Ann. Henri Poincaré 25 (2024), 17331793
© 2023 The Author(s)
1424-0637/24/031733-61

published online July 13, 2023
https://doi.org/10.1007/300023-023-01339-5

I Annales Henri Poincaré

®

Check for

u

pdates

Growth and Integrability of Some Birational
Maps in Dimension Three

Michele Graffeo and Giorgio Gubbiotti

N

Abstract. Motivated by the study of the Kahan—Hirota—Kimura discreti-
sation of the Euler top, we characterise the growth and integrability prop-
erties of a collection of elements in the Cremona group of a complex pro-
jective 3-space using techniques from algebraic geometry. This collection
consists of maps obtained by composing the standard Cremona transfor-
mation c3 € Bir(IF’3) with projectivities that permute the fixed points of
c3 and the points over which c3 performs a divisorial contraction. Specifi-
cally, we show that three behaviour are possible: (A) integrable with qua-
dratic degree growth and two invariants, (B) periodic with two-periodic
degree sequences and more than two invariants, and (C) non-integrable
with submaximal degree growth and one invariant.
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1. Introduction

This paper is devoted to the characterisation of the growth and integrability
properties of a collection of birational transformations of the complex projec-
tive space P3, i.e. a subset of the so-called Cremona group, denoted by Bir(P?)
[24, Section 7.4]. Let cps € Bir(PM) be the standard Cremona transformation
of PM _ i.e. the birational map defined as follows:

CM;]P’M **************** s PM

(1.1)
B . |
T T XMt

[x1: i xpp] —— [

Then, this collection is obtained by composing cs with projectivities of fi-
nite order g € PGI(3,C) acting as permutations on a set of special points
for the Cremona transformation. This set, which we will denote by Z (see
Definition 4.1), is the union of the set of fixed points and of the points over
which c3 performs a divisorial contraction. Precisely, the fixed points are the
solutions of the (projective) equation c3([x1 : @ : 3 : 24]) = [T1 : @2 : T3 1 34],
while the remaining points are the coordinate points, that is, the images of
the coordinate planes of P3 under c3. We call this group of projectivities the
Cremona-cubes group, and we will denote it by € (see Definition 4.2).

The motivation to study the Cremona-cubes group comes from some re-
cent results on the Kahan—Hirota—Kimura discretisation [55,62] (KHK discreti-
sation). Indeed, as it was noted in [2], the celebrated integrable discretisation
of the Euler top [5,33] produced in [55] via KHK discretisation is express-
ible as the composition of the standard Cremona map with two projectivities
(see Lemma 2.6). We will show in Sect.2 that, up to birational equivalence,
this is the prototypical integrable birational map of the form g o c3 for ¢ in
the Cremona-cubes group. In particular, in Sect.5 we will explain why this
birational map is integrable in the sense of the low growth condition.

Before to clarify what do we mean when we speak about growth properties
of a birational map, we need a couple more of definitions.
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It is a well-known fact that the iteration of a birational map ® € Bir(PM)
produces a (birational) discrete dynamical system defined by the recurrence:

[z1(n) -2 (n)] = @ ([21(0) < - s 2arga (0))), (1.2)

applied on some initial datum [21(0):---: zpr41(0)] € PM (see [42]). The
issue is then to characterise the asymptotic behaviour of the dynamics with
respect to generic initial conditions. The problem of characterising the growth
of complexity of the iterates was first considered by Arnol’d in [4] for the
class of diffeomorphisms. Its analogue for birational maps was first developed
experimentally in a series of papers (see [22,28,85,93]), which ended in the
elaboration of the concept of the algebraic entropy [10]. Following Arnol’d [4]
and Veselov [93], the “good” measure of the complexity of a birational map
® ¢ Bir(PM) is the intersection of the iterated images of a straight line with a
generic hyperplane in the complex projective space. By the Bezout’s theorem
in projective and multi-projective spaces (see [87, §IV.2]), this corresponds to
the degree of the polynomials in the entries of ®". Rigorously, we quote the
following definition.

Definition 1.1 ([10]). Given a birational map ® € Bir(PM)

[1: - rapyr]— [Pz, s ene1) o0 Pyga(xn, o xemer)],  (1.3)
such that its (homogeneous) polynomial entries P; € Clx1,...,za+1] are de-
void of common factors, that is ged(Py, ..., Pary1) = 1, we define its degree to
be:

d®* =degP;, foranyi=1,...,M +1. (1.4)

In the same way, for all n € N we define d2 as the degree of the n-th iterate
to be
d? =a*". (1.5)

Remark 1.2. We make the following observations.

(1) The degree of a birational map is invariant under conjugation by projec-
tivities, but, in general, it is not invariant under change of coordinates
(see [10,51]).

(2) Definition 1.1 is not the usual definition of degree in algebraic geometry.
For instance, in [87, Section I1.6.3] the degree of a (finite) rational map is
defined to be the cardinality of a generic fibre. Nevertheless, all the ratio-
nal maps in this paper will actually be birational. Hence, no ambiguity
is present, and the numbers d® and d® are uniquely determined by the
birational map ® € Bir(PM).

(3) It is crucial in Definition 1.1 to require that the polynomial entries have
no common factors. For a given birational map ® € Bir(PM), after some
iterations common factors can appear and they must be removed. This
process has geometric meaning, which we will discuss later in this section.

Having specified the notion of degree of a birational map, we give the
definition of algebraic entropy which measures the growth of the complexity
of a birational map.
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Definition 1.3 ([10]). The algebraic entropy of a birational map ® € Bir(PM)
is the following limit:

1
S = lim —logd?. (1.6)

n—oo N

Remark 1.4 ([10,35,39]). The algebraic entropy has the following properties:

e by the properties of birational maps and the subadditivity of the loga-
rithm, using Fekete’s lemma [29], the algebraic entropy always exists;

e the algebraic entropy is non-negative and bounded from above: 0 < Sg <
log d®;

e the algebraic entropy is invariant with respect to birational conjuga-
tion. That is, given two birational maps ®, © € Bir(PM), we have Sp =
S@)—lo@o@;

o if d® is subexponential as n — oo, e.g. polynomial, then Sg = 0, while,
if d* ~ a™ for some a € R, then Sg = loga.

Armed with the definition of algebraic entropy and the properties de-
scribed in Remark 1.4, we can define the integrability according to the alge-
braic entropy.

Definition 1.5 ([10,50]). A birational map ® € Bir(PM) is integrable according
to the algebraic entropy if S = 0. If S > 0, the map is said to be non-
integrable or chaotic. Moreover, if d® ~ n as n — oo the map is said to be
linearisable. Finally, if d2 is periodic, the map is said to be periodic.

Remark 1.6. Most of the known integrable maps are such that d® ~ n? as

n — oo. From [11], it is known that if the orbits of the system are elliptic
curves, then the degree growth is quadratic. From [23], it is known that in P?
the only sub-exponential behaviour are quadratic, linear, and periodic. The
first is associated with the preservation of an elliptic fibration, the second with
the preservation of a rational fibration, the latter with a power of the map
being isotopic to the identity. In PM with M > 2, it is possible that d® ~ n*
as n — oo with k > 2. For instance, in [3,42,61,69] maps with cubic growth
were presented. However, often maps with cubic growth arise from maps with
quadratic growth through a procedure called inflation (see [42,61,95]).

Let @: X --» Y be a birational map between smooth projective varieties
X,Y. Recall that the singularities, also called indeterminacies, of a birational
map consist of the loci where the map is not defined. In the paper, we will
denote by Base ® the indeterminacy locus of the map ®.

Consider the resolution of indeterminacies of the map ® given by the
Zariski closure of the graph Z = graph(®) C X x Y, i.e. the following com-
mutative diagram

ZC X XY

X/ NS

vz
******* *Y. (1.7)
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In this setting, one can define (see [16]) a notion of pullback for birational
maps

®*: H*(Y,Z) — H*(X,Z), (1.8)
defined as ®* = (7x|z), o (7y|z)", where the pullback and the pushforward

on the right-hand side are the usual inverse and direct images via morphisms
(see [16]).

Remark 1.7. As explained in [16], it is possible to perform the actual com-
putation via an auxiliary smooth variety Z instead of the possibly singular
closure of the graph Z. This is possible thanks to the celebrated Hironaka’s
result on resolution of singularities (see [53,54]).

The following theorem, whose proof is divided into Sects.5, 6, and 7,
summarises the results of this paper.

Theorem 1.8. Let & = {ey,...,eq4 } be the set of coordinate points of P3. Con-
sider a birational map of the form ® = g o c3 € Bir(P3) (or ® = c3og), for
some g € €. Then, there are three possibilities depending on the cardinality of
the orbit (g) - & of the points in &, under the action of g. That is:

o If|{g) - &| =8, then the map is integrable in the sense of Definition 1.5,
i.e. d¥ ~ n? as n — oo. Moreover, ® possesses a covariant net of
quadrics, and two functionally independent invariants determined by its
action on Z\({g) - &).

o If|{g) - &| = 4, then the map is periodic in the sense of Definition 1.5, i.e.
d® € {1,3}. Moreover, ® possesses a covariant five-dimensional linear
system of quadrics, and three functionally independent invariants.

o If |{g) - &| = 12, then the map is non-integrable in the sense of Defini-
tion 1.5, i.e. d® ~ ¢, where ¢ is the golden ratio. Moreover, ® exhibits
late confinement, and it possess a covariant pencil of desmic surfaces,
and one invariant.

In Theorem 1.8, by covariant linear system Y we mean that there exists
a divisor D € Div(P?) such that the correspondence

y—¥
(1.9)

W +—— (&YW — D,

is a well-defined group automorphism (see Definition 6.1). While, by invari-
ant, we mean a meromorphic function R : PM --s C such that R = R o ®.
Finally, we say that some meromorphic functions R;,..., Ry are functionally
independent if at all points of PM the Jacobian matrix of the map PM --» CF,
defined by Ry, ..., Ry, has maximal rank k.

In principle, the definition of algebraic entropy in Eq. (1.6) requires one to
compute all the iterates of a birational map ® and to take the limit as n — oo.
For practical purposes, this is clearly impossible. So, during the years, several
heuristics methods to compute the entropy have been proposed, for instance,
using the concept of generating function [70] (see also [35,39]). On the other
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hand, several methods to compute the algebraic entropy exactly have been
proposed. Notably, most of the approaches use the algebro-geometric structure
of the projective spaces [7,8,23,89,94], with some notable exceptions [48]. In
this sense, the computation of the algebraic entropy is more accessible if the
singularity is confined (see [36,94]). For instance, in this paper, we compute
the algebraic entropy of integrable and non-integrable maps both confining
singularities.

In the present paper, to compute the exact value of the algebraic entropy
of the maps of the form g o c3, for g in the Cremona-cubes group, we take the
viewpoint of the construction of the space of initial values of the given map
® € Bir(PM). This concept is the discrete analogue of Okamoto’s description
[75,76] of the continuous Painlevé equations [58], and it was conceived in [86].
To introduce this concept, we need to introduce the following definition.

Definition 1.9 ([16]). A rational map ® from a smooth projective variety X to
itself is called algebraically stable if (®*)™ = (®™)* holds.

Remark 1.10. The concept of algebraic stability is related to the one of sin-
gularity confinement. Indeed, heuristically algebraic stability means that the
singularities of the map behave in a controlled way: they either form finite
or periodic patterns. Specifying to the case of interest, i.e. maps in PM, a
singularity pattern will be of the following form:

DIyt D (1.10)

where D, D’ are divisors and ~; are varieties of codimension greater than one.
Finite concatenations of patterns of the form (1.10) can repeat periodically as
long as the number of centres ; stays finite (this last requirement can be false
for linearisable equations [1,49,90]). Following [10,94], we can compute which
are the divisors contracted by the map ® and its inverse. Precisely, calling
U € Bir(PM) the inverse of ® the following relations hold:

\IJOCI)EK;~IdPM, (I)O‘I/E)vIdPM, K,)\E(C[x17...,a:M+1]. (1.11)

The polynomials x and A admit a possibly trivial factorisation of the form:

= di,i = dx,i
k=]]m A=A (1.12)
1=1 =1

where k; # k; and A; # A for ¢ # j. The only (prime) divisors that can be
contracted to subvarieties of higher codimension by ® are then the varieties:
K;={k; =0}, fori=1,...,K,, (1.13)
while ¥ can only contract the varieties:
Aj={);=0} forj=1,...,K,. (1.14)

In Fig. 1, we present a possible blow-up blow-down sequence in P3: the surface
D is mapped to a curve and then to a point, but after four steps the singularity
is confined and a new surface D’ is found. This is a graphical representation
of Eq. (1.10).
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p
B

Y Y
FIGURE 1. A possible blow-down blow-up sequence in P3

The following result allows us to characterise algebraically stable maps
from the structure of their indeterminacy locus as described in Remark 1.10.

Proposition 1.11 ([6,7,9,16]). Let X be a smooth projective variety, and let
® € Bir(X) be a birational map with indeterminacy locus Base ®. Then, the
map ® is algebraically stable if and only if it does not exist a positive integer
k and a divisor E on X such that ®(E \ Base ®) C Base(®").

Then, we define.

Definition 1.12. A space of initial values of a map ® € Bir(PM) is the datum
of a birational projective morphism e: B — P™ such that the variety B is
smooth and the lifted (birational) maps ®,®~! € Bir(B) are algebraically
stable. Sometimes, we will also call space of initial values simply the variety B.

~

Remark 1.13. In what follows, using the canonical isomorphism Bir(P3) =2
Bir(B), with abuse of notation, we will denote by ® also the map 5, specifying,
at each instance, if we are working with the projective space or with the
variety B.

Suppose now that the (prime) subvarieties ~;, for i = 1,..., K, of codi-
mension greater than one encountered in the singularity pattern (1.10) of some
map ¢ are disjoint, i.e. v; Ny; = @ for ¢ # j irreducible and smooth (we will
just blow up reduced points). The general case is more intricate and beyond
our purpose. As a consequence of Remark 1.10 and of the properties of the
blowup (see [26, Proposition IV-22]), we have that

B=Bl, (PM) (1.15)
is a space of initial values for ®. Denoting by F;, for ¢ = 1,..., K, the ex-
ceptional divisors of e, we attach to B its second cohomology group (see [38,
Section 4.6.2]):

H*(B,Z) = (¢*H, Fy,..., Fx)z. (1.16)

Then, the action of (®71)* on H?(B,Z) is linear and the coefficient of the
pullback of e*H via ® agrees with the degree of ® in the sense of Eq. (1.5).
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So, following [7,89], from the algebraic stability condition we get that:
dy = coeff (2~1)*)"e*H,e*H) = coeff (&) "e*H,e*H), (1.17)

that is we converted the problem of finding a closed-form expression for d® to
a problem in linear algebra over the Z-module H?(B,Z).

The plan of the paper is the following. In Sect. 2, we present the motiva-
tions to consider the Cremona-cubes group, taken from the recent literature
on the KHK discretisation. In Sect. 3, we recall some of the needed properties
of the standard Cremona transformations, and we describe their resolutions
of indeterminacies in dimensions 2 and 3. We will also remark that, in dimen-
sion 3, the associated variety is singular at twelve conifold points. In Sect. 4,
we introduce rigorously the Cremona-cubes group, a subgroup of P Gl(4,C).
In Sect. 5, we prove the growth properties described in Theorem 1.8. Next, in
Sect. 6, we discuss the existence of covariant linear systems of quadrics and
quartics as stated in Theorem 1.8. So, in the successive Sect.7, we construct
the invariants via geometrical arguments ending the proof of Theorem 1.8.
In particular, we find results matching with those of Sect.5 because we find
two invariants for integrable maps, three for periodic maps, and only one for
non-integrable ones. Finally, in Sect.8 we present some conclusion and some
outlook for future works.

2. The KHK Discretisation of the Euler Top

It is a well-known fact that most of the problems in the theory of dynamical
systems cannot be solved in a closed form. For instance, in [5, §5, pag. 22],
V. I. Arnol’d wrote:

“Analyzing a general potential system with two degrees of freedom
is beyond the capability of modern science.”

This led many scientists to develop and study methods to produce systems that
could be tackled numerically [81]. In the case of ordinary differential equations,
this amounts to produce discretisations, which can be solved iteratively. The
problem that arises with the discretisation approach is then to preserve the
known properties of the continuous systems. For instance, standard Hamil-
tonian systems are known to be conservative, meaning that the orbits of a
Hamiltonian system cannot spiral into points (or formally, stable equilibrium
points cannot be asymptotically stable). On the other hand, it is known that
this property is not preserved by all numerical methods, and, for instance,
a symplectic integrator cannot preserve exactly the energy and vice versa an
energy-preserving integrator cannot be symplectic [96]. This considerations led
to the introduction of a branch of numerical analysis called geometric integra-
tion, whose aim is to build discretisations preserving as much as possible the
properties of their continuous counterparts [12,13,68].

In a series of unpublished lecture notes (see [62]), W. Kahan devised a
method to obtain good numerical approximations in the sense outlined above:



Vol. 25 (2024) Growth and Integrability of Some Birational Maps 1741

the orbits of some conservative systems did not seem to be affected by the phys-
ically and mathematically incorrect spiralling behaviour [63]. Kahan’s method
was rediscovered independently by Hirota and Kimura, who used it to pro-
duce integrable discretisations of the Euler top [55] and the Lagrange top [66],
followed by Suris and his collaborators who produced many more integrable
examples in [77-79]. Before discussing our case of interest, that is the Euler
top, we give a brief account of the method.

Definition 2.1. Assume we are given an M-dimensional system of first-order
differential equations (also called a vector field):

x=f(x), x:RM >R, f:RM - RM, (2.1)
Then, its Kahan—Hirota—Kimura discretisation (KHK) is:
XX _gp(Xx) _FO) 0 (2.2)
h 2 2

where x = x (nh), X’ =x((n+ 1)h), and h > 0 is an infinitesimal parameter.

Remark 2.2. In this remark, we resume the most important known facts about
the KHK discretisation.

e If the function f is quadratic, then the associated map

-1
b, (x)=x'"=x+h (IM - ngf (x)) f(x), (2.3)

where V«f (x) is the Jacobian of the function f, is birational (see [20,78]).
Its inverse is obtained through the substitution i+ —h, i.e. ®; ' (x) =
®_;, (x). This considerations carry over in PM considering first the com-
plexification C™ of RM™ and then its compactification to PM with hy-
perplane at infinity { zps41 = 0 }. We denote the corresponding map by
@, € Bir(PM) to underline the dependence on h > 0.

e When applied to quadratic vector fields, the KHK method is the restric-
tion of a Runge-Kutta method [81], so it is covariant with respect to
affine transformations [20].

e Suppose that the vector field is Hamiltonian. That is, there exist a func-
tion H: RM — R and a constant skew-symmetric matrix J € Mat s as (R)
such that:

x=JVH (x). (2.4)
If deg H = 3, then the associated KHK discretisation admits an invariant
Hy,, such that limy,_ o+ H, = H and a preserved measure which is a h-
deformation of the standard Euclidean measure [19,20].

The Euler top is the following system of three first-order quadratic equa-
tions in the variables (11,2, 23) € R3:

1:1 = a1x2x3, ZL:Q = a2x1X3, SC.3 = a3xri1xs. (25)

This is a well-known integrable system (see [5, §29]) whose solution was given
by Euler himself in terms of elliptic functions. In fact, the Euler top belongs
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to a wider family of continuous integrable systems known as the Manakov
systems [71,72]. Following (2.2), the KHK discretisation of the Euler top is:

-1 xh—1x9  ag

= 5( b3 + Ta1y), T 7( 123 + T123),
I
T3 - - %( \To + 1175). (2.6)

Explicitly, from (2.3), after introducing homogeneous coordinates [xy : z2 :
x3 : 24] on P2 we have the following map of projective spaces:

P3 oot y P3
(2.7)
[21: @20 23 1 mg] —— [2] 1 ah @y Ty,
where

) =— (a1a2x§ + ajazr? — agagaﬁ) h2xy — dayhwoxsry — 423,  (2.8a)
Th=— (alagxg — alagac% + agagx?) h2xy — dashzzsxs — 4x2xi, (2.8b)
xh = (a1a2x§ — ajazri — agagxf) h2xs — dashxxoxy — 4327, (2.8¢)
xﬁl = ayasash®r woms + (a1a2x§ + alagxg + agagac%) hx4 — 4952. (2.8d)

From [55], it is known that the above system is integrable, with its Hamil-
tonian formulation given in [79]. Another remarkable property is the existence
of a Lax pair! [65,67,88], the only known case for a KHK discretisation along
with the discrete Nahm system [41]. More recently, in [2], the system (2.6) was
derived using a three-dimensional analogue of the QRT construction [82,83],
that is as action of involutions on two pencils of quadrics. In the same paper
[2, Prop. 7.2], the reduction of the system to a three-dimensional standard
Cremona transformation composed with two projectivities is discussed (see
Lemma 2.6). In the rest of this section, we will interpret this statement from
a different viewpoint based on singularity confinement. Moreover, we will ex-
plain why this naturally leads to the definition of the Cremona-cubes group
(see Definition 4.2).

From the heuristic point of view, if we compute the sequence of degrees
of the iterations of the map in (2.7), we obtain:

1,3,9,19,33,51,73,99,129,163,201,243,289. ... (2.9)
The following generating function fits the values in (2.9):
352 +1
= —. 2.10
g9(s) 1=s) (2.10)

Applying the inverse Z-transform (see [39]) (2.10), we get d¥+ = 2n? + 1.
Furthermore, by examining the sequence (2.9), we see that the deviation from
the standard growth dgf) = 3™ happens at the third iterate. After having
explored the singularity pattern (see Fig.2), we will see that this is not an
accident, but it has a deep meaning.

1Sometimes in the Russian literature called a L — A pair.
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Recall that ®,' = ®_j (see Remark 2.2). Then, following the idea of
singularity confinement, we compute the polynomials x and A from (1.11) for
(2.3):

4 4
k=]]ri, A=]]N (2.11)
i=1 i=1
with:
K1 = ajaohxs — ajashxs — asashx) — 224, (2.12a)
Ko = ayashxs + ajaghxs — asashry + 2y, (2.12b)
R3 = Oélaghxg — ozlozghxg + OéQOéghlZ?l + 2134, (212C)
K4 = aiaghxs + ajashxs + asazhx; — 2xy, (2.12d)
and
A = ajashxs — ajashry — asaghary + 214, (2.13&)
Ao = ayashxs + ajazhrs — asashry — 2wy, (2.13b)
A3 = ayashxy — ajazhxe + asazhry — 2y, (2.13(})
Ay = aqashry + ajashrs + asaghry + 224, (2.13d)
for some choice of square root o of a;, for j =1,2,3.
Let us consider the varieties
Ki = {/‘Qi = 0} and Ai = {)\Z = 0} . (2.14)
Then, for ¢ = 1,...,4, we have the following singularity pattern:
Ki — s; — s, ——» Ay, (2.15)
where

51 = [2a1 : 203 1 —2a3 1 —ajasash], sy =207 1 2as 1 —2a3 : ajasazh],
(2.16a)

sy = [2a1 1 =209 1 —2a3 : apasash], sy = 201 1 =209 1 —2a3 1 —ajaash],
(2.16b)

83 = [2a1 1 —2a9 : 23 1 —aasash], sy = 201 1 =29 : 203 ¢ agasaszh],
(2.16¢)

54 = [2a7 : 200 : 203 1 panazh], sy = [2aq 1 20 1 203 1 —ayazash).
(2.16d)

The singularity patterns in (2.15) are depicted in Fig.2. This immediately
explains the growth in Eq. (2.9): the deviation from the standard growth hap-
pens at the third step because after three steps the map enters the singularities.
Notice that, the degree drop is exactly given by degx = 8 because k is the
common factor to be removed in the computation of the degree. A similar
analysis for @;1 shows that on the third iterate the common factor A, whose
degree is eight, is removed.



1744 M. Graffeo and G. Gubbiotti Ann. Henri Poincaré

K; A

FIGURE 2. The blow-down blow-up sequence of the Euler top P?

Remark 2.5. Note that, as h — 07, all the points appearing in the singularity
pattern are pushed on the plane at infinity Lo, = {24 = 0}. This has to be
expected because the invariants (first mtegrals) of the continuous Euler top
(2.5) are polynomials [5] and polynomials are singular only at infinity (see also
[10,35] for a similar discussion on the importance of singularities for polynomial
maps).

The geometry of the singularity confinement is also enough to build the
invariants of the system and hence to prove integrability in the naive sense
(see [42]). Indeed, by considering the net ¥ of quadrics passing through the
points s; and s}, we find:

[w:v:€l eP?

Quue = {iu (o3 = 2278 o (3 — 2228) ¢ (a2 — ) = 0}}

(2.17)

Then, it is easy to show that (®,')*(Q) = kik2k3ksQ, i.e. the net ¥
enjoys nice covariance properties (see Definition 6. 1) with respect to the KHK
discretisation of the Euler top (2.8). This easily yields two functionally inde-
pendent invariants:

Y= { Qu,u,g C ]PB

2 2 2 2
x7 — a123 /a3 x3 — asx3/as

I = I, =

z3 — aragwi/4’ r3 — aragri/4’ (2.18)
The situation is a three-dimensional generalisation of the results in [45,80].
Therein, it was proved how the geometric structure of the KHK discretisation
of a two-dimensional system with cubic Hamiltonian determines its integrabil-
ity. Moreover, a special role is played by the singular fibres of the associated
pencil. Note that the coordinate points of ¥ = P[2u:u:£] are indeed singular

members of the net.

Remark 2.4. We note that the eight points { s; };_, U{s } _, are not in gen-
eral position. Indeed, in general, eight points of P? generate only a pencil of
quadrics. In Remark 3.2, we will explain their relation with the fixed locus of
the Cremona transformation. This led us to depict them as two tetrahedra in
Fig.3. To see that they are not in general position notice, for instance, that
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S1

S2 I

/
5

$3

/ X2/ X4

X1/X4 &— S3
/
5 \/

Sq

FIGURE 3. The two tetrahedra in the finite chart {z4 # 0} C
PS

this set of vertices contains twelve distinct co-planar quadruples. We will see
in Sect. 4 how this this related to the Cremona-cubes group.

Remark 2.5. The two invariants found in Eq.2.18 are related to those known
in the literature

2 2,2 2 2,2
xj — ayash*x3/4 x; — ajagh?xs /4

F = F = 2.19
T a2 —agagh?22/4 T 22 —agash®a?/4’ (2.19)
(see [2,55,79]), through the transformation
a1a3h2 1
F=1- I Fo=—ou—. 2.20
! 4 7 TP 1 agash?l /4 (2.20)

The following Lemma provides a motivation to study the Cremona-cubes
group (see [2, Proposition 7.2.] for more details).

Lemma 2.6. The KHK discretisation of the Euler top (2.8) decomposes as
®), = 0y 0 c3oly where {;: P2 — P3 are two projectives whose representa-
tive matrices with respect to the standard homogeneous coordinate system in
P GI(3,C) are given by:

_OéQOégh (110&3}1 —OélOéQh -2
o 042013}1 70[10[3}1 70[10(2}1 2
Mel o Oégagh —O[lagh Ckloégh -2’ (221&)
_0420[3h alagh 041042]7, 2
I 2001 2001 201 20
- 209 —2a9 —2a9 20
Méz B —20&3 —20[3 20[3 2043 ’ (221b)
_0410[2(13]1 —alagagh Oélagagh —0410420é3h

Proof. The proof consists of a direct computation. O
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Remark 2.7. Sometimes, when no possible confusion occurs, we will identify
any linear map ¢ € Bir(P3) with the associated matrix M, € PGI(3,C) and
write £ in place of M.

Remark 2.8. The base loci of ®;, and its inverse consist of the twelve lines on
which lie the edges of two tetrahedra (see Fig.3). Moreover, these lines are
obtained as two by two intersections of the eight planes K; and A; introduced
in (2.14):

Li,j :KiﬂKj, L;,j :AiﬂA]—, 1<i<y <4, (222)
That is:
Base®, = | J Lij, Base®,'= []J L, (2.23)
1<i<j<4 1<i<j<4

The importance of Lemma 2.6 is highlighted in the following simple corol-
lary.

Corollary 2.9. The KHK discretisation of the Euler top (2.8) is projectively
equivalent to the map ®©) = gq o c3 where

1 -1 -1 -1

-1 1 -1 -1

A B R S - |

-1 -1 -1 1

Moreover, the projectivity go is an involution.

(2.24)

Proof. After noticing that gy = #1 o £5, the proof consists on a direct compu-
tation. g

Remark 2.10. We remark that the conjugation of ®;, by ¢; makes the discreti-
sation parameter h disappear. This implies that the integrability properties of
the system are independent from the discretisation parameter (see [46, Intro-
duction]).

The great advantage in studying ®(©) with respect to the original ®;, is
that ®© is the composition of two involutions, making it strikingly similar to
the QRT map construction [82,83]. Moreover, the rows and the columns of the
matrix gy are made of fized points of the standard Cremona transformation
c3. This construction unveils the geometric structure underlying the KHK
discretisation of the Euler top (2.8). In this paper, we consider a class of maps
sharing similar behaviour (see Lemma 4.5). The most important finding is to
consider birational maps decomposing as ® = g o cg, where g € PGl(4,C) is a
projectivity having the following properties:

(1) up to the multiplicative action of C* on the space of matrices, the en-
tries of the matrix representing g with respect the canonical projective
coordinates belong to { —1,0,+1 };

(2) the projectivity g is represented by a matrix whose rows and columns are
coordinate points or fixed points of the standard Cremona transformation
€33

(3) the order of g is finite (not necessarily an involution);



Vol. 25 (2024) Growth and Integrability of Some Birational Maps 1747

FIGURE 4. The resolution of the indeterminacies of the stan-
dard Cremona transformation in dimension 2

(4) for any k > 0, g* verifies (1),(2) and (3).
The above requirements will be made mathematically rigorous in the
next section (see Lemma 4.5 and Definition4.2), with the definition of the
Cremona-cubes group.

3. The Standard Cremona Transformation in Dimension Three

It is a classical fact known as the Noether—Castelnuovo theorem [17,74] that the
Cremona group Bir(IP?) of the projective plane is generated by P GI(3,C) and
the standard Cremona transformation cs, that is the birational map defined
as:

P2 , P2
(3.1)
[€1: 29 @3] —— L,—ll i i}

The resolution of the indeterminacy locus of the map cs is described in
Fig. 4. The two involved P?’s are represented as triangles whose edges corre-
spond to the coordinate lines, while the exagon represents a del Pezzo surface
of degree six, i.e. the blow-up of P? at three non-collinear points, and its edges
correspond to (—1)-lines. The maps 71 and 7y are the blowups of P? with cen-
tre the three coordinate points. In particular, the dotted (resp. dashed) edges
correspond to exceptional lines for m; (resp. m2) (see [24, Example 7.1.9] for
more details).

The situation in higher dimension happens to be much more intricate.
For instance, it is no longer true that the Cremona group Bir(P") of the n-
dimensional projective space is generated by P Gl(n + 1,C) and the higher-
dimensional analogue of standard Cremona transformation.

This section focuses on the standard Cremona transformation cs of P3.
We will describe the resolution of the indeterminacies of cs, and then, we will
discuss the configuration of the fixed points of cg3.

3.1. The standard Cremona Transformation in Dimension Three

Let c3 € Bir(P?) be the standard Cremona transformation (see (1.1)). The
map cz is well defined outside the union of the six coordinate axes of P3. We
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can solve the indeterminacy locus of the standard Cremona transformation as

follows
% \f) (3.2)

where B C (P?)*? is the closure of the graph of c3, B = graph(cs), and f
and g are the restrictions to B of the canonical projections. Thus, B is the
complete intersection defined as follows (see also [24, Example 7.2.5])

T1Y1 = T2Y2
B=<q ([z1:22: 23 :24],[y1:y2: Y3 :y4]) € (IP’?’)X2 T1y1 = x3ys . (3.3)
T1Y1 = T4Y4

Let us denote by B;; the affine chart on B defined by
Bij={(z1:22:m3:24],[y1 121y 9u]) [2s #0and y; #0 ). (3.4)

Then, the chart B;; is smooth if and only if ¢ = j, otherwise B;; has an
isolated conifold singularity. Thus, B has twelve singular points. Moreover,
the exceptional divisors of ¢ and f agree. They consist of the union of six
surfaces isomorphic to (P*)*2, each mapping, via g and f, onto a coordinate
line of P3, and three projective planes which are contracted by g to coordinate
points. In particular, the three coordinate points of each of the four exceptional
P?’s are the conifold singularities of the ambient threefold B.

The variety B, which is the blowup of P along the union of the coordinate
axes, can be alternatively constructed as follows (see Fig. 5):

(1) blowup the four vertices of the standard tetrahedron of P2, i.e. the co-
ordinate points of P2. Since we are blowing up (reduced) smooth points,
the exceptional locus is the disjoint union of 4 copies of P?;

(2) blowup the strict transforms of the six edges of the standard tetrahedron,
i.e. the six coordinate lines of P3. The exceptional locus of this blowup is
given by six copies of (P!)*2. The four exceptional divisors of the previous
step happen to be blown up at three distinct non-collinear points. As a
consequence, their strict transforms are all isomorphic to a del Pezzo
surface of degree six dPg;

(3) the last step consists in contracting twelve (—1, —1)-lines, i.e. twelve lines
L; =P fori=1,...,12 with normal bundle

Ny 5= 0n(-1)* fori=1,...,12, (3.5)
where B is the variety constructed in the previous step. To see this, notice
that each line is the complete intersection of one of the del Pezzo and the
strict transform of some coordinate hyperplane of P3.

The lines L;, for i = 1,...,12, are the strict transforms of the coordinate
lines of the exceptional divisors in step (1). Notice (see [57, Section 11.3])
that all the L;’s are contracted to conifold points.
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ey ) 3

F1GURE 5. The toric description of the three steps in the
construction of B near a coordinate point of P3

Remark 3.1. When restricted to each exceptional P? in step (1), the concate-
nation of steps (2) and (3) is a two-dimensional standard Cremona transfor-
mation.

Remark 3.2. We have:

FiXC3:@U37 32:{?171927]937]94}7Q:{Ch»(haﬁk’n%}a (36)

where

(3.7)

These eight points correspond to two four-tuples of lines of C* orthogonal with
respect to the standard scalar product. In particular, these are four-tuples of
points in general position. We highlight that the sets &, 2 correspond to the
sets { s; }?:1 A st }?:1 via the projectivity £; ! introduced in (2.21a). Moreover,
the points in Fixc3 can be interpreted as the vertices of a cube in the affine
space, as depicted in Fig. 6. In this paper, by vertices of a cube we mean the
base locus of a general net of quadrics of P? (see [56, App. B.5.2] and [24,
Section 1.5.2]). Note that we are considering only general nets in order to have
a 0-dimensional® reduced base locus.

Remark 3.3. If we are interested in spaces of initial values for c3, we do not
need to work with a resolution of singularities of the variety B in Sect. 3.1,
and it is enough to consider the variety

EZBLg’ IP3, 51{61,62,63,64} (38)

2The dimension of the base locus may jump in some special cases, an example being the
twisted cubic.
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where
e1=[1:0:0:0],
ea=[0:1:0:0],
3.9
e3=[0:0:1:0], (39)
eq=[0:0:0:1].

Indeed, the only divisorial contractions of ¢ consist of contractions over one
of the e;’s and the map induced by c3 on B is algebraically stable.

4. The Cremona-Cubes Group %

In this section, we introduce the subgroup of PGl(3,C) we are interested in.
The subgroup % is defined in terms of the “special” points introduced in the
previous section (see Remarks 3.2 and 3.3).

Definition 4.1. We will denote® by % C P? the finite subset containing all the
points appearing in Remarks 3.2 and 3.3, i.e.

R=EUPU Q. (4.1)

As explained in Sect. 2, we are interested in maps of the form ® = gocj
where g € PGl(4,C) is a projectivity of finite order that acts on the set Z.

Definition 4.2. We will call the Cremona-cubes group the subgroup % of
P Gl(4,C) defined by:

¢ ={gecPG4,C)|g- Z_Z}. (4.2)

Remark 4.3. We remark that, since Z contains five-tuples of points in general
position, we have Stab g (%) = (Idpqia,c)), for any g € € (see [31, Section
1.3]). Here, (g) denotes the cyclic subgroup of P G1(4, C) generated by g, while
Stab gy (%) is the following subgroup of (g):

Stabg) (Z)={he{g)|hleg=1dgp }. (4.3)

This implies that all the elements g € € have finite order. Indeed, suppose that
there exists a g € € of infinite order. In particular, for any integer k > 1, g* is
not the inverse of g. Now, since g acts on the finite set #, there is an integer
k > 1 such that gl = g*|%. This implies that g'~* would be a non-trivial
element in Stab gy (%).

The following result tells us that, within #, the three subsets &, &, and
2 are mapped between themselves as a whole.

Lemma 4.4. The action of € on % induces an action of € on the set {&, 7, 2}.

3The letter % stands for Reye (see Sect. 4.1).
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Proof. First notice that, if a line L of P3 contains at least two points of %,
then it contains either three aligned points each belonging to one of the sets
&, and 2 or two points from the same collection &, & or 2.

We now proceed by contradiction. Suppose, without loss of generality,
that the projectivity g sends the point e; to the point p; and the point es to
the point ¢o, i.e.

AN
1 . D1 (4.4)
€y —— (2.
Let L1 be the line through p; and g2 and let e; be the third intersection
point in L1s NZ, i.e.

ngﬂ%:{ej,pl,(p}. (45)

Then, we get
gt ey € (g HL2) N {er,e2}) NZ. (4.6)
Which is a contradiction. O

Now, we characterise the elements of € as belonging to three different
classes depending on their action on the set { &, &2, 2 }. The following Lemma
is crucial in this characterisation.

Lemma 4.5. Let ¢ € € C PGI(4,C) be an element of the Cremona-cubes
group. Then, there is a matriz g € Gl(4, C) representing g whose entries belong
to {—1,0,1}. Moreover, g falls in one of the following cases.

(A) Both the columns and rows of g represent the points in & (or in 2).
(B) The matriz g is a permutation matriz with signs.

(C) The columns of g represent the points in &, and the rows represent
the points in 2 (or viceversa).

Proof. The first part of the statement follows from the second, while the second
part is a direct consequence of Lemma 4.4. Indeed, as per Lemma 4.4, g and
g tacton { & P, 2} and, depending on the action on this set, we get (4),
(B) or (C). O

Remark 4.6. Notis that, on the contrary, even if a projectivity of finite order
g € PGI(4,C) verifies (A), (B), or (C) it is not guaranteed that g belongs to
% . Indeed, in general property (4) in Sect.2 would not be satisfied.

Remark 4.7. As a consequence of Lemma 4.5, we can divide the elements of
the Cremona-cubes group according to the orbit (g) - & of & via g:

(g)-&={g" e |keN 1<i<4}. (4.7)
We have the following characterisation.

e An element g € % belongs to case (A) in Lemma 4.5 if and only if
(9)-&#=EUPor (g)-&E=EU 2.

e An element g € ¥ belongs to case (B) in Lemma 4.5 if and only if
(9)-6=¢.

e An element g € ¥ belongs to case (C) in Lemma 4.5 if and only if
(9)- &E=EUZP U L.
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We will see in Sect.5 that the orbit (g) - & (4.7) plays a fundamental réle in
the confinement of singularities of the maps of the form ® = gocg for g € ¥
(see also Theorem 1.8).

Definition 4.8. We will say that an element g € % is of type (A) (resp. of type
(B) or (C)) if it belongs to the case (A) (resp. (B) or (C)) in Lemma 4.5.

The following lemma investigates the relation between elements of the
Cremona-cubes group of different type.

Lemma 4.9. The following properties hold for the elements in € (see
Lemma 4.5).

o Two elements of type (A) (resp. (C)) differ by multiplication by a permu-
tation matriz with sign having an even number of -1 (which is an element
of € of type (B)).

o Two elements of type (B) differ by multiplication by a permutation matriz
with signs, i.e. by an element of type (B). In particular, the elements of
type (B) form a subgroup of € that we will denote by € p).

o An element of type (A) differs by an element of type (C) by multiplication
by a permutation matriz with signs having an odd number of -1 (which is
an element of € of type (B)).

o The inverse of an element of type (A) (resp. (B) or (C)) is of the same

type.

Proof. The proof of the first three points consists on a direct check, while the
fourth point is a direct consequence of Remark 4.7. g

Remark 4.10. Notice that the subgroup

) ={9 €% |gisof type (B) }. (4.8)

has cardinality 192, and it contains four copies of the Full Octahedral Group
(see [59, Section 11.4]) acting as the group of symmetries, non-necessarily pre-
serving the orientation, of the cube with vertices & U 2. Precisely, chosen
any coordinate x;, for i = 1,...,4, the Full Ochtahedral Group can be iden-
tified with the elements in ¢ 5) which preserve the hyperplane { z; =0 }. In
particular, we have

o o O

(p)
0
0
ol )
1

(4.9)

Notice also that the only possible orders for the elements in ¢, are 2,3,4,6.
Now, as a consequence of Lemma 4.9, the Cremona-cubes group is the subgroup
of PGI(4,C) generated by ¢) and the projetivity go of type (A) given in
(2.24).

SO O
oo = O
o= OO
o O O
oo = O
= o O O
o= OO
o= OO
oo = O
= o O O
[N el e
o O O
o= OO0
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As an immediate consequence, we get the following result.

Corollary 4.11 (of Lemma 4.9). There are exactly 192 elements of each type
(4), (B) and (C).
Theorem 4.12. The cardinality of € is

|| = 576. (4.10)

Proof. The statement is a direct consequence of Corollary 4.11. Alternatively,
one can directly compute the cardinality of ¥ using the computer software
Macaulay?2 [37] with the package InvariantRing [30]. O

Remark 4.13. We observe that the Cremona-cubes group % is isomorphic to
((Ag x Ag) X Z/2Z) x Z/27Z, where Ay < Sy is the alternating subgroup in
the symmetric group of four elements, i.e. the subgroup consisting of per-
mutations with even order. This identification is obtained using the function
StructureDescription of the system for computational discrete algebra GAP
[32]*. On the other hand, in the same way, we have that the subgroup €3 <C
is isomorphic (((Z/2Z)** x Z/3Z) x Z.)27) x Z.]275.

4.1. The Cubes of c3

Let us now explain the origin of the name Cremona-cubes group. The config-
uration of the points in & is known in the literature as the Reye configuration
or also the Dy configuration (see [21,25]). Alternatively, one can say that the
tetrahedra defined by &, % and 2 constitute a desmic triple (see [56, App.
B.5.2]). Explicitly, the elements of # are the points of a (124 163) configu-
ration, i.e. 12 points and 16 lines with the property that there are four lines
through each point and three points on each line.
Let us consider the following set of hyperplanes of P?

A ={Hy|1<i<j<4 ec{+ —}}, (4.11)

where H?; = { [71 : 29 : w3 : 4] € PP ’ T; = ex; } Let us now focus on some
affine chart Uy = {7 # 0 }, for some 7 = 1,...,4, with the usual affine coordi-
nates

X; =21, je{1234} {1} (4.12)

7

and denote by 7 the following set of affine hyperplanes:
A ={HNU; |He H}. (4.13)

There are twelve planes in . Six of them are faces of the cube with
vertices & U 2 and the remaining six are symmetry planes of the cube con-
taining pairs of parallel lines. Using these planes, an alternative description of
the Reye configuration is given by Hilbert in terms of sextuples of co-planar
points [52].

4Using the function IdGroup, we see that % is the 8654-th finite group of order 576 of the
finite groups database provided by GAP (see SmallGroupInformation [32]).
5 Analogously, ¢(p) is the 955-th finite group of order 192 of the finite groups database

provided by GAP (see SmallGroupInformation [32]).
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€4
2

4

FIGURE 6. The configuration, in the chart {x1 # 0} C P3, of
the points in #Z

Now, a direct check shows that the Cremona-cubes group acts (with
trivial stabilizer) on the set 7. This observation provide a different point of
view which allows one to work in an affine setting.

Another way to understand the action of € is to look at the three cubes
Ces», Coso and Cx» o which have vertices, respectively, & U &, & U 2 and
2 U 2. While the group %p) acts by just swapping Cs» and Cgo (and
keeping C'» o fixed), the Cremona-cubes group % permutes the three cubes.

In what follows, the two net of quadrics, respectively, generated by &U &
and & U 2 will play a fundamental role.

Definition 4.14. We will call ¥» and X the nets of quadrics, respectively,
generated by & U 2, & U 2. Precisely, we have:

S ={ Sapy CP | [a:8:9] € P, Sapy ={ astV +85(" +45(V =0} },
(4.14a)

Yo = { Sa.py C P ‘ [0:8:9] €P?, Sup = { aS{ ) + 88 44857 =0 } }
(4.14b)

where
S = wiws £ agzs, SYY = wias £agws, S =wizs £asws. (4.15)

Remark 4.15. Note that the projective subspaces (planes) ¥4 ,%9,C PH
(P2, Ops(2)) = P? do not intersect, i.e.

Yop Ny =4d. (416)

In other words, there is no quadric passing through all the points in Z.
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We will see in Sects. 6 and 7 that these nets are key tools in the compu-
tation of the invariants of the maps of the form gocs3 for g € ¥.

Remark 4.16. In what follows, we shall consider the pencil of quartics having
nodes precisely at #Z (see in Sects. 6.3 and 7.3). Its existence is a classical fact
(see [56, App. B.5.2]), and it is called desmic pencil. In particular, a desmic
pencil contains exactly three reducible members called desmic quartics.

5. The Spaces of Initial Values and the Algebraic Entropy

In this section, we study the confinement of the indeterminacies of the maps
® € Bir(P?) of the form ® = gocs, for g € €, via some space of initial values.
We will prove in Propositions 5.3, 5.4 and 5.7 that the growth behaviour of d®
only depends on the type of g € €. The same result is also true for the maps
of the form ¥ = c3og. Indeed, the birational transformations ® = g o c3 and
¥ = c3o0g have the same algebraic entropy because they are conjugated via
g~ ! which is of the same type of g as per Lemma 4.9 (see Remark 1.4).

The results contained in this section can be seen either directly, or using
the approach described in [7] for maps ® coming from the composition of the
Cremona map cps (1.1) with projectivities using the method of singular orbits,
i.e. sequences of the form

{zi=0} = m —25 . o my, e (5.1)

where 1 < i,j <4, k >0, mq,...,m; € PM, Notice that (5.1) is a special
instance of (1.10). We remark that the authors in [7, Theorem A.1] gave the
general expression of the matrix representing the action in cohomology induced
by a map of the form ¢ o cp; with £ € PGI(M + 1,C), with singular orbits of
prescribed form. In general, this gives an estimate of the degree growth, and
for some choices of the matrix ¢ it allows direct computations. In this paper,
we compute explicitly the sequence of degrees { d,, },, .y using induction on the
action induced in cohomology over a generic plane H C P? of map ® = gocs,
g € €. For instance, this approach provides us formulas (5.25) leading to
Eq. (5.27) in Proposition 5.7.

5.1. The Case of the Standard Cremona Transformation

We start by reviewing the case ® = c3 (see. [16] for more details). Let : B —
P3 be the blowup of P? with centre the set of coordinate points. Let us denote
by E; the exceptional divisor over the coordinate point e;, for i = 1,...,4.
Then, one can choose (see [38, Section 4.6.2]) the following basis of the second
singular cohomology group of B:

H*(B,7) = (¢*H, E1, By, F3, E4)z, (5.2)

where H is the class of an hyperplane in P? and, with abuse of notation, we
have denoted by the same symbols the exceptional divisors F;, fori =1,...,4,
and their cohomology classes. Moreover, the action of the standard Cremona
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transformation on the second cohomology group H?(B,Z) is expressed, in
terms of the basis (5.2), by the following matrix

31 1 1 1
-2 0 -1 -1 -1

(3 =ci=|-2 -1 0 -1 -1 (5.3)
-2 -1 -1 0 -1
-2 -1 -1 -1 0

see for instance [16] or [7, Eq. (3.1)] evaluated at d = 3.

Remark 5.1. Since # ~. & = Fixcs, also Bly P? is a space of initial values for
cs3, but it is superfluous to blowup all Z.

We divide the study of the confinement of the indeterminacies accordingly
to the possible types of g, namely (4), (B) or (C).

From now on, given any g € %, we will denote by ¢, : By — P? the
blowup of P? with center the finite set (g) - &. Notice that, since By is the
blowup of P? with centre an n-tuple of distinct reduced points, the class of its
canonical divisor is:

— Kp, =4¢;H — 2 Z D,, (5.4)
a€(g)-&

where D, is the exceptional divisor over the point a € (g) - & (see [38, Section
1.4.2]).

Sometimes, with abuse of notation we will denote by ® : B, --» B, the
natural lift of a projective map ® € Bir(P?) to the variety B,. Moreover, when
no ambiguity is present, we will denote by the same symbol a divisor and its
cohomology class.

Notation 5.2. In what follows, given a birational map ® € Bir(X), for X
smooth projective variety, we will denote by ®, the linear operator

d, = (1) € GIH*(X,Z)). (5.5)

Before proceeding, we recall that, if e: B — P3 is a space of initial values
for a birational map ® € Bir(P?), then the degree d® of the n-th iterate is
given by formula (1.17) (see Sect. 1).

5.2. Case (A)

Let g € € be a projectivity of type (4). Without loss of generality, we can sup-
pose that g acts on the set {&, &, 2} by swapping & and & (see Lemma 4.4).
Recall that, in this case, the blowup By of P? with centre (g) - & = & U 2 is
a space of initial values (see Remark 4.7). Let us fix the following basis of the
second cohomology group of By:

H},):= H?(B,,Z) = (¢, H, E\, By, E3, Ey, P1, Py, Ps, Py)z, (5.6)
where, as above, H is the class of an hyperplane in P3, E; is the cohomology

class of the exceptional divisor over the point e;, for ¢ = 1,...,4, and P; is the
cohomology class of the exceptional divisor over the point p;, for i =1,...,4.
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We want to compute the action induced by ® = g o c3 on the cohomology
group H ?A ) Equivalently, we want to compute the matrix representing ®,
with respect to the basis (5.6).

First, notice that the action of the standard Cremona transformation on
e H, By, ..., Ey is given by the matrix (5.3), while the elements P; are fixed
by c3, because they lie over the points p; which are fixed by cs.

Since g sends hyperplanes to hyperplanes and it swaps the sets & and
&, the matrix representing g, with respect to the basis (5.6) has the following
block decomposition:

0
10 MQ
s = 0 (5.7)
0
0 M0

where M and Ms are 4 X 4 permutation matrices. In terms of singular orbits
[7] this implies that there are four closed singular orbits of length two.

We finally obtain the action of ®, on H?A) as the composition ®, =
gs« o C3,. Precisely, there exist two permutations o1, 02 in the symmetric group
Sy of four elements {1,2,3,4} such that

4
* P *
egH —— 3e;H — 23 Pj,

j=1
5.8
E; 2 e, H — Z‘Pgl(j) fore=1,...,4, (58)
J#i
Pi*LEgz(i) fori=1,...,4.

Notice that o1 (resp. o2) corresponds to the block M; (resp. Ms). The same
action can be recovered from the four singular orbits using [7, Egs. (4.1,4.3)].

Then, we obtain the main result of this subsection.

Proposition 5.3. Consider the birational map ® = gocz € Bir(P?) for g € €
of type (A). Then, the following formula is true for all n € N:

4
()" (epH) = (2n° +1) e} H —n(n—1) ZE —n(n+1)> P (59)
j=1 j=1

As a consequence, we have d® = 2n? + 1, that is the map ® is integrable
according to the algebraic entropy.
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Proof. First notice that the following formulas are a direct consequence of
Eq. (5.8):

4 4
0. | Y E; | =4e;H - 3> P, (5.10a)
j=1 j=1

4 4 4
o > P =D Epyy = Ej (5.10b)
j=1 j=1 j=1

Now the proof goes by induction on n € N. The case n = 0 is trivial, while the
case n = 1 follows from Eq. (5.8). We move now to the proof of the inductive
step. Suppose that formula (5.9) holds true for some n € N, we want to prove
that it is also true for n + 1. This can be shown as follows:

(@) (es H) = @. [(®.)" (e;H)]

= P,

(2n2+1)5;H—n(n—1)ZEg‘—n(n+1)zpj]

j=1 j=1

4 8 4
= (2n® +1) (3E;H - QZPj) —n(n-1)) (45311 - 323)
j=1 j=5 j=1

4
—n(n+1) ZEJ'
j=1
=[2n+1)*+1]efH-n(n+1)Y E;j— (n+1)(n+2)) P,
(5.11)

where the third equality is a consequence of Eq.5.10. From Remark 1.4, since
d® is subexponential, we have S = 0, and hence, the statement follows. [

5.3. Case (B)

In this case, a space of initial values is B, = Ble P3 and we can chose as
basis of H?(B,,Z) the one given in Eq. (5.2). Recall that there is a matrix
representing ¢ which is a permutation matrix with signs. Since we will focus
on the action induced on the second singular cohomology group of B, by the
map ¢ = gocg, it is enough to study the action on set &. Thus, it is enough to
suppose that g is a permutation matrix in the usual sense. As a consequence,
the matrix representing g, in our basis is a permutation matrix with ey H as
eigenvector, i.e.

(5.12)

where M is a 4 x 4 permutation matrix. In terms of singular orbits [7], this
implies that there are four closed singular orbits of length one.
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After composing g, with Eq.5.3, we obtain the action of ®, on H?B):

4

* D *

egH —— 3e;H — ZZ:IEJ
= (5.13)

B —2 et H — ;E(,(j) fori=1,...,4,
VED)

where o is the element in Sy corresponding to the matrix M. The same action

can be recovered from the four singular orbits using [7, Egs. (4.1,4.3)].
As a consequence, we have the main result of this subsection.

Proposition 5.4. Let g € € be an element of type (B). Then, for the map
® = gocz € Bir(P3), the following formulas hold true for all n € N:

4
3e*H —-2) FE; forn odd,
(®.)" (5 H) g j; i (5.14a)

e H for n even,
egH— > Egny) forn odd,
J#om () fori=1,... 4.
Eqn (i for n even,
(5.14b)

So, the map ® is periodic (see Definition 1.5), and hence integrable, with
two-periodic degrees:

d® =

n

{3 forn odd, (5.15)

1 for n even.

Proof. As in the proof of Proposition 5.3, we proceed by evaluating the action

4
of ®, on the combination ) E;. From (5.13), we have:
j=1

4 4
o, (Z@) =4c;H - 3) Ej, (5.16)
i=1 j=1

which, again from (5.13) implies:

4
(®.)° (epH) = @, | 3e;H — 2> E;
7j=1
4 4
=3 |3c;H—2) E; | -2 |4e;H - 3) E,
j=1 j=1
=M. (5.17)
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As a consequence, we get formula (5.14a). On the other hand, still from (5.13)
and (5.16), we have:

(®.)° (B)) =@, | e H = > B,

J#i
4 4
=3e;H —2) E;j— &, | Y _E;— B
j=1 j=1

4 4
=3e;H —2) E;j— |45)H =3 E;| +e;H— Y Ej
Jj=1 J=1 J#o2(9)
= E,z(j)- (5.18)

Again, we obtain formula (5.14b). The periodicity of the degrees of ® follows
immediately from formulas (5.14) and (1.17). The algebraic entropy of a limited
sequence is clearly zero, and this ends the proof. (]

An immediate corollary of Proposition 5.4 concerns the periodicity of @,
for ® € Bir(IP?) of the form g o c3, for g € ¢ of type (B).

Corollary 5.5. In the hypotheses of Proposition 5.4, we have
ord (®.) =lem (2,0rdo) € {2,4,6 }. (5.19)

Remark 5.6. We remark that from Proposition 5.4 and Corollary 5.5 it follows
that, while the degrees of the maps ® = g o c3, with g € € of type (B),
are two-periodic, the map itself is not necessarily two-periodic. Indeed, from
Corollary 5.5 it follows that the order of the map ® can be 24, or 6. The
situation here is similar to the periodic QRT maps found in [91], with the
difference that, for our maps, odd orders are not possible.

5.4. Case (C)

Let g € € be a projectivity of type (C). Then, a space of initial values for
® = gocs is (see Remark 4.7) the variety

B, = Bly, P3. (5.20)

The cyclic subgroup of € generated by g acts transitively on the set {&, £, 2}
(see Lemma 4.5). Without loss of generality, we can suppose that g acts as
follows:

Ert s 2ty 99, 8. (5.21)
Let us fix the following basis of the second cohomology group of B,:
H?C) = H2 (BQ’Z) = <€:;H’ El?E27E37E4aP17P27P35P4aQ1aQ27Q37Q4>Za
(5.22)

where H, F;, P;, for i = 1,...,4, are as in Sect. 5.2, and Q;, for i =1,...,4, is
the cohomology class of the exceptional divisor contracted by ¢4 to g;.
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Analogously to Sect. 5.2, also in this case, the action of the standard Cre-
mona transformation on the elements ey H, B, Ea, Es, B4 agrees with Equa-
tion (5.3) while the elements P;, Q;, for i = 1,...,4, are fixed by c3, because
they lie over the fixed points of c3. In terms of singular orbits [7], this implies
that there are four closed singular orbits of length three.

So, as in the previous section, the linear map g. = (g~')* fixes e H
and it permutes the remaining elements of the basis of the cohomology we
have chosen. As a consequence, the matrix that represents g, with respect to
the basis (5.22) has a block decomposition similar to the block decomposition
given in (5.7). In particular, the cyclic subgroup of G1(H ?C), Z) generated by
g« induces a transitive action on the set { & &, 2 }.

Finally, the action of ®, = g, o c3, on H?C) is:

® 4
egH —— 3e,H — 22Pj7

j=1

D, * ;
Ei —— e, H - ;-Pﬂl(ﬂ') fori=1,....4, (5.23)
J 1
H}LQUZ(U fori=1,...,4,
i*[y . fori=1,...,4.
Q o3(7) ’ ’

where 01,09, 03 are elements of S, corresponding to the nonzero 4 x 4 blocks
of the matrix representing g, with respect to the basis in (5.22). The same
action can be recovered from the four singular orbits using [7, Egs. (4.1,4.3)].

As a consequence of the above description, we have the main result of
this subsection.

Proposition 5.7. Let g € € be an element of type (C). Then, for alln > 1, the
following formula holds true for the map ® = g o cz € Bir(P3):

4 4 4
(@) (epH) =dneyH — fn > Ej—bn Y Pj—ca Y Qj, (5.24)
j=1 j=1

j=1
where the coefficients solve the following system of difference equations:

dn = df = 3dn—l - 4fn—17 fn = Cn—1,

bn=2dp_1—3fn-1, Cn=0>bn_1, (5:25)
with initial conditions:
do=1, fo=0,by =0, cg =0. (5.26)
This implies that the map ® has positive algebraic entropy given by:
S(c) = 2logyp, (5.27)

where ¢ is the golden ratio, i.e. the only positive solution of the algebraic
equation p?> = ¢ + 1. That is, the map ® is non-integrable according to the
algebraic entropy.
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Remark 5.8. We remark that Proposition 5.7 is coherent with the upper bound
on the algebraic entropy presented in [7, Theorem 4.2]. Explicitly, for maps of
the form ¢ o cps, where £ € PGI(M + 1,C), with at least one singular orbit
we have that Syoc,, < log M. Indeed, in the case of Proposition 5.7 we have

M = 3 and

We will see in Sects. 6 and 7 that this implies a certain regularity which we do
not have for “generic” maps.

Proof. As in the proof of Proposition 5.3, we start by evaluating ®, on the
sums 2?21 E;, Z?Zl P; and 2?21 Q. Thanks to Eq. (5.23), we have:

4 4

O, | Y E; | =4e;H -3 P, (5.29a)
j=1 j=1
4 4

. D P =) Qo) = ZQJ, (5.29b)
Jj=1 j=1
4 4
Qi | =D Eoy = ZE (5.29¢)
j=1

Jj=1

We proceed now by induction on n > 1. The case n = 1 is a direct computation.
We suppose now that Proposition 5.7 is true for some n > 1 and we prove it
for n + 1. We have:

(®,)" T (e;H) = 0, [(®.)" (c5H)]

4 4 4
=, dn5;H — fnZEj - bnzpj - CnZQj
j=1 j=1

j=1

IS

4
= (3dy — 4fn) s H — cn» Ej — (2dy —3f0) Y _Pj = ZQJ,

Jj=1 Jj=1
(5 30)
where the third equality is a consequence of Eq. (5.29). On the other hand, we
must have:

4 4
(©.)" (e H) = dpsreyH — fria Z E; — by Z Pj —cpp1 Z Qj. (5.31)
j=1 j=1
So, the condition is satisfied by equating with the right-hand side of (5.30) and
(5.31) and invoking the linear independence of the generators of Hs(By,Z).
This implies that d,,, f, b, and ¢, satisfy the system (5.25) with initial con-
ditions (5.26).
In order to compute the algebraic entropy from Definition 1.3, we need to
evaluate the asymptotic behaviour of d¥ in Eq. (5.25). Since the system (5.25)
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is linear we use the technique explained in [27, Chap. 3]. Writing the system
as:

dy, dp—1 3 =4 0 O
fn _ fn—l _ O 0 O 1
b | = M, b | where My = s —3 0 ol (5.32)
Cn, Cn—1 0 0 1 0
then the solution is:
dn do 1
fn _ n fO _ n 0
b, | = M, b | = Mg 0 (5.33)
Cn Co 0

Computing M, e.g. using Putzer algorithm [27, Sect. 3.1.1], we obtain the

following solution for all n € N:

8 n —2n 1 n
(@) - (- -2
dn 2 on-2 —2n+2 1 n
2 (p2n nt2) ()"
gn _ g(w re) ?( : : (5.34)
c: g ((P2n+2 4 (p—Qn—Q) _ g (_1)n 1
2, 0 1
(@) - ()" -1
where ¢ is the golden ratio. Since d,, = d¥, we have:
dy ~ ™, n— oo, (5.35)
and, from (1.6), formula (5.27) follows. O

6. Covariant Linear Systems

In this section, we will introduce a notion of covariant linear system with
respect a fixed divisor. We will see in the next section that these objects are
key tools in the computation of the invariants of the maps of the form ® = gocs,
for g € €. Moreover, we will compute covariant linear systems of quadrics for
g of type (A) and (B) (Propositions 6.5, 6.9 and 6.11) and covariant linear
systems of quartics for g of type (C) (Proposition 6.14). As in Sect.5, the
results in this section work also for the birational maps of the form csog (see
Remark 6.2).
In what follows, we shall need the following definition.

Definition 6.1. Let X be a smooth projective variety, and let ® € Bir(X) be a
birational map. Let also D € Div(X) be a divisor. A linear system ¥ C |.Z|, for
some line bundle .#, is D-covariant if, for any E € X, we have ®,F € ¥ + D,
where

Y+D={A+D|AecX}. (6.1)
In this context, if &, F = F + D, we will say that FE is D-invariant.
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Remark 6.2. We remark that any result about the existence of D-covariant
linear systems for maps of the form gocs, for g € €, also implies the existence
of D-covariant hnear systems for maps of the form c3 og for some divisor D.
Indeed, g and g~' are of the same type as per Lemma 4.9 and the equality

(gocs)«sS=S+D (6.2)

implies
(c3og™1)uS =8 — (c30g™1).D. (6.3)
Remark 6.3. Let ® = gocz € Bir(IP?), for some g € €, be a birational map, and
let ¥ be a D-covariant linear system for some D € Div(P?). Then, since g o c3

only contracts the coordinate hyperplanes H;, = {x; =0}, for i = 1,...,4,
the divisor D has the form

4
i=1
for some n; € Z, for i = 1,...,4. Notice also that, if B is a space of initial

values for ®, ¥ is D-covariant if and only if the linear system of the strict
transform of a general member of ¥, is covariant on B, i.e. called E the strict
transform of a general member E € X, we have ®,E € |E|.

We now start a case-by-case analysis of the D-covariant linear systems
of quadrics for some divisor D, i.e. projective subspaces, ¥ C |Ops3(2)| with
the property that, ®,X = X + D C |0ps(2 + deg(D))|. This will be enough
to compute the invariants for maps of the form g o cz for g € € of type (A)
and (B) as we will show in Sect.7. For type (C), we will need to consider
D-covariant linear systems of quartics.

Notation 6.4. In what follows, we will denote by H; the the divisor associated
with the hyperplane { x; = 0 } C P3. Moreover, we will denote by H the divisor
defined as the sum of the coordinate hyperplane divisors, i.e.

H= iH (6.5)

Sometimes, with abuse of notation, we will denote by H; also the ¢-th coordi-
nate hyperplane.

6.1. Case (A)

As in Sect. 5.2, without loss of generality, we keep the assumption that ® =
gocs, where g € € is of type (A) and that it swaps & and &2. Then, we have
the following.

Proposition 6.5. Let g € € be an element of type (A) and let ® € Bir(P3) be
the projective map defined as ® = g o cz. Then, the net of quadrics X in
Definition 4.1/ is H-covariant. Moreover, if ¥ is a positive-dimensional D-
covariant linear system of quadrics, for some D € Div(P?), we have D = H
and X C Yp.



Vol. 25 (2024) Growth and Integrability of Some Birational Maps 1765

Proof. Let S € ¥» be a general element, and let S be its strict transform via
g4, where g4 is the same as in Sect. 5.2. We will prove that |S| is covariant, i.e.
®.S € |5 (see Remark 6.3). We have:

4 4 4 4
S~ @, (2;H-Y E;j—> Pi| ~2,H-Y E;—» P;~S, (66)
j=1 j=1 j=1 j=1

where the second equality is a consequence of formulas (5.10). Therefore, the
net X4 is H-covariant.

Now, the strict transform S of a quadric S € P? is linear equivalent to
the following divisor

4 4
S ~ 2E;H - anEj - ijPj7 (67)
j=1 j=1

for some non-negative integers n;, m;, for j = 1,...,4. If we impose the co-
variance, we get the conditions

>

n; =4,
= (6.8)
N = Mg, () fori =1,...,4.

where o7 is taken from (5.8). Now, up to relabeling the coordinates, we have
three possibilities, namely

n=mi=1 no=mo=1 n3y=mg=1, ng =myg =1, (6.9a)
n=mi=2 no=mg=1 ng=mg=1, ng =my =0, (6.9b)
n1=m1=2,n2=m2=2,n3=m3207n4=m420. (69C)

Notice that, the first choice works for any permutation of four elements o.
Moreover, the second and the third choice of coefficients cut zero-dimensional
linear systems. As a consequence, the only possible D-covariant and positive-
dimensional linear system is obtained for n; =m; =1, fori =1,...,4. O

Remark 6.6. If g swaps & and 2, the statement of Proposition 6.5 is true with
Y o instead of ¥ » (see Definition 4.14).

Corollary 6.7. With the same notation and hypotheses in Proposition 6.5, the
anticanonical system of By is covariant. Moreover, we have | — Kp | = |2E)|

where E is the strict transform of a general member of ¥4 .

Proof. The statement follows by applying the first equivalence in (6.6) to for-
mula (5.4). O

Remark 6.8. Notice that, every pair of points ¢;, ¢; in £ cuts a unique quadric
Si; in ¥ 5 . Explicitly, with the notation in Sect. 4.1, the unique quadric of X »
passing through ¢; and g; is reducible and it is
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where

+ ifde{ij},

] (6.11)
—  otherwise.

{i,j,h,k}=41,2,3,4} and e= {
The strict transform of this quadric on some space of initial values is fixed by
the action of ®, = (goc3)., i.e. S;; is H-invariant if and only if { ¢;,q; } C %
is invariant under g. Therefore, the existence of H-invariant quadrics depends
on the action of g on the third tetrahedron, namely the tetrahedron with 2
as set of vertices.

6.2. Case (B)
We have the following result.

Proposition 6.9. Let g € € be an element of type (B) and let ® € Bir(P?) be
the birational map defined as ® = gocz. Then, the 5-dimensional linear system
Y(B) C |Ops(2)| consisting of the quadrics containing & is H-covariant.

Proof. First notice that ¥ p) is 5-dimensional because the points in & are in

general position. Let S be the strict transform of a general quadric S C P3. As
in the proof of Proposition 6.5, we will prove that |S| is covariant. We have,

4
S~2esH =Y niEs (6.12)
i=1
for some n; > 0, for ¢+ = 1,...,4. If we now impose the covariance and we
apply formulas (5.13), we find the conditions
4
& (613)
N = Ng(;) fori=1,...,4,

where o € Sy is the element corresponding to g (see Lemma 4.5). If we impose
the above conditions for any g of type (B), and hence for any o € Sy, we get

n,=1fori=1,...,4,
which implies the thesis. O

Corollary 6.10. With the same notation and hypotheses in Proposition 6.9, the
anticanonical system of B, is covariant. Moreover, we have | — Kp | = |2E)|

where E is the strict transform of a general member of X (p).

The linear system ¥ ) in Proposition 6.9 is H-covariant for all the ® =
gocs with g of type (B), but, in some instances, there are positive dimensional
linear systems, which are D-covariant for some other divisor D. However, we
will show in Proposition 7.13 that ¥ p) suffices for the construction of the
invariants. Rigorously, we have the following.

Proposition 6.11. Let us fix the same notation and hypotheses in Proposi-
tion 6.9. We have the following possibilities.
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e Suppose g fixes exactly two points of &, say e; and ey. Then, the webs
Y1 and X9 of quadrics passing through es,es and having, respectively,
a node at e; and ey are, respectively, (2Hy + Hs + Hy)-covariant and
(2H; + Hs + Hy)-covariant.

e Suppose g fixres & pointwise. Then, for any divisor of the form D =
2H;+H;+Hy,, wherei, j and k are different, there is a web of D-covariant
quadrics and, for any divisor of the form F' = 2H; 4+ 2H;, where i # j,
there is a net of F-covariant quadrics.

Remark 6.12. Notice that the identity Id € € belongs to case (B). Therefore,
the standard Cremona transformation cs = Id o cg3 has the linear system X
in Proposition 6.9 as a H-covariant linear system. Moreover, the set of H-
invariant divisors for ¢ consists of the disjoint union, inside ¥ p), of the two
nets of quadrics ¥» and X in Definition 4.14.

6.3. Case (C)
We start this last subsection by proving that in the case (C) we do not have
D-covariant linear systems of quadric anymore.

Proposition 6.13. For any divisor D € Div(P3), there is no D-covariant linear
system of quadrics for the map ®.

Proof. The strict transform S of a quadric S € P? is linear equivalent to the
following divisor

4 4 4
S~2esH =Y niEj =Y miPi =Y kQ; (6.14)
j=1 j=1 j=1
for some non-negative integers n;,my, k; for i« = 1,...,4. If we impose the
covariance, we get the conditions
4

don; =4

j=1

ni:mal(i) iil,...,4, (615)

mich,z(i) iZl,...,4.

where o1 and oy are taken from (5.23). A quadric S satisfying (6.15) must
pass through all the points in &%, and a dimension count shows that a similar
quadric does not exist. O

Although, in this case, there are no D-covariant linear systems of quadrics,
for D € Div(P?), there is a 2H-covariant linear system of quartics. The proof
of the following proposition is similar to the proof of Proposition 6.5.

Proposition 6.14. Let g € € be an element of type (C) and let ® € Bir(P?) be
the projective map defined as ® = gocs. Then, the pencil of quartics =4 nodal
at all the points of # is 2H -invariant. Moreover, if ¥ is a positive-dimensional
D-covariant linear system of quartics for some D € Div(P?), we have D = 2H
and X = Eg.
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Corollary 6.15. With the same notation and hypotheses in Proposition 6.14,
the anticanonical system of By is covariant. Moreover, we have | — Kp,| = |E|

where E is the strict transform of a general member of Zz.
Remark 6.16. We remark that the quartic pencil

p3 52 ___, pl (6.16)

is exactly the pencil mentioned in Remark 4.16. Its base locus consists of
16 lines, namely the 16 lines of the (124 163) configuration (see Sect.4.1).
The resolution of its indeterminacies induces the crepant resolution® of each
fibre (see [34]) but three, namely the desmic surfaces. Therefore, we get a
one-dimensional family of surfaces

Y — P! (6.17)

whose generic member is a K3 surface with 16 disjoint rational curves. This is
the highest possible number of disjoint rational curves on a K3 surface and it
is known to be achieved by Kummer surfaces of an abelian surface of the form
A = FE x E for E elliptic curve (see [56, Theorem B.5.6]).

7. Construction of the Invariants

In this section, we explain how to determine the existence of invariants in the
three cases listed in Lemma 4.5 and how to compute all of them. We recall
that, by invariant of a map ® € Bir(P), we mean a rational function, i.e. a
degree zero element R = P/Q € C(z1,...,xp41) for P,Q € Clz1,...,2r41]
homogeneous, such that:

(I)*(R)(l’l,...,IM+1):R(Il,...,IM+1). (71)

As for the results in Sects.5 and 6, the results in this section hold true
for the maps of the form cs og as well. Indeed, g and g~! are of the same type
and, after composing the equality Ro ® = R with ®~! we find that, if R is
invariant for g o c3 then, it is also invariant for cz og=!.

We recall the following known fact on the construction of invariants of

birational maps adapted to our setting.

Lemma 7.1. Let ® € Bir(IP3) be a projective map and let D € Div(P?) be a
divisor. Let us consider a D-covariant linear system ¥ C |.£| = PH(P3,.%),
for some line bundle £. Suppose that there exists a pencil = C ¥ of D-
invariant divisors. In particular, Z = PVz for some vector subspace V= C
HO(P3,.%). Then, one can construct invariants of the map ® by considering
the meromorphic functions of the form f = s1/ss for any given choice of
s1,82 € Vz.

For a proof of Lemma 7.1, we refer to [28] (see also [16,40] and reference
therein).

6Recall that the nodes are special instances of rational double points.



Vol. 25 (2024) Growth and Integrability of Some Birational Maps 1769

Remark 7.2. Let ¥ be a D-covariant linear system, and let Fy, Fo € ¥ be two
D-invariant elements. Then, the elements of the pencil generated by F} and
Fy are not necessarily D-invariant. This is a consequence of the fact that a
projectivity of P! is uniquely determined by its value on three points (see [31,
Section 1.3]).

The results in Sect.5 lead us to expect the following behaviour of the
maps of the form ® = gocs:

Case (A) the map admits two invariants,”

Case (B) the map admits more than two invariants,

Case (C) the map admits at most one invariant.

In what follows, we will prove that the actual number of invariants agrees
with the expected one by showing how to construct them explicitly.

Remark 7.3. We remark that the invariants will be of degree up to twelve. This
is because a g € € is not guaranteed to preserve the fibres of the associated lin-
ear system, but rather they are permuted periodically. As a consequence, they
will be invariants for an appropriate power of the map itself. This behaviour
is linked to the notion of k-invariants introduced in [47], i.e. invariants for the
k-th iterate ®* of ®. In particular, it is possible to compute the invariants of ®
starting from its k-invariants (see [50,84]). For a geometric discussion on the
origin of this kind of maps in Bir(IP?), we refer to [15]. We mention that a clas-
sification and constructions of these plane maps were presented in [60,64,84].
We finally recall that a three-dimensional example, obtained as deflation (see
[61]) of a four-dimensional map admitting an anti-invariant, was presented in
[43]. The appearance of more general fibre exchanges in dimension three is, up
to our knowledge, new.

7.1. Case (A)

Let g € € be an element of type (4). As usual, without loss of generality (see
Sect. 5.2), we can suppose that g swaps & and Z.

As explained in Lemma 7.1, in order to build invariants for the map
® = g ocg, we need to find pencils of D-invariant divisors inside some D-
covariant linear system. We start looking for quadrics.

As a consequence of Proposition 6.5, we have at most H-invariant pencils
quadrics in the H-covariant net 3.

Recall that the elements in ¥4 are H-invariant with respect to the map
c3 (see Remark 6.12). Therefore, since ®, = g, o c3,, H-invariant divisors of
® correspond to divisors which are invariant under g. As a consequence, the
existence of H-invariant elements in ¥4 is ruled by the action of g on the
collection of pairs of elements in 2 as explained in Remark 6.8.

Each pair of points { ¢;,¢; } C 2, for 1 <i < j <4, corresponds to one
of the quadrics S;; in Remark 6.8. Now, the action of g on

"We recall that, for three-dimensional systems, the notion of Liouville-Poisson integrability
and algebraic integrability agree (see the discussion in [42,44] for more details).
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is uniquely determined by the action of g on 2.

Table 1 compares the possible cycle decompositions of the action of g on
2,0n Sy and on & U . In particular, for each possible cycle decomposition,
an element g that realises it and its cycle decomposition on & U 2 are given.
Length one cycles are omitted.

Remark 7.4. Let s;; € Clz1,...,24] be a polynomial defining the quadric S;; €
Sg,for1 <i<j<4 Letalsoo = (S;j, - - Sij.), forsomek e {1,2,3,4},
be a cycle appearing in the cycle decomposition of the action of g on Sg.

One can try to find coefficients «;_;, € C, for s € 1,..., k, such that the
quadric

Sy = { Qi gy Sivgy T Qigjia Singp + -+ F Wiy Sigj = 0 } (7'3)

is H-invariant. Notice that, in general, S, N 2 = @.

Moreover, if we chose appropriately a representative for g € ¢ C PGl(4,C),
in the actual computation, we can restrict to o;,,;, € { £1 } foralla =1,... k.

This observation allows one to construct a finite number (possibly zero)
of H-invariant quadrics. At most one quadric for each cycle in the cycle de-
composition of the action of g on Sy. Now, we want to understand if they
generate pointwise H-invariant pencils, i.e. pencils whose points correspond to
H-invariant quadrics. This will help us in constructing the invariants of ® as
described in Lemma 7.1.

Proposition 7.5. Let S,, = {8, =0} € X, for i = 1,2, be two quadrics
obtained as described in Remark 7.4 and let = C X » be the pencil generated
by Sy, and S,,. Then, the pencil = is pointwise H-invariant if and only if the
quadric

{81+82:0} (74)

is H-invariant.
Proof. We have
E:{{u81+)\82:0}CIP’3|[,u:)\]EIP’l}. (7.5)

Since S,, and S,, are H-invariant, the pencil Z is a H-covariant subspace of
Y . Therefore, we obtain an automorphism
E——E
(7.6)
S+—— &, 95— H.

Now, the thesis follows from the fact that there is only one automorphism of
P! that fixes 3 points, city (see Remark 7.2). O

Remark 7.6. Unfortunately, Proposition 7.5 together with Remark 7.4 are not
enough to compute all the invariants as predicted at the beginning of this
section. Indeed, two issues can occur:
o there are less than two H-covariant pencils of quadrics,
o there are at least two H-covariant pencils, but the invariants produced
are not functionally independent.
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TABLE 2. A resuming table of the invariants of the maps
® = g ocg for g chosen from Table 1

Invariants

(z3 + z4)(®1 + 22) (22 + 23)(T1 + 74)

® (w2 — @3)(z1 — x4) (w2 — 23)(T1 — T4)
y T1T2 + T3T4 (23 — z4)(z1 — 22)\?
(w (z3 + x4) (21 + 72)’ ((963 + z4) (21 +m2)>
i (x5 + z4a)(z1 + z2) T1X2 + T3T4 2
( ) (13 —$4)(331 —12)7 <(273—IB4)(11 —12)>
(iv) (rr1z2t+T123+2 128+ T203 + ToTs + 933334)2
b (zr224T324)2+H (2123 + 2274)2 + (174 + T273)2
(z3+za)(z1+z2)(v2+as) (w1+w3) (w2 +w3) (w1 +24)
(3 — x4)(z2 — 24)(z2—2z3) (21 — x4)(z1 — x3) (1 — T2)
) ($2+z4)2(11 +333)2+($2 —I4)2(11 —z3)*

(z3 + z4) (21 + 22) (23 — wa)(T1 — T2)—
(z2 + x3) (21 + z4) (22 — T3)(T1 — T4)
(22 + w4) (21 + 23) (T2 — 24) (71 — 23)

> o (z1 + oxa)(x3 + oxa)(z1 + ex4)(z2 + e23)
o,ec{ +t1}

However, implementing the argument given in Remark 7.4 with combinatoric
techniques, it is possible to construct the invariants of the maps appearing in
Table 1 as a nonlinear combinations of H-invariant quadrics. Their explicit
form is presented in Table 2.

We now comment some facts about the invariants listed in Table 2.

(i) The net ¥4 is pointwise H-invariant and the quadrics are enough
to construct the two expected invariants. This happens only in case ().
Moreover, from Lemma 2.6, we have that the KHK discretisation of the
Euler top fits in this class.

(#) Although two cycle decompositions on &UZ? are possible, the rational
functions in Table 2 are invariant in both cases. The two invariants are a
ratio of quadrics and of quartics, respectively. Since the ratio of quartics
can be chosen as a square, it is easy to see that the function:

(i) _ T1T2 + x374

J ) (7.7)
X124 + X223
is an anti-invariant. That is, the function (7.7) is such that:
J—2 5 (7.8)

(i) The two invariants are a ratio of quadrics and of quartics, respec-
tively. Again, the ratio of quartics can be chosen as a square, so that the
function:

T1X2 + T34

(i) _
(993 - 504)(1’1 - Iz)7

(7.9)
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is an anti-invariant (see Eq. (7.8)).

(iv) The two invariants are a ratio of quartics and a ratio of sextics. We
note that there is no anti-invariant, because the cycle (S14 Soq S34) does
not produce H-invariant quadrics (see Remark 7.2). On the other hand,
taking the ratios of two H-invariants coming, respectively, from the two
3-cycles (S12 Saz S13) and (S14 So4 Ss4), we get (see Lemma 7.1) the
following triple of 3-invariants given by the following ratios of quadrics:

J() _ (1 + x2) (w3 + 24) g _ (1 + 24) (22 + 23)
' (21 —za)(2 —23)" "2 (w1 — @3) (w2 — 24)’

(1 + 23) (72 + 74)

(w1 — 22) (w3 — 24)

Indeed, these three functions are cyclically permuted by the map. Clearly

only two of them are functionally independent.

(v) The two invariants are both ratios of quartics. We note that there

is no anti-invariant, because the cycle (Si3 S24) does not produce H-

invariant quadrics (see Remark 7.2). On the other hand, from the 4-cycle

(S12 Saz S34 S14) we get the pair of 4-invariants given by the following

ratios of quadrics:

(w1 + 24) (22 + 23)

Jg(iv) _

(7.10)

(w1 + 22) (23 + 24)

J¥ = coJ = : 7.11

' (r1 — x4) (g —a3)" 72 (z1 — z2)(23 — 24) (7-1)
Indeed, Jl(v) and J2(U) are such that:

. e p—— s fori=1,2, (7.12)

where the indices are taken modulo 2.

Finally, we highlight that, even if there are 96 elements of type (A) swap-
ping & and &, only the invariants in Table 2 can occur. We saw this via direct
check on all the 96 elements of type (4) swapping & and . Thus, for a ra-
tional function, being invariant only depends upon the action of g on Sg.

Remark 7.7. The results of this section suggest a relation with the KHK dis-
cretisation of another physically relevant class of systems, namely the quadratic
three-dimensional Nambu systems [73,92]. That is, the system of ODEs

x = VxHi(x) X ViHz(x), (7.13)

where, for i = 1,2, H;(x) = x A;x is a Nambu—Hamiltonian function. The sys-
tem (7.13) is clearly integrable in the sense of Liouville, since the two Nambu—
Hamiltonians are first integrals. Moreover, the system (7.13) is a generalisation
of the Euler top (2.5), obtained when A; and Ay are diagonal (see [19]). It was
proven in [19] that the KHK discretisation of the system (7.13) is Liouville
integrable with the two following modified Nambu—Hamiltonians:

Hi(x) = 1;?22();23()(), for i = 1,2, and H3(x) = x* A; adj(Az)A;x.

(7.14)
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The modified Nambu—Hamiltonians (7.14) are ratio of quadratic polynomials.

Let @;LN), (@;fv))*l € Bir(P?) be the homogeneous maps associated with the
KHK discretisation of Eq. (7.13) (see Sect.2). We conjecture that, up to con-

jugation by a projectivity, the map <I>I(1N) is of type (A)-(i), i.e. it exists an

analogue of Lemma 2.6 for the map <I>,(1N). Unfortunately, in this case the com-
putations are more intricate than in the case of the Euler top. So, we conclude
this subsection by giving evidences supporting this last claim, but we leave a
complete proof as a subject of further research.

We start noticing that since deg @glN) = deg(q);N))_l = 3 the degree of
the polynomials k and A in (1.11) is eight. From a direct computation, we see

that these polynomials are squares, i.e. £ = ()2 and A = (\)2. Another direct

check shows that (%)? and (A\)? admit a factorisation of the following form:
KR = (K1H2K3H4)2 5 )\ = ()\1)\2)\3/\4)2 s (715)

where degk; = deg\; = 1, for i = 1,2,3,4. For the sake of readability, we
omit the explicit form of the polynomials x; and \;, i = 1,2, 3, 4, because they
are too cumbersome.

Let us consider the net generated by the invariants H; in Eq. (7.14):

»(NV) — {Quue C P ‘ v € €P? Quue = {pH1 + vHs + £(22 + 4h%H3) = 0} }.
(7.16)

It is generic in the sense that its base locus consists of eight distinct points.
This check can be done via Macaulay2 [37].

The matrices A; and A, are positive-definite symmetric quadratic forms.
As a consequence, up to orthogonsal linear maps (see [19, Section 2.2]), we can
assume A; = Id and

al a2/2 a3/2
A2 = a2/2 Qy Cl5/2 5 (717)
a3/2 a5/2 Qg

for some a; € C, i =1,...,6. Then, the quadratic form @), , ¢ takes the form:

€
Q,u,l/,f = [xl X2 X3t 1’4]%(/1'7’/75) ﬁz ) (718)

T4

where . (p,v,€) = Mo(p,v,§) + EN? Mo, v, €) and the matrices .4 (1, v, §)
and A(u, v,§) are given by:

wt+var  agv/2 vas/2

| av/2 ptvay asv /2

Mo v,€) = asv/2 asv/2  p+vag
0 0 0

(7.19a)

Mmoo O O
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daga — a% —2asa6 + azas asas — 2a3ay4 0
| —2aza¢ + azas daia6 — ag —2aqa5 +azas 0
Mo (s v,€) = a2as — 2a3a4 —2a1a5 + azas 4ajay — a3 0
0 0 0 0
(7.19b)

We study now the base locus of the linear system (") (7.16). To do so,
we first show that there exist six reducible members of the net (V). These
members will consist of twelve distinct planes. Recall that the quadratic form
associated to a symmetric matrix is factorisable if and only if its 3 x 3 minors
vanish, i.e. its rank is two. We omit the explicit computations since they are
rather cumbersome, yet straightforward. However, we present the solutions
and comment them.

There exist six solutions, which we divide in two families, namely:

M e =y 0100, i=1,2,3, (7.20a)

12 0P €] = [ra(6:) £ 26,m1(6:) < 2mi(6:)], i =1,2,3, (7.20Db)

3 (]
where ~; are the roots of the polynomial equation:
7? + (a1 + as + ag)y?
a% + a% + a%
4
a2a305 — alag — a%ag — 0%04
4

d; are the roots of the polynomial equation:

+ <a1a4 + a1a¢6 + aqa6 —

+ ajaqag + =0, (721)

53 — 4h2(a1 + a4 + a6)52 + 4h* [4(a1a4 + aiag + agag) — a% - a§ - a%] 0

— 16h°(4ara4a6 — a1a2 — a3ag + azazas — asas) = 0,

(7.22)
and
m1(0;) = dias — 2h2(2a1a5 — asas), (7.23a)
71'2((52‘) = —(2&1&5 — a2a3)5$
L on? (4a3 + a3 + a3 + a?)as
—2(ajaza3 + asasas + asasag + 2a4a5a6)
+ 8ash*(4ayasas — a1a? — a3ag + azazas — azay). (7.23b)

As a consequence, the net ©(V) contains exactly six reducible members. So,
we end up again with a configuration of twelve planes. A direct symbolic
computation to see how the eight base points are arranged on the twelve planes
was not possible because of the high complexity of the involved computations.

So, to prove that up to conjugation the map <I>§LN) is of type (A)-(1), it
remains to understand how the eight points are arranged with respect to the
twelve planes.
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7.2. Case (B)

In this section, we will adopt the same notation as in Sect. 7.1. Moreover, we
will denote by Tj;, for 1 <4 < j < 4, the unique quadric of ¥ » passing through
p; and p;, and by . the set

y:{Sij}1§i<j§4U{Tij}1§i<j§4' (724)

To simplify the description of the invariants we use the following general
result.

Lemma 7.8. Let h € € be an element of type (B). Then, h commutes with cs,
i.e. hocg = cgoh.

Proof. The projectivity h can be represented by a permutation matrix with
signs (see Lemma 4.5). Let us denote by ¢ the permutation of the coordinates
{1,...,4} induced by o. then, we have

T s gy — L (7.25a)
( ) ma(w)

pp—s Lot + (7.25b)

which completes the proof. O

Lemma 7.9. Let g1,g9o € €p) C € be two elements of type (B) which are
conjugated in €p), i.e. there exists h € € p) such that go = ho gy o h~t. Let
also Ry € C(z1,...,74) be an invariant of ®; = gy ocs. Then, Ry = Ry o h™!
s an tnvariant for o = go o c3.
Proof. The proof consists in the following chain of equalities
Ryo®y=Rioh logocs=Rioh tohogioh tocy
=Rjogi0cs3 oh™'=Rio®,0h™ ! =R,. (7.26)

Notice that the last equality is a consequence of Lemma 7.8. O

To simplify the description of the invariants in case (B) we also use the
following result.

Lemma 7.10. Let g € €y C € be an element of type (B) and let R €

C(x1,...,24) be an invariant of ® = g o c3. Consider the birational map
®F) = gk o c3. Then, the following rational function
R=c3.(R)+R, (7.27)

is an invariant of ®*) for all k > 0. Moreover, if k is odd also R is an invariant
for ®%) . While, if k is even and R = 0, then R? is an invariant of ®*).

Proof. The proof follows from Lemma 7.8 which states that ¢g* and c3 com-
mute. O

Remark 7.11. Lemmas 7.8 to 7.10 hold in general on any PM by consider-
ing permutation matrices with signs of size (M + 1) x (M + 1) and the M-
dimensional standard Cremona transformation cp;.
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Remark 7.12. We remark that, in the case in which the invariant R given by
Lemma 7.10 vanishes, we have that R is an anti-invariant for ®®*) when k is
even. Moreover, sometimes, it can happen that R= R, i.e. R is invariant, also
for k even and not just for the odd case.

Finally, we observe that, given a set of m functionally independent invari-
ants { R; }.*, of ®, it is not guaranteed that the set of invariants constructed
in Lemma 7.10 are still functionally independent.

As a consequence of Lemmas 7.9 and 7.10, if one knows the invariants
of some g o c3g then one can recover the invariants of all the maps of the form
hocz for h € €p) in the same conjugacy class of g or, for h € €, of the
form g* for some k£ > 0. A direct computation tells us that there are exactly
14 conjugacy classes in ). One representative for each of them is given
in Table 3, while the explicit form of the invariants is shown in Table 4. To
shorten the latter, we will give a set of invariants that suffices to compute all
the others via Lemma 7.10. In Table 5, we will show to which conjugacy classes
belong the second power of the projectivities involved in Table 3. Following
Remark 7.12, the invariants in Table 4 are chosen in a way that the invariants
obtained via Lemma 7.10 are functionally independent. We checked this via a
case-by-case analysis performed via computer algebra.

In the next proposition, we summarise the fact that, in order to to build
the invariants, we only need elements of ¥ p).

Proposition 7.13. Let us consider ® = g o c3 € Bir(P?), with g € C(B)- Then,
the invariants of ® are obtained as a suitable (nonlinear) combination of the
elements of X (p).

7.3. Case (C)

In this case we have no H-invariant linear system of quadrics (see Proposi-
tion 6.13) and there is only a pencil Z4 of 2H-invariant quartics (see Propo-
sition 6.14).

Consider the fOHOWiIlg three points 5127347 5137247 514723 €2y

Sio34 = Hiy + Hyp + Hy + Hyy, (7.28a)
Si304 = Hiz + Hiz + HY, + Hyy, (7.28b)
Sia23 = Hiy + Hyy + Hyy + Hyg, (7.28c¢)

corresponding to the desmic surfaces (see Remark 4.16). Notice that any g of
type (C) acts on { S12,34, 513,24, 514,23 } and this action uniquely determines
the action of g on 2, = P

Remark 7.14. Let g € € be an element of type (C). Then, the existence of
an invariant of degree d, for d > 4 depends on the action of g on { Siz 34, }
S13,24,514,23. Precisely, it depend on the number of fixed points of

g|{ S12,34,513,24,514,23 }*
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TABLE 5. Relations between conjugacy classes in ¢z) and
invariants. The invariants are build following Lemma 7.10.
Here, R; denotes the i-th invariant in Table 4 of the case in
first column

Case Conjugacy class of the square Invartiants
(i) (vii) { Ry, R2, R3 }
(x) (iv) {f1,R3, 13 }
(zi) (iv) {R1,R2,R§ }
(xii) (iv) { R%, Rz, Rs }
(xiii) (v) { Ri fo, B3}
(ziv) (viig) {Ri,R2,R%}

In this case we will not present tables similar to Tables 1 and 2. Instead,
we will give an example for each possible fixed locus of gl{ g,, 44,515 54,5145 }
(or equivalently the fixed locus of g: £4 — E4). These examples are listed in
Table 6.

Remark 7.15. We remark that no functionally independent invariants other
than the ones presented in Table 6 do exist for these maps. Indeed, if such
an invariant would exist, one could use it to define a pre-symplectic struc-
ture compatible with the map (see [14]). However, from the results in [11],
this would force the degree growth to be at most polynomial contradicting
Proposition 5.7.

8. Conclusions

In this paper, motivated by the study of the KHK discretisation of the Euler
top, we introduced a finite subgroup of PGl(4,C), we called it the Cremona-
cubes group and we denoted it by %. This group is crafted in a way that it
encompasses and generalises all the geometrical properties of the KHK dis-
cretisation of the Euler top. Indeed, the KHK discretisation of the Euler top
is projectively equivalent to the map ®() = gy o c3, with g as in (2.7), swap-
ping & and Z2. So, in order to generalise this behaviour, we considered all the
projectivities acting with finite order on all the special points of the standard
Cremona transformation. This yields the Cremona-cubes group (see Defini-
tion 4.2).

We studied the algebraic properties of the group % and we splitted it
in three disjoint subsets, namely (A), (B), and (C), depending on how the
projectivity g € € acts on { &, £, 2 } (see Remark 4.7). The birational maps
of the form ® = g o c3, for ¢ € € have different growth, covariance, and
invariance properties depending on the type of g. Type (A) gives integrable
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TABLE 7. The first 10 values of M and k for which a con-
struction similar to the one we carried out in this paper can
be possible

m 1 2 3 4 5 6 7 8 9 10
M 1 3 7 15 31 63 127 255 511 1023
k 1 2 16 2048 ~107 ~1017 ~ 1037 ~ 107 ~ 10151 ~ 10304

maps, both in the algebraic entropy (see Proposition 5.3) and in the Liouville-
Poisson sense (see Table 2). Type (B) consists of permutations with signs
of the homogeneous coordinates yielding periodic maps (see Proposition 5.4).
Type (C) gives non-integrable maps (see Proposition 5.7), which however do
preserve an invariant of order at least four and at most twelve (see Table 6).
The growth and covariance properties are discussed in a unified way for all
the elements of a given type (see Propositions 6.5, 6.9, 6.11 and 6.14 for the
covariance).

On the other hand, the construction of the invariants is specific to some
subclasses of maps. For the maps defined from elements of type (4) we char-
acterise completely the invariants up to their action on 2 (resp. &) if g swaps
& and & (resp. & and 2): that is, if the actions of g,¢’ € € of type (A)
agree on & (resp. 2), then gocs and ¢’ o ¢3 possess the same invariants (see
Tables 1 and 2). It is remarkable that even though the invariants of g o c3
depend only on the action of g on £ (resp. &?) one may not be able to recover
this action starting only from the invariants (see case (ii) in Tables 1 and 2).
This approach is different from the construction made in [2]. There, to a pair
of quadrics, it is associated a single birational map for which the quadrics are
invariant through the construction of some involution. The study of invariants
of the maps of the form g o c3 with g € € of type (B) is based on the fact
that these projectivities constitute a group, namely ¢ 5) C . We have shown
that, knowing invariants of gocs, for a given g € €p), it is possible to recover
the invariants of the maps h o cz for all h € €5) conjugated, in €p) to g,
or of the maps of the form g o c3, for & > 0 (see Lemmas 7.9 and 7.10). We
gave the invariants for a chosen representative in each of the ten independent
conjugacy classes (see Table 4). Lastly, when g € € is of type (C), we charac-
terised completely the invariants of g o c3 according to its action on the three
desmic quartics belonging to the pencil introduced in Proposition 6.14. Since
g acts on a set of three elements only three behaviours are possible: fixing the
three surfaces and hence the whole pencil, fixing only one surface, or fixing no
surface at all. We also presented the invariants in this case (see Table 6).

We remark that our construction of the invariants consists of a geometric
argument which makes our work more similar to [2,42,82] than to other papers
where invariants where successfully constructed for given maps with a given
algorithm (see [18,40,43,61,77-79]). The main difference in this work is that
we are able to characterise at once maps with all the three possible behaviours,
and, even more interestingly, the number of integrable maps derived from this
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construction is the same as the number of periodic and non-integrable ones.
This is strikingly surprising as integrable maps are deemed to be very rare.

We note that, in the construction of the Cremona-cubes group % it is
crucial the existence of a positive integer k € N such that

k- (dimP3 + 1) = |Fixcs|. (8.1)

Indeed, dimP? + 1 = 4 and |Fixc3| = 8 implying k = 2. This translates in
the fact that the vertices of the three-dimensional cube splits into the sets of
vertices of two distinct three-dimensional simplices. In general, the number
k corresponds to the number of distinct M-dimensional simplices in which
we want to split the set of vertices of a M-dimensional cube. So, a similar
construction might be possible only if there exists a positive integer k € N
such that

k- (dimPM +1) = |Fixcpyl. (8.2)
Explicitly, since |Fixcys| = 2™, we want the following equality to be satisfied
E-(M41)=2M, (8.3)

Now, from Eq. (8.3), it directly follows that k = 2" and (M + 1) = 2™ where
h,m € N are positive integers such that A +m = M. This implies:

M=2m—1, k=2¥""1"m (8.4)

so that everything is determined by the free parameter m € N. From Table 7,
we see that the next possible case is in P7. This already brings the number of
subsets of Fixcs formed by orthogonal sets of points of P7 to 16. We expect
their dynamics to be quite involved. Yet, we believe that it might be possible to
construct an analogue of the Cremona-cubes group with similar nice properties.
Work is in progress in that direction. Incidentally, we note that the number k
increases dramatically as m raises. E.g. again from Table 7, we see that, for
m = 10, k is a number with 305 digits.

We observe now that other generalisations without the need of raising the
dimension are possible. Indeed, one can consider different singularity patterns
contracting planes to points. This, happens easily by considering degenerations
of the Nambu systems discussed in Remark 7.7: tuning the free parameters in a
way that some of the \;’s and/or k;’s collapse alters the singularity structure.
We are working to characterise these degenerations and their geometric prop-
erties. Moreover, in P3, it is possible to contract surfaces both on points and
on curves. The standard Cremona transformation (1.1) only contracts planes
to points (see Sect.3.1). On the other hand the, map

§:P3 5 PP
(8.5)
[x1: T @31 x4] — [Tams : X123 T1T2 : T3]

contracts the coordinate planes {x; =0}, for ¢ = 1,2, to the coordinate
lines {2 =23 =0} and {x; = x5 =0}, respectively, the coordinate plane
{x3 =0} to the point [0 : 0 : 1 : 0], while the coordinate plane { x4 =0} is
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mapped to itself. It is easy to see that composing € with the projectivity gg in
(2.24) yields a map ®y whose degree growth is heuristically computed to be:
1,2,4,7,12,18,25,34, 44, 55, 68,82, 97,114, 132, 151 . .. (8.6)
and it is fitted by the following generating function:
224+ 22+ 1
z—13(z24+2+1)
From (8.7), we infer that the algebraic entropy of ®y vanishes and that the de-

gree growth is asymptotically quadratic. Nevertheless, the singularity patterns
are changed: there is one singularity pattern of the form:

9o(z) = T (8.7)

{plane } —— { point } —— { point } ----- » { plane }, (8.8)
analogous to the one of Fig. 2, but also two of a new kind:

{plane } —— {line } —— {line} —— {line } ----- » { plane }.
(8.9)
Work is in progress to understand the geometry of this map and its possible
extensions.
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