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Berezin Quantization, Conformal Welding
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Dedicated to the memory of our old friend Krzysztof Gawedzki.

Abstract. Following Nag–Sullivan, we study the representation of the
group Diff+(S1) of diffeomorphisms of the circle on the Hilbert space
of holomorphic functions. Conformal welding provides triangular decom-
positions for the corresponding symplectic transformations. We apply
Berezin formalism and lift this decomposition to operators acting on the
Fock space. This lift provides quantization of conformal welding, gives
a new representative of the Bott–Virasoso cocycle class, and leads to a
surprising identity for the Takhtajan–Teo energy functional on Diff+(S1).

1. Introduction

Coadjoint orbits of the canonical central extension

1 → S1 → ̂Diff+(S1) → Diff+(S1) → 1

of the group G = Diff+(S1) of orientation-preserving diffeomorphisms of the
circle (also called Virasoro coadjoint orbits) attracted attention in both the
mathematics and physics literature since long time, see, e.g., [2,6,8,13,17].
The coadjoint action on the hyperplane corresponding to the coordinate c
(dual to Lie(S1) ∼= R) is defined on the space of quadratic differentials on the
circle T (x)dx2, and it is given by formula

χ : T (x)dx2 �→ Tχ(x)dx2 =
(
T (χ(x))χ′(x)2 +

c

12
Sch(χ)

)
dx2,

where Sch(χ) is the Schwarzian derivative

Sch(χ) =
χ′′′(x)
χ′(x)

− 3
2

(
χ′′(x)
χ′(x)

)2

.
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For c �= 0, one of the Virasoro coadjoint orbits is of special importance.
It corresponds to T (x) = c

24 dx2, and it is the unique orbit with the stabilizer
isomorphic to the group PSL(2, R). This orbit (also called the Teichmüller
orbit) naturally embeds in the universal Teichmüller space T (1)1:

OTeich
∼= Diff+(S1)/PSL(2, R) ⊂ QS(S1)/PSL(2, R),

where QS(S1) is the group of quasi-symmetric mappings of the circle.
Consider the space Hyp(D) of geodesically complete hyperbolic metrics

on the unit disk D ⊂ C. A typical example in this class is the standard Poincaré
metric. The group of orientation-preserving diffeomorphisms Diff+(D) acts
transitively on Hyp(D). Now consider the group Diff+(D, ∂D) ⊂ Diff+(D)
which fixes the boundary of the disk ∂D

∼= S1. It was argued in the physics
literature (see [12]) that OTeich is symplectomorphic to the following moduli
space:

OTeich
∼= Hyp(D)/Diff+(D, ∂D).

Formal Duistermaat–Heckman integrals over this space were defined and stud-
ied in [3,14].

Recall that for χ ∈ QS(S1) there exist two univalent holomorphic func-
tions f+ : D → C, f− : D

∗ → C such that

f+(eiχ(x)) = f−(eix)

for x ∈ R. Here, D

∗ is the unit disk centered at infinity, and we identify S1 ∼=
R/2πZ. The functions f+(z) and f−(z) are called components of conformal
welding of χ. The Kähler potential of the Weil–Petersson metric on OTeich is
given by the Takhtajan–Teo (TT) energy functional (see [15]2):

S(χ) =
∫

D

∣∣∣∣
f ′′
+(z)

f ′
+(z)

∣∣∣∣
2

d2z + 4π log(|f ′
+(0)|) +

∫

D̄

∣∣∣∣
f ′′

−(z)
f ′

−(z)

∣∣∣∣
2

d2z − 4π log(|f ′
−(∞)|).

In this paper, we focus our attention on the subgroup Diff+
hol(S

1) ⊂
Diff+(S1) which is characterized by the property that the map z = eix �→ eiχ(x)

extends to a holomorphic function on an annulus Ar,R = {z ∈ C; r < |z| < R}
for some r < 1 < R. For this subgroup, following Nag–Sullivan [9] we define
a group homomorphism to the group of restricted symplectic transformations
acting on the Hilbert space H = H+ ⊕ H− of holomorphic functions (modulo
constants):

Diff+
hol(S

1) → Spres(H+ ⊕ H−).

Here, H+ is spanned by zn for n ≥ 1, and H− by zn for n ≤ −1, and ||zn||2 =
|n|. We then use the metaplectic representation of Spres(H+ ⊕ H−) defined by
Berezin formalism of normal symbols (see [5]) to construct operators

Nχ = Nf−1
+

∗ Nf− . (1)

1Teichmüller spaces for curves of all finite genera naturally embed in T (1).
2In fact, in [15] a new Hilbert manifold structure on T (1) was introduced, and it was shown
that S(χ) is a Kähler potential for the Weil–Petersson metric on the Hilbert submanifold
T0(1) ⊂ T (1).
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Here, ∗ is the product of operators acting on the Fock space F defined by
the polarization H = H+ ⊕ H−. In this sense, Eq. (1) defines a quantization
of conformal welding. Intriguingly, the relation between Berezin quantization
and the action of Diff+(S1) on the space of univalent holomorphic functions
was pioneered in [1] in the framework of probability theory.

Our first main result is as follows:

Theorem 1.1. For χ, φ ∈ Diff+
hol(S

1), we have

NχNφ = C(χ, φ)Nχ◦φ,

where C(χ, φ) ∈ C

∗ is a multiplicative group 2-cocycle with the property that

C(χ, φ) = C(f−, g+), (2)

and f± define a conformal welding of χ, and g± define a conformal welding of
φ. Furthermore, for χ ∈ Diff+

hol(S
1)

log(|C(f−1
− , f+)|) = −S(χ)

24π
.

In Eq. (2), the components of conformal welding f±, g± of diffeomor-
phisms χ, φ are related to each other. This relation is relaxed in Theorem
5.4 which addresses the question of more general triangular decompositions of
holomorphic maps. From this perspective, it is surprising that the cocycle CN

depends only on the components f− and g+ (and not on f+ and g−).
Our second main result is the following theorem (see also Theorem 5.16):

Theorem 1.2. For χ ∈ Diff+
hol(S

1), the operator

Uχ = e−S(χ)/48πNχ

is unitary, and the cocycle C(χ, φ) satisfies the equality

log(|C(χ, φ)|) =
S(χ) + S(φ) − S(χ ◦ φ)

48π
. (3)

The left-hand side and the right-hand side of (3) have rather different
analytic forms. Equation (3) follows from Berezin formalism, but at this point
we are not aware of its direct proof.

We believe that our findings admit extensions to other representations
of the group of diffeomorphisms of the circle defined in terms of free fields.
In particular, this applies to representations of affine Kac–Moody algebras on
Wakimoto modules. We also believe that our results may find applications in
Theoretical Physics. Our original motivation comes from the work [10] which
introduced conformal welding in the study of Fermions in a gravitational field
in 2 dimensions (see also the analysis of the gravitational Wess–Zumino func-
tionals in [4]).

The structure of the paper is as follows: in Sect. 2, we recall the defi-
nition of the Bott–Virasoro 2-cocycle on Diff+(S1), and we extend it to the
groupoid of conformal maps. In Sect. 3, we explain how holomorphic maps de-
fine symplectic transformations on the space H, and we define their Grunsky
coefficients. In Sect. 4, we set up the Berezin formalism for normal and unitary
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symbols of operators on the Fock space F . Finally, in Sect. 5 we describe quan-
tization of conformal welding, the cocycles for normal and unitary symbols and
their relation to the TT functional.

2. Group Cocycles

In this section, we recall the notion of a group 2-cocycle. We then focus our
attention on the Bott–Virasoro cocycle on the group of orientation-preserving
diffeomorphisms of the circle Diff+(S1) and on its extension to holomorphic
maps.

2.1. Group 2-Cocycles: Definition and Basic Properties

Let G be a group and K be the basic field (in this article, R or C) viewed as
a trivial G-module. A map c : G × G → K is an additive group 2-cocycle if

c(f, g) + c(fg, h) = c(f, gh) + c(g, h) (4)

for all f, g, h ∈ G. The definition implies c(e, g) = c(e, e) = c(g, e) for all g ∈ G.
Also, for all k ∈ K the assignment c(f, g) = k is a 2-cocycle.

For every map b : G → K one defines a trivial 2-cocycle

δb(f, g) = b(f) − b(fg) + b(g).

Note that for b(f) = k ∈ K we obtain c(f, g) = k. Hence, for any 2-cocycle c
there is a cohomologous normalized cocycle

c̃(f, g) = c(f, g) − c(e, e)

which has the property c̃(e, e) = 0. We will use the following cyclic property
of 2-cocycles:

Proposition 2.1. Assume that a 2-cocycle c has the property c(f, f−1) = 0 for
all f ∈ G. Then,

c(f, g) = c(g, h) = c(h, f), (5)
where fgh = e.

Proof. In Eq. (4), put fgh = e to obtain

c(f, g) + c(h−1, h) = c(f, f−1) + c(g, h).

By assumption, c(h−1, h) = c(f, f−1) = 0. Hence, we get c(f, g) = c(g, h). The
last equality follows since fgh = e implies hfg = e. �

Assume that the group G possesses a Lie algebra g = Lie(G), denote by
exp : g → G the exponential map, and assume that finite products of the type
exp(u1) . . . exp(um) cover G. We define a map β : g × G → K by formula

β(u, g) =
d
dt

c(exp(tu), g)|t=0. (6)

The condition c(g, e) = c(e, e) implies that β(u, e) = 0 for all u ∈ g.

Proposition 2.2. The map β : g × G → K uniquely determines a normalized
group 2-cocycle c.
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Proof. Put f = exp(tu) in Eq. (4) and differentiate in t at t = 0. We obtain

d
dt

c(exp(tu)g, h) = β(u, gh) − β(u, g).

Hence, if β(u, g) = 0 then the normalized cocycle c(f, g) vanishes, as required.
�

Define

α(u, v) =
d
ds

β(u, exp(sv))|s=0 =
∂2

∂s∂t
c(exp(tu), exp(sv))|s=t=0

and

a(u, v) =
1
2

(α(u, v) − α(v, u)) .

Recall that a ∈ ∧2g∗ is a Lie algebra 2-cocycle, and that it satisfies the equation

a(u, [v, w]) + a(w, [u, v]) + a(v, [w, u]) = 0. (7)

Note that there is no analog of Proposition 2.2 which would allow to recon-
struct maps β and c starting from the map a (or the map α). Indeed, adding
a trivial cocycle δb such that d/dt b(exp(tu))|t=0 = 0 does not affect the maps
α and a, but it changes β and c, in general.

Let ρ : G → End(V ) be a projective representation, and assume that

ρ(f)ρ(g) = eic(f,g)ρ(fg),

where c : G × G → C is a complex-valued function. Then, c verifies the
identity (4) modulo 2πZ. This is a direct consequence of associativity of the
product in End(V ). If G is a connected topological group, and the function c
is a continuous function, then it is actually a 2-cocycle. Indeed, in this case
the defect in Eq. (4) is also a continuous function of f, g, h which vanishes for
f = g = h = e. Hence, it vanishes for all f, g, h ∈ G. Furthermore, assume
that V is a Hilbert space and that ρ : G → U(V ) is a unitary representation.
Then, c(f, g) ∈ R is a real-valued 2-cocycle.

Every 2-cocycle c : G×G → C defines a group law on Ĝ = G×C

∗ defined
by formula

(f, z) · (g, w) = (fg, zw exp(ic(f, g))).

This group fits into a short exact sequence

1 → C

∗ → Ĝ → G → 1

and defines a central extension of G. If the cocycle c is real valued, this central
extension is by the circle S1 (instead of C

∗).

2.2. The Bott–Virasoro Cocycle

Consider the group G = Diff+(S1) of orientation-preserving diffeomorphisms
of the circle. We recall the following basic fact:
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Theorem 2.3. (Bott–Virasoro cocycle) The map cBV : G × G → R defined by
formula

cBV(χ, φ) =
∫ 2π

0

log(χ′(φ(x))) log(φ′(x))′ dx

is a normalized real-valued group 2-cocycle. Furthermore, it satisfies the cyclic
property (5).

Proof. For convenience of the reader, we give a proof of this statement. The
left-hand side of Eq. (4) is as follows:

cBV(χ, φ) + cBV(χ ◦ φ, ψ) =
∫ 2π

0

(log(χ′(φ(x))(log(φ′(x)))′

+ log((χ ◦ φ)′(ψ(x)))(log(ψ′(x)))′) dx

=
∫ 2π

0

(log(χ′(φ(ψ(x)))) log(ψ′(x))′

+ log(φ′(ψ(x))) log(ψ′(x))′) dx

+
∫ 2π

0

log(χ′(φ(x))(log(φ′(x)))′ dx,

and the right-hand side has the following form:

cBV(χ, φ ◦ ψ) + cBV(φ, ψ) =
∫ 2π

0

(log(χ′(φ(ψ(x)))) log((φ ◦ ψ)′(x))′

+ log(φ′(ψ(x))) log(ψ′(x))′) dx

=
∫ 2π

0

(log(χ′(φ(ψ(x)))) log(ψ′(x))′

+ log(φ′(ψ(x))) log(ψ′(x))′) dx

+
∫ 2π

0

log(χ′(φ(ψ(x))) log(φ′(ψ(x)))′ dx.

Note that the first and second lines in the two final expressions coincide term
by term, and the third line of the right-hand side of (4) is obtained from the
third line of the left-hand side by the change of variable x �→ ψ(x).

For the cyclic property, put χ = φ−1. Then, log(χ′(φ(x))) = − log(φ′(x))
and

cBV(φ−1, φ) = −
∫ 2π

0

log(φ′(x)) log(φ′(x))′ dx = −1
2

log(φ′(x))2|2π
0 = 0.

Here, we have used the fact that φ′(x) is periodic. The cyclic property follows
by Proposition 2.1. �

It is instructive to compute the map βBV:

βBV(u, φ) =
∫ 2π

0

u′(φ(x)) log(φ′(x))′ dx = −
∫ 2π

0

u′(y) log((φ−1)′(y))′ dy.
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Here, we made a change of variables y = φ(x) in the integral. The map αBV

is given by the Gelfand–Fuchs cocycle:

αBV(u, v) =
∫ 2π

0

u′(x)v′′(x)dx,

which is skew-symmetric under exchange of u and v.

2.3. Extension to Holomorphic Maps

In this section, we extend the Bott–Virasoro cocycle to a certain class of holo-
morphic maps. In more detail, let S be a connected open subset of the complex
plane with π1(S) ∼= Z. By the uniformization theorem, such a domain is holo-
morphically isomorphic to an annulus

Ar,R = {z ∈ C; r < |z| < R}.

We will consider triples (S, f, T ), where S and T are two such domains, and
f : S → T is a holomorphic isomorphism between S and T . Sometimes it is
convenient to label the domain and the range of f by Sf and Tf , respectively.
Note that the domain Sf contains a closed curve Cf which represents the
generator of π1(Sf ). Its image f(Cf ) represents the generator of π1(Tf ) ∼= Z.
By the analytic continuation principle, the holomorphic function f is uniquely
determined by its restriction to Cf . Furthermore, we will be assuming that
log(f(z)/z) and log(f ′(z)) are univalued functions on Cf . The first condition
follows from the fact that∫

Cf

log(f(z)/z)′dz =
∫

Cf

(
f ′(z)
f(z)

− 1
z

)
dz =

∫

f(Cf )

dw

w
−

∫

Cf

dz

z
= 0.

Triples (Sf , f, Tf ) form a groupoid with composition law

(Sf , f, Tf ) ◦ (Sg, g, Tg) = (Sg, f ◦ g, Tf ).

Two triples are composable if Sf = Tg. The curves g(Cg) and Cf are homotopic
to each other in Sf = Tg. Note that conditions on the logarithms log(f(z)/z)
and log(f ′(z)) are reflexive and transitive. Indeed, for the inverse function we
have

log(f−1(w)/w) = − log(f(z)/z), log((f−1)′(w)) = − log(f ′(z)),

where w = f(z). Since the right-hand sides are univalued functions on Cf ,
so are the left-hand sides on f(Cf ) = Cf−1 . Similarly, for the composition of
functions we obtain

log(f(g(z))/z) = log(f(g(z))/g(z)) + log(g(z)/z),

log((f ◦ g)′(z)) = log(f ′(g(z))) + log(g′(z)).

Again, the right-hand sides are univalued functions on Cg. Hence, the left-hand
sides are also univalued on Cg, as required.
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We define a subset Diff+
hol(S

1) ⊂ Diff+(S1) by the following property:
χ ∈ Diff+

hol(S
1) if the map

z = eix �→ eiχ(x)

extends to a univalent holomorphic map f on an annulus Ar,R with r < 1 < R.
One can always choose the curve Cf to be the unit circle C1. It is easy to see
that Diff+

hol(S
1) is a subgroup of Diff+(S1). Furthermore, for z = eix we have

log(f(z)/z) = i(χ(x) − x), log(f ′(z)) = χ′(x) + i(χ(x) − x),

and the right-hand sides are univalued functions on C1.
Consider two diffeomorphisms χ, φ ∈ Diff+

hol(S
1) and the corresponding

univalent holomorphic functions f and g such that

f(eix) = eiχ(x), g(eix) = eiφ(x).

By making the annulus Sg smaller if needed, one can always achieve Tg ⊂ Sf .
By restricting f to Tg, one obtains a pair of composable holomorphic maps,
and

f(g(eix)) = f(eiφ(x)) = eiχ(φ(x)).

Since the analytic function f ◦ g is uniquely determined by its values on the
unit circle, we conclude that it corresponds to the diffeomorphism χ ◦ φ.

Proposition 2.4. Let χ, φ ∈ Diff+
hol(S

1) and f, g the corresponding composable
holomorphic functions. Then,

cBV(χ, φ) =
∫

C1

log
(

g(z)f ′(g(z))
f(g(z))

)
log

(
zg′(z)
g(z)

)′
dz. (8)

Proof. The proof is by a direct calculation. In particular, for z = eix, g(z) =
eiφ(x) we have zg′(z)/g(z) = φ′(x), and g(z)f ′(g(z))/f(g(z)) = χ′(φ(x)). �

For a pair of composable univalent holomorphic maps f and g, one can
use the right-hand side of Eq. (8) as a definition of a functional of a pair (f, g):

CBV(f, g) =
∫

Cg

log
(

g(z)f ′(g(z))
f(g(z))

)
log

(
zg′(z)
g(z)

)′
dz. (9)

Here, the integration is over the curve Cg on which both holomorphic functions
g and f ◦ g are well defined. Note that the logarithms in Eq. (9) are univalued.
Indeed,

log
(

zf ′(z)
f(z)

)
= log(f ′(z)) − log(f(z)/z),

and the two logarithms on the right-hand side are univalued by assumptions.
The choice of a branch of the logarithms does not affect the value of CBV

because of the derivative on the second factor in Eq. (9). In general, CBV is
complex valued. This is in contrast to the cocycle cBV which takes values in
R.
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Proposition 2.5. The map CBV is a groupoid 2-cocycle. That is, for all com-
posable triples (f, g, h), it satisfies the equation

CBV(f, g) + CBV(fg, h) = CBV(f, gh) + CBV(g, h).

Furthermore, it satisfies the cyclic property (5).

Proof. The proof of the cocycle condition is analogous to the one of Theorem
2.3. The only nontrivial step in the proof is as follows: one needs to check that

∫

Ch

log
(

g(h(z))f ′(g(h(z)))
f(g(h(z)))

)
log

(
h(z)g′(h(z))

g(h(z))

)′
dz

=
∫

Cg

log
(

g(w)f ′(g(w))
f(g(w))

)
log

(
wg′(w)
g(w)

)′
dw.

Two integrals are related by the change of variable w = h(z). After this change
of variables, the integration contour on the left-hand side is Ch, and on the
right-hand side it is h−1(Cg). Both these curves represent the generator of
π1(Sh), and therefore they are homotopic to each other.

For the cyclic property, put f = g−1. Then,

log
(

g(z)f ′(g(z))
f(g(z))

)
= − log

(
zg′(z)
g(z)

)

and

CBV(g−1, g) = −1
2

∫

Cg

d
dz

(
log

(
zg′(z)
g(z)

))2

dz = 0.

The proof of Proposition 2.1 applies verbatim to the case of groupoids. This
completes the proof. �

Note that the expression (9) can be rewritten using the change of variables
z = g−1(w). We get

CBV(f, g) = −
∫

Cf

log
(

wf ′(w)
f(w)

)
log

(
w(g−1)′(w)

g−1(w)

)′
dw.

Holomorphic functions f : Sf → Tf and h : Tg → Sg are actually defined
on the same domain Sf = Tg which contains the curve Cf . We compute the
expression β for CBV. By putting f(w) = w + tu(w) + O(t2), we obtain

βBV(u, g) = −
∫

C1

(
u′(w) − u(w)

w

)
log

(
w(g−1)′(w)

g−1(w)

)′
dw.

Remark 2.6. Yet another groupoid cocycle which has the cyclic property is
given by formula

C̃(f, g) =
∫

Cg

log(f ′(g(z))) log(g′(z))′dz. (10)

The proof is similar to those of Theorem 2.3 and of Proposition 2.5. By as-
sumptions, the logarithms in Eq. (10) are univalued. Again, the choice of a
branch of the logarithms doesn’t influence the value of C̃(f, g) because of the
derivative on the second term in Eq. (10).
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3. Symplectic Transformations

In this section, we recall the notion of symplectic transformations associated
with holomorphic maps.

3.1. Symplectic Transformations in Finite Dimensions

Recall the following standard setup: let U be a complex vector space, and
ω ∈ ∧2U be a non-degenerate (symplectic) 2-form. A linear map A ∈ End(U)
is called symplectic if it preserves ω:

ω(A(u1), A(u2)) = ω(u1, u2)

for all u1, u2 ∈ U .
The following set of examples is of special interest for us: let V be a

finite-dimensional complex vector space. Then, one can equip the direct sum
U = V ⊕ V ∗ (here V ∗ is the dual space of V ) with the symplectic form

ω(a + a∗, b + b∗) = 〈b∗, a〉 − 〈a∗, b〉,
where a, b ∈ V, a∗, b∗ ∈ V ∗ and 〈·, ·〉 is the canonical pairing between V ∗ and
V . A splitting U = V ⊕V ∗ is also called a polarization of the symplectic space
U .

Consider a transformation A ∈ End(V ⊕ V ∗) defined by formula
(

a
a∗

)
�→

(
ã
ã∗

)
=

(
α β
γ δ

)
·
(

a
a∗

)
. (11)

Here α : V → V, β : V ∗ → V, γ : V → V ∗, δ : V ∗ → V ∗. This transformation is
symplectic, A ∈ Sp(V ⊕V ∗), if and only if the following conditions are verified:

βαt = (βαt)t, αtγ = (αtγ)t, αδt − βγt = 1,
δtβ = (δtβ)t, γδt = (γδt)t, αtδ − γtβ = 1.

Note that if α and δ are invertible, the following operators are symmetric:
(α−1β), (βδ−1), (γα−1), (δ−1γ). In this case, one can also express α and δ in
terms of three other operators:

δ = (αt)−1 + γα−1β, α = (δt)−1 + βδ−1γ.

If V is equipped with a Hermitian scalar product, one can identify V ∗ ∼= V
and define the unitary subgroup USp(V ⊕ V ∗) ⊂ Sp(V ⊕ V ∗) which has the
following property: ã∗

i is the Hermitian conjugate of ãi for all i. This condition
imposes an extra requirement on the components α, β, γ, δ of A:

γ = β, δ = α.

Here α, β are complex conjugate of α and β, respectively. In particular, we
obtain

αα∗ = αδt = 1 + βγt = 1 + ββ∗.

This implies that α is invertible, and that so is δ = α. Furthermore, we have
the following useful identity:
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α−1(α∗)−1 = α−1(αα∗ − ββ∗)(α∗)−1 = 1 − (α−1β)(α−1β)∗. (12)

3.2. Symplectic Transformations and Holomorphic Maps

We now pass to the infinite-dimensional context and apply the theory of sym-
plectic transformations to holomorphic functions. As in the previous section,
let S ⊂ C be a connected domain with π1(S) = Z, and let C ⊂ S be a closed
oriented curve which realizes the generator of π1(S). We consider the space
HS of holomorphic functions on S and define the following 2-form

ωS =
1
4π

∫

C

(δφ(z))∂z(δφ(z)) dz.

Here δ is the de Rham differential on HS and ∂z is the z-derivative. It is clear
that the definition of ωS is independent of the choice of the curve C.

Let f : S → T be a holomorphic isomorphism. It induces an isomorphism
f∗ : HT → HS by composition: φ �→ f∗φ(z) = φ(f(z)). In turn, the map f∗

induces a pullback map of differential forms that we denote by (f∗)∗.

Proposition 3.1. (f∗)∗ωS = ωT .

Proof. We compute,

4π(f∗)∗ωS =
∫

CS
(δφ(f(z)))∂z(δφ(f(z))) dz

=
∫

f(CS)
(δφ(w))∂w(δφ(w)) dw

=
∫

CT
(δφ(w))∂w(δφ(w)) dw

= 4πωT .

Here, we made a change of variables z = f−1(w), and then used the fact that
f(CS) is homotopic of CT in T . �

For an annulus

Ar,R = {z ∈ C; r < |z| < R}
with r < 1 < R, one can choose CS to be the unit circle. We will consider
the space H = HA/C of holomorphic functions modulo constants. Using the
Fourier transform,

φ(z) =
∞∑

n=1

an√
n

zn +
∞∑

n=1

a∗
n√
n

z−n + a0,

we obtain a formula for ωA:

ωA =
i

2

∞∑
n=1

δan ∧ δa∗
n.

This form is symplectic on H. In what follows, it will be more convenient to
work with functions

ψ(z) = φ′(z) =
∞∑

n=1

√
n anzn−1 −

∞∑
n=1

√
n a∗

nz−n−1
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which do not contain the superfluous constant a0. One can view Fourier com-
ponents {an, a∗

n} as coordinates on the infinite-dimensional symplectic space
of holomorphic functions.

The space H admits a polarization

H = H+ ⊕ H−,

where H+ is spanned by monomials zn with n ≥ 1 and H− by monomials zn

with n ≤ −1. In particular, ωA(φ1, φ2) = 0 for φ1,2 ∈ H+ and for φ1,2 ∈ H−.
By Proposition 3.1, holomorphic maps induce symplectic transforma-

tions

f : ψ �→ ψ̃(z) = ψ(f(z))f ′(z).

In more detail,
∞∑

n=1

√
n

(
ãnzn−1 − ã∗

nz−n−1
)

= f ′(z)
∞∑

n=1

√
n
(
an(f(z))n−1 − a∗

n(f(z))−n−1
)
.

(13)
This equation implies

αm,n =
1

2πi

√
n

m

∫

C

f(z)n−1f ′(z)
zm

dz, (14)

βm,n = − 1
2πi

√
n

m

∫

C

f(z)−n−1f ′(z)
zm

dz, (15)

γm,n = − 1
2πi

√
n

m

∫

C

f(z)n−1f ′(z)zm dz, (16)

δm,n =
1

2πi

√
n

m

∫

C

f(z)−n−1f ′(z)zm dz, (17)

where αm,n, βm,n, γm,n, δm,n are infinite-dimensional matrices representing op-
erators α, β, γ, δ.

The map from holomorphic maps to symplectic transformations is a group
anti-homomorphism:

Proposition 3.2. Let f, g be two composable holomorphic maps and Af , Ag be
the corresponding symplectic transformations. Then,

Af◦g = AgAf .

Proof. The proof is by a direct computation. �

We recall the following simple fact:

Proposition 3.3. Let χ ∈ Diff+
hol(S

1) and f be the corresponding holomorphic
map. Then, the transformation Af ∈ USp(H+ ⊕ H−) is unitary.

Proof. We can choose C to be the unit circle. Then, for z = eix we have
f(z) = eiχ(x). By making a change of variables from z to x in (14), (15), (16),
(17), we obtain δm,n = ᾱm,n and γm,n = β̄m,n, as required. �
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Remark 3.4. Let m(z) be a Möbius transformation preserving the unit circle.
That is,

m(z) =
az + b

b̄z + ā
,

with |a|2 − |b|2 = 1. Then, the integrand in Eq. (15) is holomorphic on D

∗, the
integrand in Eq. (16) is holomorphic on D, and β = γ = 0. By Proposition
3.3, Am is unitary. Hence, the operators α δ are unitary on H+ and H−,
respectively.

3.3. Grunsky Coefficients and Symplectic Transformations

We will need the following simple properties of holomorphic functions.
Let f(z) be a univalent holomorphic function on neighborhood of zero

with f(0) = 0. Then, f(z) =
∑∞

n=1 fnzn with f1 �= 0. Recall that the function

log
(

f(z) − f(w)
z − w

)
=

∞∑
m,n=0

Fm,nzmwn (18)

is regular in z and w. Here Fm,n are the Grunsky coefficients of f(z) (see [11]
for details).

In a similar fashion, let f(z) be a univalent holomorphic function on a
neighborhood of infinity with f(∞) = ∞. Then, f(z) =

∑1
n=−∞ fnzn with

f1 �= 0, and

log
(

f(z) − f(w)
z − w

)
= log(f1) +

∞∑
m,n=1

F−m,−nz−mw−n. (19)

The following proposition will be important for the rest of the paper:

Proposition 3.5. Let f =
∑∞

n=1 fnzn with f1 �= 0 be a univalent holomorphic
map on a neighborhood of zero. Then, the corresponding symplectic transforma-
tion is upper-triangular, the operator γ vanishes, and the symmetric operator
(α−1β) is of the following form:

∞∑
m,n=1

√
mn (α−1β)m,num−1w−1n =

(f−1)′(u)(f−1)′(w)
(f−1(z) − f−1(w))2

− 1
(u − w)2

. (20)

Let f =
∑1

n=−∞ fnzn with f1 �= 0 be a univalent holomorphic map on a
neighborhood of infinity. Then, the corresponding symplectic transformation is
lower triangular, the operator β vanishes, and the symmetric operator (γα−1)
is of the following form:

−
∞∑

m,n=1

√
mn (γα−1)m,nz−m−1w−n−1 =

f ′(z)f ′(w)
(f(z) − f(w))2

− 1
(z − w)2

(21)

Proof. Let f =
∑∞

n=1 fnzn with f1 �= 0. Observe that the expression f(z)n−1

f ′(z)zm in Eq. (16) is regular at zero and its integral over C vanishes. Hence,
the operator γ vanishes. Furthermore, for n > m the function f(z)n−1f ′(z)/zm

in Eq. (14) is also regular at zero which implies αm,n = 0. Therefore, α is an
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upper-triangular (infinite) matrix. A similar argument shows that δ is also
upper-triangular.

Let h be the inverse function of f . Equation (14) implies

α−1
m,n =

1
2πi

√
n

m

∫

C′

h(w)n−1h′(w)
wm

dw,

where C ′ is some circle around zero in the domain of h. Without loss of gen-
erality, choose C and C ′ in such a way that h(C ′) is contained in the interior
of C. Combining with Eq. (15), we obtain

(α−1β)m,n =
∞∑

k=1

α−1
m,kβk,n

= − 1
(2πi)2

√
n

m

∫

C×C′

h′(w)f ′(z)
wmf(z)n+1

∞∑
k=1

h(w)k−1

zk
dwdz.

Summing up the geometric series and making a substitution z = h(u) yields

(α−1β)m,n = − 1
(2πi)2

√
n

m

∫

C′×C′

h′(w)
wmun+1

1
h(u) − h(w)

dudw

Finally, integration by parts over u gives rise to

(α−1β)m,n =
1

(2πi)2
1√
mn

∫

C′×C′

1
wmun

h′(u)h′(w)
(h(u) − h(w))2

dudw.

The function
h′(u)h′(w)

(h(u) − h(w))2
− 1

(u − w)2
=

∂2

∂u∂w
log

(
h(u) − h(w)

u − w

)

is regular in u,w. Hence, it is given by the Taylor series (20).
Proof of equation (21) is similar. �

4. Metaplectic Representation and Berezin Formalism

In this section, we recall the metaplectic representation of the symplectic group
and Berezin formalism in finite and infinite dimensions.

4.1. Heisenberg Lie Algebra and Normal Symbols

To a symplectic vector space V ⊕V ∗, one can naturally associate a Heisenberg
Lie algebra with generators â, â∗ for a ∈ V, a∗ ∈ V ∗ defined by canonical
commutation relations

[â, b̂] = [â∗, b̂∗] = 0, [â, b̂∗] = ω(b∗, a) = 〈b∗, a〉.
Choose a Hermitian scalar product (·, ·) on V . Then, the symmetric algebra
SV ∗ also carries a Hermitian product, and it can be completed to a Fock space

F = SV ∗ · v0.

Here, v0 is the cyclic (vacuum) vector which corresponds to 1 ∈ SV ∗, 1·v0 = v0.
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The Fock space F carries a natural action (by unbounded operators) of
the Heisenberg algebra, where â·v0 = 0 for all a ∈ V , and for all a ∈ V, b∗ ∈ V ∗

we have

(â + b̂∗) · (fv0) = (∂af + b∗f) · v0.

Here, ∂a is the first-order differential operator on SV ∗ uniquely determined
by the following properties: ∂a(1) = 0, ∂a(b∗) = 〈b∗, a〉. One can also view
the actions of ∂a as an action of a constant vector field on V on the space
of polynomial functions SV ∗ (or formal power series F) on V . By abuse of
notation, we denote the Hermitian product on F again by (·, ·). We normalize
the vacuum vector v0 such that (v0, v0) = 1.

Introduce an orthonormal basis {ai} of V and the dual basis {a∗
i } of V ∗.

In this basis, ω takes the canonical form

ω(ai, aj) = ω(a∗
i , a

∗
j ) = 0, ω(ai, a

∗
j ) = δij .

Then, operators âi, â
∗
i on F are conjugate to each other under the Hermitian

structure on F . To multi-indices I = (i1, . . . , im), J = (ji, . . . , jn), we associate
monomials

aI = ai1 . . . aim
, a∗

J = a∗
j1 . . . a∗

jn
.

To a power series in formal variables ai, a
∗
i

Nq(a, a∗) =
∑
I,J

qI,JaIa
∗
J ∈ S(V ⊕ V ∗)

one associates an operator

q̂ =
∑
I,J

qI,J â∗
J âI .

If the sum is finite, this operator is well defined, and Nq(a, a∗) is called its
normal symbol. Sometimes, q̂ is well defined even for infinite series Nq(a, a∗).

Note that the matrix element (v0, q̂ v0) is given by

(v0, q̂ v0) = q0,0. (22)

Furthermore, note that the normal symbol of the adjoint operator q̂∗ is given
by

Nq∗(a, a∗) =
∑
I,J

qI,JaJa∗
I .

The operator product q̂ · r̂ is represented by a formal Gaussian integral
in terms of normal symbols (see equation (2.31) in Section I.2.7 of [5]):

Nq ∗ Nr = Nq·r(a, a∗) =
∫

Nq(a + b, a∗) e−〈b∗,b〉 Nr(a, a∗ + b∗) dbdb∗. (23)

Note that this formal integral in defined modulo sign since in general it involves
a square root of the determinant (see below for a more detailed discussion).
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4.2. Berezin Formalism

In the finite-dimensional context, the group of symplectic transformations
Sp(V ⊕ V ∗) has a double cover

1 → Z2 → Mp(V ⊕ V ∗) → Sp(V ⊕ V ∗) → 1

called the metaplectic group. We will also need the associated central extension
of Sp(V ⊕ V ∗) by C

∗:

1 → C

∗ → Ŝp(V ⊕ V ∗) = Mp(V ⊕ V ∗) ×Z2 C

∗ → Sp(V ⊕ V ∗) → 1.

It comes with a natural representation on the Fock space F which can also be
viewed as a projective representation of Sp(V ⊕ V ∗). For a given symplectic
transformation

A =
(

α β
γ δ

)
∈ Sp(V ⊗ V ∗)

one says that an invertible operator Â on F implements it if it represents a
lift of A in Ŝp(V ⊕ V ∗). In more detail, it means that

Â

(
â
â∗

)
Â−1 =

(
α β
γ δ

)(
â
â∗

)
(24)

for all a ∈ V, a∗ ∈ V ∗.
We will call a symplectic transformation A ∈ Sp(V ⊕ V ∗) admissible if

its components α : V → V and δ : V ∗ → V ∗ are invertible. The following
theorem summarizes a result of Berezin3:

Theorem 4.1. Let A ∈ Sp(V ⊕V ∗) be an admissible symplectic transformation.
Then, A is implemented by a unique operators Â with a normal symbol NA

whose constant term is equal to 1. This normal symbol is given by formula

NA(a, a∗) = exp
(

〈a∗, (α−1 − 1)a〉 − 1
2
〈a∗, (α−1β)a∗〉 +

1
2
〈(γα−1)a, a〉

)

(25)

We will call a pair of admissible symplectic transformations A1, A2 com-
posable if A1A2 is also an admissible transformation. We use a similar termi-
nology for triples. The following proposition gives a product rule in terms of
normal symbols:

Proposition 4.2. Let A1, A2 ∈ Sp(V ⊕ V ∗) be a composable pair. Then,

NA1 ∗ NA2 =
1

det1/2(1 + (α−1
2 β2)(γ1α−1

1 ))
NA2A1 . (26)

Proof. The proof is by a direct calculation of the Gaussian integral (23). �

3 See Theorem 4.3 in [5] for the proof in the case of A ∈ USp(V ⊕ V ∗). The proof in the
case of A ∈ Sp(V ⊕ V ∗) is similar.
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Note that the product rule for normal symbols (26) is not quite well
defined because of the square root of the determinant. In fact, the subset of
admissible elements in the metaplectic group admits the following description:

Mpadm(V ⊕ V ∗) = {(A, z) ∈ Spadm(V ⊕ V ∗) × C

∗; det(α) = z2}.

Observe that

det(1 + (α−1
2 β2)(γ1α−1

1 )) =
det(α)

det(α1)det(α2)
,

where α is associated with A = A2A1. Hence, we can rewrite the product rule
of normal symbols in terms of the metaplectic group as follows:

N(A1,z1) ∗ N(A2,z2) =
z1z2
z

N(A,z).

One can summarize the properties of the product rule as follows:

Proposition 4.3. The expression

CN (A2, z2;A1, z1) =
1

det1/2(1 + (α−1
2 β2)(γ1α−1

1 ))
=

z1z2
z

(27)

is a multiplicative 2-cocycle. That is, for all composable triples A1, A2, A3 we
have

CN (A2, A1)CN (A3, A2A1) = CN (A3A2, A1)CN (A3, A2)

Proof. The statement follows from the fact that CN = z1z2/z is a trivial 2-
cocycle. This fact reflects associativity of the operator product ∗. �

For operators with normal symbols G(A,z) = z−1NA, we obtain a group
anti-homomorphism:

G(A2,z2) ∗ G(A1,z1) = G(A1A2,z1z2). (28)

Recall that for A ∈ USp(V ⊕V ∗) the operators α and δ = ᾱ are invertible.
This implies that all transformations A ∈ USp(V ⊕V ∗) are admissible, all pairs
A1, A2 are composable, and Theorem 4.1 and Proposition 4.2 apply without
further assumptions. Also, the map (A, z) �→ G(A,z) defines a group anti-
homomorphism from the corresponding subgroup of the metaplectic group
MUSp(V ⊕ V ∗) to unitary operators on the Fock space F .

4.3. The Infinite-Dimensional Case

Most of the facts reviewed in the previous Section generalize to the infinite-
dimensional setup. Let V be a Hilbert space. This allows to identify V ∗ ∼= V . In
what follows, we list special features which distinguish the infinite-dimensional
situation from the finite-dimensional one.

Instead of the symplectic group Sp(V ⊕ V ∗), one considers the restricted
symplectic group

Spres(V ⊕ V ∗) = {A ∈ Sp(V ⊕ V ∗);α, δ are Fredholm, β, γ areHilbert−Schmidt}.

For admissible elements of this subgroup, Theorem 4.1 and Proposition 4.2
hold true verbatim. In particular, the determinant

det
(
1 +

(
α−1
2 β2

)(
γ1α

−1
1

))
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is well defined since the operator

1 +
(
α−1
2 β2

)(
γ1α

−1
1

)
= α−1

2 αα−1
1

is invertible, the operators (α−1
2 β2) and (γ1α−1

1 ) are Hilbert–Schmidt, and
hence the operator (α−1

2 β2)(γ1α−1
1 ) is of trace class. The product formula (26)

still makes sense on the metaplectic double cover.
However, the determinant det(α) is not well defined, in general. There-

fore, the admissible part of the metaplectic group does not allow for a simple
description using the equation z2 = det(α), and the cocycle CN (A1, A2) is a
priori nontrivial. It is instructive to write the corresponding Lie algebra cocycle
aN (x1, x2) on a pair of elements of the symplectic Lie algebra:

xi =
(

ai bi

ci di

)
, i = 1, 2,

where ai and di are bounded operators and bi and ci are Hilbert–Schmidt
operators. An easy calculation shows that

aN (x1, x2) = Tr(b1c2 − c1b2).

The right-hand side is well defined because both terms b1c2 and c1b2 are of
trace class.

The restricted group USpres(V ⊕ V ∗) is defined as before:

USpres(V ⊕ V ∗) = {A ∈ Spres(V ⊕ V ∗); δ = α, γ = β}.

Again, all elements A ∈ USpres(V ⊕ V ∗) are admissible and all pairs A1, A2

are composable. An important result of Berezin (see Theorem 4.3 in [5]) is the
following theorem:

Theorem 4.4. Let A ∈ USpres(V ⊕ V ∗). Then, the normal symbol

UA = ± 1
det(αα∗)1/4

NA = ±det1/4(1 − (α−1β)(α−1β)∗)NA

defines a unitary operator on F .

Here, we have used Eq. (12). Note that the resulting Fredholm determi-
nant is well defined since the operator (α−1β)(α−1β)∗ is of trace class.

Let A ∈ USp(V ⊕V ∗), and Â be its unitary lift acting on F , for instance
the one defined by UA. Consider a function

τ(A) = |(v0, Âv0)|.

This function is well defined since different unitary lifts are related by Â′ = zÂ
with |z| = 1. The function τ(A) has the following properties:

Proposition 4.5. For all A ∈ USpres(V ⊕ V ∗),

τ(A) =
1

det1/4(αα∗)
, τ(A−1) = τ(A). (29)
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Proof. The first equality is a direct consequence of Theorem 4.4. Indeed, since
we can use any unitary lift of A in the definition of τ(A), it is convenient to
choose UA:

τ(A) = |(v0, UAv0)| =
1

det1/4(αα∗)
|(v0, NAv0)| =

1

det1/4(αα∗)
.

Here, we have used the fact that the constant term in NA is equal to 1. For
the second property, we compute

τ(A−1) = |(v0, UA−1v0)| = |(U∗
A−1v0, v0)| = |(U−1

A−1v0, v0)| = τ(A).

Here, we have used the fact that U−1
A−1 = zUA for some z ∈ C, |z| = 1. �

Operators UA satisfy the product rule

UA1 ∗ UA2 = CU (A1, A2)UA2A1 ,

where the cocycle CU (A1, A2) is given by formula

CU (A1, A2) =
(

det(αα∗)
det(α1α∗

1)det(α2α∗
2)

) 1
4

· 1

det1/2(1 + (α−1
2 β2)(γ1α−1

1 ))
.

It is defined on the metaplectic double cover, and it takes values in S1 ∼=
{z ∈ C; |z| = 1} instead of C

∗. This cocycle is nontrivial, in general. The
corresponding Lie algebra cocycle is the same as for CN (A1, A2) (up to second
order, the normalization factor is symmetric in A1, A2):

a(x1, x2) = Tr(b1b2 − b1b2).

5. Quantization of Conformal Welding

In this section, we apply Berezin quantization to triangular decomposition of
symplectic transformations induced by holomorphic maps, and in particular
to conformal welding.

5.1. Triangular Decomposition and Conformal Welding

In this section, we discuss an analog of triangular decomposition for holomor-
phic maps.

Let f : Ar,R → C be a univalent holomorphic map defined on the annulus
Ar,R such that its range is contained in another annulus: f(Ar,R) ⊂ Ar′,R′ . We
say that f admits a triangular decomposition if there exist univalent holomor-
phic maps f+ : DR′ → C, f− : D

∗
r → C ∪ {∞} such that f+(0) = 0, f ′

+(0) �= 0,
f−(∞) = ∞, f ′

−(∞) �= 0 and

f− = f+ ◦ f (30)

on Ar,R. Here,

DR = {z ∈ C; |z| < R}, D

∗
r = {z ∈ C; |z| > r} ∪ {∞}
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are the disks centered at 0 and ∞, respectively. Holomorphic functions f+ and
f− admit Taylor expansions at 0 and ∞:

f+(z) =
∞∑

k=1

(f+)kzk, f−(z) =
1∑

k=−∞
(f−)kzk, (31)

where (f+)1 �= 0, (f−)1 �= 0. Note that the logarithms log(f±(z)/z), log(f ′
±(z))

are univalued functions on Ar,R. Indeed, for r < ρ < R we have
∫

Cρ

log(f ′
±(z))′dz =

∫

Cρ

f ′′
±(z)

f ′
±(z)

dz = 0

because the function f ′′
+(z)/f ′(z) is holomorphic on DR, and the function

f ′′
−(z)/f ′

−(z) is holomorphic on D

∗
r . Similarly,

∫

Cρ

log(f±(z)/z)′dz =
∫

Cρ

(
f ′

±(z)
f±(z)

− 1
z

)
dz = 0.

Here, we have used the facts that the function f ′
+(z)/f+(z)−z−1 is holomorphic

on DR and that the function f ′
−(z)/f−(z) − z−1 is holomorphic on D

∗
r .

A special case of triangular decomposition is given by conformal weld-
ing of diffeomorphisms of the circle. Let f be a holomorphic function which
corresponds to χ ∈ Diff+

hol(S
1). That is,

f(eix) = eiχ(x).

In this case, one can choose the domain of f to be an annulus Ar,R with
r < 1 < R. The following theorem follows from results of [7] on conformal
welding for elements of Diff+(S1). We will only be interested in the subgroup
Diff+

hol(S
1) ⊂ Diff+(S1).

Theorem 5.1. Let f : Ar,R → C be a univalent holomorphic map which corre-
sponds to a diffeomorphism of the circle χ. Then, it admits a unique triangular
decomposition f = f−1

+ ◦ f− with (f+)′(0) = 1.

Remark 5.2. One says that the univalent holomorphic functions f± provide
a conformal welding of the diffeomorphism χ. Note that the normalization
f ′
+(0) = (f+)1 = 1 (here f+(z) =

∑∞
n=1(f+)nzn) can be replaced by the

normalization f ′
−(∞) = (f−)1 = 1 (here f−(z) =

∑1
n=−∞(f−)nzn. This is

achieved by dividing both f+ and f− by f ′
−(∞). In what follows, we will use

both normalizations.

Equation (30) can also be rewritten in the form

f = f−1
+ ◦ f−

which resembles the Gauss decomposition of matrices. It turns out that it
induces a Gauss decomposition on the corresponding elements of the infinite-
dimensional symplectic group. Indeed, by Proposition 3.5, symplectic trans-
formations Af+ and Af− are upper and lower triangular, respectively. And
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by Proposition 3.2, we have a Gauss-type decomposition (recall that the map
f �→ Af is a group anti-homomorphism):

Af = Af−Af−1
+

.

It is convenient to introduce the notation

Af =
(

αf βf

γf δf

)

for components of the symplectic transformation Af . Then, we have

Af =
(

αf− 0
γf− δf−

)(
αf−1

+
βf−1

+

0 δf−1
+

)
=

(
αf−αf−1

+
αf−βf−1

+

γf−αf−1
+

γf−βf−1
+

+ δf−δf−1
+

)
.

Assuming that αf− and α−1
f+

are invertible, this implies

α−1
f βf = α−1

f−1
+

βf−1
+

, γfα−1
f = γf−α−1

f−
. (32)

5.2. Normal Symbols of Holomorphic Maps

In this section, we apply Berezin theory of normal symbols to holomorphic
maps and the corresponding symplectic transformations.

In order to do that, we equip the space of holomorphic functions (mod-
ulo constants) H with a structure of a Hilbert space (following [9]) by declar-
ing ||zn||2 = |n| for all n �= 0. Then, symplectic transformations induced by
holomorphic maps admit a metaplectic projective representation on the corre-
sponding Fock space.

In more detail, let f be a holomorphic map, and assume that the corre-
sponding symplectic transformation Af is admissible. Then, it is convenient
to denote by Nf (instead of NAf

) its normal symbol.

Proposition 5.3. Let f and g be a pair of composable holomorphic maps, and
assume that the corresponding symplectic transformations Af and Ag are ad-
missible. Then,

Nf ∗ Ng =
1

det1/2(1 + (α−1
g βg)(γfα−1

f ))
Nf◦g

Furthermore, if f =
∑∞

n=1 fnzn with f1 �= 0, or if g =
∑1

−∞ gnzn with g1 �= 0,
then

Nf ∗ Ng = Nf◦g.

Proof. The first statement follows from Proposition 4.2. For the second state-
ment, note that if f =

∑∞
n=1 fnzn, then by Proposition 3.5 γf = 0. Similarly,

if g =
∑1

−∞ gnzn, then βg = 0. This completes the proof. �

We are now ready to state one of our main results:

Theorem 5.4. Let f and g be a pair of composable holomorphic maps, and
assume that they admit triangular decompositions. Then,

Nf ∗ Ng = CN (f, g)Nf◦g, (33)
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where the 2-cocycle CN (f, g) is of the form

CN (f, g) =
1

det1/2
(
1 +

(
α−1

g−1
+

βg−1
+

)(
γf−αf−1

−

)) . (34)

The corresponding map βN is given by formula

βN (u, g) = − 1
(2πi)2

∫

C×C

u−(z) − u−(w)
z − w

∂2

∂z∂w
log

(
g+(z) − g+(w)

z − w

)
dzdw.

(35)

Proof. For the first statement, we use Proposition 5.3, and we observe that by
formula (32)

α−1
g βg = αg−1

+
βg−1

+
, γfα−1

f = γf−α−1
f−

.

In order to prove the formula for βN , put f(t) = exp(tu), where u = u(z) ∂
∂z is

a vector field with

u(z) = u+(z) + u−(z) =
∞∑

n=1

unzn +
0∑

n=−∞
unzn.

Note that f(t) = f+(t)−1f−(t) and log(f−(t)) = tu− + O(t2). Hence,

βN (u, g) =
d

dt
C(exp(tu), g)|t=0 = Tr

(
α−1
g+−1βg−1

+

) (
d

dt

(
γexp(tu−)α

−1
exp(tu−)

))

t=0

.

Recall that ∑
m,n

√
mn

(
γexp(tu−)α

−1
exp(tu−)

)
m,n

z−m−1w−n−1

= − ∂2

∂z∂w
log

(
exp(tu−)(z) − exp(tu−)(w)

z − w

)
,

where exp(tu−)(z) is the image of z under the holomorphic map exp(tu−).
The derivative in t at t = 0 yields (after integrating over z and w)

∑
m,n

1√
mn

d
dt

(
γf−α−1

f−

)
m,n

|t=0z
−mw−n = −u−(z) − u−(w)

z − w
.

Also recall that
∑
m,n

√
mn

(
αg−1

+
βg+

)
m,n

zm−1wn−1 =
∂2

∂z∂w
log

(
g+(z) − g+(w)

z − w

)
.

Next, we convert the trace in m,n into a double contour integral. Since the
factors

√
mn and 1/

√
mn cancel out, we obtain the desired result. �

Surprisingly, the cocycle

CN (f, g) = CN

(
f−1
+ f−, g−1

+ g−
)

has the following polarization property: it is independent of the components
f+ and g− in triangular decompositions of f and g.

The following result of [15] (see Corollary 2.9 in Chapter 2) establishes
important properties of symplectic transformations associated with conformal
welding:
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Theorem 5.5. Let χ ∈ Diff+
hol(S

1), f the corresponding holomorphic function,
and f± the components of conformal welding of χ. Then, the maps Af−1

+
, Af−

and Af = Af−Af−1
+

belong to the restricted symplectic group Spres(H+ ⊕
H−). In particular, symmetric operators (α−1

f−1
+

βf−1
+

) and (γf−α−1
f−

) are Hilbert–

Schmidt.

Theorem 5.5 implies that conditions of Proposition 5.3 are verified for
conformal welding, and we have

Nf = Nf−1
+

∗ Nf− .

Furthermore, let χ, φ ∈ Diff+
hol(S

1). Recall that the corresponding con-
formal maps f and g are always composable. By Theorem 5.5, Af and Ag are
admissible. Hence, Theorem 5.4 applies, and we conclude that Eq. (33) holds
true for the product of normal symbols Nf ∗ Ng.

5.3. Takhtajan–Teo Energy Functional

In this section, we recall the definition and the main properties of the Takhtajan–
Teo energy functional (see [15] for details).

Let D ⊂ C be a simply connected domain which contains the unit disk
D and f+ : D → C be a univalent holomorphic function. Similarly, let D∗ be
a simply connected domain which contain D

∗ and f− : D∗ → C ∪ {∞} be a
univalent holomorphic function. Introduce the functionals S+ and S− defined
by formulas

S+(f+) = E+(f+) + 4π log(|f ′
+(0)|), E+(f+) =

∫

D

∣∣∣∣
f ′′
+(z)

f ′
+(z)

∣∣∣∣
2

d2z,

and

S−(f−) = E−(f−) − 4π log(|f ′
−(∞)|), E−(f−) =

∫

D∗

∣∣∣∣
f ′′

−(z)
f ′

−(z)

∣∣∣∣
2

d2z.

The functionals S+ and S− possess the following important property:

Proposition 5.6. Functionals S+ and S− are invariant under the PSL(2, R)
action on the right by Möbius transformations preserving the unit circle: f+ �→
f+ ◦ m, f− �→ f− ◦ m.

Proof. The proof is by a direct calculation, see the proof of Lemma 3.4 in
Chapter 2 of [15]. �

Let χ ∈ Diff+
hol, f the corresponding holomorphic map and f = f−1

+ ◦ f−
the conformal welding of χ. The Takhtajan–Teo (TT) energy functional is
defined as

S(χ) = S+(f+) + S−(f−). (36)

Remark 5.7. For an interesting alternative description of the TT functional,
see [16].
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Remark 5.8. Note that the TT functional is invariant under the simultaneous
action of dilations f+(z) �→ λf+(z), f−(z) �→ λf−(z) for all λ ∈ C

∗. In partic-
ular, the value of S(χ) is the same for conformal weldings with f ′

+(0) = 1 and
with f ′

−(∞) = 1. In what follows, it will be more convenient to use the second
picture.

The following observation is crucial for interpretation of the TT func-
tional as a Kähler potential on the Teichmüller coadjoint orbit:

Proposition 5.9. The functional S(χ) is invariant under the left PSL(2, R) ac-
tion of Möbius transformations preserving the unit circle: S(m ◦ χ) = S(χ).

Proof. Let f+, f− be components of conformal welding of χ with the normal-
ization f ′

−(∞) = 1. Note that m(0) ∈ D and let c = f+(m(0)). Then,

f̃+(z) = f+(m−1(z)) − c, f̃−(z) = f−(z) − c

are components of conformal welding of χ̃ = m◦χ with normalization f̃+(0) =
0, f̃−(∞) = ∞, f̃ ′

−(∞) = 1. Furthermore, observe that this transformation
does not change the TT functional. Indeed, the invariance under Möbius trans-
formations preserving the unit circle follows from Proposition 5.6, and invari-
ance under shifts is obvious since the TT functional only depends on derivatives
of f+ and f−. This completes the proof. �

Finally, recall the following highly nontrivial property of the TT energy
functional (see Theorem 3.8 in Chapter 2 of [15]):

Theorem 5.10. For all χ ∈ Diff+(S1), we have

S(χ−1) = S(χ).

In combination with Proposition 5.9, Theorem 5.10 implies that S(χ) is
also invariant under the left action of Möbius transformations preserving the
circle: S(χ ◦ m) = S(χ).

We observe the following interesting new property of the functional S(χ):

Proposition 5.11. For χ ∈ Diff+
hol(S

1), we have

S(χ) = Im C̃(f−1
− , f+) −

∫

C

(χ′(x) + 1) log(χ′(x))dx,

where C̃ is the groupoid 2-cocycle defined by Eq. (10).

Proof. First, observe that

E+(f+) =
i

2

∫

C

log(f ′
+)d log(f ′

+), E−(f−) = − i

2

∫

C

log(f ′
−)d log(f ′

−).

Also, note that

Im C̃(f−1
− , f+) = Im C̃(f+, f) = − i

2

∫

C

(log(f ′
+(f))d log(f ′) − log(f ′

+(f))d log(f ′)).
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We consider
A1(χ) = E+(f+) + E−(f−) − Im C̃(f−1

− , f+)

= i
2

∫
C

log(f ′
+)d log(f ′

+)

− i
2

∫
C

(log(f ′
+(f) + log(f ′))d(log(f ′

+(f)) + log(f ′))

+ i
2

∫
C

(log(f ′
+(f))d log(f ′) − log(f ′

+(f))d log(f ′))

Using that for z = eix

log(f ′(z)) = log(χ′(x)) + i(χ(x) − x),

we obtain

A1(χ) = −
∫

C

(log(χ′(x)) + log(|f ′
+(f(z))|2)(χ′(x) − 1)dx.

Next, we consider

A2(χ) = 4π(log(|f ′
+(0)|) − log(|f ′

−(∞)|)
=

∫
C

(log(|f ′
+(z)|2) − log(|f ′

−(z)|2))dx

=
∫

C
(log(|f ′

+(z)|2) − log(|f ′
+(f(z))|2) − log(|f ′(z)|2))dx

=
∫

C
(log(|f ′

+(f(z))|2)(χ′(x) − 1) − 2 log(χ′(x)))dx.

Adding up the expressions A1(χ) and A2(χ), we conclude

S+(f+) + S−(f−) − Im C̃(f−1
− , f+) = −

∫

C

(χ′(x) + 1) log(χ′(x))dx,

as required. �

The statement of Proposition 5.11 can be rewritten as

Im C̃(f−1
− , f+) = S(χ) +

∫

C

(log(χ′(x)) − log((χ−1)′(x)))dx. (37)

By Theorem 5.10, the first term on the right-hand side is invariant under the
involution χ �→ χ−1, while the second term is anti-invariant.

5.4. Quantization of Conformal Welding

In this section, we apply Berezin formalism to quantization of holomorphic
maps f corresponding to elements χ ∈ Diff+

hol(S
1). In particular, we use con-

formal welding to introduce a triangular decomposition of the corresponding
unitary operators Uf .

Let χ ∈ Diff+
hol(S

1) and f the corresponding holomorphic map. Recall
that the symplectic transformation Af ∈ USpres(H+ ⊕ H−) belongs to the
restricted unitary symplectic group. This implies that αf is invertible, γf = β̄f ,
and

α−1
f

(
α∗

f

)−1 = α−1
f

(
αfα∗

f − βfβ∗
f

)(
α∗

f

)−1 = 1 −
(
α−1

f βf

)(
α−1

f βf

)∗
.

Since the symmetric operator α−1
f βf = α−1

f−1
+

βf−1
+

is Hilbert–Schmidt, the op-

erator (α−1
f βf )(α−1

f βf )∗ is of trace class, and α−1
f (α∗

f )−1 possesses a Fredholm
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determinant. The following result is an adaptation of Theorem 3.8 in Chapter
2 of [15]:

Theorem 5.12. Let χ ∈ Diff+
hol(S

1) and f the corresponding holomorphic map.
Then, the operator αf is bounded and invertible. The Fredholm determinant of
the self-adjoint operator α−1

f (α∗
f )−1 is given by

det
(
α−1

f

(
α∗

f

)−1) = e−S(χ)/12π, (38)

where S(χ) is the TT energy functional.

Theorem 5.12 allows to reprove several properties of the TT functional
S(χ). Indeed, by Theorem 4.4 the unitary operator representing the symplectic
transformation Af is given by:

Uf =
1

det1/4(αfα∗
f )

Nf = e−S(χ)/48π Nf = e−S(χ)/48π Nf−1
+

∗ Nf− . (39)

By Proposition 4.5, we have

τ(Af ) =
1

det1/4(αfα∗
f )

= e−S(χ)/48π.

The identity τ(Af ) = τ(A−1
f ) = τ(Af−1) implies S(χ) = S(χ−1) and gives a

new proof of Theorem 5.10 based on Theorem 5.12.
Furthermore, let m be a Möbius transformation preserving the unit circle.

Then, βm = γm = 0 and αm and δm are unitary operators. This implies
Umv0 = v0. Indeed, the normal symbol acts trivially Nmv0 = v0 since α−1

m βm =
0, and det(αmα∗

m) = 1. Therefore, for m1,m2 two Möbius transformations
preserving the unit circle we have

e−S(m1◦χ◦m2)/48π = τ(Am1◦f◦m2) = |(v0, Um2UfUm1v0)|
= |(v0, Ufv0)| = τ(Af ) = e−S(χ)/48π

which implies S(m1 ◦ χ ◦ m2) = S(χ).
Using Eq. (39), we obtain the following interesting relation between the

cocycle CN and the TT energy functional:

Theorem 5.13. Let χ ∈ Diff+
hol(S

1), f the corresponding holomorphic function,
and f± the components of the conformal welding of χ. Then,

log(|CN (f−1
− , f+)|) = −S(χ)

24π
. (40)

Proof. On the one hand, Eq. (39) implies:

U−1
f = eS(χ)/48π N−1

f−
∗ N−1

f−1
+

= eS(χ)/48π Nf−1
−

∗ Nf+

= eS(χ)/48π CN (f−1
− , f+)Nf−1 .

Here, we have used the facts that Nf−1
−

is the operator inverse of Nf− and
Nf−1

+
is the operator inverse of Nf+ . On the other hand, we have

Uf−1 = e−S(χ−1)/48π Nf−1 = e−S(χ))/48π Nf−1 .
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Since both Uf and Uf−1 are unitary operators, their product UfUf−1 = z · Id
which implements f ◦f−1 = e is a multiple of the identity with |z| = 1. Hence,

Uf−1 = z U−1
f = z eS(χ)/48π CN (f−1

− , f+)Nf−1 .

By comparing the two expressions for Uf−1 , we obtain Eq. (40), as required.
�

Remark 5.14. Note that the constant z in the proof of Theorem 5.13 can be
computed as follows:

z = e−S(χ)/24πCN (f−1
− , f+).

Remark 5.15. The statement of Theorem 5.13 should be compared to Propo-
sition 5.11 and Eq. (37). In particular, it would be interesting to find a more
explicit relation between the cocycles log(|CN |) and C̃.

The second main result of this article is the following theorem:

Theorem 5.16. Let χ, φ ∈ Diff+
hol(S

1), and f and g be the corresponding holo-
morphic maps. Then,

Uf ∗ Ug = CU (f, g)Uf◦g,

where
CU (f, g) = e(S(χ◦φ)−S(χ)−S(φ))/48π CN (f, g). (41)

Furthermore,

log(|CN (f, g)|) =
S(χ) + S(φ) − S(χ ◦ φ)

48π
. (42)

Proof. Formula for CU (f, g) is a direct consequence of Theorems 5.4 and 5.12.
Since Uf , Ug and Uf◦g correspond to unitary operators, CU (f, g) takes values
in S1 ∼= {z ∈ C; |z| = 1} and the real part of its logarithm vanishes. �

Remark 5.17. Explicit expressions for the left- and the right-hand sides of
Eq. (42) are of very different nature. The determinant on the left-hand side
uses Grunsky coefficients of the welding components f− and g−. On the right-
hand side, the TT energy functional is an integral of local expressions in terms
of all welding components f±, g±, (f ◦ g)±. It would be interesting to find a
direct proof of the surprising equality (42) between these expressions.

Remark 5.18. The imaginary part Im log(CU (f, g)) of the cocycle CU (f, g) is
an additive real-valued group 2-cocycle on Diff+(S1). Assuming that

H2(Diff+
hol(S

1), R) = H2(Diff+(S1), R) ∼= R,

this cocycle must be cohomologous to the Bott–Virasoro cocycle. It would be
interesting to find an explicit expression for the coboundary which represents
their difference.
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Acknowledgements

We are grateful to the referee of this paper for very interesting remarks and
suggestions. Research of AA was supported in part by the Grants 182767,
208235 and 200400, and by the NCCR SwissMAP of the Swiss National Science
Foundation (SNSF). Research of AA and SS was partly supported by the award
of the Simons Foundation to the Hamilton Mathematics Institute of the Trinity
College Dublin under the program “Targeted Grants to Institutes.”

Funding Open Access funding provided by the IReL Consortium

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Airault, H., Malliavin, P.: Unitarizing probability measures for representations
of Virasoro algebra. J. Math. Pures Appl. 80(6), 627–667 (2001)

[2] Alekseev, A., Shatashvili, S.L.: Path integral quantization of the coadjoint orbits
of the Virasoro group and 2-d gravity. Nucl. Phys. B 323(3), 719–733 (1989)

[3] Alekseev, A., Shatashvili, S.L.: Characters, coadjoint orbits and Duistermaat–
Heckman integrals. J. Geom. Phys. 170, 104386 (2021)

[4] Alekseev, A., Shatashvili, S.L.: Coadjoint orbits, cocycles and gravitational
Wess–Zumino. Rev. Math. Phys. 30(6), 1840001 (2018)

[5] Berezin, F.A.: The Method of Second Quantization. Pure and Applies Physics
24, Academic Press, New York (1966)

[6] Kirillov, A.A.: The orbits of the group of diffeomorphisms of the circle, and local
Lie superalgebras. Funk. Anal. Prilozh. 15(2), 75–76 (1981)

[7] Kirillov, A.A.: Kähler structure on K-orbits of a group of diffeomorphisms of
the circle. Funk. Anal. Prilozh. 21(2), 42–45 (1987)

[8] Lazutkin, V.F., Pankratova, T.F.: Normal forms and versal deformations for
Hill’s equation. Funk. Anal. Prilozh. 9(4), 41–48 (1975)

[9] Nag, S., Sullivan, D.: Teuchmüller theory and the universal period map via

quantum calculus and the H1/2 space on the cicle. Osaka J. Math. 32, 1–34
(1995)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 25 (2024) Berezin Quantization, Conformal Welding 63

[10] Pimentel, G.L., Polyakov, A.M., Tarnopolsky, G.M.: Vacuum decay in CFT and
the Riemann–Hilbert problem. Nucl. Phys. B 907, 617–632 (2016)

[11] Pomerenke, C.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)

[12] Saad, P., Shenker, S., Stanford, D.: JT gravity as a matrix integral. preprint
arXiv:1903.11115

[13] Segal, G.: Unitary representations of some infinite dimensional groups. Commun.
Math. Phys. 80(3), 301–342 (1981)

[14] Stanford, D., Witten, E.: Fermionic localization of the Schwarzian theory. J.
High Energy Phys. 2017(10), 1–28 (2017)

[15] Takhtajan, L.A., Teo, L.-P.: Weil–Petersson metric on the universal Teichmüller
space. Mem. Am. Math. Soc. 183, 861 (2006)

[16] Wang, Y.: Equivalent descriptions of the Loewner energy. Invent. math. 218,
573–621 (2019)

[17] Witten, E.: Coadjoint orbits of the Virasoro group. Commun. Math. Phys. 114,
1 (1988)

A. Alekseev
Section of Mathematics
University of Geneva
Rue du Conseil Général 7-9
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