ R
2N | ξ1 + . . . + ξn ∈ V −},

Kε = {(x, ξ) ∈ R
2N | dist((x, ξ),K) ≤ ε},

Q = pr2(K) = {(ξ1, . . . , ξn) ∈ R
N | ξ1 + . . . + ξn ∈ V −},

Qε = {ξ ∈ R
N | dist((x, ξ), Q) ≤ ε}.

Hence, the family (f1,h⊗· · ·⊗fn,h) is uniformly microlocally exponentially
small on Kε for some ε > 0.

We need to show that

‖Φ(f1,h)Φ(f2,h) . . . Φ(fn,h)Ω‖
is exponentially small. This is of course equivalent to

w2n(fn,h, fn−1,h, . . . , f1,h, f1,h, f2,h, . . . , fn,h)

being exponentially small. We consider the following h-dependent family (uh) ∈
S ′

h(RN ) defined by

uh(f̃1, . . . , f̃n) = w2n(fn,h, fn−1,h, . . . , f1,h, f̃1, . . . , f̃n).

We need to show that ch = uh(f1,h, f2,h, . . . , fn,h) is exponentially small. Now
consider the inverse semi-classical Fourier transform vh = F−1

h (uh). We obtain

ch = (vh)(Fhf1,h, . . . ,Fhfn,h). (6)

By (3) we have the representation

fk,h = (2π)− d
2

∫
R2d

(Thfk,h)(x, ξ)ψx,ξ,hdxdξ,

which gives

ch =
∫
R2N

(Thf1,h)(x1, ξ1) . . . (Thfn,h)(xn, ξn) (vh(kx,ξ,h)) dx1dξ1 . . . dxndξn,
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where kh,x,ξ is the family of test functions in S(RN ) defined by

kx,ξ,h = (2π)− N
2 Fhψx1,ξ1,h ⊗ Fhψx1,ξ2,h ⊗ · · · ⊗ Fhψxn,ξn,h

and we abbreviate (x, ξ) = (x1, ξ1, . . . , xn, ξn). Since the semi-classical Fourier
transform Fhψx0,ξ0,h of a coherent state ψx0,ξ0,h equals

Fhψx0,ξ0,h(η) = (πh)− d
4 e−ix0ηe− (η−ξ0)2

2h ,

the functions kh,x,ξ form a family of Gaussians localizing at the point ξ as
h ↘ 0. Now recall that vh is a polynomially bounded family of tempered
distributions. This means we have the bound (vh)(kx,ξ,h) ≤ h−mp(kx,ξ,h), h ∈
(0, 1] in terms of a Schwartz space semi-norm p for some m > 0. This implies
that (vh)(kx,ξ,h) is a polynomially bounded function, i.e.,

(vh)(kx,ξ,h) ≤ C

(
(1 + |x| + |ξ|)

h

)M

,

for some C,M > 0 and all h ∈ (0, 1]. We can now split the integral (6) into
two parts I1,h and I2,h, inserting 1 − χ and χ in the integral, using a smooth
bounded cutoff function χ ∈ C∞(R2N ) with bounded derivatives with the
following properties.

• suppχ has positive distance from K ε
2
,

• supp(1 − χ) has positive distance from the complement of Kε.
Since these sets have positive distance such a function always exists. The
first integral I1,h is exponentially small because the family (Thf1,h)(x1, ξ1) · · ·
(Thfn,h)(xn, ξn) is uniformly exponentially small in Kε. To see that the sec-
ond integral I2,h is exponentially small, as well we note that, by the spec-
trum condition, vh is supported in K, and therefore, we can replace the test
functions kx,ξ,h by the family χ(x, ξ)χ̃(η)kx,ξ,h(η), where χ̃ is another cutoff
function with bounded derivatives supported in Qε, and equal to one on Q ε

2
.

Since vh is polynomially bounded as a tempered distribution, we can esti-
mate vh(χ(x, ξ)χ̃(·)kx,ξ,h(·)) by h−M1p(χ(x, ξ)χ̃(·)kx,ξ,h(·)) for some Schwartz
semi-norm p. This shows that for h ∈ (0, 1] we have

|vh(χ(x, ξ)χ̃(·)kx,ξ,h(·))| ≤ C1h
−M2(1 + |x|2 + |η|2)M3e−δ1h−1

for some δ1, C1,M2,M3 > 0. The integral I2,h is just the pairing of vh(χ(x, ξ)
χ̃(·)kx,ξ,h(·)) with the polynomially bounded family

(Thf1,h)(x1, ξ1) . . . (Thfn,h)(xn, ξn)

of test functions in S(R2N ). We therefore obtain an exponentially small integral
I2,h. �

For fields satisfying the Wightman axioms with the cluster property and
vanishing one-point distribution the general form of the two-point function is
given by the Källen–Lehmann representation

w2(f1, f2) =
∫

w2,m(f1, f2)dρ(m),
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where w2,m(x, y) is the two-point function of the free scalar field of mass m ≥ 0,
and dρ is a polynomially bounded measure supported on [0,∞) that we refer to
as the spectral measure (see for example [27]*Theorem IX.34. This allows one
to compute the analytic wavefront set of w2(f1, f2). If the Fourier transform of
the spectral measure is not analytic the analytic wavefront set of w2 can contain
timelike vectors. Since one can construct polynomially bounded measures, for
which the Fourier transform is not analytic, this shows that the two-point
function cannot be expected to contain only lightlike vectors. An example is
the spectral measure

dρ(m) =

{
e−mα

dm m ≥ m0

0 m < m0

for some m0 > 0 and 0 < α < 1. Then the Fourier transform of the measure
is a Gevrey function, but is not analytic at 0. This leads to elements in the
analytic wavefront set of the form (x,−ξ, x, ξ), where ξ is future directed and
timelike. One can construct spectral measures of the form σ(m)dm with rapidly
decreasing σ such that points (x,−ξ, y, ξ) occur in the analytic wavefront set
where x �= y is in the interior of the light cone based at y, and such that ξ is
timelike.

4.6. The Free Klein–Gordon Field as an Example

In this section we will show that under relatively mild assumptions any analytic
Hadamard state for the free Klein–Gordon field is in fact tempered analytic.
We assume here that M is a globally hyperbolic spacetime and we fix a mass
m ≥ 0. Then the Klein–Gordon operator � + m2 admits unique retarded and
advanced fundamental solutions Gret/av : C∞

0 (M) → C∞(M). These maps are
continuous and uniquely determined by the properties

• supp(Gret/avf) ⊆ J±(supp f) for any f ∈ C∞
0 (M),

• (� + m2)Gret/avf = Gret/av(� + m2)f = f for any f ∈ C∞
0 (M).

Here J±(K) is the causal future/past of the set K ⊆ M . It is also convenient to
define the map G = Gret−Gav, which maps C∞

0 (M) onto the space of solutions
of (�+m2)f = 0 with space-like compact support, i.e., with support that has
compact intersection with any spacelike Cauchy surface. We will denote by
G̃ ∈ D′(M × M) its integral kernel, so that the distribution G̃(·, f) equals Gf
for all f ∈ C∞

0 (M).
The Klein–Gordon field algebra is the ∗-algebra A with unit 1 generated

by symbols Φ(f), f ∈ C∞
0 (M) and relations

f → Φ(f) is linear,

Φ((� + m2)f) = 0, for all f ∈ C∞
0 (M),

[Φ(f1),Φ(f2)] = −iG̃(f1, f2)1, for all f1, f2 ∈ C∞
0 (M),

Φ(f)∗ = Φ(f) for all f ∈ C∞
0 (M).

A state ω : A → C then defines via the GNS construction a quantum field
theory.
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Assumption 4.8. We now fix an embedding ι : M → R
d′

and make the follow-
ing assumptions.
(1) The projection pr1 ◦ ι to the first component is a global proper time

function t : M → R which induces a foliation of M into spacelike Cauchy
surfaces, such that ι equals the projection of ι to the first component.

(2) � extends to a continuous map S(M) → S(M).
(3) G extends to a continuous map from S(M) to S ′(M) ∩ C∞(M).
(4) G maps Sh,O(M) to the set of families of distributions whose microsup-

port is contained in the zero section.

Condition (4.8) is clearly a temperedness assumption which implies in
particular that G̃ is a continuous bilinear form on S(M) × S(M). To un-
derstand the meaning of (4.8), note that analogous conditions automatically
hold for compactly supported test functions. Namely, if (fh) ∈ C∞

0,h,O(M)
then Gret/avfh has its microsupport in the zero section. Indeed, this follows
from propagation of singularities, [23]*Theorem 4.3.7 and Remark 4.3.10, as
(� + m2)Gret/avfh = fh and therefore any nonzero element in the microsup-
port would propagate away from the support of fh to the future and the past
( the assumption of a bounded L2-norm in that reference can be replaced by
a polynomially bounded L2-norm, by multiplying with an appropriate power
of h). The last condition is therefore also a temperedness assumptions on the
way singularities propagate. Checking assumption (4.8) in particular space-
times would involve showing some kind of uniform analyticity of the Green’s
function when one of the variables goes to timelike infinity.

One can check that all the conditions are satisfied for the free Klein–
Gordon field on Minkowski spacetime if t is chosen as the time-coordinate of
an inertial coordinate system.

We have the following theorem.

Proposition 4.9. Suppose the Assumptions 4.8 hold and let ω be an analytic
state for the Klein–Gordon field. Assume further that for every n ∈ N the
n-point function ωn extends to a continuous map

ωn : S(M) ⊗ · · · ⊗ S(M) → C.

Then ω is tempered analytic.

Proof. We split the proof into two steps.
Step 1: Assume that (qj,h) ∈ Sh,O(M). Assume that fh ∈ Sh(M) is microlo-
cally uniformly supported in a compact set K ⊂ T ∗M with K ∩ V − = ∅. We
need to show that

‖Φ(fh)Φ(q1,h) . . . Φ(qn,h)Ω‖ ≤ Ce−δh−1
.

First, we note that there exists a bump function χK which is smooth and
compactly supported and equal to one on K. Then we can write fh = χKfh +
(1 − χK)fh. By Proposition E.3 the first term is uniformly microsupported in
K, and the second term is uniformly exponentially small everywhere, i.e., in
Schwartz space. By continuity

‖Φ((1 − χK)fh)Φ(q1,h) . . . Φ(qn,h)Ω‖ ≤ C1e
−δh−1

.
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We can therefore assume without loss of generality that fh ∈ C∞
0,h,O(M),

simply by replacing fh by χKfh.

Step 2: We now proceed by induction in n. For n = 0 we are dealing with
the vector Φ(fh)Ω. Since the state is analytic and fh ∈ C∞

0,h,O(M), this implies
the estimate. By induction assume the estimate is correct for n − 1. We now
can write

Φ(fh)Φ(q1,h) . . . Φ(qn,h)Ω = −iG̃(fh, q1,h)Φ(q2,h) . . . Φ(qn,h)Ω

+ Φ(q1,h)Φ(fh)Φ(q2,h) . . . Φ(qn,h)Ω,

where we have used the relation [Φ(f1),Φ(f2)] = −iG̃(f1, f2)1. The second
term is exponentially small by the Cauchy–Schwartz inequality, the expo-
nential smallness of the family Φ(fh)Φ(q2,h) . . . Φ(qn,h)Ω, and the fact that
Φ(q1,h)∗Φ(q1,h)Φ(fh)Φ(q2,h) . . . Φ(qn,h)Ω is polynomially bounded. The state-
ment then follows if we show that G̃(fh, q1,h) is exponentially small, thus es-
tablishing the required estimate. Since the functions q2,h, . . . qn,h are no longer
required for the argument we will write qh for q1,h. We are thus left to establish
that G̃(fh, qh) is exponentially small for all (fh) ∈ C∞

0,h(M) with the required
support properties. By Proposition 2.5 it is now sufficient to show that given
qh ∈ Sh,O(M), vqh

= Gqh has its microsupport contained in V +. This follows
from Assumption 4.8, (4.8), as in fact the microsupport is contained in the
zero section. �

For the Klein–Gordon field, ground and KMS states on analytic station-
ary spacetimes are known to be analytic Hadamard states [29]. It has also been
shown recently that general analytic globally hyperbolic spacetimes admit an-
alytic Hadamard states [16].

4.7. Relation to the Microlocal Spectrum Conditions

The existence of an analytic vector Ω with AΩ dense in D with respect to the
graph topology has a natural interpretation in terms of analytic microlocal
spectrum conditions if the field is constructed in the usual manner from its
m-point functions. To understand this, assume that we are given a family of
m-point functions, i.e., a family of distributions (ωm)m∈N, ωm ∈ D′(M × · · · ×
M) = D′(Mm) by

ωm(f1 ⊗ · · · ⊗ fm) = 〈Ω,Φ(f1) . . . Φ(fm)Ω〉.
The Wightman reconstruction theorem states roughly that the field theory
can be reconstructed from the set of m-point functions. This is based on the
very general and robust GNS construction that provides a Hilbert space rep-
resentation for every state on an abstract ∗-algebra.

Spectrum conditions have been postulated in this context for quantum
field theory on curved spacetimes. The introduction of microlocal spectrum
conditions in quantum field theory on curved spacetimes started with the re-
alization by Radzikowski [26] that the Hadamard condition for the two-point
function of the Klein–Gordon field can be formulated in a microlocal manner,
as described by Duistermaat–Hörmander [12] in terms of the wavefront set of
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the two-point function. Since then, there were several attempts to find a con-
dition for interacting fields that imposes a similar condition as the spectrum
condition for Wightman fields at least microlocally.

One version of a smooth microlocal spectrum condition was introduced by
Brunetti, Fredenhagen, and Köhler [9] as condition on the wavefront set of the
n-point functions. It is satisfied by any Wightman quantum field in Minkowski
spacetime. The analytic version of this microlocal spectrum condition on real
analytic spacetimes was introduced in [29] and it was shown that it implies
the Reeh–Schlieder property. Hollands and Wald in [18] give a slightly different
condition, allowing for interaction vertices on the spacetime, however, requiring
the vectors to be lightlike. Their condition excludes certain generalized free
fields and is stronger than the condition imposed by Brunetti, Fredenhagen,
and Köhler. The precise form of microlocal spectrum condition is perhaps
still not final and may depend on the type of theory one wants to consider.
Microlocal spectrum conditions restrict the (analytic) wavefront set of the m-
point distribution to a closed conic set Γm ⊆ T ∗Mm \ 0.

Definition 4.10. A state ω given by a family of m-point distributions is said
to satisfy the analytic microlocal spectrum condition with respect to Γm if
WFa(ωm) ⊆ Γm.

All proposed microlocal spectrum conditions have the following property
in common.

• If (x1, ξ1, x2, ξ2, . . . , xj−1, ξj , xj+1, 0, xj+1, 0, . . . , xm, 0) ∈ Γm then ξj must
either vanish or be future directed and causal.

This also implies that Γm ∩ (−Γm) = ∅.
As shown in [29], any Wightman field theory in Minkowski spacetime sat-

isfying the usual Wightman axioms satisfies the analytic microlocal spectrum
condition with respect to certain Γm.

Proposition 4.11. Assume the analytic microlocal spectrum condition holds with
respect to Γm satisfying the above condition. Then Ω ∈ Da, i.e., Ω is analytic.

Proof. Given a Hilbert space-valued distribution u(·) on a real analytic man-
ifold X, one can form the complex-valued distribution 〈u(̄·), u(·)〉 on X × X.
The observation (Prop 2.6, 2), Equ. (12) in [29]) is that (x, ξ) is in the wave-
front set of u if and only if (x,−ξ, x, ξ) is in the wavefront set of 〈u(̄·), u(·)〉.
We apply this to the vector-valued distribution Φ(·) · · · Φ(·)Ω. Assume that
(x1, ξ1, . . . , xj , ξj , xj+1, 0, . . . , xm, 0) is contained in the analytic wavefront set
of u. By the above, we know that

(xm, 0, xm−1, 0, . . . , 0, xj−1, 0, xj ,−ξj , . . . , x1,−ξ1, x1, ξ1, x2,

ξ2, . . . , xj , ξj , xj+1, 0, . . . , xm, 0)

is in the analytic wavefront set of ω2m. By the microlocal spectrum condition,
the covector ξj must be in the closed forward light cone. �

Remark 4.12. In the same way as analytic vectors are defined, one can also
define smooth vectors by replacing the analytic wavefront set by the usual
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smooth wavefront set. Hence, a vector Ω ∈ D is smooth if and only if for all n ∈
N the first nonzero covector from the right in the wavefront set of the Hilbert
space-valued distribution Φ(·) . . . Φ(·)Ω on Mn is future directed and causal.
It is clear that any analytic vector is also smooth. It is easy to see that the set
of smooth vectors is invariant under the action of fields Φ(f), f ∈ C∞

0 (M). For
any smooth vector φ the wavefront set of the Hilbert space-valued distribution
Φ(·)φ is contained in the light cone. This has two immediate consequences.
Since the wavefront set does not intersect the normal of a timelike curve, the
distribution Φ(·)φ can be restricted to such a curve. This reproduces results in
[21] in a natural framework. Secondly, this also allows to generalize to curved
spacetimes a result by Borchers [6] that field operators becomes smooth when
smeared out in timelike directions. Indeed, let t be a global time function that
induces a diffeomorphism M ∼= R × Σ. Then, for any smooth vector φ and
any function h ∈ C∞

0 (R) the distribution f �→ Φ(h ⊗ f)φ on Σ is a smooth
Hilbert space-valued function. This means that smearing the field operator
only in the t-direction results in a strongly smooth operator function on the
domain of smooth vectors. This can be seen immediately from the computation
rules for wavefront sets summarized in Appendix C: since the covectors in
T ∗M ∼= T ∗

R × T ∗Σ of the form (t, 0, y, η) are not in the wavefront set, the
wavefront set of the distribution Φ(h ⊗ ·)φ on Σ is empty.

4.8. Internal Degrees of Freedom

In the above description, the field is scalar-valued. In general, one would like
a description of fields with spin or of several different types. This can be
done by twisting with a vector bundle as follows. One fixes a complex real
analytic vector bundle E → M . We assume that E is equipped with a non-
degenerate real analytic sesquilinear form that identifies the dual bundle E∗

with the complex conjugate bundle E. Using this identification, the bundle
F = E⊕E∗ then has a complex conjugation ·̄ defined by (v, w) = (w∗, v∗). The
space of distributions D′(M ;F ) taking values in F is identified with the dual
of C∞

0 (M ;F ∗). The field would then be defined as a map Φ : C∞
0 (M ;F ∗) →

End(D) with the requirement that Φ(f) is symmetric on D if f = f . The
paper can be read in this more general context if one thinks of the bundles as
being suppressed in the notation.

5. The Timelike Tube Theorem

Given two points p, q ∈ M and a smooth timelike curve-segment γ : [0, 1] → M
connecting p and q, we let I0(p, q, γ) be the set of points that can be reached
via continuous deformations γs of smooth timelike curves with fixed endpoints
p, q (Fig. 1). The restriction to smooth curves here is merely for convenience
and the definition can also be stated with C1-curves.

The timelike tube envelope ET (O) of an open set O is defined as the
smallest set A containing O with the property that for any smooth timelike
curve-segment γ : [0, 1] → M lying in the interior of A with endpoints p, q also
the set I0(p, q, γ) is in A.
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Figure 1. The set I0(p, q, γ) with γ contained in a timelike
tube

In addition, we can also form that causal envelope Ec(O) as the smallest
set A containing O such that both ET (O) and the domain of dependence of O
are contained in A.

5.1. The Reeh–Schlieder Theorem and the Timelike Tube Theorem

Theorem 5.1. Suppose that (Φ,D ⊂ H) is a quantum field theory and assume
that Ω is an analytic vector such that AΩ is dense in D with respect to the
graph topology. Then, for any non-empty open subset O the set A(O)Ω is dense
in H.

Proof. It suffices to check that the orthogonal complement of A(O)Ω is the
zero vector. Assume that φ is a vector in the orthogonal complement of A(O)Ω.
This means the distribution

wm := 〈φ,Φ(·) . . . Φ(·)Ω〉
vanishes on O × · · · × O ⊂ Mm for any m ∈ N. Since Ω is analytic the wave-
front set of this distribution wm satisfies WFa(wm) ∩ −WFa(wm) = ∅. By
unique continuation, Proposition D.2, this implies that wm vanishes every-
where. Hence, φ is orthogonal to the dense set D. It follows that φ = 0.

�

Remark 5.2. The minor modification of the proof actually shows that a stronger
statement holds. Namely, for any countable collection (Ok)k∈N of non-empty
open subsets Ok ⊂ M the span of the set

{Φ(fk)Φ(fk−1) . . . Φ(f1)Ω | k ∈ N, fj ∈ C∞
0 (Oj)}

is dense in H.
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Theorem 5.3. Suppose that (Φ,D ⊂ H) is a quantum field theory and assume
that Ω is an analytic vector such that AΩ is dense in D with respect to the graph
topology. Then, for an open subset O let, as above, be R(O) be the local von
Neumann algebra associated with the quantum field. Let ET (O) be the timelike
tube envelope of O. Then R(ET (O)) = R(O).

Of course, if in addition the time-slice axiom is satisfied we have
R(Ec(O)) = R(O).

Proof of Theorem 5.3. We show that R(O) = R(ET (O)) by establishing the
equality

{A ∈ L(H) | ∀(f ∈ C∞
0 (O), v, w ∈ D), 〈w,AΦ(f)v〉 = 〈Φ(f)w,Av〉}

={A ∈ L(H) | ∀(f ∈ C∞
0 (ET (O)), v, w ∈ D), 〈w,AΦ(f)v〉 = 〈Φ(f)w,Av〉}.

(7)

Consider an operator A ∈ L(H) such that 〈w,AΦ(f)v〉 = 〈Φ(f̄)w,Av〉
for all v, w ∈ D and f ∈ C∞

0 (O). This is equivalent for the distribution

〈A∗w,Φ(·)v〉 − 〈Φ(̄·)w,Av〉
to vanish on O for all v, w ∈ D. This in turn is equivalent to the distributions
defined by

wm,m′ : h ⊗ f1 ⊗ · · · ⊗ fm ⊗ h1 ⊗ · · · ⊗ hm′

�→ 〈A∗Φ(f̄1) . . . Φ(f̄m)Ω,Φ(h)Φ(h1) · · · Φ(hm′)Ω〉
− 〈Φ(h̄)Φ(f̄1) . . . Φ(f̄m)Ω, AΦ(h1) . . . Φ(hm′)Ω〉 (8)

to vanish in the set O × Mm+m′
for all m,m′ ∈ N. We will show below that if

wm,m′ vanishes in O × Mm+m′
it automatically vanishes in ET (O) × Mm+m′

,
thus showing the equality (7).

Let S ⊂ M be any co-dimension one timelike hypersurface in M then
S×Mm+m′

is a hypersurface in Mm+m′+1 with its conormal at (x, x1, . . . , xm,

y1, . . . , ym′) ∈ S × Mm+m′
spanned by (x, ξ, x1, 0, . . . , xm, 0, y1, 0, . . . , ym′ , 0),

ξ being any nonzero spacelike co-normal vector to x ∈ S. We will show below
that the conormal of S ×Mm+m′

does not intersect WFa(wm,m′). By Proposi-
tion D.1 we have unique continuation for wm,m′ across any such S × Mm+m′

.
We will now use a deformation argument to show that that wm+m′ vanishes
on ET (O)×M2m. We argue by contradiction. Assume that there exists a point
(x0, y0) ∈ ET (O)×M2 m in the support of wm+m′ . Then there exists a contin-
uous family γs of smooth timelike curves such that γs(0) = q, γs(1) = p, such
that γ0 is in O, and such that γs0 passes through the point x0. We introduce a
complete Riemannian metric g̃ on M . Since K = {γs(t) | (s, t) ∈ [0, s0]× [0, 1]}
is compact so is the closure of the set K1 = ∪x∈KB1(x), where B1(x) is the
closed unit ball centered at x with respect to the complete metric g̃. Let Nγs

be the normal bundle of γs in TM . The bundle of balls of radius r in Nγs will
be denoted by Nrγs. Its boundary ∂Nrγs is the bundle of spheres Srγs in the
normal bundle. For sufficiently small r > 0, the exponential map of the metric
g̃ then is a local diffeomorphism from Nrγs to a neighborhood of γs((0, 1)) for
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every s ∈ [0, s0]. We now choose 0 < δ < 1 and 0 < δ′ < 1 such that the
following hold.
(1) ∀t ∈ [0, 1]∀s̃ ∈ [0, δ′], Bδ(γs̃(t)) ∈ O,
(2) for every s ∈ [0, s0] the exponential map defines an immersion Sδγs → M

with timelike image.
Such a choice of δ exists uniformly in s ∈ [0, s0] by compactness of K1. The
image of Nδγs then defines a family of tubes Ts with boundaries ∂Ts that
form a continuous family of immersed timelike hypersurfaces. By assumption
the open set I = {s ∈ R | ∃(x, y) ∈ supp(wm+m′), x ∈ Ts} contains T and is
bounded below by δ′ > 0. Let s0 = inf I. Then Ts0 × M2m does not intersect
the support of wm+m′ , but its boundary S × M2 m = ∂Ts0 × M2 m does. If
there is unique continuation across S × M2m, we obtain a contradiction.

It now only remains to show that indeed the conormal of S×Mm+m′
does

not intersect WFa(wm,m′) as claimed. We must prove that (x, ξ, x1, 0, . . . , xm,
0, y1, 0, . . . , ym′ , 0) with nonzero spacelike ξ is not in the wavefront set of wm,m′ .
By Proposition 4.2 the Hilbert space-valued distribution Φ(h)Φ(h1) . . . Φ(hm′)Ω
does not have (x, ξ, y1, 0, . . . , ym′ , 0) in its wavefront set. Similarly, the Hilbert
space distribution Φ(h̄)Φ(f̄1) . . . Φ(f̄m)Ω taking values in the conjugate vector
space does not have (x,−ξ, x1, 0, . . . , xm, 0) in its wavefront set. Essentially,
by the Cauchy–Schwarz inequality we have therefore (see Prop 2.6, 2), Equ.
(13) in [29]) that (x, ξ, x1, 0, . . . , xm, 0, y1, 0, . . . , ym′ , 0) is not in the wavefront
set of either term in (8) and therefore not in the wavefront set of wm,m′ . �
Remark 5.4. The above proof shows that requiring the analytic wavefront set
to be contained in the set of lightlike vectors rather than causal vectors implies
the time-slice axiom. This is, for example, the case in generalized free theories
if the spectral measure ρ on [0,∞) is exponentially decaying. This is consistent
with the conditions on the spectral measure for generalized free fields to satisfy
the time-slice axiom identified in [15]. Even though the time-slice axiom is
expected to hold also for reasonable interacting quantum field theories, the
wavefront set of the m-point functions will in general be expected to contain
time-like vectors.

6. The Algebra of a Timelike Curve and Restrictions of the
Field Operator

Given any subset S ⊂ M such as a hypersurface, one can define the algebra
of observables R(S) as the intersection

⋂
O⊃S R(S) of the field algebras of all

open subsets containing S. Given a timelike curve γ : [0, 1] → M , let us denote
by γ◦ the image γ((0, 1)) of the corresponding open interval, i.e., the curve
without its endpoints. One consequence of the timelike tube theorem is that
for a timelike curve γ◦ the corresponding algebra R(γ◦) is that of the open set
E(γ◦) obtained by deforming the curve in a timelike manner, with the fixed
endpoints removed. There is, however, another way to define the algebra of
observables of a timelike curve based on the fact that the field operator and
its derivatives can in fact be restricted to the curve in the sense explained in
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Remark 4.12. Namely, on can consider what is essentially the double commu-
tant of the fields restricted to timelike curves. To be more precise, recall that
A commutes with the field operator in O if and only if

〈A∗w,Φ(·)v〉 − 〈Φ(̄·)w,Av〉

vanishes in O for all vectors in the domain D ⊂ H. One can now define the
algebra R∞(γ◦) as the commutant of the set of operators A with the property
that

〈A∗w,Φ(·)v〉 − 〈Φ(̄·)w,Av〉

is flat on γ. Here a distribution is called flat on γ if its wavefront set does not
intersect the normal bundle of γ and the restriction of all its derivatives to γ
vanish. It was conjectured in [21] that the two definitions give the same local
algebra, i.e., R∞(γ◦) = R(γ◦). Our arguments imply this conjecture if γ is
analytic.

Theorem 6.1. Assume that γ : [a, b] → M is a real analytic timelike curve.
Then R∞(γ◦) = R(γ◦).

Proof. The proof is based on the proof of Theorem 5.3 and we will use the no-
tation from this proof. A bounded operator A is in the commutant of R∞(γ◦)
if the distribution wn,m′ in the proof of Theorem 5.3 is flat on γ◦ × Mm+m′

.
By a theorem of Boman [3] (see also [4] for a generalization to the Denjoy–
Carleman class) flatness of the distribution implies its vanishing in an open
neighborhood of γ◦ × Mm+m′

. Hence, A is in the commutant of R(γ◦). Of
course a distribution vanishing near γ◦ is flat on γ◦ and therefore R∞(γ◦) and
R(γ◦) have the same commutant. �
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Appendix A. Wavefront Sets and Microlocal Concepts

A.1. The Wavefront Set

As usual the space of distributions D′(Rd) is the topological dual of the space
of compactly supported smooth test functions C∞

0 (Rd). We will use the formal
notation

(u, ϕ) =
∫
Rd

u(x)ϕ(x)dx

for the distributional pairing if u ∈ D′(Rd) and ϕ ∈ C∞
0 (Rd). The space of

tempered distributions S ′(Rd) is the dual of the Schwartz space S(Rd). Finally,
recall that a distribution of compact support can be paired with a test function
in C∞(Rd) and this identifies the dual of C∞(Rd) with the space of compactly
supported distributions.

The Fourier transform can be used to analyze distributions locally in
phase space. We recall some basic properties of the Fourier transform. If u ∈
D′(Rd) is a compactly supported distribution, then its Fourier transform is a
holomorphic function in the complex plane of uniform exponential type. Such a
distribution is a smooth function if and only if its Fourier transform is decaying
faster than any power. This means

u ∈ C∞
0 (Rd) ⇔ ∀N ∈ N, sup

ξ∈Rd

|ξ|N |û(ξ)| < ∞.

This statement can of course be localized by saying that a general distribution
u ∈ D′(Rd) is smooth near the point x0 if and only if there exists a function
χ ∈ C∞

0 (Rd) with χ(x0) = 1 such that

sup
ξ∈Rd

|ξ|n|χ̂ · u(ξ)| < ∞

for any n ∈ N. The purpose of the cut-off function is to turn u into a distri-
bution of compact support and localize the statement at the point x0. The
notion of wavefront set seeks to refine the notion of singular support, i.e., the
set of points where the distribution is not smooth. It singles out the directions
in which a distribution may fail to be smooth by analyzing in which directions
in the ξ Fourier transform of χ · u fails to decay faster than any power.

Definition A.1. The wavefront set WF(u) of a distribution u ∈ D′(Rd) is the
complement of the set of points in (x0, ξ0) ∈ R

d×R
d\{0} such that there exists

a cut-off function χ ∈ C∞
0 (Rd) with χ(x0) = 1 and an open conic neighborhood

Γ of ξ0 such that

sup
ξ∈Γ

|ξ|n|χ̂ · u(ξ)| < ∞

for all n ∈ N.

This additional asymptotic localization of the singular support property
is sometimes called microlocalization. One of the key observations relevant to
general relativity and geometry is that the wavefront set transforms like a
subset of the cotangent bundle under smooth change of coordinates. Hence,
the notation of the wavefront set makes sense on smooth manifolds in the
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absence of a global and invariantly defined Fourier transform. It is customary to
introduce a semi-classical parameter h > 0 as an energy scale and reformulate
this in terms of the semi-classical Fourier transform Fh, which is defined as

(Fhf)(ξ) =
1

(2πh)
d
2

∫
Rd

f(x)e− i
h xξdx. (9)

Therefore, (x0, ξ0) ∈ R
d ×R

d \ {0} is not in the wavefront set of u ∈ D′(Rd) if
and only if for some cut-off function χ ∈ C∞

0 (Rd), with χ(x0) = 1 we have for
each n ∈ N a constant Cn > 0 such that

|Fh(χ · u)(ξ)| < Cnhn

for all n ∈ N, h ∈ (0, 1], and all ξ in an open neighborhood of ξ0. This is just a
reformulation of the above, where the semi-classical parameter h is being used
to rescale the momentum ξ. This definition is sometimes more flexible and
also allows to define the wavefront set of an h-dependent distribution. This is
sometimes called the frequency set or semi-classical wavefront set WFh. This
is introduced for families of distributions that are polynomially bounded in h.
More precisely, we say an h-dependent family of tempered distributions (uh)
is polynomially bounded if there exists a continuous semi-norm p : S(Rd) →
[0,∞) such that for some N > 0 we have uh(f) ≤ h−Np(f) for all f ∈
S(Rd), h ∈ (0, 1]. The semi-classical wavefront set WFh(uh) is then defined as
the complement in R

d × R
d of the set of points (x0, ξ0) such that there exists

a cut-off function χ ∈ C∞
0 (Rd), with χ(x0) = 1 so that we have for each n ∈ N

a constant Cn > 0 with

|Fh(χ · uh)(ξ)| < Cnhn

for all n ∈ N, h ∈ (0, 1], and all ξ in an open neighborhood of ξ0. For an
h-independent family we have WFh(u) = supp(u) × 0 ∪ WF(u).

Appendix B. Analytic Wavefront Sets

Recall from the main body of the text that we define the analytic wavefront set
of a distribution u ∈ D′(M) as the elements in T ∗M \ 0 of the microsupport
of (uh) = (u), regarded as a family of distributions independent of h. For
the analytic wavefront set WFa there are several other equivalent definitions,
which we now review. Each has their own advantages and disadvantages. In
the following we assume that u ∈ D′(Rd,H) is a distribution taking values in
a Hilbert space H. We will suppress the H to keep the notations short. All
integrals will need to be understood as distributional pairings, and we will use
this convention without further explanation.

B.1. The Classical FBI Transform

One can use another localized version of the Fourier transform Tau, which is
also sometimes referred to as the FBI transform. It is defined as

Tau(x, ξ) =
∫
Rd

e− a
2 (x−y)2u(y)e−iξ(y−x)dy.



Analytic States in Quantum Field Theory

This only differs from its semi-classical counterpart by an irrelevant pre-factor
and the lack of the extra scaling in the ξ-variable. The distribution u can also
be recovered from the transforms Tξ of u and xu. This is done by the inversion
formula (see [19]*(9.6.7) or [13]*(3.36) in the one dimensions case)

u(y) =
1

(2π)d

∫
Rd

(T|ξ|u)(y, ξ)dξ +
1

(2π)d

∫
Rd

1
|ξ|ξ · (T|ξ|f)(y, ξ)dξ.

Here f(x) is the vector-valued function f(x) = − 1
2 i(x − y)u(x).

Proposition B.1. A vector (x0, ξ0) ∈ R
d × R

d \ {0} is not in the analytic
wavefront set if and only if the following holds: there exists a cutoff function
χ ∈ C∞

0 (Rd) which is equal to one near x0 and an open conic neighborhood O
of (x0, ξ0) in R

d × R
d \ {0} such that for some C, δ > 0 we have

‖(T|ξ|(χu))(x, ξ)‖ ≤ Ce−δ|ξ|.

The condition of Proposition B.1. is satisfied if and only if the semi-
classical FBI transform Th(u)(x, ξ) is exponentially decaying in h−1 for all unit
vectors ξ in an open neighborhood of |ξ0|−1ξ0 in the unit sphere. The proof of
the equivalence can be found in [19]*Section 9.6, in particular Theorem 9.6.3
with a slighlty different notation.

B.2. Hörmander’s Approach

The following provides a criterion that is used by Hörmander [19] as a definition
of the analytic wavefront set. This is also the approach favored in [29] in the
analysis of quantum field theory and the Reeh–Schlieder property.

Proposition B.2. A vector (x0, ξ0) ∈ R
d ×R

d \{0} is not in the analytic wave-
front set if and only if the following holds: there exists an open neighborhood
O of x0, an open conic neighborhood Γ of ξ0, and a bounded sequence un of
distributions with compact support that equals to u in O such that for some
C > 0 we have

|ξ|n‖ûn(ξ)‖ ≤ C(C(n + 1))n,

for all ξ ∈ Γ.

One can choose the sequence uN always in such a way that un = χnu,
where χn is a sequence of suitably chosen cut-off functions that are equal to
one on O and with the property that for each multi-index α there exists a
constant Cα > 0 such that

|(∂α+βχn)(x)| ≤ Cα(Cα(n + 1))|β|.

Such a sequence always exists. The sequence χn plays a similar role here to
that of the Gaussian factor in the FBI transform and is used to provide an
n-dependent localization.
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B.3. Boundary Values of Analytic Functions

Another characterization of the analytic wavefront set is based on boundary
values of analytic functions. We state this here as in [13]*Th. 3.38 but refer to
[19]*Section 8.4, and Th. 8.4.15 for proofs.

Proposition B.3. A vector (x0, ξ0) ∈ R
d ×R

d \{0} is not in the analytic wave-
front set if and only if the following holds: there exists an open complex neigh-
borhood W of x0 in C

d, and open convex cones Γ1, . . . ,Γk in {y ∈ R
d | y · ξ0 <

0}, functions u1, . . . , uk, where uj is holomorphic in W ∩ R
d + i Γj so that u

can be written as the sum of distributional boundary values of the uj.

For tempered distributions on R
d there is a direct way to achieve the

above decomposition and give an explicit criterion for the analytic wavefront
set. To understand this let us discuss this in one dimension first:
The function K(z) = 1

4 sech(π
2 z) =

(
4 cosh(π

2 z)
)−1 is holomorphic in the strip

| Im(z)| < 1 and decays exponentially along the real axis. We have
∫

K(x +
iy)dx = π for all |y| < 1. Moreover, the family 1

π Re K(x + iy) is a δ-family as
y → ±1. Given a tempered distribution u ∈ S ′(R), we can convolve with K to
obtain a function

Ku(z) =
∫

K(z − x)u(x)dx = (K ∗ u)(z)

which is holomorphic in the strip Im(z) < 1. Moreover,

u(x) = lim
ε↘0

(Ku(x + i − iε) + Ku(x − i + iε)) = u+ + u−.

This decomposes u as the sum of two distributions, that are one sided boundary
values of holomorphic functions. Therefore, if ξ > 0 then (x, ξ) /∈ WFa(u) if
and only if u+ is real analytic near x. Similarly, if ξ < 0 then (x, ξ) /∈ WFa(u)
if and only if u− is real analytic near x.

This construction can be generalized to higher dimensions as follows. One
defines

I(ξ) =
∫

|ω|=1

e−〈ω,ξ〉dω,

K(z) =
1

(2π)d

∫
Rd

ei〈ξ,z〉/I(ξ)dξ.

The analogue of the above decomposition is

u(x) =
∫

|y|=1

Ku(x + iy)dy,

where as before Ku = K∗u. The function Ku(z) is holomorphic in | Im(z)| < 1.

Proposition B.4. Let u ∈ S ′(Rd). Then, given a direction y ∈ R
d with |y| = 1,

we have that (x, y) /∈ WFa(u) if and only if Ku is complex analytic in x + iy
near (x, y).

The above statements and proofs can be found in [19]*Theorem 8.4.11.
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Appendix C. Computational Rules for the Analytic Wavefront
Set

Here we summarize some computational rules for analytic wavefront sets. We
will be mostly concerned with distributions defined on an arbitrary analytic
manifold M , but occasionally will also encounter different dimensionalities. In
the latter case, we let M1,M2 be different analytic manifolds of dimensions d1

and d2, respectively.
We start with some simple rules that are easy to see directly from the

definitions. Given u, v ∈ D′(M),

WFa(u + v) ⊆ WFa(u) ∪ WFa(v).

Given u1 ∈ D′(M1) and u2 ∈ D′(M2) the tensor product u1 ⊗ u2 is a distribu-
tion on M1 × M2. We have

WFa(u1 ⊗ u2) ⊆ (WFa(u1) × 0) ∪ (0 × WFa(u2)) ∪ (WFa(u1) × WFa(u2)).

Given a smooth map f : M1 → M2, the conormal Nf of f is defined as the
set of (x, ξ) ∈ T ∗M2 such that x is in the range of f and the pull-back f∗(ξ)
vanishes.

Pull-backs and products of distributions may not necessarily be well de-
fined. The wavefront set provides a useful criterion for pull-backs and products
to exist in a reasonable way. If Nf ∩WF(u) = ∅ then the pull-back f∗u exists.
If f is real analytic then

WFa(f∗u) ⊆ f∗(WFa(u)).

This means the wavefront set has good functorial properties under analytic
maps. The condition Nf ∩WF(u) = ∅ simply makes sure that f∗(WF(u)) does
not intersect the zero section. Note that this condition is always satisfied if f
is an analytic submersion.

The product uv of two distributions u, v ∈ D′(M) is not always well
defined. There is a similar restriction on the wavefront sets to ensure existence
of a product. Namely, the product is well defined as a distribution if WF(u)+
WF(v) does not intersect the zero section in T ∗M . In that case

WF(uv) ⊆ WF(u) + WF(v),

WFa(uv) ⊆ WFa(u) + WFa(v).

Again, the restriction makes sure there are no zero-vectors appearing on the
right-hand side of this formula. The formula for the product is actually a
special case of the formula for pull-back and tensor products. This is because
the product uv can be seen as the pull-back of u ⊗ v under the diagonal
embedding x �→ (x, x), whose co-normal consists of covectors of the form
(x, ξ, x,−ξ).

If P is a partial differential operator on M with analytic coefficients and
Pu = f , then

WFa(u) ⊆ WFa(f) ∪ char(P ),
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where char(P ) ⊂ T ∗M \0 is the characteristic set of P , i.e., the zero set of the
principal symbol of P .

The above statements are summaries of results that can be found in
Hörmander’s book [19] in Sections 8 and 9.

Another operation is to formally integrate with respect to a subset of
variables or smear a subset of variables with respect to test functions. If u ∈
D′(M1 × M2) and f ∈ C∞

0 (M2) we can define a distribution u1 ∈ D′(M1) by
u1(·) = u(· ⊗ f). Formally one can write this as

u1(x) =
∫

M2

u(x, y)f(y)dy.

We have then

WF(u1) ⊆ {(x, ξ) ∈ T ∗M1 \ 0 | (x, ξ, y, 0) ∈ WF(u) for some y ∈ M2}.

Such a statement is certainly not correct for the analytic wavefront set when f
is a general compactly supported test function. When u is compactly supported
the above holds for the analytic wavefront set in case f is a real analytic test
function [19]*Th. 8.5.4. This statement is, however, not true in the context of
tempered distributions on R

d. Indeed, the function

u(x, y) =
1

x2 + 1
y2+1

defines a tempered distribution. Since it is a real analytic function its analytic
wavefront set is empty. Pairing in the y-variable with the real analytic Gaussian
e− 1

2y2
gives the function

g(x) =
∫
R

1
x2 + 1

y2+1

e− 1
2y2

dy.

The derivatives at zero are therefore given by

g(k)(0) = −1
2

∫
R

e− y2
2

√
−y2 − 1k!

((
−y2 − 1

) k+1
2 −

(
−

√
−y2 − 1

)k+1
)

dy

=
√

π cos
(

πk

2

)
Γ(k + 1)U

(
1
2
,
k + 5

2
,
1
2

)
,

where U is the Tricomi confluent hypergeometric function. The radius of con-
vergence of the Taylor series at zero is therefore zero and the function is not
real analytic. The mechanism in this example is that the radius of convergence
of the Taylor series in the x-variable is not positive uniformly in the y-variable.

Appendix D. Unique Continuation and the Microlocal
Holmgren Uniqueness Theorem

Let S ⊂ M be a codimension one hypersurface. If x ∈ S then there exists a
small neighborhood U of x such that S divides U into two connected compo-
nents U− and U+. For a class of distributions V ⊂ D′(M), we say that we have
unique continuation across S in U if whenever u ∈ V vanishes in U− it also
vanishes in a neighborhood of S in U . We say unique continuation holds across
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S if for every point x ∈ S there exists a neighborhood U such that unique
continuation holds across S in U . This is clearly a local definition.

If unique continuation holds across S for distributions u ∈ V this means
that the support of u cannot touch S from only one side. The following two
propositions follow from the very general statement of [19]*Th. 8.5.6’, but
we discuss them here separately. The first is a microlocal generalization of
Holmgren’s uniqueness theorem for partial differential equations with analytic
coefficients.

Proposition D.1. Suppose that S ⊂ M is a codimension one hypersurface.
Then unique continuation holds across S for all distributions whose analytic
wavefront set WFa does not intersect the conormal bundle of S in M .

In particular, this implies that in case M is a spacetime we have unique
continuation across all timelike hypersurfaces for the class of distributions
whose analytic wavefront set is contained in the light cone. If a distribution
contains only lightlike covectors in its analytic wavefront set, we have in addi-
tion unique continuation across any spacelike hypersurface.

The second is a microlocal version of a form of the edge of the wedge
theorem.

Proposition D.2. Unique continuation holds across any hypersurface for the
class of distributions u ∈ D′(M) satisfying WFa(u) ∩ −WFa(u) = ∅. In par-
ticular, if M is connected and such a u ∈ D′(M),WFa(u) ∩ −WFa(u) = ∅
vanishes on a non-empty open subset of M , then u must vanish identically.

We have used here that unique continuation across any hypersurface im-
plies in particular unique continuation across any ball. By a standard argument
this implies that the support is open and closed and therefore the unique con-
tinuation property.

Appendix E. Properties of Microlocally Uniformly
Exponentially Small Families

In this section we provide some statement about uniform microlocalization
that were used in the main part.

Recall that a polynomially bounded family (uh) ∈ Sh(Rd) of Schwartz
functions is uniformly microsupported in K ⊂ R

d × R
d if we have that for

every ε > 0 there exists a δ > 0 such that for any N > 0 there is a constant
CN > 0 with

‖(1 + |x|2 + |ξ|2)NThuh(x, ξ)‖ ≤ CNe−δh−1
,

for all (x, ξ) ∈ R
d × R

d with dist((x, ξ),K) ≥ ε.

We first remark that this definition is equivalent to the Thfh being expo-
nentially small in S(Rd × R

d) after localization to the complement of K. To
explain this, let Kε be the set of points {(x, ξ) ∈ R

d ×R
d | dist((x, ξ),K) < ε}.
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Proposition E.1. The family (uh) ∈ Sh(Rd) is uniformly microsupported in
K ⊂ R

d × R
d if and only if for any cut-off function χ ∈ C∞

0 (Rd × R
d) that

equals one on Kε we have that (1−χ)Thuh is exponentially small in Sh(Rd×R
d)

in the sense that there exists a δ > 0 such that p((1 − χ)Thuh) = O(e−δh−1
)

for any Schwartz semi-norm p.

Proof. The statement about the Schwartz semi-norms already includes the es-
timate in the definition of being uniformly microsupported in K. We therefore
need to show the corresponding bound for the other Schwartz seminorms, i.e.,
derivatives in x and ξ. The proof is based on the fact that e

ξ2
2h (Thu)(x, ξ) is

holomorphic in z = x − iξ and we apply the usual principle that derivatives of
holomorphic functions at a point can be bounded by localized L∞-norms. We
therefore denote Rh(z) = e

ξ2
2 h (Thuh)(x, ξ), where z = x − iξ is holomorphic.

The bound we have is therefore

‖R̃h(z)‖ ≤ CN

(1 + |z|2)N
e

Im(z)2

2h e−δh−1

outside K ε
2
. The bound we seek is

‖∂̃α
z ∂β

z Rh(z)‖ ≤ CN

(1 + |z|2)N
e

Im(z)2

2h e−δh−1
.

outside Kε. This is, however, immediate by differentiating the Bochner–
Martinelli formula applied to a small enough polydisk. Note that the left-hand
side vanishes unless β = 0. We then obtain

‖∂̃α
z ∂β

z Rh(z)‖ ≤ C ′
N

(1 + |z|2)N
e

Im(z)2

2h e−δ′h−1
.

outside of Kε. Localization with the test function gives extra terms in the
derivative that can be bounded by repeated application of the product rule.

�

For μ > 0 define a modified FBI transform Tμ,h, changing the standard
deviation in the Gaussian weight,

(Tμ,hu)(x, ξ) = μ
d
4 2− d

2 (πh)− 3d
4

∫
Rd

e− μ
2h (x−y)2u(x)e− i

h (x−y)·ξdx

= μ− d
2 Tμ−1h(x, μ−1ξ),

Lemma E.2. If (uh) ∈ Sh(Rd) is uniformly microsupported in K ⊂ R
d × R

d

this implies that for fixed μ > 0 and every ε > 0, N > 0 there exist C, h > 0
such that

‖(1 + |x|2 + |ξ|2)NTμ,huh(x, ξ)‖ ≤ Ce−δh−1
,

for all (x, ξ) ∈ K with dist((x, ξ),K) > ε.
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Proof. As in [23]*Proof of Prop. 3.2.5 one then has

(Tμ,hu)(x, ξ) =
(

2πh
√

μ

1 + μ

)
α2

h

∫
e

i
h (xξ−yη)e

i
h

μx+y
1+μ (η−ξ)e− μ

1+μ
(x−y)2

2h e− 1
1+μ

(ξ−η)2

2h

(Thuh)(y, η)dydη.

Given ε > 0 let Kε = {(x, ξ) | dist((x, ξ),K) < ε} and assume (x, ξ) /∈ Kε. To
estimate (1+|x|2+|ξ|2)NI2(x, ξ)Tμ,huh(x, ξ) we use this integral representation
and split the result into two parts I1(x, ξ) and I2(x, ξ). One is obtained from
integrating over the ball B ε

2
(x, ξ) of radius ε

2 centered at (x, ξ), and the other
is obtained by integrating over the complement of that ball. Then I2(x, ξ)
satisfies the bound

‖(1 + |x|2 + |ξ|2)NI2(x, ξ)‖ ≤
(

2πh
√

μ

1 + μ

)
α2

h

∫

|(x,ξ)−(y,η)|> ε

2

(1 + |x|2 + |ξ|2)Ne
− μ

1+μ

(x−y)2

2h

× e
− 1

1+μ

(ξ−η)2

2h ‖(Thuh)(y, η)‖dydη

≤
(

2πh
√

μ

1 + μ

)
α2

he− σ

2h

ε2

4

∫
(1 + |x|2 + |ξ|2)N‖

× e−σ (x−y)2

2 e−σ (ξ−η)2

2 (Thuh)(y, η)‖dydη

for any h ∈ (0, 1]. Here σ > 0 is chosen so that σ < min(1
4

μ
1+μ , 1

4
1

1+μ ). The
right-hand side of this is exponentially small, as the integral is polynomially
bounded. Recall that convolution with a Gaussian kernel is a continuous map
on the space of Schwartz functions and Thuh is a polynomially bounded family
of Schwartz functions on R

d ×R
d. The first term I1(x, ξ) is bounded as follows

‖(1 + |x|2 + |ξ|2)NI1(x, ξ)‖

≤
(

2πh
√

μ

1 + μ

)
α2

h

∫

|(x,ξ)−(y,η)|< ε
2

(1 + |x|2 + |ξ|2)N‖(Thuh)(y, η)‖dydη

≤
(

2πh
√

μ

1 + μ

)
α2

hCdε
2d sup

(y,η)/∈K ε
2

(1 + |ξ| + |η| + ε)2N‖(Thuh)(y, η)‖.

We have used that since (x, ξ) /∈ Kε the integration domain is contained in the
complement of K ε

2
. The right-hand side is exponentially small by assumption.

�

Proposition E.3. Assume (uh) and (vh) are in Sh(Rd). If K,K ′ ⊂ R
d × R

d,
(uh) is uniformly microsupported in K, and (vh) is uniformly microsupported
in K ′, then (uh · vh) is uniformly microsupported in

K ′′ = {(x, ξ) + (x, η) | (x, ξ) ∈ K, (x, η) ∈ K ′}.

Proof. We can write e−iξxTh(u)(x, ξ) = (πh)− d
4 (Fh)y→ξ(e− (x−y)2

2 h u(y)). We
then have for the semi-classical Fourier transform Fh(uh) ∗ Fh(vh) = (2πh)

d
2

Fh(uhvh). We can therefore write the FBI transform of a product as follows

Th(uhvh)(x, ξ) = (4πh)− d
4

∫
Rd

(
(Th

2
uh)(x, ξ − η)

)(
(Th

2
vh)(x, η)

)
dη.
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Now note that if (x, ξ) is in the complement of K ′′
ε and η is arbitrary, then

either (x, η) is in the complement of K ′
ε
2

or (x, ξ − η) is in the complement of
K ε

2
. The statement then follows immediately from Petree’s inequality

(1 + |ξ|2)N ≤ 2N (1 + |ξ − η|2)N (1 + |η|2)N

and using the fact that the individual factors in the integral are polynomially
bounded in Schwartz space, and Lemma E.2. �

Proposition E.4. Assume that K ⊂ R
d is compact and u ∈ S(Rd) is analytic

in a neighborhood of K. Then, for any ε > 0 we have that u is microlocally
uniformly exponentially small in K × {ξ ∈ R

d | ‖ξ‖ > ε} ⊂ R
d × R

d.

Proof. The above follows from Iagolnitzer’s characterization of analytic func-
tions by their essential support, namely [24]*Lemma 1,p. 122. It is proved by
a simple contour deformation argument. �

Recall that if F : Rd → R
d′

is a smooth map, then the pull-back F ∗uh

is defined by (F ∗uh)(x) = uh(F (x)). If (uh) ∈ Sh(Rd′
) the pull-back will in

general not be in Sh(Rd) unless decay conditions on all partial derivatives of
the map are imposed. One can, however, multiply by any compactly supported
smooth cut-off function χ to obtain a map

Sh(Rd) → Sh(Rd′
) : uh �→ χ · (F ∗uh).

Proposition E.5. Assume (uh) ∈ Sh(Rd′
) is microlocally uniformly exponen-

tially small in K ⊂ R
d′ × R

d′
. Assume that F : Rd → R

d′
is a smooth map

that is real analytic on the open subset Q ⊂ R
d. Let χ ∈ C∞

0 (Rd) be a cut-
off function that equals one on Q. Then χ · (F ∗uh) is microlocally uniformly
exponentially small in any set K ′ with the following properties

• the projection pr1(K ′) = {x ∈ R
d | (x, ξ) ∈ K ′} of K ′ to R

d is compact
and contained in Q.

• we have K ′
ε ⊆ {(x, (dF (x))T η) ∈ R

d × R
d | (F (x), η) ∈ K} for some

ε > 0.

Proof. Using (3) we write

uh(F (x′)) =
∫
Rd′

∫
Rd′

(2πh)− d
2 (Thuh)(y, η)φy,η,h(F (x′))dydη.

Therefore, Th(χF ∗uh)(x, ξ) =
∫ ∫

Kh(x, ξ, y, η)(Thuh)(y, η)dydη, where

Kh(x, ξ, y, η) = 2−d(πh)− 3d
4

∫
Rd

χ(x′)e− (x−x′)2
2h e− (y−F (x′))2

2h e
i
h
(x−x′)ξe

i
h
(F (x′)−y)ηdx′.

Repeated integration by parts gives

(1 + |ξ|2)kKh(x, ξ, y, η) =
∫
Rd

qk(x, x′, y, h, η)e− (x−x′)2
2h

e− (y−F (x′))2
2h e

i
h (x−x′)ξe

i
h (F (x′)−y)ηdx′, (10)

where qk is a polynomial expression in x, x′, y, h−1, and the partial derivatives
of F (x′) and χ(x′), as well as in η. The order of the polynomial in η is at most
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2k. Moreover, qk vanishes outside the support of χ and extends analytically to
a complex neighborhood of Q in the x′-variable. For every � > 0 there exists
r, C > 0 such that∫

supp(χ)

|qk(x, x′, y, h, η)|e− (x−x′)2
2h e− (y−F (x′))2

2h dx′

≤ Ch−r(1 + |x|2 + |y|2)−�(1 + |η|2)k,

for h ∈ (0, 1], where we have used that integration is over a compact set. We
therefore get

(1 + |x|2 + |y|2)k(1 + |ξ|2)kKh(x, ξ, y, η) ≤ (1 + |η|2)kCkh−rk . (11)

We split the integral

Th(χF ∗uh)(x, ξ) =
∫

K

Kh(x, ξ, y, η)(Thuh)(y, η)dydη

+
∫
R2d\K

Kh(x, ξ, y, η)(Thuh)(y, η)dydη

= I1(x, ξ) + I2(x, ξ).

Since Th(uh) is uniformly exponentially small in K the estimate (11)
shows that

‖(1 + x2 + ξ2)kI1(x, ξ)‖ ≤ Cke−δh−1
.

We therefore only have to establish a bound of this form on I2(x, ξ) for (x, ξ) ∈
K ′. To do this we will need to find an estimate for Kh(x, ξ, y, η) in the set
K ′ × Kc, where Kc is the complement of K in R

2d′
. In fact in this set the

kernel is exponentially small. To see this, define a phase function

ϕ(x, x′, y, ξ, η) = i
1
2
(x − x′)2 + i

1
2
(y − F (x′))2 + (x − x′)ξ + (F (x′) − y)η.

and write the integral (10) as
∫

supp(χ)

qk(x, x′, y, h, η)e
i
h

φ(x,x′,y,ξ,η)dx′

=

∫

pr1(K
′)ε̃

qk(x, x′, y, h, η)e
i
h

ϕ(x,x′,y,ξ,η)dx′

+

∫

supp(χ)\pr1(K′)ε̃

qk(x, x′, y, h, η)e
i
h

ϕ(x,x′,y,ξ,η)dx′

= k1(x, ξ, y, η, h) + k2(x, ξ, y, η, h).

Here ε̃ > 0 is chosen small enough so that pr1(K ′)ε̃ is contained in Q. In
particular this means on pr1(K ′)ε̃ the phase ϕ(x, x′, y, ξ, η) and the amplitude
q(x, x′, y, h) extend to complex analytic functions of x′ in an open neighbor-
hood of pr1(K ′)ε̃ in C

d.
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If (x, ξ) ∈ K ′ the point x therefore has distance at least ε̃ > 0 from
supp(χ)\pr1(K ′)ε̃. The second integral therefore satisfies

|k2(x, ξ, y, η, h)| ≤ Cke− ε̃2
4h

For the first integral we use analytic non-stationary phase. For a point to
be stationary with respect to x′ we need −ξ + (dF (x′))T η = 0 and (x − x′) +
dF (x′)(y − F (x′)) = 0. If we assume that (x, ξ, y, η) ∈ K ′ × Kc, then we have
either |y−F (x)| > ε

2 or |ξ−(dF (x))T η| > ε
2 . Fix a small ε′ > 0. Let U be the set

of points x′ such that Im(ϕ(x, x′, y, ξ, η)) < (ε′)2 for some (x, ξ, y, η) ∈ K ′×Kc.
For such a point we must have |x − x′| < ε′ and |y − F (x′)| < ε′. This implies
that |y−F (x)| < cε′ for some fixed c > 0 that depends only on F . In particular
we can choose ε′ small enough so that |y−F (x)| < ε

2 and |ξ−(dF (x′))T η| > ε
4 .

This means U does not contain any critical points for the phase function φ. All
the assumption of analytic non-stationary phase are fulfilled (see for example
[28] or [5]*Prop. 1.1 for a nice presentation) when integrating over U . When
integrating over the complement we have exponential decay. Summarizing, this
means our assumptions imply that we have the uniform estimate

|
∫

supp(χ)

qk(x, x′, y, h, η)e
i
h φ(x,x′,y,ξ,η)dx′| ≤ Cqk

e−δh−1

for some δ > 0, independent of qk. This in turn gives

(1 + |ξ|2)k(1 + |η|2)−kKh(x, ξ, y, η) ≤ Cke−δh−1

on K ′ × Kc. Since Thuh is polynomially bounded in S(Rd × R
d) this finally

gives the required estimate

‖(1 + x2 + ξ2)kI2(x, ξ)‖ ≤ C̃ke−δh−1
.

and the proof is finished. �

If (uh) ∈ C∞
0,h(Rd) then there exists a compact set in which all the uh are

supported. If F is an analytic diffeomorphism than (F ∗uh) is also in C∞
0,h(Rd)

and the above Proposition simply says that if (uh) is uniformly microsup-
ported in K ⊂ R

d × R
d = T ∗

R
d, then (F ∗uh) is uniformly microsupported in

(dΦ)∗K ⊂ T ∗
R

d. In other words, being uniformly microsupported in a subset
of the cotangent bundle is a well-defined concept on an analytic manifold.
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[19] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I, Springer
Study Edition, 2, Distribution theory and Fourier analysis, Springer-Verlag,
Berlin, xii+440, (1990)

[20] Iagolnitzer, D.: Microlocal Analysis and Scattering in Quantum Field Theories,
Algebraic Analysis, vol. I, pp. 217–230. Academic Press, Boston (1988)

[21] Keyl, M.: Quantum fields along worldlines, Trends in quantum mechanics,
Goslar: World Sci. Publ. River Edge, NJ 2000, 262–269 (1998)

[22] Maldacena, J., Simmons-Duffin, D., Zhiboedov, A.: Looking for a bulk point. J.
High Energy Phys. 2017(1), 1–50 (2017)

[23] Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis, Univer-
sitext. Springer-Verlag, New York (2002)

http://arxiv.org/abs/2001.03610


A. Strohmaier and E. Witten Ann. Henri Poincaré
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