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Abstract. We prove that any smooth vacuum spacetime containing a
compact Cauchy horizon with surface gravity that can be normalised to
a nonzero constant admits a Killing vector field. This proves a conjec-
ture by Moncrief and Isenberg from 1983 under the assumption on the
surface gravity and generalises previous results due to Moncrief–Isenberg
and Friedrich–Rácz–Wald, where the generators of the Cauchy horizon
were closed or densely filled a 2-torus. Consequently, the maximal glob-
ally hyperbolic vacuum development of generic initial data cannot be
extended across a compact Cauchy horizon with surface gravity that can
be normalised to a nonzero constant. Our result supports, thereby, the
validity of the strong cosmic censorship conjecture in the considered spe-
cial case. The proof consists of two main steps. First, we show that the
Killing equation can be solved up to infinite order at the Cauchy horizon.
Second, by applying a recent result of the first author on wave equations
with initial data on a compact Cauchy horizon, we show that this Killing
vector field extends to the globally hyperbolic region.
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1. Introduction

Penrose’s strong cosmic censorship conjecture says that the maximal globally
hyperbolic vacuum developments of generic initial data cannot be extended
to a larger vacuum spacetime [22,23,29,30]. In spite of its importance, this
intriguing conjecture is far from being proved. Indeed, the strong cosmic cen-
sorship conjecture always receives a foremost place in the list of the most
important unresolved issues in Einstein’s theory of gravity.

If a maximal globally hyperbolic development was a proper open subset of
a larger spacetime it could be extended across a Cauchy horizon. It is therefore
of crucial importance to understand if the existence of a Cauchy horizon in a
vacuum spacetime implies some restrictions on the geometry. Exactly this type
of question was raised by Vince Moncrief—emanating from his comprehensive
investigations of various cosmological spacetimes during the early 1980’s [3,15–
17]—in connection with spacetimes admitting a compact Cauchy horizon. He
proposed that vacuum spacetimes with a compact Cauchy horizon necessarily
admits a non-trivial Killing vector field in the globally hyperbolic region. As the
existence of a Killing vector field is a non-generic property, such a statement
would imply that spacetimes with compact Cauchy horizons necessarily are
non-generic and thereby support the strong cosmic censorship conjecture in
the considered special case.

The first remarkable step in applying this idea was made by Moncrief
and Isenberg by proving the existence of a non-trivial Killing symmetry in an-
alytic electrovacuum spacetimes of dimension 4, admitting a compact Cauchy
horizon ruled by closed generators [18]. One important step in the proof was
to show that the surface gravity of any compact Cauchy horizon with closed
generators could be normalised to zero (the degenerate case) or to a nonzero
constant (the non-degenerate case). Moncrief and Isenberg conjectured in [18]
that their results should hold without assuming analyticity and that the gen-
erators are closed. Analyticity was later relaxed in the non-degenerate case by
applying a combination of spacetime extensions and the characteristic initial
value problem by Friedrich et al. [4]. Essentially the same techniques were also
used in [28] to generalise the proof to various coupled gravity matter systems.

Moncrief and Isenberg generalised their result in [18] to higher dimen-
sions in [19] by proving the existence of a non-trivial Killing symmetry for
higher dimensional analytic electrovacuum spacetimes admitting a compact
Cauchy horizon with closed generators and for higher dimensional analytic
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electrovacuum stationary black hole spacetimes. Their argument does not ap-
ply, in general, if the generators are not closed. A similar investigation for
smooth higher dimensional electrovacuum black hole spacetimes, generalising
the result in [4] to higher dimensions, was done by Hollands et al. [8].

It is important to textitasize that in all the aforementioned results on
compact Cauchy horizons, the generators were closed or densely filled a 2-torus.
The purpose of the present paper is to provide generalisations of all the earlier
results by removing both the analyticity assumption on the spacetime and the
assumptions about the structure on the generators. The only assumption in
our work is that surface gravity can be normalised to a nonzero constant. After
the present paper appeared as a preprint, Bustamente and Reiris showed [2]
(see also the work by Gurriaran and Minguzzi [5]) that if at least one generator
of a compact Cauchy horizon in a vacuum spcaetime is incomplete, then the
surface gravity can in fact be chosen to be a nonzero constant (which in turn
implies that all generators are incomplete). Our assumptions here therefore
only exclude potential compact Cauchy horizons in vacuum spacetimes where
all generators are complete. However, to date no such example is known.

The main difficulty in dropping the assumption that the compact Cauchy
horizon is ruled by closed generators or generators densely filling a 2-torus is
that each of the previously applied arguments rest on the use of Gaussian
null coordinate systems. These coordinates are supposed to be defined in a
neighbourhood of the Cauchy horizon (or—as they are applied in [4,28]—in a
neighbourhood of the universal cover of a subset of the Cauchy horizon). These
Gaussian null coordinates have to be well-defined along the null generators,
which cannot be guaranteed when some of the generators are non-closed. In
order to avoid these difficulties we base our argument on a coordinate free
framework introduced in [25].

Our proofs—besides relying heavily on the new result on wave equations
with initial data on compact Cauchy horizons in [25]—are based on the follow-
ing two fundamental new observations. First, a pair of coupled wave equations
is used, relating a vector field to the Lie derivatives of the metric and the
Ricci tensor with respect to that vector field. (A detailed derivation of these
relations is given in a separate appendix, see in particular Lemma A.1). These
simple equations allow to avoid the use of coordinate expressions for the Ricci
curvature and its Lie derivatives, as used in [18, Section II.C], and thus prove
to be the main ingredient of our proof. Second, in verifying that the Killing
equation can be solved up to any order at the Cauchy horizon—using the
aforementioned coupled wave equations—a first-order linear and homogeneous
ODE along the generators is derived for the norm of some specific components
of the transverse (to the Cauchy horizon) derivatives of the Killing equation.
An important step in the proof is to use this ODE to show that the norm
and, in turn, the pertinent components vanish. The key point here—that al-
lows to apply our argument to an arbitrary generator of the compact Cauchy
horizon—is that a global maximum principle can be applied to this ODE. In
the case when the generators are closed, Moncrief and Isenberg used a corre-
sponding maximum principle along each generator [18]. While the maximum
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principle does not apply to functions along non-closed generators, it applies to
functions defined globally on the compact Cauchy horizon (see Lemma 2.6).

Our results apply to smooth spacetimes (M, g), i.e. connected time-oriented
Lorentzian manifolds, of dimension n+1 ≥ 2. The signature of the Lorentzian
metric g is fixed to be (−,+, . . . ,+). Consider now a closed acausal topological
hypersurface Σ in M (we do not require Σ to be compact), its Cauchy devel-
opment D(Σ) is a globally hyperbolic submanifold in (M, g). The boundary
∂D(Σ) of D(Σ) is given by the disjoint union

∂D(Σ) = H+ � H−,

where H± := D±(Σ)\D±(Σ) denote the future and past Cauchy horizon,
respectively. A lot is known about Cauchy horizons (see, e.g. [7, Chap. 6,8]
and [21, Chap. 14]). In particular, a Cauchy horizon is a lightlike Lipschitz
hypersurface. Denote by H the past or future Cauchy horizon of Σ, and assume
that H is non-empty and smooth. Recall that1 there is a nowhere vanishing
lightlike vector field V , tangent to H, and a smooth function κ such that

∇V V = κV.

Definition 1.1. We say that the surface gravity can be normalised to a nonzero
constant if there is a smooth nowhere vanishing lightlike vector field V tangent
to H such that

∇V V = κV

on H for some nonzero constant κ.

The integral curves of the lightlike vector field V —these are null geodesics—
are called the generators of H.

Remark 1.1. If the surface gravity is constant and nonzero, then all genera-
tors are complete in one direction and incomplete in the other direction. After
the current paper appeared, the following remarkable converse statement was
shown in [2,5]: If H is a smooth compact Cauchy horizon in a vacuum space-
time, containing one incomplete generator, then the surface gravity can be
normalized to a nonzero constant.

The first main result of the present paper is the following theorem.

Theorem 1.1 (Existence of an asymptotic Killing vector field). Let (M, g) be
a spacetime containing a closed acausal topological hypersurface Σ and let H
denote the past or future Cauchy horizon of Σ. Assume that H is compact,
smooth and totally geodesic, and that the surface gravity can be normalised to
a nonzero constant. Assume that m ∈ N and that

∇kRic|H = 0 (1)

1 Time-orientability of M implies the existence of a nowhere vanishing time-like vector field
T on M . Since T is transversal to H, we can define a one-form field β on a neighbourhood
of H satisfying β(T ) = 1 and β(X) = 0 for all X ∈ TH. Then the vector field V along H,
defined by g(V, ·)|H = β|H, is a nowhere vanishing lightlike vector field tangent to H.
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for all k ≤ m. Then there is a smooth non-trivial vector field W on H ∪ D(Σ)
such that

∇kLW g|H = 0, (2)

for all k ≤ m. Moreover, if (1) holds for all k ∈ N0, then (2) also holds for
all k ∈ N0.

Theorem 1.1 is proved in Sect. 3. It guarantees that there is a vector
field satisfying the Killing equation up to any order. To prove the existence
of a non-trivial Killing vector field in the globally hyperbolic region we have
to propagate the asymptotic Killing field off the Cauchy horizon using wave
equations. That this can really be done is guaranteed by a recent result by
the first author [25, Thm. 1.6]. (In the analytic case the corresponding step is
done by applying the Cauchy-Kovalewski theorem.) We get the second main
result of this paper:

Theorem 1.2 (Existence of a Killing vector field). Let (M, g) be a Ricci-flat
spacetime containing a closed acausal topological hypersurface Σ and let H
denote the past or future Cauchy horizon of Σ. Assume that H is compact,
smooth and totally geodesic, and that the surface gravity can be normalised to
a nonzero constant. Then there exists a smooth non-trivial Killing vector field
W on H ∪ D(Σ), i.e.

LW g = 0.

W is lightlike on H and spacelike in D(Σ) near H, and any smooth extension
of W across H to the complement of D(Σ) is timelike near H.

Theorem 1.2 is proven in Sect. 3. In fact, it actually is not necessary
to assume that H is smooth and totally geodesic, as this is automatic by the
following theorem by combining the work of Hawking [6] (see also [7]), Larsson
[12] and by Minguzzi [13,14]:

Theorem 1.3 (Hawking & Larsson & Minguzzi). Assume that (M, g) is a space-
time satisfying the null energy condition, i.e. Ric(L,L) ≥ 0 for all lightlike
vectors L on M . Let Σ ⊂ M be a closed acausal topological hypersurface and
let H denote the past or future Cauchy horizon of Σ. If H is compact, then it
is smooth and totally geodesic.

Note that in applying [25, Thm. 1.6] to solve wave equations with initial
data given on a compact Cauchy horizon—as also indicated by [25, Coun-
terexample 2.5]—the full asymptotic expansion of the candidate Killing vector
field has to be used. In this respect our approach is different from the one by
Alexakis et al. [1], where such an asymptotic expansion was not needed. Note,
however, that the domains of existence of the solutions are also significantly
different.

There is yet another remarkable result by Isenberg and Moncrief which
has immediate relevance to our results. They proved in [10] that if there exists
a non-trivial Killing vector field in a maximal globally hyperbolic vacuum
development and the generators of the associated compact Cauchy horizon
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are non-closed, then there must exist another non-trivial Killing symmetry.
By combining [10, Thm. 3] with our results, the following corollary—its proof
is given at the end of Sect. 3—can be seen to hold.

Corollary 1.1 (Non-closed generators). Let (M, g) be a Ricci-flat spacetime
containing a closed acausal topological hypersurface Σ and let H denote the
past or future Cauchy horizon of Σ. Assume that H is compact, smooth and
totally geodesic, and that the surface gravity can be normalised to a nonzero
constant. Assume further that at least one generator of H does not close and
that D(Σ) is a maximal globally hyperbolic development. Then there exist (at
least) two distinct Killing vector fields on D(Σ), in fact the isometry group of
D(Σ) must have an S1 × S1 subgroup.

For simplicity and definiteness, and also because of the novelty of the
applied technical elements, in this paper only the vacuum problem is treated.
Note, however, that the results by Moncrief-Isenberg and Friedrich-Rácz-Wald
could be generalised in [28] (see also [26,27]) to various coupled gravity matter
models. Note also that in such a circumstance not only the invariance of the
metric but also the invariance of the matter field variables has to be demon-
strated. Nevertheless, as the techniques applied by the second author in [28]
are analogous to those applicable in the pure vacuum case we strongly believe
that our new results will also generalise to the inclusion of various matter
models. Whether these expectations are valid remains to be investigated.

Let us finally mention that after the present paper appeared as a preprint,
the first author proved in [24] that the Killing vector field in Theorem 1.2
extends beyond the horizon as well. The results in [24] heavily rely on Theorem
1.2.

This paper is structured as follows. Section 2 is to introduce the setup and
prove Theorem 1.1. The proof of the main result of this paper, Theorem 1.2,—
which is obtained by a combination of Theorem 1.1 and [25, Thm. 1.6]—is
included in Sect. 3. The derivation of the key identity is given in the Appendix.
This identity is applied in proving Lemmas 2.3 and 2.4 but they are proven in
a general setting.

2. Existence of an Asymptotic Killing Vector Field

The ultimate goal of this section is to prove Theorem 1.1. We assume in this
section that (M, g) is a spacetime and that H ⊂ M is a smooth, compact,
totally geodesic Cauchy horizon with surface gravity that can be normalised
to a nonzero constant. For definiteness we assume that H is the past Cauchy
horizon, the other case then follows by a time reversal.

For any subset N ⊂ M and any vector bundle F → M , we denote the
space of smooth sections in F defined on N by

C∞(N,F ).

Our convention for the Riemannian curvature tensor is

R(X,Y,Z,W ) = g(∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,W )
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and the Ricci curvature is given by

Ric(X,Y ) = trg (R(X, ·, ·, Y )) .

2.1. The null time function

Since κ is a nonzero constant, the simple rescaling V 
→ 1
κV implies the rescal-

ing κ 
→ 1 in ∇V V = κV . Thereby, without loss of generality, we shall assume
that there exists a nowhere vanishing lightlike vector field V tangent to H such
that

∇V V = V (3)

holds everywhere on H. As shown in [25, Prop. 3.1], a “null time function” can
be constructed in a future neighbourhood of the past Cauchy horizon H. The
procedure is outlined below, whereas details can be found in [25, Prop. 3.1].
As H is totally geodesic, it follows from [11, Thm. 30] that

g(∇XV, Y ) = 0

for all X,Y ∈ TH. Therefore, there exists a smooth one-form ω on H such
that

∇XV = ω(X)V (4)

for all X ∈ TH. Note that, in virtue of (3), ∇V V = V = ω(V )V implying
that ω(V ) = 1. Since ω is nowhere vanishing it follows that ker(ω) is a vector
bundle over H. We get the splitting

TH = RV ⊕ ker(ω).

Using time-orientability of M , it can then be shown that there is a nowhere
vanishing future pointing lighlike vector field L on H such that L ⊥ ker(ω) and
g(L, V ) = −1. It follows that L is everywhere transverse to H. We may there-
fore define a local “null frame” {L, V, e2, . . . , en} along H such that {e2, . . . , en}
is an orthonormal frame of ker(ω), and the metric takes the form

g|H =

⎛
⎝

0 −1 0
−1 0 0
0 0 δij

⎞
⎠ .

It is then shown in [25, Prop. 3.1] that by flowing H along the lighlike geodesics
emanating from H with tangent L we get a foliation of an open subset of H
in H ∪D(Σ) by hypersurfaces diffeomorphic to H. More precisely, there exists
an open set U ⊆ H ∪ D(Σ), with H ⊂ U , and a unique smooth vector field
∂t, such that ∇∂t

∂t = 0 and ∂t|H = L and an associated smooth “null time
function” t : U → [0, ε), such that ∂tt = 1 and such that U is diffeomorphic
to [0, ε) × H. The time function t : U → [0, ε) is the “time” coordinate on
U ∼= [0, ε) × H. Let us textitasize, however, that we use the notation ∂t even
though it is not constructed as a part of a coordinate system. The t = const
level hypersurfaces will be denoted by Ht. For t > 0, Ht are Cauchy surfaces
of D(Σ), whereas H0 = H is the Cauchy horizon. In particular, we identify
the horizon H with the set {t = 0}.
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Define the vector field W on U by demanding that

[W,∂t] = 0, W |t=0 = V.

The vector field W will indeed be the Killing vector field in Theorem 1.2
(so far only defined near the horizon) and the Killing vector field to infinite
order at the horizon as in Theorem 1.1. The remaining part of the paper is to
prove this (and extend the Killing vector field to the entire globally hyperbolic
region, as in Theorem 1.2). Extend then the frame {e2, . . . , en} of ker(ω) by
Lie propagating them along ∂t, i.e. by demanding that

0 = [∂t, e2] = . . . = [∂t, en].

It follows that (W, e2, . . . , en) is a local frame for THt for any t ∈ [0, ε). In order
to express wave equations in terms of the null time function, the following
lemma is essential.

Lemma 2.1. Denote by gαβ := g(eα, eβ) the components of the metric, with
respect to the frame

{e0 := ∂t, e1 := W, e2, . . . , en}
on U . Let gαβ denote the inverse of gαβ. Then, for the components of the
metric

g00 = g11 = 0 ,

g01 = g01 = −1 ,

g0i = g1i = 0 , i = 2, . . . , n ,

hold. Moreover, we also have

g11|t=0 = g00|t=0 = 0,

g1i|t=0 = g0i|t=0 = 0, i = 2, . . . , n.

Proof. Since ∂t is lightlike, g00 = g(∂t, ∂t) = 0. By construction, we also have

g01|t=0 = −1 ,

g0i|t=0 = 0, i = 2, . . . , n.

It also follows that for any α, we have

∂tg0α = ∂tg(∂t, eα) = g(∇∂t
∂t, eα) + g(∂t,∇∂t

eα)

= g(∂t,∇eα
∂t) = 1

2 ∂eα
g00 = 0 .

Accordingly, we have that g01 = −1 and g0i = 0 for i = 2, . . . , n, and, in turn,
that

gαβ =

⎛
⎝

0 −1 0
−1 g11 g1i

0 g1i gij

⎞
⎠ ⇒ gαβ =

⎛
⎝

g00 −1 g0i

−1 0 0
g0i 0 gij

⎞
⎠ . (5)

This completes the proof of the first part of our assertions.
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Since V is lightlike, it also follows that g(W, ei)|t=0 = g(V, ei|t=0) = 0 for
i = 1, . . . , n, which implies

gαβ |t=0 =

⎛
⎝

0 −1 0
−1 0 0
0 0 gij |t=0

⎞
⎠ ⇒ gαβ |t=0 =

⎛
⎝

0 −1 0
−1 0 0
0 0 gij |t=0

⎞
⎠ , (6)

for i, j = 2, . . . , n, as claimed. �

2.2. Properties of the Null Time Function

A certain curvature assumption at the horizon implies strong restrictions on
the vector fields ∂t and V along H. We use the notation

∇t := ∇∂t

where t is the null time function as specified in Sect. 2.1.

Lemma 2.2. Assume that Ric(Y, V )|t=0 = 0 for any Y ∈ TH. Then for any
smooth vector field X on M such that X|t=0 ∈ C∞(H, ker(ω)) and such that
[∂t,X] = 0, we have

∇X∂t|t=0 = ∇tX|t=0 ∈ C∞(H, ker(ω)) ,

∇V X|t=0 = [V,X]|t=0 ∈ C∞(H, ker(ω)) ,

∇V ∂t|t=0 = ∇tW |t=0 = −∂t|t=0

and consequently

∂tg11|t=0 = 2 .

∂tg
00|t=0 = −2 .

Proof. Recall Eq. (4), which is

∇Y V = ω(Y )V

for all Y ∈ TH, which shows that Y ∈ ker(ω) if and only if ∇Y V = 0. This
will be used several times in this proof.

Since

g(∇X∂t, ∂t)|t=0 = 1
2Xg(∂t, ∂t)|t=0 = 0 ,

g(∇X∂t, V )|t=0 = Xg(∂t, V )|t=0 − g(∂t,∇XV )|t=0 = 0 ,

we conclude by Lemma 2.1 that ∇X∂t|t=0 ∈ C∞ (H, ker(ω)), proving the first
assertion.

Since ∇XV |t=0 = 0, proving the second assertion is equivalent to showing
that [X,V ]|t=0 ∈ C∞(H, ker(ω)), or equivalently verifying that ∇[X,V ]V |t=0 = 0.
In doing so notice, first, that since H is totally geodesic and as [X,V ]|t=0 ∈ TH
it follows that g(∇[X,V ]V,Z)|t=0 = 0 for all Z ∈ TH. Hence it remains to show
that g(∇[X,V ]V, ∂t)|t=0 = 0 holds as well. For this, note first that

Ric(X,V )|t=0 = −R(X,V, ∂t, V )|t=0 +
n∑

i=2

R(X, ei, ei, V )|t=0 , (7)
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for an arbitrary orthonormal frame {e2, . . . , en} in ker(ω). The second term in
Eq. (7) vanishes, as

R(X, ei, ei, V )|t=0 = −R(X, ei, V, ei)|t=0

= −g(∇X(∇ei
V ), ei)|t=0 + g(∇ei

(∇XV ), ei)|t=0

+ g(∇[X,ei]V, ei)|t=0

= 0 ,

where, in the last step, the relations ∇ei
V |t=0 = 0 = ∇XV |t=0 and [X,V ]|t=0 ∈

TH have been used. Evaluating the first term in Eq. (7) at t = 0, we get

−R(X,V, ∂t, V )|t=0 = R(X,V, V, ∂t)|t=0

= g(∇X(∇V V ), ∂t)|t=0 − g(∇V (∇XV ), ∂t)|t=0

− g(∇[X,V ]V, ∂t)|t=0

= −g(∇[X,V ]V, ∂t)|t=0 ,

where the relations ∇V V |t=0 = V |t=0 and ∇XV |t=0 = 0 have been used.
Combining this with Eq. (7) and using that, by assumption, Ric(X,V )|t=0 = 0
we get

g(∇[X,V ]V, ∂t)|t=0 = 0,

and, in turn, that [X,V ]|t=0 ∈ C∞(H, ker(ω)), proving the second assertion.
To verify the third assertion, since ∂t|t=0 ⊥ ker(ω), we get

g(∇V ∂t,X)|t=0 = V g(∂t,X)|t=0 − g(∂t,∇V X)|t=0 = 0,

where the second term vanishes, in virtue of the assertion that has just been
verified above. In addition, we further have

g(∇V ∂t, ∂t)|t=0 =
1
2
V g(∂t, ∂t)|t=0 = 0 ,

g(∇V ∂t, V )|t=0 = V g(∂t, V )|t=0 − g(∂t,∇V V )|t=0 = 1 .

In virtue of Lemma 2.1 and since [∂t,W ] = 0, it follows that ∇V ∂t|t=0 =
−∂t|t=0 = ∇tW |t=0.

Finally, we compute

∂tg11|t=0 = L∂t
g(V, V )|t=0 = 2 g(∇V ∂t, V )|t=0 = −2 g(∂t, V )|t=0 = 2 ,

∂tg
00|t=0 = −g0αg0β∂tgαβ |t=0 = −∂tg11|t=0 = −2 ,

verifying the last assertion. �
2.3. The Coupled Wave Equations

Raising and lowering of indices will be signified—in non-self explaining
situations—by the musical symbols � and �, respectively. For any covariant
2-tensor field u on M , the symbol �u is defined as

�uab := −∇c∇cuab.

Accordingly, in any (local) frame {e0, . . . , en}, defined on subsets of M , the
term �u is given as

�u = −gαβ(∇eα
∇eβ

u − ∇∇eα eβ
u).
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For any covariant 2-tensor u the specific contraction Ra
c
b
d ucd of the Riemann

tensor an u will be denoted by Riem(u)

Riem(u)ab := Ra
c
b
d ucd.

Finally div(V ) will stand for ∇aV a, whereas, for any covariant 2-tensor u,
div(u) will denote the contraction ∇auab.

The key relation, verified by the proof of Lemma A.1 in the appendix, is
the following:

Lemma 2.3. Let Z be a smooth vector field in U . If (∇t)kRic|t=0 = 0 for all
k ≤ m + 1, then

(∇t)k
(
�LZg − 2Riem(LZg) + Ldiv(LZg−div(Z)g)�g

)
|t=0 = 0, (8)

for all k ≤ m.

Analogously, in the vacuum case, the following lemma can also be deduced
from Lemma A.1.

Lemma 2.4. Assume that (M, g) is a vacuum spacetime and let Z be a smooth
vector field in U . Then

�LZg − 2Riem(LZg) + Ldiv(LZg−div(Z)g)�g = 0 , (9)

�Z + div
(LZg − div(Z) g

)� = 0 . (10)

The next lemma plays a key role in the proof of Theorem 1.1. In what
follows it will be said that a linear differential operator P is differentiating
along Ht if Pu|Ht

only depends on u|Ht
for all sections u, or, in other words,

if P does not involve ∇t-derivatives.

Lemma 2.5. Let Z be a smooth vector field in U . For any k ∈ N0 and for any
X ∈ C∞(H, TH)

(∇t)k (�LZg − 2Riem(LZg)) |t=0

= 2∇V (∇t)k+1LZg|t=0 + 2 (k + 1) (∇t)k+1LZg|t=0

+ Sk(LZg|t=0, . . . , (∇t)kLZg|t=0) , (11)

(∇t)kdiv(LZg − div(Z)g)|t=0(X)

= −(∇t)k+1LZg|t=0(V,X)

+ Tk(LZg|t=0, . . . , (∇t)kLZg|t=0)(X) (12)

hold, where Sk and Tk are linear differential operators differentiating only along
H.

Proof. We start by verifying Eq. (11). Note first that (∇t)k(−2Riem(LZg))
does not depend on (∇t)k+1LZg. Hence

(∇t)k (−2Riem(LZg)) = S1
k(LZg|Ht

, . . . , (∇t)kLZg|Ht
),

for some linear differential operator S1
k which is differentiating only along Ht.

Let

{e0 := ∂t, e1 := W, e2, . . . , en}
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be the local frame introduced in Sect. 2.1, where {e2, . . . , en} is a frame for the
vector bundle ker(ω). In the next step, we will use the fact that

[∇t,∇eα
] = R(∂t, eα) + ∇[∂t,eα] = R(∂t, eα)

where R is the curvature tensor on M , realized here as a (2, 2)-tensor. Con-
sequently [∇t,∇eα

] is an endomorphism (a differential operator of order 0).
Evaluating (∇t)k�LZg using this, we get

(∇t)k�LZg

= −(∇t)k
(
gαβ(∇eα

∇eβ
− ∇∇eα eβ

)LZg
)

= −[(∇t)k, gαβ ](∇eα
∇eβ

− ∇∇eα eβ
)LZg − gαβ [(∇t)k,∇eα

]∇eβ
LZg

− gαβ∇eα
[(∇t)k,∇eβ

]LZg + gαβ [(∇t)k,∇∇eα eβ
]LZg + �(∇t)kLZg

= −k∂t(g00)(∇t)k−1(∇t)2LZg + S2
k(LZg|Ht

, . . . , (∇t)kLZg|Ht
)

+ �(∇t)kLZg ,

for some linear differential operator S2
k, which is differentiating only along Ht.

Before evaluating this expression at t = 0, note that since H is totally geodesic,
we have that ∇eα

eβ |t=0 ∈ TH for α, β = 1, . . . , n. Evaluating then (∇t)k�LZg
at t = 0, in virtue of Lemmas 2.1 and 2.2, we get

(∇t)k�LZg|t=0 = 2∇V (∇t)k+1LZg|t=0 + 2 (k + 1) (∇t)k+1LZg|t=0

+ S3
k(LZg|t=0, . . . , (∇t)kLZg|t=0) ,

for some linear differential operator S3
k which is only differentiating along H,

verifying Eq. (11).
In verifying Eq. (12), assume that X is Lie propagated along ∂t, i.e. [∂t,X]

= 0. It follows that X ∈ THt for all t ∈ [0, ε). Using div(div(Z)g)(X) =
1
2Xtrg(LZg) we immediately get that

(∇t)kdiv
(
div(Z)g

)
(X)|t=0 = T 1

k (LZg|t=0, . . . , (∇t)kLZg|t=0)(X),

for some linear differential operator T 1
k which is only differentiating along H.

Analogously, we also have that

(∇t)kdiv(LZg)(X) = (∇t)k(gαβ∇eα
LZg(eβ ,X))

= g0α((∇t)k+1LZg)(eα,X)

+ T 2
k (LZg|Ht

, . . . , (∇t)kLZg|Ht
)(X) ,

for some linear differential operator T 2
k which is only differentiating along Ht.

Evaluating at t = 0, in virtue of Lemma 2.1, we get

(∇t)kdiv(LZg)(X)|t=0 = −((∇t)k+1LZg)(V,X)|t=0

+ T 2
k |H(LZg|t=0, . . . , (∇t)kLZg|t=0)(X) .

Combining these observations completes the verification of Eq. (12). �
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2.4. The key lemma

The proof of the vanishing of various components of the Killing equation on
H relies heavily on the following observation:

Lemma 2.6. Assume that a is a smooth symmetric 2-tensor field on H and β
is a nowhere vanishing function, such that

∇V a(X,Y ) + β a(X,Y ) = 0 (13)

for all X,Y ∈ ker(ω). Then a(X,Y ) = 0 for all X,Y ∈ ker(ω).

Proof. The proof relies on the fact that ker(ω) ⊂ TH is a Riemannian sub-
bundle. Thus, in particular, g is positive definite on ker(ω), we let g denote its
restriction to ker(ω). This induces a positive definite metric g on the space

ker(ω)∗ ⊗sym ker(ω)∗ ⊂ ker(ω)∗ ⊗ ker(ω)∗,

of symmetric 2-tensor fields by making use of the inverse of g. Using the
abstract index notation g(a, a) can be given as

g(a, a) = gikgjl aijakl,

where the indices run over 2, . . . , n. In any local g-orthonormal frame {e2, . . . ,
en} in ker(ω), g(a, a) can then be expressed as

g(a, a) =
n∑

i,j=2

a(ei, ej)2.

Differentiating this along V , we get

V g(a, a) =
n∑

i,j=2

V (a(ei, ej)2)

= 2
n∑

i,j=2

(V a(ei, ej)) a(ei, ej)

= 2
n∑

i,j=2

(
∇V a(ei, ej) a(ei, ej) + a(∇V ei, ej) a(ei, ej)

+ a(ei,∇V ej) a(ei, ej)
)

.

As verified by Lemma 2.2 we have ∇V ei ∈ ker(ω) for i = 2, . . . , n, which
implies

n∑
i,j=2

a(∇V ei, ej) a(ei, ej) =
n∑

i,j,k=2

g(∇V ei, ek) a(ek, ej) a(ei, ej)

= −
n∑

i,j,k=2

g(ei,∇V ek) a(ek, ej) a(ei, ej)

= −
n∑

i,k=2

a(ek, ej) a(∇V ek, ej) .
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By combining all the above observations, in virtue of (13) we get

V g(a, a) = 2 g(∇V a, a) = −2β g(a, a).

Since H is compact, the scalar function g(a, a) must attain its maximum and
minimum. We necessarily have that V g(a, a) = 0 at these locations and since
β �= 0 also that g(a, a) = 0. This implies then that g(a, a) = 0 everywhere
on H. Finally, as g is a positive definite metric on ker(ω)∗ ⊗sym ker(ω)∗ our
assertion a = 0 follows as claimed. �
2.5. Finishing the proof

The proof of Theorem 1.1 will be given by an induction argument.
We start by showing that the components (∇t)kLW g(∂t, ·)|t=0 can be

expressed in terms of lower order derivatives of LW g.

Lemma 2.7. For any k ∈ N, we have

(∇t)k+1LW g(∂t, ·)|t=0 = Kk(LW g|t=0, . . . , (∇t)kLW g|t=0),

where Kk is a linear differential operator along H.

Proof. First we show that (L∂t
)k+1g(∂t, ·) = 0 for all k ∈ N. To see this we

shall use a local frame of the type {e0 := ∂t, e1 := W, e2, . . . , en} as in Lemma
2.1. Since [∂t, eα] = 0 for α = 0, . . . , n, it follows that

L∂t
g(∂t, eα) = ∂tg(∂t, eα) = g(∂t,∇teα) = 1

2 eαg(∂t, ∂t) = 0

for α = 0, . . . , n. Hence, we also have that

(L∂t
)k+1g(∂t, eα) = (∂t)kL∂t

g(∂t, eα) = 0

for α = 0, . . . , n as claimed. By applying [∂t,W ] = 0, we also get

(L∂t
)k+1LW g(∂t, eα) = LW (L∂t

)k+1g(∂t, eα)

= W (L∂t
)k+1g(∂t, eα) − (L∂t

)k+1g(∂t, [W, eα])
= 0 ,

for α = 0, . . . , n, showing that (L∂t
)k+1LW g(∂t, ·) = 0 as claimed. The proof is

completed by observing that (L∂t
)k+1−(∇t)k+1 is a linear differential operator

of order k. �
The first step in our inductive proof the following:

Lemma 2.8 (The case m = 0). Assume that Ric|t=0 = 0. Then

LW g|t=0 = 0.

Proof. Since H is totally geodesic, it follows that

LW g|t=0(X,Y ) = g(∇XV, Y )|t=0 + g(X,∇Y V )|t=0 = 0,

for all X,Y ∈ TH. It therefore remains to show that LW g|t=0(∂t, ·) = 0 as
well. In doing so note first that by Lemma 2.2 we have

LW g|t=0(∂t, ∂t) = 2g(∇tW,∂t)|t=0 = −2g(∂t, ∂t)|t=0 = 0 ,

LW g|t=0(∂t, V ) = g(∇tW,V )|t=0 + g(∇V V, ∂t)|t=0

= g(−∂t, V )|t=0 + g(V, ∂t)|t=0 = 0 ,
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and, for any smooth vector field X such that X|t=0 ∈ C∞(H, ker(ω)), that

LW g|t=0(∂t,X) = g(∇tW,X)|t=0 + g(∂t,∇XV )|t=0 = −g(∂t,X)|t=0 = 0 .

This completes the verification of LW g|t=0 = 0. �

Lemma 2.9. Assume that Ric|t=0 = 0. Then

(div(LW g − div(W )g) (X)|t=0 = 0 ,

for all X ∈ TH.

Proof. By applying Eq. (12) with k = 0 and Z = W , we get

div (LW g − div(W )g) (X)|t=0 = −∇tLW g(V,X)|t=0

for all X ∈ TH. By Lemma 2.2, it also follows that

−∇tLW g(V, V )|t=0 = −2g(∇2
∂t,V W,V )|t=0

= −2R(∂t, V, V, V )|t=0 − 2g(∇V ∇tW,V )|t=0

+ 2g(∇∇V ∂t
W,V )|t=0

= 2g(∇V ∂t, V )|t=0 − 2g(∇tW,V )|t=0

= 0 ,

since [∂t,W ] = 0. Using that Ric(V,X)|t=0 = 0 and Lemma 2.2, we get then
for any X ∈ ker(ω):

−∇tLW g(V,X)|t=0 = g(∇2
∂t,V W,X)|t=0 + g(∇2

∂t,XW,V )|t=0

= R(∂t, V, V,X)|t=0 + R(∂t,X, V, V )|t=0

+ g(∇2
V,∂t

W,X)|t=0 + g(∇2
X,∂t

W,V )|t=0

=
n∑

i=2

R(ei, V, ei,X)|t=0 + g(∇V ∇tW,X)|t=0

− g(∇∇V ∂t
W,X)|t=0 + g(∇X∇tW,V )|t=0

− g(∇∇X∂t
W,V )|t=0

= −
n∑

i=2

R(ei,X, V, ei)|t=0 − g(∇V ∂t,X)|t=0

+ g(∇tV,X)|t=0 − g(∇X∂t, V )|t=0

− (∇X∂t)g(V, V )|t=0

= −
n∑

i=2

g(∇ei
∇XV − ∇X∇ei

V − ∇[ei,X]V, ei)|t=0

= 0 .

Combining these observations completes the proof. �

We may now proceed with the induction step:
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Lemma 2.10. (The induction step) Let m ∈ N. Assume that (∇t)kRic|t=0 = 0
for all k ≤ m, and that

(∇t)kLW g|t=0 = 0 , (14)

for all k ≤ m − 1. Then

(∇t)mLW g|t=0 = 0 .

Proof. Note first that Lemma 2.7 implies that

(∇t)mLW g|t=0(∂t, ·) = 0.

It therefore suffices to show the vanishing of the remaining components.
The key equation in the proof is obtained by combining assumptions (14)

with Eqs. (8) and (11). We get

0 = 2∇V ∇k
t LW g|t=0 + 2k∇k

t LW g|t=0

− (∇t)k−1Ldiv(LW g−div(W )g)�g|t=0 , (15)

for any 1 ≤ k ≤ m.
Let us treat the case m = 1 separately. First, Eq. (12), with k = 0,

combined with Lemma 2.9 proves that

∇tLW g(V,X)|t=0 = 0,

for any X ∈ TH. Lemma 2.9 implies that for any X,Y ∈ TH,

Ldiv(LW g−div(W )g)�g(X,Y )|t=0 = ∇Xdiv (LW g − div(W )g) (Y )|t=0

+ ∇Y div (LW g − div(W )g) (X)|t=0

= Xdiv (LW g − div(W )g) (Y )|t=0

− div (LW g − div(W )g) (∇XY )|t=0

+ Y div (LW g − div(W )g) (X)|t=0

− div (LW g − div(W )g) (∇Y X)|t=0

= 0,

where we have used that ∇XY,∇Y X ∈ TH, since H is totally geodesic. In-
serting this into (15), with k = 1, we note that

∇V ∇tLW g(X,Y )|t=0 + ∇tLW g(X,Y )|t=0 = 0

for all X,Y ∈ TH. By Lemma 2.6, we conclude that

∇tLW g(X,Y )|t=0 = 0

for all X,Y ∈ ker(ω). Hence ∇tLW g|t=0 = 0, which is the claim for m = 1.
We may now assume that m ≥ 2. We first claim that

∇k
t div (LW g − div(W )g) |t=0 = 0 (16)

for all k ≤ m − 1. For k ≤ m − 1, this is immediate from (12). The idea for
k = m − 1 is to insert ∂t into Eq. (15). Applying the induction assumption
and Eq. (15), with k = m − 1, we note that

(∇t)m−2Ldiv(LW g−div(W )g)�g|t=0 = 0.
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Inserting ∂t, we conclude that

∇m−1
t div (LW g − div(W )g) |t=0 = 0

as claimed. Equation (12), with k = m − 1, now gives

∇m
t LW g|t=0(V,X) = 0,

for any X ∈ TH. Moreover, (16) implies together with Eq. (15), with k = m,
that

∇V ∇m
t LW g|t=0 + m∇m

t LW g|t=0 = 0

for all X,Y ∈ TH. Lemma 2.6 thus implies that

∇m
t LW g|t=0(X,Y ) = 0,

for all X,Y ∈ ker(ω). This completes the proof. �

Proof of Theorem 1.1. The proof follows by induction using Lemmas 2.8 and
2.10. �

3. Existence of a Killing Vector Field

The purpose of this section is to prove our main result, Theorem 1.2, by com-
bining Theorem 1.1 and [25, Thm. 1.6].

Proof of Theorem 1.2. Note first that by Theorem 1.1, the vector field W ,
defined on the one-sided neighbourhood U = [0, ε) × H of H, satisfies

∇mLW g|H = 0

for all m ∈ N0, and thus, by (10) and (12), also

∇m�W |H = 0 (17)

for all m ∈ N0. The idea is now to use W as initial data for a characteristic
initial value problem, for which well-posedness was proven by the first author
in [25, Thm. 1.6]. The solution to the characteristic initial value problem, which
we call Ŵ , will be shown to be a Killing vector field, which coincides with the
locally constructed W on U . The vector field Ŵ will thus extend W to the
entire globally hyperbolic region, proving Theorem 1.2.

By Theorem 1.6 of [25] with P = �, f = 0 and wN = W , using (17),
there exists a unique vector field Ŵ ∈ C∞(H ∪ D(Σ)) such that

�Ŵ = 0

on H ∪ D(Σ), and such that

∇mŴ |H = ∇mW |H (18)

for all m ∈ N0. Inserting �Ŵ = 0 into (10) and (9), we get

�LŴ g − 2Riem(LŴ g) = 0 . (19)

Note also that Eq. (18), along with Theorem 1.1, implies that

∇mLŴ g|H = ∇mLW g|H = 0 ,
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for all m ∈ N0, which in virtue of [25, Cor. 1.8] and (19) implies that LŴ g = 0
on H ∪ D(Σ).

We therefore know that Ŵ is a Killing vector field on H ∪ D(Σ) and
would like to show that

Ŵ |U = W,

i.e. that Ŵ is really extending W to the globally hyperbolic region. Since
Ŵ |H = V = W |H and [∂t,W ] = 0, it suffices to show that

[∂t, Ŵ ] = 0. (20)

By (18), we in particular know that ∇tŴ |H = ∇tW |H and hence

LŴ ∂t|H = [∂t, Ŵ ]|H = 0,

so the lightlike vector ∂t|H is invariant under the flow of Ŵ . Recall now that
∇∂t

∂t = 0, i.e. the integral curves of ∂t are the geodesics in U emanating
from the Ŵ -invariant vector field ∂t|H. Since Ŵ is a Killing vector field, these
geodesics, and hence ∂t, are Ŵ -invariant, which proves (20). We conclude that
indeed

Ŵ |U = W,

as claimed. In particular, this shows that W is indeed a Killing vector field.
Finally, by Lemma 2.2, we know that

∂tg(W,W )|H = ∂tg11|t=0 = 2,

verifying that W is spacelike in a future neighbourhood of H and that any
smooth extension of W to the complement of D(Σ) across H, is timelike. �

We finish by proving Corollary 1.1.

Proof of Corollary 1.1. In the proof of Theorem 1.1, we see that the Killing
vector field W satisfies [∂t,W ] = 0 and W |H = V , which implies that W is
tangent to the hypersurfaces Ht := {t} × H in U . In virtue of [25, Prop. 3.1],
the hypersurfaces Ht are Cauchy surfaces in the maximal globally hyperbolic
spacetime D(Σ) for any t ∈ (0, ε). Accordingly, W is a spacelike Killing vector
field on (−ε, ε) × H, which leaves the individual Cauchy surfaces Ht invariant
for any t ∈ (0, ε). Therefore [10, Thm. 3] can be applied to complete the proof
of Corollary 1.1. �
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Appendix

The purpose of this appendix is to verify the key relations applied in our argu-
ment. Notably, (8), (9) and (10) are just special cases of certain identities which
hold for any sufficiently regular vector field on any differentiable manifold M
endowed with a semi-Riemannian metric g. The signature of g does not play
any role so it could be arbitrary. Let us also textitasize that the derivations in
this appendix make no use of Einstein’s equations or any other filed equation.

We use the notation introduced in Sect. 2.3 together with Ric�(Z) denot-
ing Rica

bZb and Ric�(u) denoting Rica
cucb for any vector field Z and covariant

2-tensor u.

Lemma A.1. For any smooth vector field Z on an n-dimensional differentiable
manifold M endowed with a semi-Riemannian metric g the following identities
hold

�Z + div(LZg − div(Z) g)� = Ric�(Z) (A.1)

�LZg − 2Riem(LZg) − L�Zg = 2LZRic − LRic� (Z) g

− 2 sym[Ric�(LZ g)] . (A.2)

Remark 3.1. Note that Lemmas 2.3 and 2.4 are immediate consequences of
Lemma A.1. Note also that in virtue of (A.1) Eq. (A.2) could also be written

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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as

�LZg − 2Riem(LZg) + Ldiv (LZg−div(Z) g)�g

= 2LZRic − 2 sym[Ric�(LZ g)] . (A.3)

This equation will play a central role in generalising our result to the case
of various coupled gravity–matter systems following the strategy applied in
[26,27].

Proof. The proof of (A.1) and (A.2) is given by straightforward calculations
carried out below by making use of explicit index notation. In doing so our
conventions follow those of [30].

The first identity comes as

[
�Z � + div(LZg − div(Z) g)

]
b

= −∇a∇aZb + ∇a [(∇aZb + ∇bZa) − (∇eZe) gab]

= [∇a∇b − ∇b∇a] Za

= R b
aZa

=
[
Ric(Z)

]
b . (A.4)

The second identity is somewhat more involved but it is also straightforward.
Note that by evaluating �LZg we get first

[
�LZg

]
ab = −∇e∇e (∇aZb + ∇bZa)

= −gef [∇e∇f (∇aZb + ∇bZa)]

= −gef
[∇e (∇a∇fZb) + ∇e(Rfab

dZd)

+ ∇e (∇b∇fZa) + ∇e(Rfba
dZd)

]

= −gef
[∇a (∇e∇fZb) + Reaf

d∇dZb + Reab
d∇fZd

+ (∇eRfab
d)Zd + Rfab

d(∇eZd) + ∇b (∇e∇fZa)

+ Rebf
d∇dZa + Reba

d∇fZd + (∇eRfba
d)Zd

+ Rfba
d(∇eZd)

]

= −2
[∇(a|

(∇e∇eZ|b)
)

+ R(a|d∇dZ|b) − Ra
e
b
f (∇eZf + ∇fZe)

+ (∇eRe(ab)
d)Zd

]

=
[ L� Zg + 2Riem(LZg)

]
ab − 2R(a|d∇dZ|b)

− 2 (∇eRe(ab)
d)Zd . (A.5)

The proof is completed once the last two terms are put into some more favor-
able form. In doing so we shall derive first some useful auxiliary relations. For
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instance, by a straightforward calculation verifies

LZRab = Ze∇eRab + Reb∇aZe + Rae∇bZ
e

= Ze∇eRab + ∇a(RebZ
e) + ∇b(RaeZ

e)

− [(∇aReb) + (∇bRae)] Ze

=
[∇eRab − 2∇(a|R|b)e

]
Ze +

[LRic�(Z) g
]
ab . (A.6)

By making use then the contracted Bianchi identity

∇eRdab
e + ∇dRab − ∇aRbd = 0, (A.7)

and the symmetries of the Riemann tensor, we get

(∇eReab
d)Zd = (∇eRa

ed
b)Zd = (∇eRdba

e)Zd = [∇bRad − ∇dRab] Zd,

where in the last step (A.7) was used. By combining this last relation with
(A.6) gives then

2 (∇eRe(ab)
d)Zd = 2

[∇(a|R|b)d − ∇dRab

]
Zd

=
[LRic�(Z) g − LZRic

]
ab − Ze∇eRab . (A.8)

Noticing finally that

2R(a|d∇dZ|b) = 2R(a|dLZ gd|b) − Ra
d∇bZd − Rb

d∇aZd (A.9)

a combination of (A.9) and (A.8), in virtue of the first line of (A.6), gives then

2R(a|d∇dZ|b) + 2 (∇eRf(ab)
d)Zd

=
[ LRic�(Z) g − 2LZRic + 2 sym[Ric�(LZ g)]

]
ab ,

which, along with (A.5), completes the verification of (A.2). �

Remark 3.2. We would like to textitasize again that the above computation is
free of using any sort of field equation concerning the metric or restrictions on
its signature. It would be of interest to find various other applications of the
identities (A.1) and (A.2).
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