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Abstract. Many features of physical systems, both qualitative and quan-
titative, become sharply defined or tractable only in some limiting situ-
ation. Examples are phase transitions in the thermodynamic limit, the
emergence of classical mechanics from quantum theory at large action,
and continuum quantum field theory arising from renormalization group
fixed points. It would seem that few methods can be useful in such di-
verse applications. However, we here present a flexible modeling tool for
the limit of theories, soft inductive limits, constituting a generalization
of inductive limits of Banach spaces. In this context, general criteria for
the convergence of dynamics will be formulated, and these criteria will
be shown to apply in the situations mentioned and more.
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1. Introduction

Many features of physical theories become really clear only in some limit-
ing situation. Quite often, the limit is not just the limit of some parameters
in a fixed framework, but the structure of the theory changes in the limit.
For example, sharp phase transitions appear only in an infinite volume limit,
quantum theory becomes classical in the limit � → 0, or a quantum field the-
ory is defined after removing a length-scale cutoff ε → 0. In such cases, one
has to define carefully what the limit means, and it would seem that the re-
quired techniques differ significantly from case to case. However, it turns out
that for the limit of dynamical evolutions, there is a common technical core,
an abstract limit theorem, hereafter called the evolution theorem, that con-
siderably simplifies and unifies the proofs of limit theorems in quite diverse
settings, from the classical and mean field limits to the thermodynamic limit
and renormalization-group limits. For example, the evolution theorem allows
for a concise proof that the dynamics of spin systems in the thermodynamic
limit are independent of boundary conditions under rather general assump-
tions. The abstract evolution theorem is the topic of the current paper and
will be illustrated by salient examples.

The structural limits are essentially obtained via inductive-limit construc-
tions for a sequence of Banach spaces that describe either states or observables
of the approximating systems. Convergent sequences have an element in each
of these spaces. It will be convenient to generalize the notion of inductive limits
further and tolerate norm-small deviations in a convergent sequence. Hence,
the limits will be “in norm” in the sense that sequences whose norm differ-
ence goes to zero have the same limit. The resulting soft inductive limits then
generalize the completion construction.

The essential technical notion underlying soft inductive limits is a gener-
alization of the concept of Cauchy sequences to inductive limits. For an induc-
tive system (E, j) of Banach spaces En with connecting map jnm, we coin this
notion j-convergence. It relies on the fact that the connecting maps jnm allow
for a notion of distance for elements in different approximating spaces. We
construct the limit space E∞ as the quotient of the Banach space of conver-
gent sequences with respect to null sequences, which is automatically complete.
Thereby, we obtain an explicit description for all its elements, in contrast to
the standard inductive limits where limit space arises as the completion of⋃

n En.
This is particularly beneficial in the context of the evolution theorem for

dynamics on the limit space when the latter does not happen to be uniformly
continuous, as this requires a discussion of unbounded operators and their
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domains. The main realization behind the evolution theorem is that central
notions of the semigroup theory on Banach spaces have a version for sequences
in an inductive limit. This splits the problem into showing that, on the one
hand, the generators have a dense set of convergent sequences in their domain,
allowing the definition of the generator in the limit space, and, on the other
hand, the resolvent of this limit operator has dense range. For this second step,
one only needs to work in the limit space, which is often easier than tracking
properties of the approximating systems. Informally, the evolution theorem
can be stated as follows:

Theorem A (The evolution theorem, cf. Theorem 27). Given a (soft) inductive
system (E, j) along with approximating dynamics Tn(t) admitting generators
An. Then, we have the following equivalent characterizations of the dynamics
on the limit space E∞:
(1) The approximating dynamics Tn(t) preserves j-convergence, and the re-

sulting limit dynamics T∞(t) is strongly continuous in t.
(2) The resolvents Rn(λ) = (λ − An)−1 preserve j-convergence, and the re-

sulting limit operators R∞(λ) have dense range.
(3) There is a dense subspace of j-convergent sequences D such that (λ −

An)D is also a dense subspace of j-convergent sequences.
(4) The limit generator A∞ is well-defined and generates a strongly continu-

ous dynamics T∞(t).
We conclude that the limit dynamics T∞(t) is a strongly continuous one-
parameter semigroup with generator A∞. The latter’s domain is obtained by
acting with the limit resolvent R∞(λ) on j-convergent sequences.

The density mentioned in the third item is with respect to a natural
seminorm topology on j-convergent nets. Another important aspect is the
observation that soft inductive limits are categorically well-behaved: If the
inductive system of Banach spaces carries additional structure that is respected
by the dynamics, the same will hold in the limit. As an example, consider an
inductive system where the Banach spaces are C*-algebras, and the connecting
maps are asymptotically multiplicative and completely positive so that the
limit space is again a C*-algebra. If the dynamics is completely positive at
every scale and convergent, then the limiting dynamics will also be completely
positive.

Besides their relevance in physics, inductive limits are a major construc-
tive tool in mathematics. In particular, in the theory of operator algebras,
various interesting objects can be constructed from simple building blocks
using inductive limits [7]. For example, restricting to matrix algebras as ap-
proximating objects leads to the class of AF algebras and hyperfinite factors.
To allow for greater flexibility, generalized inductive limits have been proposed
[6] emphasizing the importance of asymptotic concepts to define the limit ob-
ject, thereby allowing for the construction of NF algebras. Only recently, it has
been shown that the asymptotic properties of generalized inductive systems
can be further relaxed, allowing for all separable nuclear C*-algebras to be
characterized by an inductive limit construction [16,17].
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Our paper is organized as follows: In Sect. 2, we introduce and discuss
the notion of j-convergence, which is a Cauchy-type criterion for sequences in
an inductive system, and use it to construct the limit space. This section deals
with inductive systems of Banach spaces, i.e., systems where the transitivity
relation jnmjml = jnl holds exactly. We show in Sect. 3 that one can relax this
criterion to an asymptotic version, which still allows for constructing the limit
space using j-convergent sequences. This relaxed transitivity is the defining
property of soft inductive systems. Instead of introducing the concepts of soft
inductive systems and that of j-convergence at once, we split them into sep-
arate chapters for pedagogical reasons. In Sect. 4, we analyze the convergence
of sequences of operations between inductive systems leading to operations be-
tween the limit spaces. This is necessary as we are ultimately interested in the
convergence of dynamics on inductive systems, which is considered in Sect. 5.
Because of its central importance to our applications, we explicitly consider
dynamics and j-convergence for (soft) inductive systems of C*-algebras with
completely positive connecting maps in Sect. 6. To illustrate our results, we dis-
cuss in detail the four examples that motivated us to analyze the convergence
of dynamics abstractly in Sect. 7 and illustrate how our abstract evolution the-
orem helps in concrete situations. In Sect. 8, we conclude by comparing our
evolution theorem with a result on the convergence of dynamics in limits of
Banach spaces by Kurtz, our notion of j-convergence with continuous fields of
Banach spaces, and soft inductive limits of C*-algebras with generalized in-
ductive limits of C*-algebras. For the convenience of the reader, we discuss the
convergence of implemented dynamics in GNS representations in Appendix A
and interchangeability of inductive limits and Lie—Trotter limits of convergent
dynamics in Appendix B.

2. Convergent Nets in Inductive Systems

An inductive system (E, j) of Banach spaces over a directed set (N,≤) is a col-
lection {En}n∈N of Banach spaces together with connecting maps {jnm}n>m

which are linear contractions jnm : Em → En, ‖jnm‖ ≤ 1, whenever n > m,
such that

jnl = jnm ◦ jml, n > m > l. (1)
For every inductive system, there is a limit space E∞ and a net of contractions
j∞n : En → E∞ such that j∞m = j∞n ◦ jnm whenever n > m. If the jnm

are isometric, it may be constructed by completing the union
⋃

n En with
respect to its natural norm. We will, however, discuss a different construction
of the limit space in terms of convergent nets. This construction has several
advantages. For example, it offers a direct description of every element of E∞
(no completion is necessary).

A net in (E, j) is a net (xn)n∈N of elements xn ∈ En. We often denote
nets in (E, j) by x•. We denote the space of uniformly bounded nets by N(E, j)
and equip it with the norm

‖x•‖N := sup
n

‖xn‖. (2)
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It is easy to see that (N(E, j), ‖ · ‖N) is again a Banach space. In fact, it is
nothing but the Banach space product Πn∈NEn. We further equip N(E, j)
with the following seminorm

~x•~ := lim
n
‖xn‖, (3)

where limn denotes the limit superior along the directed set N .
We define jnn as the identity map on En for all n ∈ N , and we set

jnm = 0 whenever n �≥ m. Given some m ∈ N and some xm ∈ Em, we define a
uniformly bounded net j•mxm in an obvious way, i.e., at index n it is equal to
jnmxm. We refer to such nets as basic nets. We say that a net is j-convergent
if it can be approximated in seminorm by basic nets, and we denote the space
of j-convergent nets by C (E, j), i.e., x• is j-convergent if

x• ∈ C (E, j) := {y• ∈ N(E, j) | y• is basic }|||·|||
. (4)

It is straightforward to check that C (E, j) is a vector space, and we equip
it with the topology induced by the seminorm. Note that this turns j•m into
linear contraction from Em to C (E, j).

Lemma 1. A net x• ∈ N(E, j) is j-convergent if and only if

lim
n�m

‖xn − jnmxm‖ = 0, (5)

where limn�m = limm limn. If x• is j-convergent, then the limit limn‖xn‖
exists (hence is equal to ~x•~).

It is clear that basic sequences x• = j•mxm always satisfy (5) since the
norm difference becomes zero for all n ≥ m. We can rewrite (5) in terms of
the seminorm as

lim
m

~x• − j•mxm~ = 0. (6)

We will later see that there is another equivalent definition, provided that the
connecting maps are (asymptotically) isometric.

Equation (6) already proves that nets satisfying (5) can be approximated
by basic nets. The converse follows from the triangle inequality: For ε > 0 pick
yl ∈ El such that ~x• − y•~ < ε where y• = j• lyl.

lim
m
|||x• − j•mxm||| ≤ lim

m
(|||x• − y•|||+ |||y• − j•mym|||+ |||j•m(xm − ym)|||)

≤ ε + 0 + lim
m
|||xm − ym||| = ε.

To see that the limit of the norms exists, note that limn‖xn‖ ≥ limn‖xn‖
follows from

0 = lim
n�m

‖xn − jnmxm‖ ≥ lim
n�m

(‖xn‖ − ‖xm‖) = lim
n
‖xn‖ − lim

m
‖xm‖. �

We say that a net x• is a (j-)null net, if ~x•~ = limn‖x•‖ = 0 and we
denote the subspace of null nets by C0(E, j). Since the zero net 0 is basic and
since ~x• − 0~ = ~x•~ = 0, all null nets are j-convergent. Two nets x• and y•
have vanishing seminorm distance if and only if (x• − y•) is a null net.
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Since the subspace C0(E, j) is the preimage of {0} under the seminorm,
it is a closed subspace of C (E, j) and we can consider the quotient space

E∞ :=C (E, j)/
C0(E, j). (7)

We will show that E∞ is the limit space of the inductive system (E, j), and we
will refer to the equivalence class of a j-convergent net x• as its (j-)limit. The
natural projection onto the quotient will be denoted by j-lim : C (E, j) → E∞
and we write

j-lim
n

xn := j-lim x• ∈ E∞, x• ∈ C (E, j). (8)

To keep notation concise, we often denote j-limit of a net x• simply by x∞.
The quotient structure induces a map j∞m from Em to E∞ by assigning to
xm the equivalence class of the basic sequence j•mxm, i.e.,

j∞mxm = j-lim
n

jnmxm. (9)

Equivalently, j∞m := j-lim ◦j•m. The seminorm induces a norm on E∞, namely

‖x∞‖ = ~x•~, x• ∈ C (E, j). (10)

The next result states that E∞ is a Banach space and that it enjoys a “universal
property” which determines it uniquely:

Proposition 2. E∞ is a Banach space with the norm defined in (10). The pair
(E∞, j∞• ) is uniquely determined up to isometric isomorphism by the following
universal property:

Let F be a Banach space, and let Tn : En → F be a net of contractions
such that Tm = Tnjnm whenever n > m, then there is a contraction T∞ :
E∞ → F such that T∞j∞n = Tn for all n.

The universal property in Proposition 2 is the usual one for inductive
limits in mathematics (sometimes also called “colimits”) [40, Ch. 2, §1]. The
universal property can even be strengthened: Under the assumption on (F, T•)
stated in the proposition, it follows that T• maps j-convergent nets to Cauchy
nets in F and the limit operator satisfies T∞j-limn xn = limn Tnxn (see Propo-
sition 13). We stress that completeness means that every element of the limit
space arises as the limit of some j-convergent sequence. This is not the case in
the standard construction where controlling elements outside the union

⋃
n En

is cumbersome. This control is, however, much needed for the discussion of
unbounded operators on E∞.

Proof. The proof of completeness of E∞ will be given under weaker assump-
tions in Sect. 3. That T• maps j-convergent nets to Cauchy nets in F fol-
lows from the estimate ‖Tnxn − jnmTmxm‖ = ‖Tn(xn − jnmxm)‖ ≤ ‖xn −
jnmxm‖. We obtain a well-defined linear contraction T∞ : E∞ → F through
T∞j-limn xn = limn Tnxn. That j∞nTn = T∞j∞n follows directly from Tnjnm =
jnmTm. �

In the case of isometric connecting maps, we have the following equivalent
definition of j-convergence in terms of the maps j∞n:
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Lemma 3. Assume that the jnm are isometric, then a net x• is j-convergent if
and only if the net j∞nxn converges in E∞.

In fact, we will prove in the next section that it suffices if the jnm are
asymptotically isometric in the sense that

lim
n�m

( inf
‖xm‖=1

‖jnmxm‖) = 1 .

Before moving on, we discuss the notions we introduced above for the
elementary example of a constant inductive system. We will see that the notion
of j-convergence becomes equivalent to being a Cauchy net.

Example 4. (Constant inductive systems) Let E be a Banach space, then the
trivial inductive system (E, id) is obtained by setting En = E and jnm = idE ,
and we also set N = N for simplicity. The space N(E, id) consists of uniformly
bounded sequences in E. Basic sequences are just constant sequences, so a
sequence (xn) is j-convergent if and only if it is approximated in seminorm by
constant sequences, which is equivalent to being Cauchy in E, i.e., being j-
convergent is equivalent to being a convergent sequence because E is complete.
In particular, we see that for a sequence (xn) condition (5) with jnm = id is
equivalent to being a Cauchy sequence, which can also be seen directly from
more elementary arguments. In standard sequence space notation, the three
space N(E, id), C (E, id) and C0(E, id) are equal to �∞(N;E), c(N;E) and
c0(N;E), respectively.

Therefore, the construction of the limit space E∞ corresponds to the
standard construction of considering first the space of Cauchy sequences and
then taking the quotient with respect to null sequences, which unsurprisingly
shows that E∞ ∼= E. In fact, this motivated the above construction for the
general case.

We collect some useful properties that we will repeatedly use later on.
The proof will be given in the next section in the more general setting of soft
inductive limits (see Lemma 12).

Proposition 5. (1) Let x• be j-convergent and let (x(α)
• )α be a net of j-convergent

nets. The following are equivalent,
(i) |||x• − x

(α)
• ||| → 0 as α →∞,

(ii) x
(α)
∞ → x∞ in E∞ as α →∞,

(iii) there are x̃
(α)
• ∈ C (E, j) such that x̃

(α)
∞ = x

(α)
∞ for all α and such

that

‖x• − x(α)
• ‖N → 0 as α →∞.

(2) For every j-convergent net x•, the net (j∞nxn)n∈N ⊂ E∞ converges to
x∞.

(3) A subspace D ⊂ C (E, j) is seminorm dense if and only if D∞ = {x∞ |
x• ∈ D} is dense in E∞.

(4) For any finite collection x
(1)
• , . . . , x

(k)
• of j-convergent sequences and any

ε > 0, there are m ∈ N and x
(1)
m , . . . , x

(k)
m ∈ Em such that |||x•

(i) − j•mx
(i)
m ||| <

ε.
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We now turn to a brief discussion of the dual notion of weak* convergence
for nets of continuous linear functionals associated with C (E, j) (cf. Sect. 7.4).
To this end, we denote the continuous duals of the Banach spaces En by E′

n,
and we denote the dual pairing between En and E′

n by 〈 · , · 〉. A net of con-
tinuous linear functionals ϕ• associated with C (E, j) is a collection {ϕn}n∈N

with ϕn ∈ E′
n.

Definition 6. A uniformly bounded net ϕ• of functionals ϕn ∈ E′
n is

j∗-convergent, if for all x• ∈ C (E, j) the limit limn〈xn, ϕn〉 exists. In this
case, x∞ �→ limn〈xn, ϕn〉 for some x• with j-limit x∞ defines a bounded lin-
ear functional ϕ∞ on E∞ with ‖ϕ∞‖ ≤ supn‖ϕn‖, which we also denote by
j∗-limn ϕn.

We have the following easy consequences of the definition.

Lemma 7. (1) Let ϕ∞ ∈ E′
∞ and set ϕn = ϕ∞ ◦ j∞m ∈ E′

n. Then, ϕ• is
j∗-convergent and j∗-limn ϕn = ϕ∞.

(2) Let ϕ• be a uniformly bounded net of continuous linear functionals. Then,
ϕ• is j∗-convergent if and only if for all m ∈ N , the nets (ϕn ◦ jnm) are
w∗-convergent in the limit n →∞. In this case,

w∗-lim
n

(
ϕn ◦ jnm

)
=

(
j∗-lim

n
ϕn

)
◦ j∞m. (11)

Nets of functionals that arise from a functional ϕ∞ on E∞ as in (1)
are called projectively consistent [64] and can equivalently be characterized as
those nets that satisfy ϕn ◦ jnm = ϕm for all n > m.

Remark 8. Given an inductive system (E, j), we may assume that each jnm is
injective because if we had xm ∈ ker jnm for some n ≥ m, the basic sequence
j•m(xm) would be null and, therefore, we would have j-limn jnm(xm) = 0.
This, in turn, would entail that we could restrict the inductive system to
Ẽm = Em/ ∪n≥m ker jnm.

3. Soft Inductive Limits

The construction of the limit space and the theory of j-convergence works in
a much more general setting if the assumptions of inductive systems are weak-
ened to what we call soft inductive systems. This weaker notion is characterized
by relaxing the equality jnl = jnmjml to an asymptotic version. Readers inter-
ested only in standard inductive systems can skip this section and may ignore
the word “soft” in subsequent sections. All results stated for inductive systems
in this paper hold in this generalized setting if not explicitly said otherwise,
and all proofs are already written to be valid in this setting.

Definition 9. A soft inductive system of Banach spaces over a directed set
(N,≤) is a tuple (E, j), where E = {En}n∈N is a family of Banach spaces and
where j = {jnm}n≥m is a collection of linear contractions such that

lim
n�m

‖(jnl − jnmjml)xl‖ = 0 ∀l ∈ N, xl ∈ El. (12)
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Standard inductive systems of Banach spaces are soft inductive systems
with the additional property that jnl = jnmjml. These will be called strict to
emphasize that they are a special case. Under these assumptions, the usual
construction of the limit space as a completion of the union fails, and the limit
space’s universal property becomes meaningless. In fact, the latter can be re-
placed by an asymptotic version much in the same way as (12) is an asymptotic
version of (1). The way of constructing the limit space via equivalence classes
of j-convergent nets will, however, still be possible by the same arguments. In
fact, we will not have to change a single word in the proofs presented in Sect. 2
as they directly apply to this generalized setting.

As in the case of strict inductive systems, we denote by N(E, j) the
Banach space of uniformly bounded nets with the sup-norm ||·||N. Basic nets are
nets of the form x• = j•mxm for some m, xm ∈ Em, where we set jmm = idEm

and jnm = 0 if n �≥ m. We now come to the importance of the assumption
(12), which can be rewritten as limm |||x• − j•mxm||| = 0 for all basic nets with
the seminorm defined as in (3). This guarantees that the proof of Lemma 1
still works and we get:

Lemma 10. Let (E, j) be a soft inductive system. Then, a net x• ∈ N(E, j)
can be approximated in seminorm by basic nets if and only if

lim
n�m

‖xn − jnmxm‖ = lim
m
|||x• − j•mxm||| = 0. (13)

As in the strict case, such nets will be called j-convergent, and the space
of j-convergent nets is denoted C (E, j). An important class of j-convergent
nets are the null nets, which are the nets such that limn‖xn‖ = 0, and we
denote the subspace of null nets again by C0(E, j). The limit space E∞ is
defined as the quotient of C (E, j) by C0(E, j) as before and equip it with the
induced norm (see Eq. (10)). The projection onto the quotient is denoted by
j-lim, and we write j-limn xn = j-lim x• and the maps j∞m : Em → E∞ are
defined by setting j∞mxm = j-limn jnmxm.

Lemma 11. Both C (E, j) and C0(E, j) are closed with respect to the ||·||N-norm
topology and the Banach space quotient is isometrically isomorphic to E∞, i.e.,

(C (E,j),||·||N)/(C0(E,j),||·||N) ∼= E∞. (14)

In particular, E∞ is a Banach space, and the norm is given by

‖x∞‖ = ~x•~ = inf
y•∈C0(E,j)

‖x• + y•‖N, x• ∈ C (E, j). (15)

Proof. Suppose x
(α)
• is a ||·||N-Cauchy sequence in C (E, j) and let x• be its

limit in N(E, j). Then, x• ∈ C (E, j) follows from

lim
n�m

‖xn − jnmxm‖ ≤ lim
n�m

(
‖xn − x(α)

n ‖N + ‖x(α)
n − jnmx(α)

m ‖

+ ‖jnm(xm − x(α)
m )‖

)

≤ 2‖x• − x(α)
• ‖ α→∞−−−−→ 0.
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Now suppose that x
(α)
• are all null nets. Then, limn ‖xn‖ ≤ limn

(
‖xn − x

(α)
n ‖+

‖x(α)
n ‖

)
≤ ‖x• − x

(α)
• ‖ → 0 and thus x• ∈ C0(E, j).

To show the norm equality, let x• ∈ C (E, j) and define a net y
(m)
• ∈

C0(E, j) by setting y
(m)
n = −xn if n < m and y

(m)
n = 0 else. We have

‖x∞‖= lim
n

‖xn‖= lim
m

sup
n>m

‖xn‖= lim
m

‖x• − y(m)
• ‖N≥ inf

y• ∈C0(E,j)
‖x• + y•‖

and thus

‖x∞‖ ≥ inf
y•∈C0(E,j)

‖x• + y•‖N ≥ inf
y•∈C0(E,j)

~x• + y•~ = ~x•~ = ‖x∞‖.

�

Lemma 12. Proposition 5 holds for soft inductive systems.

Proof. (1): The equivalence of (i) and (ii) is obvious since ‖x∞ − x
(α)
∞ ‖ =

|||x• − x
(α)
• ||| and it is clear that (iii) implies (i). To show (i) implies (iii), we

define the net x̃
(α)
• as follows:

x̃(α)
n :=

{
xn − |||x• − x

(α)
• ||| xn−x(α)

n

‖xn−x
(α)
n ‖ , if x

(α)
n �= xn

xn, if x
(α)
n = xn

.

This definition clearly guarantees that x̃
(α)
∞ = x

(α)
∞ and ‖xn−x

(α)
n ‖≤ |||x•−x

(α)
• |||,

which goes to zero as α →∞ but is independent of n.
(2): This follows immediately from (5) because limm‖x∞ − j∞mxm‖ =

limn�m‖xn − jnmxm‖ = 0.
(3): Observe that D∞ = j-limD. Since the projection of a dense subspace

onto a quotient is dense, this shows that density of D implies density of D∞.
For the converse, let x• ∈ C (E, j) be given. Then, by the density of D∞, there
are x

(α)
• so that x

(α)
∞ → x∞. But this implies that |||x•x

(α)
• ||| = ‖x∞ − x

(α)
∞ ‖ → 0

and thus that density of D∞ implies density of D.
(4): Pick basic sequences j•mi

xmi
such that |||x(i)

• − j•mi
xmi

||| < ε/2.
Now pick m large enough so that |||j•mi

xmi
− j•mjmmi

xmi
||| < ε/2 for all

i = 1, . . . , k. We set x
(i)
m = jmmi

xmi
, and the claim follows from the trian-

gle inequality. �

The limit space of a soft inductive system satisfies the following universal
property.

Proposition 13. Let (E, j) be a soft inductive system of Banach spaces, and let
F be another Banach space. Let T• be a net of linear contractions Tn : En → F
which maps j-convergent nets to Cauchy nets in F , then there is an operator
T∞ : E∞ → F such that T∞(j-limn xn) = limn Tn(xn).

This is a special case of a general result on the convergence of opera-
tions between inductive systems (see Proposition 22). The importance of this
property is that it uniquely determines the limit space E∞ and the maps j∞• :
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Proposition 14. Let (E, j) be a soft inductive system of Banach spaces. Let
Ẽ∞ be a Banach space and let j̃∞n : En → Ẽ∞ be linear contractions, such
that limn‖(j̃∞njnm − j̃∞m)xm‖ = 0 for all xm ∈ Em. Then, j̃-lim : C (E, j) →
Ẽ∞, x• �→ j̃-limn xn = limn j̃∞nxn is a linear contraction. If Proposition 13
holds for Ẽ∞ and j̃-lim, then there is an isometric isomorphism ψ : E∞ → Ẽ∞
such that ψ ◦ j∞n = j̃∞n.

The isomorphism ψ is simply given by j-limn xn �→ j̃-limn xn.
We claim that for any x• ∈ C (E, j), the limit j̃-limn xn := limn j̃∞nxn

exists in F . This follows from

lim
n�m

‖j̃∞nxn − j̃∞mxm‖ = lim
n�m

‖j̃∞n(xn − jnmxm)‖

+0 ≤ lim
n�m

‖xn − jnmxm‖ = 0.

It is also clear that for any two x•, y• ∈ C (E, j) with ~x• − y•~ = 0 we get
j̃-limn xn = j̃-limn yn (just check that j̃-limn zn = 0 for all z ∈ C0(E, j)).

Consider the nets j∞n : En → E∞ and j̃∞n : En → E∞ which take
j-convergent nets to Cauchy nets and apply the universal properties of Ẽ∞
and E∞, respectively. Therefore, there are contractions j∞∞ : Ẽ∞ → E∞ and
ψ := j̃∞∞ : E∞ → Ẽ∞, such that

j∞∞(j̃-lim
n

xn) = lim
n

j∞nxn = j-lim
n

xn and j̃∞∞(j-lim
n

xn) = j̃-lim
n

xn.

Therefore, ψ is an isometric isomorphism between E∞ and Ẽ∞. It remains to
be shown that j̃∞n is equal to j∞n up to this isomorphism. This follows from

ψ(j∞mxm) = ψ(j-lim
n

jnmxm) = j̃-lim
n

jnmxm = lim
n

j̃∞njnmxm = j̃∞mxm. �

Remark 15. Only the asymptotic properties of the connecting maps jnm and
the spaces En matter for the structure of the limit space (see also Proposition
18). One can even relax the assumption that all En are Banach spaces and
just assume a soft inductive system of normed spaces. In this case, the limit
space will automatically be complete, i.e., a Banach space, and it agrees with
the limit space of the system of Banach spaces that is obtained by completion
of the normed spaces and continuous extension of the connecting maps.

Lemma 16. Assume that the connecting contractions jnm are asymptotically
isometric in the sense that

lim
n�m

λnm = 1, λnm = inf
xm∈Em
‖xm‖=1

‖jnmxm‖. (16)

Then, a net x• is j-convergent if and only if limn j∞nxn exists (and one has
j-limn xn = limn j∞nxn).1

Proof. The “only if” part holds for all soft inductive systems. For the converse,
assume that the limit limn j∞nxn exists. Now (16) implies that limm‖xm‖ =
limn�m‖jnmxm‖. We find that

1The assumption of asymptotic isometricity cannot be dropped: Let E be a normed space,
and set En = E, jnm = m

n
· idE for n > m ∈ N. Then C (E, j) = C0(E, j), E∞ = {0} and

j∞ n = 0. Thus, j∞ nan converges for all a• ∈ N(E, j).
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lim
n�m

‖xn − jnmxm‖ ≤ lim
n�m

‖j∞n(xn − jnmxm)‖

≤ lim
n�m

‖j∞nxn − j∞mxm‖

+ lim
n�m

‖j∞mxm − j∞njnmxm‖ = 0.

The first term is zero since we assumed j∞nxn to be Cauchy, and the second
one vanishes (already in the limit n → ∞) because basic sequences satisfy
(13). �

Remark 17. If the directed set N is countable and all Banach spaces En are
separable, then so is E∞. This can be seen by noting that a collection of a
countable total subset {x(n)

i | i ∈ N} in each En gives us a countable subset
{j•na

(i)
i |i ∈ N, n ∈ N} ⊂ C (E, j) with seminorm-dense span.

We are interested in the degree to which the notion of j-convergence and
the limit space depend on the explicit choice of connecting maps jnm.

Proposition 18. Let {En}n∈N be a family of Banach spaces indexed by a di-
rected set N and let jnm, j̃nm : En → Em be two families of connecting maps
so that (E, j) and (E, j̃ ) both are soft inductive systems. The following are
equivalent
(1) j-convergence is equivalent to j̃-convergence, i.e. C (E, j) = C (E, j̃ ).
(2) For all l and xl ∈ El, one has

lim
n�m

‖(jnmj̃ml − jnl)xl‖ = lim
n�m

‖(j̃nmjml − j̃nl)xl‖ = 0. (17)

In this case, the limit spaces of both inductive systems are isometrically iso-
morphic via the identification

j-lim
n

xn ←→ j̃-lim
n

xn. (18)

If one constructs the limit space as in (7), then they are even equal (not just
isomorphic).

Proof. (1) is equivalent to jnm and j̃nm defining the same notion of conver-
gence. This is, in turn, equivalent to j-convergence of all j̃-basic nets and
j̃-convergence of all j-basic nets, which is precisely the condition (2).

The second part is clear: Both the j-convergent and null nets are the same
for both systems so that the quotients C (E, j)/C0(E, j) and C (E, j̃ )/C0(E, j̃ )
agree. �

Equipped with this, we briefly discuss the notion of a split inductive
system. This is an extra structure that singles out a j-convergent net for every
point of the limit space. This structure is present in several of the examples
that we discuss in Sect. 7 and does not trivialize in the case of strict systems.

Definition 19. A split inductive system (E, j, s) is soft inductive system (E, j)
together with a linear contraction s• : E∞ → C (E, j) so that j-limn sn(y) = y
for all y ∈ E∞, i.e., s• is a right inverse of j-lim : C (E, j) → E∞.

We have the following application of Proposition 18:
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Corollary 20. Let (E, j, s) be a split inductive system and define new connect-
ing maps j̃nm = j∞n ◦ sn. Then, (E, j̃ ) is a soft inductive system, and the
notions of j-convergence and j̃-convergence are equivalent (hence they define
the same limit space). Furthermore, the following stronger version of (12)
holds for the j̃-maps

lim
m

sup
n
‖(j̃nl − j̃nmj̃ml)xl‖ = 0 ∀l ∈ N, xl ∈ El. (19)

A natural way to obtain a split inductive system is the following2: Sup-
pose that we are given a net of Banach spaces En a space E∞ and nets of
contractions in : En → E∞ and pn : E∞ → En so that in ◦ pn → idE∞
strongly. Then, we obtain a soft inductive system by setting jnm = pn ◦ im. In
fact, (E, j, p) is a split inductive system, and by Corollary 20, all split inductive
systems are essentially of this form.

4. Nets of Operations on Inductive Systems

The universal property of the limit space of a strict inductive system can
be regarded as a convergence result for certain operations. But if we regard
it as such, the assumption Tnjnm = jnmTm for all n > m is unnecessarily
restrictive. We will now define convergence for nets of operators between two
inductive systems (E, j) and (Ẽ, j̃ ), but we will almost exclusively work with
the cases where either both are the same system or one is constant (as in
Example 4). Whenever we consider two inductive systems, we assume they
are defined w.r.t. the same directed set. All definitions, statements, and proofs
given in this section also apply to the broader class of soft inductive systems
introduced in the previous section.

Definition 21. Let (E, j) and (Ẽ, j̃ ) be inductive systems and let T• be a uni-
formly bounded net of linear operators Tn : En → Ẽn. We say that T• is
jj̃-convergent if it maps j-convergent nets to j̃-convergent nets, i.e., if for ev-
ery x• ∈ C (E, j) one has T•x• ∈ C (Ẽ, j̃ ).

In the case that (Ẽ, j̃ ) = (E, j), this jj-convergence means holds if and
only if T• preserves j-convergence. It follows that there always is a well-defined
limit for such operations, which is an operator between the limit spaces.

Proposition 22. Let (E, j) and (Ẽ, j̃ ) be inductive systems, and let T• be an
jj̃-convergent net of operators. Then, there is linear operator T∞ : E∞ → Ẽ∞,
such that

T∞
(
j-lim

n
xn

)
= j̃-lim

n
Tnxn, x• ∈ C (E, j). (20)

Its norm is bounded by ‖T∞‖L(E∞,Ẽ∞) ≤ limn‖Tn‖L(En,Ẽn).

2This is the abstract version of the soft inductive system that we will use for the classical
limit in Sect. 7.1. Here the limit space is a space of functions on the classical phase space,
and the maps i and p are suitable quantization and dequantization maps.
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Proof. Well-definedness follows from uniform boundedness of the net T•: If x•

and y• are j-convergent with the same limit, then ‖j-limn Tnxn−j-limn Tnyn‖ ≤
limn‖Tn‖‖xn− yn‖ = 0. The norm bound is also immediate: ‖T∞j-limn xn‖ =
limn‖Tnxn‖ ≤ limn‖Tn‖‖xn‖ = limn‖Tn‖‖j-limn xn‖. �

Proposition 13, which states that (E∞, j∞• ), satisfies the universal prop-
erty of the limit space, follows as the special case where (Ẽ, j̃ ) = (F, idF ) is a
constant inductive system. Another application is the notion of j∗-convergence
discussed in Definition 6 which is jj̃-convergence if (Ẽ, j̃ ) = (C, id). One can
view jj̃-convergence as a generalization of strong convergence:

Example 23. Let (E, idE) and (F, idF ) be constant inductive systems. Then,
a uniformly bounded sequence of operators Tn : E → F is idE idF -convergent
if and only if it is strongly convergent and the limit T∞ is the strong limit.

Another special case of jj̃-convergence is the convergence of operations
Tn : En → Ef(n), which change the index within a fixed inductive system.
This allows for greater flexibility in describing operations on the limit space
(see, for example, Sect. 7.5). If f : N → N is a monotone cofinal mapping, i.e.,
n ≤ m =⇒ f(n) ≤ f(m) and limn f(n) = ∞, then we obtain a soft inductive
system by setting Ẽn = Ef(n) and j̃nm = jf(n)f(m). The limit space of this
inductive system (Ẽ, j̃ ) is canonically isomorphic to E∞. Thus, a jj̃-convergent
net of operations defines an operation T∞ on E∞.

When it comes to proving jj̃-convergence, we have the following criterion:

Lemma 24. Let (E, j) and (Ẽ, j̃ ) be inductive systems, and let T• be a uni-
formly bounded net of linear operators Tn : En → Ẽn.
(1) If T• maps j-basic sequences to j̃-convergent sequences, if and only if it

is jj̃-convergent.
(2) T• is jj̃-convergent if and only if

lim
n�m

‖(j̃nmTm − Tnjnm)xm‖ = 0 ∀x• ∈ C (E, j). (21)

(3) If T• is jj̃-convergent and S• is a j̃ĵ-convergent net of uniformly bounded
operators from (Ẽ, j̃ ) to an inductive system (Ê, ĵ), then the composition
S•T• is jĵ-convergent and (ST )∞ = S∞T∞.

Proof. (3) is clear. (1): We assume that T• maps basic sequences to j-convergent
ones and set M = supn‖Tn‖L(En,Ẽn). Let x• be j-convergent. For ε > 0, pick
a basic net y• such that ~x• − y•~ < ε, then

limm |||T•x• − j•mTmxm||| ≤ M |||x• − y•|||+ limm |||y• − j•mTmxm|||
+ M limm ‖xm − ym‖ < 2Mε.

(2) Assume T• to be jj̃-convergent, then

lim
n�m

‖(j̃nmTm − Tnjnm)xm‖

≤ lim
n�m

(‖Tnxn − j̃nmTmxm‖+ ‖Tn‖‖xn − jnmxm‖) = 0.
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For the converse, we have

lim
n�m

‖Tnxn − j̃nmTmxm‖ ≤ lim
n�m

‖Tn‖‖xn − jnmxm‖+ 0 = 0.

�

The universal property of the soft inductive limit space follows from
Proposition 22 as the special case with a constant inductive system.

Let us assume that we have a, say, isometric action of a group G on each
Banach space En. If the action preserves j-convergence (i.e. if x• �→ g ·x• is jj-
convergent), then the limit operations form an action of G on E∞. Actually, the
same holds if G is just a semigroup. If the group action is strongly continuous
with respect to some topology on G, then we would want the same to hold
for the limiting action. In the one-parameter case, we will reduce the problem
to studying the convergence properties of the infinitesimal generators. This
requires generalizing jj-convergence to nets of unbounded operators:

Definition 25. Let (E, j) and (Ẽ, j̃ ) be inductive systems, and let A• be a net
of unbounded operators An : D(An) → Ẽn, D(An) ⊂ En. We define the net
domain of A• as

D(A•) := {x• ∈ C (E, j) | xn ∈ D(An), A•x• ∈ C (Ẽ, j̃ ) }. (22)

We say that A∞ is well-defined if j-limn A•x• is the same for all x• ∈ D(A•)
with the same j-limit. In this case, we define the limit operator on D(A∞) =
{j-limn xn | x• ∈ D(A•)} by

A∞ : E∞ ⊃ D(A∞) → Ẽ∞, A∞(j-lim
n

xn) := j-lim
n

Anxn. (23)

Observe that the well-definedness of T∞ is always guaranteed for a net
of contractions T• and that T• is jj̃-convergent if and only if D(T•) = C (E, j).

Lemma 26. Let (E, j) be an inductive system and let A• be a net of operators
An : D(An) → En. Then,
(1) A∞ is well-defined if and only if for all x• ∈ D(A•) with limn‖xn‖ = 0

we have limn‖Anxn‖ = 0,
(2) if all An are closed operators, then Γ∞ = {j-limn xn ⊕ j-limn Anxn |

x• ∈ D(A•)} is a closed subspace of E∞ ⊕ E∞.
(3) Assume that there is a w∗-dense subset of the dual space E∗

∞ which arises
as limits of j∗-convergent sequences ϕ• with the properties that ϕn ∈
D(A∗

n) and that A∗
• ϕ• is j∗-convergent. Then, A∞ is well-defined.

Now assume that A∞ is well-defined. Then
(4) A∞ is densely defined if and only if D(A•) is seminorm dense in C (E, j).
(5) if all An are closable, then A∞ is a closed operator,
(6) if for each n, Dn is a core for An, then every x∞ ∈ D(A∞) is the j-limit

of an x• ∈ D(A•) such that xn ∈ Dn for all n.

Proof. Denote the graph of An by Γn ⊂ En⊕En, and by ‖ · ‖An
the restriction

of the norm on En ⊕ En to Γn, i.e., ‖xn‖An
= ‖xn‖+ ‖Anxn‖.
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(1): This is immediate because the difference of two nets in D(A•) with
the same limit is an element of D(A•) such that j-limn xn = 0.

(2): We will show that Γ∞ is complete by proving that every absolutely
summable series converges in Γ∞ [58, Thm. III.3], which will follow from the
same property for all Γn. Let x

(k)
∞ ⊕ y

(k)
∞ ∈ Γ∞ be an absolutely summable

sequence, i.e.,
∑

k‖x
(k)
∞ ⊕ y

(k)
∞ ‖E∞⊕E∞ < ∞. We can pick x

(k)
• ∈ D(A•) so

that j-limn x
(k)
n = x

(k)
∞ , j-limn Anx

(k)
n = y

(k)
∞ and ‖x(k)

n ⊕ Anx
(k)
n ‖En⊕En

=

‖x(k)
∞ ⊕ y

(k)
∞ ‖E∞⊕E∞ . Then, the series

∑
k(x(k)

n ⊕ Anx
(k)
n ) is absolutely and

hence converges to some x
(∞)
n ⊕ Anx

(∞)
n ∈ Γn. We claim that x

(∞)
• ∈ D(A•)

and that
∑

k(x(k)
∞ ⊕ y

(k)
∞ ) = x

(∞)
∞ ⊕ j-limn(Anx

(∞)
n ). This follows from the fact

that these series approximate their limits uniformly in the index n.
(3): Let x• ∈ D(A•) converges to zero, then

‖j-lim
n

Anxn‖ = sup lim
n
|〈Anxn, ϕn〉|

= sup lim
n
|〈xn, A∗

n(ϕn)〉| = sup|〈x∞, j∗-lim
n

An(ϕn)〉| = 0

where the supremum is over all nets ϕ• with ‖j∗-limn ϕn‖ = 1 which satisfy
the specified assumptions.

(4): This follows item (3) of Proposition 5.
(5): Follows from item (2).
(6): Let εn ↘ 0 as n → 0 and let x• ∈ D(A•). Pick for each n a yn ∈ Dn

such that ‖xn−yn‖An
< εn. Then limn�m‖yn− jnmym‖ ≤ limn�m(εn +εm +

‖xn − jnmxm‖) = 0, i.e., y ∈ C (E, j) and ‖x∞ − y∞‖ < limn εn = 0. One gets
A•y• ∈ C (E, j) by a similar argument. �

5. Dynamics on Inductive Systems

We say that {T (t)}t≥0 is a dynamical semigroup on a Banach space E if it
is a strongly continuous one-parameter semigroup such that each T (t) is a
contraction. The generator of a dynamical semigroup is the closed dissipative
operator:

Ax = lim
t↘0

T (t)x− x

t
, D(A) =

{
x ∈ E

∣
∣ t �→ T (t)x is in C1(R+, E)

}
. (24)

The resolvents of the generator are the operators R(λ) = (λ−A)−1, λ ∈ C with
Re λ > 0, they are an important tool in the theory of dynamical semigroups
and enjoy many nice properties, e.g., they are analytic in λ and one has D(A) =
Ran R(λ). For an introduction to dynamical semigroups, we refer the reader
to [30].

Consider now a dynamical semigroup Tn(t) on each Banach space En of
an inductive system (E, j) and let An be the net of generators. We will need
the notion of the net domain for nets of unbounded operators introduced in
Definition 25. The main result of this section is the following theorem, which
relates j-convergence preservation of the semigroups to a type of convergence
of the infinitesimal generators and j-convergence preservation of the resolvents.
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It can be regarded as a generalization of the Trotter–Kato approximation the-
orems, to which our result reduces in the case of a constant inductive system.

Theorem 27. Let (E, j) be an inductive system and let T•(t) be a net of dy-
namical semigroups with A• the corresponding net of generators. Let λ ∈ C be
such that Re λ > 0. The following are equivalent:
(1) T•(t) is jj-convergent and the limit operators T∞(t) are strongly contin-

uous in t.
(2) The net R•(λ) of resolvents Rn(λ) = (λ−An)−1 is jj-convergent and the

limit operation R∞(λ) has dense range.
(3) There is a seminorm dense subspace D ⊂ D(A•) such that (λ − A•)D is

also seminorm dense.
(4) A∞ is well-defined, hence closed, and generates a dynamical semigroup.

If these hold, the limit operations T∞(t) form a strongly continuous one-
parameter semigroup, and their generator is A∞. Furthermore, the net domain
is given by D(A•) = R•(λ)C (E, j) and the limits R∞(λ) of the resolvents are
the resolvents of A∞. In particular, these claims hold for some λ if and only
if they hold for all λ.

If one only assumes that all T•(t) are jj-convergent, then it still follows
that T∞(t) is a one-parameter semigroup. This is because T•(t)T•(s) = T•(t+s)
holds as an equation of operators acting C (E, j).

Let us discuss some consequences of this theorem. In the case where one
already has a candidate for the semigroup on the limit space and is interested
in showing that the dynamics converge, we have the following criterion:

Corollary 28. Let T• be a net of dynamical semigroups and let A• be the net of
generators. Let S(t) be a dynamical semigroup on E∞ with generator B and
let D∞ be a core for B. Suppose that there is a D ⊂ D(A•) with j-limD =
D∞, such that j-limn Anxn = B(j-limn xn) for all x• ∈ D. Then, T•(t) is
jj-convergent, A∞ = B and T∞(t) = S∞(t).

Proof. We check item (3) of Theorem 27. D is seminorm dense because D∞
is dense in E∞ (see Proposition 5). Similarly, [(λ − A•)D]∞ = (λ − B)D∞ is
dense because D∞ is a core for B. �

Before we come to the proof, we briefly discuss the analogous theorem
for uniformly continuous semigroups. I.e., for semigroups so that T (t) depends
continuously on t in the operator norm topology of L(E). For such semigroups,
the generator is always bounded, and the semigroup is equal to the exponential
series T (t) = etA. For example, the convergence of this series and j-convergence
preservation of A• implies j-convergence preservation of the semigroup under
the right assumptions.

Corollary 29. Let T• be a net of uniformly continuous dynamical semigroups,
and let A• be the net of generators. The following are equivalent
(1) T•(t) is jj-convergent for all t ≥ 0 and T∞(t) is a uniformly continuous

semigroup,
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(2) A• is jj-convergent.
In this case, it holds that T∞(t) = etA∞ .

Proof of Theorem 27. For the proof, we introduce two additional statements
(1′) For all t ≥ 0, T•(t) is jj-convergent and {x• ∈ C (E, j) | xn ∈ D(An),

‖A•x•‖N < ∞} is seminorm dense in C (E, j).
(2′) The resolvents R•(μ) are j-convergent for all μ with Reμ > 0 and the

range of R∞(μ) is dense for all μ.
We will show the following implications

(1) (2′) (4)

(1′) (2) (3)

(1) ⇒ (2′): We use the integral formula for the resolvent Rn(λ) =∫ ∞
0

e−λtTn(t) dt [30, Ch. II] and get

|||R•(λ)x• − j•mRm(λ)xm||| ≤
∫ ∞

0

e−Reλt|||T•(t)x• − j•mTm(t)xm||| sd

for j-convergent x• because of dominated convergence (for exchanging the limit
in the definition of the seminorm with the integral). Applying dominated con-
vergence again to the limit in m and using that T• is jj-convergent shows that
R•(λ) also is. This argument works for all λ.

Similar to the above one can check that the integral formula and the
resolvent formula remain valid for the limits, i.e., R∞(λ) =

∫ ∞
0

e−λtT∞(t) dt
and R∞(λ) − R∞(μ) = (μ − λ)R∞(λ)R∞(μ). The resolvent formula shows
that the range of R∞(λ) is independent of λ. We can now approximate any
x∞ ∈ E∞ by elements of the form λR∞(λ)x∞ with λ > 0:

‖x∞ −R∞(λ)‖ ≤
∫ ∞

0

λe−λt‖x∞ − T∞(t)x∞‖dt.

The density of RanR∞(λ) is equivalent to the density of the range of
R•(λ) as an operator on C (E, j). From the resolvent equation R•(λ)−R•(μ) =
(μ− λ)R•(λ)R•(μ), it follows that this range is independent of λ. We can now
approximate any x• ∈ C (E, j) by λR•(λ)x• with large λ > 0:

lim
λ→∞

~x• −R•(λ)~ ≤ lim
λ→∞

lim
n

∫ ∞

0

λe−λt‖xn − Tn(t)xn‖dt

= lim
λ→∞

∫ ∞

0

e−t‖x∞ − T∞(t/λ)x∞‖dt = 0

where we used dominated convergence (twice) and strong continuity of T∞(t).
In particular, it also follows that R∞ satisfies the resolvent equation.

(2′) ⇒ (1′): We use the following formula [37, Ch. X§1.2] valid for dy-
namical semigroups

‖Tn(t)xn − (t/k)Rn(t/k)k
xn‖ ≤

t2

2k
‖A2

nxn‖, xn ∈ D(A2
n), k ∈ N.
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By assumption (t/k)Rn(t/k)k
x• is j-convergent for all j-convergent x• and the

right-hand side is uniformly bounded if x• ∈ R•D(A•). Therefore, T•(t) pre-
serves j-convergence of x• in D = R•(λ)D(A•). It remains to be shown that this
subspace is seminorm dense. This will then automatically show density of the
subspace {x• ∈ C (E, j) | xn ∈ D(An), ‖A•x•‖N < ∞}. It is straightforward to
see that D(A•) = R•(λ)C (E, j) and hence that D = R•(λ)2C (E, j). Therefore
the seminorm density of D(A•) is guaranteed by the assumption of the density
of the range of R∞(λ). Now let x• ∈ C (E, j) and ε > 0. Pick a y• ∈ D(A•) such
that ~x• − y•~ < ε

2 . Then, we can pick a λ > 0 such that ~y• − λR•(λ)y•~ < ε
2

with z• = λR•(λ)x• ∈ D, we have ‖x• − z•‖ ≤ ‖x• − y•‖ + ‖y• − z•‖ < ε. This
shows that D is dense.

(1′) ⇒ (1): By assumption, it suffices to show strong continuity on the
dense subspace D∞ of j-limits of nets in D = {x• ∈ C (E, j) | xn ∈ D(An),
‖A•x•‖N < ∞}. Let x• ∈ D. We use the formula Tn(t)xn = xn+

∫ t

0
Tn(s)Anxn ds

to get the estimate

‖Tn(t)xn − xn‖ ≤
∫ t

0

‖Tn(s)Anxn‖ ds ≤ t‖A•x•‖N ∀n.

Since the right-hand side goes to zero as t → 0, we obtain ~T•(t)x• − x•~ =
‖T∞(t)x∞ − x∞‖ → 0 and hence strong continuity of T∞(t).

(2′) ⇒ (4): It is straightforward that the limits R∞(λ) satisfy the resol-
vent equation R∞(λ)−R∞(μ) = (μ− λ)R∞(λ)R∞(μ). This implies that the
range of R∞(λ) is independent of λ (and dense by assumption). Such fami-
lies of operators are well-studied under and are usually called “pseudoresol-
vents” (see [30, Ch. III, 4.6]). In fact, it follows that there is a closed operator
B : E∞ ⊃ D(B) → E∞ with D(B) = Ran R∞(λ) and R∞(λ) = (λ − B)−1.
We can use this to prove well-definedness of A∞ (in the sense of Definition
25): For x• ∈ D(A•) with j-limn xn = 0, we have

j-lim
n

Anxn = j-lim
n

(λ−An)xn

= (λ−B)R∞(λ)j-lim
n

(λ−An)xn

= (λ−B)j-lim
n

Rn(λ)(λ−An)xn

= (λ−B)j-lim
n

xn = 0.

It is readily checked that we have D(A•) = R•(λ)C (E, j) and this implies that
D(A∞) = Ran R∞(λ) = D(B). This can now be used to show that A = B, by
considering

BR∞(λ)j-lim
n

xn = (1 + λR∞(λ))j-lim
n

xn

= j-lim
n

(xn + λRn(λ)xn)

= j-lim
n

AnRn(λ)xn

= A∞R∞(λ)j-lim
n

xn

We can now use the Lumer–Phillips theorem [30, Ch. III, Thm. 3.15] to prove
that A∞ = B∞ generates a dynamical semigroup. Since we already now that
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Ran(λ − A∞)−1 = Ran R∞(λ) is dense, we only have to show that A∞ is
dissipative, i.e., that ‖(λ−A∞)x∞‖ ≥ λ‖x∞‖. This follows from dissipativity
of all An as for any x• ∈ D(A•) we find ‖(λ−An)xn‖ ≥ λ‖xn‖ and taking the
limit n →∞ shows the desired inequality.

(4) ⇒ (3): Put D = D(A•) which is seminorm dense because D∞ =
D(A∞) is dense by assumption. Then D∞ = Ran R∞(λ) where R∞(λ) is the
resolvent of A∞.

(3) ⇒ (2): Let x• ∈ C (E, j) be a net in the dense subspace (λ − A•)D
and let y• ∈ D be so that x• = (λ − A•)y•. Then R•(λ)x• = y• ∈ C (E, j).
Since the subspace we chose x• from is seminorm dense, this shows that R•(λ)
is jj-convergent. Furthermore, R•(λ)C (E, j) is dense because it contains the
dense subspace R•(λ−A•)D = D.

(2) ⇒ (2′): Let x• be j-convergent and let μ be so that |λ − μ| < Re λ.
Then, the series expansion

Rn(μ)xn = Rn(λ)(1 + (μ− λ)Rn(λ))−1xn = Rn(λ)
∞∑

k=0

[(μ− λ)Rn(λ)]kxn

converges uniformly in n. Therefore, R•(μ)x• is approximated by j-convergent
nets in the ‖·‖N-norm and hence is itself j-convergent. By iterating the ar-
gument, we find that j-convergence holds for all μ in the right half-plane of
C. �

In applications, there might be symmetries that are not present on the
spaces En but emerge in the limit. An example is the translation symmetry of
L2(R) viewed as the inductive limit of the spaces L2(I) where I ⊂ R are finite-
length intervals (ordered by inclusion with the obvious embeddings between
the L2-spaces). Nevertheless, it can make sense to approximate the generator
of such a symmetry by operators that do not generate anything (yet).

Recall that an operator A is called dissipative, if for all λ > 0,

‖(λ−A)y‖ ≥ λ‖y‖ ∀y ∈ D(A). (25)

All generators of dynamical semigroups are dissipative. In fact, a dissipative
operator A generates a dynamical semigroup if and only if Ran(λ − A)−1 is
dense (this is the Lumer–Phillips theorem [30, III, Thm. 3.15]).

Corollary 30. Let A• be a net of dissipative closed operators. Let D ⊂ D(A•) be
seminorm dense in C (E, j) and assume that (λ−A•)D is also seminorm dense.
Then, A∞ is well-defined, dissipative, and generates a dynamical semigroup.
Furthermore, the resolvents R•(λ) are jj-convergent for all λ with Re λ > 0
and R∞(λ) = (λ−A∞)−1.

Proof. We can proceed as in the proof of Theorem 27. The arguments used for
the implications (3) ⇒ (2) ⇒ (4) still work under our assumptions. �

It is not hard to see that Theorem 27 is stable under perturbations of the
generators by jj-convergent nets of operators. In fact, we can even allow for
certain unbounded perturbations. To state the conditions, we recall the notion
of relative boundedness. A linear operator B : D(B) → F on a Banach space
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F is A-bounded with respect to an operator A : D(A) → F , if D(A) ⊂ D(B)
and if there are constants a, b > 0 such that

‖By‖ ≤ a‖Ay‖+ b‖x‖ ∀y ∈ D(A). (26)

The infimum a0 over constants a > 0 such that there is an b > 0 for which
(26) holds is called the A-bound of B. The classical perturbation result that
we will make use of is the following: Let T (t) be a dynamical semigroup with
generator A, and let B be a dissipative A-bounded operator with A-bound
a0 < 1, and then, A + B generates a dynamical semigroup.

Proposition 31. Let T•(t) be a net of dynamical semigroups which is convergent
in the sense of Theorem 27, and let A• be the net of generators. Let B• be a
net of dissipative operators such that
• D(B•) ⊃ D(A•). In particular, D(Bn) ⊃ D(An) for all n,
• there are a < 1 and b > 0, such that

‖Bnxn‖ ≤ a‖Anxn‖+ b‖xn‖ ∀n, xn ∈ En. (27)

Let Sn(t) be the dynamical semigroup generated by An + Bn. Then the net
S•(t) of semigroups converges in the sense of Theorem 27 and the generator of
S∞(t) is A∞ + B∞.

Proof. We will check condition (4) of Theorem 27. We define Cn = An + Bn

on D(Cn) = D(Bn). The assumption D(B•) ⊃ D(A•) implies D(C•) = D(A•),
D(A∞) = D(C∞) and D(B∞) ⊃ D(A∞). We check well-definedness of C∞:
Let x• ∈ D(C•) such that x∞ = 0, then limn‖Cnxn‖ ≤ limn(‖Anxn‖ +
‖Bnxn‖) ≤ (1 + a)‖A∞x∞‖ + b‖x∞‖ = 0. Finally, the relative-boundedness
inequality (27) carries over to the limit space by simply taking limits with
x• being a j-convergent net in D(A•). In particular, we know that C∞ =
A∞ + B∞. Now the standard perturbation theorem for dynamical semigroups
[30, III, Thm. 2.7] implies that C∞ = A∞ + B∞ generates a dynamical
semigroup. �

We can also use the technique of analytic vectors on E∞ to ensure the
existence of the limit dynamics. This follows from the easy Lemma:

Lemma 32. Let A• be a net of closed dissipative operators and assume that
there is a seminorm-dense space D ⊂ D(A•) of nets which are analytic in
seminorm in the sense that for each x• ∈ D there exists a t > 0 so that

∑

k∈N

tk ~Ak
• x•~

k!
< ∞. (28)

If A∞ is well-defined, then A∞ is a closed dissipative operator on E∞ and
D∞ = j-lim(D) ⊂ D(A∞) is a dense set of analytical vectors.

In many situations, a dense subset of analytic vectors implies that A∞
generates a semigroup of contractions (see, e.g., [9, Prop. 3.1.18 – 3.1.22], [49]
or [57]).

Another application of Theorem 27 is the following Trotter–Kato-type
result, which provides sufficient conditions for interchanging the inductive limit
with an approximation of the dynamics at each scale.
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Proposition 33. Let (I,≤) be a directed set, and let T
(α)
• (t), α ∈ I, be a net

of dynamical semigroups on (E, j) such that

• for each α, T
(α)
• (t) converges in the sense of Theorem 27,

• for each n, T
(α)
n (t) converges strongly to a dynamical semigroup Tn(t) in

the α-limit,
• there exists a seminorm dense subspace D ⊂ D(A(α)

• ) for all α such that
xn ∈ D(An) for all n, x• ∈ D and

lim
α

~A(α)
• x• −A•x•~ = 0, x• ∈ D, (29)

and such that (λ−A•)D is seminorm dense for some λ > 0.
Then, the net of limiting dynamics T•(t) converges in the sense of Theorem 27
and T

(α)
∞ (t) converges strongly to T∞(t) in the α-limit and

j-lim
n

lim
α

T (α)
n (t)xn = lim

α
j-lim

n
T (α)

n xn, x• ∈ C (E, j). (30)

Proof. Denote by D∞ ⊂ E∞ the j-limits of nets in D and define an operator
A∞ : D∞ → E∞ by A∞x∞ = limα A

(α)
∞ x∞. Since the A

(α)
∞ are dissipative, so is

A∞. The seminorm-density of (λ−A•)D implies that (λ−A∞) has dense range.
Therefore, by the Lumer–Phillips theorem [30, Thm. II.3.15], A∞ generates a
dynamical semigroup T∞(t) on E∞. The first Trotter–Kato approximation
theorem [30, Thm. II.4.8] implies that T

(α)
∞ (t) converges strongly to T∞(t).

Next, we will check that D satisfies the properties in item (3) of Theorem
27 for the net T•(t). We only have to show that D ⊂ D(A•). By assumption
xn ∈ D(An) for all x• ∈ D since seminorm density of D and (λ − A•)D are
assumed. For x• ∈ D, j-convergence of A•x•, and hence x• ∈ D(A•), follows
from:

lim
m

~A• − j•mAmxm~
≤ ~(A• −A(α)

• )x•~ + lim
m
‖(Am −A(α)

m )xm‖+ lim
m

~A(α)
• − j•mA(α)

m xm~
= 2~(A• −A(α)

• )x•~ α−−→ 0. (31)

We now know that T•(t) satisfies the equivalent properties of Theorem 27. It
remains to show (29): First, note that all limits exist. We have

j-lim
n

lim
α

T (α)
n (t)xn =j-lim

n
Tn(t)xn = T∞(t)x∞ = lim

α
T (α)

∞ (t)x∞

= lim
α

j-lim
n

T (α)
n (t)xn

for all x ∈ C (E, j). �

6. Inductive Systems of C*-Algebras and Completely Positive
Dynamics

Our techniques can be combined with additional structure. Roughly speaking,
any property that is asymptotically respected by the connecting maps jnm will
pass onto the limit. This section illustrates this by analyzing (soft) inductive
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systems of C*-algebras. For the connecting maps, we allow for completely posi-
tive contractions instead of requiring *-homomorphisms. For the limit space to
be a C*-algebra, we assume asymptotic multiplicativity (similar to [6]). This
will, for example, allow for a commutative limit space of non-commutative al-
gebras (see Sect. 7.2), which would otherwise not be possible. We will see that
many expected results automatically hold for such a setup. For example, the
j∗-limit of a j∗-convergent net of states ϕ• is a state on A∞, and the limit
operation of a jj̃-convergent net of completely positive contractions is a com-
pletely positive contraction. In particular, the evolution theorem holds in the
category of C*-algebras and completely positive contractions.

Definition 34. A soft inductive system of C*-algebras is a soft inductive sys-
tem (A, j) of Banach spaces, such that all An are C*-algebras, the connecting
maps jnm are completely positive contractions and satisfy the asymptotic ho-
momorphism property:

lim
n�m

‖jnm((jmlal)(jmlbl))− (jnlal)(jnlbl)‖ = 0. (32)

If we assume that the C*-algebras are unital, then we should also assume
that this structure is preserved by the connecting maps, i.e., we assume that
jnm1Am

= 1An
. In this case, the net of units is automatically j-convergent. It

follows that the limit space of a soft inductive system of (unital) C*-algebras
is again a (unital) C*-algebra:

Proposition 35. Let (A, j) be a soft inductive system of (unital) C*-algebras.
Then, the adjoint a∗

• := (a∗
n) of a j-convergent net a• is again j-convergent and

products of j-convergent nets a• and b• are also j-convergent. The limit space
becomes a (unital) C*-algebra with the operations

(j-lim
n

an)∗ := j-lim
n

a∗
n and (j-lim

n
an)(j-lim

n
bn) := j-lim

n
anbn. (33)

In the unital case, the net of units 1• is always j-convergent and the unit of
A∞ is 1A∞ = j-limn 1An

.

Suppose a• is j-convergent, then a∗
• is also j-convergent because

‖a∗
n − jnma∗

m‖ = ‖(an − jnmam)∗‖ = ‖an − jnmam‖.
It suffices to check j-convergence of products on basic nets an = jnlal and
an = jnlbl. We can assume both basic nets to start at the same index because
of Proposition 5. Set c• = a•b• = (anbn), then

lim
n�m

‖cn − jnmcm‖ = lim
n�m

‖(jnlal)(jnlbl)− jmm((jmlal)(jmlbl))‖ = 0. �

In fact, Eq. (32) is equivalent to j-convergence of products of j-convergent
nets. For the remainder of this section, (A, j) denotes a unital soft inductive
system of C*-algebras. For a (soft) inductive system of C*-algebras N(A, j) =∏
An is also a C*-algebra with C (A, j) being a C*-subalgebra (now equipped

with ‖·‖N) and by the above j-lim : C (A, j) → A∞ is a *-homomorphism. In
fact, we know that ker(j-lim) is the closed two-sided ideal of null nets so that
A∞ is isomorphic to the C*-quotient C (A, j)/C0(A, j):
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The C*-algebras An (including the limit space) form a continuous field
of C*-algebras [23, Ch. 10] over the topological space N ∪ {∞} (equipped
with the order topology) where the continuous sections are precisely defined
to be j-convergent nets including their limit. This is discussed in more detail
in Sect. 8.

Corollary 36. (1) Let a• be j-convergent. If all an are unitary/normal/self-
adjoint/ projections, then so is the j-limit j-limn an.

(2) Let a• be j-convergent, then Sp (a∞) ⊂
⋂

n

⋃
k>n Sp (ak).

(3) Let a• be a j-convergent net of (normal) elements. Let Ω ⊂ C be open
and let f : Ω → C be an analytic (continuous) function. If Sp an ⊂ Ω
for all n, then the analytic (continuous) functional calculi f(a•) are also
j-convergent and j-limn f(an) = f(j-limn an).

(4) An element of the limit space a∞ ∈ A∞ is positive if and only if there is
a j-convergent net a• ∈ C (A, j) so that j-limn an = a∞.

Proof. (1): All of these follow from the two properties that the adjoint and the
product preserve j-convergence and correspond to the adjoint and product on
A∞.

(2): Consider the C* inclusion C (A, j) ⊂ N(A, j). To compute Sp(a•),
we may regard a• as an element of

∏
An = N(A, j) and we have z ∈ Sp(a•) if

and only if (z1• − a•) is non-invertible if and only if (z1− An) non-invertible
for some n, so that Sp(a•) ⊂

⋃
n Sp(an). Since j-lim : C (A, j) → A∞ is a

*-homomorphism, we have Sp(j-limn an) ⊂ Sp(a•).
(3): One can start by showing the claim for polynomials and then extend

to continuous/analytic functions by approximation.
(4): a∞ is positive if and only if a∞ = (b∞)∗b∞ for some b∞. Now pick

b• ∈ C (E, j) with b∞ = j-limn bn. Then b∗
• b• is also j-convergent and its limit

is equal to a∞, which proves the claim. �

A dynamical semigroup on a C*-algebra is a strongly continuous3 one-
parameter group of completely positive contractions. We include the following
characterization of generators of dynamical semigroups on C*-algebras, which
is a consequence of the Arendt-Chernoff-Kato theorem [1]:

Lemma 37. Let T (t) be a strongly continuous one-parameter semigroup on a
C*-algebra A, and let L be its generator. Then, T (t) is completely positive if
and only if the generator is conditionally completely positive in the sense that
for all 0 ≤ x ∈ D(L ⊗ idn) ⊂ Mn(A) and all states ω on S(Mn(A)):

ω(x) = 0 =⇒ ω((L ⊗ idn)(x)) ≥ 0. (34)

Another equivalent condition is the complete positivity of the resolvent R(λ) =
(λ− L)−1 for all λ > 0.

Here Mn(A) is the C*-algebra of n×n matrices with entries in A, which
is isomorphic with Mn(C)⊗A. The domain of L ⊗ idn consists of all matrices
whose entries are in D(L), i.e., D(L ⊗ idn) = Mn(D(L)).

3This is also called “point-norm continuous” elsewhere.
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Proof. It is sufficient to prove that T (t) is positive if and only if Eq. (34) holds
for n = 1, which is the content of the Arendt-Chernoff-Kato theorem. �

Lemma and the Lumer–Phillips Theorem [30, Ch. III, Thm. 3.15] im-
ply that generators of dynamical semigroups are precisely the conditionally
completely positive closed dissipative operators L so that (λ − L)−1 has full
range. We finish this section by repeating the convergence theorem for nets of
completely positive semigroups on soft inductive systems of C*-algebras.

Theorem 38. Let (A, j) be a (soft) inductive system of C*-algebras, and let T•
be a net of dynamical semigroups with L• denoting the corresponding net of
generators. Let λ ∈ C be such that Re λ > 0. The following are equivalent:
(1) T•(t) is jj-convergent and the limit operators T∞(t) are strongly contin-

uous in t, hence form a dynamical semigroup.
(2) The net R•(λ) of resolvents Rn(λ) = (λ − Ln)−1 is jj-convergent, and

the limit operation R∞(λ) has dense range.
(3) There is a seminorm dense subspace D ⊂ D(L•) such that (λ − L•)D is

also seminorm dense.
(4) L∞ is well-defined, hence closed, and generates a dynamical semigroup

on A∞.
If these hold, then it follows that D(L•) = R•(λ)C (E, j), that the limits of the
resolvents are the resolvents of L∞ and that the semigroup generated L∞ are
the limits of T•(t). In particular, these claims hold for some λ if and only if
they hold for all λ with positive real part.

Proof. One only has to check that (conditional) complete positivity is pre-
served in the limit. That these are equivalent is a consequence of Lemma 37.
That complete positivity passes to the limit follows from combining the fact
that j-limits of positive nets are positive and that the matrix amplifications
Mν(An) form a soft inductive system with the connecting maps jnm ⊗ idν

whose limit space is naturally isomorphic with Mν(A∞). The former implies
that the T∞(t) are positive semigroups, and the latter implies that the same
applies to all matrix amplifications so that T∞(t) is completely positive. �

Finally, we discuss tensor products of soft inductive limits of C*-algebras.
If A and B are unital C*-algebras, we denote by A�B, A⊗minB and A⊗maxB
the algebraic, minimal and maximal (C*-) tensor product, respectively. Let
(A, j) and (B, k) be soft inductive limits of C*-algebras over the same directed
set N and set

(A⊗∗ B)n = An ⊗∗ Bn and (j ⊗ k)nm = jnm ⊗ knm,

where ∗ is either min or max. Note that (j⊗k)nm are unital completely positive
maps in both cases.

Proposition 39. Let ⊗∗ denote either the minimal or maximal C*-tensor prod-
uct.
(1) (A⊗∗B, j⊗k) is a soft inductive system of C*-algebras. If ai,• ∈ C (A, j)

and bi,• , i = 1, . . . k, then
∑k

i=1 ai,• ⊗bi,• ∈ C (A⊗∗B, j⊗k). This induces
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an embedding of the algebraic tensor product A∞�B∞ into the limit space
(A⊗∗ B)∞. This embedding has dense range.

(2) The maps φ• with φn := j∞n⊗k∞n : An⊗∗Bn → A∞⊗∗B∞ take (j⊗k)-
convergent nets to Cauchy nets. The limit operation φ∞ : (A⊗∗ B)∞ →
A∞ ⊗∗ B∞ is a surjective *-homomorphism.

(3) (A⊗max B)∞ is the maximal C*-tensor product of A∞ and B∞.
(4) (A⊗minB)∞ is a C*-tensor product of A∞ and B∞. φ∞ is the canonical

homomorphism onto the minimal C*-tensor product.

In general, (A ⊗min B)∞ is not equal to the minimal C*-tensor prod-
uct. Counterexamples exist already for strict inductive systems (A, j) of C*-
algebras where the jnm are *-homomorphisms [7, II.9.6.5].

Proof. (1): It suffices to check (j ⊗ k)-convergence and asymptotic multiplica-
tivity on basic sequences of the form (j⊗k)• lxl with xl ∈ Al�Bl. For these, the
properties follow from their counterparts on (A, j) and (B, k) and the triangle
inequality. Furthermore, such basic sequences are seminorm dense, implying
that the embedding of the algebraic tensor product is dense.

(2): It suffices to check basic nets with (j ⊗ k)• lxl with xl =
∑

ai ⊗ bi ∈
An � Bn where the claim follows again from the triangle inequality. That φ∞
is a *-homomorphism is clear from the asymptotic multiplicativity of j∞n

and k∞n. That it is surjective follows from the fact that the algebraic tensor
product A∞ � B∞ is dense in A∞ ⊗∗ B∞ and is part of the range of φ.

(3) and (4): We start by showing that (A ⊗∗ B)∞ is a C*-tensor prod-
uct, i.e., that ‖

∑
i ai,∞ ⊗ bi,∞‖β = ‖(j⊗ k)-limn ai,n ⊗ bi,n‖ is a C*-norm

on the algebraic tensor product [65, Sec. IV.4]. The triangle inequality, sub-
multiplicativity, and the C*-property ‖x∗x‖β = ‖x‖2β are inherited from the
norm on the limit space. Furthermore, ‖(j⊗k)-limn an⊗bn‖ = limn‖an⊗bb‖ ≤
limn‖an‖‖bn‖ ≤ ‖a∞‖‖b∞‖. Non-degeneracy of ‖·‖β holds by (2), which proves
‖·‖β ≥ ‖·‖∗. If ∗ = max, then this implies ‖·‖β = ‖·‖max [65, Sec. IV.4]. �

7. Examples and Applications

7.1. Quantum Dynamics in the Classical Limit

An approach to the classical limit via soft inductive limits of C*-algebras was
published in [67]. We discuss here a corresponding version in the Schrödinger
picture, emphasizing convergence of quantum dynamics to classical dynamics
in the classical limit. We plan to publish these and more results on the classical
limit with full proofs in the future and will focus on conveying the bigger
picture here.

The underlying directed set for the classical limit is the interval (0, 1] di-
rected toward zero. For this reason, we write “0” instead of “∞” to denote limit
objects. An element � ∈ (0, 1] is thought of as an action scale of the quantum
system with d canonical degrees of freedom with Hilbert space L2(Rd, dx). The
role of the connecting maps j��′ that we will introduce is to change the action
scale from � to �

′. We will refer to a family of objects (e.g. states) indexed by



Convergence of Dynamics on Inductive Systems

� ∈ (0, 1] as an (�-)sequence because the directed set is totally (and strictly)
ordered so that “net” seems to be an unnecessarily complicated term.

The Banach space in which the states of the quantum system at scale
� live is the trace class T� :=T(H). To define the connecting maps j��′ :
T�′ → T�, we start with the well-known coherent-state quantization and its
dequantization counterpart, which we denote by j�0 and j0�, respectively. By
|z〉

�
, z ∈ R

2d, we denote the coherent-state vectors obtained from displacing
the ground state |0〉

�
of the harmonic oscillator4. With these, we define

j�0(ρ0) :=
∫

R2d

ρ0(z) |z〉〈z|� dz, ρ0 ∈ L1(R2d) (35)

j0�(ρ�)(z) := 1
(2π�)d 〈z|ρ�|z〉�, ρ� ∈ T�. (36)

These maps take probability distributions (or rather their densities) on phase
space to quantum states and vice versa.5 They are also known as upper and
lower symbols or Wick dequantization and anti-Wick quantization, respectively
(see [32]). The connecting maps are simply defined by

j��′ := j�0 ◦ j0�′ : T�′ → T�. (37)

By construction, the connecting maps are completely positive and trace-
preserving (so-called quantum channels). In particular, they are linear con-
tractions.

Lemma 40. (T, j) is a soft inductive limit of Banach spaces, i.e.,

lim
���′

‖(j��′′ − j��′j�′�′′)ρ�′′‖1 = 0 ∀�
′′ > 0, ρ�′′ ∈ T�′′ . (38)

The limit space T0 is isometrically isomorphic with L1(R2d) with the isomor-
phism being defined by

T0
∼= L1(R2d) via j-lim

�

ρ� �→ lim
�

j0�ρ�. (39)

Indeed, if an �-sequence ρ• is j-convergent, then its dequantizations j0�ρ� con-
verge in the topology of L1(R2d). The abstract maps j0� (defined as in Eq.(9))
and the one defined in Eq. (36) coincide (modulo the above isomorphism), i.e.
one has j-lim� j��′ρ�′ = j0�′ρ�′ .

As we have (j��′′ − j��′j�′�′′) = j�0(id−j0�j�0)j0�′′ , it follows that the
norm in Eq. (38) is bounded by ‖(id−j0�′j�′0)σ0‖1 with σ0 = j0�′′ρ�′′ . It is
well-known that j0�j�0 is the heat transform at time �, i.e. it convolves with
a Gaussian having variance �, and the claim follows from strong-continuity of
the heat semigroup on L1(R2n).

One sees that j0�ρ� is a Cauchy sequence in � for any ρ• ∈ C (T, j) by
considering

4The Harmonic oscillator has the �-scaling H� = 1
2
(x2 − �

2Δx) and the displacement

operators are W �
z ψ(x) = exp{(i/�)(p ·x+ i�∇q)}ψ(x), z = (q, p). If |0〉

�
is the ground state

of H�, then the coherent states are |z〉
�

= W �
z |0〉

�
.

5This is a consequence of the overcompleteness property
∫ |z〉〈z|� dz = (2π�)d1.
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‖j0�ρ� − j0�′ρ�′‖1 ≤ ‖j0�(ρ� − j��′ρ�′)‖1

+ ‖(j0�j�0 − id)j0�′ρ�′‖1

���
′

−−−−→ 0. �

A special feature of this soft inductive system, not assumed in the ab-
stract setup of soft inductive systems, are the quantization maps j�0 and their
properties. For any ρ0 ∈ L1(R2d), one has that j•0ρ0 is j-convergent and the
limit is j-lim� j�0ρ0 = ρ0. This has the consequence that for any dense subspace
D0 ∈ L1(R2d), the space D = {j•0ρ0 | ρ0 ∈ D0} is seminorm dense in C (E, j).
Furthermore, this makes for the following simplification: j∗-convergence of a
sequence A• of observables A� ∈ L(H) is equivalent to existence of the limit
w∗-lim� j0�A� in L∞(R2d) = (L1(R2d))′. Another interesting property of this
specific soft inductive system is that even though the spaces T� are the same
for all �, the limit space is different.

We now turn to the discussion of dynamics in the classical limit. This
is done separately for Hamiltonian dynamics and irreversible dynamics gener-
ated by a Lindblad operator. Both cases will be proved by applying Corollary
28, which reduces the problem to an infinitesimal one, provided that one al-
ready has good control over the expected limit dynamics. We start with the
Hamiltonian case, where the main result is:

Theorem 41. Let V : R
d → R be a C2-potential with bounded second-order

derivatives and consider the Schrödinger operator H� = −�
2

2 Δ + V (x) and
the classical Hamiltonian function H0(q, p) = 1

2p2 + V (q). Then the quantum
dynamics ρ� �→ e− i

�
tH�ρ�e

i
�

tH� is convergent in the sense of Theorem 27.
The limiting operation is the classical time evolution generated by H0, i.e.,
the classical limit of time-evolved quantum states follows the classical flow
generated by H0. In particular,

d

dt

∣
∣
∣
∣
t=0

j-lim
�

(e− i
�

H�ρ�e
i
�

tH�) = {H0, j-lim
�

ρ�} ∀ρ• ∈ C (T, j) (40)

provided that j-lim� ρ� is suitably differentiable, where {f, g} denotes the Pois-
son bracket of functions f and g.

The assumptions on the potential guarantee that H� is essentially self-
adjoint on the domain of Schwartz-functions for every � [4] and for the dy-
namics of H0 to exist for all times and all initial values (by the Picard-Lindelöf
theorem).

Sketch of proof. It can readily be checked that C2
c (R2d) is a core for the clas-

sical dynamics generated by H0 on L1(R2d). Applying Corollary 28 to D =
{j•0ρ0|ρ0 ∈ C2

c (R2d)} reduces the problem to showing that commutators con-
verge to Poisson brackets on D, i.e. showing that

j-lim
�

(− i

�
[H�, ρ�]) = {H0, ρ0} ∀ρ• ∈ D. (41)
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One can reduce the proof to the case where H = j�0H0 where the claim can be
proved explicitly using the explicit form of the coherent state
quantization. �

The proof, in fact, works for a much larger class of Hamiltonians contain-
ing all coherent-state quantized Hamiltonians H� = (2π�)−d

∫
H0(z)|z〉〈z|�dz

of C2-functions with bounded second-order derivatives and all Weyl quantiza-
tions of C2d+3-functions with uniformly bounded derivatives of second and
higher orders (both of these conditions guarantee essential self-adjointness
[4,33]). A version of this theorem for bounded Hamiltonians was already in-
cluded in [67]. The extension to unbounded Hamiltonians is taken from [44]
and again builds on Theorem 27.

We now turn to discuss irreversible dynamics. On the quantum side,
irreversible dynamics correspond to strongly continuous semigroups of trace-
preserving completely positive maps [60]. Consider the Lindbladian of a Gauss-
ian (or quasi-free) dynamical semigroup [3,18]

L�(ρ�) = − i

2�

∑

jk

(Ajk [RjRk, ρ�] + iMjk(Rj [Rk, ρ�] + [ρ�, Rj ]Rk)) (42)

where R = (x1, . . . , xd,−i�∂1, . . . ,−i�∂d) is the vector of canonical operators
and where A is a symmetric real matrix and M is a positive semi-definite
complex matrix. We remark that Eq. (42) can be transferred to the form
L�(ρ�) = −(i/�)[H, ρ] + (1/2�)

∑
j(Lj [ρ�, L∗

j ] + [Lj , ρ�]L∗
j ) with jump opera-

tors Lj =
∑

k(
√

M)jkRk and Hamiltonian H = 1
2R·AR. Denote the symplectic

matrix by σ.

Theorem 42. For any complex positive semi-definite matrix M and any real
symmetric matrix A, the Gaussian dynamical semigroup generated by Eq. (42)
is convergent in the sense of Theorem 27. The limit semigroup on L1(R2d) is
generated by the first-order differential operator L0 = z
 · (A − Im M)σ∇,
z ∈ R

2d.

The notation ImM means i
2 (M∗−M). Note that any real 2d×2d matrix

can be written as K = (A − Im M)σ for a real symmetric matrix A and a
complex positive semi-definite matrix M . The limit semigroup that arises is
the push-forward along the flow et(A−Im M)σ on phase space.

Sketch of proof. It can easily be shown that C∞
c (R2d) is a core for the classical

dynamics generated by L0 on L1(R2d). The idea is to apply Corollary 28 with
D = {j•0ρ0 | ρ0 ∈ C2

c (R2d)}. From the intuition that the classical limit of
−(i/�)[Rj , · ] is the Poisson bracket {zj , · } with z = (q, p), one already expects
that the classical limit of a quasi-free Lindbladian is

L0(ρ0) =
1
2

∑

ij

(Aij{rirj , ρ0}+ i(Mij −Mij)ri{rj , ρ0}) = r · (A− Im M)σ∇ρ0.

(43)
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Figure 1. Streamlines of the vector field X = (−αq−p)∂q +
(q − αp)∂p on phase space describing the (classical) damped
harmonic oscillator with damping constant α > 0

The only step that remains is proving that L•(j•0ρ) is indeed j-convergent to
L0(ρ0) for all ρ0 ∈ C∞

c (R2d). This relies on explicit properties of the coherent-
state quantization and will be published separately. �

To illustrate this theorem, we discuss the damped oscillator. Classically,
its dynamics is described by the vector field X = (−αq− p)∂q + (q−αp)∂p on
phase space, where α > 0 determines the strength of the damping. Matrices
implementing this are for example

A =
(

1 0
0 1

)

and M = α

(
1 i
−i 1

)

. (44)

The jump operators corresponding to this are the creation and annihilation
operators Lq =

√
α/2(x− i�∂x) and Lp = L∗

q (because
√

M =
√

2/αM). This
is the standard model for describing a laser coupled to a thermal bath.

This example reveals an interesting difference between classical and quan-
tum open systems. The classical limit of irreversible Gaussian semigroups with
the �-scaling as in (42) is always reversible (but not necessarily of Hamiltonian
type). This is because the noise on the quantum side (necessary for complete
positivity [18]) is not needed on the classical side. Indeed, this noise is precisely
described by Re M . However, one can obtain proper irreversible semigroups
if one keeps the noise by rescaling Re M an �-dependent way [18], leading to
dissipative classical dynamics.
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7.2. Mean Field Limit

The mean field limit is a kind of thermodynamic limit in which the limit pa-
rameter is the size of the system. The size is just the number of systems, which
are all of the same kind. The main theme is permutation symmetry of the sys-
tems, and we are especially interested in “intensive” observables, which can be
understood as functions of averages over all sites. We follow the approach of
[56,66], for which early versions of soft inductive limits were originally devel-
oped, initially as a tool to take the limit of partition functions and equilibrium
states. However, this also worked well for dynamics, and prototypes of Theo-
rem 27 are found in [27,28].

When A denotes the observable algebra of a single system, the N -fold
minimal C*-tensor product A⊗N describes the system of size N ∈ N. (See [43]
for a discussion of maximal products in this context). The permutations of the
N sites act on A⊗N , and we denote by symN the average over the N ! permu-
tations. The permutation invariant observables are then AN = symN

(
A⊗N

)
.

Observables at different system sizes N > M are connected by

jNM (A) = symN

(
A⊗ 1⊗(N−M)

)
. (45)

This is a soft C*-inductive limit in the sense of the previous section. To show
this, one considers the basic sequences: In a basic sequences jNMA with A ∈
AM , we have an average over all embeddings of M sites into the large set
of N sites. In the product of two such observables for large N , the sites of
these averages do not overlap in leading order. This not only establishes the
product property (32), but at the same time shows that the product is abelian.
So abstractly, we know that A∞ ∼= C(Σ), for some compact space Σ, the
Gelfand spectrum of A∞, and the points of σ correspond to the multiplicative
states on A∞. There is a direct way to generate these from any state σ on
A, as the weak limit of the homogeneous tensor product states σ⊗N . Indeed,
σ⊗N (jNMA) = σ⊗M (A) if N > M , so the expectations σ⊗N (AN ) from a
Cauchy sequence for j-convergent A•, and we define the function A∞ : Σ → C

by
A∞(σ) := lim

N
σ⊗N (AN ). (46)

Moreover, from the combinatorics of overlaps, such states are multiplicative,
and conversely, all multiplicative states are determined by their one-particle
restriction σ. We conclude that Σ is the state space of the one-particle algebra
A with its weak* topology,

Similarly, any permutation invariant state on A⊗∞ (considered as an
inductive limit algebra, see Sect. 7.3) defines a convergent family of expec-
tations, and hence a state on A∞. Such permutation invariant states (in the
classical case) were called exchangeable by de Finetti. It is immediate from
the above considerations that such states can be written as an integral over
pure states, i.e., homogenous product states. This is known as the de Finetti
Theorem, which was first proved in the quantum case by Størmer [61]. The
simple characterization of the pure states is what makes mean field theories
completely solvable. This becomes clear when one replaces the permutation
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average with a translation average, with a view to translation invariant lattice
interactions. Then, the product theorem fails, although there is sufficient as-
ymptotic abelianness to make the translation invariant states, i.e., the states
on the limit space analogous to A∞, a simplex [9]. But since this does not arise
as the state space of a C*-algebra, the extremal states, known in that case as
ergodic states, cannot be characterized as multiplicative and have no simple
parametrization.

Dynamically, it is natural to consider first Hamiltonian dynamics on AN ,
where the Hamiltonian densities HN/N are a j-convergent sequence [26]. One
needs a bit of extra regularity, satisfied, e.g., by basic sequences. For such a
mean field interaction, Theorem 27 gives classical Hamiltonian dynamics on
the state space Σ. More precisely, there is a Poisson bracket for functions on
Σ, arising as the limit of commutators {A∞, B∞} := j-limN iN [AN , BN ] for
suitably regular j-convergent sequences A• and B•. Of course, the commutator
[AN , BN ] itself vanishes in the limit, but the scaling by N picks out the leading
order of overlaps (single site overlaps). The limit dynamics is then generated
by the Hamiltonian function H∞ = j-limN (HN/N). It is clear from dimen-
sional considerations that this Poisson bracket does not arise from a symplectic
form but from a degenerate antisymmetric form. It has the property that, for
any Hamiltonian, the nonlinear flow generated on the one-particle state space
Σ respects the unitary equivalence of states, i.e., leaves the spectrum of the
density operator invariant. For 2-level systems (“qubits”), this means that the
dynamics respects the foliation of the Bloch ball into concentric spheres.

This setting generalizes easily to the inhomogeneous case, in which the
evolution depends on additional random variables that are associated with the
sites and have a limiting distribution. For the equilibrium case, this extension
covers the BCS model [55], and the dynamics was worked out in [25] and is
written in terms of integro-differential equations. Another variant considers
Bosonic systems, i.e., the states for finite system size do not merely commute
with the permutations but are even supported by the permutation invariant
subspace of the N -particle Hilbert space. The theory then applies with the sole
modification that the one-particle state space Σ is replaced by the set of pure
states only [66]. The salient de Finetti Theorem was noted before by Hudson
and Moody [34].

More interesting behavior is seen when the finite system dynamics is al-
lowed to be dissipative [27], i.e., given by a semigroup of completely positive
maps. It is then interesting to consider not just the mean field dynamics as
defined above, which we call the bulk evolution of the mean field system, but
also the dynamics of tagged particles. This is easily incorporated [27] by modi-
fying the inductive system leaving some set of sites out of the symmetrization
(45). The number M of tagged sites can increase with N , but M/N should go
to zero. With constant M , the resulting limit algebra is then:

A∞ = C(Σ)⊗A⊗M ∼= C
(
Σ;A⊗M

)
(47)

where the second form denotes the algebra of functions on the one-particle
state space Σ, taking values in A⊗M . There is nothing new to show for this
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limit: It is just the tensor product, in the sense of Prop. 39, of the mean-field
described so far, tensored with the identity on A⊗M . We can also let M→∞
here, so the second factor would be the inductive limit for the quasi-local
algebra as discussed in Sect. 7.3 with the limit space symbolically denoted
A⊗∞.

Of course, we could discuss systems where the tagged particles play a
different dynamical role from the bulk particles. However, we want to use the
tagging distinction just to get a more detailed view of the mean-field dynamics.
The evolutions for different M are then a consistent family of semigroups: The
dynamics for M tagged sites reduces to the one for M ′ < M tagged sites on
the observables which have 1 on the M − M ′ sites. In particular, the bulk
dynamics corresponds to M = 0. The local dynamics is then an evolution on
A⊗M , which depends on the classical state x like an external parameter.

The local dynamics may generate correlations between the tagged parti-
cles. A prototype for this are squared Hamiltonian generators. This example
follows the general principle [20, Thm. 2.31] that the square of the genera-
tor of a one-parameter group of isometries generates a contraction semigroup,
which is described by applying the isometry group at an evolution parameter
determined by a Wiener diffusion process. One then readily checks that the
evolution arising from such a selection process does not factorize over tagged
sites. A typical feature of such evolutions is that the operator norm of the
generator grows like N2.

But there are also many evolutions for which the norm grows only like
N , e.g., those satisfying a condition similar to the mean field condition for
Hamiltonians: Denoting the generator on the finite system A⊗N by GN , we
can ask that GN/N arises by permutation averaging from GR/R for some R,
where, however, we take the action of permutations on observables rather than
on Hilbert spaces. Moreover, we extend this average equally over tagged and
untagged sites. In that case, analyzed under the term “bounded polynomial
generator” in [27, Prop. 3.6], the bulk evolution is a flow σ �→ Ftσ on Σ,
and the local dynamics is given by completely positive maps Λσ

t , so that for
A ∈ A∞, i.e., a continuous function A : Σ → A⊗M ,

(
T∞(t)A

)
(σ) = (Λσ

t )⊗MA(Ftσ). (48)

Here Λ satisfies the cocyle equation Λσ
s+t = Λσ

s ΛFsσ
t and the consistency

condition σ(Λσ
t a) = (Ftσ)(a). So Λσ

t is a Lindblad evolution, whose generator
depends on time via Ftσ. Since the local evolution is a tensor product, no
correlations are generated between tagged sited in this class of evolutions.

For Hamiltonian systems, the local dynamics is generated by a Hamil-
tonian dH∞(σ) ∈ A, which is the gradient of H∞ at σ, a summary of all
directional derivatives. Explicitly, for any ρ ∈ Σ,

ρ
(
dH∞(σ)

)
=

d

dt
H∞(tρ + (1− t)σ)

∣
∣
∣
∣
t=0

. (49)
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Note that, by construction, an additive constant in dH is fixed so that
σ(dH(σ)) = 0. Local dynamics is thus given by the time-dependent Hamil-
tonian dH(Ftσ), i.e., driven by the bulk flow.

Even within the class of bounded polynomial generators, however, there
is a remarkable variety in behavior: The bulk evolution may or may not be
Hamiltonian in terms of the Poisson structure described above, and indepen-
dently, the local evolution may or may not be generated by a state-dependent
Hamiltonian. An interesting subclass, in which the local dynamics is automat-
ically Hamiltonian, is given when the Lindblad jump operators are themselves
j-convergent, say, in the Heisenberg picture,

GN (X) = i[HN ,X] + N
∑

α

V ∗
α,N [X,Vα,N ] + [V ∗

α,N ,X]Vα,N (50)

with Vα,N = symN (Vα, R), for some R. This is N times a double average,
in which the R sites are permuted independently to N sites. The dominant
contribution thus comes from terms where these sets of sites do not overlap
and can hence be realized on 2R sites, which are then averaged into N in the
operator sense. It turns out that the local dynamics is Hamiltonian with a
dependence on the bulk state given by

H(σ) = dH∞(σ) +
∑

α

Im
(
Vα,∞(σ)dVα,∞(σ)

)
. (51)

The bulk flow σt = Ftσ is then given by the differential equation σ̇t(A) =
σt

(
i[H(σt), A]

)
, and thus still leaves the spectrum of σ invariant. However,

since Vα,∞ and its complex conjugate may have linearly independent deriva-
tives, H(σ) is no longer a gradient. Hence, a Hamiltonian function does not gen-
erate the evolution via the Poisson bracket. In fact, any spectrum-preserving
ordinary differential equation for σt can be approximately realized in this man-
ner [27].

As a counterpoint, consider a case in which the operators Vα,N and
V ∗

α,N are not separately averaged over permutations. In this case, the local
state tends to approach the bulk state, in the sense that the relative entropy
S

(
(Λσ

t )∗ρ,Ftσ
)
, which is always non-increasing, even goes to zero. The sim-

plest example is a term in the generator, which shuffles the sites, and thus
makes the local state approach the bulk. We take Γ2(X) = F [X,F ]+[F,X]F =
2(FXF − X), where F is the permutation operator on two sites. This sym-
metrizes for larger N to

ΓN (X) =
1

N − 1

∑

ij

(FijXFij −X), (52)

where Fij is the permutation of sites i and j. Here we count every pair twice and
allow the zero contributions from i = j. Let us apply this to a basic sequence
with tagged site 1, of which a prototype is XN = A⊗symN−1(Bk⊗1⊗(Nk−1)

)
.

The limit of ΓNXN is an A-valued function (ΓX)∞ of the one-site state σ
obtained as

ρ
(
(ΓX)∞(σ)

)
= lim

N
ρ⊗ σ⊗(N−1)

(
ΓN (X)

)
= 2(ρ(1)σ − ρ)

(
X∞(σ)

)
. (53)
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On bulk observables, for which the symmetrization is over all sites, ΓN vanishes
by (52), and as an additional term in a polynomial generator, it does not
change the bulk flow but modifies the local dynamics Λσ

t to a Trotter limit of
the original one, interlaced with exponential contraction to the bulk state, i.e.,
Λ̃σ

t ρ = σ + e−2t(ρ− σ).

7.3. Spin Systems, Dynamics and the Thermodynamic Limit

In this subsection, we discuss quantum spin systems in the thermodynamic
limit using quasi-local algebras, which are an example of inductive systems of
C*-algebras [8]. We will show that the usual assumptions for the existence of
the dynamics in the thermodynamic limit already guarantee that the dynamics
is convergent in the sense of Theorem 27 irrespective of large class of boundary
conditions imposed on finite lattices (e.g., periodic or anti-periodic boundary
conditions).

The directed set (N,≤) is that of finite subsets Λ of the lattice Z
d, ordered

by inclusion. The algebra AΛ is defined as AΛ =
⊗

i∈ΛA{∗} where the “one-
site algebra” A{∗} is a unital C*-algebra and the tensor product is the minimal
one. In the standard case, we have A{∗} = Mn(C), but general unital C*-
algebras are equally admissible. The connecting maps jΛΛ′ are the natural
inclusions and will usually be suppressed unless explicitly required, i.e. we will
simply write AΛ ⊂ AΛ′ if Λ ⊂ Λ′. This yields a strict inductive system (A, j)
with *-homomorphisms as connecting maps. By construction Λ∩Λ′ = ∅ implies
that [AΛ,AΛ′ ] = {0} so that A∞ becomes a quasi-local algebra [9, Def. 2.6.3].
It is not hard to see that a net of elements (aΛ), aΛ ∈ AΛ, is j-convergent if
and only if limΛ aΛ exists in the norm of A∞. This defines an isomorphism of
the quasi-local algebra and the limit space via j-limΛ aΛ ≡ limΛ aΛ, and the
basic sequences are just the constant sequences a so that a ∈ AΛ for some Λ.
From another perspective A∞ can be understood as the infinite tensor product
A∞ =

⊗
x∈Zd A{∗}.

Formally speaking, all dynamics of quantum spin systems are defined
in terms of interactions (see the remark after [8, Prop. 6.2.3]): A (formal)
interaction is a map Φ that associates to a finite subset Λ ⊂ Z

d a Hermitian
element of AΛ. From an interaction, we obtain a Hamiltonian and a bounded
*-derivation

HΛ =
∑

Λ′⊆Λ

Φ(Λ′) ∈ AΛ and δΛ = i[HΛ, · ] ∈ L(AΛ), (54)

for every finite region Λ. Note that HΛ and δΛ are bounded for all Λ. The net
domain of the net of generators δ• as defined in Eq. (22) is D(δ•) = {(aΛ) |
limΛ aΛ, limΛ δΛ(aΛ) exist}.

If Φ satisfies the assumption

pΦ(x) =
∑

Λ�x

‖Φ(Λ)‖ < ∞ ∀x ∈ Z
d, (55)
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we can define a *-derivation δ for the infinite system on the dense subalgebra
D =

⋃
Λ⊂Zd AΛ ⊂ A∞ by

δ(a) = i
∑

Λ′∩Λ �=∅
[Φ(Λ′), a], a ∈ AΛ. (56)

This is indeed well-defined, i.e., does not depend on the choice of Λ with
a ∈ AΛ, because:

‖δ(a)‖ ≤ 2
∑

x∈Λ

∑

Λ′�x

‖Φ(Λ′)‖‖a‖ ≤ 2|Λ| sup
x∈Λ

pΦ(x)‖a‖, (57)

Definition 43. A net of boundary conditions is a net β• of *-derivations βΛ :
AΛ → AΛ so that for all a ∈ D, βΛ(a) → 0.

We conclude with a result about limit dynamics and their independence
of boundary conditions. By applying our criteria from Lemmas 26 and 32, we
obtain the following general result concerning the generators of limit dynamics:

Theorem 44. Assume that Φ satisfies Eq. (55), and let β• be a net of boundary
conditions. Then
(1) (δΛ + βΛ)(a) → δ(a) for all a ∈ D.
(2) δ∞ is well-defined (see Definition 25) and a closed operator, such that

δ ⊆ δ∞.
Assume exponential decay of long-range interactions in the sense that

‖Φ‖r =
∞∑

n=0

(

enr sup
x∈Zd

∑

Λ�x
|Λ|=n+1

‖Φ(Λ)‖
)

< ∞ (58)

for some r > 0, then
(3) the net of dynamics et(δ•+β•) satisfies the equivalent properties of Theorem

27. The subspace D is a core for δ∞, i.e., δ∞ = δ. In particular, the limit
dynamics etδ∞ is independent of the boundary conditions.

The assumption of exponential decaying long-range interactions is just a
sufficient condition for δ to be a generator. Whenever δ generates a strongly
continuous group, the independence of boundary conditions and the
jj-convergence of the dynamics holds. One possibility would be to show that
the range of (δ±λ) is dense. An example of a less restricted class of interactions
Φ that admit well-defined limit dynamics are those defined in terms of so-called
F -norms (‖ · ‖F instead of ‖ · ‖r) [48]. Moreover, it is possible to ask whether
the limit dynamics is continuous with respect to such norms, which can be
addressed by Proposition 33. In view of Theorem 27, the logic of Theorem 44
is to establish the existence of the infinite-volume dynamics of spin systems in
terms Theorem 27, Item (4). Of course, this reasoning could be turned around,
for example, by directly establishing the convergence of the dynamics in the
thermodynamic limit to conclude the existence of an infinite-volume gener-
ator, i.e., invoking Theorem 27, Item (1). An example of the latter method
consists in the use of Lieb–Robinson bounds [8, pp. 251] (see also [48]). While
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we are not aware of a discussion of boundary conditions in similar generality,
we expect a statement as Theorem 44 to be known.

Proof. Consider first the case without boundary conditions β•: (1): Note that
by Eq. (55) and Eq. (57), δ is well defined on D. For Λ′ and a ∈ AΛ′ , it follows
that

‖(δΛ − δ)(a)‖ = ‖
∑

Λ′′∩Λ′ �=∅
Λ′′

�Λ

[Φ(Λ′), a]‖ = ‖
∑

Λ′′∩Λ′ �=∅
(1− χΛ(Λ′′))[Φ(Λ′′), a]‖

for any Λ ⊇ Λ′, where χΛ is the indicator function of the subset Λ, meaning
it takes the value “1” if and only if it is evaluated on a subset Λ′′ ⊆ Λ, and
“0” otherwise. Since this function converges pointwise to the function 1 in the
limit Λ → Z

d, we obtain the results by dominated convergence due to Eq. (57)
(as the sum only runs over finite subsets of Z

d).
(2): We apply Item (3) of Lemma 26 to the space P• of j∗-convergent

nets of the form ϕ• = (ϕ∞|AΛ)Λ for some ϕ∞ ∈ A∗
∞. It suffices to check

j∗-convergence of δ∗
• (ϕ•) for ϕ• ∈ P• on basic nets, which are essentially just

elements of D. On these it holds since δ∗
Λ(ϕΛ)(a) = ϕ∞(δΛ(a)) → ϕ∞(δ(a))

for all a ∈ D.
For the case including boundary conditions β•: Both Items (1) and (2)

also apply to δ̃• = δ• + β• and δ̃∞ = δ∞ for all β•.
(3): From Eq. (58), it follows that all a ∈ D are analytic vectors for δ and

hence for δ∞ [8, Thm. 6.2.4]. We apply Lemma 32 to δ̃• and the net domain
of basic nets. It follows from the theory of one-parameter groups on Banach
spaces that a closed operator δ∞ with a dense set of analytic vectors such
that ±δ∞ is dissipative, generates a strongly continuous one-parameter group
[9, Thm. 3.2.50]. Since δ∞ is a *-derivation, this is a group of *-automorph
isms. �

To give some context to Theorem 44, in particular, the independence of
the limit dynamics from boundary conditions, we consider a nearest-neighbor
interaction with (anti) periodic or open boundary conditions. For simplicity,
we restrict the limit to sequences of growing cubes Λn = [−n, n]d, which are
cofinal for N , with Λn → Z

d. If the long-range interactions decay exponentially,
this theorem shows that the dynamics are convergent and that the limit is
independent of the boundary conditions. A possible way to see this would
consist of setting all interactions on the boundary to zero, i.e., to pick βΛ

such that δΛ + βΛ is zero on A∂Λ. Clearly, the theorem also implies that the
dynamics converges to the one generated by δ (this does not depend on how
one defines the boundary ∂Λ as long as every Λ0 is contained in Λ\∂Λ for
some Λ ⊃ Λ0). Finally, let us offer some comparison with approaches to the
existence of infinite-volume dynamics. Specifically, let us assume that we can
use Lieb-Robinson bounds to deduce the existence of limit dynamics (cf. [8,
Sec. 6]). Then, independence from boundary conditions in a more restricted
sense follows from perturbation theory [9, Sec. 3.1.4]: Specifically, we have the
following estimate for (weakly-closed) boundary conditions βΛ:
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‖T β
Λ (t)a − TΛ(t)a‖ ≤

∑

n≥1

∫

Δt

‖TΛ(t1)βΛ...TΛ(tn − tn−1)βΛTΛ(t − tn)a‖ dt1...dtn

≤ (e|t|‖βΛ‖ − 1)‖a‖, (59)

where Δt = {(t1, ..., tn) | 0 ≤ t1 ≤ ... ≤ tn ≤ t}, and T β
Λ (t) results from TΛ(t)

by perturbing the generator of the latter by βΛ. Thus, if ‖βΛ‖ → 0, we can
combine Eq. (59) with Lieb-Robinson bounds for the infinite-volume limit of
the dynamics [8, p. 252] to obtain the independence of the limit dynamics of
such boundary conditions β•.

7.4. Quantum Scaling Limits

Another important application of inductive systems and the associated notion
of convergence for dynamical semigroups and their generators concerns the
construction of models in quantum field theory (QFT) via scaling limits in
the framework of the Wilson–Kadanoff renormalization group (RG) [29,68].
The specific scaling limit procedure, coined operator-algebraic renormalization
(OAR), was formulated by one of the authors and has been explicitly realized
in the context of bosonic and fermionic field theories [47,53,63], lattice gauge
theory [12,13], conformal field theory [50,51] as well as more general anyonic
models [62]. In OAR, the typical setting is that of inductive systems of C*-
algebras, which are understood as realizations of the RG. Specifically, the
algebras An represent a given physical system at different scales “n” and the
connecting maps jnm are the renormalization group or scale transformations
inducing an RG flow on the respective state spaces given an initial net ωn ∈
S(An):

ω(m)
n (Am) = ωn ◦ jnm(Am), Am ∈ Am. (60)

In this setting, ω
(m)
n is called the nth renormalized state at scale m, and we

are interested in the possible cluster points of the nets ω
(m)
n (in n) at all scales

which precisely correspond to the cluster points of the net ω•. We point out
that the notation here differs from the convention that we use in most of the
paper (to be consistent with the OAR notation): The upper index m of ω

(m)
n

specifies the scale of the state while the lower index identifies it as part of a
net at that scale.

As a specific example, we discuss the construction of a free-fermion field
theory on a d+1-dimensional space-time cylinder, R×T

d
L, with spatial volume

(2L)d from an inductive system of d-dimensional many-fermion models (with
periodic boundary conditions) using wavelet theory [19]. We start by providing
the kinematical setup followed by a discussion of dynamics, the latter, for
simplicity, restricted to the case d = 1.

The directed set (N,≤) is that of the natural number N0 with the usual
ordering ≤, and we associated with each natural number n a finite dyadic
partition Λn = εn{−Ln, ..., Ln−1}d of the d-dimensional torus T

d
L = [−L,L)d,

where εn = 2−nε0, Ln = 2nL0, for some positive integer L0 ∈ N such that
εnLn = L. The ordering ≤ is compatible with the ordering ⊆ of partitions by
inclusion.
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The algebra An is defined as An = ACAR(hn)), the C*-algebra of canon-
ical anti-commutation relations (CAR) over the (one-particle) Hilbert space
hn = �2(Λn) with inner product denoted by 〈 · , · 〉n. We recall that this algebra
is generated by a single anti-linear operator-valued map, hn  ξ �→ a(ξ), and
that a†(ξ) = a(ξ)∗.

The connecting maps jnm are defined as compositions, jnm = jn n−1 ◦
... ◦ jm+1 m, of quasi-free unital *-homomorphisms, jn+1 na(ξ) = a(vn+1 nξ),
determined by isometries between successive Hilbert spaces, vn+1 n : hn →
hn+1, which are explicitly given in terms of a finite-length low-pass filter hα ∈
C, α ∈ Z

d, of an orthonormal, compactly supported scaling function s ∈
Cr(Rd):

vn+1 nξ =
∑

x∈Λn

ξx

∑

α∈Zd

hαδ
(n+1)
x+εn+1α, ξ ∈ hn, (61)

where δ
(n+1)
y , y ∈ Λn+1, are the standard basis vectors of hn+1. The low-pass

filter and the scaling function are related via the scaling equation:

s(x) =
∑

α∈Z

hα 2
1
2 s(2x− α). (62)

This yields strict inductive systems of Hilbert spaces (h, v) and C*-algebras
(A, j) with isometries respectively *-homomorphisms. The morphism property
follows from the fact that the algebraic structure of An is determined by the
inner product of hn, i.e., we have:

{jnma(ξ), jnma†(η)} = {a(vnmξ), a†(vnmη)}1n = 〈vnmξ, vnmη〉n1n, ξ, η ∈ hm

= 〈ξ, η〉m1n = jnm(〈ξ, η〉m1m)

= jnm{a(ξ), a†(η)}, (63)

where {x, y} = xy+yx is the anti-commutator. It is a direct consequence of the
theory of wavelets that the inductive system (h, v) provides a multiresolution
analysis of the space L2(Td

L) in the sense of Mallat and Meyer [45,46] based
on the scaling function s. Precisely, this means that the limit space is h∞ =
L2(Td

L) and that the closed subspaces v∞nhn satisfy

v∞0h0 ⊂ ... ⊂ v∞nhn ⊂ v∞n+1hn+1 ⊂ ... (64)

with
⋃

n∈N0

v∞nhn = L2(Td
L),

⋂

n∈N0

v∞nhn = v∞0h0 = C
2L0 , (65)

and the additional properties:

1. f(2n · ) ∈ v∞nhn ⇔ f ∈ v∞0h0 for f ∈ L2(Td
L),

2. f ∈ v∞nhn ⇒ f( · − x) ∈ v∞nhn for x ∈ Λn,

3. the functions s
(n)
L ( · − x) =

∑
α∈Z

ε
− 1

2
n s(ε−1

n ( · − x − α2L)) for x ∈ Λn

provide an orthonormal basis of v∞nhn.
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We note that v∞n has an explicit representation in terms of the scaling function
s:

(v∞nξ)(x) =
∑

y∈Λn

ξy s
(n)
L (x− y) = (ξ ∗Λn

s
(n)
L )(x), ξ ∈ hn. (66)

It follows from the functorial properties of the CAR algebra [8] that

A∞ =
⋃

n∈N0

j∞nAn = ACAR(L2(Td
L)). (67)

Additionally, the inductive systems (h, v) and (A, j) are split in the sense of
Definition 19 because the coisometries v∗

∞n = pn∞ define a linear contraction
p•∞ : h∞ → C (A, j), with v-limnpn∞ξ = ξ, ξ ∈ h∞, and, in turn, we obtain
quasi-free completely positive contractions sn∞ : A∞ → An [31] that provide
the right inverse of j-lim. In particular, we observe that the conditional ex-
pectations j∞n ◦ sn∞ = En : A∞ → j∞nAn ⊂ A∞, which are induced by the
range projections pn = v∞n ◦ pn∞, converge strongly to the identity.

Lemma 45. Given the above, we have the following:

lim
n
‖En(A)−A‖ = 0, A ∈ A∞.

Proof. It is sufficient to prove the statement for A ∈ ∪n∈N0j∞nAn. Thus, given
m and A ∈ Am we have for all n ≥ m:

‖En(jnmA)− j∞mA‖ = ‖j∞njnmA− j∞mA‖ = 0,

because sn∞ ◦ j∞m = jnm by construction. �

Given the inductive systems (h, v) and (A, j), we are in a position to
consider scaling limits of many-fermion systems based on the algebras An. This
requires additional data in the form of j∗-convergent nets of states ω• ∈ S(A•)
associated with Hamiltonians H• that exhibit criticality, i.e., Hn should have
vanishing spectral gap for some choice of couplings in the limit n →∞.

Definition 46. A scaling limit associated with the inductive systems (A, j) is
a j∗-convergent net of states ω• ∈ S(A•). We also call the pair (A∞, ω∞) the
scaling limit of (A•, ω•).

It is at this point that we restrict to the case d = 1 for concreteness
and simplicity, although there are no structural obstacles to discuss models
associated with free fermionic quantum fields for arbitrary d. For x ∈ Λn, we
introduce the abbreviation ax = a(δ(n)

x ). The net of Hamiltonians acting on
the anti-symmetric Fock space F−(hn) is

Hn = ε−1
n

∑

x∈Λn

(
(Jn−hn)(ax+a†

x)(ax−a†
x)

+Jn((ax+εn
+a†

x+εn
)−(ax+a†

x))(ax−a†
x)

)
, (68)

where hn, Jn > 0 are scale-dependent dimensionless coupling constants. The
notation reflects the fact that Jn and hn describe the spin-spin coupling and
the transverse magnetic field of the associated spin systems, the transverse-field



Convergence of Dynamics on Inductive Systems

Ising spin chain in the Ramond sector [22], via the Jordan-Wigner transforma-
tion [31]. Calculating the spectrum of Hn shows that it exhibits criticality for
Jn = hn, and a formal analysis suggests that the scaling limit n →∞ should
provide a field theory of two free Majorana fermions

ψ±|x = e±i π
4 ax + e∓i π

4 a†
x, x ∈ T

1
L. (69)

Intuitively, this is expected due to the following momentum-space representa-
tion of Hn:

Hn = Jn

4L

∑

k∈Γn

(
ψ̂+|k
ψ̂−|k

)∗( − sin(εnk) i((cos(εnk)− 1) + λn)
−i((cos(εnk)− 1) + λn) sin(εnk)

)

︸ ︷︷ ︸
=J−1

n hn(k)

(
ψ̂+|k
ψ̂−|k

)

,

(70)

where ψ̂±|k = ψ±(ek) for ek = eik · ∈ hn with k ∈ Γn = π
L{−Ln, ..., Ln − 1},

and λn = 1− hn

Jn
is the dimensionless lattice mass.

We obtain a j∗-convergent net of states by considering the ground states
ωn of Hn which are quasi-free and, therefore, determined by their two-point
function:

ωn(ψ±(ξ)ψ±(η)∗) = 2〈ξ, (Pn)±±η〉n, ωn(ψ±(ξ)ψ∓(η)∗) = 2〈ξ, (Pn)±∓η〉n,
(71)

for ξ, η ∈ hn. Here, Pn is a projection on hn⊗C
2 determined by the momentum-

space kernel:

Pn(k) = 1
2μn(k)

(
μn(k)12 + hn(k)

)
, μn(k)2 = (Jn − hn)2 + 4Jnhn sin(1

2εnk)2.
(72)

Here, μn(k)2 = J2
n(λ2

n +4(1−λn) sin(1
2εnk)2) can be recognized as the disper-

sion relation of a harmonic fermion lattice field of mass λn as long as Jn ≥ hn,
which corresponds to the disordered phase of the spin chain associated with
Hn.

Now, it is an immediate consequence of the results on the multiresolution
analysis associated with the inductive system (h, v) that the net of ground
states ω• is j∗-convergent provided we impose the RG conditions limn ε−1

n λn =
m0 ≥ 0, limn Jn = J > 0 [51]. In particular, this results in the quasi-free state
ω∞ on A∞ determined by a projection Pm0 on L2(T1

L)⊗C
2 with momentum-

space kernel:

Pm0(k) = 1
2μ0(k)

(
μ0(k)12 − kσ3 −m0σ2

)
, μ0(k)2 = m2

0 + k2, (73)

where σ2, σ3 are the standard Pauli matrices.

Theorem 47. Given the above, and suppose that the coupling constants Jn, hn

satisfy limn ε−1
n λn = m0 ≥ 0, limn Jn = J > 0. Then, the net of ground states

ωn of Hn as in Eq. (68) is j∗-convergent, i.e., the RG flow,

lim
n

ω(m)
n = ω(m)

∞ ,
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is convergent for any m, and the projective limit of RG-limit states equals the
j∗-limit of ω•: lim←−m

ω
(m)
∞ = ω∞. Moreover, the scaling limit (A∞, ω∞) induces

the vacuum representation of two free Majorana fermions of mass m0 on the
space-time cylinder R× T

1
L.

Specifically, in the massless case m0 = 0, the projection Pm0 becomes
diagonal, i.e., the chiral fields ψ± decouple, ω∞(ψ±(f)ψ∓(g)) = 0 for f, g ∈
L2(T1

L), and their respective ground states ω
(±)
∞ are determined by the Hardy

projections P±(k) = 1
2 (1∓ sign(k)), with the convention sign(0) = 1.

Let us conclude by discussing the convergence of the dynamics given by
Hn. By construction, Hn is a self-adjoint element of An and induces an inner
*-derivation δn = i[Hn, · ] as well as an automorphism group Tn(t) = AdUn(t)

implemented by the unitaries Un(t) = eitHn . Some general facts about the con-
vergence of dynamics on C*-algebras and their implementations with respect
to *-representations are discussed in Appendix A. As shown in Proposition 50,
the net of RG-limit states ω

(• )
∞ provides a compatible net of *-representations π•

in the sense of Definition 49 via the GNS construction. Consequently, we obtain
an implementation of T•(t) with respect to π• by unitaries Vn(t) = πn(Un(t))
(cp. Eq. (86)):

πn(Tn(t)An) = Vn(t)πn(An)Vn(t)∗, A ∈ An. (74)

The quasi-free structure implies that the Tn(t) is given in terms of the one-
particle Hamiltonian hn ∈ L(hn ⊗ C

2) with momentum-space kernel hn(k)
defined in Eq. (68):

Tn(t)ψ(ξ+, ξ−) = ψ(e−2ithn(ξ+, ξ−)), ψ(ξ+, ξ−) = ψ+(ξ+) + ψ−(ξ−). (75)

The jj-convergence of T•(t) follows from the strong vv-convergence of eith•

using the results of [51] and the following estimate on basic sequences,

‖(jnmTm(t)jml − Tn(t)jnl)ψ(ξ+, ξ−)‖
≤ ‖(vnme−2ithmvml − e−2ithnvnl)(ξ+, ξ−)‖, (76)

for (ξ+, ξ−) ∈ hl ⊗ C
2 since ψ generates Al. In particular, it follows using

[51] that eith• is vv-convergent to the dynamics eith∞ on h∞ with one-particle
Hamiltonian h∞ determined by the momentum-space kernel:

h∞(k) = −kσ3 −m0σ2. (77)

Finally, we would like to conclude the JJ-convergence of the implementing
unitaries Vn(t), where JJ-convergence refers to the connecting maps Jnm in-
duced by the jnm via the GNS construction (cf. Proposition 50). This can be
achieved for slightly modified Vn(t) by Proposition 54 as the vacuum state ω∞
given by Eq. (73) is invariant under the quasi-free dynamics generated by h∞.
The necessary modification is due to the fact that Hn has a divergent vacuum
expectation value with respect to ω

(n)
∞ , i.e., limn ω

(n)
∞ (Hn) = ∞, which needs

to subtracted:

Ṽn(t) = eit :πn(Hn): = eit(πn(Hn)−ω(n)
∞ (Hn)). (78)
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The modified implementors satisfy ‖(Ṽn(t) − 1)Ω(n)
∞ ‖ = 0, where Ω(n)

∞ is the
GNS vector ω

(n)
∞ , and, therefore, converge by Proposition 54.

7.5. Recovering Symmetries: Thompson’s Group Actions à la Jones

The question of convergence of dynamics in the setting of inductive systems
naturally extends to that of symmetries or symmetry groups. Specifically, in
the context of quantum scaling limits of Sect. 7.4, we can ask how spacetime
symmetries of a continuum QFT are approximated via lattice discretizations.
In the setting of Wilson–Kadanoff RG, a distinguished role is played by the
fixed points of the RG, which are generically expected to be associated with
conformal field theories (CFTs), which poses a particularly large, i.e., infinite-
dimensional, symmetry group in 1 + 1 dimensions [5,54]. Within the class of
models considered in the previous subsection, the conformal symmetry group
corresponds to the orientation-preserving diffeomorphisms Diff+(T1

L) of the
spatial circle T

1
L. It has been proposed by Jones to choose an approximation

in terms of piecewise-linear homeomorphisms of the unit interval with dyadic-
rational breakpoints and slopes of powers of 2 [35,36], i.e., Thompson’s groups
F ⊂ T (the larger including dyadic rotations), as these allow for a natural
action on (strict) inductive limits over dyadic partitions Λn ⊂ T

1
L (using the

notation of Sect. 7.4), see [10,13,38,52] for further results.
In the framework discussed here, the action of an element f ∈ F of

Thompson’s group F , rescaled to a map fL : T
1
L → T

1
L

6, on an inductive system
over dyadic partitions Λn can be understood as an instance of a convergent net
of operations as in Sect. 4: Consider f as a map between two incomplete dyadic
partitions of the unit interval (see Fig. 2 for an illustration) and, thus, fL as a
map between two incomplete dyadic partitions Λ,Λ′ ⊂ T

1
L. If the connecting

maps jnm of the inductive system under consideration can be generated from
a single map j

(0)
21 that implements the local refinement Λn ⊂ {x} → {x, x +

εn+1} ⊂ Λn+1, we can consistently define the action of fL on the inductive
system by shifting the local indices of elements a ∈ An such that Λ,Λ′ ⊂ Λn.

An explicit example is given by the connecting maps jnm between CAR
algebras An = ACAR(hn) based on the Haar wavelet, i.e., Eq. (61) together
with the specific choice hα = 1√

2
(δα,0 + δα,1) corresponding to the scaling

function s = χ[0,1) (the indicator function of the unit interval). By construc-
tion, the connecting maps are generated by the single map j

(0)
21 : ACAR(Cx) →

ACAR(Cx ⊕ Cx+εn+1), ax �→ 1√
2
(ax + ax+εn+1), for x ∈ Λn. Now, an element

f ∈ F acts on a basic sequence of the form j•k(a(ξk)), ξk ∈ hk, by:

fL · j•k(a(ξk)) = j•n(fL · jnk(a(ξk))) = j•n(fL · a(vnkξk))

= j•n

( ∑

x∈Λn

(vnkξk)x afL(x)

)
, (79)

6We define fL := 2 Lf( 1
2 L

( · + L)) − L.
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Figure 2. An example of a Thompson’s group element f ∈ F
as a map between two incomplete dyadic partitions

for any n such Λ,Λ′ ⊂ Λn. In particular, we have the following automorphic
action of F (and T ) on A∞ = ACAR(L2(T1

L)) determined on the dense *-
subalgebra

⋃
k∈N0

j∞kAn by

fL · j∞k(a(ξk)) = a(fL · v∞kξk) =
∑

x∈Λn

(vnkξk)x a(χ(n)
[0,1)|L( · − fL(x))), (80)

where fL · v∞kξk =
∑

x∈Λn
(vnkξk)x χ

(n)
[0,1)|L( · − fL(x)), since the bound ‖fL ·

j∞k(a(ξk))‖ = ‖ξk‖hk
. Equation (80) shows that this Jones action is the second-

quantized (or quasi-free) form of a Pythagorean representation of F (respec-
tively T ) studied in [11], and we have:

(fL · v∞kξk)(x) =
∑

y∈Λn

(vnkξk)y χ
(n)
[0,1)|L(x− fL(y))

= |(f−1
L )′(x)| 12 (v∞kξk)(f−1

L (x)) (81)

which may directly be compared with the automorphic quasi-free action of
Diff+(T1

L) on A∞ induced by its unitary action on L2(T1
L):

(uφξ)(x) = |(φ−1)′(x)| 12 ξ(φ−1(x)), (82)

for φ ∈ Diff+(T1
L) and ξ ∈ L2(T1

L). On basic sequences of the form as above,
such comparison boils down to a one-particle space estimate:

‖φ · j∞k(a(ξk)− fL · j∞k(a(ξk)‖ = ‖uφ · v∞kξk − fL · v∞kξk‖L2 , (83)

Thus, the action of general conformal transformation can be strongly ap-
proximated on A∞ if the associated action on the one-particle limit space
h∞ = L2(T1

L) can be strongly approximated.
Finally, we note that such an approximation is typically not possible in

terms of implementors (see Appendix A) as the action of non-trivial elements
of Thompson’s groups is not implementable in the presence of a non-vanishing
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central charge [21]. In the latter situations, a different strategy invoking the
approximation of conformal symmetries by the Koo–Saleur formula [39] proves
successful [51].

8. Comparison with the Literature

We compare our work with three related works: The concept of generalized
inductive limits of C*-algebras introduced by Blackadar and Kirchberg in [6],
the concept of continuous fields of Banach spaces or C*-algebras [23] over the
topological space N ∪ {∞}, and finally, an abstract approach due to Kurtz
[41] that assumes only a set of convergent nets and also covers an evolution
theorem. While [6] is concerned with generalizations of the notion of inductive
limit, [23,41] generalize to a setting where one has a certain notion of conver-
gence already given. We will see that our setup of j-convergent nets and limit
space always defines the structures studied in the latter two articles.

In [6], Blackadar and Kirchberg generalize inductive limits of C*-algebras
by relaxing almost all properties (e.g., linearity, multiplicativity) of the con-
necting maps to asymptotic versions with the exception of the strict transitiv-
ity property jnl = jnm ◦ jml if n > m > l which is required to hold always.
They often specialize to the case where the connecting maps are completely
positive linear contractions that are asymptotically multiplicative (in the same
sense as in Eq. (32)). While they discuss a notion similar to what we call jj-
convergence, they do not seem to be interested in the convergence of dynam-
ics. Instead, they apply their setup to discuss different classes of C*-algebras
that arise as (generalized) inductive limits of finite-dimensional algebras. Our
discussion of soft inductive limits shows that the strict transitivity of the con-
necting maps is not essential, and it would be interesting to discuss this in the
context of finite-dimensional approximations of C*-algebras. One should try
to answer the question: Is the class of C*-algebras that arise as soft inductive
limits of finite-dimensional C*-algebras really larger? We also mention recent
works [16,17] building on and further generalizing the work of Blackadar and
Kirchberg.

The concept of continuous fields of C*-algebras is often used for studying
limiting phenomena such as the classical and mean-field limit [24,59]. For
this, one takes as the topological space N = N ∪ {∞} equipped with the
order topology, i.e., the topology generated by order intervals (n,∞], n ∈ N ,
where N is the directed set (typically ((0, 1],≥) or (N,≤)). In a sense, the
idea is to generalize the fact that a net (xλ)λ∈Λ in a topological space X
converges to a point x∞ ∈ X if and only if the function Λ ∈ λ �→ xλ ∈ X
is continuous (Λ = Λ ∪ {∞} is again equipped with the order topology). A
continuous field of Banach spaces [23, Ch. 10] over a topological space T is
a collection of Banach spaces Et, t ∈ T , together with a specified subspace
Γ ⊂

∏
t∈T Et of “continuous vector fields” (which we call “convergent nets” if

T = N). This subspace is assumed to satisfy the axioms (a) ‖xt‖ is continuous
in t ∈ T, ∀x• ∈ Γ, (b) the set of xs with (xt) ∈ Γ is dense in Es for all s ∈ T
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and (c) if (xt) ∈
∏

t∈T Et is such that for every ε > 0 and every t0 ∈ T there
is a (yt) ∈ Γ such that ‖xs − ys‖ < ε for all s in a neighborhood of t0, then
(xt) ∈ Γ. Using that the order topology is discrete except at∞ and introducing
the seminorm ~x•~ = limn∈N‖xn‖ on

∏
n∈N En let us rewrite the axioms for

X = N as:
(a) ‖x∞‖ = limn‖xn‖ = ~x•~ for all x• ∈ Γ,
(b) The set {xn | x• ∈ Γ} is dense in En for all n ∈ N ,
(c) Γ is a seminorm-closed subspace of

∏
n∈N En.

Since the sup-norm dominates the seminorm on
∏

n∈N En, it follows from (a)
that Γ is also a norm closed subspace. For a continuous field of C*-algebras,
one requires that all En are C*-algebras and that
(d) Γ is closed under multiplication and involution.

It is now clear that the (soft) inductive system structure implies that of a
continuous field over N :

Lemma 48. Let (E, j) be a (soft) inductive system of Banach spaces (resp.
C*-algebras) over a directed set N . Then, one obtains a continuous field of
Banach spaces (resp. C*-algebras) over N by adding the limit space E∞ and
by defining Γ to be the collection of j-convergent nets with x∞ = j-limn xn.

In [41], the author works in an abstract setting similar to continuous fields
over N , and sufficient conditions for convergence of dynamics are considered.
Given a net of Banach spaces, the author considers the product N =

∏
n∈N En

with the sup-norm (we use similar notations as in our work, not the one from
[41]). He now assumes a closed subspace C ⊂ N of “convergent nets” and a
bounded linear operator, LIM : C → E∞, to be given. If LIM is surjective
then E∞ ∼= C /C0 with C0 = ker(LIM) just as in our construction.

If we assume that ({En},Γ, N) is a continuous field of Banach spaces,
then the above setting is implied: It follows from linearity and axiom (a)
that for each x• ∈ Γ the element x∞ is uniquely determined by the elements
(xn)n∈N . 7 We thus obtain a closed subspace C = {(xn)n∈N | x• ∈ Γ} ⊂ N =∏

n∈N En of convergent nets and a well-defined linear operator LIM : C → E∞
mapping x• to the unique LIMn xn = x∞ so that (x•, x∞) ∈ Γ. This is, however,
always implied if the continuous field arises from a (soft) inductive system, as
discussed above.

In this setting, our notion of jj-convergence of a net of contractions T•,
Tn ∈ L(En), may be generalized by requiring T• : C ⊂ C and T•C0 ⊂ C0 which
is sufficient for the definition of a limit operator T∞. Using this notion, one
can discuss the convergence of dynamics. As already said, [41] also covers an
evolution theorem. This theorem is similar to the direction (3) ⇒ (4) of our
Theorem 27 and allows for more flexibility because of the general setup. For
instance, his theorem can be directly applied even if jj-convergence holds only
on a closed subspace of C (E, j) (and then defines dynamics on a subspace of

7To see this let x•, y• ∈ Γ and assume that xn = yn for all n ∈ N . Then ‖x∞ − y∞‖ =
x• − y• = 0 and hence x∞ = y∞.
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E∞). In [42], this evolution theorem and the abstract approach are used to
prove a neat probabilistic generalization of the Lie-Trotter product formula
using stochastic processes.

The comparison with the latter two approaches has shown that the con-
necting maps are not too essential for our analysis. The connecting maps
become important as they provide a way to check properties of the often
intractable class of convergent nets (e.g., C (A, j) is closed under products).
Ultimately, this works because of the seminorm density of basic sequences. A
downside of the latter two approaches for describing limit phenomena such as
those considered in Sect. 7 is that one needs to know the limit space and notion
of convergence are not derived notions but have to be defined from the outset.
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A. Convergence of Implementors for Dynamics in
Representations

In applications, one often has explicit representations of the C*-algebras at
hand. The Hilbert spaces on which the algebras are represented often form
a separate inductive system, i.e. we are dealing with an inductive system of
C*-algebras and an inductive system of Hilbert space connected via a net of
representations. In such a setting, it is often of interest to understand not only
the convergence of dynamics on the algebras but also of its implementors.

For a soft inductive system (H, J) of Hilbert spaces, we ask that inner
products 〈ψn, φn〉 converge for all J-convergent ψ•, φ• ∈ C (H, j). Evaluating
this condition on basic nets, one sees that it is equivalent to the convergence of
J∗

nmJnm in the weak operator topology of L(Hl,Hm) as n →∞ for sufficiently

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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large m ∈ N , and holds automatically if the connecting maps are isometries.
In this case, the limit space H∞ is a Hilbert space with the inner product
〈ψ∞, φ∞〉 = limn〈ψn, φn〉. For any J-convergent net ψ•, the “bras” 〈ψ•| are
J∗-convergent and converge to 〈ψ∞|, where we use Dirac notation 〈ψ| = 〈ψ, · 〉.
Definition 49. Let (H, J) be a soft inductive system of Hilbert spaces and let
(A, j) be a soft inductive system of C*-algebras (over the same directed set).
A net π• of *-representations πn : An → L(Hn) is compatible, if for any
a• ∈ C (A, j) and ψ• ∈ C (H, J) the net vectors π•(a•)ψ• = (πn(an)ψn)n is
J-convergent.8 In this case, one obtains a *-representation π∞ of A∞ on H∞
by assigning to a∞ the limit operation of π•(a•).

A natural source of compatible nets of representations of inductive sys-
tems of Hilbert space are projective nets of states on strict inductive systems
of C*-algebras (A, j)9:

Proposition 50. Given a strict inductive system of C*-algebras (A, j) and a
state ω∞ on A∞, we consider the net of states ωn = ω∞ ◦ j∞n. Then, a com-
patible net of representations π• exists on a strict inductive system of Hilbert
spaces (H, J) induced by ω•. Moreover, each Hn is cyclic for πn(An) and there
is a J-convergent net of cyclic unit vectors Ω• ∈ C (H, J) that implements ω•:

ωn(an) = 〈Ωn, πn(an)Ωn〉 ∀n, an ∈ An. (84)

Proof. We apply the GNS construction to the net of states ω∞• which yields
triples (H•, π•,Ω•) with each Ωn being cyclic for πn(An). By construction, we
have (84) and, by strictness, we observe:

ωn ◦ jnm = ωm ∀m ≤ n.

Therefore, we can define linear maps Jnm : Hm → Hn by10:

Jnmπm(am)Ωm = πn(jnm(am))Ωn ∀m ≤ n,

which entails JnmJml = Jnl and JnmΩm = Ωn. Each Jnm is linear by the
linearity of πn and jnm, and it is a contraction because of Kadison’s inequality
for completely positive contractions:

‖Jnmπm(am)Ωm‖2 = 〈Jnmπm(am)Ωm, Jnmπm(am)Ωm〉
= 〈πn(jnm(am))Ωn, πn(jnm(am))Ωn〉
= 〈Ωn, πn(jnm(a∗

m)jnm(am))Ωn〉
≤ 〈Ωn, πn(jnm(a∗

mam))Ωn〉 = ωn(jnm(a∗
mam))

= ωm(a∗
mam) = ‖πm(am)Ωm‖2.

The convergence of scalar products is implied by the asymptotic morphisms
property (32) of the connecting maps j:

|〈Jnkπk(ak)Ωk, Jnlπl(bl)Ωl〉 − 〈Jmkπk(ak)Ωk, Jmlπl(bl)Ωl〉|

8In the sense of the previous sections, π• maps j-convergent nets to JJ-convergent nets.
9This is not, in general, true for soft C*-inductive systems.
10This definition enforces the projective consistency condition, ωn ◦ jnm = ωm, because it
entails JnmΩm = Ωn and J∗

nmΩn = Ωm.
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= |ωn(jnk(a∗
k)jnl(bl))− ωm(jmk(a∗

k)jml(bl))|
≤ |ω∞(j∞n(jnk(a∗

k)jnl(bl))−j∞k(a∗
k)j∞l(bl))|+|ω∞(j∞m(jmk(a∗

k)jml(bl))

−j∞k(a∗
k)j∞l(bl))|

n,m→∞−−−−−→ 0

for all ak ∈ Ak and bl ∈ Al, which implies the results because each Ωn is
cyclic. �

Remark 51. We will obtain isometries as connecting maps for the compati-
ble system of Hilbert spaces if the connecting maps are *-homomorphisms.
Moreover, the compatibility between the connecting maps j and J becomes
independent of the net of GNS vectors Ω•:

πn(jnm(am))Jnm = Jnmπm(am). (85)

Now, let us assume that we are given a net of endomorphism semigroups
T•(t) on a strict inductive system (A, j) of C*-algebras, consisting of unital
*-endomorphisms Tn(t) on each An, together with a compatible net of repre-
sentations π• on a strict inductive system of Hilbert spaces (H, J). We assume
further that each Tn(t) is implemented by a strongly continuous semigroup of
bounded operators Vn(t) ∈ L(Hn) with supn,t‖Vn(t)‖ := M < ∞ in the sense
that (cp. (85)):

Vn(t)πn(an) = πn(Tn(t)(an))Vn(t). (86)

Remark 52. For any two implementing semigroups Vn(t), Wn(t), it follows
from (86) that Vn(t)∗Wn(t) ∈ πn(An)′ and Vn(t)Wn(t)∗ ∈ πn(Tn(t)(An))′.
The operators Vn(t) are called units of T (t) in the context of E0-semigroups
[2].
In accordance with Prop. 50, implementing semigroups Vn(t) can be obtained
from a net, ω• = ω∞ ◦ j∞• , of T•(t)-invariant states by defining Vn(t) via:

Vn(t)πn(an)Ωn = πn(Tn(t)(an))Ωn,

which enforces Vn(t)∗Vn(t) = 1 and the invariance of GNS vectors, i.e., Vn(t)Ωn =
Ωn = Vn(t)∗Ωn, which follows from Tn(t)(1n) = 1n and 〈Vn(t)∗Ωn, πn(an)Ωn〉 =
〈Ωn, πn(an)Ωn〉. The strong continuity of Vn(t) follows from:

‖(Vn(t)− 1)πn(an)Ωn‖ ≤ ‖(Tn(t)− 1)an‖ ∀an ∈ An.

Lemma 53. Let T•(t) be a net of dynamical semigroups on (A, j) and V•(t)
be an implementing net of semigroups on (H, J) with respect to a compatible
net of representations π• induced by a state ω∞. Then, we have the following
estimates for any ak ∈ Ak:

1.

‖JnmVm(t)πm(jmk(ak))Ωm−Vn(t)πn(jnk(ak))Ωn‖
≤ ‖jnm(Tm(t)(jmk(ak)))−Tn(t)(jnk(ak))‖+‖ak‖(‖(Vn(t)−1)Ωn‖

+‖(Vm(t)−1)Ωn‖). (87)



L. van Luijk et al. Ann. Henri Poincaré

If each ωn is Tn(t)-invariant and Vn(t) is induced by ωn, this reduces to:

‖JnmVm(t)πm(jmk(ak))Ωm−Vn(t)πn(jnk(ak))Ωn‖
≤ ‖jnm(Tm(t)(jmk(ak)))−Tn(t)(jnk(ak))‖. (88)

2. If the connecting maps of (A, j) are *-homomorphisms and T•(t) is im-
plemented according to (86), we have:

‖JnmVm(t)πm(jmk(ak))Ωm−Vn(t)πn(jnk(ak))Ωn‖ (89)

≤ ‖jnm(Tm(t)(jmk(ak)))−Tn(t)(jnk(ak))‖+‖ak‖‖JnmVm(t)Ωm−Vn(t)Ωn‖.

Proof. The first inequality follows from:

‖JnmVm(t)πm(jmk(ak))Ωm−Vn(t)πn(jnk(ak))Ωn‖
= ‖Jnmπm(Tm(t)(jmk(ak)))Vm(t)Ωm−πn(Tn(t)(jnk(ak)))Vn(t)Ωn‖
≤ ‖πn(jnm(Tm(t)(jmk(ak))))Ωm−πn(Tn(t)(jnk(ak)))Ωn‖

+ ‖Jnmπm(Tm(t)(jmk(ak)))(Vm(t)− 1)Ωm‖
+ ‖πn(Tn(t)(jnk(ak)))(Vn(t)− 1)Ωn‖,

using the uniform bounds on J• • , π•, j• • and T•(t). The second inequality
follows immediately because the Vn(t)Ωn = Ωn. The third inequality follows
from (85) which gives:

‖JnmVm(t)πm(jmk(ak))Ωm−Vn(t)πn(jnk(ak))Ωn‖
= ‖πm(jnm(Tm(t)(jmk(ak))))JnmVm(t)Ωm−πn(Tn(t)(jnk(ak)))Vn(t)Ωn‖
≤ ‖πn(jnm(Tm(t)(jmk(ak)))−Tn(t)(jnk(ak)))JnmVm(t)Ωm‖

+ ‖πn(Tn(t)(jnk(ak)))(JnmVm(t)Ωm−Vn(t)Ωn)‖.
�

Thus, if a dynamical semigroup of endomorphisms T•(t) is convergent in
the sense of Theorem 27, we can deduce the convergence of the implementing
semigroups V•(t) with respect to (H, J), if the latter is induced by a net of
(asymptotically) T•(t)-invariant states.

Proposition 54 (Convergence of implementors for (asymptotically) invariant
states). Let T•(t) be a net of dynamical semigroups on (A, j) and V•(t) be an
implementing net of semigroups on (H, J) with respect to a compatible net of
representations π• induced by a state ω∞.
Then, the implementing semigroup V•(t) is JJ-convergent if T•(t) is jj-convergent
and the J-convergent sequence of unit vectors Ω• implementing ω• is asymp-
totically V•(t)-invariant, i.e., limn‖(Vn(t)− 1)Ωn‖ = 0.

In situations where no T•(t)-invariance is assumed on the net of states
ω• inducing (H, J), it is sufficient to show that the implementing semigroup
preserves J-convergence of the net of implementing unit vectors Ω•.

Proposition 55 (Convergence of implementors). Let T•(t) be a net of dynamical
semigroups on (A, j) and V•(t) be an implementing net of semigroups on (H, J)
with respect to a compatible net of representations π• induced by a state ω∞.
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Then, the implementing semigroup V•(t) is JJ-convergent if T•(t) is jj-convergent
and V•(t) preserves the J-convergence of the net of unit vectors Ω• implement-
ing ω•.

Remark 56. Proposition 54 directly extends to general dynamical semigroups
T•(t) if each ωn is Tn(t)-invariant and Vn(t) is induced by ωn as in Rem. 52.

B. Interchanging Lie–Trotter Limits and Inductive Limits

Proposition 57. Let T•(t) and S•(t) be nets of dynamical semigroups with nets
of generators A• and B• that converge in the sense of Theorem 27. Assume that
for any n, the Trotter product converges strongly to a dynamical semigroup
Un(t), i.e.,

lim
k→∞

‖([Tn(t/k)Sn(t/k)]k − Un(t))xn‖ = 0 ∀xn ∈ En (90)

uniformly on compact time intervals. Assume that D = D(A•) ∩ D(B•) is
seminorm dense. Consider the following statements
(a) U•(t) is convergent in the sense of Theorem 27,
(b) For all j-convergent x• and all t ≥ 0,

lim
k→∞

~([T•(t/k)S•(t/k)]k − U•(t))x•~ = 0. (91)

Then (a) ⇐ (b). If (λ−A• −B•)D is also dense, the converse also holds, i.e.,
(a) and (b) become equivalent, and it follows that

lim
k→∞

‖([T∞(t/k)S∞(t/k)]k − U∞(t))x∞‖ = 0 ∀x∞ ∈ E∞ (92)

with uniform convergence on compact time intervals.

Note that the rather complicated looking condition (91) follows if for all
m and xm the Trotter product converges uniformly in n in the sense that

lim
k→∞

‖([Tn(t/k)Sn(t/k)]k − Un(t))jnmxm‖ = 0 uniform in n. (93)

In the context of finite-dimensional approximations of Hilbert spaces
(which are inductive systems), this idea was recently used to prove a theo-
rem on the validity of finite-dimensional approximations (e.g., by numerics) of
infinite-dimensional Trotter problems in [14].

Proof. (b) ⇒ (a): Clearly [T•(t/k)S•(t/k)]kx• is j-convergence preserving for
any k. Let x• ∈ C (E, j). The assumption implies that U•(t)x• can be approxi-
mated by the j-convergent nets [T•(t/k)S•(t/k)]kx• in seminorm. That C (E, j)
is seminorm-closed implies that U•(t)x• is also j-convergent. For the strong
continuity of U∞(t), we check item (1’) of Theorem 27 to the space D (this
item is introduced in the proof implies item (1). Since the space {x• ∈ C (E, j) |
xn ∈ D(Cn), ‖C•x•‖N < ∞} contains D item (1’) indeed holds.

We now assume that (λ − A• − B•)D is seminorm dense and prove (a)
⇒ (b): Since we know that U•(t) is jj-convergent, we can directly proof (92).
The local uniformity in t guarantees that Cn is an extension of An + Bn,
where Cn is the generator of Un(t) [15, Thm. 3.7]. Therefore, we have for all
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x• ∈ D that C•x• = A•x• + B•x• ∈ C (E, j) and hence D ⊂ D(C•). It follows
that D∞ ⊂ D(A∞) ∩ D(B∞) but equality need not hold, to the best of our
knowledge. For an element x∞ ∈ D(A∞) ∩D(B∞) to be in D∞ requires that
there is one net x• converging to x∞ such that A•x• and B•x• are j∗-convergent
simultaneously.

We now prove Eq. (92): Since U•(t) satisfies the conditions of Theorem
27, we know that the limit semigroup U∞(t) is generated by an operator
C∞ and our assumption implies that D∞ is a core for C∞. This is because
(λ−C∞)D∞ = (λ−A∞−B∞)D∞ which is dense. We can now apply the stan-
dard Trotter-Chernoff Theorem [30, Ch. II, Thm. 5.8], which shows that (92)
holds. �

References

[1] Arendt, W., Chernoff, P.R., Kato, T.: A generalization of dissipativity and pos-
itive semigroups. J. Oper. Theory 8(1), 167–180 (1982)

[2] Arveson, W.: Noncommutative Dynamics and E-Semigroups Springer. In: Mono-
graphs in Mathematics. Springer, New York (2003). https://doi.org/10.1007/
978-0-387-21524-2

[3] Barchielli, A., Werner, R.: Hybrid quantum-classical systems: Quasi-free Mar-
kovian dynamics. (2023). arXiv:2307.02611

[4] Bauer, W., van Luijk, L., Stottmeister, A., Werner, R.F.: Self-adjointness of
Toeplitz operators on the Segal-Bargmann space. J. Funct. Anal. 284(4), 109778
(2023). https://doi.org/10.1016/j.jfa.2022.109778

[5] Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal sym-
metry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380
(1984). https://doi.org/10.1016/0550-3213(84)90052-X

[6] Blackadar, B., Kirchberg, E.: Generalized inductive limits of finite-dimensional
C*-algebras. Math. Ann. 307(3), 343–380 (1997). https://doi.org/10.1007/
s002080050039

[7] Blackadar, B.E.: Operator Algebras: Theory of C*-Algebras and von Neumann
Algebras. In: Encyclopaedia of Mathematical Sciences, vol. 122. Springer-Verlag,
Berlin (2006). https://doi.org/10.1007/3-540-28517-2

[8] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Me-
chanics II. In: Theoretical and Mathematical Physics. Springer, Cham (1997).
https://doi.org/10.1007/978-3-662-03444-6

[9] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Me-
chanics. In: Theoretical and Mathematical Physics. Springer, Berlin (1987).
https://doi.org/10.1007/978-3-662-02520-8

[10] Brothier, A.: Haagerup property for wreath products constructed with Thomp-
son’s groups. Groups Geom. Dyn. 17(2), 671–718 (2023). https://doi.org/10.
4171/ggd/714

[11] Brothier, A., Jones, V.F.R.: Pythagorean representations of Thompson’s groups.
J. Funct. Anal. 277(7), 2442–2469 (2019). https://doi.org/10.1016/j.jfa.2019.02.
009

https://doi.org/10.1007/978-0-387-21524-2
https://doi.org/10.1007/978-0-387-21524-2
http://arxiv.org/abs/2307.02611
https://doi.org/10.1016/j.jfa.2022.109778
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1007/s002080050039
https://doi.org/10.1007/s002080050039
https://doi.org/10.1007/3-540-28517-2
https://doi.org/10.1007/978-3-662-03444-6
https://doi.org/10.1007/978-3-662-02520-8
https://doi.org/10.4171/ggd/714
https://doi.org/10.4171/ggd/714
https://doi.org/10.1016/j.jfa.2019.02.009
https://doi.org/10.1016/j.jfa.2019.02.009


Convergence of Dynamics on Inductive Systems

[12] Brothier, A., Stottmeister, A.: Canonical quantization of 1+1-dimensional Yang-
Mills theory: an operator algebraic approach. (2019). arXiv: 1907.05549

[13] Brothier, A., Stottmeister, A.: Operator-algebraic construction of gauge theories
and Jones’ actions of Thompson’s groups. Commun. Math. Phys. 376(2), 841–
891 (2019). https://doi.org/10.1007/s00220-019-03603-4

[14] Burgarth, D., Galke, N., Hahn, A., van Luijk, L.: State-dependent Trotter limits
and their approximations. Phys. Rev. A 107(4), L040201 (2023). https://doi.org/
10.1103/PhysRevA.107.L040201

[15] Chernoff, P.R.: Product Formulas, Nonlinear Semigroups, and Addition of Un-
bounded Operators, vol. 140. American Mathematical Society (1974)

[16] Courtney, K.: Completely positive approximations and inductive systems.
(2023). arXiv: 2304.02325

[17] Courtney, K., Winter, W.: Nuclearity and CPC*-systems. (2023).
arXiv:2304.01332

[18] Dammeier, L., Werner, R. F.: Quantum-classical hybrid systems and their
quasifree transformations. (2022). arXiv:2208.05020

[19] Daubechies, I.: Ten Lectures on Wavelets. Vol. 61. In: CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, (1992). https://doi.org/10.
1137/1.9781611970104

[20] Davies, E.B.: One-Parameter Semigroups. Academic Press, Cambridge (1980).
https://doi.org/10.1017/S0013091500028169

[21] Del Vecchio, S., Iovieno, S., Tanimoto, Y.: Solitons and nonsmooth diffeomor-
phisms in conformal nets. Commun. Math. Phys. (2019). https://doi.org/10.
1007/s00220-019-03419-2

[22] Di Francesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Graduate
Texts in Contemporary Physics. Springer-Verlag, New York (1997). https://doi.
org/10.1007/978-1-4612-2256-9

[23] Dixmier, J.: C*-algebras. North-Holland, (1982)

[24] Drago, N., van de Ven, C. J. F.: Strict deformation quantization and local spin
interactions. (2022). arXiv: 2210.10697

[25] Duffield, N.G., Roos, H., Werner, R.F.: Macroscopic limiting dynamics of a class
of inhomogeneous mean field quantum systems. Ann. Inst. H. Poincaré Phys.
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