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Degenerate Perturbation Theory for Models
of Quantum Field Theory with Symmetries

David Hasler and Markus Lange

Abstract. We consider Hamiltonians of models describing non-relativistic
quantum mechanical matter coupled to a relativistic field of bosons. If the
free Hamiltonian has an eigenvalue, we show that this eigenvalue persists
also for nonzero coupling. The eigenvalue of the free Hamiltonian may be
degenerate provided there exists a symmetry group acting irreducibly on
the eigenspace. Furthermore, if the Hamiltonian depends analytically on
external parameters then so does the eigenvalue and eigenvector. Our re-
sult applies to the ground state as well as resonance states. For our results,
we assume a mild infrared condition. The proof is based on operator the-
oretic renormalization. It generalizes the method used in Griesemer and
Hasler (Ann Henri Poincaré 10(3):577–621, 2009) to non-degenerate sit-
uations, where the degeneracy is protected by a symmetry group, and
utilizes Schur’s lemma from representation theory.

1. Introduction

We consider mathematical models describing non-relativistic quantum me-
chanical matter interacting with a quantized field consisting of infinitely many
bosons. Such models are used to describe atoms or molecules interacting with
the surrounding electromagnetic field or particles in solids interacting with
lattice excitation, so-called phonons.

In this paper, we will focus on models describing interaction with the
electromagnetic field. In that case, the bosons are photons and have a mass-
less relativistic dispersion relation but the electrons and nuclei are treated as
non-relativistic quantum mechanical particles. Such type of models are often
referred to as non-relativistic qed.

The dynamics as well as the energy of these models is determined by a
self-adjoint operator called the Hamiltonian. For these models, the Hamilton-
ian is typically bounded from below and the infimum of its spectrum is called
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ground-state energy. If the ground-state energy is an eigenvalue, the corre-
sponding eigenvector is called ground state. As a consequence of the massless
nature of photons, the ground-state energy is not isolated from the rest of the
spectrum of the Hamiltonian. The question of existence of a ground state is
nontrivial. It has been shown that for models of non-relativistic qed a ground
state exists [7,14,18,29,35] under natural assumptions.

In this paper, we consider models for which the existence of a ground
state has been established. We address the question, how the ground state
as well as the ground-state energy, E, depend on parameters of the system.
For example, one is interested on its dependence on the coupling constant, on
the positions of static nuclei for molecules, or on analytic extensions of dila-
tions and translations. The regularity of E as a function of such parameters is
of fundamental importance for Born–Oppenheimer approximation, scattering
theory, adiabatic theory, cf. [17].

If E were an isolated eigenvalue, like it is in quantum mechanical de-
scription of molecules without radiation, then analyticity of E with respect to
any of the aforementioned parameters would follow from regular perturbation
theory. But in models of qed describing photons, the energy E is not isolated
and the analysis of its regularity is a difficult mathematical problem.

The aforementioned question has been addressed in [17]. In that paper, it
was shown that if the Hamiltonian of the model depends analytically on some
parameter, s, then also the ground state as well as E depend analytically
on s. For the proof of the result in [17], a mild infrared regularization was
needed. In the special case of the classical spin-boson model, analyticity of the
ground state and the ground state energy as a function of the coupling constant
could be established without the necessity of an infrared regularization [21].
Analyticity of ground states and ground-state energies as a function of the
coupling parameter has been shown in [20] for atoms in the framework of
non-relativistic qed. For models of non-relativistic qed and the spin boson
model, analytic extensions of dilations have been studied in connection with
resonances [5,6,8].

Furthermore, we want to mention related results about translation invari-
ant models of quantum field theory, where the Hamiltonian commutes with the
generators of translations. In such a situation, one can restrict the Hamiltonian
to the generalized eigenspaces corresponding to the eigenvalues p ∈ R

3 of the
generators of translations. This restriction, H(p), is called fiber Hamiltonian.
Motivated by the construction of scattering states, regularity of the infimum
of the spectrum for these fiber Hamiltonians H(p) as a function of p has been
intensively investigated for various models [1,4,9,10,12] with results ranging
from Hölder continuity up to real analyticity.

A common assumption of the aforementioned analyticity results in [5,6,
8,17,20,21] is that the ground-state energy of the Hamiltonian describing the
massive non-relativistic matter is non-degenerate. However, in many situations
this assumption is not met. For example, for almost all atoms, except the noble
atoms, the valence shell is not fully occupied and therefore by common physical
folklore the ground-state energy is degenerate by rotation symmetry (we have
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not found a rigorous proof of this fact but there is almost certain physical
evidence corroborating it). Even for molecules, where rotation invariance is
broken, degeneracy may occur by the spinorial degrees of freedom.

If an eigenvalue of the Hamiltonian describing the non-relativistic quan-
tum mechanical matter is degenerate, the coupling to the quantized field can
lift the degeneracy. It may be lifted completely or there might remain some
degeneracy of possibly smaller multiplicity.

The lifting of the degeneracy of an eigenvalue of an atomic Hamiltonian
due to the coupling of the electromagnetic field is usually referred to as the
Lamb shift. The most prominent example is the splitting of the first excited
energy level in the hydrogen atom [27]. For a mathematical discussion of such
a phenomenon in the framework of non-relativistic qed, see for example [2]
and references therein. The Lamb shift was studied in [22] in a situation where
the degeneracy of the ground state energy is lifted at second-order formal
perturbation theory. It was shown under a mild infrared condition that the
ground state as well as the ground-state energy are analytic functions of the
coupling constant in a sectorial region around the origin. This is in contrast
to perturbation theory of isolated eigenvalues, where by general principles
analyticity holds on a whole ball around the origin, cf. [31] and references
therein.

In [9], the ground-state energy of the fiber Hamiltonian H(p) for an elec-
tron with spin interacting with the quantized electromagnetic field was studied
and its regularity properties as a function of p in a neighborhood of zero were
investigated. In this case, the coupling to the quantized electromagnetic field
does not lift the spin degeneracy, which can be seen using time reversal sym-
metry and Kramer’s degeneracy theorem [38].

In this paper, we consider the situation where the so-called atomic Hamil-
tonian, describing the non-relativistic matter, has a discrete eigenvalue. This
eigenvalue may be degenerate, but we assume that there exists an underlying
symmetry of the full Hamiltonian, which acts irreducibly on the corresponding
eigenspace. In that case, the interaction does not lift nor decrease the degener-
acy, which turns out to be protected by the symmetry. In particular, we show
the existence of an eigenvalue for small but nonzero coupling. Moreover, the
main result states that if the Hamiltonian depends analytically on a parameter
s, then also the eigenvalue as well as the eigenstate depend analytically on s.

The result is formulated analogously to the main result in [17]. We gen-
eralize the main result in that paper to degenerate situations, i.e., we relax the
non-degeneracy condition to an irreducibility condition with respect to a sym-
metry group. Furthermore, we generalize the result in [17] to include general
eigenvalues, which may be different from the ground-state energy. This allows
the treatment of resonance states, by which we understand eigenvectors of an
analytically dilated Hamiltonian.

As in [17] we assume that the interaction is linear in the field operator of
the quantized field and that there is a mild infrared regularization. In fact, the
main part of the proof also applies to situations arising for the standard model
of non-relativistic qed, which is quadratic in the field operators. We isolate the
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part of the proof which applies to general situations as a corollary of the proof
in separate theorem within the last section.

The proof of the main result is based on operator theoretic renormaliza-
tion [6]. This method is based on an iterated application of the Schur comple-
ment also called Feshbach map. One can show that this procedure leads to a
fix point, provided infrared behavior of the original operator is not to singular.
Using this fixed point, one can construct the ground state as the limit of a con-
vergent sequence. If the original Hamiltonian is analytic, one can show, as in
[17], that this approximating sequence is analytic. Analyticity of the eigenvalue
as well as the eigenvector will then follow from uniform convergence.

The main difficulty posed by the degeneracy is the iteration procedure
of the renormalization analysis. To prove that an iteration step is contracting,
one has to control the relevant direction. For this, one adjusts the spectral
parameter to make vacuum expectations of the n-th renormalized Hamilton
operator small. However, in a degenerate situation the vacuum expectation is
a matrix. The key idea is to use the symmetry to conclude that this matrix
is in fact a multiple of the identity, using irreducibility and Schur’s lemma.
This will then turn the analysis of the relevant direction essentially into a
one-dimensional problem, which can then be handled with the methods in
[17]. Thus, our result is based on results from [17] as well as from [3]. To this
end, we need to show that the symmetry property as well as the irreducibility
property are preserved at each iteration step.

Let us give an outline of the paper. In Sect. 2, we introduce the model
and state the main result. In Sect. 3, we give a simple but concrete example
of a model in which all assumptions of the main result hold. In Sect. 4, we
discuss the analysis related to the symmetry which we will need in the proof
of the main theorem. In Sect. 5, we perform a first Feshbach map. Note that
details about the Feshbach map can be found in Appendix D. We show that
the assumptions needed for the Feshbach map to be applicable are satisfied. In
Sect. 6, we introduce Banach spaces of matrix valued integral kernels, which
describe operators on Fock space. Polydiscs in these spaces will later be needed
to show that the iteration procedure of the renormalization analysis converges
to a fixed point. In Sect. 7, we show that the first Feshbach map maps the
original Hamiltonian into initial polydisc. In Sect. 8, we give an explicit defini-
tion of the renormalization transformation, as a composition of the Feshbach
map and a rescaling of the energy. In Sect. 9, we show that the renormaliza-
tion transformation preserves analyticity and symmetry. In Sect. 10, we derive
conditions under which an iterated application of the renormalization trans-
formation is possible and converges to a fixed point. Moreover, we show how
one can construct the eigenvector, provided the renormalization analysis con-
verges. In Sect. 11, we provide the proof of the main theorem by combining
the results which are discussed in previous sections. In this section, we isolate
in Theorem 11.1 the part of the renormalization analysis which is not model
dependent and can be applied to larger class of Hamiltonians including for
example the standard model of non-relativistic qed.
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In Appendix A, we review basic properties of antilinear maps. In Ap-
pendix B, we collect properties of eigenprojections of isolated eigenvalues. In
Sect. C, we review formal definitions of creation and annihilation operators
and collect identities and estimates of these operators. We plan do consider
applications of the main result in a forthcoming paper elaborating on examples
discussed in [28].

2. Model and Statement of Results

We consider the following model. Let the atomic Hilbert space, Hat, be a
separable complex Hilbert space. Let h = L2(R3 × Z2) and let

F =
∞⊕

n=0

Fn, Fn := Sn(h⊗n)

denote the Fock space, which is used to describe quantum states of the field.
Here S0(h⊗0) := C and for n ≥ 1, Sn ∈ L(h⊗n) denotes the orthogonal
projection onto the subspace left invariant by all permutation of the n factors
of h. We call Fn the space of n-particle subspace. A vector ψ ∈ F can be
identified with a sequences (ψn)n∈N0 such that ψn ∈ Fn. The vector Ω :=
(1, 0, 0, . . .) ∈ F is called the Fock vacuum. Furthermore, we shall use the
following identification

Fn
∼= L2

s([R
3 × Z2]n),

where the subscript s indicates that the elements are symmetric with respect
to interchange of coordinates. For details, we refer the reader to [32] or Ap-
pendix C.

A unitary operator U ∈ L(h) can be naturally extended to the linear
operator Γ(U) in F by

Γ(U)|F0 = 1, Γ(U)|Fn
= U⊗n, n ∈ N,

respectively. An easy calculation shows that Γ(U) is unitary again. For ρ > 0
and f ∈ h, define

(Uρf)(k, λ) := ρ3/2f(ρk, λ), (k, λ) ∈ R
3 × Z2.

It is straight forward to see that Uρ is a unitary operator on h. The so-called
dilation operator on F is then given by

Γρ := Γ(Uρ). (2.1)

For a vector z ∈ C
N , we write |z| =

(∑N
j=1 |zj |2

)1/2

. To simplify our notation,

we define for (k, λ) ∈ R
3 × Z2

k := (k, λ),
ˆ

dk :=
∑

λ=1,2

ˆ
d3k.
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We will identify the tensor product of the Fock space F with a separable
Hilbert space H′ using the canonical identification

H′ ⊗ F ∼=
∞⊕

n=0

L2
s([R

3 × Z2]n;H′),

cf. [32]. For G ∈ L2(R3 × Z2;L(H′)), one associates an annihilation operator
a(G) as follows. For ψ = (ψn)∞

n=0 ∈ H′ ⊗ F with the property that ψn = 0 for
all but finitely many n, we define a(G)ψ as a sequence of H′-valued measurable
functions such that the n-th term satisfies a.e.

[a(G)ψ]n(k1, . . . ., kn) = (n + 1)1/2

ˆ
G(k)∗ψn+1(k, k1, . . . ., kn)dk, (2.2)

where the integral on the right-hand side is defined as a Bochner integral.
Equation (2.2) defines a closable operator a(G) whose closure is also denoted
by a(G). The creation operator a∗(G) is defined to be the adjoint of a(G) with
respect to the natural scalar product in F . In Appendix C, further properties
about creation and annihilation operators can be found.

In this paper, we are interested in the dynamics of bosonic particles of
mass zero. The energy, ω(k), of such a particle with wave vector k is

ω(k) := |k| := |k|.
We define the free-field Hamiltonian, Hf , on a vector ψ ∈ H′ ⊗ F as the
sequence of H′ -valued functions whose n-th term is defined by

(Hfψ)n(k1, . . . , kn) =
n∑

j=1

ω(kj)ψn(k1, . . . , kn). (2.3)

The domain of Hf , denoted by D(Hf), is the set of all ψ ∈ H′ ⊗ F such
that (2.3) is an element of H′ ⊗ F . One verifies that Hf with this domain
defines a positive, self-adjoint linear operator on H′ ⊗F with purely absolutely
continuous spectrum, except for an eigenvalue at 0, with eigenspace consisting
of all vectors of the form (v, 0, 0, . . .) with v ∈ H′.

Let us now fix an atomic Hilbert space Hat. The Hilbert space, describing
the atomic degrees of freedom and the quantized field, is given by the tensor
product

H := Hat ⊗ F .

Let X be an open subset of Cν , where ν ∈ N. For each s ∈ X let Hat(s)
be a densely defined closed operator in Hat. For g ≥ 0 and s ∈ X, we study
the operator

Hg(s) := Hat(s) ⊗ 1F + 1Hat ⊗ Hf + gW (s)

where the interaction operator is given by

W (s) := a(G1,s) + a∗(G2,s) (2.4)

and k �→ Gi,s(k) is an element of L2(R3×Z2;L(Hat)) for each s ∈ X. Note that
the operator (2.4) does not need to be self-adjoint, however, under Hypothe-
sis IV (2.4) will be self-adjoint for real s. For μ > 0 and G ∈ L2(R3×Z2;L(Hat))



Vol. 25 (2024) Degenerate Perturbation Theory 2495

we define

‖G‖μ :=
(ˆ

1
|k|2+2μ

‖G(k)‖2dk

)1/2

, (2.5)

which possibly may be infinite.
In the following, we formulate Hypotheses, which will be used in the

statements of the main results Theorem 2.10.

Hypothesis I. For s ∈ X and j = 1, 2 the mapping s �→ Gj,s is a bounded
analytic function that has values in L2(R3×Z2;L(Hat)). Moreover, there exists
a μ > 0 such that

max
j=1,2

sup
s∈X

‖Gj,s‖μ < ∞ .

A consequence of this Hypothesis is that the interaction operator W (s)
and its adjoint W (s)∗ are well-defined operators on Hat ⊗ D(Hf) which are
infinitesimally bounded with respect to Hf for all s ∈ X, cf. Lemma C.1.
Hence, the operator Hg(s) is defined on D

(
Hat(s)

)
⊗ D(Hf). Since Hat(s) is

closed, this space is dense in H and Hg(s) is densely defined. Thus, the adjoint
Hg(s)∗ exists and is closed. Moreover, D

(
Hat(s)

)
⊗ D(Hf) is contained in the

domain of Hg(s)∗. Hence, the map Hg(s) : D
(
Hat(s)

)
⊗ D(Hf) ⊂ H → H

has a densely defined adjoint and is therefore closable [25, Theorem 5.28]. Let
us now introduce the notation of a symmetry of an operator. Details can be
found in Appendix A.

Definition 2.1. Let H be a Hilbert space and T an operator in H (possibly
unbounded). A unitary or antiunitary operator S in H is called symmetry of
the operator T , if

S∗D(T ) ⊂ D(T ) and STS∗ = T , for S unitary,

S∗D(T ∗) ⊂ D(T ) and STS∗ = T ∗ , for S antiunitary.

In that case, we say that T is symmetric or invariant with respect to S. If T
is symmetric with respect to all elements of a set S of symmetries, we say T
is symmetric or invariant with respect to S.

Remark 2.2. We note that the set of symmetries of an operator form a group.
More precisely, if S1 and S2 are symmetries, then so are S1S2 and S−1

1 . Thus,
without loss of generality we can assume that we are given a group of symme-
tries.

To formulate the second Hypothesis, we need the notion of a discrete
point in the spectrum of a closed operator. We use the definition as given in
[31]. To state it, let us first recall the following theorem. We shall make use of
the following notation for open balls in the complex plane

Br(a) = {z ∈ C : |z − a| < r},

where a ∈ C and r > 0.
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Theorem 2.3 ([31] Theorems XII.5 (a) & (b)). Suppose that A is a closed
operator and let λ be an isolated point of σ(A). Then Bε(λ) ∩ σ(A) = {λ}
for some ε > 0, and for any r ∈ (0, ε) the integral

Pλ =
1

2πi

‰
|μ−λ|=r

(μ − A)−1dμ (2.6)

exists and is independent of r. Moreover, Pλ is a projection, i.e., P 2
λ = Pλ.

Definition 2.4. Let A be a closed operator. A point λ ∈ σ(A) is called discrete
if λ is isolated and Pλ, given by Theorem 2.3, is finite dimensional. If Pλ is
one dimensional, we say λ is a nondegenerate eigenvalue. The dimension of Pλ

is called the algebraic multiplicity. The dimension of Ker(A − λ) is called the
geometric multiplicity. If algebraic and geometric multiplicity agree and are
finite, we say λ is non-defective.

We can now state the second Hypothesis.

Hypothesis II. (i) The mapping s �→ Hat(s) is an analytic family in the
sense of Kato.

(ii) There exists s0 ∈ X such that Eat(s0) is a non-defective, discrete element
of the spectrum of Hat(s0).

(iii) If Eat(s0) is degenerate, there exists a group of symmetries, S, such that
Hat(s)⊗1F , Hf , and W (s) are symmetric with respect to S for all s ∈ X.
Each element of S can be written in the form S1 ⊗ S2, where S1 is a
symmetry in Hat and S2 is a symmetry in F . Furthermore, the set of
symmetries in Hat

S1 := {S1 : S1 ⊗ S2 ∈ S}
acts irreducibly on the eigenspace of Hat(s0) with eigenvalue Eat(s0).
Each element of S2 := {S2 : S1 ⊗S2 ∈ S} leaves the Fock vacuum as well
as the one particle subspace invariant and commutes with the operator of
dilations, cf. (2.1).

By Hypothesis II and the Kato–Rellich theorem of analytic perturbation
theory, [31], together with a symmetry argument one can show the following
lemma, which will be needed to formulate the third hypothesis. We note that
parts (a) and (b) are well-known results and can be found in [31]. The proof
of (c) will require a symmetry argument. We will provide a proof in Sect. 4.

Lemma 2.5. Suppose the situation is as in Hypothesis II. Then there exists
an ε > 0 sufficiently small and a neighborhood N ⊂ X of s0, such that the
following holds.
(a) {z ∈ C : |z − Eat(s0)| = ε} ⊂ ρ(Hat(s)) for all s ∈ N .
(b) For all s ∈ N

pat(s) = − 1
2πi

‰
|z−Eat(s0)|=ε

1
Hat(s) − z

dz (2.7)

defines a projection valued analytic function and the dimension of the
range is finite and constant. In particular, pat(s0) projects onto the
eigenspace of Eat(s0).
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(c) There exists an analytic function eat : N → C such that for all s ∈ N

Hat(s) � Ran pat(s) = eat(s) � Ran pat(s) .

For s ∈ N , the point eat(s) ∈ C is the only point in the spectrum of Hat(s)
in a neighborhood of Eat(s0). The number eat(s) is a non-defective, dis-
crete element of the spectrum of Hat(s). Furthermore, eat(s0) = Eat(s0).

If Hypothesis II holds, it follows from a repeated application of Lemma 2.5,
that there exists a connected open neighborhood X1 ⊂ X of s0, an analytic
projection valued function Pat on X1, and an analytic function Eat on X1

extending Eat(s0) such that the following holds. For all s ∈ X1, the number
Eat(s) is in the discrete spectrum of Hat(s) and it is non-defective; moreover,

Hat(s) � RanPat(s) = Eat(s) � RanPat(s) .

For any s1 ∈ X1, there exists an ε1 > 0 and a neighborhood N1 ⊂ X1 of s1

such that for all s ∈ N1

{z ∈ C : |z − Eat(s1)| = ε1} ⊂ ρ(Hat(s1))

and

Pat(s) = − 1
2πi

‰
|z−Eat(s1)|=ε1

1
Hat(s) − z

dz. (2.8)

Henceforth, we denote by Pat and Eat any mappings having the properties
stated above on an open connected neighborhood X1 ⊂ X of s0.

Remark 2.6. In principle, one could use Lemma 2.5 to obtain a maximal ana-
lytic extension of Pat and Eat. This will not be needed as it does not necessarily
improve the main result.

To formulate the third Hypothesis, we use the notion of a reduced resol-
vent, which is introduced in Remark 2.7.

Remark 2.7. Let A : D(A) ⊂ X → X be a densely defined closed linear
operator and let P be a bounded projection in X such that for P = 1 − P

RanP is closed , RanP ∩ D(A) is dense in RanP ,

A
[
RanP ∩ D(A)

]
⊂ RanP . (2.9)

Then it is reasonable to study the densely defined operator A|RanP∩D(A) in
RanP . If z ∈ ρ(A|RanP∩D(A)), we shall use the notation (A − z)−1P := ((A −
z)|RanP∩D(A))

−1P , and refer to this expression as the reduced resolvent.

The third Hypothesis will be used to invert for z close to Eat(s0) the
operator Hat(s) − z when restricted to the range of

P at(s) := 1Hat − Pat(s).

Aforementioned we formulate this in terms of the reduced resolvent. For this,
we note that it follows from well-known properties of projections (2.6), c.f. [31]
or Part (a) of Theorem B.1 in the appendix, that the assumptions (2.9), i.e.,

RanP at(s) is closed , RanP at(s) ∩ D(Hat(s)) is dense in RanP at(s),
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Hat(s)
[
RanP at(s) ∩ D(Hat(s))

]
⊂ RanP at(s).

are satisfied for s ∈ X1. Thus, the reduced operator Hat(s)|P at(s)∩D(Hat(s)))
is

a densely defined operator in RanP at(s).

Hypothesis III. Hypothesis II holds and there exists a neighborhood U ⊂ X1 ×
C of (s0, Eat(s0)) such that for all (s, z) ∈ U we have |Eat(s) − z| < 1/2,
sup(s,z)∈U ‖Pat(s)‖ < ∞, and

sup
(s,z)∈U

sup
q≥0

∥∥∥∥
q + 1

Hat(s) − z + q
P at(s)

∥∥∥∥ < ∞.

Remark 2.8. We note that one can show that Hypothesis III follows from
Hypothesis I and II and the additional assumption that Hg(s) is an analytic
family of type (A) and that a semiboundedness condition holds, see [17].

When dealing with the ground state, we can assume the following addi-
tional Hypothesis. It will ensure that in the limit, as the interaction strength
tends to zero, the ground state of the interacting system converges to the
ground state of the non-interacting system. For a subset Ω ⊂ C

n, we write
Ω∗ := {z : z ∈ Ω}.

Hypothesis IV. The following holds.

(i) We have X = X∗ and for all s ∈ X the identities G1,s = G2,s and
Hat(s)∗ = Hat(s) hold.

(ii) We have s0 ∈ X ∩ R
ν and Eat(s0) = inf σ(Hat(s0)).

Definition 2.9. Let H0 be a Hilbert space and let X ⊂ C
d with X∗ = X. For

each x ∈ X, let a densely defined operator T (x) in the Hilbert space H0 be
given. We say that T is reflection symmetric if T (x)∗ = T (x).

With theses Hypotheses at hand, we can now state the main result.

Theorem 2.10. Suppose Hypotheses I, II, III hold and let

d = dim ker(Hat(s0) − Eat(s0)).

Then there exists a neighborhood Xb ⊂ X of s0 and a positive constant gb such
that for all s ∈ Xb and all g ∈ [0, gb] the operator Hg(s) has an eigenvalue
Eg(s) with d linearly independent eigenvectors ψg,j(s), j = 1, . . . , d, with the
following properties.

(i) The functions s �→ Eg(s) and s �→ ψg,j(s) for j = 1, . . . , d are analytic
functions on Xb.

(ii) Uniformly in s ∈ Xb, we have limg→0 Eg(s) = Eat(s) and limg→0 ψg,j(s) =
ϕat,j(s) ⊗ Ω for some ϕat,j(s) ∈ RanPat(s).

If in addition Hypothesis IV holds, then Xb = X∗
b and

(iii) for all s ∈ Xb ∩ R
ν it holds that Eg(s) = inf σ(Hg(s)).

(iv) for all s ∈ Xb it holds that Eg(s) = Eg(s).
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Remark 2.11. In case that the irreducibility assumptions of Hypothesis II (iii)
are not satisfied, the eigenspace of the ground-state eigenvalue is expected to
split at higher order in perturbation theory. This phenomenon is known as the
Lamb shift and has been considered in the literature [19,26]. It is natural to as-
sume that degeneracies of eigenvalues are lifted at some order in perturbation
theory until a residual degeneracy remains which is protected by a set of sym-
metries. Analyticity questions for degenerate ground-state eigenvalues, whos
degeneracy is lifted in second-order perturbation theory, were investigated in
[22] in the framework of generalized Spin–Boson models.

We note that the above result can be used to obtain analyticity in the
coupling constant. We note that this will immediately improve the continuity
statement, Part (ii), in Theorem 2.10. This will be the content of the follow-
ing corollary. To state the result first recall that W (s) is infinitesimally Hf

bounded, cf. Lemma C.1. Thus, for each s ∈ X the map on C

g �→ Hg(s)

is an analytic family of type (A). It follows that (g, s) �→ Hg(s) is an analytic
family, since the weak analyticity of the resolvent implies strong analyticity
of the resolvent and to show jointly weak analyticity we can use Hartog’s
theorem, cf. [24].

Corollary 2.12. Suppose Hypotheses I, II, III hold and let d = dim ker(Hat(s0)−
Eat(s0)). Then there exists a neighborhood Xb ⊂ X of s0 and a positive con-
stant gb such that for all s ∈ Xb and all g ∈ Bgb

(0) the operator Hg(s) has an
eigenvalue Eg(s) with d linearly independent eigenvectors ψg,j(s), j = 1, . . . , d,
with the following property.

The functions (s, g) �→ Eg(s) and (s, g) �→ ψg,j(s) for j = 1, . . . , d are
analytic functions on Xb × Bgb(0).

Proof. First we extend the parameter space X̂ = X × B1(0) and define for
(s, s′) ∈ X̂ and g ≥ 0

Ĥg(s, s′) = H(s′g)(s). (2.10)

Now one easily verifies that (s, s′) �→ Ĥg(s, s′) satisfies the assumptions I, II, III.
Thus, it follows from Theorem 2.10 that there exists a gb > 0 such that
Ĥgb(s, s

′) has an eigenvalue Egb(s, s
′) and an eigenvector ψgb(s, s

′) both de-
pending analytically on (s, s′). Now in view of (2.10), we see that they are also
eigenvalue and eigenvector of H(s′gb)(s). This shows the corollary. �

We note that one can formulate the result in Theorem 2.10 in terms of
so-called eigenprojections.

A densely defined operator H in a Hilbert space with the property that

H∗ = J HJ −1 (2.11)

for some antiunitary operator J is called complex-selfadjoint with respect to
J . To formulate the next corollary, we make another hypothesis.
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Hypothesis V. Hypothesis II holds. For all g ≥ 0 and s ∈ X, the operator
Hg(s) is complex-selfadjoint with respect to a antiunitary operator J . The
bilinear form J : V × V → C on V := Ran(Pat(s0)) ⊗ Ω defined by J(v1, v2) =
〈v1,J v2〉 is non-degenerate.

Corollary 2.13. Suppose Hypotheses I, II, III hold and let d = dim ker(Hat(s0)−
Eat(s0)). Assume that Hypothesis IV or Hypothesis V holds. Then there ex-
ists a neighborhood Xb ⊂ X of s0 and a positive constant gb such that for all
s ∈ Xb and all g ∈ [0, gb] there exists a complex number Eg(s) and a projection
Pg(s) with rank d such that

Pg(s)Hg(s) ⊂ Hg(s)Pg(s) = Eg(s)Pg(s) (2.12)

with the following properties.
(i) s �→ Pg(s) and s �→ Eg(s) are analytic on Xb.
(ii) limg↓0 Pg(s) = Pat(s) ⊗ PΩ uniformly on Xb.

Proof. Let the situation be as in Theorem 2.10. First we assume that Hypoth-
esis IV holds. By possibly restricting to the intersection of Xb and X∗

b , we can
assume without loss that these sets are equal and nonzero, since both contain
s0 ∈ R

ν . Define the matrix Ma,b(s) = 〈ψg,a(s), ψg,b(s)〉, a, b = 1, . . . , d, for
s ∈ Xb ∩ X∗

b . By linear independence of the ψg,j(s) and continuity, we can
assume without loss that M is invertible for all s ∈ Xb (by possible making
Xb smaller, by intersecting it with a neighborhood of the real line). We define

Pg(s) =
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈ψg,b(s)|.

It is straightforward to verify that this is a projection

Pg(s)Pg(s)

=
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈ψg,b(s)|
d∑

c,e=1

|ψg,c(s)〉(M(s)−1)c,e〈ψg,e(s)|

=
d∑

a,b,c,e=1

|ψg,a(s)〉(M(s)−1)a,bM(s)b,c(M(s)−1)c,e〈ψg,e(s)|

=
d∑

a,b,e=1

|ψg,a(s)〉(M(s)−1)a,bδb,e〈ψg,e(s)|

=
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈ψg,b(s)| = P (s).

Furthermore, since ψg,a are eigenvectors we find Hg(s)Pg(s) = Eg(s)Pg(s) and
with Theorem 2.10 (iv)

Pg(s)Hg(s) ⊂
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈Hg(s)∗ψg,b(s)|
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=
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈Hg(s)ψg,b(s)|

=
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈Eg(s)ψg,b(s)|

=
d∑

a,b=1

|ψg,a(s)〉(M(s)−1)a,b〈ψg,b(s)|Eg(s) = Pg(s)Eg(s).

It is now straight forward using Parts (i) and (ii) of Theorem 2.10 that Parts
(i) and (ii) of Corollary 2.13 hold.

Now assume that Hypothesis V holds. In that case, we argue analogously.
Define the matrix Na,b(s) = 〈J ψa(s), ψb(s)〉, a, b = 1, . . . , d, for s ∈ Xb. Again
by linear independence of the ψg,j(s) and Hypothesis V we find that Na,b(s) is
invertible for s = s0 and g = 0. Now by continuity in s and (ii) of Theorem 2.10,
we can assume without loss that N is invertible for all s ∈ Xb (by possible
making Xb as well as gb > 0 smaller). It is now again straightforward to verify
using (i) and (ii) of Theorem 2.10 that

Pg(s) =
d∑

a,b=1

|ψg,a(s)〉(N(s)−1)a,b〈J ψg,b(s)|

has the claimed properties. To show the first relation in (2.12), we observe that
using (2.11) we find

Pg(s)Hg(s) ⊂
d∑

a,b=1

|ψg,a(s)〉(N(s)−1)a,b〈Hg(s)∗J ψg,b(s)|

=
d∑

a,b=1

|ψg,a(s)〉(N(s)−1)a,b〈J Hg(s)ψg,b(s)|

=
d∑

a,b=1

|ψg,a(s)〉(N(s)−1)a,b〈J Eg(s)ψg,b(s)|

=
d∑

a,b=1

|ψg,a(s)〉(N(s)−1)a,b〈J ψg,b(s)|Eg(s) = Pg(s)Eg(s).

�

3. An Elementary Example

In this section, we give an elementary example for which the conditions of
Theorem 2.10 can be easily verified. Resonances and systems involving several
non-relativistic massive particles will be treated in a forthcoming paper.

We consider the ground state of the Hamiltonian describing a single
charged particle with spin in an attracting potential and interacting with the
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quantized electromagnetic field in a dipole approximation, see [11,15,17] and
references therein. Let Hel = L2(R3;C2) and let

Hel = −Δx + V (x),

where V : R
3 → R is measurable function such that Hel is selfadjoint and

Eel = inf σ(Hel) is below the essential spectrum of Hel. Note that since the
Hamiltonian Hel does not affect the spin degrees of freedom, each discrete
eigenvalue has even multiplicity. Let us assume that the ground-state energy
of Hat is twice degenerate, i.e.,

2 = dim ker(Hel − Eel). (3.1)

Thus, there exists a normalized vector φel ∈ L2(R3) such that ϕel,1 = (φel, 0)
and ϕel,2 = (0, φel) are two linearly independent eigenvectors of Hel with eigen-
value Eel. To introduce the interaction with the quantized electromagnetic
field, we define

Gdip
s (k, λ) := s

ρ(k)
ω(k)1/2

(χ(x)x · |k|iε(k, λ) + S · ik ∧ ε(k, λ)) , (3.2)

where

ε : R3 \ {0} × {1, 2} → R
3

is a measurable function describing the so-called photon polarization vectors,
which satisfy ε(k, j) = ε(k/|k|, j), j = 1, 2, and for which the vectors ε(k, 1),
ε(k, 2), and k/|k| form an orthonormal basis of R3. The function ρ : R3 → R

in (3.2) is a cutoff function, which we choose as ρ(k) = exp(−(k/Λ)2) for some
Λ > 0. The function χ ∈ C(R3) in (3.2) serves as a spacial-cutoff and is a
function for which we assume that

χ(x) =
1√

1 + (x/λ)2

for some λ > 0. Moreover, we introduced the spin matrices

(S)a = σa ⊗ 1F , a = 1, 2, 3,

with σ1, σ2, σ3 denoting the Pauli matrices. The interaction is given by

Wdip(s) := a(Gdip
s ) + a∗(Gdip

s ),

and the Hamiltonian is

Hdip,g(s) := Hel + gWdip(s) + Hf . (3.3)

Thus, for the Hamiltonian (3.3) we obtain the following result.

Corollary 3.1. Suppose (3.1) holds. Then there exists a positive constant gb

such that for all s ∈ B1(0) =: B1 and all g ∈ [0, gb] the operator Hdip,g(s) has
an eigenvalue Edip,g(s) with 2 linearly independent eigenvectors ψdip,g,j(s),
j = 1, 2, with the following properties.
(i) The functions s �→ Eg(s) and s �→ ψg,j(s) for j = 1, 2 are analytic

functions on B1.
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(ii) Uniformly in s ∈ B1 we have limg→0 Edip,g(s) = Eel and limg→0 ψdip,g,j(s)
= ϕel,j ⊗ Ω for some ϕat,j(s) ∈ RanPat(s).

(iii) for all s ∈ B1 ∩ R it holds that Edip,g(s) = inf σ(Hg(s)).
(iv) for all s ∈ B1 it holds that Edip,g(s) = Edip,g(s).

To prove Corollary 3.1, we apply Theorem 2.10. Thus, we need to verify
Hypothesis I–IV. First observe that Hypothesis I holds, since for any μ > 0
and s ∈ C we find using (2.5)

‖Gdip
s ‖µ = |s|

(ˆ
R3

1

|k|2+2µ

|ρ(k)|2
ω(k)

‖(χ(x)x · |k |iε(k , λ) + S · ik ∧ ε(k , λ))‖2 dk

)1/2

≤ |s|
(ˆ

R3

2|ρ(k)|2
|k|3+2µ

(
‖χ(x)x · |k |iε(k , λ)‖2 + ‖S · ik ∧ ε(k , λ)‖2

)
dk

)1/2

≤ |s|
(ˆ

R3

2|ρ(k)|2
|k|1+2µ

(
sup
x∈R3

|χ(x)x|2 + 1

)
dk

)1/2

< ∞.

Verifying Part (i) of Hypothesis II is trivial, since Hel does not depend
on s. Part (ii) of Hypothesis II holds, since Eel is in the discrete spectrum of
the self-adjoint operator Hel. Since Eel(s0) is degenerate, we need to find a
symmetry group to verify Part (iii) of Hypothesis II. There are two candidates
for symmetries:
(A) rotation invariance,
(B) time reversal symmetry.

If the potential V is rotationally invariant, it is natural to use rotation
invariance. Otherwise, time reversal symmetry can always be applied. Despite
that the proof using time reversal symmetry also works in the rotation invariant
case, for expository purposes we discuss both methods below.

(A) Suppose the potential V is rotationally invariant. Thus, assume that

V (x) = v(|x|)
for some function v. Then it is natural to use rotation symmetry or more
precisely SU(2) symmetry. To define the SU(2) symmetry we introduce the
so-called canonical double covering homomorphism

π : SU(2) → SO(3), U �→ π(U) ,

where π(U) is the unique element of SO(3) such that for l = 1, 2, 3,

UσjU
∗ =

3∑

l=1

π(U)l,jσl.

On the one electron Hilbert space L2(R3;C2), we define (Uel(U)ψ)(x)
= Uψ(π(U)−1x), for U ∈ SU(2). We define on h = L2(R3 ×Z2), the transfor-
mation

(Uh(R)h)(k, λ) =
∑

λ′=1,2

DU
λ,λ′(R; k)h(R−1k, λ′)

with

DU
λ,λ′(R; k) := (R−1ε(k, λ)) · ε(R−1k, λ′).
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It is straight forward to see that this is a unitary representation of SO(3) on
h and UF (R) := Γ(Uh(R)) gives a unitary representation of SO(3) on F , cf.
[23]. Thus, U(U) := Uel ⊗ UF (π(U)) yields a unitary representation of SU(2)
on Hel ⊗ F . Let SSU(2) = {U(U) : U ∈ SU(2)}. From the transformation
properties in [23][Proposition 4.8], it follows that Hel ⊗ 1F , Hf , and Wdip(s)
are symmetric with respect to all elements of SSU(2) for every s ∈ B1. To show
that Uel acts irreducibly on

Y :=

⎧
⎨

⎩

2∑

j=1

cjϕel,j : cj ∈ C

⎫
⎬

⎭ , (3.4)

the eigenspace of Hel to the eigenvalue Eel, we observe that φel is rotationally
invariant as a vector of a one-dimensional subspace of the group of rotations
(one dimensional representations of non-commutative groups are trivial [34]).
Thus, it follows that

Uel(U)
2∑

j=1

cjϕel,j =
2∑

j=1

cjUϕel,j =
2∑

j,l=1

Ul,jcjϕel,l =
2∑

l=1

[Uc]lϕel,l.

Since the identity representation of SU(2) is irreducible, it follows that Uel(U)
acts irreducibly on Y . Furthermore, it follows as an immediate consequence of
the definition that for each U ∈ SU(2) the unitary transformation UF (π(U))
leaves the Fock vacuum as well as the one particle subspace invariant and
commutes with the operator of dilations. We conclude that also Part (iii) of
Hypothesis II holds in case (A).

(B) On Hel = L2(R3;C2) time reversal is defined by Tmat := Kσ2, where
K denotes complex conjugation in Hel. To define operator of time reversal on
the Fock space, we first define it on the one particle space as follows. We define
the antiunitary operator Kh on h by setting for h ∈ h

(Khh)(k, λ) =
∑

λ′=1,2

ε(k, λ) · ε(−k, λ′)h(−k, λ′)

for (k, λ) ∈ R
3 × {1, 2}. Time reversal symmetry on Fock space is defined by

Tf := Γ(−Kh), cf. [23] (here Γ(−Kh)|Fn
= (−Kh)⊗n, n ∈ N and Γ(−Kh)|F0

is complex conjugation). Time reversal symmetry on the full space Hel ⊗ F is
defined by

T = Tmat ⊗ Tf .

A calculation shows, cf. [23, Proposition 4.16], that T is a antiunitary and
Hel ⊗ F , Hf , and Wdip(s) are symmetric with respect to T for all s ∈ B1.
Since Tmat is a symmetry of the self-adjoint operator Hel, it follows that Tmat

leaves the eigenspace Y defined in (3.4) invariant. We will show that Tf acts
irreducibly on Y . Suppose v ∈ Y . Then using T 2

f = −1 and the antiunitarity
of Tf , we find using a Kramer’s degeneracy argument, cf. [23,30]

−〈v, Tfv〉 = 〈TfTfv, Tfv〉 = 〈v, Tfv〉.
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Thus, 〈v, Tfv〉 = 0 and Y cannot have a one-dimensional subspace, which is
invariant w.r.t. Tf . Since Y has dimension two, the only subspaces of Y which
are invariant with respect to Tf are trivial. Thus, Tf acts irreducibly on Y .
By definition, it is straight forward to see that Tf leaves the Fock vacuum as
well as the one particle subspace invariant. We conclude that also Part (iii) of
Hypothesis II holds in case (B).

To verify Hypothesis III, we want to use the spectral theorem. To achieve
this, we assume without loss that the distance between Eel and the rest of the
spectrum is greater or equal to one, i.e.,

Eel,1 − Eel ≥ 1, Eel,1 := inf (σ(Hel)\{Eel}). (3.5)

Otherwise apply Theorem 2.10 to the rescaled operators Ĥel = cHel and
Ĥdip,g(s) = cHdip,g(s) for some c > 0, such that assumption (3.5) holds. It
now follows from the spectral theorem that

sup
z:|z−Eel|≤1/2

sup
q≥0

∥∥∥∥
q + 1

Hat − z + q
P at

∥∥∥∥ = sup
z:|z−Eel|≤1/2

sup
r∈σ(Hel)\{Eel}

sup
q≥0

∣∣∣∣
q + 1

r − z + q

∣∣∣∣

≤ sup
z:|z−Eel|≤1/2

sup
r≥0

sup
q≥0

∣∣∣∣
q + 1

r + Eel,1 − Eel − |z − Eel| + q

∣∣∣∣

≤ sup
q≥0

∣∣∣∣
q + 1

1/2 + q

∣∣∣∣ < ∞.

Thus, Hypothesis III is verified.
To verify Hypothesis IV, we observe that B∗

1 = B1 and from the definition
we see that G1,s = Gdip

s = G2,s. The remaining properties of Hypothesis IV
follow from the fact that Hel is self-adjoint and does not depend on s.

Thus all assumptions of Theorem 2.10 are verified and Corollary 3.1 now
follows.

4. Symmetry Considerations

In this section, we consider consequences of the symmetries which will be used
for the renormalization analysis. Elementary definitions and properties are
collected in Appendix A. First we discuss Schur’s Lemma for symmetries of
an operator. This will be needed to show that certain matrix valued vacuum
expectations, occurring in the renormalization analysis, are multiples of the
identity. Then we consider general properties of symmetries of analytic family
of operators. We will apply these properties to the Hamiltonian defined in
Sect. 2. As a main result, see Lemma 4.6, we will be able to assume without loss
of generality that Pat(s) is a constant function of s. Moreover, in Lemma 4.8
at the end of this section we prove a crucial property of the Feshbach operator
which will be important later during the renormalization procedure.

Definition 4.1. Let V be a subspace of a Hilbert space H and let S be a set
whose elements are unitary or antiunitary operators on H. We say that S ∈ S
acts irreducibly on V if for any subspace W of V with SW ⊂ W we have
W = {0} or W = V .
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The next two lemmas are versions of the well-known Lemma of Schur
[33]. The first lemma is for self-adjoint operators. Since analytic continuations
of the Hamiltonian are in general non-self-adjoint we need a second lemma for
ordinary linear operators, as well.

Lemma 4.2. Let S be a set containing unitary and antiunitary operators which
act irreducibly on a complex finite-dimensional Hilbert space V . Let T be a self-
adjoint linear operator on V such that

STS∗ = T, for all S ∈ S.

Then there exists a number λ ∈ R such that T = λ1V .

Proof. First observe that T has a real eigenvalue, say λ. Thus T −λ has a non
vanishing kernel. Now S leaves the space Ker(T − λ) invariant since λ is real.
Thus, by irreducibility we see that Ker(T −λ) = V . This yields the claim. �

Now we want to extend the above lemma to non-self-adjoint operators.

Lemma 4.3. Let S be a set containing unitary and antiunitary operators which
act irreducibly on a complex finite-dimensional Hilbert space V . Let T be a
linear operator on V such that

STS∗ = T , for all S ∈ S, S unitary,

STS∗ = T ∗ , for all S ∈ S, S antiunitary. (4.1)

Then there exists a number λ ∈ C such that T = λ1V .

Proof. Note that there exits a unique decomposition

T = Z + iY, (4.2)

with Y and Z self-adjoint operators on V. Then it follows from Eq. (4.1) that
for S unitary/antiunitary

Z ± iY = S(Z + iY )S∗ = SZS∗ ± iSY S∗.

The uniqueness of the decomposition (4.2) and Lemma A.2 (c) implies

SZS∗ = Z, SY S∗ = Y ,

for all S ∈ S. Thus, Z and Y are multiples of the identity by Lemma 4.2. �

The next theorem will allow us to work with the constant projection
Pat(s0) instead of the s dependent projection Pat(s), by means of an invertible
analytic family. This is a standard method used in analytic perturbation the-
ory. The theorem below is a version of Theorem XII.12 in [31] incorporating
in addition a symmetry property.

Theorem 4.4. Let H be a Hilbert space. Let P (s) ∈ L(H) be a projection-valued
analytic function on a connected, simple connected region of the complex plane
X. For s0 ∈ X, there exists an analytic family U(s) of bounded and invertible
operators on X with the following properties:
(a) U(s)P (s0)U(s)−1 = P (s).
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(b) If s0 is real and P (s) is self-adjoint for real s, then we can choose U(s)
unitary for real s. Furthermore, U(s)∗ = U(s)−1 for all s ∈ X ∩ X∗.

(c) If S is a symmetry of P (s), then one can choose U(s) to satisfy

SU(s)S∗ = U(s), if S is unitary,

SU(s)S∗ = (U(s)−1)∗, if S is antiunitary.

For the proof, we use as in [31] the following lemma.

Lemma 4.5. Let R be a connected, simply connected subset of C with β0 ∈ R
and let A(β) be an analytic function on R with values in the bounded operators
on some Banach space X . Then for any x0 ∈ X , there is a unique function
f(β), analytic in R, with values in X obeying

d
dβ

f(β) = A(β)f(β), f(β0) = x0.

For a proof of the lemma, we refer the reader to [31].

Proof of Theorem 4.4. The detailed proofs of (a) and (b) can be found in The-
orem XII.12 of [31]. Here we merely give a sketch. Let Q(s) = P ′(s)P (s) −
P (s)P ′(s), where P ′(s) = d

ds
P (s). Then a calculation shows that

P ′(s) = [Q(s), P (s)]. (4.3)

We now use Lemma 4.5 with X = L(H). Let U(s) be the unique solution of
the initial value problem

d
ds

U(s) = Q(s)U(s), U(s0) = 1, (4.4)

and let V (s) be the unique solution of the initial value problem
d
ds

V (s) = −V (s)Q(s), V (s0) = 1. (4.5)

Since
d
ds

(V (s)U(s)) =
dV

ds
U(s) + V (s)

dU

ds
= 0,

it follows that

V U = 1. (4.6)

On the other hand if F = UV , then F solves the differential equation F ′ =
[Q,F ] with initial condition F (s0) = 1. Since F = 1 solves the same initial
value problem, it follows by uniqueness that

UV = 1. (4.7)

It follows that U is invertible. Furthermore, a calculation shows that P̃ =
UP (s0)V satisfies the initial value problem P̃ ′ = [Q, P̃ ] with initial condition
P̃ (s0) = P (s0). Thus, from (4.3) we see that P̃ and P satisfy the same initial
value problem and hence agree. This shows (a). To show (b) let us suppose
that P (s) = P (s)∗ for s = s. By the Schwarz reflection principle, it follows
that P (s)∗ = P (s) for all s ∈ X ∩ X∗. By the definition of Q, Q(s)∗ = −Q(s).
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Let Ṽ (s) = U(s)∗. Then Ṽ obeys dṼ /ds = −Ṽ (s)Q(s); Ṽ (s0) = I. By the
uniqueness of solutions of differential equations, Ṽ (s) = V (s). Thus, U(s)∗ =
Ṽ (s) = V (s) = U(s)−1, and if s is real, U(s)∗ = U(s)−1 and so U(s) is unitary.

It remains to show (c). Suppose first that S is a unitary symmetry of
P (s). Then we have by assumption SP (s)S∗ = P (s) and hence d

ds
P (s) =

S d
ds

P (s)S∗. It follows that SQ(s)S∗ = Q(s). Using (4.4), we thus obtain

d
ds

SU(s)S∗ = S
d
ds

U(s)S∗ = SQ(s)U(s)S∗ = Q(s)SU(s)S∗, SU(s0)S∗ = 1.

By uniqueness of the initial value problem, Lemma 4.5, we conclude

SU(s)S∗ = U(s).

Now let us suppose that S is an antiunitary symmetry of P (s). Then we
have by assumption SP (s)S∗ = P (s)∗, and hence taking the adjoint we find

SP (s)∗S∗ = P (s). Differentiating we find d
ds

P (s) = S
(

d
ds

P (s)
)∗

S∗. A cal-
culation now shows that

SQ(s)∗S∗ = −Q(s). (4.8)

By (4.4), we have (SU(s0)S∗)∗ = 1 and

d
ds

(SU(s)S∗)∗ =
(

S
d
ds

U(s)S∗
)∗

= (SQ(s)U(s)S∗)∗ = (SU(s)S∗)∗SQ(s)∗S∗

= −(SU(s)S∗)∗Q(s),

where we used (4.8) in the last identity. Now from (4.5) we conclude

(SU(s)S∗)∗ = V (s)

by uniqueness of the initial value problem, Lemma 4.5. Since V (s) = U(s)−1,
by (4.6) and (4.7), the identity in (c) for antiunitary symmetries is now also
shown. �

Next we shall give a proof of Lemma 2.5 about the eigenprojection of Pat

stated in the introduction.

Proof of Lemma 2.5. By Hypothesis II(ii), we can pick ε > 0 such that the
only point of σ(Hat(s0)) within {z ∈ C : |z − Eat(s0)| ≤ ε} is Eat(s0). Since
the circle {z : |z − Eat(s0)| = ε} is compact and the set

Γ =
{
(s, z) : s ∈ X, z ∈ ρ(Hat(s))

}

is open (Theorem XII.7 in [31]), we can find a δ > 0 so that z ∈ ρ(Hat(s)) if
|z − Eat(s0)| = ε and |s − s0| ≤ δ. Thus, (a) holds for the set

N := {s ∈ X : |s − s0| ≤ δ}.

(b) It follows from (a) that pat(s), defined in (2.7), exists for all s ∈ N . By
Theorem 2.3, it is a projection. The analyticity of pat on N now follows from ex-
pression (2.7) and Hypothesis II (i). That pat(s0) projects onto the eigenspace
of Eat(s0), follows from the non-defectivity assumption of Hypothesis II (ii).
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The range of pat(s0) is finite by assumption. The statement about the dimen-
sion of the range of pat follows, since the rank of continuous projection-valued
functions of a connected topological space is constant, cf., Lemma on page 14
in [31].
(c) Observe that Hat(s) leaves the range of pat(s) invariant by Theorem B.1 (a).
First we show that there exist a number eat(s) such that for all s ∈ N

Hat(s) � Ran pat(s) = eat(s) � Ran pat(s) . (4.9)

In case dim Ranpat(s0) = 1, we can use that the dimension of the projection is
constant, i.e., dim Ranpat(s) = dim Ranpat(s0) = 1. In that case (4.9) now fol-
lows since Hat(s) leaves the range of pat(s) invariant. In case dim Ranpat(s0) >
1, we will use the symmetry property of Hypothesis II (iii). Since S1 is a sym-
metry of Hat(s), it follows from the integral representation (2.7) that it is also
a symmetry of pat(s). By Theorem 4.4, there exists an analytic family U(s) for
s ∈ N of bounded invertible operators satisfying the assertions of Theorem 4.4
for the projection pat(s). In particular,

pat(s0) = U(s)−1pat(s)U(s) for all s ∈ N. (4.10)

Recall that by Theorem B.1 (a) the operator Hat(s) leaves the range of pat(s)
invariant. Thus by (4.10), the operator

H̃at(s) := U(s)−1Hat(s)U(s)

leaves the range of pat(s0) invariant. By Theorem 4.4 (c), we have for unitary
S ∈ S1 that

SH̃at(s)S∗ = SU(s)−1Hat(s)U(s)S∗ = U(s)−1Hat(s)U(s) = H̃at(s),

and for antiunitary S ∈ S1 that

SH̃at(s)S∗ = SU(s)−1H(s)U(s)S∗ = U(s)∗Hat(s)∗(U(s)−1)∗

= (U(s)−1Hat(s)U(s))∗ = H̃at(s)∗.

Thus, by the lemma of Schur and the irreducibility condition of Hypothe-
sis II (iii), there exists a function eat : N → C such that

H̃at(s)pat(s0) = eat(s)pat(s0).

By (4.10), this implies

Hat(s)pat(s) = eat(s)pat(s),

for all s ∈ N , i.e., (4.9). Now the analyticity of eat(s) follows from the analyt-
icity of pat(s) and Hat(s) and by calculating an inner product with a nonzero
vector in the range of pat(s). Furthermore, it follows from (a) and Theorem
B.1 (c) that for all s ∈ N we have

σ(Hat(s)) ∩ Bε(Eat(s0)) = σ(Hat(s)|Ranpat(s)).

This and (4.9) imply that for s ∈ N the point eat(s) ∈ C is the only point in
the spectrum of Hat(s) in Bε(Eat(s0)). Thus, eat(s) is isolated from the rest of
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the spectrum. Furthermore, it follows, by deforming the contour and Cauchy’s
theorem that for s ∈ N with r(s) = ε − Eat(s0) − eat(s)

pat(s) = − 1
2πi

‰
|z−eat(s)|=r(s)

1
Hat(s) − z

dz.

Thus, (4.9) implies that the number eat(s) is a non-defective, discrete element
of the spectrum of Hat(s). Finally, it follows for s = s0 from the definition of
pat(s) and (4.9) that eat(s0) = Eat(s0). �

In Lemma 4.6, we show that in the proof of the main theorem, Theo-
rem 2.10, we can assume without loss of generality that the following Hypoth-
esis holds.

Hypothesis VI. Hypothesis II holds and Pat(s) = Pat(s0) for all s ∈ X.

Lemma 4.6. Theorem 2.10 holds, if its assertion holds under the additional
Assumption of Hypothesis VI.

Proof. Suppose that Hypotheses I, II, and III hold for some s0 ∈ X and some
symmetry group S. By restricting to a smaller neighborhood of s0 we can
assume without loss of generality that X is open, connected, simply connected.
Then by Theorem 4.4 there exists an analytic family U(s) of bounded invertible
operators on X such that

U(s)Pat(s0)U(s)−1 = Pat(s).

We now define

Ĥg(s) := (U(s)−1 ⊗ 1)Hg(s)(U(s) ⊗ 1).

Then

Ĥg(s) = Ĥat(s) ⊗ 1 + 1 ⊗ Hf + gŴ (s),

where

Ĥat(s) = U(s)−1Hat(s)U(s),

Ŵ (s) = (U(s)−1 ⊗ 1)W (s)(U(s) ⊗ 1) = a(Ĝ1,s) + a∗(Ĝ2,s),

Ĝ1,s = U(s)∗G1,s (U(s)−1)∗,

Ĝ2,s = U(s)−1G2,s U(s).

Thus, if Gj,s satisfy Hypothesis I, then also Ĝj,s satisfies Hypothesis I on any
subset X0 ⊂ X on which U(s) and its inverse are uniformly bounded operator-
valued functions (by continuity any bounded open X0 with closure contained
in X will work). By analyticity of U(s), it follows that Ĥat(s) is an analytic
family in the sense of Kato, and hence Part (i) of Hypothesis II holds. Now
Ĥat(s) satisfies Part (ii) of Hypothesis II by the invertibility of U(s). Next we
consider Part (iii) of Hypothesis II. Since by assumption S1 is a symmetry
group for Hat(s) it follows from the integral representation of Pat(s), cf. (2.8),
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that it is also a symmetry of the latter. Thus, we can assume by Part (c) of
Theorem 4.4 that for all symmetries S ∈ S1

SU(s)S∗ = U(s), if S is unitary,

SU(s)S∗ = (U(s)−1)∗, if S is antiunitary.

If follows for unitary S ∈ S1 that

SĤat(s)S∗ = SU(s)−1Hat(s)U(s)S∗ = U(s)−1Hat(s)U(s) = Ĥat(s),

and for antiunitary S ∈ S1 that

SĤat(s)S∗ = SU(s)−1Hat(s)U(s)S∗ = U(s)∗Hat(s)∗(U(s)−1)∗

= (U(s)−1Hat(s)U(s))∗ = Ĥat(s)∗.

Thus, Ĥat(s) satisfies also Part (iii) of Hypothesis II. Similarly one shows that
Ŵ (s) satisfies Part (iii) of Hypothesis II. Finally, if Hat(s) satisfies Hypoth-
esis III, then by invertibility of U(s) also Ĥat satisfies Hypothesis III on any
subset X0 ⊂ X on which U(s) and its inverse are uniformly bounded operator-
valued functions. Thus, we have shown that Ĥg(s) satisfies Hypothesis I, II,
and III on an open set X0 containing s0.
Furthermore, Hypothesis VI holds for Ĥg(s) by construction. Thus, by as-
sumption the assertion of the main result, Theorem 2.10, holds for the operator
Ĥg(s). We conclude that there exists a neighborhood Xb ⊂ X0 of s0 and a pos-
itive constant gb such that for all g ∈ [0, gb) and s ∈ Xb the operator Ĥg(s) has
an eigenvalue Êg(s) with d := dim ker(Ĥat(s0)−Eat(s0)) = dim ker(Hat(s0)−
Eat(s0)) linearly independent eigenvectors ψ̂g,j(s), j = 1, . . . ,d, all depending
analytically on s ∈ Xb. By the invertibility of U(s) we see that the operator
Hg(s) has the eigenvalue Eg(s) := Êg(s) with d linearly independent eigenvec-
tors ψg,j(s) := (U(s) ⊗ 1)ψ̂g,j(s), j = 1, . . . ,d. They also depend analytically
on s, since U(s) and its inverse depend by Theorem 4.4 analytically on s.
This shows (i) of Theorem 2.10. Similarly one verifies (ii) of Theorem 2.10
by using the uniform boundedness of U(s) and U(s)−1. Finally, suppose that
the operator Hg(s) satisfies Hypothesis IV. Then by Theorem 4.4 (b) we can
choose the family of invertible operators U(s) to be unitary for real s such
that U(s)∗ = U(s)−1 for all s ∈ X. Thus, also Ĥg(s) satisfies Hypothesis IV
and moreover it is isospectral to Hg(s) for real s. In that case, we have for real
s ∈ R

ν ∩ Xb that

Eg(s) = Êg(s) = inf σ(Ĥg(s)) = inf σ(Hg(s)).

This implies (iii) of Theorem 2.10.
Thus, we have shown that the assertion of Theorem 2.10 also holds for the
original operator Hg(s). �

The next lemma will be used to show that the so-called relevant direction
in the renormalization analysis is one dimensional. For this, let us introduce
the following definition. For V , a finite dimensional complex vector space, and



2512 D. Hasler and M. Lange Ann. Henri Poincaré

a bounded operator T ∈ B(V ⊗ F) define 〈T 〉Ω as the unique operator on V
such that

〈v1, 〈T 〉Ωv2〉 = 〈v1 ⊗ Ω, T v2 ⊗ Ω〉 (4.11)

for all v1, v2 ∈ V . Note that it is straight forward to see that

〈T ∗〉Ω = 〈T 〉∗
Ω, (4.12)

which follows since for all v1, v2 ∈ V we have

〈v1, 〈T ∗〉Ωv2〉 = 〈v1 ⊗ Ω, T ∗v2 ⊗ Ω〉 = 〈v2 ⊗ Ω, T v1 ⊗ Ω〉
= 〈v2, 〈T 〉Ωv1〉 = 〈v1, 〈T 〉∗

Ωv2〉.

Lemma 4.7. Let V be a finite-dimensional complex vector space and let T ∈
B(V ⊗ F). Assume that T is symmetric with respect to a set of symmetries
S such that every element can be written in the form S1 ⊗ S2, where S1 is a
symmetry in V and S2 is a symmetry in F leaving the Fock vacuum invariant.
Assume that S1 := {S1 : S1 ⊗S2 ∈ S} acts irreducibly on V . Then there exists
a number c ∈ C such that

〈T 〉Ω = c1

Proof. For all S1⊗S2 ∈ S, we have the following symmetry property. For A an
operator or a number let A# stand for A or A∗ whether the symmetry S1 ⊗S2

is unitary or antiunitary, respectively. Moreover, we write c∗ = c if c ∈ C. For
all v1, v2 ∈ V , we have

〈v1, S1〈T 〉ΩS∗
1v2〉 = 〈S∗

1v1, 〈T 〉ΩS∗
1v2〉#

= 〈S∗
1v1 ⊗ Ω, TS∗

1v2 ⊗ Ω〉#

= 〈(S1 ⊗ S2)∗v1 ⊗ Ω, T (S1 ⊗ S2)∗v2 ⊗ Ω〉#

= 〈v1 ⊗ Ω, (S1 ⊗ S2)T (S1 ⊗ S2)∗v2 ⊗ Ω〉
= 〈v1 ⊗ Ω, T#v2 ⊗ Ω〉
= 〈v1, 〈T#〉Ωv2〉
= 〈v1, 〈T 〉#Ωv2〉,

where in the last line we used (4.12). Thus,

S1〈T 〉ΩS∗
1 = 〈T 〉#Ω .

The claim now follows from Schur’s Lemma 4.3 and the irreducibility assump-
tion. �

To conclude this section, we show that the Feshbach transformation
preserves symmetry properties. A detailed review of the properties of the
Feshbach–Schur map, which was introduced in [3], is given in Appendix D.

Lemma 4.8. Let (H,T ) be a Feshbach pair for χ. Assume that there exists a
group of symmetries S of the operator H,T and χ. Then S is also a group of
symmetries for the Feshbach operator Fχ(H,T ).
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Proof. This follows from the definition of the Feshbach operator given in
Eq. (D.1). Let S ∈ S be a symmetry and let A# stands for A or A∗ if S
is unitary or antiunitary, respectively. Then inserting S∗S = 1, we find

SFχ(H, T )S∗

= SHχS∗ − SχWχ((T + χWχ)|Ranχ)
−1χWχS∗

= S(T + χS∗SWS∗Sχ)S∗

− SχS∗SWS∗SχS∗((STS∗ + SχS∗SWS∗Sχ)S∗|RanSχS∗)−1SχS∗SWS∗SχS∗

= H#
χ# − χ#W#χ#((T# + χ#W#χ#)|Ranχ#)−1χ#W#χ#

= Fχ(H, T )#. �

5. The Initial Hamiltonian

The first step of the operator-theoretic renormalization analysis is to prove that
Hg(s) and H0(s) are a Feshbach pair for a suitable choice for the projection
operator, see (5.3). This is the content of Theorem 5.1. For a definition as well
as the properties of Feshbach pairs, we refer to Appendix D. Moreover, we will
show in this section, that the associated Feshbach operator, cf. (D.1), is an
analytic function of s and the spectral parameter z and that it inherits the
symmetry property of the original operator. This will be shown in Theorem 5.7.

We choose smooth functions χ, χ ∈ C∞(R; [0, 1]) such that χ2 + χ2 = 1
and

χ(r) =

{
1, if r ≤ 3

4 ,

0, if r ≥ 1.

For ρ > 0, we then define

χρ(r) := χ(r/ρ) , χρ(r) := χ(r/ρ) ,

and set χρ := χ(Hf/ρ), χρ := χ(Hf/ρ). Next we define

χρ(s) := Pat(s) ⊗ χρ , (5.1)

χρ(s) := P at(s) ⊗ 1 + Pat(s) ⊗ χρ . (5.2)

Note that (5.1) and (5.2) are commuting, non-zero, bounded operators satis-
fying χρ(s)2 +χρ(s)2 = 1, which are not necessarily self-adjoint. Moreover, we
set

χ(s) := χ1(s) , χ(s) := χ1(s). (5.3)

The following theorem gives us the conditions for which we can define
the so-called first Feshbach operator.

Proposition 5.1. Suppose Hypothesis I, II, and III hold, and let U ⊂ X1 × C

be given by Hypothesis III. Then there is a gb > 0 such that for all g ∈ [0, gb)
and all (s, z) ∈ U , the pair (Hg(s) − z,H0(s) − z) is a Feshbach pair for χ(s).
Furthermore, one has the absolutely convergent expansion on U

Fχ(s)(Hg(s) − z,H0(s) − z)
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= Eat(s) − z + Hf

+
∞∑

L=1

(−1)L−1χ(s) g W (s)χ(s)
(
H0(s) − z

)−1

×
(

g χ(s)W (s)χ(s)
(
H0(s) − z

)−1
)L−1

χ(s)W (s)χ(s) . (5.4)

For the proof of this proposition, we make use the following lemma.

Lemma 5.2. Suppose Hypothesis II and III hold. Then

sup
(s,z)∈U

∥∥(H0(s) − z)−1χ(s)
∥∥ < ∞ , (5.5)

and

sup
(s,z)∈U

∥∥(Hf + 1)(H0(s) − z)−1χ(s)
∥∥ < ∞ . (5.6)

Proof. We recall that by definition, cf. Eqs. (5.2) and (5.3), χ(s) = P at(s) ⊗
1 + Pat(s) ⊗ χ(Hf). First we estimate (5.6). Applying the triangle inequality,
we obtain

∥∥(Hf + 1)(H0(s) − z)−1χ(s)
∥∥

≤
∥∥(Hf + 1)(H0(s) − z)−1P at(s) ⊗ 1

∥∥ (5.7)

+ ‖(Hf + 1)(H0(s) − z)−1Pat(s) ⊗ χ(Hf)‖ . (5.8)

We estimate (5.8) by the spectral theorem and find

‖(Hf + 1)(H0(s) − z)−1Pat(s) ⊗ χ(Hf)‖
= sup

r≥0
‖(r + 1)(Eat(s) + r − z)−1Pat(s) ⊗ χ(r)‖

≤ sup
r≥3/4

∣∣∣∣
r + 1

Eat(s) + r − z

∣∣∣∣ ‖Pat(s)‖

≤ sup
r≥3/4

∣∣∣∣1 +
1 − Eat(s) + z

Eat(s) + r − z

∣∣∣∣ ‖Pat(s)‖

≤
(

1 + (1 + |Eat(s) − z|) sup
r≥3/4

1
|r − |Eat(s) − z||

)
‖Pat(s)‖

≤
(

1 +
3
2

· 1
3
4 − 1

2

)
‖Pat(s)‖ = 7‖Pat(s)‖,

where the right-hand side is finite by Hypothesis III. To estimate (5.7), we use
again the spectral theorem and find

∥∥(Hf + 1)(H0(s) − z)−1P at(s) ⊗ 1
∥∥

≤ sup
r≥0

‖(r + 1)(Hat(s) + r − z)−1P at(s)‖ < ∞ ,

where the last bound follows from Hypothesis III. This shows (5.6).
Next we similarly show (5.5). Using the triangle inequality, we find

∥∥(H0(s) − z)−1χ(s)
∥∥
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≤
∥∥(H0(s) − z)−1P at(s) ⊗ 1

∥∥+ ‖(H0(s) − z)−1Pat(s) ⊗ χ(Hf)‖ . (5.9)

We obtain for the second term in (5.9) by the spectral theorem

‖(H0(s) − z)−1Pat(s) ⊗ χ(Hf)‖
= sup

r≥0
‖(Eat(s) + r − z)−1Pat(s) ⊗ χ(r)‖

≤ sup
r≥3/4

|(Eat(s) + r − z)−1|‖Pat(s)‖

≤ sup
r≥3/4

|(r − |Eat(s) − z|)−1|‖Pat(s)‖

≤ 1
3/4 − 1/2

‖Pat(s)‖ = 4‖Pat(s)‖,

where the right-hand side is again finite by Hypothesis III. To estimate the first
term in (5.9), we use again the spectral theorem and find from Hypothesis III

∥∥(H0(s) − z)−1P at(s) ⊗ 1
∥∥ ≤ sup

r≥0
‖(Hat(s) + r − z)−1P at(s)‖ < ∞ .

This completes the proof. �

Lemma 5.3. Let Hypothesis I hold. Then
∥∥W (s) (Hf + 1)−1/2

∥∥ ≤ 2 max
j=1,2

sup
(s,z)∈U

‖Gj,s‖μ < ∞ , (5.10)

∥∥(Hf + 1)−1/2W (s)
∥∥ ≤ 2 max

j=1,2
sup

(s,z)∈U
‖Gj,s‖μ < ∞ . (5.11)

Proof. This follows from Eq. (C.4) in Appendix C and Hypothesis I. �

Lemma 5.4. Suppose Hypothesis I, II, and III hold. Then

sup
(s,z)∈U

∥∥gχ(s)W (s)(H0(s) − z)−1χ(s)
∥∥ < ∞,

sup
(s,z)∈U

∥∥(H0(s) − z)−1χ(s)gW (s)χ(s)
∥∥ < ∞.

Proof. Follows from Lemma 5.2, and (5.10) respective (5.11). �

Now we are ready to prove Proposition 5.1. We will use the following
notation.

Proof of Proposition 5.1. Let U ⊂ X ×C be given by Hypothesis III. First we
show the Feshbach property. For this, we need to show that Hg(s) and H0(s)
are closed operators on the same domain such that the assumptions (a’), (b’)
and (c’) of Lemma D.3 hold.

Suppose (s, z) ∈ U . To prove that Hg(s) = H0(s) + gW (s) is closed on
D(H0(s)) for all g > 0, it suffices to prove that W (s) is infinitesimally bounded
with respect to H0(s), cf. [37, Theorem 5.5].

Note that Hat(s) leaves the ranges of Pat(s) and P at(s) invariant, cf.
Theorem B.1. Thus, by the spectral theorem H0(s) leaves the range of Pat(s)⊗
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1 invariant. Moreover, for w = z − 1 we have w ∈ ρ(H0(s)|RanPat(s)⊗D(Hf)),
since supr≥0 |Eat(s) − w + r|−1 ≤ supr≥0(1 − |Eat(s) − z| + r)−1 ≤ 2, and

‖(Hf + 1)(H0(s) − w)−1Pat(s) ⊗ 1|

≤ sup
r≥0

‖ r + 1
Eat(s) − z + 1 + r

Pat(s) ⊗ 1‖

≤
(

1 + sup
r≥0

|Eat(s) − z|
|Eat(s) − z + 1 + r|

)
‖Pat(s)‖

≤ 2‖Pat(s)‖ < ∞, (5.12)

where we used that by Hypothesis III we have |Eat(s) − z| < 1/2 and the last
inequality of (5.12). On the other hand by the spectral theorem and Hypothesis
III, we find

∥∥(Hf + 1)(H0(s) − w)−1P at(s) ⊗ 1
∥∥

≤ sup
r≥0

‖(r + 1)(Hat(s) + r − w)−1P at(s)‖

= sup
r′≥1

‖r′(Hat(s) + r′ − z)−1P at(s)‖

≤ sup
r′≥1

‖(r′ + 1)(Hat(s) + r′ − z)−1P at(s)‖

≤ sup
r≥0

‖(r + 1)(Hat(s) + r − z)−1P at(s)‖ < ∞ . (5.13)

In particular, for normalized ϕ ∈ D(Hat(s)) ⊗ D(Hf) we obtain using the
triangle inequality together with (5.12) and (5.13)

‖(Hf + 1)(H0(s) − w)−1ϕ‖
≤ ‖(Hf + 1)(H0(s) − w)−1Pat(s) ⊗ 1ϕ‖‖(Hf + 1)(H0(s) − w)−1P at(s) ⊗ 1ϕ‖
≤ 2‖Pat(s)‖ + sup

r≥0
‖(r + 1)(Hat(s) + r − z)−1P at(s)‖. (5.14)

Combining (5.10) and (5.14) we see that, for all φ ∈ D(Hat(s)) ⊗ D(Hf) and
ε > 0

‖W (s)φ‖2 ≤ C0〈φ, (Hf + 1)φ〉
= C0〈φ, (Hf + 1)(H0(s) − w)−1(H0(s) − w)φ〉
≤ C1‖φ‖‖H0(s)φ‖ + C2‖φ‖2

≤ C1ε‖H0(s)φ‖2 +
(

C1

ε
+ C2

)
‖φ‖2

with constants C0, C1, C2. This shows that W (s) is infinitesimally bounded
with respect to H0(s) and thus we have shown that Hg(s) = H0(s) + gW (s)
is closed on D(H0(s)) for all g > 0.

Next we verify the criteria for Feshbach pairs from Lemma D.3. On
D(H0(s)), we have by definition

χ(s)H0(s) = H0(s)χ(s) and χ(s)H0(s) = H0(s)χ(s).
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Since this is valid on every core of H0(s), we get that Condition (a′) of that
Lemma D.3 is satisfied. By Lemma 5.2, H0(s) − z is bounded invertible on
Ranχ(s). Moreover, by Lemma 5.4 we get that there exists a gb > 0 such that

sup
(s,z)∈U

∥∥gχ(s)W (s)(H0(s) − z)−1χ(s)
∥∥ < 1,

sup
(s,z)∈U

∥∥(H0(s) − z)−1χ(s)gW (s)χ(s)
∥∥ < 1,

for all g ∈ [0, gb). This proves (b’) and (c’) of Lemma D.3 and hence completes
the proof that (Hg(s) − z,H0(s) − z) is a Feshbach pair for χ(s). By choosing
gb > 0 sufficiently small it follows that the Neumann series

(Hg(s) − z)−1
χ(s)|Ranχ(s)

= (H0(s) − z)−1
∞∑

n=0

(
−χ(s)gW (s)(H0(s) − z)−1χ(s)

)n ∣∣
Ranχ(s)

converges uniformly for (s, z) ∈ U . �
Remark 5.5. We note that if Hypothesis II holds, then it is straight forward
to see using (2.8) that χρ and χρ commute with the group of symmetries S
given by Hypothesis II (iii).

Provided the right-hand side exists, i.e., the Feshbach pair property holds,
cf. Proposition 5.1, we define the so-called first Feshbach operator

H̃(0)
g (s, z) := Fχ(s)(Hg(s) − z,H0(s) − z)

= Hat(s) − z + Hf + W̃ (0)
g [s, z]) , (5.15)

where

W̃ (0)
g [s, z]

:=
∞∑

L=1

(−1)L−1χ(s) g W (s)χ(s)
(
H0(s) − z

)−1

×
(

g χ(s)W (s)χ(s)
(
H0(s) − z

)−1
)L−1

χ(s)W (s)χ(s) . (5.16)

Note that by the choice of the projection χ(s) it follows that (5.15) and (5.16)
leave the range of Pat(s)⊗1Hf≤1 invariant. Furthermore, we define the following
restrictions, which are for the isospectrality property sufficient to study, cf.
Theorem D.2,

H(0)
g [s, z] := H̃(0)

g [s, z] � Ran(Pat(s) ⊗ 1Hf≤1), (5.17)

W (0)
g [s, z] := W̃ (0)

g [s, z] � Ran(Pat(s) ⊗ 1Hf≤1). (5.18)

Note that as operators acting on the range of Pat(s) ⊗ 1Hf≤1 we have

H(0)
g [s, z] = Eat(s) − z + Hf + W (0)

g [s, z]. (5.19)

We shall refer to (5.19) as the first Feshbach operator as well. Henceforth, we
shall assume Hypothesis VI and so H

(0)
g (s, z) acts on the Hilbert space

Hred := RanPat(s0) ⊗ Ran1Hf≤1 = RanPat(s) ⊗ Ran1Hf≤1.
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Remark 5.6. Note that the notation introduced in (5.15)–(5.18) is similar to
the one in [17] but not exactly the same.

In the following theorem, we show that the first Feshbach operator H
(0)
g [s, z]

is analytic on a suitable subset of X × C. Moreover, we show that this opera-
tor is isospectral to Hg(s) − z, in the sense of Theorem D.2. Furthermore, the
first Feshbach operator commutes with the set of symmetries S from Hypoth-
esis II. Note that in the theorem below, we make use of the auxiliary operator
Qχ defined in Eq. (D.2).

Theorem 5.7. Suppose Hypothesis I, II, and III hold, and let U ⊂ X1 × C be
given by Hypothesis III. Then there is a gb > 0 such that for all g ∈ [0, gb)
and all (s, z) ∈ U , the pair (Hg(s) − z,H0(s) − z) is a Feshbach pair for χ(s)
and the following holds on U .

(a) The map (s, z) �→ H
(0)
g [s, z] is analytic. The map (s, z) �→ Qχ(s, z) is

analytic.
(b) Hg(s) − z : D(H0(s)) ⊂ H → H is bounded invertible if and only if

H
(0)
g [s, z] is bounded invertible.

(c) The following maps are linear isomorphisms and inverses of each other:

χ(s) : Ker (Hg(s) − z) → Ker H(0)
g [s, z] ,

Qχ(s, z) : Ker H(0)
g [s, z] → Ker (Hg(s) − z) .

Furthermore, let S be the set of symmetries given in Hypothesis II, then

(d) SH
(0)
g [s, z]S∗ = H

(0)
g [s, z], for all unitary S ∈ S.

(e) SH
(0)
g [s, z]S∗ =

(
H

(0)
g [s, z]

)∗
, for all antiunitary S ∈ S.

In addition, if Hypothesis IV is valid, we have for (s, z) ∈ U ∩ U∗ that

(f) H
(0)
g [s, z]∗ = H

(0)
g [s, z].

Lemma 5.8. Let Hypothesis I hold. Then the mapping s �→ W (s)(Hf + 1)−1/2

is analytic on X.

Proof. [17, Lemma 12] �

Proof of Theorem 5.7. Let gb > 0 be such that the assertion of Proposition 5.1
holds. Then the Feshbach pair property holds by Proposition 5.1.
(a) From (5.19) and the analyticity of s �→ Eat(s), the analyticity of (s, z) �→
H

(0)
g (s, z) will follow provided (s, z) �→ W

(0)
g (s, z) is analytic. Since that func-

tion can be obtained by a restriction to a subspace of the function (s, z) �→
W̃

(0)
g (s, z) the analyticity of the former will follow from the analyticity of the

latter. To show that the latter is analytic, we use the absolutely convergent
expansion given in (5.4), which is granted by Proposition 5.1. Since absolutely
convergent sequences of analytic functions have an analytic limit, it remains
to show that each summand in the following series is analytic in s and z

(s, z) �→ W̃ (0)
g [s, z]
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=
∞∑

L=1

(−1)L−1χ(s) g W (s)χ(s)
(
H0(s) − z

)−1

×
(

g χ(s)W (s)χ(s)
(
H0(s) − z

)−1
)L−1

χ(s)W (s)χ(s)

=
∞∑

L=1

(−1)L−1χ(s) g W (s)(Hf + 1)−1χ(s)(Hf + 1)
(
H0(s) − z

)−1
χ(s)

×
(

g W (s)(Hf + 1)−1χ(s)(Hf + 1)
(
H0(s) − z

)−1
χ(s)

)L−1

× W (s)(Hf + 1)−1(Hf + 1)χ(s), (5.20)

where in the last equality we used associativity of composition and that Hf

commutes with χ(s) and χ(s). First observe that by Lemma 5.8, W (s)(Hf +
1)−1 is analytic. Hence to establish analyticity of (5.20), it remains to prove
analyticity of

(Hf + 1)(H0(s) − z)−1χ(s).

To this end, we observe that from the definition of χ(s) we can write

(Hf + 1)
(
H0(s) − z

)−1
χ(s)

= (Hf + 1)
(
H0(s) − z

)−1(P at(s) ⊗ 1)

+ (Hf + 1)
(
Eat(s) + Hf − z

)−1(Pat(s) ⊗ χ1) . (5.21)

The analyticity of the second term in (5.21) follows by means of the spectral
theorem from the fact that for every r ≥ 0 the function (s, z) �→ (r+1)(Eat(s)+
r − z)−1χ1(r) is analytic on U (by Hypothesis III we have on U that |Eat(s)−
z| < 1/2 and so the denominator does not vanish for r ≥ 0 for which χ1(r) �= 0)
and is uniformly bounded in r ≥ 0. The analyticity of the first term on the
r.h.s of (5.21) follows by means of the spectral theorem from the fact that the
function (s, z) �→ (r+1)(Hat(s)+r−z)−1P at(s) is bounded uniformly in r ≥ 0
by the estimate in Hypothesis III and for every r ≥ 0 the function is analytic on
U by Proposition B.2 and Hartog’s theorem, cf. [24]. This concludes the proof
that H

(0)
g (s, z) is analytic on U . From Eq. (D.2), we see that the analyticity of

Qχ(s, z) is established analogously as the analyticity of (5.20).
Part (b) follows in view of Hypothesis VI from Theorem D.2 (a) by mak-

ing the choice Y = Hred = Ran
(
Pat(s0) ⊗ 1Hf≤1

)
. Part (c) follows from Theo-

rem D.2 (b). Statements (d) and (e) follow from Lemma 4.8 and the properties
of the symmetry group given by Hypothesis II (iii).

Let us now show Part (f). First observe that without loss the neighbor-
hood X1 ⊂ X of s0 on which Pat is defined satisfies X∗

1 = X1 (otherwise take
the intersection of the two sets). Now for s ∈ R ∩ X1 close to s0 we find from
(2.8) with s1 = s0 and Eat(s0) ∈ R using Hypothesis IV (i), that

Pat(s)∗ = Pat(s) . (5.22)

Since both sides of (5.22) are analytic functions of s on X1, we conclude that
(5.22) holds for all s ∈ X1 (cf. the unique continuation property of analytic
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functions, e.g., [24]). Furthermore, it follows from Hypothesis IV (i) and (2.4)
that

W (s)∗ = [a(G1,s) + a∗(G2,s)]∗ = a∗(G1,s) + a(G2,s)

= a(G1,s) + a∗(G2,s) = W (s) (5.23)

for all s ∈ X. Now we recall that for any densely defined, closed operator A in
H and z ∈ ρ(A) we find z ∈ ρ(A∗) and

[(A − z)−1]∗ = (A∗ − z)−1. (5.24)

This follows directly from [37, Theorem 4.17(b)] as is shown in the proof of
Theorem 5.12 in [37]. Using the fact that H̃g(s, z) leaves the range of Pat(s0)⊗
1Hf≤1 invariant we find for (s, z) ∈ U ∩ U∗ that

H(0)
g [s, z]∗ =

(
H̃(0)

g [s, z] � RanPat(s0) ⊗ 1Hf≤1

)∗

= (H̃(0)
g [s, z])∗ � Ran Pat(s0) ⊗ 1Hf≤1

= H̃(0)
g [s, z] � RanPat(s0) ⊗ 1Hf≤1

= H(0)
g [s, z] ,

where the second to last identity can be seen by taking the adjoint of (5.4)
and using (5.22), (5.23), and (5.24). �

6. Banach Space of Hamiltonians

To control the renormalization transformation, in particular proving its conver-
gence, it is convenient to introduce suitable Banach spaces of integral kernels,
cf. [3,17]. A generalization to matrix-valued integral kernels is a canonical
choice to accommodate degenerate situations. In this section, we follow closely
the definition and notation given in [17].

The renormalization transformation is defined on a subset of L(Hred)
that will be parameterized by vectors of a Banach space. We begin with the
definition of this Banach space.

Let L(Cd) denote the space of linear maps A from C
d to C

d equipped
with the operator norm ‖A‖op := sup{|Ax| : |x| ≤ 1}. The Banach space W0,0

is the space of continuously differentiable functions

W0,0 := C1([0, 1]; (L(Cd), ‖ · ‖op))
‖w‖(∞) := sup

r∈[0,1]

‖w(r)‖op

‖w‖ := ‖w‖(1,∞) := ‖w‖(∞) + ‖w′‖(∞)

where w′(r) := ∂rw(r). For m,n ∈ N with m + n ≥ 1 and μ > 0, we set

Wm,n := L2
s

(
Bm+n,

dK(m,n)

|K(m,n)|2+2μ
;W0,0

)
(6.1)

‖wm,n‖μ :=
(ˆ

Bm+n

‖wm,n(K(m,n))‖2
(1,∞)

dK(m,n)

|K(m,n)|2+2μ

)1/2

, (6.2)
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where B := {k ∈ R
3 × {1, 2} : |k| < 1} and we defined

k(m) := (k1, . . . , km) ∈ (R3 × {1, 2})m, |k(m)| :=
m∏

j=1

|kj |, dk(m) :=
m∏

i=1

dki,

k̃(n) := (k̃1, . . . , k̃n) ∈ (R3 × {1, 2})n, |k̃(n)| :=
n∏

l=1

|k̃l|, dk̃(n) :=
n∏

i=1

dk̃i,

and

K(m,n) := (k(m), k̃(n)), |K(m,n)| := |k(m)||k̃(n)|, dK(m,n) := dk(m)dk̃(n).

That is, Wm,n is the space of measurable functions wm,n : Bm+n → W0,0

that are symmetric with respect to all permutations of the m arguments from
Bm and the n arguments from Bn, respectively, such that ‖wm,n‖μ is finite.
We note that the notation ‖ · ‖μ introduced in (6.2) also appears in (2.5).
Which of the definitions is meant should be clear from the context.

For given ξ ∈ (0, 1) and μ > 0, we define a Banach space

Wξ :=
⊕

m,n∈N0

Wm,n

‖w‖μ,ξ :=
∑

m,n≥0

ξ−(m+n)‖wm,n‖μ,

‖w0,0‖μ := ‖w0,0‖(1,∞), as the completion of the linear space of finite sequences
w = (wm,n)m,n∈N0 ∈

⊕
m,n∈N0

Wm,n with respect to the norm ‖w‖μ,ξ. The
spaces Wm,n will often be identified with the corresponding subspaces of Wξ.

Next we define a linear mapping H : Wξ → L(Hred). For finite sequences
w = (wm,n) ∈ Wξ the operator H(w) is the sum

H(w) :=
∑

m,n

Hm,n(w)

of operators Hm,n(w) on Hred, defined by H0,0(w) := w0,0(Hf), and, for m +
n ≥ 1,

Hm,n(w) := Pred

(ˆ
Bm+n

a∗(k(m))wm,n(Hf ,K
(m,n))a(k̃(n))dK(m,n)

)
Pred,

(6.3)

where Pred := P[0,1](Hf) and

a∗(k(m)) :=
m∏

i=1

a∗(ki), a(k̃(n)) :=
n∏

i=1

a(k̃i).

The formal definition of the operator valued distributions a∗(k) and a(k) in
(6.3) can be found in Appendix C. By the continuity established in the follow-
ing proposition, the mapping w �→ H(w) has a unique extension to a bounded
linear transformation on Wξ.

Proposition 6.1. ([3, Theorem 3.1, Theorem 3.3])
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(i) For all μ > 0, m,n ∈ N, with m + n ≥ 1, and w ∈ Wm,n,

‖Hm,n(w)‖ ≤ ‖P⊥
Ω H

−m/2
f H(wm,n)P⊥

Ω H
−n/2
f ‖ ≤ 1√

mmnn
‖wm,n‖μ,

where we denoted the orthogonal projection in F onto the subspace {Ω}⊥

by P⊥
Ω .

(ii) For all μ > 0 and all w ∈ Wξ

‖H(w)‖ ≤ ‖w‖μ,ξ

‖H(w)‖ ≤ ξ‖w‖μ,ξ, if w0,0 = 0.

In particular, the mapping w �→ H(w) is continuous.
(iii) When restricted to

{w ∈ Wξ : wm,n(k(m), k̃(n))(r)1r+max(
∑m

j=1 |kj |,∑n
l=1 |k̃l|)≥1 = 0, m + n ≥ 1}

the map H(·) is injective.

Proof. Statement (ii) follows immediately from the triangle inequality and (i)
since ξ ≤ 1. For (i), we refer to the proof of [3, Theorem 3.1], which generalizes
trivially to C

d with d ≥ 1 from d = 1.
(iii) For a proof, see the proof of [21, Theorem 5.4], which generalizes straight
forward to C

d. �

Given α, β, γ ∈ R+ we define polydiscs, B(α, β, γ) ⊂ H(Wξ) centered
around PredHfPred ∈ L(Hred) by

B(α, β, γ) :=
{
H(w) : ‖w0,0(0)‖op ≤ α, ‖w′

0,0 − 1‖(∞) ≤ β,

‖(wm,n)m+n≥1‖μ,ξ ≤ γ
}
.

Note that w0,0(0) ∈ L(Cd) is uniquely determined by the identity

〈v1, w0,0(0)v2〉 = 〈v1 ⊗ Ω,H(w)v2 ⊗ Ω〉
which holds for all v1, v2 ∈ C

d. The definition of B(α, β, γ) is motivated by
Lemma 8.1 and by Theorem 8.2.

7. First Transformation

In the following, we denote by

d = dim
(
RanPat(s0)

)
(7.1)

the dimension of the eigenspace corresponding to the eigenvalue Eat(s0) of
Hat(s0).

Theorem 7.1. Suppose Hypothesis I holds for some μ > 0, Hypothesis II holds,
Hypothesis III holds for some U ⊂ C

ν × C, and Hypothesis VI holds. Then,
for all ξ ∈ (0, 1) and arbitrarily positive constants α0, β0 and γ0, there exits a
positive constant g1 such that for all g ∈ [0, g1) and all (s, z) ∈ U , (Hg(s) −
z,H0(s) − z) is a Feshbach pair for χ(s), and

H(0)
g [s, z] − (Eat(s) − z) ∈ B(α0, β0, γ0) .
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Proof. Using Proposition 5.1, we directly obtain that the Feshbach property
is satisfied for sufficiently small g. Hence to prove the theorem it remains to
construct a sequence of integral kernels w ∈ Wξ such that H

(0)
g (s, z) = H(w).

By the definition of the space B(α0, β0, γ0), the validity of Hypotheses I, II, III,
and d = dim

(
RanPat(s0)

)
(by Hypothesis VI) this construction is equal to the

one in [17, Theorem 23] where a sequence of integral kernels with values in
C1([0, 1]) was constructed. �
Remark 7.2. We note that a result for matrix-valued integral kernels similar
as in Theorem 7.1 can be found with a detailed proof in [22].

8. RG Transformation

By abuse of notation, we shall denote the following operators on Hred

1Cd ⊗ χρ, 1Cd ⊗ χρ

again by χρ and χρ, respectively, recalling the notation (7.1). It should be clear
from the context which of the expressions is considered.

Lemma 8.1. Suppose ρ, ξ ∈ (0, 1) and μ > 0. If H(w) ∈ B(ρ/2, ρ/8, ρ/8), then
(H(w),H0,0(w)) is a Feshbach pair for χρ.

The proof of the lemma follows from a straight forward generalization of
the proof given in Lemma 15 in [17]. Moreover, a similar proof can be found
in [13].

Proof. The assumption H(w) ∈ B(ρ/2, ρ/8, ρ/8) implies, by Proposition 6.1,
that

‖H(w) − H0,0(w)‖ ≤ ξ
ρ

8
.

For r ∈ [34ρ, 1], and for v ∈ C
d a normalized vector we have by triangle

inequality

‖w0,0(r)v‖op ≥ r − ‖(w0,0(r) − w0,0(0)) − r‖op − ‖w0,0(0)‖op

≥ r

(
1 − sup

r
‖w′

0,0(r) − 1‖op

)
− ρ

2

≥ 3ρ

4

(
1 − ρ

8

)
− ρ

2
≥ ρ

8
.

Thus, for r ∈ [34ρ, 1] the linear map w0,0(r) is invertible and ‖w0,0(r)−1‖op ≤
8/ρ. From this and the spectral theorem,

‖H0,0(w)−1 � Ranχρ‖ = ‖w0,0(Hf)−1 � Ranχρ‖ ≤ sup
r∈[ 34ρ,1]

‖(w0,0(r))−1‖op ≤ 8
ρ

.

Since ‖χρ‖ ≤ 1, it follows from the estimates above that

‖H0,0(w)−1χρ(H(w) − H0,0(w))χρ � Ranχρ‖ ≤ ξ < 1 .

This implies the bounded invertibility of
(
H0,0(w) + χρ(H(w) − H0,0(w))χρ

)
� Ranχρ
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= H0,0(w)
(
1 + H0,0(w)−1χρ(H(w) − H0,0(w))χρ

)
� Ranχρ .

The other conditions on a Feshbach pair are now also satisfied, since H(w) −
H0,0(w) is bounded on Hred. �

The renormalization transformation we use is a composition of a Fesh-
bach transformation and a unitary scaling that puts the operator back on the
original Hilbert space Hred. Unlike the renormalization transformation of Bach
et al [3], there is no analytic transformation of the spectral parameter.

Given ρ ∈ (0, 1), let Hρ = 1Cd ⊗Ranχ(Hf ≤ ρ). Let w ∈ Wξ and suppose
(H(w),H0,0(w)) is a Feshbach pair for χρ. Then

Fχρ
(H(w),H0,0(w)) : Hρ → Hρ

is isospectral with H(w) in the sense of Theorem D.2. In order to get a isospec-
tral operator on Hred, rather than Hρ, we use the linear isomorphism

Γρ : Hρ → H1 = Hred, Γρ := Γ(Uρ) � Hρ,

introduced in (2.1). Note that ΓρHfΓ∗
ρ = ρHf , and hence ΓρχρΓ∗

ρ = χ1.
The renormalization transformation Rρ maps bounded operators on Hred to
bounded linear operators on Hred and is defined on those operators H(w) for
which (H(w),H0,0(w)) is a Feshbach pair with respect to χρ. Explicitly,

Rρ(H(w)) := ρ−1ΓρFχρ
(H(w),H0,0(w))Γ∗

ρ,

which is a bounded linear operator on Hred.
The following theorem describes the action of the renormalization trans-

formation on the polydiscs B(α, β, γ). For its statement, we recall the notation
(4.11).

Theorem 8.2 (BCFS [3]) There exists a constant Cχ ≥ 1 depending only on
χ, such that the following holds. If μ > 0, ρ ∈ (0, 1), ξ =

√
ρ/(4Cχ), and

β, γ ≤ ρ/(8Cχ), then

Rρ − ρ−1〈 · 〉Ω : B(ρ/2, β, γ) → B(α′, β′, γ′) ,

where

α′ = Cβ
γ2

ρ
, β′ = β + Cβ

γ2

ρ
, γ′ = Cγρμγ , (8.1)

with Cβ := 3
2Cχ, Cγ := 128C2

χ.

Theorem 8.2 is a variant of Theorem 3.8 of [3], with additional infor-
mation from the proof of that theorem, in particular from Equations (3.104),
(3.107) and (3.109). Another difference is due to our different definition of the
renormalization transformation, i.e., without analytic deformation of the spec-
tral parameter. We note that versions of Theorem 8.2 have been used in the
literature in [17, Theorem 16] as well as in [13, Appendix 1], where a detailed
proof was presented.
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9. Renormalization Preserves Analyticity and Symmetry

In this section, we show that the renormalization transformation preserves
analyticity, symmetry with respect to a group of symmetries S and reflection
symmetry. We study these properties on the level of the operators. In principle,
one could also study the symmetry property on the level of the integral kernels.

In [17, Proposition 17], Griesemer and Hasler proved that analyticity
is preserved under renormalization. The following proposition is a straight
forward generalization of their result.

Proposition 9.1 (Proposition 17, [17]) Let X be an open subset of Cν+1 with
ν ≥ 0. Suppose that the map σ �→ H(w(σ)) ∈ L(Hred), where w(σ) ∈⊕

m,n∈N0
Wm,n, is analytic on X, and that H(w(σ)) belongs to some polydisc

B(α, β, γ) for all σ ∈ X. Then
(a) H0,0(w(σ)) is analytic on X.
(b) If for all σ ∈ X, (H(w(σ)),H0,0(w(σ))) is a Feshbach pair for χρ, then

Fχρ
(H(w(σ),H0,0(w(σ))) is analytic on X.

Proof. Follows from [17, Proposition 17] and an obvious change of notation to
accommodate the matrix-valued integral kernels. �

The property in Proposition 9.1 together with Proposition 9.2 will be one
of the main ingredients in the proof of Part (i) of Theorem 2.10.

Proposition 9.2. Let X be an open subset of C
ν+1 with ν ≥ 0. Assume that

for each σ ∈ X we are given an operator H(w(σ)) in the polydisc B(α, β, γ).
(a) Let S be a group of symmetries acting on Hred leaving the Fock vacuum

and the one particle subspace invariant. Assume that it commutes with
Γρ and Hf . Let σ ∈ X. Suppose that H(w(σ)) is symmetric with respect
to S.
(i) Then H0,0(w(σ)) is symmetric with respect to S.
(ii) If (H(w(σ)),H0,0(w(σ))) is a Feshbach pair for χρ, then Fχρ

(H(w(σ)),
H0,0(w(σ))) and Rρ(H(w(σ))) are symmetric with respect to S.

(b) Suppose X = X∗ and σ �→ H(w(σ)) is reflection symmetric.
(i) Then H0,0(w(σ)) is reflection symmetric.
(ii) If (H(w(σ)),H0,0(w(σ))) is a Feshbach pair for χρ, then Fχρ

(H(w(σ)),
H0,0(w(σ))) and Rρ(H(w(σ))) are reflection symmetric.

Proof. We first show how one can recover w0,0(r) from H(w). We follow the
argument in [3]. Let w ∈ Wξ. Let v1, v2 ∈ C

d. For f, g ∈ h, we have

〈v1 ⊗ a∗(f)Ω,H(w)(v2 ⊗ a∗(g)Ω)〉
= 〈v1 ⊗ a∗(f)Ω, w0,0(Hf)(v2 ⊗ a∗(f)Ω)〉

+ 〈v1 ⊗ a∗(f)Ω,H1,1(w)(v2 ⊗ a∗(f)Ω)〉. (9.1)

A simple calculation shows that

〈v1 ⊗ a∗(f)Ω, w0,0(Hf)(v2 ⊗ a∗(g)Ω)〉

=
ˆ

B1

f(x)g(x)〈v1, w0,0(|x|)v2〉dx (9.2)
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and

〈v1 ⊗ a∗(f)Ω,H1,1(w)(v2 ⊗ a∗(g)Ω)〉

=
ˆ

B2
1

f(x)g(x′)〈v1, w1,1(0, x, x′)v2〉dxdx′ = 0. (9.3)

We pick a function f ∈ C∞
c (B1; [0,∞)) with

´
|f(x)|2dx = 1, and define

fε,k := ε−3/2f(ε−1(x − k)). Then we find from (9.2)

〈v1 ⊗ a∗(fε,k)Ω, w0,0(Hf)(v2 ⊗ a∗(fε,k)Ω)〉

=
ˆ

B1

|fε,k(x)|2〈v1, w0,0(|x|)v2〉dx. (9.4)

This term tends to 〈v1, w0,0(|k|)v2〉 since

|fε,k(x)|2 → δ(x − k) ε → 0. (9.5)

On the other hand, we find from (9.3)

〈v1 ⊗ a∗(fε,k)Ω,H1,1(w)(v2 ⊗ a∗(fε,k)Ω)〉

=
ˆ

B2
1

fε,k(x)fε,k(x′)〈v1, w1,1(0, x, x′)v2〉dxdx′. (9.6)

This term tends to 0, because fε,k → 0, weakly in L2(B1). Thus, from (9.1) –
(9.6), we conclude using that w0,0 is continuous that

lim
ε↓0

〈v1 ⊗ a∗(fε,k)Ω,H(w)(v2 ⊗ a∗(fε,k)Ω)〉 = 〈v1, w0,0(|k|)v2〉. (9.7)

(a) Since this part does not depend on σ, we drop it in the notation. Now
since S ∈ S2 leaves the one photon space invariant, there is a map p1(S) such
that

Sa∗(f)Ω = a∗(p1(S)f)Ω.

If S is unitary or antiunitary, it follows that p1(S) is unitary or antiunitary,
respectively. Now let S = S1 ⊗S2 ∈ S by a symmetry. If S is unitary, we write
(·)# = (·) and if it is antiunitary we write (·)# = (·)∗. Thus, we find from (9.7)
that

〈v1, w0,0(|k|)v2〉
= lim

ε↓0
〈v1 ⊗ a∗(fk,ε)Ω,H(w)(v2 ⊗ a∗(fk,ε)Ω)〉

= lim
ε↓0

〈v1 ⊗ a∗(fk,ε)Ω, SH(w)#S∗(v2 ⊗ a∗(fk,ε)Ω)〉

= lim
ε↓0

〈v1 ⊗ a∗(fk,ε)Ω, (S1 ⊗ S2)H(w)#(S1 ⊗ S2)∗(v2 ⊗ a∗(fk,ε)Ω)〉

= lim
ε↓0

〈S∗
1v1 ⊗ a∗(p1(S∗

2 )fk,ε)Ω,H(w)#(S1v2 ⊗ a∗(p2(S∗
2 )fk,ε)Ω)〉#

= lim
ε↓0

〈S∗
1v1 ⊗ a∗(p1(S∗

2 )fk,ε)Ω, w0,0(Hf)#(S1v2 ⊗ a∗(p2(S∗
2 )fk,ε)Ω)〉#

(9.8)

= lim
ε↓0

〈v1 ⊗ a∗(fk,ε)Ω, (S1 ⊗ S2)w0,0(Hf)#(S∗
1 ⊗ S∗

2 )(v2 ⊗ a∗(fk,ε)Ω)〉



Vol. 25 (2024) Degenerate Perturbation Theory 2527

= lim
ε↓0

〈v1 ⊗ a∗(fk,ε)Ω, S1w0,0(Hf)#S∗
1 (v2 ⊗ a∗(fk,ε)Ω)〉

= 〈v1, S1w0,0(|k|)#S∗
1v2〉, (9.9)

where in (9.8) we made use of (9.1), (9.3) and the fact that p2(S∗)fk,ε converges
to zero. In (9.9), we used that Hf is symmetric with respect to S2. In the last
line, we used (9.6) and (9.5). We conclude that S1w0,0(r)S∗

1 = w0,0(r) for all
r ∈ [0, 1]. This shows Part (i) of (a). This shows (i).
(ii) Then from (i) we know that H0,0(w) is symmetric with respect to S. Thus,
it follows that also W := H(w)−H0,0(w) is symmetric. Now the claim for the
Feshbach operator follows from Lemma 4.8. Since the symmetry commutes
with dilations the claim follows also for the renormalized expression.

(b) Suppose now X = X∗ and σ �→ H(w(σ)) is reflection symmetric.
Then by (9.7) it follows that

〈v1, w(σ) 0,0(|k|)v2〉
= lim

ε↓0
〈v1 ⊗ a∗(fε,k)Ω,H(w(σ))(v2 ⊗ a∗(fε,k)Ω)〉

= lim
ε↓0

〈v1 ⊗ a∗(fε,k)Ω,H(w(σ))∗(v2 ⊗ a∗(fε,k)Ω)〉

= lim
ε↓0

〈v2 ⊗ a∗(fε,k)Ω,H(w(σ))(v1 ⊗ a∗(fε,k)Ω)〉

= 〈v2, w(σ) 0,0(|k|)v1〉 = 〈v1, w(σ) 0,0(|k|)∗v2〉.

Thus for r ∈ [0, 1] we find w(σ) 0,0(r) = w(σ) 0,0(r)∗. This shows Part (i) of (b).
To show (ii) we write T(σ) = H0,0(w(σ)) and observe that W(σ) = H(w(σ))−T(σ)

is also reflection symmetric as well as χ = χρ. We find

Fχ(H(w(σ)), T(σ))∗

=
(
T(σ) + χW(σ)χ − χW(σ)χ((T(σ) + χW(σ)χ)|Ranχ)−1χW(σ)χ

)∗

= T(σ) + χW(σ)χ − χW(σ)χ((T(σ) + χW(σ)χ)|Ranχ)−1χW(σ)χ

= Fχ(H(w(σ), T(σ)) .

This shows the claim for the Feshbach operator. Since the symmetry commutes
with dilation the claim follows also for the renormalized expression. �

10. Iterating the Renormalization Transformation

In this section we follow closely, Sect. 8 in [17], and generalize the results given
there to the non-degenerate situation. In particular the two lemmas stated
below are almost identical to the main results stated in Lemma 18, Lemma
19, Corollary 20, and Proposition 21 of [17].

In Part (c) of Theorem 5.7 we have reduced, for small |g|, the problem of
finding an eigenvalue of Hg(s) in the neighborhood

U0(s) := {z ∈ C : (s, z) ∈ U}
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of Eat(s) to finding an z ∈ C such that H(0)[s, z] has a non-trivial kernel. We
now use the renormalization map to define a sequence

H(n)[s, z] := Rn
ρH(0)[s, z]

of operators on Hred, which, by Theorem D.2, are isospectral in the sense
that KerH(n+1)[s, z] is isomorphic to KerH(n)[s, z]. The main purpose of the
present section is to show that for every n ∈ N the operator H(n)[s, z] is well-
defined for all z in a non-empty set Un(s) with the following properties. We
have Un+1(s) ⊂ Un(s) and

∞⋂

n=0

Un(s) = {z∞(s)}.

In Sect. 10, we will show that H(n)[s, z∞(s)] has a non-trivial kernel and hence
z∞(s) is an eigenvalue of Hg(s). The construction of the sets Un(s) is based
on Theorem 5.7 and Theorem 7.1, but not on the explicit form of H(0)[s, z] as
given by (5.17).

Moreover, this construction is pointwise in s and g, all estimates being
uniform in s ∈ X and |g| < gb for some gb > 0. We therefore drop these
parameters from our notations and we now explain the construction of H(n)[z]
making only the following assumption:
(A) U0(s) is an open subset of C and for every z ∈ U0,

H(0)[z] ∈ B(∞, ρ/8, ρ/8).

If d ≥ 1 there is a group of symmetries S of Hf such that H(0)[z] is sym-
metric with respect to each element of S and S1 := {S1 : S1 ⊗ S2 ∈ S}
acts irreducibly on C

d. Each element of S2 := {S2 : S1 ⊗ S2 ∈ S} leaves
the Fock vacuum as well as the one particle subspace invariant and com-
mutes with the operator of dilations.
The polydisc B(∞, ρ/8, ρ/8) ⊂ H(Wξ) is defined in terms of ξ :=

√
ρ/(4Cχ)

and μ > 0, where ρ ∈ (0, 1) and Cχ is given by Theorem 8.2.

By Lemma 8.1, we may define H(1)[z], . . . , H(N)[z], recursively by

H(n)[z] := Rρ(H(n−1)[z]) (10.1)

provided that H(0)[z], . . . , H(N−1)[z] belong to B(ρ/2, ρ/8, ρ/8). Theorem 8.2
gives us sufficient conditions for this to occur: by iterating the map (β, γ) �→
(β′, γ′), cf. (8.1), starting with (β0, γ0), we find the conditions

γn := (Cγρμ)n
γ0 ≤ ρ/(8Cχ), (10.2)

βn := β0 +

(
Cβ

ρ

n−1∑

k=0

(Cγρμ)2k

)
γ2
0 ≤ ρ/(8Cχ), (10.3)

for n = 0, . . . , N − 1. They are obviously satisfied for all n ∈ N if Cγρμ < 1
and if β0, γ0 are sufficiently small. If this is the case, we define

T
(n)
0 (z) = 〈H(n)[z]〉Ω.
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Since the renormalization transformation Rρ preserves the symmetry by Propo-
sition 9.2, it follows by induction from Assumption (A) that each H(n)[z] is
symmetric with respect to the elements of S. Since the symmetries leave the
vacuum invariant it follows from Lemma 4.7 that the linear map T

(n)
0 (z) is

multiple of the identity. That is, there exists a function E(n) : Un → C such
that

T
(n)
0 (z) = E(n)(z)1Cd .

Now it remains to make sure that

‖T
(n)
0 (z)‖op ≤ ρ/2

for n = 0, . . . , N−1. Since |E(n)(z)| = ‖T
(n)
0 (z)‖op this is achieved by adjusting

the admissible values of z step by step. We define recursively, for all n ≥ 1,

Un := {z ∈ Un−1 : |E(n−1)(z)| ≤ ρ/2}.

If z ∈ UN , H(0)(z) ∈ B(∞, β0, γ0), and ρ, β0, γ0 are small enough, as explained
above, then the operators H(n)(z) for n = 1, . . . , N are well defined by (10.1).
In addition we know from Theorem 8.2 that H(n)(z) ∈ B(∞, βn, γn), and that

∣∣∣∣E
(n)(z) − E(n−1)(z)

ρ

∣∣∣∣ ≤
Cβ

ρ
γ2

n−1 =: αn. (10.4)

This latter information will be used in the proof of Lemma 10.2 to show that
the sets Un are not empty.

The subsequent lemma is a summary of the above construction.

Lemma 10.1. Suppose that (A) holds with ρ ∈ (0, 1) so small, that Cγρμ < 1.
Suppose β0, γ0 ≤ ρ/(8Cχ) and, in addition,

β0 +
Cβ/ρ

1 − (Cγρμ)2
γ2
0 ≤ ρ

8Cχ
. (10.5)

If H(0)[z] ∈ B(∞, β0, γ0) for all z ∈ U0, then H(n)[z] is well defined for z ∈ Un,
symmetric with respect to the elements of S, and satisfies

H(n)[z] − 1
ρ
E(n−1)(z) ∈ B(αn, βn, γn), for n ≥ 1

with αn, βn, and γn as in (10.4), (10.3), and (10.2).

The next lemma establishes conditions under which the set U0 and Un

are non-empty. We introduce the discs

Dr := {z ∈ C||z| ≤ r}

and note that Un = E(n−1)−1
(Dρ/2).

Remark. We call a function f : A → B conformal if it is the restriction of
an analytic bijection f : U → V between open sets U ⊃ A and V ⊃ B, and
f(A) = B.
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Lemma 10.2. Suppose that (A) holds with U0 � Eat and ρ ∈ (0, 4/5) so small
that Cγρμ < 1 and Bρ(Eat) ⊂ U0. Suppose that α0 < ρ/2, β0, γ0 ≤ ρ/(8Cχ)
and that (10.5) holds. If z �→ H(0)[z] ∈ L(Hat) is analytic in U0 and

H(0)[z] − (Eat − z) ∈ B(α0, β0, γ0)

for all z ∈ U0, then the following is true.
(a) For n ≥ 0, E(n) : Un → C is analytic in U◦

n and a conformal map
from Un+1 onto Dρ/2. In particular, E(n) has a unique zero, zn, in Un.
Moreover,

Bρ(Eat) ⊃ U1 ⊃ U2 ⊃ U3 ⊃ · · · .

(b) The limit z∞ := limn→∞ zn exists and for ε := 1/2 − ρ/2 − α1 > 0,

|zn − z∞| ≤ ρn exp

(
1

2ρε2

∞∑

k=0

αk

)
.

(c) Let Eat ∈ R and H(0)[z]∗ = H(0)[z] for all z ∈ Bρ(Eat). Then for all
n ≥ 0, Un+1 ∩ R is an interval and ∂xE(n)(x) < 0 on Un+1 ∩ R. Then
there exists an a < z∞ such that H(0)[x] has a bounded inverse for all
x ∈ (a, z∞).

Proof of Lemma 10.2. The Lemma follows as a consequence of Lemma 10.1
and the property of the Feshbach map, cf. Theorem D.2. The details of the
proof are the same as the proofs of Lemma 19, Corollary 20, and Proposition 21
in [17]. �

Let us now discuss the construction of an eigenvector ϕ(0) such that
H(0)[z∞]ϕ(0) = 0. The same construction has been used in [3,5,6,17]. The
result which we use is from [17]. In order to formulate the result we define the
following auxiliary operator for z ∈ Un

Qn[z] := χρ − χρ

(
H

(n)
0,0 [z] + χρ W (n)[z]χρ

)−1

χρ W (n)[z]χρ ,

where W (n)[z] and H
(n)
0,0 [z] are given as follows. By construction of H(n)[z]

there exists by Proposition 6.1 a unique w(n)[z] ∈ Wξ such that H(n)[z] =
H(w(n)[z]). Then we set H

(n)
0,0 := H0,0(w(n)[z]) and W (n)[z] := H(n)[z] −

H
(n)
0,0 [z].

Theorem 10.3. (Theorem 22, [17]) Suppose the assumptions of Lemma 10.2
hold. Then for any nonzero vector v ∈ C

d

ϕ(0)
v := lim

n→∞ Q0[z∞] Γ∗
ρ Q1[z∞] · · · Γ∗

ρ Qn[z∞] (v ⊗ Ω) (10.6)

exists, ϕ
(0)
v �= 0 and H(0)[z∞]ϕ(0)

v = 0. Moreover,
∥∥∥ϕ(0)

v − Q0[z∞] Γ∗
ρ Q1[z∞] · · · Γ∗

ρ Qn[z∞] (v ⊗ Ω)
∥∥∥ ≤ C

∞∑

l=n+1

γl , (10.7)
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where

C =
8
ρ

ξ

1 − ξ
exp

⎛

⎝8
ρ

ξ

1 − ξ

∑

n≥0

γn

⎞

⎠ . (10.8)

Proof. The proof follows from Lemma 10.2 with the help of Lemma 8.1 and
Theorem D.2. The details of the proof carry over from the proof of Theorem
22 in [17] by merely replacing Ω by v ⊗ Ω. �
Remark 10.4. Let the assumptions and notations be as in Theorem 10.3. It
follows immediately from (10.6) that the map C

d → Hred, v �→ ϕ
(0)
v is linear.

Since by Theorem 10.3 that map has kernel {0}, it is injective.

11. Analyticity of Eigenvalues and Eigenvectors

This section is devoted to the proof of Theorem 2.10. It is essential for this
proof, that a neighborhood V0 ⊂ V of s0 and a positive bound, g1, on g can
be determined in such a way that the renormalization analysis of Sect. 10, and
in particular the choices of ρ and ξ are independent of s ∈ V0 and g ≤ g1.
Once V0 and g1 are found, the assertions of Theorem 2.10 are derived from
Proposition 9.1 and 9.2 as well as the uniform bounds of Sect. 10.

Proof of Theorem 2.10. First let us recall that by Lemma 4.6 we can assume
without loss that Hypothesis VI holds and Pat(s) = Pat(s0) for all s ∈ X.
Furthermore by choosing a suitable basis we can assume that RanPat(s0) = C

d.
Let μ > 0 and U ⊂ C

ν+1 be given by Hypothesis I and Hypothesis III,
respectively. For the renormalization procedure to work, we first choose ρ ∈
(0, 4/5) and a open neighborhood Xb ⊂ X1 of s0, both small enough, so that
Cγρμ < 1 and

Bρ(Eat(s)) ⊂ {z : (s, z) ∈ U}, if s ∈ Xb, (11.1)

which is possible since s �→ Eat(s) is continuous. Here, and below we use the
constants Cγ , Cχ and Cβ from Theorem 8.2. Let ξ =

√
ρ/(4Cχ). Next we pick

small positive constants α0, β0, and γ0 such that

α0 <
ρ

2
, β0 ≤ ρ

8Cχ
, γ0 ≤ ρ

8Cχ
, (11.2)

and in addition

β0 +
Cβ/ρ

1 − (Cχρμ)2
γ2
0 ≤ ρ

8Cχ
. (11.3)

By Proposition 5.1 and Theorem 7.1, there exists a g1 > 0 such that for
0 ≤ g ≤ g1

H(0)
g [s, z] − (Eat(s) − z) ∈ B(α0, β0, γ0), for (s, z) ∈ U ,

where H
(0)
g [s, z] is analytic on U , by Theorem 5.7. We define

U0 := U ,

Un := {(s, z) ∈ Un−1 : |E(n−1)(s, z)| ≤ ρ/8}
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and

Un(s) := {z : (s, z) ∈ Un}, n ∈ N.

Then, by (11.2), (11.3), and (11.1) the assumptions of Lemma 10.2 are satis-
fied for s ∈ Xb and U0 = U0(s). It follows that, for all n ∈ N, H

(n)
g [s, z] =

RnH
(0)
g [s, z] is well-defined for (s, z) ∈ Un, and that Un(s) �= ∅. By Proposi-

tion 9.1, H
(n)
g [s, z] is analytic in U◦

n.
Step 1: z∞(s) = limn→∞ zn(s) exists and is analytic on Xb.

Since H
(n)
g [s, z] is analytic on U◦

n, so is E
(n)
g (s, z). Let zn(s) denote

the unique zero of the function z �→ E
(n)
g (s, z) on Un(s) as determined by

Lemma 10.2. That is,

E(n)
g (s, zn(s)) = 0.

By the implicit function theorem zn(s) is analytic in s. The application of
the implicit function theorem is justified since z �→ E

(n)
g (s, z) is bijective in

a neighborhood of zn(s), and thus in this neighborhood ∂zE
(n)
g (s, z) �= 0. By

Lemma 10.2 (b), zn(s) converges to z∞(s) uniformly in s ∈ Xb. This implies
the analyticity of z∞(s) on Xb, by the Weierstrass approximation theorem of
complex analysis.
Step 2: For s ∈ Xb, there exist d linearly independent eigenvectors ψg,j(s), j =
1, . . . , d, of Hg(s) with eigenvalue z∞(s), such that ψg,j(s) depends analytically
on s.

Since H
(n)
g [s, z] is analytic on U◦

n, it follows, by Proposition 9.1, that

Qg,n[s, z] = χρ(s) − χρ(s)H
(n)
g,χρ

[s, z]
−1

χρ(s)W
(n)
g [s, z]χρ(s)

is analytic on U◦
n, where W

(n)
g := H

(n)
g − H

(n)
g,0,0. Hence, by Step 1, s �→

Qg,n[s, z∞(s)] is analytic on Xb. Let e1, . . . , ed be a basis of C
d. It follows

that

ϕ
(0,n)
g,j (s) := Qg,0[s, z∞(s)]Γ∗

ρQg,1[s, z∞(s)] . . . Γ∗
ρQg,n[s, z∞(s)](ej ⊗ Ω)

is analytic on Xb. From Theorem 10.3 we know that these vectors converge
uniformly on Xb to a vector ϕ

(0)
g,j(s) �= 0 and that H

(0)
g [s, z∞(s)]ϕ(0)

g,j(s) = 0.

Hence ϕ
(0)
g,j(s) is analytic on Xb and, by the Feshbach property (Theorem 5.7

(c)), the vector

ψg,j(s) = Qχ(s, z∞(s))ϕ(0)
g,j(s)

is an eigenvector of Hg(s) with eigenvalue z∞(s). Using Theorem 5.7 (a) and
again by Step 1 we see that s �→ Qχ(s, z∞(s)) is analytic on Xb. We conclude
that ψg,j is analytic on Xb as well. The linear independence of ψg,j(s), j =
1, . . . , d, follows from Remark 10.4 and Theorem 5.7 (c).
Step 3: In the limit g → 0, we have uniformly in s ∈ Xb that |z∞(s)−Eat(s)| =
o(1) and that ‖ψg,j(s) − ϕat,j(s) ⊗ Ω‖ = o(1) for some ϕat,j(s) ∈ RanPat(s).

From Lemma 10.2 we know that z∞(s) ∈ Bρ(Eat(s)). Now by Theo-
rem 7.1 we can make α0, β0, γ0 arbitrarily small by choosing gb > 0 sufficiently
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small. Thus from (11.2) we see that we can choose ρ ∈ (0, 1) arbitrarily small by
choosing gb > 0 sufficiently small. This shows |z∞(s)−Eat(s)| = o(1) uniformly
in Xb. From (10.7) of Theorem 10.3 we find ‖ψg,j(s) − ej ⊗ Ω‖ ≤ C

∑∞
l=0 γl

with C given in (10.8). Now from Eq. (10.2) of Lemma 10.1 we see that the
right hand side can be made arbitrarily small if γ0 > 0 is sufficiently small. But
by Theorem 7.1 the latter can be made small by choosing gb > 0 sufficiently
small. This shows that ‖ψg,j(s) − ej ⊗ Ω‖ = o(1) uniformly in s.
Step 4: If in addition Hypothesis IV holds, then

(α) for all s ∈ Xb ∩ R
ν it holds that z∞(s) = inf σ(Hg(s)),

(β) for all s ∈ Xb ∩ X∗
b it holds that z∞(s) = z∞(s).

Let s ∈ Xb ∩ R
ν . Then by Hypothesis IV the operator Hg(s) is self-

adjoint and its spectrum is a half line [Σg(s),∞) (cf. [36] ), where Σg(s) :=
inf σ(Hg(s)). By Step 2, z∞(s) ≥ Σg(s). We use Proposition 10.2 (c) to show
that z∞(s) > Σg(s) is impossible. Clearly Eat(s) ∈ R, and H

(0)
g [s, z]∗ =

H
(0)
g [s, z] for z ∈ Bρ(Eat(s)) is a direct consequence of the definition of H

(0)
g

and the self-adjointness of Hg(s). Hence there exists a number a(s) < z∞(s)
such that H

(0)
g [s, x] has a bounded inverse for all x ∈ (a(s), z∞(s)). It follows,

by Theorem D.2, that (a(s), z∞(s)) ∩ σ(Hg(s)) = ∅. Therefore z∞(s) = Σg(s).
This shows (α). Now (β) is a consequence of Schwarz reflection principle.
The Theorem now follows for Eg(s) = z∞(s). �

If we neglect the first Feshbach map in the above proof, we obtain the
following theorem, which is independent of the explicit structure of the Hamil-
tonian.

Theorem 11.1. Suppose Hred = C
d⊗F with d ∈ N. Let S be a group of symme-

tries acting on Hred commuting with dilations and Hf and S1 acts irreducibly
on C

d. For μ > 0 and ρ ∈ (0, 1/2), there exist positive numbers α0, β0, γ0 with
the following properties. Let X be a nonempty subset of C

d, e : X → C a
function, and U ⊂ X × C a set such that

Bρ(e(s)) ⊂ {z : (s, z) ∈ U} ⊂ B1/2(e(s)) for all s ∈ X.

Suppose for each (s, z) ∈ U an operator H(w[s, z]) on Hred, with w[s, z] ∈ Wξ

is given which is symmetric with respect to S such that

H(w[s, z]) − (e(s) − z) ∈ B(α0, β0, γ0) , ∀(s, z) ∈ U .

Then for each s ∈ X there exists an element z∞(s) ∈ Bρ(e(s)) and
linearly independent functions ϕj(s), j = 1, . . . , d, such that

H(w[s, z∞(s)])ϕj(s) = 0.

(i) There exists an ej ∈ C
d. So that for any ε > 0 there exists (α1, β1, γ1) ∈

(0, α0]×(0, β0]×(0, γ0] such that |z∞(s)−e(s)| < ε and ‖ϕj(s)−ej⊗Ω‖ < ε
whenever H(w[s, z]) − (e(s) − z) ∈ B(α1, β1, γ1).

(ii) If X and U are open and e and H(w) analytic on X and U , respectively,
then also z∞(s) and ϕj(s) depend analytically on s.
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Proof. This follows from the same Proof as Theorem 2.10 by neglecting the
first step. �
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Appendix A: Symmetries

In this section we introduce anti-linear operators and symmetries in a Hilbert
space H.

Definition A.1. Let H be a complex Hilbert space.
(a) A mapping T : H → H is called anti-linear operator in H if

T (αx + βy) = αTx + βTy,

for all α, β ∈ C and x, y ∈ H. An anti-linear operator T is called bounded
if

sup
x:‖x‖≤1

‖Tx‖ < ∞.

(b) The adjoint of a bounded anti-linear operator, T : H → H, is defined to
be the anti-linear operator T ∗ : H → H such that

〈x, Ty〉 = 〈T ∗x, y〉
for all x, y ∈ H.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(c) An anti-linear operator V in H is called antiunitary if it is surjective and
satisfies

〈V x, V y〉 = 〈x, y〉
for all x, y ∈ H.

In the following lemma we collect a few properties of anti-linear and
antiunitary operators.

Lemma A.2. Let H be a complex Hilbert space. Then the following holds.
(a) Let S and T be a linear or an anti-linear operator in H. Then ST is

linear if either both S and T are linear or both S and T are anti-linear.
The operator ST is anti-linear if one of the two operators S and T is
linear and the other is anti-linear.

(b) Let S and T be anti-linear. Then (αS + βT )∗ = αS∗ + βT ∗.
(c) Let S and T be linear or anti-linear. Then we have (ST )∗ = T ∗S∗.
(d) A bounded anti-linear operator T is antiunitary if and only if it satisfies

T ∗T = 1 and TT ∗ = 1.
(e) Let S and T be unitary or antiunitary. Then ST is unitary if either both

S and T are unitary or both S and T are antiunitary. The operator ST is
antiunitary if one of the two operators S and T is unitary and the other
is antiunitary.

Proof. (a) and (b) are elementary to show.
(c) If S and T are linear, this is a well known identity. If S is linear and T is
antilinear, then for all x, y ∈ H

〈(ST )∗x, y〉 = 〈x, STy〉 = 〈S∗x, Ty〉 = 〈T ∗S∗x, y〉

and so (ST )∗ = T ∗S∗ by the nondegeneracy of the inner product. If S and T
are antilinear, then ST is linear by (a) and for all x, y ∈ H

〈(ST )∗x, y〉 = 〈x, STy〉 = 〈S∗x, Ty〉 = 〈T ∗S∗x, y〉

and so (ST )∗ = T ∗S∗ by the nondegeneracy of the inner product.
(d) and (e) are elementary to show. �

Definition A.3. Let H be a complex Hilbert space.
(a) A symmetry in H is a unitary or antiunitary operator in H.
(b) We say that S is a symmetry of a linear operator T in H (possibly un-

bounded) if

S∗D(T ) ⊂ D(T ) and STS∗ = T, if S is unitary ,

S∗D(T ∗) ⊂ D(T ) and STS∗ = T ∗, if S is antiunitary .

In that case, we also say that T is symmetric or invariant with respect
to S.

We note that it is elementary to show that the set of symmetries of an
operator form a group.
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Lemma A.4. Let H be a complex Hilbert space. Then the set of symmetries of
an operator in H form a group.

Proof. If S1 and S2 are symmetries, then we see from Lemma A.2 (c), (d), and
(e) that also S1S2 and S−1

1 are symmetries. �

Appendix B: Eigenprojections and their Properties

In this appendix we recall well-known properties about isolated points of the
spectrum. For a detailed treatment we refer the reader to the discussion in [31]
surrounding Theorems XII.4 and XII.5.

Theorem B.1. Suppose that A is a closed operator with {z ∈ C : |z−λ| = r} ⊂
ρ(A) for some r > 0. Then

P := − 1
2πi

‰
|μ−λ|=r

(A − μ)−1dμ

and P := 1 − P are bounded projections with the following properties.
(a) The ranges of P and P are complementary closed subspaces, that is

RanP + RanP = H and RanP ∩ RanP = {0}. Moreover, A leaves these
subspaces invariant. More precisely, RanP ⊂ D(A), ARanP ⊂ RanP ,
RanP ∩ D(A) is dense in RanP , and A

[
RanP ∩ D(A)

]
⊂ RanP .

(b) For |z − λ| �= r

R̂z := − 1
2πi

‰
|μ−λ|=r

(z − μ)−1(A − μ)−1dμ

exists and we have the following two cases.
(i) If |z − λ| < r, then (A − z)|RanP∩D(A) is invertible and

R̂z = ((A − z)|RanP∩D(A))
−1P ,

i.e., R̂zP = PR̂z = 0, (A − z)R̂z = P , and R̂z(A − z) = P .
(ii) If |z − λ| > r, then (A − z)|RanP is invertible and

R̂z = ((A − z)|RanP )−1P,

i.e., R̂zP = PR̂z = 0, (A − z)R̂z = −P , and R̂z(A − z) = −P .
(c) We have σ(A) ∩ Br(λ) = σ(A|RanP ) and σ(A)\Br(λ) = σ(A|RanP∩D(A))

where Br(a) = {z ∈ C : |z − a| < r}.
(d) If λ is an isolated element of the spectrum σ(A) its algebraic multiplicity

is greater or equal to its geometric multiplicity.

Sketch of Proof. (a) RanP ⊂ D(A) follows by expressing the integral as a
limit of Riemann sums, using that A is closed and the identity A(A − μ)−1 =
1 + μ(A − μ)−1. The remaining properties are elementary to verify, for details
see [31] Theorem XII.6 (or more precisely [31, Theorems XII.5 (b)] whose proof
carries through without change).
(b) The algebraic identities are straight forward to verify. They then imply the
property about the invertibility.
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(c) For all z ∈ ρ(A) it follows from (a) that (A − z)−1 = (A − z)−1P + (A −
z)−1P = ((A−z)|RanP )−1P +((A−z)|RanP∩D(A))

−1P . In view of this identity
the claim now follows from (b).
(d) Let λ be an isolated element of the spectrum. As in Theorem 2.3 choose
ε > 0 such that {λ} = σ(A)∩Bε(λ). Let (A−λ)v = 0. Then for every r ∈ (0, ε)

Pλv = − 1
2πi

‰
|μ−λ|=r

(A − μ)−1vdμ

= − 1
2πi

‰
|μ−λ|=r

(A − μ)−1 (A − μ)
λ − μ

vdμ

= − 1
2πi

‰
|μ−λ|=r

1
λ − μ

vdμ = v,

and so v ∈ RanPλ. �

Proposition B.2. Let R be a complex domain. Let R � s �→ T (s) be an analytic
family. Suppose there is a non-defective eigenvalue E(s) isolated from the rest
of the spectrum with analytic projection operator P (s). Let P (s) = 1 − P (s)
and let

Γ := {(s, z) ∈ R × C : T (s) − z : D(T (s)) ∩ RanP (s) → RanP (s) is bijective}.

Then Γ is open and (s, z) �→ (T (s) − z)−1P (s) is analytic on Γ.

Proof. Let (s0, z0) ∈ Γ. There exists in a neighborhood of s0 a bijective op-
erator U(s) : H → H, analytic in s, such that U(s)P (s)U(s)−1 = P (s0)
and hence U(s)P (s)U(s)−1 = P (s0), (cf. [31, Thm. XII.12]). The opera-
tor T̃ (s) = U(s)T (s)U(s)−1 is an analytic family. It leaves the closed space
RanP (s0) invariant and thus T̃ (s)|RanP (s0)

: RanP (s0)∩D(T̃ (s)) → RanP (s0)

is an analytic family as well. By this and the fact that (T̃ (s0)−z0)|RanP (s0)
is bi-

jective since (s0, z0) ∈ Γ, it follows by [31, Thm. XII.7] that in a neighborhood
of (s0, z0), the operator (T̃ (s) − z)|RanP (s0)

is bijective and (T̃ (s) − z)−1P (s0)
is analytic in both variables. Thus in this neighborhood also the linear op-
erator (T (s) − z)|RanP (s) = U(s)−1(T̃ (s) − z)U(s)|RanP (s) is bijective and

(T (s) − z)−1P (s) = U(s)−1(T̃ (s) − z)−1P (s0)U(s) is an analytic function of
two variables. �

Appendix C: Field Operators, Elementary Estimates and
Identities

We consider the Hilbert space H = H′ ⊗ F consisting of a separable Hilbert
space H′ and the bosonic Fock Space F .

Let X := R
3 × Z2. For a separable Hilbert space H′ we define for n ≥ 1

L2
s(X

n;H′) := {ϕ ∈ L2(Xn;H′) : ϕ(k1, . . . , kn) = ϕ(kσ(1), . . . , kσ(n)), σ ∈ Sn},
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where Sn denotes the set of permutations of {1, . . . , n}. We set L2
s(X

0;H′) :=
H′. We shall use the canonical identification [32]

H′ ⊗ F =
∞⊕

n=0

L2
s(X

n;H′) .

For G ∈ L2(R3 × Z2;L(H′)) the creation operator a∗(G) is by definition the
adjoint of a(G), cf. (2.2). The domain of the creation operator contains the
so called finite particle vectors ψ = (ψn)∞

n=0 ∈ H′ ⊗ F with the property that
ψn = 0 for all but finitely many n, and a∗(G)ψ is a sequence of H′-valued
measurable functions such for n-th term

[a∗(G)ψ]n(k1, . . . ., kn) = n−1/2
n∑

j=1

ˆ
G(kj)ψn−1(k1, . . . , k̃j , .., kn)dk, (C.1)

where ˜means that this variable is to be omitted and the integral on the right
hand side is defined as a Bochner integral. A straight forward calculation using
(2.2) and (C.1) shows that on finite particle vectors we have the commutation
relations

[a(F ), a∗(G)] =
ˆ

F ∗(k)G(k)dk, [a(F ), a(G)] = 0, [a∗(F ), a∗(G)] = 0,

which extend to their natural domains.
Next we express the creation and annihilation operator in terms of so

called operator valued distributions, a∗(k) and a(k). For an element ψ ∈ H′⊗F
we define a(k)ψ for a.e. k ∈ R

3 × Z2 as the sequence of H′-valued measurable
functions such that the n-th term satisfies a.e.

[a(k)ψ]n(k1, . . . ., kn) := (n + 1)1/2ψn+1(k, k1, . . . ., kn). (C.2)

Moreover, using Fubini’s theorem [32, Theorem I.21], it is elementary to see
that the vector-valued map k �→ a(k)ψ is an element of L2(X;H′ ⊗ F). For
G ∈ L2(R3 × Z2;L(H′)) we obtain the following identity

a(G) =
ˆ

G∗(k)a(k)dk,

which holds on finite particle vectors. The creation operator valued distribution
a∗(k) is defined as the adjoint of a(k) in the sense of forms, i.e., we define
the form 〈ϕ, a∗(k)ψ〉 := 〈a(k)ϕ,ψ〉 for smooth finite particle vectors ϕ,ψ. On
such vectors one obtains the following identity in the sense of forms and weak
integrals

a∗(G) =
ˆ

G(k)a∗(k)dk.

Using (C.2) we can express the free field energy in terms of the following
identity on vectors ϕ,ψ ∈ D(Hf)

〈ϕ,Hfψ〉 =
ˆ

ω(k)〈a(k)ϕ, a(k)ψ〉dk. (C.3)
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We use the following estimates on multiple occasions in this paper. They
establish well known elementary estimates for the annihilation and creation
operators introduced following Eq. (2.2).

Lemma C.1. For G ∈ L2(R3 × Z2;L(H′)) we have

‖ a(G)H
−1/2
f 1Hf>0 ‖ ≤ ‖ω−1/2G ‖ ,

‖ a∗(G) (Hf + 1)−1/2 ‖ ≤ ‖ (ω−1 + 1)1/2G ‖ . (C.4)

Proof. By density it suffices to show the identities for smooth finite particle
vectors ψ ∈ H′ ⊗ F . In order to prove the first inequality we estimate

∥∥a(G)ψ
∥∥ ≤

ˆ ∥∥G(k) a(k)ψ
∥∥ dk

=
ˆ ∥∥G(k) |k|−1/2|k|1/2 a(k)ψ

∥∥ dk

≤
(ˆ

|k|
∥∥a(k)ψ

∥∥2dk

)1/2(ˆ
|k|−1

∥∥G(k)
∥∥2dk

)1/2

=
(ˆ

|k|−1
∥∥G(k)

∥∥2dk

)1/2 ∥∥H1/2
f ψ

∥∥ .

To prove the second inequality we use the commutation relations
∥∥a∗(G)ψ

∥∥2 = 〈a∗(G)ψ, a∗(G)ψ〉 = 〈ψ, a(G) a∗(G)ψ〉

= 〈ψ,
(
a∗(G) a(G) +

ˆ ∥∥G(k)
∥∥2dk

)
ψ〉

≤
(ˆ

|k|−1
∥∥G(k)

∥∥2dk

)∥∥H1/2
f ψ

∥∥2 +
ˆ ∥∥G(k)

∥∥2dk‖ψ‖2 .

�

The subsequent lemma states the well-known Pull-Through Formula. It
can be proved using Eq. (C.2). For a detailed proof we refer the reader to
[6,21].

Lemma C.2. Let f : R+ → C be a bounded measurable function. Then for all
k ∈ R

3 × Z2

a(k) f(Hf) = f(Hf + ω(k)) a(k).

In order to define field operators that depend on the free field energy we
consider measurable functions wm,n on R+×Xn+m with values in the bounded
linear operators of H′. To such a function we associate the sesquilinear form

qwm,n
(ϕ,ψ) :=

ˆ

Xm+n

〈
a(k(m))ϕ, wm,n(Hf ,K

(m,n)) a(k̃(n))ψ
〉
dK(m,n),

(C.5)

defined for all ϕ and ψ in H′ ⊗ F , for which the integrand on the right hand
side is integrable. Here the r.h.s. of (C.5) is defined by means of an iterated
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application of (C.2). If the integral kernel wm,n has sufficient regularity and
decay, one can show that the sesquilinear form (C.5) defines a closed linear
operator which we denote byˆ

Xm+n

a∗(k(m))wm,n(Hf ,K
(m,n)) a(k̃(n))dK(m,n) . (C.6)

In particular, in the case where wm,n ∈ Wm,n, cf. (6.1), it follows from a simple
application of Lemma C.3 that (C.6) is bounded operator. To formulate the
next lemma we denote by B([0,∞);L(H′)) the Banach space of all bounded
measurable functions on [0,∞) with values in the bounded linear operators of
H′.

Lemma C.3. For measurable w : Xm+n → B([0,∞);L(H′)), we define
∥∥wm,n

∥∥2

�

:=
ˆ

Xm+n

sup
r≥0

⎡

⎣∥∥wm,n(r,K(m,n))
∥∥2

m∏

l=1

⎧
⎨

⎩r +
l∑

j=1

|kj |

⎫
⎬

⎭

n∏

l̃=1

⎧
⎨

⎩r +
l̃∑

j̃=1

|kj̃ |

⎫
⎬

⎭

⎤

⎦

dK(m,n)

|K(m,n)| .

Then for all finitely many particle vectors ϕ,ψ ∈ H′ ⊗ F

| qwm,n
(ϕ,ψ) | ≤ ‖wm,n‖� ‖ϕ‖ ‖ψ‖ . (C.7)

If ‖wm,n‖� < ∞, the form qwm,n
determines uniquely a bounded linear operator

hwm,n
such that

qwm,n
(ϕ,ψ) = 〈ϕ, hwm,n

ψ〉 ,

for all ϕ,ψ in H′ ⊗ F and ‖hwm,n
‖ ≤ ‖wm,n‖�.

Proof. Let us first introduce the number operator N , which is the linear op-
erator on H′ ⊗ F such that N |H′⊗Fn

= n. It is straight forward to verify that
N is self-adjoint. First observe that qwm,n

(ϕ,ψ) = qwm,n
(1N≥mϕ, 1N≥nψ). For

n ∈ N we set P [k(n)] :=
∏n

l=1(Hf +
∑l

j=1 |kj |)1/2 and insert 1’s into the left
hand side of Eq. (C.7) to obtain the trivial identity

∣∣ qwm,n
(ϕ,ψ)

∣∣

=

∣∣∣∣∣

ˆ
Xm+n

〈
P [k(m)]P [k(m)]−1|k(m)|1/2a(k(m))ϕ,wm,n(Hf ,K

(m,n))

P [k̃(n)]P [k̃(n)]−1|k̃(n)|1/2a(k̃(n))ψ
〉 dK(m,n)

|K(m,n)|1/2

∣∣∣∣∣ .

The lemma now follows using the Cauchy–Schwarz inequality and the following
identities. Note that a proof of these identities can also be found in [3, Theorem
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3.1] and [21, Appendix A]. First let φ ∈ Ran1N≥1. Then by the pull-through
formula, cf. Lemma C.2, and the relation in Eq. (C.3) satisfied by Hf we obtain

ˆ
X

∣∣k
∣∣
∥∥∥∥ [Hf + ω(k)]−1/2

a(k)φ
∥∥∥∥

2

dk =
ˆ

X

∣∣k
∣∣
∥∥∥∥ a(k)H−1/2

f φ

∥∥∥∥
2

dk

= 〈H−1/2
f φ,HfH

−1/2
f φ〉 =

∥∥φ
∥∥2

. (C.8)

Note that the expressions in (C.8) are well defined for all nonzero integration
variables k in view of Lemma C.1. Now suppose n ≥ 2 and φ ∈ Ran1N≥n. Then
using analogous identities as in (C.8) we obtain by the definitions introduced
in Sect. 6

ˆ
Xn

∣∣k(n)
∣∣
∥∥∥∥

n∏

l=1

[
Hf +

l∑

s=1

ω(ks)

]−1/2

a(k(n))φ
∥∥∥∥

2

dk(n)

=
ˆ

Xn

n∏

u=1

∣∣ku

∣∣
∥∥∥∥

n∏

l=1

[
Hf +

l∑

s=1

ω(ks)

]−1/2 n∏

j=1

a(kj)φ
∥∥∥∥

2

dk1 · · · dkn

=
ˆ

Xn−1

ˆ
X

|k1|
n∏

u=2

∣∣ku

∣∣
∥∥∥∥ a(k1)H

−1/2
f

n∏

l=2

[
Hf +

l∑

s=2

ω(ks)

]−1/2 n∏

j=2

a(kj)φ
∥∥∥∥

2

dk1dk2 · · · dkn

=
ˆ

Xn−1

n∏

u=2

∣∣ku

∣∣
∥∥∥∥

n∏

l=2

[
Hf +

l∑

s=2

ω(ks)

]−1/2 n∏

j=2

a(kj)φ
∥∥∥∥

2

dk2 · · · dkn

=
ˆ

Xn−1

∣∣k(n−1)
∣∣
∥∥∥∥

n−1∏

l=1

[
Hf +

l∑

s=1

ω(ks)

]−1/2

a(k(n−1))φ
∥∥∥∥

2

dk(n−1) (C.9)

...

=
∥∥φ
∥∥2

, (C.10)

where in (C.9) we relabeled the coordinates, and then proceeded analogously
until in (C.10) we have pulled through all n annihilation operators.

The last statement of the lemma follows from the first and the Riesz
lemma [32, Theorem II.4]. �

Appendix D: The Smooth Feshbach–Schur Map

In this section we review properties of the Feshbach-Schur map, introduced in
[3]. The presentation follows [16]. Let χ and χ be commuting non-zero bounded
operators, acting on a separable Hilbert space H satisfying χ2 + χ2 = 1.
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Definition D.1. A Feshbach pair (H,T ) for χ is a pair of closed operators with
the same domain

H,T : D(H) = D(T ) ⊂ H → H
such that H,T,W := H − T , and the operators

Wχ := χWχ , Wχ := χWχ ,

Hχ := T + Wχ , Hχ := T + Wχ ,

defined on D(T ) satisfy the following assumptions
(a) χT ⊂ Tχ and χT ⊂ Tχ.
(b) T,Hχ : D(T ) ∩ Ranχ → Ranχ are bijections with bounded inverse.
(c) χH−1

χ χWχ : D(T ) ⊂ H → H is a bounded operator.

Given a Feshbach pair (H,T ) for χ, the operator

Fχ(H,T ) := Hχ − χWχH−1
χ χWχ (D.1)

on D(T ) is called Feshbach operator. The mapping (H,T ) �→ Fχ(H,T ) is
called Feshbach map. We say that an operator A : D(A) ⊂ H → H is bounded
invertible in a subspace Y ⊂ H, if A : D(A) ∩ Y → Y is a bijection with
bounded inverse. Note that Y does not necessarily need to be closed. If (H,T )
is a Feshbach pair for χ, we define the following auxiliary operators

Qχ := χ − χH−1
χ χWχ ,

Q#
χ := χ − χWχH−1

χ χ . (D.2)

By conditions (a) and (c) Qχ and Q#
χ are bounded operators on D(T ) and Qχ

leaves D(T ) invariant.

Theorem D.2 (Theorem 1, [16]) Let (H,T ) be a Feshbach pair for χ on a
separable Hilbert space H. Then the following holds
(a) Let Y be a subspace with Ranχ ⊂ Y ⊂ H,

T : D(T ) ∩ Y → Y, and χT−1χY ⊂ Y.

Then H : D(H) ⊂ H → H is bounded invertible if and only if Fχ(H,T ) :
D(T ) ∩ Y → Y is bounded invertible in Y . Moreover,

H−1 = QχFχ(H,T )−1Q#
χ + χH−1

χ χ ,

Fχ(H,T )−1 = χH−1χ + χT−1χ .

(b) χKerH ⊂ KerFχ(H,T ) and QχKerFχ(H,T ) ⊂ KerH. The mappings

χ : KerH → KerFχ(H,T ) , Qχ : KerFχ(H,T ) → KerH ,

are linear isomorphisms and inverse to each other.

Lemma D.3 (Lemma 3, [16]) Conditions (a), (b) and (c) on Feshbach pairs
are satisfied if
(a’) χT ⊂ Tχ and χT ⊂ Tχ.
(b’) T is bounded invertible on Ranχ.
(c’) ‖T−1χWχ‖ < 1 and ‖χWT−1χ‖ < 1.
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[12] Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless,
scalar bosons. Ann. Inst. H. Poincaré Sect. A (N.S.) 19, 1–103 (1973)
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[15] Griesemer, M.: Non-relativistic Matter and Quantized Radiation, Large
Coulomb systems, Lecture Notes in Physics, vol. 695, pp. 217–248. Springer,
Berlin (2006)

[16] Griesemer, M., Hasler, D.: On the smooth Feshbach–Schur map. J. Funct. Anal.
254(9), 2329–2335 (2008)

[17] Griesemer, M., Hasler, D.: Analytic perturbation theory and renormalization
analysis of matter coupled to quantized radiation. Ann. Henri Poincaré 10(3),
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