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c© 2023 The Author(s)

https://doi.org/10.1007/s00023-023-01381-3 Annales Henri Poincaré
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Abstract. We study the asymptotic growth of the entanglement entropy
of ground states of non-interacting (spinless) fermions in R

3 subject to
a constant magnetic field perpendicular to a plane. As for the case with
no magnetic field we find, to leading order L2 ln(L), a logarithmically en-
hanced area law of this entropy for a bounded, piecewise Lipschitz region
LΛ ⊂ R

3 as the scaling parameter L tends to infinity. This is in contrast
to the two-dimensional case since particles can now move freely in the
direction of the magnetic field, which causes the extra ln(L) factor. The
explicit expression for the coefficient of the leading order contains a sur-
face integral similar to the Widom–Sobolev formula in the non-magnetic
case. It differs, however, in the sense that the dependence on the bound-
ary, ∂Λ, is not solely on its area but on the “surface perpendicular to
the direction of the magnetic field”. We utilize a two-term asymptotic
expansion by Widom (up to an error term of order one) of certain traces
of one-dimensional Wiener–Hopf operators with a discontinuous symbol.
This leads to an improved error term of the order L2 of the relevant trace
for piecewise C1,α smooth surfaces ∂Λ.
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1. Introduction

In recent years, entanglement entropy (EE) has become an important and
intensively studied quantity of states of many-particle quantum systems. For
an introduction to this topic, we refer to [3,6,15]. In this paper, we study
the EE of ground states of the ideal Fermi gas in a magnetic field in three-
dimensional Euclidean space, R

3, see [18]. The two-dimensional Fermi gas in a
constant magnetic field was recently analyzed in [5,21], starting from the earlier
work in [31]. Here, a strict area-law holds, while for the free Fermi gas in any
dimension d a logarithmically enhanced area-law is valid, see [13,20]. Stability
of these area-laws has been proved in [25,26] for d ≥ 2 and in [29] in the sense
that adding a “small” electric or magnetic potential to the Hamiltonian does
not change the leading asymptotics of the entropy. The one-dimensional case
seems to be still open (for the γ-Rényi entropy with γ ≤ 1).

There is an extensive literature on EE by now with many fascinating
connections and implications to related fields. Here, we only mention and refer
to a small fraction of mathematical results. In [30], an enhanced area-law
was proved for the one-dimensional free Fermi gas in a periodic potential; the
higher-dimensional case remains an open problem. By the work in [8,24,28],
we understand EE in Anderson-type models on the lattice. An extension to
the EE of positive temperature equilibrium states (of the ideal Fermi gas)
was presented in [22,23,35]. Finally, we mention results on the XY and XXZ
quantum spin chain [1,4,7,11,12,16].

By a (strict) area-law for a ground state of the infinitely extended Fermi
gas, say in R

d with spatial dimension d ∈ N, we mean that the entanglement
(or local) entropy of this state reduced to the scaled (bounded) region LΛ
grows to leading order like Ld−1H2(∂Λ) as the dimensionless real parameter L
tends to infinity. Here, H2(∂Λ) is the (Hausdorff) surface area of the boundary
∂Λ. If there is an extra ln(L) factor in this leading asymptotics, then we call
it a logarithmically enhanced area-law.

Whether one should expect a strict area-law or an enhanced area-law is
related to the spectral properties of the one-particle Hamiltonian of the non-
interacting many-particle Fermi gas. If the off-diagonal part of the integral
kernel of the corresponding spectral (Fermi) projection has a fast decay (e.g.,
exponential), then we expect a strict area-law to hold. It is not difficult to
argue for that (see [28]) but to compute and finally prove the precise leading
coefficient has only been accomplished in special cases. On the other hand, if
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the decay of the off-diagonal part of the integral kernel is weak (e.g., inverse
linear), then we can expect an enhanced area-law. In the present model, we
have a mixture. Namely, we have an exponential decay in the planar coordinate
(orthogonal to the magnetic field) and a 1/| · | decay in the longitudinal coordi-
nate along the magnetic field. The latter prevails and leads to a logarithmically
enhanced area-law. Our main result is formulated in Theorem 4.1.

As in previous proofs there are two parts to proving such a result. Firstly,
we prove a two-term asymptotic expansion for polynomials (see Theorem 2.3).
Due to the product structure of the ground state, see (2.7), we can dimension-
ally reduce the asymptotics of a three-dimensional problem to an asymptotic
expansion of a one-dimensional problem with localizing sets LΛx⊥ ⊂ R and
with the spectral projection of the one-dimensional Laplacian, see Lemma 3.2.
The corresponding asymptotic expansion was already proved by Landau and
Widom [19] and then improved by Widom [36]. But here we need to take care
of the error term which depends on the planar coordinate x⊥ ∈ R

2 and inte-
grate over x⊥. To this end, we show that the error term is of order one and is
integrable as a function of x⊥ under some assumptions on Λ. We believe that
the precise description of the error term for the one-dimensional free case in
terms of the finite collection of intervals Λx⊥ is of independent interest and we
provide a proof in Appendix C. This dimensional reduction is also the strategy
of Widom [37] and of Sobolev in the proof of the Widom conjecture in [32]. In
fact, due to the fast (exponential) decay in the planar direction error estimates
are simpler to obtain than in the case with no magnetic field. This and the
improved Landau–Widom (or Widom) asymptotics allows us to prove for C1,α

(smooth) regions Λ an error term (for polynomials as in Theorem 2.3) of the
order L2 rather than merely of lower order than L2 ln(L) in [32, Theorem 2.9].

Secondly, in Sect. 4 we make the transition in the asymptotic expansion
from polynomials to the entropy function. This requires certain Schatten–von
Neumann quasi-norm bounds presented in Sect. 5, which in turn are based on
bounds obtained in previous papers [20,21] and notably by Sobolev [34].

The smoothness conditions on the region Λ to prove our two-term asymp-
totic result with error term o(L2 ln(L)) are rather weak; namely, we require
Λ to be only piecewise Lipschitz smooth. For a smooth region Λ, one would
expect the next lower order term to be of the order L2. This is indeed true
if the boundary ∂Λ is piecewise C1,α smooth. We also present regions with
weaker regularity on the boundary for which the error term (for a quadratic
polynomial) can be arbitrarily close to the leading L2 ln(L)-term. This may
also be of independent interest and is the content of Sect. 6.

A note on our notation: As L, L ≥ 1, is our scaling parameter that tends
to infinity, we use the “big-O” and “small-o” notation in the sense that for two
functions f and g on R

+, f = O(g) if lim supL f(L)/g(L) < ∞ and f = o(g)
if lim supL f(L)/g(L) = 0. By C with or without indices, we denote various
positive, finite constants, whose precise values is of no importance, and may
even change from line to line.
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2. Setup

We consider a nonzero constant magnetic field in R
3 of strength B which

is perpendicular to a plane. We assume without loss of generality that this
constant magnetic field points in the positive z-direction with B > 0.

We denote the Euclidean norm in R
d, d ∈ N, or the norm in the Hilbert-

space L2(Rd) of complex-valued, square-integrable functions on R
d by the same

symbol ‖ · ‖. For x ∈ R, let 〈x〉 :=
√

1 + x2 denote the Japanese bracket. For a
Borel set Ω ⊂ R

d and k < d, let Hk(Ω) be the k-dimensional Hausdorff measure
of Ω, #Ω = H0(Ω) its counting measure, and let |Ω| be its d-dimensional
Lebesgue measure/volume. By 1Ω we denote the multiplication operator on
L2(Rd) by the indicator function 1Ω of the set Ω. As usual, we write for the
complement ΩA := R

d\Ω.
For r > 0, x ∈ R

d, and a set X ⊂ R
d we denote by

Br(x) :=
{
y ∈ R

d : ‖y−x‖ < r
}
, Br(X) := X+Br(0) :=

{
x+y : x ∈ X, ‖y‖ < r

}

(2.1)
the open ball of radius r with center x and the (open) r-neighborhood of the
set X ⊂ R

d of width r, respectively. In most cases, the dimension, d, is clear
from the context and we omit it in the definition; if not, we write B

(d)
r (x). We

denote the closed ball of radius r with center x by B
(d)

r (x).
For a point x ∈ R

3, we write x = (x⊥, x‖) with (planar coordinate)
x⊥ ∈ R

2 and (longitudinal coordinate) x‖ ∈ R, and ∇ = (∇⊥,∇‖), where ∇⊥

and ∇‖ are the gradients in the respective Cartesian coordinates.
By our assumption, the magnetic field is equal to B ·e3 with e3 := (0, 0, 1).

We use the symmetric gauge a : R
2 → R

2 defined as a(x⊥) := B/2 (−x⊥
2 , x⊥

1 )
so that the curl

∇ × (a, 0) = B · e3. (2.2)

The one-particle Hamiltonian of the ideal Fermi gas in three-dimensional Eu-
clidean space R

3 subject to the magnetic field B · e3 is informally given by

HB := (−i∇⊥ + a)2 + (−i∇‖)2. (2.3)

We use physical units such that Planck’s constant � = 1, the mass is
equal to 1/2 and the charge of the particles is equal to one. HB is well defined
as a self-adjoint operator on a suitable domain in the one-particle Hilbert space
L2(R3).

The ground state of free fermions with one-particle Hamiltonian HB is
described by the spectral projection (or Fermi projection) Dμ := 1(HB ≤ μ) :=
1(−∞,μ](HB) of HB below some so-called Fermi energy (or chemical potential)
μ ∈ R. As is well-known, we have [10,18]

(−i∇⊥ + a)2 = B
∞∑

�=0

(2� + 1)P� (2.4)



Entanglement Entropy of Ground States

with explicitly known (infinite-dimensional) eigenprojections P� on L2(R2). In
order to write down these projections, let us introduce the Laguerre polyno-
mials, L�(t) :=

∑�
j=0

(−1)j

j!

(
�

�−j

)
tj , t ≥ 0, of degree � ∈ N0. Then, the integral

kernel of P� is given by the function

p�(x⊥, y⊥) :=
B

2π
L�

(
B‖x⊥ − y⊥‖2/2

)
exp

( − B‖x⊥ − y⊥‖2/4 + iB
2 x⊥ ∧ y⊥)

,

x⊥, y⊥ ∈ R
2. (2.5)

Here, ∧ refers to the exterior or wedge product on R
2. The explicit description

of this kernel is not relevant for this paper. We only use the exponential decay
in ‖x⊥ − y⊥‖2 and p�(x⊥, x⊥) = B/(2π). In the z-direction, we meet the
spectral projection 1((−∇‖)2 ≤ μ) with (sine) integral kernel, 1((−∇‖)2 ≤
μ)(z, z′) = kμ(z − z′),

kμ(z) :=

{
sin(

√
μz)

πz for z ∈ R\{0}
limz→0 kμ(z) =

√
μ

π for z = 0
μ > 0. (2.6)

The following factorization of spectral projections is crucial, which stems from
the fact that the magnetic field is pointing in the z-direction. We work with
the identification L2(R2) ⊗ L2(R) = L2(R3). Since the spectrum of HB is the
set [B,∞), we may always consider μ > B since for smaller values of μ the
ground state is zero. If B < μ ≤ 3B then Dμ = P0 ⊗ 1[(−i∇‖)2 ≤ μ − B]. For
higher values of μ, let ν := � 1

2 (μ/B − 1)� ∈ N be the smallest integer larger or
equal to 1

2 (μ/B − 1), and let us set μ(�) := μ − B(2� + 1). Then,

Dμ = 1(HB ≤ μ) =
ν−1∑

�=0

P� ⊗ 1[(−i∇‖)2 ≤ μ(�)] (2.7)

with integral kernel (x = (x⊥, x‖), y = (y⊥, y‖))

Dμ(x, y) =
ν−1∑

�=0

p�(x⊥, y⊥)kμ(�)(x‖ − y‖). (2.8)

For any Borel subset Λ ⊂ R
3 we define the spatial reduction (or trunca-

tion) of Dμ to Λ by
Dμ(Λ) := 1ΛDμ1Λ. (2.9)

Before we define the main object in this paper, we introduce for any γ > 0
the γ-Rényi entropy function, hγ : [0, 1] → [0, ln(2)],

hγ(t) :=
1

1 − γ
ln

(
tγ + (1 − t)γ

)
, γ �= 1, (2.10)

h1(t) := − t ln(t) − (1 − t) ln(1 − t) if t �∈ {0, 1} and h1(0) := h1(1) := 0.
(2.11)

Now, for a ground state described by the projection Dμ = 1(HB ≤ μ) as
above, a Borel subset Λ ⊂ R

3, and localized ground-state projection, Dμ(Λ), we
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define the γ-Rényi entanglement entropy of the ground state at Fermi energy
μ localized (in space) to Λ by

Sγ(Λ) := tr hγ(Dμ(Λ)). (2.12)

Here, tr refers to the (usual Hilbert space) trace on L2(Rd). For bounded Λ,
hγ(Dμ(Λ)) is trace-class by the same arguments as in the proof of Lemma 7 in
[21]; thus, the entanglement entropy Sγ(Λ) is trivially a positive number. This
entropy is a rather complicated function of Λ, but there is a chance to describe
it for large regions. To this end, we scale a fixed set Λ by L,L ≥ 1, and we
determine the leading growth (scaling) of the entropy Sγ(LΛ) as L → ∞.

As there does not seem to be a common definition for regions with piece-
wise differentiable boundary, we will now provide the one used in this paper.

Definition 2.1. Let 0 < α < 1, d ∈ N. A region Λ ⊂ R
d+1 is a finite union of

bounded, open, connected sets in R
d+1 such that their closures (denoted by ·̄)

are disjoint. The boundary ∂Λ is the set Λ̄\Λ. We assume that the closures Λ
and ΛA are topological manifolds with boundary ∂Λ.

We call a bi-Lipschitz1 map Ψ: [0, 1]d → ∂Λ a Lipschitz chart of ∂Λ
if Ψ((0, 1)d) ⊂ ∂Λ is relatively open. If in addition Ψ ∈ C1((0, 1)d) and its
differential DΨ satisfies the Hölder condition

‖DΨ(x) − DΨ(y)‖ ≤ C‖x − y‖α, x, y ∈ (0, 1)d, (2.13)

for some constant C, we say that Ψ is a C1,α chart. A finite set of charts (Ψi)i∈I

is called a piecewise atlas of ∂Λ if ∂Λ =
⋃

i∈I Ψi([0, 1]d), and a global atlas of
∂Λ if ∂Λ =

⋃
i∈I Ψi((0, 1)d). We say an atlas is a Lipschitz atlas (resp. C1,α)

if it consists of Lipschitz (resp. C1,α) charts.
We say that Λ is a piecewise Lipschitz region (resp. global Lipschitz re-

gion) if ∂Λ admits a piecewise Lipschitz atlas (ΨpL,i)i∈I (resp. global Lipschitz
atlas (ΨgL,i)i∈I). We call Λ a piecewise C1,α region if it admits both a global
Lipschitz atlas (ΨgL,j)j∈J and a piecewise C1,α atlas (ΨpC,i)i∈I .

For a piecewise C1,α region Λ, we fix a piecewise C1,α atlas (ΨpC,i)i∈I

and define the set of all edges, Γ by

Γ :=
⋃

i∈I

ΨpC,i(∂([0, 1]d)). (2.14)

Remarks 2.2. (i) Any global Lipschitz region is obviously a piecewise
Lipschitz region.

(ii) Our definition of a global Lipschitz region is a bit more general than the
usual notion of a strong Lipschitz region (see [2, Pages 66–67]), where
every v ∈ ∂Λ has a neighborhood Uv ⊂ R

d+1 such that, after an affine-
linear transformation, the set Λ∩Uv looks like the graph below a Lipschitz
function Ψv : (0, 1)d → R. To get to our definition from this, one can
choose the graph function x �→ (x,Ψv(x)) on (0, 1)d as the bi-Lipschitz

1A function f is bi-Lipschitz if there is a constant Clip ∈ R
+ such that C−1

lip ‖x − y‖ ≤
‖f(x) − f(y)‖ ≤ Clip‖x − y‖. Such a function f is (obviously) invertible on its image and

satisfies C−1
lip ‖x − y‖ ≤ ‖f−1(x) − f−1(y)‖ ≤ Clip‖x − y‖.
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function needed in our definition. (As a Lipschitz function, it naturally
extends to all of [0, 1]d.)

(iii) For a piecewise Lipschitz region Λ ⊂ R
d+1 and for v ∈ ∂Λ, let n(v) be

the unit outward normal vector at v. This is only well defined up to null
sets with respect to the d-dimensional Hausdorff (surface) measure Hd

on ∂Λ, see Lemma A.6.
(iv) As the set of edges, Γ, depends on the piecewise C1,α atlas ΨpC,i it may

be a different set depending on the atlas.

For a continuous function f : [0, 1] → C with f(0) = 0 and being Hölder
continuous at the two endpoints 0 and 1, we introduce the linear functional

f �→ I(f) :=
1

4π2

∫ 1

0

dt
f(t) − tf(1)

t(1 − t)
. (2.15)

By our assumption, |I(f)| < ∞. We note for later use two special cases.
Namely, I(m) := I((·)m) = −1/(4π2)

∑m−1
r=1 r−1; as usual we interpret the sum

on the right-hand side as zero if m = 1, which coincides with the vanishing of
I on affine linear functions. The second example concerns the γ-Rényi entropy
function hγ defined in (2.10). Here, I(hγ) = (1 + γ)/(24γ), see [20].

Our first main result is the following theorem, which we prove in the next
section.

Theorem 2.3. Let f : [0, 1] → C be a polynomial with f(0) = 0, let Λ ⊂
R

3, μ > B > 0, ν := � 1
2 (μ/B − 1)� ∈ N, the smallest integer larger or equal to

1
2 (μ/B − 1), and μ(�) := μ − (2� + 1)B. Let Dμ(LΛ) be the operator defined in
(2.9).

(i) If Λ is a piecewise Lipschitz region (see Definition 2.1), then we have the
asymptotic expansion of the trace on L2(R3),

tr f(Dμ(LΛ)) = L3 B

2π2

ν−1∑

�=0

√
μ(�)f(1)|Λ|

+ L2 ln(L)νB I(f)
1
π

∫

∂Λ

dH2(v) |n(v) · e3| + o(L2 ln(L)),

(2.16)

as L → ∞. Here, n(v) is the unit normal outward vector at v ∈ ∂Λ, which
is well defined for almost every v ∈ ∂Λ, and H2 is the two-dimensional
(surface) Hausdorff measure on ∂Λ.

(ii) If Λ is a piecewise C1,α region (see Definition 2.1), then the error term
is O(L2) instead of o(L2 ln(L)).

Remarks 2.4. (i) The condition f(0) = 0 is no restriction in the sense that
in general the operator on the left-hand side has to be replaced by
f(Dμ(LΛ)) − f(0)Dμ(LΛ) and I(f) on the right-hand side by I(f̃) with
f̃(t) := f(t) − (1 − t)f(0).

(ii) For the ideal Fermi gas with one-particle Hamiltonian H0 = −Δ on
L2(R3), Fermi energy μ > 0, ground state Fermi projection Dμ = 1(−Δ ≤
μ) and Fermi sea Γ := {p ∈ R

3 : p2 ≤ μ} it was proved in [20] that
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tr f(Dμ(LΛ)) = L3f(1)|Γ/(2π)||Λ| + L2 ln(L)
μ

2π
I(f) H2(∂Λ) + o(L2 ln(L))

(2.17)

as L → ∞. To this end, note that |Γ| = 4π
3 μ3/2 and that our functional

I here is the same as the functional I in [20]. The double-surface integral
J(∂Γ, ∂Λ) [20, (2)] equals μ

2π H2(∂Λ).
Letting B tend to zero in (2.16) but keeping the Fermi energy μ

fixed, the prefactor νB tends to μ/2. The remaining integral over ∂Λ is
independent of the strength B and remains fixed. For the volume term,
we have in this limit

B

2π2

ν−1∑

�=0

√
μ − (2� + 1)B ∼ μ3/2

4π2ν

ν∑

�=0

√
1 − �/ν ∼ μ3/2

4π2

∫ 1

0

dx
√

x =
μ3/2

6π2
.

In this limit the volume term equals the above volume term at B = 0 as
in (2.17). To summarize, we obtain

lim
B↓0

rhs of (2.16) = L3f(1)
μ3/2

6π2
|Λ| + L2 ln(L)

μ

2π
I(f)

∫

∂Λ

dH2(v) |n(v) · e3|

+ o(L2 ln(L)),

which is identical to the right-hand side (rhs) of (2.17) except for the
prefactor depending on ∂Λ.

(iii) There is no ’level mixing’ at the order in L2 ln(L) in the sense that each
Landau level enters individually in the numerical coefficient. In [21], we
proved that level mixing occurs in the two-dimensional setting at the
next-to-leading order, namely at the order L. We expect level mixing to
occur in the present case at the order L2. This is certainly possible to
prove, say for a cylindrical region, but it requires a three-term expansion
in the x‖-coordinate and the by now proved two-term expansion in the
x⊥-coordinate [21]. The caveat for us to proceed with this question is
that the mentioned three-term expansion has not been proved so far for
the entropy function. This is an interesting open problem.

(iv) For (2.16) to hold we require only weak regularity of the boundary ∂Λ like
in the proof in [20] for the ideal Fermi gas. In contrast, the proof of the
corresponding two-term asymptotics for the two-dimensional model in
[21] required C3 smooth regions. This smoothness was a technical condi-
tion and may not be necessary. On the other hand and more importantly,
only the leading contribution of the two-dimensional Hamiltonian enters
and the extra logarithm stems from an expansion in the longitudinal
direction, where weaker conditions suffice.
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3. Proof of Theorem 2.3

We split the proof into two steps. The first one is the lemma below, which
reduces the computation of the trace to an integral of the trace of the projection
operator 1[(−i∇‖)2 ≤ μ] localized to the sets LΛx⊥ ⊂ R with respect to
x⊥ ∈ R

2. The second step starts from there, proves an asymptotic expansion
of this trace, and finishes the proof of Theorem 2.3.

Definition 3.1. For any Borel set E ⊂ R
3 and any x⊥ ∈ R

2 we define Ex⊥ :=
{x‖ ∈ R : (x⊥, x‖) ∈ E} to collect the third components of the intersection
E ∩ ({x⊥} × R).

Lemma 3.2. Let m ∈ N with m ≥ 2. Then, under the same conditions as in
Theorem 2.3(i), there is a constant C depending only on B,m and μ such that

∣
∣
∣tr (Dμ(LΛ))m − L2 B

2π

ν−1∑

�=0

∫

R2
dx⊥ tr

(
1LΛ

x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m ∣
∣
∣

≤ CK(Λ)L2, (3.1)

where the Λ dependent constant K(Λ) is defined in Lemma A.3; it is positive
and finite for any piecewise Lipschitz region Λ. Note that LΛx⊥ := L (Λx⊥) is
(in general) different from (LΛ)x⊥ .

Proof. We utilize the same changes of coordinates in the first two components
(that is, for the planar x⊥

0 -coordinates) as in [21]. For the convenience of the
reader we repeat all steps.

As Λ is bounded, the operator 1LΛDμ is Hilbert–Schmidt and therefore
Dμ(LΛ) is trace-class. We may write

tr Dμ(LΛ)m =
∫

R3
dx0 Dμ(LΛ)m(x0, x0) (3.2)

with integral kernel

Dμ(LΛ)(x, y) =
ν−1∑

�=0

p�(x⊥, y⊥)kμ(�)(x‖, y‖), x = (x⊥, x‖), y = (y⊥, y‖),

(3.3)
as in (2.8). Therefore, the trace is of the form

tr Dμ(LΛ)m =
∫

LΛ

dx0

ν−1∑

�1,...,�m=0

∫

R2(m−1)
d x⊥

1 · · · d x⊥
m−1 p�1(x

⊥
0 , x⊥

1 )

p�2(x
⊥
1 , x⊥

2 ) · · · p�m
(x⊥

m−1, x
⊥
0 )

×
∫

Rm−1
d x

‖
1 · · · d x

‖
m−1 kμ(�1)(x

‖
0 − x

‖
1) · · · kμ(�m)(x

‖
m−1 − x

‖
0)

× 1LΛ(x1) · · · 1LΛ(xm−1).
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We begin by approximating 1LΛ(xj) by 1LΛ(x⊥
0 , x

‖
j ). We call the resulting

approximate term T (LΛ). This means

T (LΛ) :=
∫

LΛ

dx0

ν−1∑

�1,...,�m=0

∫

R2(m−1)
dx⊥

1 · · · dx⊥
m−1 p�1(x

⊥
0 , x⊥

1 )p�2(x
⊥
1 , x⊥

2 )

· · · p�m
(x⊥

m−1, x
⊥
0 )

×
∫

Rm−1
dx

‖
1 · · · dx

‖
m−1 kμ(�1)(x

‖
0 − x

‖
1) · · · kμ(�m)(x

‖
m−1 − x

‖
0)

× 1LΛ(x⊥
0 , x

‖
1) · · · 1LΛ(x⊥

0 , x
‖
m−1) .

As the second line is independent of x⊥
j , the integrals over x⊥

1 , . . . , x⊥
m−1

can be easily resolved and yield the diagonal of the integral kernel of the
operator P�1 · · · P�m

at x⊥
0 , which is B/(2π), if �1 = · · · = �m and 0 otherwise.

Thus, we have

T (LΛ) =

∫

LΛ

dx0

ν−1∑

�=0

B

2π

∫

Rm−1
dx

‖
1 · · · dx

‖
m−1 kμ(�)(x

‖
0 − x

‖
1) · · · kμ(�)(x

‖
m−1 − x

‖
0)

× 1LΛ(x⊥
0 , x

‖
1) · · · 1LΛ(x⊥

0 , x
‖
m−1).

Now, we set x⊥ := x⊥
0 /L and observe 1LΛ(x⊥

0 , x
‖
j ) = 1LΛ

x⊥ (x‖
j ). Therefore, we

have

T (LΛ) = L2

∫

R2
dx⊥

ν−1∑

�=0

B

2π

∫

LΛ
x⊥

dx
‖
0

∫

Rm−1
dx

‖
1 · · · dx

‖
m−1

× kμ(�)(x
‖
0 − x

‖
1) · · · kμ(�)(x

‖
m−1 − x

‖
0) 1LΛ(Lx⊥, x

‖
1) · · · 1LΛ(Lx⊥, x

‖
m−1)

= L2 B

2π

∫

R2
dx⊥

ν−1∑

�=0

tr
(
1LΛ

x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m
,

which is the expression in the claim. Thus, we are left to bound the error
term of our approximation. Let us denote by U ⊂ R

3m the set of all tu-
ples (x0, x1, . . . , xm−1) where 1LΛ(x0)1LΛ(x1) · · · 1LΛ(xm−1) is not equal to
1LΛ(x0)1LΛ(x⊥

0 , x
‖
1) · · · 1LΛ(x⊥

0 , x
‖
m−1). Then, using the notation xm := x0 we

trivially have

∣
∣T (LΛ) − tr Dμ(LΛ)m

∣
∣ ≤

∫

U

dx0dx1 · · · dxm−1

m−1∏

j=0

|Dμ(xj , xj+1)|. (3.4)

We will now enlarge U until we get a set where the integral can easily
be calculated. Let (x0, x1, . . . , xm−1) ∈ U . Then, there is a j ∈ {1, . . . , m − 1}
such that 1LΛ(xj) �= 1LΛ(x⊥

0 , x
‖
j ). Thus, the line between xj and (x⊥

0 , x
‖
j ) has

to intersect the boundary L∂Λ, which implies dist(xj , L∂Λ) ≤ ‖x⊥
j − x⊥

0 ‖. By
the triangle and mean inequalities, we observe that
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dist(xj , L∂Λ) ≤ ‖x⊥
j − x⊥

0 ‖ ≤
m∑

k=1

‖x⊥
k − x⊥

k−1‖ ≤ √
m

√√
√
√

m∑

k=1

‖x⊥
k − x⊥

k−1‖2.

(3.5)
For j ∈ {0, . . . , m−1}, let Uj ⊂ R

3m be the set of all (x0, x1, . . . , xm−1) ∈ R
3m

satisfying

dist(xj , L∂Λ) ≤ √
m

√√
√
√

m∑

k=1

‖x⊥
k − x⊥

k−1‖2. (3.6)

As U ⊂ ⋃m−1
j=1 Uj , we see that

∫

U

dx0dx1 · · · dxm−1

m−1∏

j=0

|Dμ(xj , xj+1)| ≤
m−1∑

k=1

∫

Uk

dx0dx1 · · · dxm−1

m−1∏

j=0

|Dμ(xj , xj+1)|

(3.7)

= (m − 1)

∫

U0

dx0dx1 · · · dxm−1

m−1∏

j=0

|Dμ(xj , xj+1)|.

(3.8)

The cyclic parameter shift (x0, x1, . . . , xm−1) �→ (x1, x2, . . . , x0) sends Uj

to Uj+1 and does not change the integrand. For 1 ≤ j ≤ m, let yj := xj −
xj−1. We will change variables from (x0, x1, . . . , xm−1) to (x0, y1, . . . , ym−1) =:
(x0,y). Using y⊥

m = −∑m−1
j=1 y⊥

j , similar to (3.5), we observe that

m
m∑

k=1

‖x⊥
k −x⊥

k−1‖2 = m(‖y⊥‖2+‖y⊥
m‖2) ≤ m‖y⊥‖2+m(m−1)‖y⊥‖2 = m2‖y⊥‖2.

(3.9)
Thus, under this change of variables the set U0 is mapped into the set

V :=
{
(x0, y1, . . . , ym−1) ∈ R

3m : dist(x0, L∂Λ) ≤ m‖y⊥‖} . (3.10)

Let us first estimate the integrand in terms of the yj ’s. With (2.8), (2.5) and
(2.6), we get

|Dμ(xj , xj+1)| ≤ Cμ,B,1

exp(−B‖y⊥
j+1‖2/8)

〈y‖
j+1〉

. (3.11)

We recall that 〈x〉 =
√

1 + x2 is the Japanese bracket.
For x0 ∈ R

3, let Ωx0 := {y⊥ ∈ R
2(m−1) : dist(x0, L∂Λ) ≤ m‖y⊥‖}, and

thus V = {(x0,y) ∈ R
3m : y⊥ ∈ Ωx0}. We have

∫

U0

dx0dx1 · · · dxm−1

m−1∏

j=0

|Dμ(xj , xj+1)| (3.12)

≤ Cm
μ,B,1

∫

V

dx0dy

m∏

j=1

exp(−B‖y⊥
j ‖2/8)

〈y‖
j 〉

(3.13)
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= Cm
μ,B,1

⎛

⎝
∫

Rm−1
dy‖

m∏

j=1

1

〈y‖
j 〉

⎞

⎠
∫

R3
dx0

∫

Ωx0

dy⊥ exp(−B‖y⊥‖2/8).

(3.14)

We need the estimate
∫

Rm−1
dy‖

m∏

j=1

1

〈y‖
j 〉

≤ 2mm!, (3.15)

which is proved in Appendix B. We also have the bound
∫

Ωx0

dy⊥ exp(−B‖y⊥‖2/8) ≤ sup
y⊥∈Ωx0

(
exp(−B‖y⊥‖2/9)

)

∫

R2(m−1)
dy⊥ exp(−B‖y⊥‖2/72) (3.16)

= exp
(−B dist(x0, L∂Λ)2

9m2

)√
72π/B

2(m−1)
.

(3.17)

Thus, we arrive at
∫

U0

dx0dx1 · · · dxm−1

m−1∏

j=0

|Dμ(xj , xj+1)|

≤ Cm
μ,B,1C

m
B,2m!

∫

R3
dx0 exp

(−B dist(x0, L∂Λ)2

9m2

)
(3.18)

≤ Cm
μ,B,1C

m
B,2m!

∞∑

k=0

|Bk+1(L∂Λ)| exp
(

− B

9m2
k2

)
. (3.19)

Here, we used an (1,∞) Hölder estimate on the sets k ≤ dist(x0, L∂Λ) ≤
k + 1 for the integral over R

3. We then enlarged these sets to the (k + 1)-
neighborhood Bk+1(L∂Λ), as their measures can be estimated more easily.
Thus, using Lemma A.3 with d = 2 and r = k + 1, we arrive at

|T (LΛ) − tr Dμ(LΛ)m| (3.20)

≤ (m − 1)(Cμ,B,1CB,2)mm!
∞∑

k=0

|Bk+1(L∂Λ)| exp
(

− B

9m2
k2

)
(3.21)

≤ (m − 1)(Cμ,B,1CB,2)mm!
∞∑

k=0

L3
∣
∣
∣B k+1

L
(∂Λ)

∣
∣
∣ exp

(
− B

9m2
k2

)
(3.22)

≤ (m − 1)(Cμ,B,1CB,2)mm!
∞∑

k=0

L3K(Λ)
(

k + 1
L

+
(k + 1)3

L3

)
exp

(
− B

9m2
k2

)

(3.23)

≤ (m − 1)(Cμ,B,1CB,2)mm!K(Λ)L2 sup
t>0

(
(t + 1)3(t + 2)2 exp

(
− B

9m2
t2
))
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∞∑

k=0

1
(k + 1)(k + 2)

(3.24)

≤ (m − 1)(Cμ,B,1CB,2)mm!K(Λ)L2CB,3m
5 ≤ K(Λ)L2Cm

μ,Bm!, (3.25)

which was our claim. �

In the next step, we accomplish the

Proof of Theorem 2.3. As the expression is linear in f , it suffices to consider
monomials f(t) = tm with integer m ≥ 1. In the special case m = 1, we just
use (2.8), (2.5), and (2.6) to see

tr Dμ(LΛ) =
∫

LΛ

dx0 Dμ(x0, x0) =
∫

LΛ

dx0

ν−1∑

�=0

kμ(�)(0)p�(x⊥
0 , x⊥

0 ) (3.26)

=
∫

LΛ

dx0

ν−1∑

�=0

√
μ(�)
π

B

2π
= L3 B

2π2

ν−1∑

�=0

√
μ(�)11|Λ|. (3.27)

As I(1) = I(id) = 0, this covers the case m = 1 and we may from now on
assume m ≥ 2.

Our first aim is to understand the open sets Λx⊥ . This is essentially a
question about the nature of the sets Λ. There are some results to choose
from, so let us take a look. Due to Lemmas A.6 and A.8, for Lebesgue almost
every x⊥ ∈ R

2, the set Λx⊥ is a finite union of disjoint intervals, ∂ (Λx⊥) =
(∂Λ)x⊥ , and #(∂(Λx⊥)) is twice the number of these intervals. Henceforth,
we set ∂Λx⊥ := ∂ (Λx⊥). The (improved) asymptotic expansion goes back to
Landau and Widom [19] and is presented in Appendix C, see Corollary C.3.
The coefficient I(m) = −1/(4π2)

∑m−1
r=1 r−1 is mentioned below (2.15).

For fixed Λx⊥ , the error term ε(Λx⊥ , L) remains bounded as L → ∞.
However, we need to know, whether this error term is integrable over x⊥.
Thus, the dependency on Λx⊥ is relevant.

To derive the o(L2 ln(L)) error term, we subtract the volume term, divide
by L2 ln(L) and use dominated convergence in order to exchange the limit
L → ∞ with the integral over x⊥. Thus, instead of an estimate for the error
term that is of a lower order in L than ln(L), we only need an upper bound for
the difference to the volume term, which is of order ln(L). This upper bound
is provided by Lemma 6.1. As any interval in LΛx⊥ has length at most CL,
we arrive at

∣
∣
∣ tr

(
1LΛ

x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m −
√

μ(�)

π
L|Λx⊥ |

∣
∣
∣ (3.28)

=
∣
∣
∣ tr

[ (
1LΛ

x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m − 1LΛ
x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ

x⊥

]∣∣
∣

(3.29)

≤
∥
∥
∥
(
1LΛ

x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m − 1LΛ
x⊥1[(−i∇‖)2 ≤ μ(�)]1LΛ

x⊥

∥
∥
∥
1

(3.30)

≤ C#(∂Λx⊥) ln(L), (3.31)
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where the constant C depends on m, μ(�) and Λ, but not on x⊥. With this
estimate, we apply dominated convergence to get

lim
L→∞

1

L2 ln(L)

(

tr Dμ(LΛ)m − BL3|Λ|
ν−1∑

�=0

√
μ(�)

2π2

)

(3.32)

=

ν−1∑

�=0

lim
L→∞

1

L2 ln(L)

B

2π
L2

( ∫

R2
dx⊥ tr

(
1LΛ

x⊥ 1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m

−
√

μ(�)

π
|LΛx⊥ |

)
(3.33)

=

ν−1∑

�=0

B

2π

∫

R2
dx⊥ lim

L→∞
1

ln(L)

(
tr

(
1LΛ

x⊥ 1[(−i∇‖)2 ≤ μ(�)]1LΛ
x⊥

)m −
√

μ(�)

π
|LΛx⊥ |

)

(3.34)

= ν
B

2π
2 I(m)

∫

R2
dx⊥ #(∂Λx⊥) = νB I(m)

1

π

∫

∂Λ
dH2(v) |n(v) · e3|. (3.35)

We moved the sum over � to the front, as every summand converges
as L → ∞. In the second line we used that

∫
R2 dx⊥ |Λx⊥ | = |Λ|. Finally, we

inserted (A.44) to obtain the expansion with error term o(L2 ln(L)) as claimed
in the theorem.

For the second part, we need to show that the error term for polynomials
can be bounded by CL2, if Λ is a piecewise C1,α region for some 0 < α < 1, as
defined in Definition 2.1. This time, we use Corollary C.3 to deal with the trace
of the one-dimensional operator. For that, we arrange each ∂Λx⊥ := (∂Λ)x⊥ =
{wx⊥1, . . . , wx⊥#(∂Λ

x⊥ )} ⊂ R in the order of increasing third components and
write

∣
∣
∣ tr

(
1LΛ

x⊥1[(−i∇‖)2 ≤ μ]1LΛ
x⊥

)m

−
√

μ

π
L|Λx⊥ | − 2 I(m)#(∂Λx⊥) ln(1 + L)

∣
∣
∣

(3.36)

≤ C

#(∂Λ
x⊥ )−1∑

i=1

(
1 + |ln(|wx⊥i − wx⊥i+1|)|

)
(3.37)

≤ C

#(∂Λ
x⊥ )∑

i=1

(
1 + |ln (

inf
v∈∂Λ

x⊥\w
x⊥i

|wx⊥i − v|)|
)
. (3.38)

In the last step, we used that the distance between any two points in ∂Λ
is bounded from above, as Λ is bounded to conclude that only short distances
|v −vi| can lead to an error term larger than the O(#(∂Λx⊥))-term we have in
front. A lower bound for the infimum is provided by Lemma A.1. This bound
is zero in some cases, which leads to the logarithm being infinite. This just
means that our integrand in the integral over x⊥ attains infinity. The integral
can still exist and we will show that it does.
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As the terms of order L3 and L2 ln(L) work just like in the previous case,
we will only consider the error term. Hence, we need to estimate

∫

R2
dx⊥

#(∂Λ
x⊥ )∑

i=1

(
1 + |ln( inf

v∈∂Λ
x⊥ \w

x⊥i

|wx⊥i − v|)|
)

(3.39)

≤ C

∫

R2
dx⊥

#(∂Λ
x⊥ )∑

i=1

(
1 + |ln(min{dist(wx⊥i, Γ), |n((x⊥, wx⊥i)) · e3| 1

α )|}
)

(3.40)

≤ C

∫

R2
dx⊥ ∑

w∈{x⊥}×∂Λ
x⊥

(
1 + |ln(dist(w, Γ))| + |ln(|n(w) · e3|)|

)
.

(3.41)

In the first step, we applied Lemma A.1 with the vectors v1 := (x⊥, wx⊥i)
amd v2 := (x⊥, v) noting that v1−v2

‖v1−v2‖ = ±e3. We now want to rewrite this
integral as an integral over the boundary ∂Λ. This is possible by Lemma A.7.
Hence, we have (recall that H2 is the canonical surface measure on ∂Λ),

∫

R2
dx⊥

#(∂Λ
x⊥ )∑

i=1

(
1 + |ln( inf

v∈∂Λ
x⊥\w

x⊥i

|wx⊥i − v|)|
)

(3.42)

≤ C

∫

∂Λ

dH2(w)
[
1 + |ln(dist(w,Γ))| + |ln(|n(w) · e3|)|

] |n(w) · e3|
(3.43)

≤ C + C

∫

∂Λ

dH2(w) |ln(dist(w,Γ))| ≤ C. (3.44)

In the second step, we used that 0 ≤ |n(w) · e3| ≤ 1 and that for 0 ≤ t ≤ 1,
we have 0 ≤ |t ln(t)| ≤ 1/e. The last step is a rather lengthy, not particularly
insightful calculation, which can be found in Lemma A.9.

Once we put the factor L2 back in front of this, we arrive at the error
term O(L2) which completes the proof of the second part of this theorem. �

4. Entanglement Entropy

Here is the main result of this paper.

Theorem 4.1. Suppose that Λ ⊂ R
3 is a piecewise Lipschitz region and let

μ > B. Let ν := � 1
2 (μ/B − 1)� and let h : [0, 1] → R be a continuous function,

which is β-Hölder continuous at 0 and 1 for some 1 ≥ β > 0, and assume that
h(0) = h(1) = 0. Then, we have the asymptotic expansion

tr h(Dμ(LΛ)) = L2 ln(L)νB
1
π
I(h)

∫

∂Λ

dH2(v) |n(v) · e3| + o(L2 ln(L)).

(4.1)
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In particular, as the γ-Rényi entropy function hγ is β-Hölder continuous for
any β < min(γ, 1), the γ-Rényi entanglement entropy, Sγ(LΛ), of the ground
state at Fermi energy μ localized to LΛ, satisfies the asymptotic expansion

Sγ(LΛ) = L2 ln(L)νB
1 + γ

24γπ

∫

∂Λ

dH2(v) |n(v) · e3| + o(L2 ln(L)) (4.2)

as L → ∞.

Remarks 4.2. (1) Unlike in Theorem 2.3, we cannot improve the o(L2 ln(L))
error term in (4.2) if we assume stronger regularity conditions on the
boundary of Λ. This is a limitation of our method of proof, which relies
on the Stone–Weierstrass approximation. Here, we lose control of the
error term.

(2) Let us compare (4.2) to the asymptotic expansion of the entanglement
entropy of the ground state at Fermi energy μ > 0 in the ideal Fermi gas,
as introduced in Remark 2.4(ii). Here, the γ-Rényi entanglement entropy
satisfies

Sγ(LΛ) = L2 ln(L)
μ(1 + γ)

48γπ
H2(∂Λ) + o(L2 ln(L)).

(3) To the best of our knowledge, the result (4.2) is new, even in the physics
literature. The factor νB satisfies νB = μ/2+(δ− 1

2 )B for some δ ∈ [0, 1).
We can bound the surface integral in (4.2) by H2(∂Λ) due to |n(v)·e3| ≤ 1.
Let us set μref := 2νB. This corresponds to the same number ν of Landau
levels as the original μ, and seems to be a suitable reference value for
comparing the Landau Hamiltonian with the free Hamiltonian. Thus the
entanglement entropy associated to the Landau Hamiltonian is always
smaller than the one associated to the free Hamiltonian at the reference
value μref.

We use certain estimates on traces. To this end, let us denote by sn(T ), n ∈
N, the singular values of the compact operator T on a (separable) Hilbert space,
arranged in decreasing order. The standard notation Sp, 0 < p < ∞ is used
for the class of operators with a finite Schatten–von Neumann quasi-norm:

‖T‖p :=
[ ∞∑

n=1

sn(T )p

] 1
p

< ∞.

If p ≥ 1, then ‖ · ‖p defines a norm. For 0 < p < 1 it is a quasi-norm that
satisfies the p-triangle inequality

‖T1 + T2‖p
p ≤ ‖T1‖p

p + ‖T2‖p
p. (4.3)

The class S1 is the standard trace-class. The class S2 is the ideal of Hilbert–
Schmidt operators. The p-Schatten quasi-norm estimate required for this proof
is shown in Theorem 5.5.

Proof of Theorem 4.1. The proof goes along the same line of arguments as
presented in [20,21]. We recall that I(hγ) = (1 + γ)/(24γ) and thus we are left
to show the claim for the function h. Let r = β/2 and ε > 0. We choose a
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smooth cutoff function ζε such that 0 ≤ ζε ≤ 1 and such that ζε vanishes on
[ε, 1− ε] and equals 1 on [0, ε/2]∪ [1− ε/2, 1]. As h is continuous and β-Hölder
continuous at 0 and 1, there is a constant C such that

h(t) ≤ Ctβ(1 − t)β , t ∈ [0, 1]. (4.4)

This implies

|(ζεh)(t)| ≤ Cεrtr(1 − t)r t ∈ [0, 1]. (4.5)

As the function t �→ (1−ζε(t))h(t)
t(1−t) is continuous, we can infer from the

Stone–Weierstrass approximation theorem that there is a polynomial p and a
function δε : [0, 1] → R with ‖δε‖L∞([0,1]) ≤ εr and

(1 − ζε(t))h(t)
t(1 − t)

= p(t) + δε(t), t ∈ [0, 1]. (4.6)

Thus, we have

h(t) = p(t)t(1 − t) + δε(t)t(1 − t) + ζε(t)h(t) =: p(t)t(1 − t) + φε(t) . (4.7)

As t(1 − t) ≤ tr(1 − t)r, we observe

|φε(t)| ≤ Cεrtr(1 − t)r, t ∈ [0, 1]. (4.8)

Thus, using Theorem 5.5, (2.7) and (4.3), we arrive at

|tr φε(Dμ(LΛ))| ≤ Cεrtr (Dμ(LΛ)r(1 − Dμ(LΛ))r) (4.9)

= Cεr‖1LΛDμ1LΛADμ1LΛ‖r
r (4.10)

= Cεr‖1LΛDμ1LΛA‖2r
2r (4.11)

≤ Cεr
ν−1∑

�=0

‖1LΛ(P� ⊗ 1((−i∇‖)2 ≤ μ(�)))1LΛA‖2r
2r (4.12)

≤ CεrCL2 ln(L). (4.13)

In (4.10), we used that Dμ is a projection. Let q(t) := p(t)t(1 − t). Now, by
linearity of I and the estimate (4.8), we have

|I(h) − I(q)| = |I(φε)| ≤ Cεr I(t �→ tr(1 − t)r) ≤ Cεr. (4.14)

Theorem 2.3(i) applied for the polynomial q with q(0) = q(1) = 0 yields

tr q(Dμ(LΛ)) = L2 ln(L)Bν I(q)
1
π

∫

∂Λ

dH2(v) |n(v) · e3| + o(L2 ln(L)). (4.15)

Now, combining (4.13), (4.14) and (4.15), we arrive at

lim sup
L→∞

∣
∣
∣
∣
tr h(Dμ(LΛ))

L2 ln(L)
− νB I(h)

1
π

∫

∂Λ

dH2(v) |n(v) · e3|
∣
∣
∣
∣ ≤ Cεr. (4.16)

As ε > 0 is arbitrary, we have proved the claim. �
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5. Schatten–von Neumann Quasi-Norm Estimates

By a box in R
d, we mean a Cartesian product of d intervals. These intervals

do not have to be bounded. We will denote subsets of R by I, of R
2 by Υ,

and of R
3 by Λ. We will combine known estimates for the two-dimensional

magnetic Hamiltonian from [21] and for the one-dimensional Hamiltonian [20,
34] without a magnetic field.

Let Υ,Υ′ ⊂ R
2 be Lipschitz regions and let I, I ′ ⊂ R be finite unions of

closed intervals. Then, we have

1Υ×I

(
P� ⊗ 1[(−i∇‖)2 ≤ μ]

)
1Υ′×I′ =

(
1ΥP�1Υ′

) ⊗ (
1I1[(−i∇‖)2 ≤ μ]1I′

)
.

(5.1)

As the singular values of the tensor product of two operators are given
by all possible products of pairs of the individual singular values, we have for
any 0 < p ≤ ∞ :
∥
∥
∥1Υ×I

(
P� ⊗ 1[(−i∇‖)2 ≤ μ]

)
1Υ′×I′

∥
∥
∥

p
= ‖1ΥP�1Υ′‖p

∥
∥
∥1I1[(−i∇‖)2 ≤ μ]1I′

∥
∥
∥

p
.

(5.2)

The following general properties will be useful:

Lemma 5.1. For any self-adjoint bounded operators S, T : L2(Rd) → L2(Rd),
any measurable sets Ω1,Ω2, Ω′

1,Ω
′
2 ⊂ R

d and any 0 < p ≤ 1, we have
Symmetry ‖1Ω1T1Ω2‖p = ‖1Ω2T1Ω1‖p,
Monotonicity I ‖1Ω1T1Ω2‖p ≤ ∥

∥1Ω1∪Ω′
1
T1Ω2∪Ω′

2

∥
∥

p
,

Monotonicity II If 0 ≤ S ≤ T , then ‖S‖p ≤ ‖T‖p,
Subadditivity

∥
∥1Ω1∪Ω′

1
T1Ω2

∥
∥p

p
≤ ‖1Ω1T1Ω2‖p

p +
∥
∥1Ω′

1
T1Ω2

∥
∥p

p
.

A proof of these properties can be found, for example, in [29].
We assume now that the magnetic-field strength has been “scaled out” so

that B = 1 for the remainder of this section. The effective scale in the planar
coordinates is L

√
B and in the perpendicular it is L

√
μ.

Next, we collect some more specific (quasi-)norm estimates for both the
one dimensional free Hamiltonian and the constant magnetic field Hamiltonian
in two dimensions.

Proposition 5.2. Let 0 < p ≤ 1, � ∈ N0 and let μ > 0. Then, there is a
constant C such that for any x ∈ R

2, t ∈ R, h ≥ 2, δ ≥ 1, any measurable set
Υ ⊂ R

2 such that [−δ, 1+ δ]2 +x ⊂ Υ and any measurable set I ⊂ R such that
[t, t + h] ⊂ I, we have the estimates

∥
∥1[0,1]2+xP�

∥
∥p

p
≤ C, (5.3)

∥
∥1[0,1]2+xP�1ΥA

∥
∥p

p
≤ C exp(−pδ2/18), (5.4)

∥
∥
∥1[t,t+h]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

p

p
≤ Ch, (5.5)

∥
∥
∥1[t,t+h]1[(−i∇‖)2 ≤ μ]1IA

∥
∥
∥

p

p
≤ C ln(h), (5.6)
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Proof. The first two inequalities follow by [21, Lemma 12], monotonicity I in
Lemma 5.1, and the unitary translation invariance of P�. The 8 in the denom-
inator was increased to 18 in (5.4) as we switched from circles to squares2. To
prove the last inequality, we first use monotonicity I and the translation in-
variance, then the standard unitary equivalence, see, for example, [19, (7–10)],
and finally [34, Corollary 4.7]. Thus,

∥
∥
∥1[t,t+h]1[(−i∇‖)2 ≤ μ]1IA

∥
∥
∥

p

p
≤

∥
∥
∥1[0,h]1[(−i∇‖)2 ≤ μ]1[0,h]A

∥
∥
∥

p

p
(5.7)

=
∥
∥
∥1[0,1]1[(−i∇‖)2 ≤ h2μ]1[0,1]A

∥
∥
∥

p

p
(5.8)

≤ C ln(h). (5.9)

For the third inequality, we will reduce to the case h = 2, t = 0 by subadditivity,
monotonicity I and translation invariance. Let m := �h/2� ∈ N be the smallest
integer larger or equal to h/2. Thus, as h ≥ 2, we have m ≤ h. We observe
that

∥
∥
∥1[t,t+h]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

p

p
≤

m−1∑

k=0

∥
∥
∥1[t+2k,t+2k+2]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

p

p
(5.10)

= m
∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

p

p
(5.11)

≤ 2h
∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

p

p
. (5.12)

Using subadditivity once more we now estimate
∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

p

p
(5.13)

≤
∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]1[0,2]

∥
∥
∥

p

p
+

∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]1[0,2]A

∥
∥
∥

p

p

(5.14)

≤
∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]1[0,2]

∥
∥
∥

p

p
+ C (5.15)

=
∥
∥
∥1[0,2]1[(−i∇‖)2 ≤ μ]

∥
∥
∥

2p

2p
+ C. (5.16)

The second summand was bounded by (5.6), and the last quasi-norm identity
is derived by the singular value identity sn(A)2 = sn(A∗A). Define Q :=
1[0,2]1[(−i∇‖)2 ≤ μ]. Our claim is Q ∈ Sp for all 0 < p ≤ 1. The last estimate
shows that Q ∈ Sp, if Q ∈ S2p for p ≤ 1. We now observe

‖Q‖2
2 =

∫ 2

0

ds

∫

R

dt k2
μ(s − t) =

2
√

μ

π
. (5.17)

Thus, we have Q ∈ S2 and hence Q ∈ S21−n for any n ∈ N. Lastly, as
Sp ⊂ Sq for p < q, we arrive at Q ∈ Sp for any 0 < p ≤ ∞, which finishes the
proof. �

2The choice of the value 18 = 32 × 2 is convenient for this paper.
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After all these preparations we finally state the crucial local estimates
that are needed in the proof of Theorem 5.5.

Lemma 5.3. Let 0 < p ≤ 1. Then, there is a constant C such that for any x ∈
R

2, t ∈ R, h ≥ 2, δ ≥ 1, any measurable Υ ⊂ R
2 such that [−δ, 1 + δ]2 + x ⊂ Υ

and any interval I ⊂ R such that [t, t + h] ⊂ I, we have the estimates
∥
∥∥1([0,1]2+x)×[t,t+h]

(
P� ⊗ 1[(−i∇‖)2 ≤ μ]

)∥∥∥
p

p
≤ Ch, (5.18)

∥∥
∥1([0,1]2+x)×[t,t+h]

(
P� ⊗ 1[(−i∇‖)2 ≤ μ]

)
1(Υ×I)A

∥∥
∥

p

p
≤ Ch exp

(−pδ2/18
)
+ C ln(h).

(5.19)

Proof. For the first inequality, we use (5.2) and Proposition 5.2. For the second
inequality, we first observe

(Υ × I)A = (ΥA × I)∪(R2 × IA) ⊂ (ΥA × R) ∪ (R2 × IA) (5.20)

and then we use the p-triangle inequality, (5.2) and Proposition 5.2. �

We now fix a region Λ ⊂ R
3 and define the signed distance function

dΛ(x) :=

{
+ dist(x, ∂Λ) for x �∈ Λ
−dist(x, ∂Λ) for x ∈ Λ

, (5.21)

where dist is the Euclidean distance. The signed distance function is Lipschitz-
continuous with Lipschitz constant 1.

In order to utilize Lemma 5.3, we need to essentially cover LΛ with a lot
of very long boxes (of dimensions 1 × 1 × O(L)). This boils down to choosing
appropriate intervals that cover most of Λx (as defined in Definition 3.1), for
any x ∈ R

2. Let G(x, ε) be the number of these intervals. The following lemma
explicitly constructs such intervals and lists the properties that G(x, ε) and the
intervals satisfy, which we need for our estimates. The basic idea is to collect
connected components of Λx, which go sufficiently deep inside Λ.

Lemma 5.4. For any x ∈ R
2 and ε > 0, there is a finite (possibly empty) set of

intervals A(x, ε) = {I1,x,ε, . . . , IG(x,ε)),x,ε}, satisfying the following conditions:
(1) We have dΛ(Ik,x,ε) ⊂ (−∞,−ε) and dist(Ik,x,ε, ∂Λ) = ε.
(2) For any λ ∈ Λx, there exists a j with 1 ≤ j ≤ G(x, ε) : λ ∈ Ij,x,ε, or

dΛ((x, λ)) > −2ε.
(3) We have G(x, ε) = #A(x, ε) ≤ H1

(
d−1

Λ ((−2ε,−ε)) ∩ ({x} × R)
)
/ε.

The signed distance function dΛ, dependent on the piecewise Lipschitz region
Λ, is defined in (5.21).

We regard the lemma and its proof as the definitions of A(x, ε), Ij,x,ε and
G(x, ε).

Proof. We consider the set A0(x, ε) of all connected components of(
d−1

Λ ((−∞,−ε))
)
x

⊂ R (with the convention that the empty set has no con-
nected components). The set A(x, ε) is defined as the set of all I ∈ A0(x, ε),
such that there is a λ ∈ I with dΛ((x, λ)) ≤ −2ε. The first point is already
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satisfied for all I ∈ A0(x, ε) and thus holds for all I in the smaller set A(x, ε).
For the second claim, we observe that if λ ∈ Λx with dΛ((x, λ)) ≤ −2ε, then
λ ∈ (

d−1
Λ ((−∞,−ε))

)
x

and thus there is an I ∈ A0(x, ε) with λ ∈ I. By
definition of A(x, ε), this ensures I ∈ A(x, ε).

For the third claim, if A(x, ε) �= ∅, let I = (λ1, λ4) ∈ A(x, ε) and define
λ2 := inf{λ ∈ I : dΛ((x, λ) ≤ −2ε}, λ3 := sup{λ ∈ I : dΛ((x, λ) ≤ −2ε}.
Thus, λ1 < λ2 < λ3 < λ4,

dΛ({x} × (λ1, λ2)) = dΛ({x} × (λ3, λ4)) = (−2ε,−ε), (5.22)

and, as dΛ has Lipschitz constant 1, this means that

H1(({x} × I) ∩ d−1
Λ ((−2ε,−ε))) ≥ H1({x} × ((λ1, λ2) ∪ (λ3, λ4))) ≥ 2ε.

(5.23)

As (λ1, λ2) ⊂ I, (λ3, λ4) ⊂ I and different elements of A(x, ε) are disjoint (as
they are connected components), we can sum the inequality over all elements
of A(x, ε) and arrive at

H1(({x} ×R) ∩ d−1
Λ ((−2ε, −ε))) ≥

∑

I∈A(x,ε)

H1(({x} × I) ∩ d−1
Λ ((−2ε, ε))) ≥ 2G(x, −ε)ε,

(5.24)
which implies the last claim (with an additional factor 1/2). �

Theorem 5.5. Let Λ be a piecewise Lipschitz region (see Definition 2.1) and
let 0 < p ≤ 1, � ∈ N, μ ∈ R

+. Then, there are constants L0 = L0(Λ, p, �, μ) > 3
and C = C(Λ, p, �, μ) such that for all L > L0

∥
∥
∥1LΛP� ⊗ 1[(−i∇‖)2 ≤ μ]1LΛA

∥
∥
∥

p

p
≤ C(Λ, p)L2 ln(L). (5.25)

Proof. We want to cover most of LΛ with translates of cubes [0, 1]2 × [0, h],
where h grows like L and will use Lemma 5.3 on these.3 We set δ := 6p−1/2
√

ln(L). Let L0 be large enough to ensure that δ ≥ 1 for L > L0. Hence, these
cubes need to keep a distance of at least δ from the boundary. Set ε := 2(δ+1)

L .
We also define the shorthand

P := P� ⊗ 1[(−i∇‖)2 ≤ μ]. (5.26)

Let h0 be the length of the longest straight line contained in Λ.
Consider any x ∈ R

2 with G(x, ε) ≥ 1, as defined in Lemma 5.4. For
k ∈ {1, . . . , G(x, ε)}, we define the boxes

Qx,k := ([0, 1]2 + Lx) × (LIk,x,ε) ⊂ LΛ, (5.27)

Q′
x,k := ([−δ, 1 + δ]2 + Lx) × (LIk,x,ε) ⊂ LΛ. (5.28)

These inclusions hold because
√

2 <
√

2(δ+1) < Lε = Ldist({x}×Ik,x,ε, ∂Λ) =
dist({Lx} × (LIk,x,ε), L∂Λ).

3The choice of 18 in Proposition 5.2 makes the definition of δ quite nice to work in the
estimate (5.31).
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We assume L > h0, Lh0 > 1 and L > 2. Now we have by monotonicity I
in Lemma 5.1 and by Lemma 5.3

∥
∥1Qx,k

P1LΛA
∥
∥p

p
≤

∥
∥
∥1Qx,k

P1(Q′
x,k)A

∥
∥
∥

p

p
(5.29)

≤ CL|Ik,x,ε| exp
(−pδ2/18

)
+ C ln(L|Ik,x,ε|) (5.30)

≤ Ch0L
−1 + C ln(L) + C ln(h0) ≤ C ln(L). (5.31)

The constant C depends only on p and h0.
Now we consider some offset parameter s ∈ [0, 1)2, and we define

Λε,s := Λ\
⋃

z∈Z2

G( z+s
L ,ε)⋃

k=1

1
L

Q z+s
L ,k ⊂ d−1

Λ ((−3ε, 0)) . (5.32)

The inclusion is based on the fact that for each y ∈ R
3, there is a z+s

L ∈ R
2

with z ∈ Z
2 such that y ∈ (

z+s
L + 1

L [0, 1]2
)×R. If dΛ(y) ≤ −3ε, then the point

(
z+s
L , y3

)
is at most

√
2

L < ε away from y and hence at least 2ε away from the
boundary. Therefore, there is a k such that y ∈ 1

LQ z+s
L ,k.

We further define

Zε :=
{
u ∈ Z

3 :
(
u + [0, 1]3

) ∩ Ld−1
Λ ((−3ε, 0)) �= ∅} , (5.33)

so that Ld−1
Λ ((−3ε, 0)) ⊂ ⋃

u∈Zε

(
u + [0, 1]3

)
. As ε >

√
3

L , the length of the
diagonal in a cube 1

L [0, 1]3, we have (second inclusion)

Ld−1
Λ ((−3ε, 0)) ⊂

⋃

u∈Zε

(
u + [0, 1]3

) ⊂ Ld−1
Λ ((−4ε, ε)) . (5.34)

Hence, the volume of the middle term, which is the cardinality, #Zε, of Zε,
can be bounded by the volume of the right-hand side. For ε < 1, using Lemma
A.3, this is bounded by L3C(Λ)ε. Hence for L > L0:

#Zε ≤ L3C(Λ)ε ≤ C(Λ, p)L2
√

ln(L). (5.35)

Using the monotonicity I and subadditivity properties in Lemma 5.1 and the
covering (5.32), we can finally estimate,

‖1LΛP1LΛA‖p
p ≤

∑

z∈Z2

G( z+s
L ,ε)∑

k=1

∥
∥
∥1Q z+s

L
,k

P1LΛA
∥
∥
∥

p

p
+

∥
∥1LΛε,s

P1LΛA
∥
∥p

p
. (5.36)

The summands in the first sum can be bounded by C ln(L) using (5.31).
The second term will be bounded using monotonicity I, (5.32) and (5.34) in
the first step and using monotonicity II, subadditivity, (5.18) and (5.35) in the
second step. Hence, we have
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‖1LΛP1LΛA‖p
p ≤

∑

z∈Z2

G

(
z + s

L
, ε

)
C ln(L) +

∑

u∈Zε

∥
∥1[0,1]3+uP1LΛA

∥
∥p

p

(5.37)

≤ C
∑

z∈Z2

G

(
z + s

L
, ε

)
ln(L) + C(Λ, p)L2

√
ln(L)C. (5.38)

For any fixed L > L0 and s ∈ [0, 1)2, this is finite. Hence, we can integrate this
over s ∈ [0, 1)2 and get a different upper bound. As the volume of [0, 1)2 is 1,
the left-hand side and the last term do not change, as it is an integral over a
constant in both cases.

‖1LΛP1LΛA‖p
p ≤ C

∫

[0,1)2
ds

∑

z∈Z2

G

(
z + s

L
, ε

)
ln(L) + C(Λ, p)L2

√
ln(L).

(5.39)

Now we can use Fubini on the product Z
2 × [0, 1)2 = R

2. Hence we have

‖1LΛP1LΛA‖p
p ≤ C ln(L)

∫

R2
G

( x

L
, ε

)
dx + C(Λ, p)L2

√
ln(L) (5.40)

= C ln(L)L2

∫

R2
G(x, ε) dx + C(Λ, p)L2

√
ln(L) (5.41)

≤ C ln(L)L2

∫

R2

∣
∣(d−1

Λ ((−2ε,−ε))
)
x

∣
∣ /εdx + C(Λ, p)L2

√
ln(L) (5.42)

= C ln(L)L2|d−1
Λ ((−2ε,−ε))|/ε + C(Λ, p)L2

√
ln(L) ≤ C(Λ, p)L2 ln(L).

(5.43)

In the first step, we did a change of variables, in the third step we used
Lemma 5.4, in the last but one step Fubini and in in the final step we applied
(A.9). �

6. The Error Term can be Large and not Smaller than
o(L2 ln(L))

Without loss of generality, we assume throughout this section that ν = 1 and
B = 1 because the precise values are not relevant now. The non-asymptotic
bound in the following lemma is simple and useful in the proof of the main
theorem in this section.

Lemma 6.1. Let Ω ⊂ R be a finite union of intervals of finite lengths �1, . . . , �n

with disjoint closures. Let m ∈ N with m ≥ 2, μ > 0, and Δ = d2/d2x the
one-dimensional Laplacian. Then, we have the estimate

‖(1Ω1(−Δ ≤ μ)1Ω)m − 1Ω1(−Δ ≤ μ)1Ω‖1 ≤ m − 1

π2

n∑

j=1

ln(1 +
√

μ�j) + Cmn,

(6.1)
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where C is an entirely independent constant.

For m = 2, this estimate is sharp in the sense that the prefactor 1/π2

equals the coefficient of the leading asymptotic behavior of tr (1LΩ1(−Δ ≤
μ)1LΩ)2 for large L.

Proof. By scaling we can assume μ = 1 since 1Ω1(−Δ ≤ μ) is unitarily equiv-
alent to 1√

μΩ1(−Δ ≤ 1). In other words, we may set μ = 1 and eventually
replace the lengths �j by

√
μ�j .

Then, we use the geometric series am − a = a(a − 1)(am−2 + · · · + a + 1)
with a := 1Ω1(−Δ ≤ 1)1Ω. As a has on operator norm of at most 1, we can
estimate

‖(1Ω1(−Δ ≤ 1)1Ω)m − 1Ω1(−Δ ≤ 1)1Ω‖1

≤ (m − 1)‖a(a − 1)‖1

= (m − 1)‖1Ω1(−Δ ≤ 1)1ΩA1(−Δ ≤ 1)1Ω‖1

= (m − 1)‖1Ω1(−Δ ≤ 1)1ΩA‖2
2

= (m − 1)
∫

Ω

dx

∫

ΩA
dy k(x − y)2, (6.2)

with the function k = k1 defined in (2.6).
For a fixed x ∈ Ω, we now enlarge the domain of integration in y by

allowing y ∈ Ω, as long as x and y are in different intervals in Ω. In a formula,
with π0(Ω) denoting the connected components (subintervals) of Ω, the new
domain of integration in (6.2) is

⋃

I∈π0(Ω)

{
(x, y) : x ∈ I, y �∈ I

}
. (6.3)

As the integrand only depends on x − y, we may translate I to be of the form
(0, �j). Hence, with n := #π0(Ω) the number of connected components of Ω,
we have

‖(1Ω1(−Δ ≤ 1)1Ω)m − 1Ω1(−Δ ≤ 1)1Ω‖1 (6.4)

≤ (m − 1)
n∑

j=1

∫ �j

0

dx

∫

(0,�j)A
dy k(x − y)2 (6.5)

= (m − 1)
n∑

j=1

‖1(0,�j)1(−Δ ≤ 1)1(0,�j)A‖2
2 (6.6)

= (m − 1)
n∑

j=1

tr
[
1(0,�j)1(−Δ ≤ 1)1(0,�j) − (

1(0,�j)1(−Δ ≤ 1)1(0,�j)

)2
]

(6.7)

≤ (m − 1)
n∑

j=1

1
π2

ln(1 + �j) + Cmn. (6.8)

The last step relies on an improved result of Landau and Widom with L = 1,
see Corollary C.3. �
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In Theorem 2.3, we obtained for a general Lipschitz region Λ ⊂ R
3

an error term o(L2 ln(L)) and not of the order L2. Specifically, using I(2) =
−1/(4π2), we have the asymptotic expansion

tr
(
Dμ(LΛ) − Dμ(LΛ)2

)
=

L2 ln(L)
4π3

∫

∂Λ

dH2(v) |n(v) · e3| + o(L2 ln(L)).

(6.9)

This allows us to define the error term ε(L,Λ) by the identity

tr
(
Dμ(LΛ) − Dμ(LΛ)2

)
=

L2 ln(L)
4π3

∫

∂Λ

dH2(v) |n(v) · e3| − L2 ln(L) ε(L,Λ).

(6.10)

In this notation, Theorem 2.3 states that limL→∞ ε(L,Λ) = 0 for a piecewise
Lipschitz region Λ and we have supL≥2 |ε(L,Λ)| ln(L) < ∞, if Λ is a piecewise
C1,α region. The main result of this section, which is the next theorem, shows
that the estimate for Lipschitz regions is sharp and the error term can be
large and just o(L2 ln(L)). The negative sign in front of the error term does
not necessarily mean that it has a definite sign although in our example it will
be. Although our result only deals with the error term for the simplest, non-
trivial polynomial, namely t �→ t(1 − t), we believe that also for the entropy
the error term can be as large and only o(L2 ln(L)) for a Lipschitz region.

Theorem 6.2. Let ϕ : R
+ → R

+ be a bounded function with limL→∞ ϕ(L) = 0.
Then, there is a piecewise Lipschitz region Λ and an L0 such that for any
L ≥ L0, the error term defined in (6.10) satisfies

ε(L,Λ) ≥ ϕ(L). (6.11)

Remark 6.3. Let A be the subset of the space of all polynomials vanishing at
0 and 1 such that the error term in Theorem 2.3 for f ∈ A is of order O(L2)
for any Lipschitz domain Λ. This is clearly a linear subspace and the theorem
tells us that t �→ t(1−t) �∈ A. Thus, the subspace has at least codimension one,
which means that it satisfies (at least ) one linear constraint. We conjecture
that this constraint might be f ∈ A =⇒ I(f) = 0. That is, the error term can
only achieve the order O(L2), if the leading term of order L2 ln(L) vanishes.

Proof of Theorem 6.2. We begin with a non-negative, summable sequence
(ai)i∈N with

∑
i∈N

ai = 1, which we will choose later. Let g0 : [0, 1] → R
+

be the zigzag function defined by g0(0) = 1 and for t > 0,

g′
0(t) =

{
+1 if ∃j ∈ N : 0 < t − ∑

i<j ai ≤ 1
2aj

−1 if ∃j ∈ N : 1
2aj < t − ∑

i<j ai ≤ aj

. (6.12)

If j = 1, then we use the convention that
∑

j<1 aj := 0. Clearly, g0 is Lipschitz
continuous with Lipschitz bound 1. We expand g0 to [−1, 2] by setting g0(t) =
t + 1 for t < 0 and g0(t) = 2 − t for t > 1. This extension is still Lipschitz
continuous and satisfies g0(−1) = g0(2) = 0. Now, we can define the region Λ,

Λ :=
{
(x1, x2, x3) ∈ R

3 : x1 ∈ (0, 1), x3 ∈ (−1, 2),−g0(x3) < x2 < g0(x3)
}
.

(6.13)



P. Pfeiffer and W. Spitzer Ann. Henri Poincaré

Figure 1. Example of a x2-x3-plot of the domain Λ for any
x1 ∈ (0, 1) and some sequence (ai)i∈N. The upper half is the
graph of g0. In green, one can see two sets Λx⊥ . In the middle,
one can see the ball of all points, with respect to which Λ is
star-shaped

This clearly defines a piecewise Lipschitz region. We will now sketch why this
is even a strong Lipschitz domain (See [2, Pages 66–67] for the definition.)

For any x0 ∈ B1/(2
√

2)(1/2, 0, 1/2), the region Λ is star shaped with re-
spect to x0. For the definition of a strong Lipschitz domain, we need to choose
an open cover of ∂Λ and a projection with a certain direction on every set
of the cover. For any orthogonal (rank 2) projection π : R

3 → R
2, on the two

connected components of the set π−1(π(B1/(4
√

2)(1/2, 0, 1/2))) ∩ ∂Λ, one can
define the chart as the inverse of π, which has a Lipschitz constant less than 10.
This leads to an open cover of ∂Λ and one can then choose a finite subcover.

The boundary ∂Λ can be covered by the sets ∂1Λ :=
{
x ∈ ∂Λ: x1 ∈

{0, 1}} and ∂2Λ :=
{
x ∈ ∂Λ: x1 ∈ [0, 1]

}
. These two boundary sets have a

non-empty intersection, but ∂1Λ ∩ ∂2Λ is a “one-dimensional” set with two-
dimensional Hausdorff measure zero, that is, H2(∂1Λ ∩ ∂2Λ) = 0.

For almost every x ∈ ∂1Λ, the outward normal vector n(x) is given by
±e1, while for almost every x ∈ ∂2Λ, the outward normal vector is given by
1√
2
(±e2 ± e3); the vectors e1, e2, e3 are the usual unit vectors in the positive
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x1, x2, x3 directions. Hence, we observe

H2(∂1Λ) = 4
∫ 2

−1

g0(t) dt ≤ 9, (6.14)

H2(∂2Λ) = 2
∫ 2

−1

√
1 + (g′

0)2(t) dt = 6
√

2, (6.15)
∫

∂Λ

|n(x) · e3|dH2(x) =
1√
2
H2(∂2Λ) = 6. (6.16)

It is important that H2(∂Λ) = H2(∂1Λ) + H2(∂2Λ) is bounded inde-
pendently of the sequence (ai)i∈N and that the surface integral in (6.16) is
completely independent of the sequence.

The leading asymptotic term for the trace on the left-hand side of (6.10)
is provided by Theorem 2.3. Here, I(2) = −1/(4π2) and hence

tr
(
Dμ(LΛ) − Dμ(LΛ)2

)
=

L2 ln(L)
4π3

∫

∂Λ

dH2(v) |n(v) · e3| + o(L2 ln(L))

(6.17)

=
L2 ln(L)

π3

3
2

+ o(L2 ln(L)), (6.18)

where we used (6.16).
We need an upper bound for the constant K(Λ) defined in Lemma A.3,

which is independent of the function g. We observe that ∂1Λ is the image of
the Lipschitz functions fj : [0, 1]2 → ∂1Λ; (x1, x2) �→ (j, 3x1 − 1, g(3x1 − 1)x2)
for j = 0, 1 and ∂2Λ is in the image of the Lipschitz functions f̃± : [0, 1]2 →
∂2Λ; (x1, x2) �→ (x1, 3x2 − 1,±g(3x2 − 1)). Thus, the set {f0, f1f̃+, f̃−} defines
a piecewise Lipschitz atlas of ∂Λ. Hence, as Clip(fj) = 3

√
2 and Clip(f̃±) = 3,

we observe

K(Λ) ≤ (16
√

2)2 × 2 × (1 + (3
√

2)2 + 1 + 32) < ∞. (6.19)

Hence, by Lemma 3.2, we have

tr Dμ(LΛ)m =
L2

2π

∫

R2
dx⊥ tr

(
1LΛ

x⊥1[(−i∇‖)2 ≤ μ]1LΛ
x⊥

)m

+ O(L2)

(6.20)

with x⊥ = (x1, x2). To get to the polynomial f(t) = t(1 − t) we have to
subtract this term with m = 2 from the term with m = 1. Now, we intend to
use Lemma 6.1. To do so, we need to describe the lengths of the (sub)intervals
of Λx⊥ depending on x⊥ = (x1, x2).

We can ignore the case x1 ∈ {0, 1}, as this is a null set with respect to
the Lebesgue measure on R

2. If x1 ∈ (0, 1) and |x2| ≤ 1 then the set Λx⊥ is a
single interval of length �1(x2) = 3 − 2|x2|. The interesting case is x1 ∈ (0, 1)
and 1 < |x2| < 2. Here, for any i ∈ N with ai > 2(|x2|− 1), there is an interval
of size �i(x2) = ai −2(|x2|−1), as illustrated in Equation (1). For any |x2| > 1,
this will only lead to finitely many intervals, as the sequence (ai)i∈N is a null
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sequence. Now, we apply (6.20) for m = 1 and m = 2, and then Lemma 6.1
and see that

2π

L2

∣
∣
∣tr

(
Dμ(LΛ) − Dμ(LΛ)2

)∣∣
∣ (6.21)

≤ C+

∫ 1

0

dx1

∫

R

dx2 ‖(1LΛ
x⊥1(−Δ ≤ μ)1LΛ

x⊥ )2 − 1LΛ
x⊥1(−Δ ≤ μ)1LΛ

x⊥ ‖1

(6.22)

≤ 2

π2

∫ 1

0

dx2

(
ln(1 + L

√
μ(3 − 2x2)) + C

)
(6.23)

+
2

π2

∫ 2

1

dx2

∑

i∈N : ai>2(x2−1)

(
ln(1 + L

√
μ(ai − 2(x2 − 1)) + C

)
(6.24)

=
2

π2

∫ 1

0

dx2

(
ln(1 + L

√
μ(3 − 2x2)) + C

)

+
2

π2

∑

i∈N

∫ 1
2 ai

0

dt
(

ln(1 + L
√

μ2t) + C
)
. (6.25)

In the second step, we also used that the set Λx⊥ is independent of x1 ∈ (0, 1).
The third step uses Fubini to exchange the sum and the integral and then
transforms the integration variable to t := 1

2ai + 1 − x2. The lower bound 0
in the last integral stems from the condition ai > 2(x2 − 1), respectively, from
t > 0.

We intend to show that this upper bound is significantly smaller than the
known asymptotics. The difference between the asymptotics and this upper
bound can then be used as a lower bound for the error term. This is why it is
very important that the coefficient in front of the upper bound is equal to the
asymptotic coefficient and is thus the reason why we can only do this here for
the polynomial f(t) = t(1 − t).

We now allow our constants to depend on μ (for general ν ≥ 1, they
depend on all values of μ(�)) and use the trivial inequality ln(1 + ab) ≤ ln(1 +
a) + ln(1 + b) for a, b ≥ 0 to arrive at

π3

L2

∣
∣tr Dμ(LΛ) − Dμ(LΛ)2

∣
∣ (6.26)

≤
∫ 1

0

(ln(1 + L) + C) dx2 +
∑

i∈N

[ ∫ 1
2 ai

0

ln(1 + Lt) dt + Cai

]
+C (6.27)

= ln(1 + L) +
1
L

∑

i∈N

((
1 +

1
2
aiL

)(
ln

(
1 +

1
2
aiL

)
− 1

)
− (−1)

)
+ C

(6.28)

= ln(1 + L) +
∑

i∈N

[1
2
ai ln

(
1 +

1
2
aiL

)
+

ln(1 + 1
2aiL)

L
− 1

2
ai

]
+ C (6.29)

≤ ln(L) +
∑

i∈N

1
2
ai ln

(
1 +

1
2
aiL

)
+ C, (6.30)
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or equivalently,
(
0 ≤ )

tr
(
Dμ(LΛ) − Dμ(LΛ)2

)

≤ L2 ln(L)
π3

[

1 +
1

ln(L)

∑

i∈N

1
2
ai ln

(
1 +

1
2
aiL

)
+

C

ln(L)

]

. (6.31)

In the first step, we used 1 ≤ 3 − x2 ≤ 3, and in the fourth step, we used
ln(1 + L) ≤ ln(L) + 1 for L ≥ 1 and ln(1 + 1

2aiL) ≤ 1
2aiL.

Now we rewrite (6.10) and use (6.16) and (6.31) to obtain

2π3ε(L,Λ) =
1
2

∫

∂Λ

dH2(v) |n(v) · e3| − 2π3

L2 ln(L)
tr

(
Dμ(LΛ) − Dμ(LΛ)2

)

(6.32)

≥ 3 −
(

2 +
1

ln(L)

∑

i∈N

ai ln
(
1 +

1
2
aiL

)
+

2C

ln(L)

)

(6.33)

= 1 − 1
ln(L)

∑

i∈N

ai ln
(
1 +

1
2
aiL

)
− C

ln(L)
(6.34)

= − 1
ln(L)

∑

i∈N

ai ln
(

1
L

+
1
2
ai

)
− C

ln(L)
(6.35)

≥ − 1
ln(L)

∑

i∈N,ai<
1
L

ai ln
(

3
2L

)
− C

ln(L)
(6.36)

≥
∑

i∈N,ai<
1
L

ai − C

ln(L)
=: ε0(L). (6.37)

The fourth step uses
∑

i ai = 1 and the fifth step relies on L ≥ 2, ai ≤ 1 to get
ln( 1

L + 1
2ai) ≤ 0. In the last step, C changed. Now, we just need to find a good

sequence (ai)i∈N. To show our claim, it suffices to find a sequence (ai)i∈N such
that

lim
L→∞

ϕ(L)/ε0(L) = 0, (6.38)

since then the quotient ϕ(L)/ε(L,Λ) ≤ 2π3ϕ(L)/ε0(L) → 0 is less than 1 for
large L, that is, ε(L,Λ) ≥ ϕ(L) ≥ 0 for L ≥ L0, where L0 is chosen below.

The construction of the sequence ai relies on Lemma D.1, and we apply
this Lemma with f as ϕ. With the resulting function Env(ϕ) we define the
sequence of real numbers ai := Env(ϕ)(i − 1) − Env(ϕ)(i) for i ∈ N. As
limL→∞ Env(ϕ)(L) = 0, we have

∑
i≥L ai = Env(ϕ)(L) and in particular∑

i∈N
ai = Env(ϕ)(0) = 1. As Env(ϕ) is non-increasing and convex, the ai

are non-negative and non-increasing. As the sequence defined this way is non-
increasing and

∑
i∈N

ai = 1, we have ai ≤ 1
i

∑
j≤i aj ≤ 1

i . Hence, we know
that i ≥ L implies ai ≤ 1

L . Thus, we have the estimate
∑

i∈N,ai≤ 1
L

ai ≥
∑

i≥L

ai = Env(ϕ)(L). (6.39)



P. Pfeiffer and W. Spitzer Ann. Henri Poincaré

Furthermore, as Env(ϕ)(L) ≥ C/
√

ln(2 + L), for L large enough, we have

Env(ϕ)(L) − C

ln(L)
≥ 1

2
Env(ϕ)(L). (6.40)

Hence, we conclude that

0 ≤ lim
L→∞

ϕ(L)
ε0(L)

= lim
L→∞

ϕ(L)
∑

i∈N,ai≤ 1
L

ai − C
ln(L)

≤ 2 lim
L→∞

ϕ(L)
Env(ϕ)(L)

= 0.

(6.41)

One choice of L0 could be that 4ϕ(L) ≤ Env(ϕ)(L) for L > L0 is satisfied.
Thus, by this and (6.37), there is an L0 > 0 such that for any L > L0, we have

ε(L,Λ) ≥ ε0(L)/(2π3) ≥ ϕ(L). (6.42)

This finishes the proof. �
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Appendix A. Some Geometric Results

Here, we assemble a few geometric statements that we used.

Lemma A.1. Let Λ ⊂ R
d+1 be a piecewise C1,α region for some 0 < α < 1. Let

(ΨpC,i)i∈I be a piecewise C1,α atlas of ∂Λ and Γ as defined in Definition 2.1.
Then, there is a constant C depending only on Λ such that for all unequal v1

and v2 in ∂Λ, we have

‖v1 − v2‖ ≥ C min

{∣
∣
∣
∣n(v1) · v1 − v2

‖v1 − v2‖
∣
∣
∣
∣

1
α

,dist(v1,Γ)

}

. (A.1)

http://creativecommons.org/licenses/by/4.0/
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Remark A.2. The normal vector n(v1) is well defined if v1 �∈ Γ. In the case
v1 ∈ Γ, the minimum on the right-hand side is meant to be 0 = dist(v1,Γ),
which turns it into a trivial statement.

Proof. We begin with the case v1 ∈ Γ or v2 ∈ Γ; v1 ∈ Γ is explained in the
above remark. If v2 ∈ Γ, then we trivially have ‖v1 − v2‖ ≥ dist(v1,Γ) and
thus the claim holds for any C ≤ 1.

Let us now consider the case that there is an i ∈ I such that both
v1 and v2 are in ΨpC,i((0, 1)d). As Ψ := ΨpC,i is injective, there are unique
xk ∈ (0, 1)d such that Ψ(xk) = vk ∈ R

d+1 for k = 1, 2. We observe that
n(v1) · DΨ(x1) = 0 ∈ R

d, as the image of the matrix DΨ(x1) is the tangent
space to ∂Λ at v1 and hence is orthogonal to the outward normal vector n(v1).
Thus, using (2.13), we see

|n(v1) · (v1 − v2)| =
∣
∣n(v1) · (Ψ(x1) − Ψ(x2)

)∣∣ (A.2)

≤ ‖x1 − x2‖ sup
t∈[0,1]

∣
∣n(v1) · DΨ(tx1 + (1 − t)x2)

∣
∣ (A.3)

= ‖x1 − x2‖ sup
t∈[0,1]

∣
∣n(v1) · (DΨ(tx1 + (1 − t)x2) − DΨ(x1)

∣
∣

(A.4)

≤ ‖x1 − x2‖C‖x1 − x2‖α = C‖x1 − x2‖1+α. (A.5)

As Ψ is bi-Lipschitz, we know that ‖v1 −v2‖ = ‖Ψ(x1)−Ψ(x2)‖ ≥ C‖x1 −x2‖.
Using this and dividing both sides by ‖v1 − v2‖, we arrive at

∣
∣
∣
∣n(v1) · v1 − v2

‖v1 − v2‖
∣
∣
∣
∣ ≤ C‖v1 − v2‖α. (A.6)

We are now in the remaining case that v1 and v2 lie in different sets
ΨpC,i((0, 1)d) since ∂Λ = Γ ∪ ⋃

i∈I ΨpC,i((0, 1)d).
Let (ΨgL,j)j∈J be a global Lipschitz atlas of ∂Λ. As the boundary ∂Λ =⋃

j∈J ΨgL,j((0, 1)d) is a cover by (relatively) open sets and ∂Λ is a compact
metric space, by Lebesgue’s number lemma, there is an ε > 0 such that for all
v ∈ ∂Λ there is an j ∈ J with Bε(v)∩∂Λ ⊂ ΨgL,j((0, 1)d), where Bε(v) ⊂ R

d+1

is the open ball of radius ε at v.
If ‖v1 − v2‖ ≥ ε, we can choose C = ε to get the statement, as the first

expression inside the minimum is at most 1.
Hence, we are left with the case ‖v1 −v2‖ < ε. Now, we get an j ∈ J such

that v1, v2 ∈ ΨgL,j((0, 1)d). Again, we define yk by ΨgL,j(yk) = vk for k = 1, 2.
The image γ of the linear path from y1 to y2 is at most C‖y1−y2‖ ≤ C‖v1−v2‖
long. As v1 and v2 are in the images of two different ΨpC,i’s, the path γ has to
intersect some edge ΨpC,i(∂(0, 1)d) which implies γ ∩ Γ �= ∅. Hence, we have

dist(v1,Γ) ≤ H1(γ) ≤ C‖y1 − y2‖ ≤ C‖v1 − v2‖. (A.7)

The last inequality follows since ΨgL,j is bi-Lipschitz. This finishes the
proof. �

Lemma A.3. For d ≥ 1, let f : [0, 1]d → R
d+1 be a Lipschitz continuous func-

tion with Lipschitz constant Clip(f) and let Λ ⊂ R
d+1 be a piecewise Lipschitz
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region. Then, for any r > 0, the (d + 1)-dimensional Lebesgue volume of the
r-neighborhood (see (2.1)) of the set f([0, 1]d) in R

d+1 satisfies

|Br(f([0, 1]d))| ≤ (16
√

d)d(Clip(f)d + 1)(r + rd+1), (A.8)

and the set ∂Λ satisfies the bounds

|Br(∂Λ)| ≤ K(Λ)(r + rd+1), (A.9)

Hd(∂Λ) ≤ K(Λ), (A.10)

where K(Λ) is described as follows: Let A be the set of all piecewise Lipschitz
atlases of ∂Λ, as defined in Definition 2.1. Then, we define

K(Λ) := inf
(ΨpL,i)i∈I∈A

∑

i∈I

(16
√

d)d(Clip(ΨpL,i)d + 1). (A.11)

Proof. We consider the set

Ar :=

(
r

Clip(f)
√

d
Z

)d

∩ [0, 1]d. (A.12)

The maximum distance a point in [0, 1]d can have from Ar is less than r
Clip(f) .

For the cardinality #Ar of Ar, we observe

#Ar ≤
(

1 +
Clip(f)

√
d

r

)d

≤ 2d−1

(

1 +
Clip(f)d

√
d

d

rd

)

≤ 2d−1
√

d
d
(1 + Clip(f)d)(1 + r−d). (A.13)

For any x ∈ [0, 1]d, there is a z ∈ Ar such that ‖x − z‖ ≤ r/Clip(f) and
thus ‖f(x) − f(z)‖ ≤ r. This implies Br(f(Ar)) ⊃ f([0, 1]d), which leads to
B2r(f(Ar)) ⊃ Br(f([0, 1]d)). Hence, we get

|Br(f([0, 1]d))| ≤ |B2r(f(Ar))| ≤ |B1(0)| #Ar(2r)d+1 ≤ 4d+1 #Arr
d+1

≤ (16
√

d)d(1 + Clip(f)d)(r + rd+1).

This finishes the proof of the first statement. The second statement is trivially
implied by the first one. Furthermore, as Br(f(Ar)) ⊃ f([0, 1]d) due to the
definition of the Hausdorff measure (see, e.g., [9, Definition 2.1]) we observe

Hd(f([0, 1]d) ≤ lim
r→0

|B(d)
1 (0)|#Arr

d ≤ lim
r→0

(4
√

d)d(1 + Clip(f)d)(1 + r−d)rd

= (4
√

d)d(1 + Clip(f)d) .

The final statement is a corollary of this inequality. We want to note that
K(Λ) < ∞ for any piecewise Lipschitz region Λ, as we require in this paper
our atlases to be a finite collection of charts. �

Lemma A.4. Let Λ ⊂ R
3 be a piecewise Lipschitz region with piecewise

Lipschitz atlas (ΨpL,i)i∈I . Let v0 ∈ ∂Λ satisfy that there are i0 ∈ I and
x0 ∈ (0, 1)2 such that ΨpL,i0(x0) = v0 and the Jacobi matrix DΨpL,i0(x0)
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exists. Then, the signed distance function dΛ is differentiable at v0, the out-
ward unit normal vector n(v0) is well-defined, orthogonal to the image of
DΨpL,i0(x0), and D dΛ(v0) = n(v0).

To prove this statement, we need the following result from intersection
theory.

Lemma A.5. Let R > 0, f1 : [−1, 1] → B
(3)

R (0), f2 : B
(2)

R (0) → B
(3)

R (0) be con-
tinuous functions such that f1(±1) = ±Re3 and f2 restricted to the boundary
is the equatorial embedding, that is, f2(x) = (x, 0) for ‖x‖ = R. Then, the
images of f1 and f2 intersect.

Proof. Without loss of generality, we assume R = 1. Assume f1 and f2 were
two such functions such that their images do not intersect. Let η1 : R

1 →
R

3, t �→ (0, 0, t) and η2 : R
2 → R

3, x �→ (x, 0) be the natural orthogonal inclu-
sions. The assumptions on fj can now be stated as fj(xj) = ηj(xj) for xj ∈ R

j

with ‖xj‖ = 1 for j ∈ {1, 2}. We extend the maps fj to the R
j by setting

fj(xj) :=

{
fj(xj) if ‖xj‖ ≤ 1
ηj(xj) if ‖xj‖ > 1

, xj ∈ R
j , j ∈ {1, 2}. (A.14)

Trivially, these extensions are still continuous and their images still do not
intersect. As the images do not intersect and only get close to each other in
the compact set B

(3)

1 (0), they have a positive distance. We can now mollify
fj by convolution with an appropriately chosen, compactly supported smooth
function to get f̂j such that the images of f̂1 and f̂2 still have positive distance
and f̂j(xj) = ηj(xj) for any xj ∈ R

j with ‖xj‖ ≥ 2.
For d = 1, 2, 3, consider the sphere S

d = R
d ∪ {∞}. With the charts

id : R
d → S

d, x �→ x and ιd : R
d → S

d, x �→ x/‖x‖2, 0 �→ ∞, it becomes a
differentiable manifold. We now extend f̂j to a function from S

j to S
3 by

setting f̂j(∞) := ∞ for j ∈ {1, 2}. The point ∞ is now an intersection point
of f̂1 and f̂2. We want to show that the extended functions are still smooth
and that they intersect transversely at ∞, see for instance [14, Page 113]. For
j ∈ {1, 2} and xj ∈ R

j with ‖xj‖ < 1
2 , we observe

(ι−1
3 ◦ f̂j ◦ ιj)(xj) = (ι−1

3 ◦ ηj)(xj‖xj‖−2) = ηj(xj). (A.15)

Thus, in the charts ιj , ι3 the maps f̂j are linear and orthogonal at 0 (which
corresponds to ∞ ∈ S

j). The maps f̂1, f̂2 are therefore smooth and inter-
sect transversely at ∞. In conclusion, we have just constructed two smooth
maps f̂j : S

j → S
3, which intersect transversely and have a unique intersection

point. Thus, their oriented intersection number is equal to the local intersec-
tion number at this intersection point, which is +1 or −1 (in fact, it is +1).
However, both maps are contractible (homotopic to a constant map) and thus,
as oriented intersection numbers are homotopy invariant (see [14, Page 115]),
they should have intersection number 0. This is a contradiction. Hence, the
assumption that f1 and f2 do not intersect was wrong. �
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Proof of Lemma A.4. Let Clip be a bi-Lipschitz constant of ΨpL,i0 , as in foot-
note 1. Then, for any x ∈ R

2 with ‖x‖ = 1, we observe C−1
lip ≤ ‖DΨpL,i0(x0)x‖

≤ Clip. This means that the Jacobi matrix is invertible. Thus, using affine
linear transformations on R

2 and on R
3, we can transform the function ΨpL,i0

into a function Ψ such that x0, v0 are mapped to 04 and the Jacobi matrix
turns into the standard inclusion J : R

2 → R
3, x �→ (x, 0). The function Ψ is

now defined on some closed parallelogram P containing 0 in its interior P int.
Let Clip ≥ 2 be a bi-Lipschitz constant for Ψ. Let 0 < ε < 1/2. Then, there is
an r > 0 such that

• For any x ∈ B
(2)
2Clipr(0), we have ‖Ψ(x) − (x, 0)‖ ≤ ε‖x‖, as DΨ(0) = J ;

• B
(3)
3r (0) ∩ ∂Λ ⊂ Ψ(P int), as Ψint is relatively open in ∂Λ;

• The set B
(3)
r (0)∩ (∂Λ)A has exactly two connected components, as Λ and

ΛA are topological manifolds with common boundary ∂Λ.
As Ψ is bi-Lipschitz, we observe

B
(3)
2r (0) ∩ ∂Λ ⊂ Ψ

(
B

(2)
2Clipr(0)

)
⊂

⋃

x∈B
(2)
2Clipr(0)

B
(3)

ε‖x‖((x, 0)) (A.16)

⊂
⋃

x∈R2

B
(3)

ε‖x‖((x, 0)) =
{
v ∈ R

3 : |v · e3| ≤ ε‖v‖} . (A.17)

We define

U0 :=
{
v ∈ R

3 : |v · e3| ≤ ε‖v‖}, (A.18)

U± :=
{
v ∈ R

3 : ± v · e3 > ε‖v‖}. (A.19)

The sets U± ∩B
(3)
r (0) are open, convex and do not intersect ∂Λ due to (A.17).

We will now use Lemma A.5 to show that, up to a binary choice, we may
assume U−∩B

(3)
r (0) ⊂ Λ and U+∩B

(3)
r (0) ⊂ ΛA. As B

(3)
r (0)∩(∂Λ)A has exactly

two connected components, it is sufficient to prove that any (continuous) path
p : [−1/2, 1/2] → B

(3)
r (0) with p(±1/2) ∈ U± intersects ∂Λ.

We first use the convexity to extend p by an (affine) linear path at both
ends to get a path f1 : [−1, 1] → B

(3)

5r (0) with f1(±1) = ±5re3. Then we define
f2 : B

(2)

5r (0) → R
3 by

f2(x) :=

⎧
⎪⎨

⎪⎩

Ψ(x) if ‖x‖ < 2r
‖x‖−3r

r (x, 0) + 3r−‖x‖
r Ψ(x) if 2r ≤ ‖x‖ < 3r

(x, 0) if 3r ≤ ‖x‖ ≤ 5r

. (A.20)

We see that f2 is Lipschitz continuous. The middle case is just a convex com-
bination between the two other cases. Let x ∈ R

2 with ‖x‖ ≤ 3r. We observe

‖f2(x) − (x, 0)‖ ≤ sup
t∈[0,1]

‖tΨ(x) + (1 − t)(x, 0) − (x, 0)‖ ≤ sup
t∈[0,1]

t‖Ψ(x) − (x, 0)‖ < ε‖x‖.

(A.21)

4In R
2 resp. R3.
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This implies

|f2(x) · e3| = |f2(x) · e3 − (x, 0) · e3| ≤ ‖f2(x) − (x, 0)‖ < ε‖x‖,

that is, f2

(
B

(2)

3r (0)
)

⊂ U0 and thus, by the definition of f2(x) for ‖x‖ ≥ 3r,

f2

(
B

(2)

5r (0)
)

⊂ U0. By the triangle inequality and with ε < 1
2 we obtain

1
2
‖x‖ < ‖f2(x)‖ <

3
2
‖x‖ . (A.22)

These inequalities yield f−1
2

(
B

(3)
r (0)

)
⊂ B

(2)
2r (0) and f2

(
B

(2)

3r (0)
)

⊂ B
(3)
5r (0).

The latter inclusion together with the definition of f2 outside B
(2)
3r (0) implies

f2

(
B

(2)
5r (0)

)
⊂ B

(3)
5r (0). Thus, f1 and f2 satisfy the assumptions of Lemma

A.5 (with R := 5r) and consequently, they have an intersection point s ∈ R
3.

We have s ∈ f2

(
B

(2)

5r (0)
)

⊂ U0 and f−1
1 (U0) ⊂ (− 1

2 , 1
2 ), which means s is

in the image of the original path p. Thus, s ∈ B
(3)
r (0), which implies that

s ∈ f2

(
B

(2)
2r (0)

)
= Ψ

(
B

(2)
2r (0)

)
⊂ ∂Λ. Therefore, the path p intersects ∂Λ,

which was our claim.
As a result, we know that the sets U±∩B

(3)
r (0) lie on opposite sides of ∂Λ.

Without loss of generality, we assume U−∩B
(3)
r (0) ⊂ Λ and U+∩B

(3)
r (0) ⊂ ΛA.

In terms of the signed distance function dΛ, this means that ±dΛ(v) > 0 for
v ∈ U± ∩ B

(3)
r (0).

We are left to estimate dist(v, ∂Λ) for v ∈ B
(3)
r (0). We start with the case

v ∈ U0 ∩ B
(3)
r (0). For that, we consider the map

Φ: B(2)
r (0) × [−2ε, 2ε] → R

3, (y, t) �→ (
√

1 − t2y, t‖y‖). (A.23)

We see that Φ
(
B

(2)
r (0) × [−ε, ε]

)
= U0 ∩ B

(3)
r (0) and ‖Φ(y, t)‖ = ‖y‖. Fur-

thermore, for a fixed y, the map t �→ Φ(y, t) defined on [−2ε, 2ε] is a path
between U+ and U− inside B

(3)
r (0) and must thus intersect ∂Λ. This path has

a length of 2‖y‖ sin−1(2ε) ≤ 2πε‖y‖. Hence, as each point v ∈ U0 ∩ B
(3)
r (0) is

on such a path for a y with ‖y‖ = ‖v‖, we get |dΛ(v)| ≤ 2πε‖v‖. Therefore,
for v ∈ U0 ∩ B

(3)
r (0), we get

|dΛ(v) − v · e3| ≤ |dΛ(v)| + |v · e3| ≤ (2π + 1)ε‖v‖. (A.24)

For v ∈ U±∩B
(3)
r (0), we know that ±dΛ(v) > 0 and only need upper and lower

bounds for the distance to ∂Λ. For the lower bound, as ∂Λ ∩ B
(3)
2r (0) ⊂ U0, we

have

|dΛ(v)| ≥ dist(v, U0) =
√

1 − ε2|v ·e3|−ε‖v⊥‖ ≥ |v ·e3|−ε2|v ·e3|−ε‖v⊥‖ ≥ |v ·e3|−2ε‖v‖.

(A.25)
For the upper bound, we just use

|dΛ(v)| ≤ |v · e3| + |dΛ((v⊥, 0))| ≤ |v · e3| + 2π‖v⊥‖ ≤ |v · e3| + 2π‖v‖.

(A.26)
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As the signs align, we finally get

|dΛ(v) − v · e3| ≤ 2π‖v‖. (A.27)

Thus, (A.24) holds for all v ∈ B
(3)
r (0), which, by definition, says that dΛ is

differentiable at 0 and its differential is e3. We also see that e3 is orthogonal
to the image of J and points toward ΛA, which means that it is the outward
normal vector to ∂Λ at 0. This finishes the proof. �

Lemma A.6. Let Λ ⊂ R
3 be a piecewise Lipschitz region. Then, the outward

normal vector n(v) exists for H2 almost every v ∈ ∂Λ and the set

N :=
{

x⊥ ∈ R
2 : ∂(Λx⊥) �= (∂Λ)x⊥

}
(A.28)

is a (two-dimensional) Lebesgue null set, where Λx⊥ and (∂Λ)x⊥ are defined
in Definition 3.1.

Proof. We observe
∂(Λx⊥) ⊂ ∂ (Λx⊥) ⊂ (∂Λ)x⊥ . (A.29)

The first inclusion is trivial. The second inclusion can be seen as follows. Let
t ∈ ∂ (Λx⊥). Then for all r > 0, B

(1)
r (t) ∩ Λx⊥ �= ∅ and B

(1)
r (t) ∩ (Λx⊥)A �= ∅.

Therefore, B
(3)
r (x⊥, t)∩Λ �= ∅ and B

(3)
r (x⊥, t)∩ΛA �= ∅. Therefore, (x⊥, t) ∈ ∂Λ

and t ∈ (∂Λ)x⊥ .
Let π : R

3 → R
2 be the projection with π(e3) = 0 and let (ΨpL,i)i∈I be a

piecewise Lipschitz atlas of ∂Λ. For i ∈ I, we define the sets

Ni := ∂[0, 1]2 ∪ {
x ∈ (0, 1)2 : DΨpL,i(x) does not exist

}
, (A.30)

which are Lebesgue null sets due to Rademacher’s theorem.5 Thus, the set⋃
i∈I ΨpL,i(Ni) is an H2 null set, see [9, Theorem 2.8(i)]. Combining this with

Lemma A.4, we now know that the outward normal vector n(v) is well-defined
for H2 every v ∈ ∂Λ. As π ◦ ΨpL,i : [0, 1]2 → R

2 is Lipschitz, this implies that
(π ◦ ΨpL,i)(Ni) is a Lebesgue null set [9, Lemma 3.2(iii)]. Furthermore, we
define the sets

Mi :=
{
x ∈ (0, 1)2 : D(π ◦ ΨpL,i)(x) exists, but is not invertible

}
. (A.31)

By [9, Theorem 3.8], we know that (π ◦ ΨpL,i)(Mi) is a Lebesgue null set. Let

Ωi := [0, 1]2\(Ni ∪ Mi), (A.32)

and
M := ∂Λ\

⋃

i∈I

ΨpL,i(Ωi). (A.33)

Let v ∈ ∂Λ\M. Hence, there is an i ∈ I and a y ∈ Ωi, such that v = ΨpL,i(y).
Thus, DΨpL,i(y) exists, has full rank and does not have e3 in its image. By
Lemma A.4, we know that n(v) exists and that n(v) · e3 �= 0. Thus, the
function p : R → R given by p(t) = dΛ(v + te3) with dΛ being the signed
distance function to the boundary ∂Λ has non-vanishing differential at 0 and
satisfies p(0) = 0. Hence, p changes sign at 0, which means that v‖ ∈ ∂(Λv⊥).

5See, e.g., [9, Theorem 3.2].
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Conversely, this means that for v ∈ ∂Λ, the property v‖ �∈ ∂(Λv⊥) implies that
v ∈ M. Thus, we have for the set N defined in (A.28),

N ⊂ π (M) . (A.34)

Finally, we observe

N ⊂ π

(
⋃

i∈I

ΨpL,i(Ni ∪ Mi)

)

=
⋃

i∈I

((π ◦ ΨpL,i)(Ni) ∪ (π ◦ ΨpL,i)(Mi)) ,

(A.35)

which shows that N is a Lebesgue null set. �

Lemma A.7. Let Λ ⊂ R
3 be a piecewise Lipschitz region, π : R

3 → R
2 be the

canonical projection and f : ∂Λ → R
+ be measurable. Let n : ∂Λ → R

3 be the
outward normal vector field, which is defined almost everywhere (see Lemma
A.6). Then, we have

∫

∂Λ

dH2(v) f(v)|n(v) · e3| =
∫

R2
dx

∑

v∈π−1(x)∩∂Λ

f(v). (A.36)

Proof. The proof is based on a quite general form of changing variables. We use
the following area-formula (see [9, Theorem 3.9]) with one slight modification.
To this end, let n,m ∈ N with n ≤ m, U ⊂ R

n be open, Φ: U → R
m be

Lipschitz continuous and let g : U → R
+ be measurable. Then, we have the

identity ∫

U

dy g(y)|DΦ(y)| =
∫

Rm

dHn(x)
∑

y∈Φ−1(x)

g(y), (A.37)

where |DΦ(y)|2 = det(DΦ(y)∗DΦ(y)). In [9], this is stated for g ∈ L1(U).
However, their proof also applies to positive, measurable functions g as an
identity in [0,∞].

We cannot apply this directly to π, as it decreases the dimension and π
does not have an inverse. Thus, we have to introduce a new map.

Let (ΨpL,i)i∈I be a piecewise Lipschitz atlas of ∂Λ so that ∂Λ =
⋃

i∈I ΨpL,i

([0, 1]2). We may assume that supp(f) ⊂ ΨpL,i((0, 1)2) for some i ∈ I. For the
remainder of this proof, we write Ψ for ΨpL,i.

Now, we can apply (A.37) with Φ := π ◦ Ψ and g := f ◦ Ψ. Thus, we see
∫

(0,1)2
dy f(Ψ(y))|D(π ◦ Ψ)(y)| =

∫

R2
dx

∑

y∈(π◦Ψ)−1(x)

f(Ψ(y)) (A.38)

=
∫

R2
dx

∑

v∈π−1(x)∩∂Λ

f(v). (A.39)

We used that Ψ is bijective. So, we already have the right-hand side of the
claim. We will apply again (A.37) with the functions Φ := Ψ and g given by

g(y) := f(Ψ(y))
|D(π ◦ Ψ)(y)|

|DΨ(y)| , y ∈ (0, 1)2. (A.40)
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Thus, using that Ψ is bijective and that the measure H2 on ∂Λ is the 2-
dimensional Hausdorff measure, we have

∫

(0,1)2
dy f(Ψ(y))|D(π ◦ Ψ)(y)| =

∫

∂Λ

dH2(v) f(v)
|D(π ◦ Ψ)(Ψ−1(v))|

|DΨ(Ψ−1(v))| .

(A.41)

To conclude the proof, we only need to show that the quotient of the functional
determinants is given by |n(v) ·e3| for almost every v ∈ ∂Λ. Let v ∈ ∂Λ be such
that B := DΨ(Ψ−1(v)) ∈ R

3×2 is well defined. We identify the two column
vectors of the 3 × 2 matrix B as w1 and w2. The image of B is the tangent
space to ∂Λ at v. As Ψ is bi-Lipschitz continuous, the matrix B has full rank.
The normal vector n(v) is now orthogonal to the linear independent vectors
w1, w2. Thus, n(v)|w1 × w2| = ±w1 × w2.

As π is linear, we have D(π ◦ Ψ)(Ψ−1(v)) = πB. For the determinant of
this 2 × 2 matrix, we get det(πB) = (w1 × w2) · e3. For the denominator, we
observe

det(B∗B) = |w1|2|w2|2 − (w1 · w2)2 = |w1 × w2|2. (A.42)
In conclusion, we have

|D(π ◦ Ψ)(Ψ−1(v))|
|DΨ(Ψ−1(v))| =

|(w1 × w2) · e3|
|w1 × w2| = |n(v) · e3|. (A.43)

In combination with (A.39) and (A.41), we have proved the statement. �

Corollary A.8. Let Λ ⊂ R
3 be a piecewise Lipschitz region. Then, for Lebesgue

almost every x⊥ ∈ R
2, the set Λx⊥ is a finite (possibly empty) union of inter-

vals with disjoint closures.

Proof. As H2(∂Λ) is finite, see Lemma A.3, we have by Lemma A.7 (with
f = 1)

∫

R2
dx⊥ #(∂(Λx⊥)) =

∫

∂Λ

dH2(v) |n(v) · e3| ≤ H2(∂Λ) < ∞. (A.44)

This implies that the set ∂(Λx⊥) ⊂ R is finite for almost every x⊥. Hence,
Λx⊥ is almost everywhere a finite union of intervals. If, for some x⊥

0 ∈ R
2, two

different connected components of Λx⊥
0

share a boundary point, t, then t ∈
∂(Λx⊥

0
)\∂

(
Λx⊥

0

)
. Looking at Lemma A.6, we realize that this means x⊥

0 ∈ N .
Thus, we have proved the claim. �

Lemma A.9. Let Λ ⊂ R
3 be a piecewise C1,α region with Γ as in Definition

2.1. Then, there is a constant C < ∞ such that
∫

∂Λ

dH2(w)|ln(dist(w,Γ))| ≤ C. (A.45)

Proof. We start with
∫

∂Λ

dH2(w) |ln(dist(w, Γ))| ≤ C
∑

k∈Z

(|k| + 1) · H2
({

w ∈ ∂Λ: 2k−1 ≤ dist(w, Γ) ≤ 2k
})

(A.46)
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≤ C

kmax∑

k=−∞
(|k| + 1) · H2

({
w ∈ ∂Λ: dist(w, Γ) ≤ 2k

})
.

(A.47)

For the first step, we just bound the integrand by a step function from above.
As Λ is bounded, the associated set is empty for k > kmax with some finite
kmax. We are left to estimate the volume of these sets. Specifically, we will
show that there is an r0 > 0 and a C < ∞ such that for any r < r0, we have

H2(Br(Γ) ∩ ∂Λ) ≤ Cr. (A.48)

We recall that Br(Γ) ⊂ R
3 is the r-neighborhood of Γ. By assumption, there is

a global Lipschitz atlas (ΨgL,j)j∈J of ∂Λ, as in Definition 2.1. For each i ∈ I,
the set Uj := ΨgL,j((0, 1)d) ⊂ ∂Λ is a (relatively) open subset of the compact
metric space ∂Λ and we have ∂Λ ⊂ ⋃

j∈J Uj . Thus, by Lebesgue’s number
lemma, there is a constant r0 > 0 such that any v ∈ ∂Λ there is a j ∈ J such
that B2r0(v) ∩ ∂Λ ⊂ Uj .

Now, we need to understand the set Γ. We recall its definition

Γ :=
⋃

i∈I

ΨpC,i(∂[0, 1]2). (A.49)

Let C0 be a Lipschitz constant for all ΨpC,i’s which exists, as I is finite. As
∂[0, 1]2 is just the boundary of the unit square, there is a surjective (piecewise
linear) function ϑ : [0, 1] → ∂[0, 1]2 with Lipschitz constant 4. Let N ∈ N with
N > 4C0/r0 and fk : [0, 1] → [0, 1] be the functions satisfying fk(t) = k−1+t

N .
Now, for any 1 ≤ k ≤ N and i ∈ I, we define gik : [0, 1] → Γ by gik :=
ΨpC,i ◦ ϑ ◦ fk and observe

CLip (gik) ≤ 4C0/N < r0. (A.50)

Furthermore, Γ =
⋃

i∈I

⋃N
k=1 gik([0, 1]). By (A.50), we know gik([0, 1]) ⊂

Br0(gik(0)) and thus

Br(gik((0, 1)) ⊂ B2r0(gik(0)) (A.51)

for r ≤ r0. Hence, there is an j = j(i, k) ∈ J , such that Br(gik([0, 1]) ∩ ∂Λ ⊂
Uj(i,k). For any r ≤ r0, we can estimate

H2(Br(Γ) ∩ ∂Λ) ≤
∑

i∈I

N∑

k=1

H2
(
Br(gik([0, 1])) ∩ ∂Λ

)
. (A.52)

As ΨgL,j(i,k) is bi-Lipschitz, there is a constant C such that

H2
(
Br(gik([0, 1])) ∩ ∂Λ

) ≤ C
∣
∣
∣Ψ−1

gL,j(i,k)

(
Br(gik([0, 1])) ∩ ∂Λ

)∣∣
∣ , (A.53)

and

Ψ−1
gL,j(i,k) (Br(gik([0, 1])) ∩ ∂Λ) ⊂ BCr(Ψ−1

gL,j(i,k)(gik([0, 1]))). (A.54)

We now apply Lemma A.3 with f = Ψ−1
gL,j(i,k) ◦ gik and d = 1 to obtain

|BCr(Ψ−1
gL,j(i,k)(gik([0, 1])))| ≤ C(r + r2) ≤ Cr, (A.55)

as r < r0.
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In conclusion, as I is finite, we have

H2(Br(Γ) ∩ ∂Λ) ≤
∑

i∈I

N∑

k=1

H2
(
Br(gik([0, 1])) ∩ ∂Λ

)
(A.56)

≤ C
∑

i∈I

N∑

k=1

∣
∣
∣Ψ−1

gL,j(i,k)

(
Br(gik([0, 1])) ∩ ∂Λ

)∣∣
∣ (A.57)

≤ C
∑

i∈I

N∑

k=1

|BCr(Ψ−1
gL,j(i,k)(gik([0, 1])))| (A.58)

≤ C
∑

i∈I

N∑

k=1

Cr ≤ Cr. (A.59)

For r0 < r < 2kmax , we trivially arrive at the same estimate as long as C ≥
H2(∂Λ)r−1

0 , that is, H2(Br(Γ) ∩ ∂Λ) ≤ Cr also for “large” r.
Now, we are able to finish (A.47) and obtain for some (finite) constant C

∫

∂Λ

dH2(w) |ln(dist(w,Γ))| ≤ C

kmax∑

k=−∞
(|k| + 1)2k ≤ C, (A.60)

which was the claim. �

Appendix B. Proof of (3.15)

We observe
∫

Rm−1

m∏

j=1

1

〈y‖
j 〉

dy‖ =
∫

Rm−1

m∏

j=1

1

〈y‖
j 〉

m−1∏

j=1

dy
‖
j

=
∫

Rm−1
dx

‖
1 · · · dx

‖
m−1

m∏

j=1

1

〈x‖
j − x

‖
j−1〉

, (B.1)

where we switched back to the integration variables x1, . . . , xm and set6 x0 :=
xm := 0. As we can see, the last expression is the (m − 1)-fold convolution of
〈 · 〉−1 with itself evaluated at 0. This is a job for the Fourier transform. We
use the convention

F(f)(ξ) := lim
R→∞

∫ R

−R

dtf(t) e−2πiξt, ξ ∈ R. (B.2)

Thus, we have
∫

Rm−1
dx

‖
1 · · · dx

‖
m−1

m∏

j=1

1

〈x‖
j − x

‖
j−1〉

=
∫

R

dξ F(〈 · 〉−1)(ξ)m . (B.3)

6The values x0 and xm only matter through x0 − xm = 0. Thus, we can set both to 0.
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The Fourier transform of 〈 · 〉−1 can be expressed in terms of the modified
Bessel function of the second kind K0, see [27, (10.32.6)],7

F(〈 · 〉−1)(ξ) = lim
R→∞

∫ R

−R

dt
1
〈t〉e2πitξ = 2 lim

R→∞

∫ R

0

dt
cos(2π|ξ|t)√

t2 + 1
= 2K0(2π|ξ|). (B.4)

We observe that

F(〈 · 〉−1)(ξ) = lim
R→∞

∫ R

−R

dt
1
〈t〉e2πitξ = 2 lim

R→∞

∫ R

0

dt
cos(2π|ξ|t)√

t2 + 1
= 2K0(2π|ξ|). (B.5)

We need the (known) estimate,

0 < ln(2) − γE <
1
8
, (B.6)

where γE is Euler’s constant (see, e.g., [27, (5.2.3)]). Using this inequality,
the series representations [27, (10.31.2),(10.25.2)], the harmonic series Hn :=∑n

k=1 k−1 ≤ n!, the identity Γ(n + 1) = n! (where Γ is the Gamma function,
see, e.g., [27, (5.2.1)(5.4.1)]) and the geometric series, we get for any t ∈ (0, 1)

K0(t) = −
(

ln
(

1
2
t

)
+ γE

) ∞∑

k=0

(
1
4 t2

)k

(k!)2
+

∞∑

k=1

Hk

(
1
4 t2

)k

(k!)2
(B.7)

< −
(

ln
(

1
2
t

)
+ γE

)
1

1 − 1
4 t2

+
t2

4 − t2
. (B.8)

Using the last two inequalities, we can infer

2K0(1) < 2
(

1
8

4
3

+
1
3

)
= 1. (B.9)

Thus, as K0 is decreasing on R
+ (See [27, §10.37]), we have 2K0(t) < 1 for

t > 1. For t ∈ (0, 1), we estimate using ln(t/2) + γE < 0 and 0 < γE < 1,

K0(t) ≤ −
(

ln
(

1
2
t

)
+ γE

)
1

1 − 1
4 t2

+
t2

4 − t2
(B.10)

= − ln
(

1
2
t

)
− γE +

t2

4 − t2
(− ln (t) + ln(2) − γE + 1) (B.11)

< − ln
(

1
2
t

)
− γE +

1
3
( sup
t∈(0,1)

(−t2 ln(t) + 1 + ln(2) − γE)) (B.12)

≤ − ln
(

1
2
t

)
− γE +

1
3
(1/(2e) + 1 + ln(2) − γE)) < − ln

(
1
2
t

)
.

(B.13)

7See [27, (1.4.22)] to verify their usage of an improper Riemann integral, while this paper
uses Lebesgue integrals.

http://dlmf.nist.gov/10.32.E6
http://dlmf.nist.gov/5.2.E3
http://dlmf.nist.gov/10.31.E2
http://dlmf.nist.gov/10.25.E2
http://dlmf.nist.gov/5.2.E1
http://dlmf.nist.gov/5.4.E1
http://dlmf.nist.gov/10.37
http://dlmf.nist.gov/1.4.E22
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The last inequality relies on a numerical computation to verify that −γE +
1
3 (1/(2e) + 1 + ln(2) − γE)) is negative. Altogether, this yields

2K0(2πξ) ≤ −2 ln(πξ) (B.14)

for 0 < 2πξ < 1. Thus, we are able to estimate
∫

R

dξ F(〈 · 〉−1)(ξ)m = 2
∫ ∞

0

dξ (2K0(2πξ))m (B.15)

≤ 2m+1

∫ 1
2π

0

dξ (− ln(πξ))m + 2
∫ ∞

1
2π

dξ 2K0(2πξ)

(B.16)

≤ 2
π

2m

∫ 1

0

dt (− ln(t))m + 2
∫ ∞

0

dξ 2K0(2πξ) (B.17)

=
2
π

2mm! + 1 < 2mm!. (B.18)

The final estimate relies on m ≥ 2 and π > 3, while the last identity is based
on (B.5) and

∫ 1

0

dξ (− ln(ξ))m =
∫ ∞

0

dt tm e−t = Γ(m + 1) = m!. (B.19)

Combining (B.1), (B.3) and (B.18), we arrive at
∫

Rm−1

m∏

j=1

dy
‖
j

〈y‖
j 〉

< 2mm!, (B.20)

which was the claim.

Appendix C. Asymptotic Expansion with Order One Error
Term

Our final result, Corollary C.3, in this section deals with the asymptotic ex-
pansion for a finite union of bounded intervals. That is, we assume that we
have k ∈ N open and bounded intervals I1, . . . , Ik, whose closures are disjoint.
More precisely, there exist di > 0 for 1 ≤ i < k with sup Ii + di = inf Ii+1.
Let �j := |Ij | be the length of Ij and let Ω :=

⋃k
j=1 Ij . The symbol � for the

length of intervals in this section has, of course, nothing to do with the index
of a Landau level.

The proof of Corollary C.3 is based upon two lemmata. The first lemma
is per se not an asymptotic result but reduces the analysis to a single interval
including an error term. The second lemma deals with the asymptotic expan-
sion for a single interval, including an order one error term, and improves a
seminal result by Landau and Widom in [19]. This is achieved by improving a
certain estimate in their proof which allows for an order one error term instead
of o(ln(L)). Later, Widom [36] extended their result and proved that the error
term is indeed of order one. This was used by Sobolev in [32, Chapter 8] to
obtain concrete error terms. Our error term is somewhat different and fits our
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purposes. It is important to notice that there is still an undetermined error
term of order one which is however independent of the scaling and the lengths
of the intervals and depends only on the energy.

The first lemma is the following.

Lemma C.1. Let μ > 0 and m ∈ N. Then, under the above assumptions on Ω
we have

∣
∣
∣
∣
∣
∣
tr

[(
1Ω1[(−i∇‖)2 ≤ μ]1Ω

)m

−
k∑

j=1

(
1Ij

1[(−i∇‖)2 ≤ μ]1Ij

)m ]
∣
∣
∣
∣
∣
∣

≤ C

k−1∑

j=1

ln
(
1 +

�j

1 + dj

)
, (C.1)

where C is a constant depending on m and μ, but crucially not on k or the
intervals themselves.

Proof. Let Q := 1[(−i∇‖)2 ≤ μ]. It is convenient to make a slight general-
ization by allowing Ik to be any measurable set such that dk−1 := inf(Ik) −
sup(Ik−1) > 0. We note that �k is undefined, but it is also not present in our
claim. We proceed by induction with respect to the number of intervals, k.
Once we have proved the statement for k = 2, the statement follows for any
k, as we can choose I ′

k := Ik ∪ Ik+1.
Hence, we just have to deal with the case k = 2. We observe 1Ω = 1I1+1I2 .

We multiply out the first term and, using I1 ∩ I2 = ∅, we have

(1ΩQ1Ω)m =
∑

j∈{1,2}{0,...,m}

1Ij0

m∏

i=1

Q1Iji
. (C.2)

The two summands j = (1, 1, . . . , 1) and j = (2, 2, . . . , 2) are the ones we
subtract in the statement of the lemma. Hence, we have to estimate all other
summands. In the case j0 �= jm, we use tr AB = tr BA with A = 1Ij0

Q and
B =

∏m
i=1 Q1Iji

to conclude that the trace vanishes. We are left to estimate
the terms where j0 = jm and there is an i ∈ {1, 2, . . . ,m − 1} with ji �= j0. In
this case, we consider i− and i+ as the smallest and largest such i (which can
be the same). Now, we write

1Ij0

m∏

i=1

Q1Iji
=

(
1Ij0

Q
)i−−1

1Ij0
Q1Iji−

Ai−,i+1Iji+
Q1Ij0

(
Q1Ij0

)m−i+−1
,

(C.3)

where Ai−,i+ is the identity, if i− = i+ and a product of some operators Q, 1I1 ,
and 1I2 otherwise. As all of the operators are projections, their operator norm
can be bounded by 1. As we are interested in the trace, we will bound the trace
norm. To do so, it suffices to bound two operators in the Hilbert–Schmidt norm
and all others in the operator norm. The operators we will bound in Hilbert–
Schmidt norm are 1Ij0

Q1Iji−
and 1Iji+

Q1Ij0
. These operators are adjoint

and hence have the same Hilbert–Schmidt norm. As ji− �= j0 �= ji+ , we know



P. Pfeiffer and W. Spitzer Ann. Henri Poincaré

{j0, ji−} = {j0, ji+} = {1, 2}. Thus, we are left to estimate ‖1I1Q1I2‖2
2. Since

the operator Q has integral kernel Q(x, y) = kμ(x − y) = sin(
√

μ(x−y))

π(x−y) , x, y ∈
R, the square of the Hilbert–Schmidt norm can be easily calculated as the
square of the integral of this kernel for x ∈ I1 and y ∈ I2. By translation
invariance we may assume that I1 = (0, �1). By the definition of d1, we know
I2 ⊂ (�1 + d1,∞). Hence, using the estimate |kμ(z)| ≤ C/(1 + |z|) for some
constant C we get
∣
∣tr (C.3)

∣
∣ ≤ ‖1I1Q1I2‖2

2 ≤ C

∫

I1

dx

∫

I2

dy
1

(1 + y − x)2
(C.4)

≤ C

∫ �1

0

dx

∫ ∞

�1+d1

dy
1

(1 + y − x)2
(C.5)

= C

∫ �1

0

dx
1

1 + d1 + �1 − x
= C ln

(
1 + d1 + �1

1 + d1

)
.

(C.6)

The number of such error terms is 2m −1. Thus, the error bound in m is quite
bad, but we only need it to be good in k. The proof is now finished. �

Here is our second lemma on the mentioned improved asymptotic ex-
pansion for a single interval of Landau and Widom. This agrees with the
improvement of Widom in [36]. As the paper of Landau and Widom [19] is
freely accessible, but the later paper by Widom [36] is not,8 we provide this
different proof for the reader’s convenience. We do not claim any originality.

Lemma C.2. Let Ω ⊂ R be an open and bounded interval of length � > 0 and
let μ > 0. Then, for any m ∈ N and L > 0, we have with I(m) explained after
(2.15),

tr
(
1LΩ1[(−i∇‖)2 ≤ μ]1LΩ

)m =
√

μ

π
L� + 4 I(m) ln(1 + L�) + O(1), (C.7)

where the order one error term is independent of L and � but depends on μ.

Proof. The case m = 1 is trivial, as the integral kernel is constant on the
diagonal and only the volume term

√
μ

π L� appears. Thus, by linearity, it suffices
to show the statement for a basis of the polynomials vanishing at 0 and 1.

As μ is fixed, the result depends only on L�, which can be small or large.
If L� ≤ 1 then the trace on the left-hand side of (C.7) is bounded uniformly
for these L, � by continuity as a function of L� ∈ [0, 1]. The same is true for the
first two terms on the right-hand side of (C.7) and hence the equality holds
true with an O(1) error term. In the following, we will assume that L� > 1.

From now on we use the same notation as in [19], where c takes the role
of L. The last equation in the proof of their Theorem 1, where they still carry
the order one error term is [19, (18)]. Afterward they allow for a larger o(ln(c))
error term and here we take a different route.

8As of August 25, 2022.
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They consider the polynomials (t(1 − t))n and t(t(1 − t))n for n ∈ N,
which span all polynomials that vanish at 0 and 1. We proceed with these
polynomials instead of tm as in the statement of our lemma. Their equation
[19, (18)] states

tr Ac[Ac(I − Ac)]n = 2 tr Kn
c + O(1) =

1
2
tr [Ac(I − Ac)]n + O(1), (C.8)

where Ac = P (0, c)Q(0, 1)P (0, c), which is unitarily equivalent to the operator
1[0,c]1

( − Δ ≤ 1
4

)
1[0,c] in our notation, and Kc = P (1, c)Q(−∞, 0)P (−∞, 0)

Q(−∞, 0)P (1, c), as stated below [19, (17)]. They state below [19, (18)] that
the integral kernel of the operator Kc on L2([1, c]) is given for 1 ≤ x, y ≤ c by

f(x, y) :=
1

4π2

∫ ∞

0

du

(u + x)(u + y)
=

1
4π2

{
ln(x)−ln(y)

x−y if x �= y
1
x if x = y

. (C.9)

Let K be the operator on L2(R+) with integral kernel f(x, y) for 0 < x, y < ∞.
Thus, Kc = P (1, c)KP (1, c) and K = Q(−∞, 0)P (−∞, 0)Q(−∞, 0). Hence,
we can conclude

tr Kn
c =

∫

[1,c]n
dx

n∏

i=1

f1(xi, xi+1), (C.10)

with the convention xn+1 = x1. We denote the integrand fn(x) :=
∏n

i=1

f(xi, xi+1). It satisfies for λ > 0 the homogeneity property fn(λx) = λ−nfn(x),
which indicates that we should use spherical coordinates to calculate the in-
tegral. The problem is, however, that the integration domain does not look
particularly nice in spherical coordinates. Thus, we would like to change the
integration domain without changing the integral too much.

The first thing to observe is that as ln is increasing, fn(x) ≥ 0 holds for
any n ∈ N, x ∈ (R+)n. For any (Borel) measurable X ⊂ (R+)n, we define

ι(X) :=
∫

X

dx fn(x) =
∫

X

dx
n∏

i=1

f(xi, xi+1). (C.11)

As the integrand is non-negative, ι is a measure. We also observe that ι is in-
variant under the cyclic shift (x1, x2, . . . , xn) �→ (x2, x3, . . . , xn, x1). Assuming
n > 1, for i = 1, . . . , n, we consider the set

Ui :=
{
x ∈ (R+)n : xi ≤ 1 ≤ xi+1

}
. (C.12)

We observe ι(Ui) = ι(U1) by the cyclic shift property. We see

ι(U1) = trP (0, 1)KP (1,∞)(KP (0,∞))n−2KP (0, 1). (C.13)

Since P (0, 1)KP (1,∞) = P (0, 1)Q(−∞, 0)P (−∞, 0)Q(−∞, 0)P (1,∞) is the
operator R [19, (9)] with appropriately chosen intervals J,M,K,N,L we see
that this is trace class by [19, Lemma, (L2)]. By the homogeneity of fn, we
even have ι(cU1) = cn−nι(U1) = ι(U1).

Next, we introduce the set

V :=
{
x ∈ (R+)n :

√
n ≤ ‖x‖ ≤ √

n c
}
,
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which looks very nice in spherical coordinates. For n = 1, we just have V =
[1, c]. For n > 1, we observe the chain

[1, c]n ⊂ V ⊂ [1, c]n ∪
n⋃

i=1

(Ui ∪ cUi). (C.14)

The first inclusion is trivial. We call x1, . . . , xn the coordinates of x. If x has
both a coordinate above λ and one below λ, then it has to be in the set⋃n

i=1 λUi. Any x ∈ V has at least one coordinate above 1 and a coordinate
below c. Thus, if x �∈ [1, c]n, it has to have a coordinate above and below 1
or a coordinate above and below c, which proves the second inclusion. These
inclusions and the subadditivity and monotonicity of ι imply that there is a
constant Cn (depending on n but not on c) such that

ι([1, c]n) ≤ ι(V ) ≤ ι([1, c]n) + Cn =⇒ ι([1, c]n) = ι(V ) + O(1). (C.15)

This holds with O(1) replaced by 0 for n = 1. Finally, we introduce W :=
{
x ∈

(R+)n : ‖x‖ =
√

n
}

with Hausdorff measure Hn−1 and observe V = [1, c]W ={
λx : 1 ≤ λ ≤ c, x ∈ W

}
. Now, we are just left to calculate

ι(V ) =
∫

V

dx fn(x) =
∫ c

1

dr rn−1

∫

W

dHn−1(x) fn(rx) (C.16)

=
∫ c

1

dr rn−1

∫

W

dHn−1(x) r−nfn(x) =
∫ c

1

dr r−1

∫

W

dHn−1(x) fn(x)

(C.17)

= ln(c)
∫

W

dHn−1(x) fn(x) = C̃(n) ln(c), (C.18)

where C̃(n) is the result of the surface integral. We did a change to spherical
coordinates in the second step. As the integrand is positive, C̃(n) ∈ (0,∞] is
well-defined. By (C.15), we conclude (for fixed n and as c → ∞)

tr Kn
c = C̃(n) ln(c) + O(1). (C.19)

From [19, (19)], we know that C̃(n) = 1
4π2

∫ 1

0
dt (t(1 − t))n−1. In conjunction

with (C.8), we get the improved error term O(1) with the same leading term
for any polynomial, which vanishes at 0 and 1.

To get the claim of our lemma, we just have to replace c by 2
√

μL� and
then use ln(2

√
μL�) = ln(2)+ 1

2 ln(μ)+ln(L�) = ln(1+L�)+O(1), which relies
on L� ≥ 1. �

Now we are in position to present and prove the main result in this
section. The dependency of our error term on Ω is not just O(1) as in [36]
but explicit in terms of the number, lengths, and distances of the constituent
intervals of Ω. Sobolev in [32, Chapter 8] has a similar error term, which,
however, does not seem to suffice for our purposes.

Corollary C.3. We assume the same conditions on the set Ω as in Lemma C.1,
μ > 0 and m ∈ N. Then, with I(m) explained after (2.15), we have for any
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L ≥ 1,

tr
(
1LΩ1[(−i∇‖)2 ≤ μ]1LΩ

)m

=
√

μ

π
L|Ω| + 4k I(m) ln(1 + L) (C.20)

+ O

⎛

⎝k + |ln(�k)| +
k−1∑

j=1

|ln(�j)| + |ln(dj)|
⎞

⎠ .

(C.21)

Proof. For the case of a single interval, we use Lemma C.2

tr
(
1LIj

Q1LIj

)m
=

√
μ

π
L�j + 4 I(m) ln(1 + L�j) + O(1) (C.22)

=

√
μ

π
L�j + 4 I(m)

[
ln(1 + L) + ln

( L

1 + L

)
+ ln

( 1

L
+ �j

)]
+ O(1).

(C.23)

As L ≥ 1, we have
∣
∣
∣
∣ln

(
L

1 + L

)
+ ln

(
1
L

+ �j

)∣
∣
∣
∣ < 3 + |ln(�j)|. (C.24)

Next, we observe9 that for any a > 0 and b > 0, we have

ln(1 + ab) < |ln(a)| + |ln(b)| + 1. (C.25)

Now, we only need to rewrite the error term from Lemma C.1 in the form we
claim in this corollary. Thus, we estimate

ln
(

1 +
L�j

1 + Ldj

)
= ln

(
1 +

�j
1
L + dj

)
≤ ln(1 +

�j

dj
) < |ln(�j)| + |ln(dj)| + 1.

(C.26)

Once we sum the error term estimate in (C.26) for i = 1, . . . , k−1 and the one
in (C.24) for i = 1, . . . , k, we arrive at the claimed error estimate in (C.21).
We also see that the sum of the main terms in (C.23) for i = 1, . . . , k agrees
with the main term in (C.21). This finishes the proof. �

Appendix D. A Technical Lemma on Decaying Functions

This section contains a technical lemma that was useful to construct the se-
quence (ai)i∈N and the region Λ in the proof of Theorem 6.2.

Lemma D.1. Let f : R
+ → R

+ be bounded and satisfy limL→∞ f(L) = 0.
Then, there is a convex, non-increasing function Env(f) : R

+ → R
+ satis-

fying Env(f)(0) = 1, limL→∞ Env(f)(L) = limL→∞ f(L)/Env(f)(L) = 0 and
Env(f)(L) ≥ C/

√
ln(2 + L) for some C > 0.

9If ab ≤ 1, then ln(1+ab) ≤ ab ≤ 1 and (C.25) holds. If ab ≥ 1, then we distinguish between
the case that both a ≥ 1 and b ≥ 1 and the case where one of them is smaller than 1. In
the first case (C.25) is equivalent to ln(1 + ab) − ln(ab) = ln(1 + 1/(ab)) ≤ 1 which holds
because ln(1+1/(ab)) ≤ 1/(ab) ≤ 1. In the remaining case, we may assume a ≤ 1 and b ≥ 1

(but still ab ≥ 1). Then, ab ≤ b/a and ln(1 + ab) =
∫ ab
1 dx/x ≤ ∫ b/a

1 dx/x = ln(b/a).
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Proof. The conditions on Env(f) only get worse if we increase f . Hence, we
can replace f by

f̂(s) := sup
t>s

f(t). (D.1)

This is non-increasing. To achieve the f(L)/Env(f)(L) condition we consider√
f̂ . However, we still need to make sure that Env(f) is convex. For this

reason, we need to consider the lower convex envelope
√̆

f̂ . It is given by the

supremum over all convex functions below
√

f̂ . Another way to think of it is

that the area above the graph of
√̆

f̂ is the convex hull of the area above
√

f̂ .
Finally, we define

Env(f)(t) := N

(√̆
f̂

(
t

2

)
+

1
√

ln(2 + t)

)

, t ≥ 0, (D.2)

where N is a normalization constant to be chosen below. As the lower convex
envelope and 1√

ln(2+t)
are convex, so is Env(f). As the lower convex envelope

lies below the function, we have Env(f)(t) ≤ N
(√

f̂(t/2) + 1√
ln(2+t)

)
→ 0

as t → ∞. As Env(f) is convex and limL→∞ Env(f)(L) = 0, Env(f) is non-
increasing. The condition Env(f)(L) ≥ C/

√
ln(2 + L) is trivially satisfied and

implies Env(f)(0) > 0 and hence allows us to choose N such that Env(f)(0) =
1. We are only left with the condition limL→∞ f(L)/Env(f)(L) = 0. To show
this, it is sufficient to prove

Env(f)(L) ≥ C
√

f(L). (D.3)

By the definition of the convex envelope, for any t ≥ 0, there are 0 ≤ t1 ≤ t < t2
such that

Env(f)(t)/N =
t2 − t

t2 − t1

√
f̂

(
t1
2

)
+

t − t1
t2 − t1

√
f̂

(
t2
2

)
+

1
√

ln(2 + t)
. (D.4)

If t2 ≤ 2t, as f̂ is non-increasing, we get
√

f̂
(

tj

2

)
≥

√
f̂(t) for j = 1, 2 and

thus are finished. If t2 > 2t, then, as t1 ≥ 0, we have t2−t
t2−t1

> 1
2 . Thus, it

suffices to bound the first summand from below, which we already did. �
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