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Abstract. Obtaining rigorous and general results about the non-equilibrium
dynamics of extended many-body systems is a difficult task. In quantum
lattice models with short-range interactions, the Lieb–Robinson bound
tells us that the spatial extent of operators grows at most linearly in time.
But what happens within this light-cone? We discuss rigorous results on
ergodicity and the emergence of the Euler hydrodynamic scale in cor-
relation functions, which establish fundamental principles at the root of
non-equilibrium physics. One key idea of the present work is that general
structures of Euler hydrodynamics, obtained under ballistic scaling, follow
independently from the details of the microscopic dynamics, and in par-
ticular do not necessitate chaos; they are consequences of “extensivity”.
Another crucial observation is that these apply at arbitrary frequencies
and wavelengths. That is, long-time, persistent oscillations of correlation
functions over ballistic regions of spacetime, which may be of micro-
scopic frequencies and wavelengths, are predicted by a general Euler-
hydrodynamic theory that takes the same form as that for smoothed-out
correlation functions. This involves a natural extension of notions of con-
served quantities and hydrodynamic projection and shows that the Euler
hydrodynamic paradigm covers the full frequency-wavelength plane.
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1. Introduction

The dynamics of many-body, extended, isolated, interacting quantum systems
has been the focus of much recent theoretical and experimental research [1–
3]. Of particular interest is their universal, large-scale behaviours away from
equilibrium. Given the panoply of phenomena observed, it is crucial to rigor-
ously establish the physical principles that guide them, such as ergodicity and
hydrodynamics. Can we prove that certain forms of ergodicity occur, and that
hydrodynamics emerges whereby a large amount of information is lost? Can
we characterise the remaining degrees of freedom? For reversible, Hamiltonian
dynamics in extended quantum systems, these are some of the deepest ques-
tions and remain largely open, forming an important part of Hilbert’s sixth
problem [4].

On the one hand, ergodicity is the idea that, over long times, the system
covers uniformly enough the manifold of states, or at least the part of it that
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is dynamically accessible, such as the energy shell. In the language of Gibbs’
statistical mechanics, this translates into the equivalence of time averages with
ensemble averages. In what situations does this happen in extended quantum
systems? Conventional wisdom says that this requires the presence of chaos:
the exponential separation of initially nearby trajectories, or, in quantum
mechanics, certain conditions on the energies and matrix elements of macro-
scopic observables [5–7], or on out-of-time-ordered correlators (OTOC) [8–
11]. Is there such a link between short-time (chaotic) and long-time (ergodic)
behaviours?

On the other hand, hydrodynamics purports that the dynamics of the sys-
tem reduces to that of a few emergent, slowly-decaying degrees of freedom. One
stark realisation of this is the Boltzmann–Gibbs principle [12–14]: in hydrody-
namic linear response, this is the idea that correlations due to local perturba-
tions are carried by long-lived modes over which local perturbations “project”,
and that propagate at hydrodynamic velocities. Indeed, the dominant corre-
lations between a person’s vocal chords and another’s eardrum are carried by
sound waves. The principle holds quite generally, including in extended Hamil-
tonian quantum models, and including with integrability [15–17]. What are the
conditions for the emergence of such hydrodynamic projections, and what are
the hydrodynamic modes?

Next, we discuss the phenomenon of hydrodynamic projections for Euler-
scale correlation functions (that is, correlation functions obtained under the
ballistic scaling of space and time). Using a form of almost-everywhere ergod-
icity, we prove hydrodynamic projection theorems in arbitrary dimension. We
also explain how such results immediately extend to arbitrary frequencies f
and wavenumbers k (that is, to describe oscillations on ballistic-scale regions,
of microscopic-scale frequencies and wavelengths). We give a precise defini-
tion of the space of hydrodynamic modes, as the kernel of the (in general
f -oscillatory) unitary evolution operator on the Hilbert space of (in general
k-)extensive quantities. In general, this space depends on the state and on
the chosen frequency and wavenumber. Again, results apply to all short-range
hypercubic quantum lattices, and a large family of states.

Finally, oscillatory hydrodynamic projections give rise to the “oscilla-
tory linearised Euler equation”, and we illustrate in the free-fermionic chain
how this reproduces the oscillatory behaviours of two-point functions, with
frequencies determined by the microscopic parameters of the model, at large
space-time separations. This gives a “proof of principle” for the use of hydro-
dynamics to address long-time oscillatory behaviours of any frequencies and
wavelengths.

From the physics perspective, our main messages are:

1. In contrast to the few-body case, the “right” notion of ergodicity in many-
body systems does not rely on the conventional idea of covering the energy
shell. Rather, in the thermodynamic limit, the fact that timelike aver-
ages of local observables become non-fluctuating on large times follows
from the interplay between extensivity of the system and locality of the
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observables. It happens on timescales which are much smaller than the
Poincaré recurrence scale, or that for covering the energy shell. This is
many-body ergodicity (related to what is sometimes called “typicality”).
Interestingly, despite these physical differences, it is nevertheless the same
mathematical principles from the basic ergodicity theory that underpins
many-body and few-body ergodicity, including von Neumann’s ergodic
theorem.

2. Euler-scale hydrodynamics hold for a wide family of systems, indepen-
dently from their specific dynamics (integrable or chaotic, constrained or
not, etc.). General structures, such as hydrodynamic projections, always
emerge at large scales, and only specific properties that control the phe-
nomenology are model dependent. The idea that hydrodynamics is a use-
ful concept beyond its conventional field of applications, not requiring
chaos, has come to the fore with the recent development of generalised
hydrodynamics for integrable systems [18–21], and ties in with the idea
that thermodynamic concepts should not rely on short-time behaviours,
as emphasised recently in [22]. However, rigorous results about many-
body dynamics, especially of such generality, are notoriously difficult to
obtain.

3. The hydrodynamic principles and structures at the Euler scale (that is,
under ballistic scaling of space and time) can be applied to arbitrary
frequencies and wavelengths (not ballistically scaled). Thus, in D dimen-
sions, there is a (f,k)-hydrodynamic theory for every frequency f ∈ R

and wavenumber k ∈ R
D. The (f,k)-hydrodynamic modes control the

(f,k)-oscillatory behaviours of correlation functions on large regions of
space-time. For any given (f,k), if the set of modes is non-empty, then
such (f,k)-oscillatory behaviours are stable under ballistic scaling of
space and time. This means that the spatial k-Fourier transform of the
correlation function presents persistent oscillations of frequency f (has
divergent temporal f -Fourier transform); and that at k+δk with ballistic
scaling δk = κ/t, the temporal f -average on large time intervals takes a
universal form as a function of κ determined by (f,k)-hydrodynamics.
With the δk shift, what we are doing is essentially an oscillatory average
on ballistic regions of spacetime; the hydrodynamic theory will then pre-
dict along which velocities nontrivial correlations (under such averaging)
will occur, and their weights. See Fig. 1 for a pictorial representation.
This goes beyond well-known effects such as the robustness of the sound
dispersion relation at nonzero wavenumber. Effectively, this describes
the singularity structures of correlation functions in the full frequency-
wavenumber plane. Our construction shows that recent ideas on dynam-
ical symmetries [23–27] can be extended to the hydrodynamic regime of
correlation functions. In fact, the proofs we provide make it clear that the
extension goes beyond simple phase oscillations, and include oscillations
involving nontrivial internal transformations, such as spin rotations. This
in principle allows hydrodynamics to be extended to describe large-scale
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behaviours involving nontrivial microscopic internal structures, such as
helicoidal spin structures.

From a more philosophical perspective, an important message is that it
is extremely fruitful to extract the relevant many-body physics out of equilib-
rium by analysing the operator algebra of local observables already in the ther-
modynamic limit. This is to be contrasted with methods based, in quantum
systems, on how the spectrum of large Hamiltonians behave as the thermody-
namic limit is taken, or, in classical models, on kinetic equations. The operator
algebra framework allows one to directly concentrate on the small part of the
Hilbert space (or phase space in classical mechanics) that is significant in the
thermodynamic limit. In particular, we emphasise how kernels of naturally
defined unitary operators on Hilbert spaces of observables encode the relevant
aspects of large-scale physics.

We believe most of these notions are valid in a large class of many-
body systems, quantum or classical. In order to be precise, however, we will
concentrate on translation-invariant, infinitely-extended D-dimensional hyper-
cubic quantum lattices with finite local spaces and short-range interactions
(interaction strength decaying at least exponentially with distance).

The paper is organised as follows. First, in Sect. 2, we discuss notions of
ergodicity, and in particular many-body ergodicity, and “almost-everywhere
ergodicity” established recently [28] within the context of the C∗ algebraic
formulation of quantum statistical mechanics. We contrast this with von Neu-
mann’s ergodic theorem, and discuss application to the problem of return to
equilibrium after local quenches. We then prove rigorously, in Sect. 3, the prin-
ciple of hydrodynamic projection onto conserved modes in the Euler scaling
limit, within the same context. This generalises the result of [29] to any dimen-
sion, although the proof requires the introduction of quite a few new ideas.
Crucially, mathematical formalism makes it clear that the general principle can
take into account oscillatory behaviours at any frequency and wavelength. We
give an accurate definition of the full, complete space of hydrodynamic modes,
which in general depends on the state, and on the frequency and wavelength.
Finally, in Sect. 4 we review the linearised (oscillatory) Euler hydrodynamic
equations established in [29] in one dimension and discuss how they recover
oscillatory behaviours in free fermion models. The structures uncovered are
pictorially illustrated in Fig. 1.

2. Ergodicity, Many-Body Ergodicity, Almost-Everywhere
Ergodicity

Ergodicity plays a fundamental role in physics. In this section, we pedagogi-
cally review some concepts of ergodicity in many-body systems, one of the goals
being to put in context some recent results by the authors. We first review the
basic rigorous ergodicity result in classical mechanics from Birkhoff’s ergodic
theorem. We then review von Neumann’s fundamental work on the quantum
ergodic theorem, recasting the nice discussion in [6] into the language of local
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Figure 1. A pictorial representation of the mathematical
results of [28], and of the hydrodynamic projection results
of Sect. 3. Within the Lieb–Robinson cone |x| < vLRt, very
little was known until now. We find that ray-averages ĀT of
observables up to time T , with respect to every frequency f
and wavelength k and at every velocity v, vanish at large
times T → ∞ (represented by the colour-gradient shaded
region), except perhaps for a set of v of measure zero (rep-
resented by solid ray segments). Observables become thin as
time evolve. The large-scale information that remains, after
oscillatory fluid-cell means, is their projection onto a smaller
space of degrees of freedom Qω,k , the slowly decaying hydro-
dynamic modes

observables in quantum spin lattices. We observe that the eigenstate ther-
malisation hypothesis (ETH) is in fact closely related to the conditions of
von Neumann’s quantum ergodic theorem. Both the von Neumann quantum
ergodic theorem and the ETH rely heavily on the structure of the spectrum,
and how it behaves in the thermodynamic limit. Lastly, we avoid such diffi-
culties by passing to the C∗-algebra formalism, in which context we discuss
what many-body ergodicity may look like, and review the recent results [28],
where almost-everywhere ergodicity is proven for every quantum spin model
on (hyper-)cubic lattices with short-range interactions; we discuss some appli-
cations and relations with the problem of return to equilibrium.

We denote throughout this section the time average as

f(t) := lim
T→∞

1
T

∫ T

0

dt f(t). (1)

2.1. Ergodicity in Classical Mechanics

In the classical mechanics of interacting particles, the basic notion of ergodicity
is the equivalence between time average and “ensemble average”, or average
over the uniform measure on the energy shell.

Consider a system of N particles, with phase-space coordinates (xn,pn) ∈
R

2D : n = 1, . . . , N and time evolution generated by a Hamiltonian H(x,p)
(we denote (x,p) = ((xn,pn) : n = 1, . . . , N) ∈ R

2DN ). The microcanon-
ical ensemble average of an observable A(x,p) on the shell ΩE = {(x,p) :
H(x,p) = E} of energy E can be defined by a limit on the thickened shell
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SE−,E+ = {(x,p) : E− < H(x,p) < E+} as

〈A〉E := lim
E−,E+→E

1
vol SE−,E+

∫
SE−,E+

dDNxdDNpA(x,p) (2)

where

vol SE−,E+ =
∫

SE−,E+

dDNxdDNp. (3)

Note that this naturally induces a measure μE on ΩE .
Now consider points (x,p) ∈ ΩE . The ergodicity statement is that, if

there is no nontrivial constant of the motion,1 then, for every observable A,
every E ∈ im H, and almost every (x,p) ∈ ΩE ,

A(x(t),p(t)) = 〈A〉E (4)

where (x(t),p(t)) is the point (x,p) time-evolved by time t. This is equivalent
to a more intuitive statement: the fraction of time that a trajectory t �→
(x(t),p(t)) spends in a neighbourhood Γ ⊂ ΩE of a point (x′,p′) ∈ Γ is, over
long times, proportional to its “surface area” μE(Γ) on the energy shell, for
almost every initial point (x,p) and for every (x′,p′). In particular, over long
times, the trajectory comes as close as desired to the point (x′,p′).

The above ergodicity statement for classical mechanics follows from
Birkhoff’s ergodic theorem [30]. Of course, proving ergodicity for any given
system is difficult—the difficulty being in proving the absence of nontrivial
constants of the motion. See also the discussion in [31].

2.2. Von Neumann’s Quantum Ergodic Theorem

It is natural to ask about the equivalent ergodicity notion for quantum sys-
tems. A problem arises: in quantum mechanics, phase space is essentially “dis-
cretised” as dxdp 	 �/2. Now we cannot ask a more precise question than if
a trajectory will cross a neighbourhood of volume �/2 of a point. Requiring
that this happens for every point (in some precise way that can be worked
out, see below) is a much weaker condition, that of “quantum recurrence”.
Of course, at large values of the classical action S 
 �, this quantisation is
not seen, and one recovers classical mechanics. The above classical ergodicity
notion, with the more stringent condition on the measure covered by trajec-
tories, is then a good approximation. But how is this recovered directly from
quantum mechanics? Large classical actions naturally occur in macroscopic
systems. Can we formulate ergodicity for macroscopic quantum systems, and
find the quantum properties that guarantee it? In particular, timescales for
quantum recurrence are prohibitively large, while those for ergodicity of the
corresponding classical system at S 
 � are short; how to account for this?

1A nontrivial constant of the motion is a measurable function Q on phase space (an observ-
able) that is invariant under the dynamics (constant of the motion), and that breaks the
energy shells (nontrivial) in that for at least one E, there exist two non-intersecting subsets
Γ, Γ′ ⊂ ΩE of nonzero μE-measure such that Q(Γ) ∩ Q(Γ′) = ∅.
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Von Neumann’s idea is to look at “macroscopic observables”. Intuitively,
such observables should behave like classical ones, but one asks what the micro-
scopic quantum evolution says about these observables, and in particular their
ergodicity properties. Perhaps the original idea was to consider a classical
object (such as a tennis ball) as a macroscopic combination of quantum par-
ticles, and macroscopic observables for such objects. But in fact, it turns out
that the abstract formulation applies quite generally. Making connections with
modern developments, we will recast von Neumann’s line of thought to the
context of many-body quantum systems with short-range interactions: what
about ergodicity in large (macroscopic) quantum spin lattices?

Take a finite spin lattice: a quantum system with N -dimensional local
spaces lying on ΛL := [−L,L]D ∩ Z

D, and Hilbert space H =
(
C

N
)⊗ΛL .

Consider the Hamiltonian

H =
∑

x∈ΛL

hx (5)

where hx is an operator supported on a finite, x-independent number of sites
near to x. For simplicity we take the system periodic and translation invariant:
there is a representation y �→ ιy of the group (Z/(2L + 1)Z)D on the group of
automorphisms of the operator algebra Aut(EndH), such that ιyhx = hx+y

(and ιyA is supported on the y-translate of the support of A). The Hamiltonian
has spectrum of eigenvalues {En} and normalised eigenvectors |n〉.

Consider a microcanonical shell S = {n : |ΛL|e− < En < |ΛL|e+},
keeping the energy densities e−, e+ implicit for readability. The microcanonical
ensemble is represented by the density matrix

ρmc =
1

|S|
∑
n∈S

|n〉〈n|. (6)

It can be shown that [32,33], in the limit of large volume L → ∞, followed by
the limit of small shell e− → e+ → e, averages of local observables A (operators
supported on finite numbers of sites) in this ensemble tend to averages in the
Gibbs ensemble,

lim
e−,e+→e

lim
L→∞

Tr ρmcA = lim
L→∞

Tr ρA, ρ =
e−βH

Tr e−βH
(7)

where β is chosen such that Tr ρh0 = e.
A number of ergodicity-like results can be obtained depending on the

strength of the assumptions on the underlying system.

2.2.1. Assumption of Non-degeneracy and Quantum Recurrence. Before dis-
cussing von Neumann’s QET, let us first consider the simplest ideas of ergod-
icity, keeping L finite and the shell of finite thickness. Let us assume that
En �= Em if n �= m. Take a state in the microcanonical shell,

|ψ〉 =
∑
n∈S

cn|n〉. (8)
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We note that the time average of an operator A is simply expressed as a
linear combinations on projections Pn = |n〉〈n|:
〈m|A(t)|n〉 = ei(Em−En)t〈m|A|n〉 = δm,n〈n|A|n〉 ⇒ A(t) =

∑
n

〈n|A|n〉Pn.

(9)

From this we observe, on the one hand, that time averages in a generic
state |ψ〉 of the microcanonical shell gives rise to the “diagonal ensemble”, the
ensemble of density matrices that are diagonal in the energy eigenbasis:

〈ψ(t)|A|ψ(t)〉 =
∑
n∈S

|cn|2〈n|A|n〉. (10)

The equivalent of the classical uniform shell-averaging is the uniform sum over
n’s (Tr ρmcA), but here, the sum is not uniform, as the cn’s may behave wildly
as functions of n. Hence, this is certainly not ergodicity, even in the limit of
large L and thin shell!

On the other hand, as an immediate consequence of (9), in any stationary
state |n〉, the observable A is non-fluctuating:

〈n|A(t)
2|n〉 =

(〈n|A|n〉)2
. (11)

This is indeed a (weaker-looking) statement of ergodicity: “mean-square ergod-
icity”. The distribution of the random variable A(t) in the state |n〉 is sup-
ported on 〈n|A|n〉. But does this have a connection with the classical notion
of ergodicity?

Indeed, at the technical level, mean-square ergodicity fully parallels the
classical notion. In this parallel, first we consider the condition of non-
degeneracy, which is equivalent to the condition that the space of all operators
invariant under time evolution is spanned by the projections Pm = |m〉〈m|.
This parallels the classical condition that there be no nontrivial constants of
the motion2. Second, using this condition we see, in (9), that long-time aver-
ages of observables project onto span(Pm), the subspace of all time-invariant
operators. This parallels the result of Birkhoff’s theorem for classical phase-
space functions (under the condition of the absence of nontrivial constants of
the motion). In fact, in evaluating time averages, instead of the direct calcula-
tion made in (9), one may use von Neumann’s ergodic theorem from functional
analysis [34, Theorem II.11] (not to be confused with von Neumann’s quantum

2In this respect, it is sometimes stated in the literature that integrability—in the sense of the
existence of large enough amount of nontrivial constants of the motion—for finite quantum
spin lattices does not make sense, because there always are as many projections Pm, which
commute with H, as the dimension of the Hilbert space dim H. This is misleading, as a
similar statement could be made for classical systems: functions of the Hamiltonian are
constants of the motion. But they are not “nontrivial”: they do not divide the energy shells.
Similarly, Pm are not nontrivial constants of the motion. Only with degeneracies can new,

nontrivial constants of the motion appear: the space of operators is of dimension (dim H)2,
and integrability typically leads to enough degeneracies so that there are ∝ log(dim H) dim H
linearly independent projections commuting with H; this is associated to the presence of a
large enough amount of extensive conserved quantities.
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ergodic theorem!). This quite directly parallels the use of Birkhoff’s theorem
from measure theory in the classical case. Indeed, von Neumann’s ergodic the-
orem implies that, if Ut is a unitary one-parameter group on a Hilbert space,
then

Ut = P1 (12)

where P1 the projector onto its unit-eigenvalue subspace. Then, we simply
consider time evolution as a unitary operator acting on matrices (say under
the Hilbert-Schmidt inner product), and its long-time average projects onto
span(Pm), the time-invariant operators. Finally, to complete the parallel, we
evaluate the result within a single state |n〉. This parallels the taking of a fixed
classical energy shell; we fix the state |n〉, because the limit of an infinitesimally
thin shell, for fixed L, is just a single state. As |n〉 is stationary, the statement
that A(t) be non-fluctuating and supported on 〈n|A|n〉, is the only natural
ergodicity statement, and it is indeed the one we obtain.

But this parallel is essentially technical. The above simple statements,
in fact, only relate to quantum recurrence, not many-body ergodicity. Indeed,
the order of limits is simply incorrect for many-body systems: the limit in time
T → ∞, in the time averaging (1), is taken before the limit of large volumes
L → ∞ (which is in fact never taken in the mean-square ergodicity statement).
This is thus valid, in realistic many-body systems, only at astronomically large
times! As we will see in Sect. 2.3, however, with the right space of operators,
a similar technical parallel can be made which becomes fully meaningful.

2.2.2. Assumptions on Maximal Deviations and von Neumann’s QET. Assume

that maxn∈S

(
〈n|A|n〉 − Tr ρmcA

)2

is “small”.
A natural requirement would be that it is uniformly bounded in L (thus

stays finite in the large volume limit), and this bound tends to zero in the limit
of thin microcanonical shell. Of course, this cannot be expected to be valid for
all observables A. But, at least for local observables, this should hold (certainly
uniform boundedness in L is immediate by finiteness of the operator norm).
A clear example is the energy density hx . The states |n〉 may be assumed to
diagonalise the translation operator, and therefore,

〈n|hx |n〉 =
1

|ΛL|
∑

x′∈ΛL

〈n|hx+x′ |n〉 =
1

|ΛL| 〈n|H|n〉 =
En

|ΛL| . (13)

Thus,

e− ≤ Tr ρmchx ≤ e+ (14)

and maxn∈S

(
〈n|hx |n〉 − Tr ρmchx

)2

≤ (e+ − e−)2. The requirement is that
such a smallness bound holds not just for the energy density, but for all (or at
least for a large family of) local observables.

Then, as
∑

n |cn|2 = 1, we get from (10) that

〈ψ(t)|A|ψ(t)〉 is near to Tr ρmcA. (15)

This looks much more like an ergodicity statement.
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Making connection with more modern ideas, we note that the above
assumption is in fact equivalent to a part of the eigenstate thermalisation
hypothesis (ETH) [2]: that in the thermodynamic limit L → ∞, averages of
local observables in energy eigenstates vary continuously with the energy den-
sity.

One can get further with one more assumption:
Assume that maxn,m|〈n|A|m〉|2 is small, and that the energy differences

Em−En are non-degenerate (this implies, but is stronger than, non-degeneracy
of energies).

Then, von Neumann proved that 〈ψ(t)|A|ψ(t)〉 has small time variance,
(
〈ψ(t)|A|ψ(t)〉 − Tr ρmcA

)2

is small. (16)

This is (a loose formulation of) von Neumann’s quantum ergodic theorem,
proved in [5] (see [35] for English translation).

The assumption that maxn,m|〈n|A|m〉|2 be small is implied by the full
formulation of the ETH. Indeed, in the ETH, one equates off-diagonal matrix
elements of local operators with an entropy factor that vanishes exponen-
tially with the system size, times matrix elements from random matrix the-
ory. Importantly, the assumption that maxn,m|〈n|A|m〉|2 be small is in fact
weaker. The energy-difference non-degeneracy condition would be paralleled
by the assumed random-matrix distribution of eigenvalues in quantum chaos;
although the full connection is not obvious.

One sees immediately two potential drawbacks from von Neumann’s
ergodic theorem:

• The assumptions on maximal deviations from the microcanonical aver-
ages are somewhat contrived; it is not clear, given a short-range inter-
action on a quantum lattice, how to show their validity. (The same can
be said a fortiori of the ETH.) Is there something more universal that
can be said? Are these assumptions really necessary to understand the
structure of long-time dynamics in many-body quantum systems?

• Non-degeneracy assumptions are natural, but they are seemingly unre-
lated to the thermodynamic limit, where a continuum of states exists.
Can something be said when there are degeneracies, most interestingly
in the presence of a large number of nontrivial conserved quantities? Can
this be formulated directly in the thermodynamic limit?

Remark 2.1. In von Neumann’s work, instead of local observables, it is “macro-
scopic observables” that are the main focus. One should consider a family of
macroscopic observables Mi, with the property that they almost mutually
commute, [Mi,Mj ] ≈ 0, and thus can be almost simultaneously diagonalised.
The associated subspaces correspond to different “macrostates”, intuitively
different cells in the classical phase space. Von Neumann’s theory can be for-
mulated in terms of projections on these subspaces, and conditions on these.
One may take spatial averages of local observables, Â := |ΛL|−1

∑
x∈ΛL

A(x),
which indeed have vanishing commutators, ||[Â, B̂]|| ∼ |ΛL|−1. We find that
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it is more transparent to forgo the abstract notion of macroscopic observables
and their associated eigenspaces, and instead concentrate on local observables
and their matrix elements.

2.3. Many-Body and Almost-Everywhere Ergodicity Theorems

Recall that in von Neumann’s quantum setup, we considered the “macro-
scopic”, or many-body, limit L → ∞ in order to say something about ergod-
icity.

It is indeed commonly believed that, in typical interacting many-
body systems and states 〈· · ·〉 of physical importance, auto-correlation func-
tions of local observables in the thermodynamic limit vanish at long times,
〈A(0, t)B(0, 0)〉 − 〈A〉〈B〉 → 0 (t → ∞). This is the notion of mixing 3: the
effect of the small localised perturbation B(0, 0) mixes with its surrounding
and, locally, decays in time. A weaker notion, implied by mixing, is that of
ergodicity: T−1

∫ T

0
dt 〈A(0, t)B(0, 0)〉 → 〈A〉〈B〉 (T → ∞). This is equivalent

to mean-square ergodicity: the vanishing of the variance of the observable

ĀT := T−1

∫ T

0

dtA(0, t) (17)

at long times, 〈Ā2
T 〉 − 〈A〉2 → 0. As explained above, mean-square ergodic-

ity says that infinite-time averages of observables, in the state 〈· · ·〉, do not
fluctuate, and are simply equal to ensemble averages.

But an important observation, which we believe was mostly overlooked in
the literature, is that the resulting question of ergodicity, in fact, has less to do
with quantum mechanics, and much more with the emergence of large-scale
behaviours in many-body systems. This is about the passage from microscopic
laws to macroscopic dynamics. As we mentioned, in many-body quantum sys-
tems, quantum recurrence, as discussed in paragraph 2.2.1, is irrelevant to
this question. But also, in many-body classical systems, the uniform covering
of the energy shell, as discussed in Sect. 2.1, is also irrelevant to this question.
In both cases, timescales are too large. The question of emergent ergodicity in
many-body systems is of a different nature, and it brings out similar concepts
both in quantum and classical many-body systems; “quantumness” does not
play a fundamental role.

In this subsection, we take the C∗ algebra viewpoint on statistical
mechanics. This, we argue, is much better adapted to the thermodynamic limit
and the question of many-body ergodicity. We discuss this question and in par-
ticular review results on almost-everywhere ergodicity established recently by
the authors, which are extremely general and free from hard-to-check condi-
tions. For clarity we still concentrate on quantum spin lattices; however, this
viewpoint is much more easily adapted to other many-body systems, with only
small differences between the quantum and classical cases.

3In quantum statistical mechanics, “mixing” is sometimes used to describe what we will
refer to as spatial mixing, Eq. (18) below, and likewise “ergodicity” is used to describe
a property related to spatial integrals. Here we reserve these words to the more physical
notions involving time.
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Interestingly, as we will see, the basic mathematical ideas behind quan-
tum recurrence (especially as “mean-square ergodicity”) and classical ergod-
icity are still the right ones for many-body ergodicity, however only after the
space of observables has been reduced to that relevant for local physics in
the thermodynamic limit. It is the reduction to this space that allows these
ideas to extract the correct form of ergodicity seen in many-body systems,
associated to times that do not grow with the system size.

We note that the notions of ergodicity discussed in this subsection are
not to be confused with what is sometimes called the “ergodic principle” (see,
for example, [36], where a version of it is referred to as a hypothetical “strong
ergodic theorem”). This principle stipulates that relaxation must lead to a
state of the Gibbs form. What we discuss here is about correlation functions of
local observables, and is associated to conserved quantities that are “localised”:
time-invariant local observables. By contrast, thermalisation, the ergodic prin-
ciple, and the Gibbs form are concepts related to extensive conserved quanti-
ties. Extensive conserved quantities are involved in the hydrodynamic projec-
tion theorem proved in Sect. 3, and in the thermalisation theorems shown in
[37], where it is proposed that the Hilbert space of extensive conserved quan-
tities is in fact the tangent space to the manifold of maximal entropy states.
Localised and extensive conserved quantities span the kernels of different evo-
lution operators, acting on different spaces of observables (local observable,
and extensive observables, respectively).

We believe that analysing the structure of local observables in thermo-
dynamic states is much more directly relevant to local physics than analysing
the structure of spectra and how they behave as L → ∞. But, perhaps most
importantly, in the thermodynamic limit, more can be said, giving almost-
everywhere ergodicity, which ultimately is at the basis of the emergence of
hydrodynamic structures.

2.3.1. C∗ Algebra Formulation and Basic Results. The strength of the C∗

algebra formulation is that we can directly study dynamics in the thermody-
namic limit: the limit L → ∞ is already taken, and we concentrate on the
remaining, relevant degrees of freedom. See Appendix A for a more detailed
overview of the mathematical setup.

We thus consider a quantum spin model on an infinite lattice, with local
spaces 	 C

N on Z
D (N,D ≥ 1). The Hamiltonian is homogeneous (space-

translation invariant) and with short-range interaction (exponentially decay-
ing or faster, see Appendix A for the precise formulation); this generalises
slightly the form (5), which was of finite-range interaction. Observables form
a C∗ algebra U, the norm-completion of the algebra Uloc of local observables
(supported on finite numbers of sites). As above, we denote A(x, t), B(x, t), . . .
observables A ∈ U translated to space-time points x, t, and sometimes omit
the time argument if t = 0. More precisely:

Definition 2.2 (Dynamical System). A dynamical system of a quantum spin
lattice is a triple (U, ι, τ) where U is a quasi-local C∗-algebra (as constructed
in Appendix A), τ is a strongly continuous representation of the group R by
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∗-automorphisms {τt : U ∼−→ U}t∈R, and ι is a representation of the translation
group Z

D by ∗-automorphisms {ιx : U
∼−→ U}x∈ZD , such that for any Λ ∈

Pf (ZD): A ∈ UΛ =⇒ ιx(A) ∈ UΛ+x for all x ∈ Z
D. We further assume that

τ is such that τtιx = ιxτt, ∀t ∈ R, x ∈ Z
D, i.e. time evolution is homogeneous.

We use the notation A(x, t) := ιxτtA.

A state4 ω is a continuous, positive linear functional on U, interpreted as
giving ensemble averages, normalised to ω(1) = 1. It is assumed homogeneous
and stationary, ω(A(x, t)) = ω(A) ∀ x ∈ Z

D, t ∈ R.
Most importantly, the state is assumed to satisfy a property which we will

simply refer to as “spatial mixing”. We consider two different implementations:
“factoriality”, and a uniform-enough spatial mixing, see “Appendix A”. Both
include, in particular, the clustering of correlations at large separations,

lim
x→∞ ω(A(x)B) = ω(A)ω(B), A,B ∈ U. (18)

Results reviewed below on almost-everywhere ergodicity apply either if the
state is factor [38, p. 81, Def. 2.4.8], or uniformly-enough spatially mixing (or
both).

Any thermal state that is in a single thermodynamic phase (i.e. Kubo–
Martin–Schwinger (KMS) state satisfying (18), see below) is an example of a
state with all above properties: for D = 1 this is every thermal state at nonzero
temperature as there are no thermal phase transitions, for D > 1 this includes
every thermal state above a certain model-dependent temperature [39, Section
5.3].

Fundamental theorems have been established that guarantee that the
infinite-volume limit of finite-volume thermal states exist and gives a state ω
on U; this is so at least at large enough temperatures if D > 1 (see, for example,
[39, Section 5.3]), and at all temperatures if D = 1 [40]. For instance, for H of
the form (5), there exists βc, with βc = ∞ if D = 1, such that for all β < βc

and for all local observables A ∈ Uloc, the limit

lim
L→∞

Tr
(
e−βHA

)

Tr
(
e−βH

) = ω(A) (19)

exists and gives rise to a positive, continuous (with respect to the topology
induced by the operator norm), normalised linear functional, that is invariant
under space-time translations,

ω(A†A) ≥ 0, |ω(A)| ≤ ||A||, ω(1) = 1, ω(A(x, t)) = ω(A). (20)

The result is extended by continuity to U.
The thermodynamic limit point in Eq. (19) can be shown to be what’s

called a KMS state [39, Proposition 6.2.15], which is defined as follows:

4Here we use the C∗ algebra notation ω(· · · ) for states, instead of the notation 〈· · ·〉 from
statistical physics or quantum mechanics.
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vLR

≤ C ||A || ||B ||e−γ(|x|−vt), v > vLR

x

t

≤ 2 ||A || ||B ||

Figure 2. A pictorial representation of the basic bounds on
correlation functions in space-time. The connected correlation
function ω(A(x, t)B)−ω(A)ω(B) is bounded by the operator
norm in general, and by the sharper Lieb–Robinson bound
outside of the Lieb–Robinson light-cone (here the latter is
expressed more precisely than (22) by including the operator
norm)

Definition 2.3 (KMS state). Consider a dynamical system (U, ι, τ), Defini-
tion (2.2) (see also Appendix A). A state ω is called a (τ, β)-KMS state, at
inverse temperature β, if

ω(AτiβB) = ω(BA) (21)

for all A,B in a dense (with respect to the norm topology) τ -invariant ∗-
subalgebra of Uτ , where Uτ is the set of entire analytic elements for τ .

At D > 1, there is a unique KMS state at high enough temperatures [39,
Proposition 6.2.45], while at D=1 the KMS state is unique at all temperatures
[40]. This unique state is factor, as an immediate consequence of [39, Theorem
5.3.30]. By the result of existence of space invariant KMS states [39, p. 296],
this unique state will also be space invariant. Note that time invariance is an
immediate consequence of the KMS condition, Eq. (21).

Further, it is guaranteed, again for β < βc, that the state ω from Eq. (19)
is exponentially clustering: there exists γ > 0 such that for every local A,B ∈
Uloc, there is c > 0 such that

|ω(AB) − ω(A)ω(B)| ≤ ce−γ dist(A,B) (22)

(the distance can be taken as the L1 or L2 distance—as chosen for
convenience—on the square lattice between the supports of A and B). In
particular, ω satisfies the spatial mixing condition. More generally, any Kubo–
Martin–Schwinger (KMS) state satisfying (18) satisfies also (20) and the spa-
tial mixing condition.

Finally, by the Lieb–Robinson bound [41], this exponential decay can
be extended in space-time [28], to the full region outside of a Lieb–Robinson
“light-cone”: there exists vLR > 0 and γ > 0 such that for every local A,B
and v > vLR, there is c > 0 such that

|ω(A(t)B) − ω(A)ω(B)| ≤ ce−γ(dist(A,B)−vt). (23)

The structure in space-time is depicted in Fig. 2.
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We note that in the C∗ algebra formulation, the concept of microcanon-
ical shell, Eq. (6), does not make immediate sense, especially in view of the
ensemble equivalence (7). Nevertheless, for the purposes of interpretation of
the results, it will be convenient to consider any state ψ that is “near to” ω as
being part of the microcanonical shell in the thermodynamic limit, ψ ∈ Smicro.
Here, “near to” simply means “absolutely continuous” with respect to ω, that
is, of the form

ψ ∈ Smicro : ψ(A) =
ω(B†AB)
ω(B†B)

∀ A ∈ U for some B ∈ U. (24)

These states are still positive, continuous, normalised linear functionals, but
not space-time translation invariant (which is of course as expected for states
in the microcanonical shell). Further, by spatial mixing, the density of any
extensive observable in ψ (averaged over space) is the same as it is in ω:

lim
L→∞

1
|ΛL|

∑
x∈ΛL

ψ(A(x)) = ω(A). (25)

In particular, the energy density is the same in ψ as in ω.
We justify referring to this as a “microcanonical shell”, by the idea that

the spatially-averaged expectations of local conserved densities are the natural
counterpart, in infinite volumes, to the total conserved quantities used to define
the microcanonical shell in finite-volume settings. In the finite-volume quan-
tum setting, one must take a shell of values of conserved densities, as the space
should be spanned by a large number of states (proportional to the volume
|ΛL|, see Eq. (6)). Here, as the volume has been sent to infinity, the shell may
be taken infinitesimally thin, and the number of states contained still may be
infinitely large. In our choice of microcanonical shell, taking the shell infinites-
imally thin is translated into concentrating on states that are absolutely con-
tinuous with respect to ω. These are the locally perturbed state ψ ∈ Smicro

defined above. Such a state ψ indeed has the same spatially-averaged expecta-
tions of densities of all extensive conserved quantities (in fact, of all extensive
observables, conserved or not) as those of ω, and thus ψ is in the microcanoni-
cal shell of ω. With respect to the results that we will establish, we emphasise
that the problem of the long-time limit from such a locally perturbed state is
that of “return to equilibrium”, which is fundamentally different from that of
“thermalisation” or “approach to equilibrium from nonequilibrium”. See the
Remarks below.

Finally, in the theory of C∗ algebras, a very important role is played
by the Gelfand–Naimark–Segal (GNS) construction. In this construction, one
associates to any state ω a Hilbert space Hω, constructed from the observ-
ables in U, with in particular the vector |Ω〉 associated with the identity oper-
ator 1. This Hilbert space is such that ω(A) = 〈Ω|A|Ω〉, and more generally
ω(B∗AC) = 〈ΨB |A|ΨC〉 [38, Chapter 2.3] where |ΨB〉 = B|Ω〉 (here we use
the same notation for A ∈ U and its representation as a bounded operator
on Hω). More precisely, the Hilbert space is that arising from the completion
of U/N with respect to the inner product induced by the sesquilinear form
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(A,B) �→ ω(A∗B) on the equivalence classes A + N ∈ U/N, with null space
N (satisfying ω(B∗N) = 0 ∀ B ∈ U). Operators acting on Hω are sometimes
called “superoperators” in the condensed matter literature. For ω being the
infinite-temperature state or trace state (see above), the resulting norm is in
fact (the infinite-dimensional completion of) the Hilbert–Schmidt norm, but
the GNS construction is more general. Physically, in thermal states, Hω is the
space of particle and hole excitations above the thermal “vacuum”.

Space and time translations can be extended to unitary group actions on
the GNS representation, see also [38, Theorem 2.3.16, Corollary 2.3.17]. Here
we express the related theorem.

Theorem 2.1 (GNS representation). Given a state ω ∈ EU of a unital C∗

algebra U there exists a (unique, up to unitary equivalence) triple (Hω, πω,Ωω)
where Hω is a Hilbert space with inner product 〈·, ·〉, πω is a representation of
the C∗ algebra by bounded operators acting on Hω and Ωω is a cyclic vector
for πω, i.e. the span{πω(A)Ωω : A ∈ U} is dense in Hω, such that

ω(A) = 〈Ωω, πω(A)Ωω〉, A ∈ U. (26)

If additionally we have a group G of automorphisms {τg}g∈G of U and ω is
τ -invariant, then there exists a representation of G by unitary operators Uω(g)
acting on Hω. This representation is uniquely determined by

Uω(g)πω(A)Uω(g)∗ = πω(τg(A)) A ∈ U, g ∈ G (27)

and invariance of the cyclic vector

Uω(g)Ωω = Ωω ∀g ∈ G. (28)

See Appendix A for the full mathematical setup. In what follows, when
ω is a time invariant state of the C∗ algebra, we use the notation τω

t instead
of Uω(t) for the unitary action of the time evolution on the GNS space.

2.3.2. Many-Body Ergodicity. In order to look at ergodicity, in the classical
realm we needed to consider the energy shell to which the initial condition
belonged, and in the von Neumann quantum setup, we needed a small quantum
energy shell. So, in the C∗ algebra context, it is natural to take a state ω
assumed spacetime stationary and spatially mixing as described above, and
states ψ in its microcanonical shell, as in (24).

In the C∗-operator algebra context, one can still consider time-averaging
(1) of operators (either as elements of the C∗ algebra, or bounded operators
on Hω), where time integration is now to be understood as a Bochner integral
[42]. For clarity, we will write explicitly the long-time limits, hence we will use
(17).

The basic formulation of many-body ergodicity is conceptually similar to
that of Sect. 2.1 (classical case), and paragraph 2.2.1 (quantum case):

Theorem 2.2 (Mean-square ergodicity). Consider a dynamical system (U, ι, τ)
and let ω be a spacetime stationary and spatially mixing state. Suppose that the
unitary time evolution operator τω

t on the GNS space Hω has trivial kernel,
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ker(τω
s − 1) = C|Ω〉 for some s ∈ (0,∞). Then for all integers n ≥ 1 and any

observable A ∈ U,

lim
T→∞

ω
( (

ĀT

)n )
= ω(A)n, where ĀT := T−1

∫ T

0

dtA(0, t) (29)

That is, we have mean-square ergodicity, and in fact the “random variable” A
is non-fluctuating within the state ω.

The theorem follows from von Neumann’s ergodic theorem for unitary
operators on Hilbert spaces, as in paragraph 2.2.1, but now with the GNS
space Hω as the Hilbert space. Using von Neumann’s ergodic theorem the time
average gives a projection onto the subspace of Hω that is invariant under τω

s ,
for some s ∈ (0,∞), see also [43, Theorem 3.1]. If then ker(τω

s −1) = C|Ω〉, this
projection is the rank one projection onto |Ω〉, and the result is straightforward,
as a direct application of the techniques used in [28] (also discussed in [44,
Section 2]). Relevant results exist in various forms, including [45, Proposition
6.3.5], [46,47].

Clearly, as we have taken already the limit L → ∞, the timescales for
convergence are not controlled by the volume of the system, contrary to the
phenomenon of quantum recurrence as discussed in paragraph 2.2.1; in (29)
convergence of long-time averages happens much before the recurrence time.
Yet, the techniques are essentially the same. What has happened? The most
important aspect, as mentioned, is that in the C∗ algebra formulation, we have
reduced the set of degrees of freedom to the relevant ones for local physics.
Thus, in contrast to the condition of non-degeneracy, the condition of triviality
of the kernel of the time evolution properly encodes many-body ergodicity.

In a formal sense, this kernel triviality condition is akin to asking that
there be no nontrivial constants of the motion in the classical case, or to
asking that there be no degeneracies in the quantum case. However, in a more
physical sense, it is starkly different. In the classical context, for instance,
integrability implies that there are nontrivial constants of the motion (as many
as degrees of freedom). But in extensive systems, integrability is not related
to the presence of nontrivial elements in ker(τω

t − 1). Instead, it is related to
the presence of extensive conserved quantities in addition to the Hamiltonian.
These span the kernel of a different evolution operator, that which acts not
on the GNS space built from the local observables, but on a Hilbert space of
extensive observables, see Sect. 3. Extensive conserved quantities may exist,
the system may be integrable, and yet many-body ergodicity may still hold.
Thus, we have separated the condition for many-body ergodicity to hold, from
the requirement on nontrivial extensive conserved quantities, such as those
found in integrable systems.

The “nontrivial constants of the motion” that should not be present for
many-body ergodicity to hold, are the time-invariant local observables (local-
ity is here in the weak sense of elements of the C∗ algebra). Typically, except
in special systems such as those with dynamical constraints, there are no such
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observables beyond (the trivial) multiples of 1. In fact, we note that time-
invariant local observables play a role in the phenomenon of localisation—
thus, many-body ergodicity occurs if there is no “localisation” (in the sense
that there is no time-invariant local observables). As mentioned, extensive
conserved quantities, instead, play a rôle in integrability. And in fact, most
importantly for us, they are at the basis of the emergent hydrodynamic struc-
tures, which we explain in Sect. 3.

It turns out that one can go further if the state ω is also a KMS state,
Eq. 21. In fact, it is not necessary for H in (19) to be the evolution Hamiltonian,
or equivalently for τt in (21) to be the dynamics we take for time averaging. Any
other H ′, any other dynamics τ ′

t , that keeps the state spacetime stationary will
do—for instance, any other extensive conserved quantity, if available. Thus, in
integrable model, any generalised Gibbs ensemble [48–50].

Theorem 2.3 (Ergodicity). Under the same conditions as those of Theo-
rem 2.2, if further ω is a τ ′-KMS state, then, for all A ∈ U,

lim
T→∞

ψ(ĀT ) = ω(A) ∀ ψ ∈ Smicro, and

lim
T→∞

ĀT = A1 as operator on Hω, in the strong operator topology.
(30)

Again, the proof is omitted, but follows quite directly from the techniques
developed in [28]. Recall that CT → 0 in the strong operator topology means
||CT |ψ〉|| → 0 for all |ψ〉 ∈ Hω.

Now the result is much stronger: this is truly an ergodicity property,
stating that the time average of any observable, in any state within a micro-
canonical shell surrounding ω, gives the average in ω. Time averaging gives
back ensemble averaging. The operatorial equation, for A as an operator on
the GNS space Hω, is in fact an equivalent statement.

Finally, an additional insight may be gained into many-body ergodicity by
the following construction. Recall that in the classical case, ergodicity implies
that every point in the energy shell is approached arbitrarily closely by the
trajectory as time passes. Here, instead, with states playing the role of “points
in phase space”, a trajectory starting from ψ approaches arbitrarily closely
the final state ω: for every ε > 0, there is a finite time t such that the time-
evolved state ψ ◦ τt is a distance less than ε from ω, and in fact, this is true
for a fraction of time that tends to 100% over long periods.

This construction starts with the choice of a sequence of unit-norm,
strictly local observables An ∈ Uloc, ||An|| = 1, n = 1, 2, 3, . . . which spans
Uloc (every element of Uloc may be written as a finite linear combination of
these). Such a sequence certainly exists. Then, we define the following distance
function between states:

d(ψ,ψ′) =

√√√√ ∞∑
n=1

2−n|ψ(An) − ψ′(An)|2 ≤ 2. (31)

We note that there is a lot of freedom in defining the distance function; in
particular, any finite set of C∗-algebra elements A′

n ∈ U, n = 1, 2, . . . , N may
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be adjoined to the sequence An. Thus, the general result on the distance func-
tion can be used to deduce results for any finite-dimensional subspace of such
elements.

Equation (31) indeed defines a distance function. It is simple to see that
d(ψ,ψ′′) ≤ d(ψ,ψ′) + d(ψ′, ψ′′), and that if ψ = ψ′ then d(ψ,ψ′) = 0. Further,
if d(ψ,ψ′) = 0, then ψ = ψ′. This is shown as follows. Suppose d(ψ,ψ′) = 0,
and consider some B ∈ U. For every ε > 0 we can find A ∈ Uloc such that
||B−A|| ≤ ε. Therefore, |ψ(B)−ψ′(B)−(ψ(A)−ψ′(A))| ≤ 2ε. As d(ψ,ψ′) = 0,
then ψ(An) = ψ′(An) for all n. As An’s span Uloc, then also ψ(A) = ψ′(A).
Therefore, by the triangle inequality, |ψ(B) − ψ′(B)| ≤ 2ε. As this holds for
every ε > 0, we conclude that |ψ(B) − ψ′(B)| = 0.

Now consider d(ψt, ω)2 where ψt = ψ ◦ τt is the time-evolved state. We
have

d(ψt, ω)2 =
∞∑

n=1

2−n|ψ(τtAn) − ω(An)|2 (32)

=
∞∑

n=1

2−n
(
ψ2(τtAn) − 2ψ(τtAn)ω(An) + ω2(An)

)
(33)

and we are interested in the long time limit of the time average:

lim
T→∞

1
T

∫ T

0

dt d(ψt, ω)2

= lim
T→∞

∞∑
n=1

2−n
( 1

T

∫ T

0

ψ2(τtAn) dt − 2ω(An)
1
T

∫ T

0

ψ(τtAn) dt + ω2(An)
)
.

(34)

It is easy to see, by the dominated convergence theorem, that we can move the
limT→∞ past the summation

∑∞
n=1. We then want to apply Theorem 2.3. We

can immediately do this for the second term: limT→∞ 2ω(An) 1
T

∫ T

0
ψ(τtAn) dt =

2ω2(An).
For the first term, 1

T

∫ T

0
ψ2(τtAn) dt, we notice that its limit coincides

with the limit of ω(A) 1
T

∫ T

0
ψ(τtAn) dt, by the following argument:

∣∣ 1
T

∫ T

0

ψ2(τtAn) dt − ω(A)
1
T

∫ T

0

ψ(τtAn) dt
∣∣

=
∣∣ 1
T

∫ T

0

ψ(τtAn)(ψ(τtAn) − ω(A) dt
∣∣ (35)

≤ 1
T

∫ T

0

|ψ(τtAn)||ψ(τtAn) − ω(A)|dt (36)

and |ψ(τtAn)| ≤ ‖A‖, while limT→∞ 1
T

∫ T

0
|ψ(τtAn) − ω(A)|dt = 0, by Theo-

rem 2.3. Thus,

lim
T→∞

1
T

∫ T

0

ψ2(τtAn) dt = lim
T→∞

ω(A)
1
T

∫ T

0

ψ(τtAn) dt = ω2(An) ∀n (37)
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again by applying Theorem 2.3. Finally, applying the limits in Eq. (34), we
show:

lim
T→∞

1
T

∫ T

0

dt d(ψt, ω)2 = 0. (38)

This implies the following.

Theorem 2.4. Let ψ ∈ Smicro be a state in the microcanonical shell of ω. Under
the conditions of Theorem 2.3, for every ε > 0, there exists t > 0 such that
d(ψt, ω) < ε. Moreover, d(ψt, ω) < ε for 100% of the times t (that is, the ratio
of the Lebesgue measure for the set {t ∈ [0, T ] : d(ψt, ω) ≥ ε}, to that for the
set {t ∈ [0, T ] : d(ψt, ω) < ε}, tends to zero as T → ∞).

Proof. We prove the last statement as it implies for first. Let us denote μ+
T

and μ−
T the measures for the sets {t ∈ [0, T ] : d(ψt, ω) ≥ ε} and {t ∈ [0, T ] :

d(ψt, ω) < ε}, respectively. Note that μ+
T + μ−

T = T . Then 1
T

∫ T

0
dt d(ψt, ω)2 ≥

ε2
μ+

T

T = ε2
(
1 + μ−

T

μ+
T

)−1

, hence by (38) we must have limT→∞
(
1 + μ−

T

μ+
T

)−1

= 0

and therefore limT→∞
μ+

T

μ−
T

= 0. �

In particular, from the above theorem we conclude that, for any A ∈ U,
we have |ψ(τtA) − ω(A)| < ε for 100% of the times: the average in a state in a
microcanonical shell, is almost always as near as desired to the average in the
stationary state ω.

Some remarks about the context and meaning of these results are in
order:

1. Because the results apply to the C∗ algebra obtained from local observ-
ables, the results address local relaxation, a form of typicality (see, for
example, [7]) which expresses many-body ergodicity.

2. Note how both Theorems 2.2 and 2.3 apply not just to thermal states, but
to more general spacetime stationary states, such as generalised Gibbs
ensembles. This therefore takes into account the possibility that the
model possesses a large number of extensive conserved quantities simi-
lar to the Hamiltonian; these would lead, in the finite-volume setup, to a
large number of degeneracies. Here, no condition arises on the presence
or not of extensive conserved quantities.

3. The microcanonical shell represented by the states ψ should be under-
stood as a being a shell around the microcanonical state with respect to all
extensive conserved quantities (and in fact, all extensive observables), not
just the energy: indeed all extensive observables have densities that are
the same as in ω, Eq. (25). This is why ergodicity can hold in ψ without
conditions on the presence or not of extensive conserved quantities.

4. One may wish to extend the definition of the microcanonical shell. Any
state on the C∗ algebra that, under long time evolution, converges (in an
appropriate topology) to ω, might be argued to be in the microcanonical
shell of ω in the infinite-volume setting. We have seen in what sense this
is mathematically true for the states in Smicro. Because this is from a
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local perturbation, this is the problem of “return to equilibrium” (see,
for example, [51,52] for results on this). However, there are many more
such states, that are not necessarily absolutely continuous with respect
to ω, hence that are “further away” from it. For instance, spatially-
homogeneous states in which expectations of densities of all extensive
conserved quantities, but not necessarily of all extensive observables, are
equal to those in ω, are expected at long time to converge to ω. This is
the problem of “thermalisation (or generalised thermalisation)” (see, for
example, the review [2] and the results in [37]). Even more complicated,
one may take a state that is not spatially homogeneous and extensively
different from ω. There may not be any well-defined spatially-averaged
conserved densities in such states. The long-time problem is now that of
the emergence of hydrodynamics, and the solutions to the hydrodynamic
equations. This is the more general problem of “approach to equilibrium
(or approach to generalised equilibrium) from non-equilibrium”, and a
typical example is the partitioning protocol (see, for example, the review
[53]). Our definition of the microcanonical shell is perhaps restrictive, but
convenient for the present discussion.

5. Requiring the KMS condition is not too strong a requirement. It is
expected that most, or maybe all, spacetime stationary spatially mix-
ing states are in fact KMS states. Perhaps the Tomita–Takesaki theory
[38] could be used.

6. A similar C∗ algebra construction can be made for classical systems, such
as a classical gas, where the limit of infinitely many particles is taken.
We expect that similar ergodicity statements can be obtained. In the
classical case, the GNS space can also be constructed, and time evolu-
tion is again—at least in well-behaved systems—a one-parameter uni-
tary group. Thus, von Neumann’s ergodic theorem for unitary operators
applies. Again, as we have taken the limit of infinitely many particles,
timescales are not those that would be necessary to cover the full energy
shell—it is not true that over long times, the many-particle trajectory
comes as close (in the conventional many-particle metric) as desired to
a given point in the many-particle phase space. Particle numbers are so
large that the phase space is immense, and “long times” are never enough.

Thus we have solved the problem of obtaining ergodicity in many-body
systems with timescales below the quantum recurrence timescale (in a differ-
ent way than in von Neumann’s QET, with different-looking conditions), or
below the classical shell-covering timescales. We have also solved the problem
of generalising to cases where nontrivial conservation laws exist (the exten-
sive conserved quantities), and of having a formulation that is directly in the
thermodynamic limit.

There remains the problem that the condition of triviality of the kernel
of the time-evolution unitary one-parameter group on Hω is rather difficult
to verify. It is also perhaps not too clear if the resulting ergodicity statement
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is the one that is most physically relevant. These two problems are solved by
almost-everywhere ergodicity, to which we now turn.

2.3.3. Almost-Everywhere Ergodicity. We now obtain ergodicity results which
are valid in every quantum spin lattice as described above, and in every space-
time stationary spatially mixing states. No special, hard-to-check condition is
required.

Such general results however are not valid for the standard notion of
ergodicity, with integration purely in the time direction. Instead, we must look
in spacetime. On the lattice, it is natural to restrict to the set of rational
spatial directions S

D−1
Q

= {x/|x| : x ∈ Z
D} (this is dense on the sphere).

Given T > 0, v ∈ R and n ∈ S
D−1
Q

, we consider the average of A ∈ U along
the ray with velocity vector v = vn,

Āv
T =

1
T

∫ T

0

dtA(�vt�, t) (39)

where �a� = (�ai�)i is the vector of the integer parts.
In fact, the results apply more generally. That is, instead of considering

the flat averages, we may modulate the average with oscillating factors. So, we
consider instead

Āv
T =

1
T

∫ T

0

dt eift−ik·vtA(�vt�, t) (40)

(keeping the wavenumber k and frequency f implicit in the notation for the
average, for lightness of notation). Let us also denote

EA := lim
T→∞

ω(Āv
T ) =

{
ω(A) (f − k · v = 0)
0 (otherwise) (41)

See Fig. 1 for a pictorial representation of what is going on. We show in [28]:

Theorem 2.5. Consider a dynamical system (U, ι, τ) and a spacetime station-
ary and spatially mixing state ω. For every rational direction n ∈ S

D−1
Q

and
almost every v ∈ R with respect to the Lebesgue measure: (Mean-square ergod-
icity)

lim
T→∞

ω(
(
Āv

T

)m) = Em
A (42)

for every A ∈ U, m ∈ N. Assume further, ω is a KMS state. Then (Ergodic-
ity):

lim
T→∞

ψ(Āv
T ) = EA, (43)

for every ψ ∈ Smicro; and for any A,B ∈ U we have in the GNS representation
of ω:

lim
T→∞

Āv
T |Ψ〉 = EA1|Ψ〉, lim

T→∞
[Āv

T , B]|Ψ〉 = 0 (44)

for every |Ψ〉 ∈ Hω. That is, we have convergence in the strong operator topol-
ogy of the GNS space Hω:

Āv
T

SOT−−−→ EA1, [Āv
T , B] SOT−−−→ 0 (45)
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Additionally, under the same assumptions of the Theorem above, and
similarly to the derivation around Eq. (34), one can show that for any ψ ∈
Smicro in the microcanonical shell of ω, the ray-averaged distance (with respect
to the metric of Eq. (31)) between ψ and ω tends to zero, for almost every ray
(of rational direction). Denoting ψυt := ψ ◦ ι	υt
τt, we have:

lim
T→∞

1
T

∫ T

0

dt d(ψυt, ω)2 = 0 (46)

Taking the language of probability, Eq. (42) means “Āv
T → EA in law”.

This is almost-everywhere ergodicity: along almost velocity of rational direc-
tion, Āv

T tends to a non-fluctuating quantity. As a consequence, by the Cauchy-
Schwartz inequality, ω( Āv

T B ) → EA〈B〉 and ω( [Āv
T , B] ) → 0 for every

A,B ∈ U.
Equations (43), (44) are starker statements. They hold in spatially mix-

ing, space-time translation invariant KMS states, including Gibbs and gen-
eralised Gibbs states. They imply that the limits in (43), (44) hold within
any expectation value, multiplied by any other observables in any order. We
thus obtain an extension of (a weak version of) the Lieb–Robinson bound to
within the Lieb–Robinson cone: the ray-averaged operator Av

T becomes “thin”
as T → ∞, being un-observable by any B, at every frequency and wavelength,
and at almost every velocity v of rational direction.

Further, Theorem 2.5 means that time-averages, at every frequency and
wavelength and almost every velocity v of rational direction, converge to non-
fluctuating (cluster out), classical (commutators vanish) variables.

In particular, we have 〈[Āv
T , B]2〉 → 0. At short times, the OTOC

〈[A(�vt�, t), B]2〉 is expected to grow exponentially in chaotic systems [10,54]
(eventually reaching O(1) values by boundedness of the state). The veloci-
ties where this happens are bounded by a state-dependent “butterfly velocity”
vB, |v| < vB < vLR. We find that the time-averaged version of this quantity,
〈[Āv

T , B]2〉 = T−2
∫ T

0
dtdt′ 〈[A(�vt�, t), B] [A(�vt′�, t′), B]〉, in fact decays for

almost every velocity of rational direction.
The results do not say anything about what happens in the pure time

direction, v = 0. For instance, there are non-interacting Hamiltonians for
which the velocity v = 0 is not ergodic; as mentioned, this is in fact related
to localisation. However, all results hold for velocities as near as desired to 0.

Again, Theorem 2.5 is based on the von Neumann ergodic theorem [34,
Theorem II.11], which relates time averages to projections onto invariant
spaces. As far as we know, before our work there were no nontrivial results
concerning the invariant subspace of Hω for unitary time evolution in quan-
tum lattice models. We show it to be spanned by |Ω〉 at almost every velocity.
This happens because finite-dimensional local spaces (in fact, we believe that
countable-dimensionality is sufficient) are too small to allow for operators to
extend thickly on large distances over time: the set of speeds where the oper-
ator remains supported under averaging should be “small enough”.

Remarks 1–6 of paragraph 2.3.2 apply to almost-everywhere ergodicity
results as well. We emphasise again that the results of Theorem 2.5 do not
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require any nontrivial condition on the interaction or the dynamics (such
as chaos, non-degenerate eigenvalues, absence of nontrivial constants of the
motion, non-localisation condition, etc.). The results are purely consequences
of extensivity of the system—that is, the fact that the interaction range is short
enough, and that the thermodynamic, large-volume limit has been taken.

Thus we have now addressed the question of the conditions under which
notions of ergodicity may hold: almost-everywhere ergodicity only requires
extensivity. However, we have not yet addressed the question of the physi-
cal relevance of this notion. Surprisingly, it turns out that almost-everywhere
ergodicity is in fact closely related to the hydrodynamic structure emerging on
large scales. We now turn to this important result.

3. Hydrodynamic Projections and Spaces of Extensive Charges

Almost-everywhere ergodicity, or at least versions of it which differ slightly
from what we have introduced above, can be utilised in order to prove a
hydrodynamic projection theorem for Euler-scale correlation functions. This is
probably the most interesting application of the ideas we have developed in the
previous sections. In this section we start by giving an informal overview of the
general idea, and proceed with the rigorous construction and proof. The main
Theorem 3.1 and its proof are new results, extending to higher dimensions and
to short-range interaction some of the results of [29].

What is a “hydrodynamic projection”? See for instance the short non-
rigorous discussion in [21, Sect 2.6] as well as the review [17] for a modern
introduction to this idea. The main point of the hydrodynamic projection the-
orem, that we will prove in generality in short-range quantum spin lattices,
is that the Euler-scale correlation functions can be fully evaluated only by
knowing the full set of conserved extensive charges of the system, and the
“projection” onto these charges of the local operators involved in the correla-
tion function. The physical idea is that the initial, dynamically complicated
disturbance quickly relaxes and projects, at the Euler scale of long time and
large distances, onto the conserved extensive quantities, that then carry cor-
relations.

But there are a number of concepts in this statement that need clarifying
and appropriate mathematical definitions. What is an Euler-scale correlation
function? It heuristically involves the ballistic scaling of space and time, x, t
large with x/t finite, but it requires a precise definition. What are the conserved
extensive charges, and how do we define the full set of them? One needs a
precise definition of an extensive quantity, and then of a conserved extensive
quantity (or charge). We will define these as certain Hilbert spaces, in a way
that is similar to, but different from, the GNS construction. Then, what does it
mean to project a local operator onto such a conserved extensive quantity? This
will be from the Hilbert space structure. Our main hydrodynamic projection
theorem will make the connection between all these notions, the result being
in agreement with the physical intuition.
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For the Hilbert spaces H0 of extensive quantities, to every local observ-
able A ∈ Uloc we will associate, in a manner similar to the GNS construction,
a respective “extensive quantity”, which we will denote as ΣA, defined as an
appropriate equivalence class of the observable A. As the notation suggests, ΣA
will have the interpretation as the sum of all translates, “ΣA =

∑
x∈ZD A(x)”,

of the observable A, and A as a density of ΣA. The density of an extensive
observable is not unique—one can add “total derivatives” for instance—and
ΣA can be seen as the equivalence class of all densities of the extensive quan-
tity of which A is a density. ΣA will indeed contain all spatial translates of
A. Naturally, the infinite sum itself,

∑
x∈ZD A(x), does not converge in U;

but we will have convergence in a different topology. Note that, unlike the
GNS construction where the observables of the C∗ algebra are represented by
operators acting on a Hilbert space, here instead we will form a Hilbert space
of extensive observables—not a representation as operators. On this Hilbert
space, the C∗-algebra time evolution τt induces a time evolution τ0

t , which is
unitary. The conserved extensive charges Q0 are just the elements of H0 that
are invariant under τ0

t . This is a closed subspace of H0, thus allowing us to
define an orthogonal projection P : H0 → Q0 of extensive quantities to the
conserved ones.

The objects of interest are Euler-scale correlation functions. Denoting
(A,B) = ω(A†B) − ω(A†)ω(B) the sesquilinear connected correlation, we
would like to study the connected correlation function (A(x, t), B) for x, t large
and x/t finite. In fact, it is conventional to talk about the Fourier transform of
the space coordinate, at small momentum k, with kt fixed, see, for example,
[12,17,21]. Setting k = κ/t, we thus are looking for

∑
x∈ZD eiκ·x/t(A(x, t), B)

in the limit t → ∞ with κ fixed. In order to obtain rigorous results, especially
using appropriate almost-everywhere ergodicity ideas, it is convenient to take
the time average of that (see [29]); of course, if the limit t → ∞ exists then
this does not change anything. Thus, we are looking at

SΣA,ΣB(κ) := l̃im
T→∞

1
T

∫ T

0

dt
∑

x∈ZD

eiκ·x/t(A(x, t), B). (47)

We do not know how to show the existence of the limit limT→∞, but we can
show that

∑
x∈ZD eiκ·x/t(A(x, t), B) is uniformly bounded. This allows us to

use the notion of a Banach limit ˜limT→∞, see [55, Chapter III.7] and [29,
Appendix A]; if the limit exists, then the Banach limit agrees with it. We
can also show that the result is indeed a function not merely of A, B, but in
fact of the equivalence classes ΣA, ΣB, as the notation suggests. The resulting
function SΣA,ΣB is what we define as the Euler-scale correlation function.

As mentioned, the essence of the hydrodynamic projection is that, in
Euler-scale correlation functions, every extensive observable will project onto
the conserved charges, irrespectively of the choice of a Banach limit:

SΣA,ΣB(κ) = SP(ΣA),P(ΣB)(κ). (48)
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This is in fact an expression of the Boltzmann-Gibbs principle [15–17]: the
reduction of the number of degrees of freedom at large space-time separa-
tions by projections onto hydrodynamic modes. This occurs thanks to almost-
everywhere ergodicity, as is made apparent in the proof of Theorem 3.1 in
Sect. 3.4 (see [29] for a proof in D=1).

We believe this is the first general, rigorous result concerning the
Boltzmann-Gibbs principle in deterministic interacting systems of arbitrary
dimensions. The principle is applicable to the large class of quantum lattices,
going beyond interacting particle systems conventionally studied in statistical
physics and hydrodynamics. It provides further support to the idea that the
basic principles of hydrodynamics hold independently from the details of the
microscopic dynamics.

Surprisingly, the hydrodynamic projection can be generalised to describe
oscillatory behaviours: to any frequency f ∈ R, and wavenumber k ∈ R

D. We
show that the projection still takes place for k-extensive quantities, formally
“ΣkA =

∑
e−ik·xA(x)”, which will project to (f,k)-conserved charges, defined

as those ΣkA such that their time evolution takes the form ΣkA(t) = eiftΣkA.
This, we believe, is an observation that had not been made in full before, and
which has potential for many new results.

Oscillatory hydrodynamic projection describes oscillatory behaviours
that emerge at large space and time separations in correlation functions. One in
general expects that (f,k)-conserved charges only exist for certain frequency-
wavenumber pairs (f,k), depending on the specific model. A simple example is
the free fermionic lattice, with some dispersion relation E(k). In this system,
creation and annihilation operators at momentum k are (E(k),k)-extensive
conserved quantities. In Sect. 4, in order to illustrate the phenomenon we will
explain (in a non-rigorous fashion) how oscillatory hydrodynamic projection
recovers the oscillatory algebraic decay of fermion two-point functions in a free
fermionic quantum chain, in agreement with a saddle-point analysis.

In the present section, we concentrate on the rigorous and general results
of hydrodynamic projections in quantum lattice models.

3.1. Clustering and Basic Assumptions

Throughout all of Sect. 3 we consider a dynamical system (U, ι, τ), see Def-
inition 2.2 and Appendix A for more details. We use the notation A(x, t)
for space-time translated observables ιxτtA. We also denote A(x) = A(x, 0),
while we keep the notation τtA for pure time translations. The system will
be in a space-time invariant state ω, Definition A.2, which will be assumed
to have clustering properties with respect to space translations. The almost-
everywhere ergodicity theorems shown in [28], and discussed in Sect. 2.3,
require the state ω to be clustering in space, in particular limx→∞

(
ω(A(x)B)−

ω(A)ω(B)
)

= 0 for any A,B ∈ U. Almost-everywhere ergodicity holds no
matter how fast the connected correlations of observables decay at large spa-
tial separations. For the hydrodynamic projection to occur stronger cluster-
ing assumptions need to be imposed. In particular, clustering of correlations
at large space separations will need to happen faster than |x|p, for p large
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enough:

lim
x→∞ |x|p(ω(A(x)B) − ω(A)ω(B)

)
= 0. (49)

Additionally we will need to control the dependence on the size of the supports
of the observables in the clustering bound; the support of a local observable
A is defined as ΛA :=

⋂{X ⊂ Z
D : A ∈ UX}. That is because time evolv-

ing observables “spreads out” their support. A state satisfying this form of
clustering will be called r-sizeably p-clustering:

Definition 3.1 (p-clustering). A state ω of a dynamical system (U, ι, τ) is called
r-sizeably p-clustering for p > r > 0 if there exists a constant u such that for
any A,B ∈ Uloc

|ω(A(x)B) − ω(A)ω(B)| ≤ CA,B(1 + |x|)−p, for all x ∈ Z
D (50)

and CA,B is bounded as:

CA,B ≤ u‖A‖‖B‖|ΛA|r|ΛB |r. (51)

A subset C ⊂ U is called uniformly p-clustering for p > D if there exist a
C > 0 s.t. for all A,B ∈ C:

|ω(A(x)B) − ω(A)ω(B)| ≤ C(1 + |x|)−p, ∀x ∈ Z
D. (52)

Of course CA,B will, in general, depend on the pair of observables, i.e. on
their norm and the size of their support. In D = 1 quantum spin chains, [29],
the state is assumed to be r-sizeably p-clustering; this notion originates from
[37, Definition 4.2]. The definition of p-clustering, for every p > 0, includes
high temperature KMS states, which are exponentially clustering in space, as
shown in [56,57].

Definition 3.2. A state ω of a dynamical system (U, ι, τ) is called exponentially
clustering if there exist constants u, r, λ > 0 such that for any A,B ∈ Uloc

|ω(A(x)B) − ω(A)ω(B)| ≤ kA,Be−λ|x|, for all x ∈ Z
D. (53)

and

kA,B < u‖A‖‖B‖|ΛA|r|ΛB |r (54)

Uniform (exponential) clustering of a subset C ⊂ U is defined similarly.

In order for the time evolution to be well defined as a unitary group action
on the Hilbert spaces of extensive quantities, we need to assume that the time
translations of local observables cluster in a uniform enough manner. First, we
require that any element A in span{τtA : A ∈ Uloc, t ∈ R} is approximated
by a sequence σnA of local elements. We will show that this follows from the
Lieb–Robinson bound. Additionally, we require that for any local A,B the set
of pairs {(σnA, σnB)} is uniformly clustering in space, as per Eq. (52).

Combining spatial clustering of the state ω with the Lieb–Robinson
bound, one can obtain space-like pc clustering, defined as follows:

Definition 3.3. The dynamical system (U, ι, τ) in the state ω is called space-like
pc-clustering with velocity υc, if
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1. ∀A ∈ Ûloc = span{τtA : A ∈ Uloc, t ∈ R} there exists a sequence σnA ∈
Uloc, n ∈ N, such that lim σnA = A. For any A ∈ Uloc we define σnA = A,
∀n.

2. ∀A,B ∈ Ûloc the set of pairs {(σnA, σnB)} is uniformly p-clustering for
some p > pc.

3. ∀A,B ∈ Uloc there exist p > pc, 0 < V < υc and CA,B > 0 such that
∣∣ω(A(x, t)B) − ω(A)ω(B)

∣∣ ≤ CA,B

(|x| + 1)p
(55)

for all x ∈ Z
D, |x| ≥ V |t|.

Similarly, we define exponential space-like clustering by the same conditions,
with Condition 2 replaced by uniform exponential clustering and Eq. (55)
replaced by

∣∣ω(A(x, t), B) − ω(A)ω(B)
∣∣ ≤ CA,Be−λ|x|, for some λ > 0.

Space-like pc-clustering for pc > D, where D is the lattice dimension, is
a sufficient condition for showing the hydrodynamic projection theorem. In
turn, for space-like pc-clustering to hold, it is sufficient to have the following
two conditions:

1. fast decaying interactions, satisfying Eq. (130), so that the Lieb–Robinson
bound holds

2. a p-clustering (spatially mixing) state ω, Definition 3.1, with appropri-
ately controlled growth of CA,B with respect to |ΛA|, |ΛB |.

This is realised, for example, in any quantum spin lattice with nearest-
neighbour, finite range, or exponentially decaying two-body interactions that
is in a high temperature thermal state. This is because high temperature ther-
mal states are exponentially clustering 5, [56, Theorem 3.2] [57, Theorem 2].
In the case of r-sizeably p-clustering states [37, Definition 4.2], we can extend
the arguments in [29, Section 8] to arbitrary lattice dimension D, to show that
whenever p > D(r + 1), a r-sizeably p-clustering state will be space-like pc-
clustering for pc > D, in any system with interaction that satisfies Eq. (130).
This is slightly more technical in D > 1, but it largely follows the same ideas
as in the D = 1 proof in [29], hence we omit it. Instead, in Appendix C we
show how exponential space clustering and the Lieb–Robinson bound lead to
exponential space-like clustering.

3.2. Spaces of Extensive Charges

We start by constructing Hilbert spaces of extensive quantities from the
dynamical system (U, ι, τ). For each wavenumber k ∈ R

D we define the
positive-semidefinite sesquilinear form

〈A,B〉k =
∑

x∈ZD

eik·x(A(x), B) A,B ∈ Uloc, (56)

where we recall that (A,B) = ω(A†B) − ω(A†)ω(B) is the sesquilinear con-
nected correlation. We define the equivalence relation A ∼k A′ on Uloc by

5Note that the constant CA,B grows linearly with |ΛA|, |ΛB | in the case of exponential

clustering of KMS states.
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〈A′ −A,A′ −A〉k = 0. The Hilbert spaces of extensive quantities are the norm-
completion of the quotient spaces formed of the set of equivalence classes of
∼k . That is, the equivalence class of A ∈ Uloc is ΣkA := {A′ ∈ Uloc : A′ ∼k A}.
This is to be understood as the k-extensive observable associated to the den-
sity A, and it contains all other densities A′ that lead to the same k-extensive
observable. For instance, it is clear that A′ = eik·x′

A(x′) ∈ ΣkA for any
fixed x′ ∈ Z

D: the k-translate of a density A still is a density for the same
extensive observable. Formally, we can associate ΣkA with the infinite series
“ΣkA =

∑
x∈ZD e−ik·xA(x)”, the “total” A on the full quantum lattice, as is

intuitively suggested by the (56). Of course this series does not converge within
U; the quantity ΣkA is defined as an equivalence class. The set of equivalence
classes is Vk := Uloc / ∼k= {ΣkA : A ∈ Uloc} and its Cauchy completion gives
the Hilbert space of k-extensive observables Hk = Vk .

Remark 3.4. The quantity ΣkA is not to be confused with the spatially-
averaged quantity limΛ→ZD

1
|Λ|

∑
x∈Λ A(x). Here, we are studying the total,

extensive observable itself limΛ→ZD

∑
x∈Λ A(x), as an element of some Hilbert

space. The information that is kept of the extensive observable, as encoded
within the Hilbert space inner product, are its convergent connected correla-
tion functions with local observables, while of course the spatially-averaged
quantities have zero connected correlation functions with local observables.
Note that connected correlation functions of conserved extensive observables
with local observables have the physical interpretation as susceptibilities. For
example, consider a chain with spin 1/2 at each site. Suppose that the Hamil-
tonian conserved the total spin

∑
x∈Z

σ3(x). Then, in a thermal state ω with
inverse temperature β and magnetic field h, we have ∂ω(A)/∂h = β〈σ3, A〉0.
Similarly, a staggered magnetic field would correspond to the case k = π.

Remark 3.5. As noted in the introduction of this Section, the construction of
the Hilbert spaces Hk should not be confused with the GNS representation.
The GNS representation is a representation of the elements of a C∗ algebras by
bounded operators B(Hω) acting on a Hilbert space Hω. Instead, we directly
form Hilbert spaces by Cauchy completion of the quotient spaces Uloc/ ∼k ;
these are not representations of the C∗ algebra.

In order to examine the long time dynamics of these extensive observables
we have to extend the action of time evolution τt, t ∈ R to the Hilbert spaces
Hk . This is done rigorously in [29, Section 5.3] for D = 1 (spin chains) and can
be immediately extended to arbitrary dimension D. The key in order to be able
to do this is the uniform clustering condition 2 in Definition 3.3. Thus, we can
show that time evolution acts as a unitary operator τk

t on Hk . For lightness
of notation, we omit the superscript and simply write τt for the unitary action
of time evolution on these spaces.

With this construction, we can define the subspace of conserved extensive
charges as those elements of Hk that are invariant under τt:

Qk = {q ∈ Hk : τtq = q,∀t ∈ R}. (57)
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In fact, we can go one step further and define the subspace of (f,k)-extensive
conserved quantities (or f -oscillatory k-extensive charges) as:

Q(f,k) = {� ∈ Hk : τt� = e−ift�,∀t ∈ R}. (58)

See Sect. 4 for a discussion of these charges and examples in a free fermion
chain. It is immediate that Q(f,k) is a closed subspace of Hk , hence there is
an orthogonal projection

P(f,k) : Hk → Q(f,k). (59)

3.3. A Hydrodynamic Projection Theorem

The correlation functions with (f,k)-fluid-cell averaging are given by

S
(f,k)

Σk A,Σk B
(κ) := l̃im

T→∞
1
T

∫ T

0

dt
∑

x∈ZD

eik·x−ifteiκ·x/t(A(x, t), B). (60)

Note how one extracts, thanks to the time integral and factor e−ift, the time-
oscillatory behaviour of the correlation function with frequency f . Note also
how the full wavenumber is k + κ/t, representing, in the large-time limit, a
long-wavelength modulation of a k-oscillatory factor; this extracts the space-
oscillatory behaviour with wavenumber k.

The limit on T is in general a Banach limit [55, Chapter III.7], [29,
Appendix A]. The result will hold irrespectively of the choice of Banach limit,
and all the aspects of the proof regarding the Banach limit are the same as
in D = 1, as shown in [29, Section 6]. As the notation implies, the result only
depends on the equivalence classes ΣkA,ΣkB, which we’ll denote with the
respective lowercase letters a, β. In fact this defines a continuous sesquilinear
form on Hk . The hydrodynamic projection theorem is rigorously stated as
follows:

Theorem 3.1 (Hydrodynamic Projection). Consider a dynamical system (U, ι, τ)
with interactions satisfying Eq. (130), in an r-sizeably D(r+1)-clustering state
ω, as per Definition 3.1. For every frequency-wavenumber pair (f,k) ∈ R×R

D,
rational vector κ ∈ R

D : ∃r ∈ R | rκ ∈ Z
D, and any k-extensive elements

a, b ∈ Hk ,

S
(f,k)
a,b (κ) = S

(f,k)
P(f,k )�,P(f,k )b

(κ). (61)

Specifically for the simple case (f,k) = (0,0) we have

Sa,b(κ) = SPa,P	(κ). (62)

The case κ = 0 is of special interest, and is known at the (oscillatory
version of the) Drude weight:

Corollary 3.2. The oscillatory Drude weight

D
(f,k)

Σk A,Σk B
:= lim

T→∞
1
T

∫ T

0

dt
∑

x∈ZD

eik·x−ift(A(x, t), B) (63)
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satisfies the projection formula

D
(f,k)
�,	 = D

(f,k)
P(f,k )�,P(f,k )	. (64)

Here the limit is in fact an ordinary limit. The projection formula, when
written explicitly in a basis decomposition, is exactly (an oscillatory version
of) the so-called Mazur bound, here shown rigorously to be saturated. This is a
very immediate extension to the oscillatory realm, and to arbitrary dimensions,
of the result [29, Thm 6.1], and can be proven quite straightforwardly without
the extensive machinery we develop below for dealing with the case κ �= 0, see
the proof of [29, Thm 6.1] and the discussion there for more details.

We proceed with the proof of the hydrodynamic projection theorem. We
will first prove it for (f,k) = (0,0), and then easily generalise the proof to
arbitrary (f,k). We note again that for κ = 0, the theorem is a straightforward
application of von Neumann’s ergodic theorem for unitary operators. We thus
concentrate on the case κ �= 0.

3.4. Proof of Hydrodynamic Projection

The main idea for the proof of the hydrodynamic projection formula in quan-
tum spin lattices is this: By using an appropriate geometric construction,
we recast the D-dimensional problem of hydrodynamic projection into a 1-
dimensional problem. This is done by identifying the summation over space
coordinates in a plane perpendicular to the wavenumber direction, with a
sesquilinear form and its new associated Hilbert space, which is to play the role
of the sesquilinear correlation in an effective one-dimensional problem. Once
this is done, the proof follows that of [29] done for D = 1. The schematics of
our proof are as follows: We assume a dynamical system in a p-clustering state
ω, Definition 3.1 and with sufficiently fast decaying interactions, Eq. (130), so
that the Lieb–Robinson bound, Eq. (132), holds. We combine p-clustering with
the Lieb–Robinson bound (proof in Appendix C) in order to obtain space-like
pc-clustering, Definition 3.3. This leads to the special Property 3.3, below, for
the dynamical system. Using this property we can prove Lemma 3.4, which
forms the basis for the hydrodynamic projection formula, Theorem 3.1.

The most important difference from the D = 1 case is the new geometric
construction, which we now explain. We define the rational unit sphere in
D-dimensional space as S

D−1
Q

= {κ/|κ| : κ ∈ Z
D}. We also denote the set of

vectors in rational directions in R
D\{0} by R

D
Q

= {κ ∈ R
D\{0} : ∃r ∈ R | rκ ∈

Z
D}. Clearly, by definition, S

D−1
Q

⊂ R
D
Q

. For any such vector κ ∈ R
D
Q

, there
is a unique unit vector κ̂′ = ±κ/|κ| ∈ S

D−1
Q

that lies on the half-unit sphere:
such that κ̂′

1 > 0, or κ̂′
1 = 0, κ̂′

2 > 0, or · · · , or κ̂′
1 = 0, . . . , κ̂′

D−1 = 0, κ̂′
D > 0.

Then, given such a unit vector κ̂′, we denote by κ̂ = rκ̂′ the “smallest” integer
vector associated to it, where r > 0 is the smallest positive number such that
κ̂ ∈ Z

D (κ̂ exists because κ̂′ ∈ R
D
Q

). Clearly r̂κ = κ̂ for every r ∈ R, and in
fact, κ̂ is an element of Z

D that identifies the “rational ray” on which κ lies:
there is a bijection between the set of κ̂’s and the set of {rκ : r ∈ R}’s for
κ ∈ R

D
Q

. Below we will refer to κ̂ as a rational ray, and it will be important
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that it lies in Z
D. For any rational ray κ̂, we may build its perpendicular plane

in Z
D: a sublattice of Z

D that is isomorphic to Z
D−1, and whose vectors have

vanishing vector dot product with κ̂. Given κ̂, there is a set (possibly empty)
of zero components ζ = {i : κ̂i = 0} and its complement (always non-empty)
ζ̄ = {1, . . . , D}\ζ = {j1, . . . , jd} for unique 1 ≤ d = |ζ̄| ≤ D and j1 < · · · < jd.
We construct the vectors

h(i) ∈ Z
D : h(i)

m = δi,m (m ∈ {1, . . . , D}, i ∈ ζ)

h
(jl)
jl

= κ̂jl+1 , h
(jl)
jl+1

= −κ̂jl
, h(jl)

m = 0 (l ∈ {1, . . . , d − 1},

m ∈ {1, . . . , D}\{jl, jl+1}). (65)

This defines D − 1 vectors: all h(i), i = 1, . . . , D, except h(jd) which has not
been defined. If jd �= D, then D ∈ ζ, and for convenience, in this case, we
simply define h(jd) = h(D) as well as ζ̃ = ζ\{D} ∪ {jd} (otherwise ζ̃ = ζ).
Thus we may always concentrate on h(i) : i = 1, . . . , D − 1.

By construction, the set {h(i) : i = 1, . . . , D − 1} is linearly independent,
and satisfy h(i) · κ̂ = h(i) · κ = 0. The perpendicular plane is Z

D ⊃ H
D−1
κ̂ :=

span
Z
(h(1), . . . ,h(D−1)) 	 Z

D−1, i.e. H
D−1
κ̂ is the Z-module freely generated

by the h(i). The isomorphism between Z
D−1 and H

D−1
κ̂ , as Z-modules, is clear

by construction, in particular

H
D−1
κ̂ = {xih

(i) : x ∈ Z
D−1} (66)

(with implied summation over repeated indices). Of course, we could have
taken away the greatest common divisor of the components of h(i) in order to
have “denser” planes, but this is not necessary in the following construction.

By stacking the perpendicular planes parallely, we obtain a sublattice of
Z

D which is itself isomorphic to Z
D, defined as the Z-module freely generated

by the set {h(i), κ̂}:

Z
D
κ̂ := {xih

(i) + zκ̂ : (x, z) ∈ Z
D}. (67)

In-between the points of this lattice lie “fundamental cells”. That is, consider
the region Rκ̂ = {xih

(i) + zκ̂ : xi ∈ [0, 1)∀i, z ∈ [0, 1)} ⊂ R
D and the cell in

Z
D given by

Λκ̂ = Z
D ∩ Rκ̂ = Z

D ∩ {xih
(i) + zκ̂ : xi ∈ [0, 1)∀i, z ∈ [0, 1)}. (68)

Then the union of all unit cells shifted by the sublattice gives back Z
D:

Z
D =

⋃
r∈Z

D
κ̂

(
Λκ̂ + r

)
. (69)

Indeed, by linear independence and the fact that the Jacobian J is finite and
nonzero, every u ∈ R

D may be written in a unique way as u = xih
(i) + zκ̂

for some (x, z) ∈ R
D, and thus u = �xi�h(i) + �z�κ̂ + λ where λ ∈ Rκ̂ . This

holds in particular for u ∈ Z
D, and since �xi�h(i) + �z�κ̂ ∈ Z

D
κ̂ it gives (69).

We define for any wavenumber κ ∈ R
D
Q

and κ′ ∈ R
D, some positive-

semidefinite sesquilinear forms, and associated Hilbert spaces, in a way similar
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to that done above: first by summation over the perpendicular planes H
D−1
κ̂ ,

and second by summation over the full sublattices Z
D
κ̂ := {xih

(i)+zκ̂ : (x, z) ∈
Z

D}. Let

(A,B)κ̂,⊥ :=
∑

x∈H
D−1
κ̂

(A(x), B), (A,B)κ̂
κ′ :=

∑
x∈Z

D
κ̂

eiκ′x(A(x), B),

A,B ∈ Uloc. (70)

Note that these are well defined by clustering of the connected correla-
tor (A,B) = ω(A†B) − ω(A†)ω(B). Similarly to the construction of the
spaces Hκ , we define the Hilbert spaces Hκ̂,⊥ and Hκ̂

κ′ as the norm com-
pletions of V κ̂,⊥ := Uloc/ ∼κ̂,⊥ and V κ̂

κ′ := Uloc/ ∼κ̂
κ′ , respectively, where

A ∼κ̂,⊥ A′ ⇔ (A−A′, A−A′)κ̂,⊥ = 0 and A ∼κ̂
κ′ A′ ⇔ (A−A′, A−A′)κ̂

κ′ = 0.
The equivalence class of A ∈ Uloc is denoted by the respective lowercase a and
it is immediate that (·, ·)κ̂,⊥ and (·, ·)κ̂

κ′ are inner products on their respective
Hilbert spaces, and thus satisfies the Cauchy–Schwarz inequality. See Appen-
dix D for proofs of basic properties. It can be established that ιx := ιxκ̂ (x ∈ Z)
and τt (t ∈ R) act unitarily on Hκ̂,⊥ as representations of the groups Z and
R respectively, and that τt (t ∈ R) act unitarily on Hκ̂

κ′ as a representation of
the group R. Details and other basic results are discussed in Appendix E. We
denote space-time translations of elements a ∈ Hκ̂,⊥ by ιzτta, time translations
of a ∈ Hκ̂

κ′ by τta, while keeping the notation A(x, t) for A ∈ U.

Property 3.3 Consider a dynamical system (U, ι, τ). (Definition 2.2) that is
space-like D +1-clustering (Definition 3.3). For every κ ∈ R

D
Q
, it follows that:

1. ∀ a, b ∈ Hκ̂,⊥, for almost all v ∈ R,

lim
T→∞

1
T

∫ T

0

(ι	vt
τta, b)κ̂,⊥dt = 0. (71)

2. ∀ a, b ∈ V κ̂,⊥, there exist T > 0 (independent of κ̂) and a Lebesgue mea-
surable function f : R �→ R+ such that:

|(ι	vt
τta, b)κ̂,⊥| ≤ f(v) ∀ v ∈ R, t ≥ T satisfying
∫ ∞

−∞
dv (|v| + 1)f(v) < ∞.

(72)

Proof. Property 3.3.1 is a consequence of the almost-everywhere ergodicity
theorem, [28, Theorem 3.2]. One can see this by proving that (ι	vt
τta, b)κ̂,⊥

is space-like ergodic, [28, Definition 3.1], see Appendix B for the general idea.
That is, first, note that our assumptions immediately imply that the state ω
is space-like ergodic:

lim
N

1
N

N−1∑
m=0

(
A

(
mn,mυ−1|n|), B

)
= 0 υ > υLR A,B ∈ Uloc. (73)
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Consider a, b ∈ V κ̂,⊥ and class representatives A,B ∈ Uloc respectively. Then,

lim
N

1

N

N−1∑
m=0

(
ι�mz�τmυ−1za, b

)κ̂ ,⊥
= lim

N

1

N

N−1∑
m=0

∑
x ∈H

D−1
κ̂

(
A

(	mz
κ̂ + x, mυ−1z
)
, B

)
.

(74)

Using space-like clustering, we can see for any z ∈ R, υ > υc and A,B ∈ Uloc

∣∣∣ 1
N

N∑
m=0

(
A

(�mz�κ̂ + x,mυ−1z
)
, B

)∣∣∣ ≤ 1
N

N∑
m=0

c

(
√�mz�2|κ̂|2 + |x|2 + 1)p

(75)

where the summand is N -independent, x-summable, and uniformly bounded
by a m-summable function, allowing us to apply the dominated convergence
theorem in order to move limN inside the sum

∑
x∈H

D−1
κ̂

in Eq. (74). Thus,

lim
N

1
N

N−1∑
m=0

(
ι	mz
τmυ−1za, b

)κ̂,⊥ = 0, for υ > υLR. (76)

Applying the almost-everywhere ergodicity theorem for the system (Hκ̂,⊥, ι, τ)
(see Appendix B), we get Property 1.

For Property 3.3.2: Choose a V as per the definition of space-like cluster-
ing, Definition 3.3, choose T > 0, and consider all t ≥ T . Note that the choice
of T and V does not depend on κ̂.

First consider the case |v| ≥ V/|κ̂| + T−1. Note that (|v|t − 1)|κ̂| ≥ V t
and (|v|t − 1)|κ̂| ≥ (|v|T − 1)|κ̂| ≥ V T . We have, for some p > D + 1 (each
step is explained below):

|(ι	vt
τta, b)κ̂,⊥| ≤
∑

x∈ZD−1

∣∣∣(A(�vt�κ̂ + xih
(i), t), B

)∣∣∣

≤
∑

x∈ZD−1

c(√
(|v|t − 1)2|κ̂|2 + |xih(i)|2 + 1

)p

≤
∑

x∈ZD−1

c(
(|v|t − 1)2|κ̂|2 + |xih(i)|2)p/2

. (77)

Note that the right-hand side never gets infinite, since κ̂ is fixed and (|v|t −
1)|κ̂| ≥ V T > 0. In the second line we used the fact that

|�vt�κ̂ + xih
(i)|2

= |�vt�|2 |κ̂|2 + |xih
(i)|2 (by orthogonality and the L2 norm)

≥ (|v|t − 1)2|κ̂|2 + |xih
(i)|2 (as �vt� > vt − 1 and |vt − 1| ≥ ||v|t − 1|)

≥ (V t)2 (as (|v|t − 1)|κ̂| ≥ V t) (78)
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which allowed us to use space-like p-clustering. We now use the fact that∑
x∈ZD−1 F (x) =

∫
dD−1xF (�x�), hence we’ll have to deal with

∣∣ �xi�h(i)
∣∣.

The idea is to do the following transformation:

|xih
(i)|2 =

∑
m∈ζ̃

|xm|2 + |xj1 κ̂j2 |2 + |xj2 κ̂j3 − xj1 κ̂j1 |2 + . . . + |xjd−1 k̂jd
− xjd−2 κ̂jd−2 |2

=

D−1∑
m=1

|ym|2 = |y |2, ym =

⎧⎨
⎩

xm (m ∈ ζ̃)
xj1 κ̂j2 (m = j1)
xjl

κ̂jl+1 − xjl−1 κ̂jl−1 (m = jl ∈ {j2, . . . , jd−1}).

(79)

The finite Jacobian of the change of variable above is (nonzero)

J =
∣∣∣∂y

∂x

∣∣∣ =
d−1∏
l=1

|κ̂jl+1 |, 0 < J < ∞. (80)

We have by the triangle inequality:

|�xi�h(i)| = |(xi − εi)h(i)| ≥ |xih
(i)| − |εih

(i)| ≥ |xih
(i)| − h (81)

where we used �xi� = xi − εi for some εi ∈ [0, 1), and where h =
∑

i |h(i)|.
Hence, doing the transformation x �→ y, defined in Eq. (79):

|(ι	vt
τta, b)κ̂,⊥| ≤
∫
RD−1

dD−1x
c(

(|v|T − 1)2|κ̂|2 + (|xih(i)| − h)2
)p/2

= J−1

∫
RD−1

dD−1y
c

((|v|T − 1)2|κ̂|2 + (|y| − h)2)p/2

= J−1((|v|T − 1)|κ̂|)D−1−p

∫
RD−1

dD−1y
c(

1 +
(
|y| − h

(|v|T−1)|κ̂|
)2

)p/2

≤ cIJ−1((|v|T − 1)|κ̂|)D−1−p (Iis defined in (83)). (82)

In the third line we used the fact that (|v|T − 1)|κ̂| > 0. In the final line, we
used (|v|T − 1)|κ̂| ≥ V T and, for every � ∈ (0, h/V T ],∫

RD−1
dD−1y

1(
1 + (|y| − �)2

)p/2

≤
∫
RD−1,|y |≥ h

V T

dD−1y
1(

1 +
(|y| − h

V T

)2
)p/2

+
∫
RD−1,|y |< h

V T

dD−1y 1 =: I

(83)

where I, as defined by the right-hand side of the inequality, is finite, as p >
D + 1 > D − 1, and only depends on h/(V T ) and D.

For |v| < V/|κ̂| + T−1, we instead use the fact that

|(ι	vt
τta, b)κ̂,⊥| ≤ ||a||κ̂,⊥ ||b||κ̂,⊥ (84)

by the Cauchy–Schwartz inequality and space-time translation invariance.
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Thus we set

f(v) =

{
cIJ−1((|v|T − 1)|κ̂|)D−1−p (|v| ≥ V/|κ̂| + T−1)
||a||κ̂,⊥ ||b||κ̂,⊥ (|v| < V/|κ̂| + T−1).

(85)

We see that, for p > D + 1, this indeed satisfies the right properties, and in
particular this lower bound on p is necessary for the integral of (|v| + 1)f(v)
to exist on R. �

From this, we obtain the following crucial lemma:

Lemma 3.4. If the dynamical system satisfies Property 3.3, then ∀A,B ∈ Uloc,
∀s ∈ R, there exists T0 > 0 such that for every κ ∈ R

D
Q
, the following holds:

lim
T→∞

1
T

∫ T

T0

dt g(t) = 0 g(t) =
∑

x∈ZD

(
eiκx/t − eiκx/(t+s)

)(
A(x, t), B

)
. (86)

Proof. First we write

g(t) = G0(t) − Gs(t), Gs(t) =
∑

x∈ZD

eiκx/(t+s)
(
A(x, t), B

)
. (87)

Let us first simplify Gs(t) for arbitrary s. Writing (in a unique fashion) x =
r + λ where r ∈ Z

D
κ̂ and λ ∈ Λκ̂ , we get

Gs(t) =
∑

r∈Z
D
κ̂

eiκr/(t+s)
(
Ãt+s(r, t), B

)
= (τtãt+s, b)κ̂

κ/(t+s) (88)

where (recall that Λκ̂ is finite)

Ãu =
∑

λ∈Λκ̂

eiκλ/uιλA (89)

and the lowercase ãu, b ∈ V k̂
κ/(t+s) are the respective equivalence classes of

Ãu, B (see Equation 70 and discussion below). We note that

lim
t→∞ |Gs(t) − (τtã∞, b)κ̂

κ/(t+s)| ≤ lim
t→∞ ||τt(ãt+s − ã∞)||κ̂κ/(t+s)||b||κ̂κ/(t+s)

≤ lim
t→∞ max{| sin(κλ/(2(t + s)))| : λ ∈ Λκ̂} ||ã∞||κ̂κ/(t+s)||b||κ̂κ/(t+s)

= 0 (90)

where we used the fact that limκ′→0 ||c||κ̂κ′ = ||c||κ̂0 exists for any c. Therefore,
using the form r = xih

(i) + zκ̂ ∈ Z
D
κ̂ ,

lim
T→∞

1
T

∫ T

T0

dt g(t)

= lim
T→∞

1
T

∫ T

T0

dt
(
(τtã∞, b)κ̂

κ/t − (τtã∞, b)κ̂
κ/(t+s)

)

= lim
T→∞

1
T

∫ T

T0

dt
∑
z∈Z

(
ei|κ||κ̂|z/t − ei|κ||κ̂|z/(t+s)

)
(ιzτtã∞, b)κ̂,⊥. (91)
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At this point, we have managed to recast the problem into an effectively one-
dimensional problem. The proof now broadly follows that in D = 1, [29].
In order to show the Lemma, i.e. show limT→∞ 1

T

∫ T

T0
dtg(t) = 0, we want to

commute the limit and the time integral past the summation
∑

z∈Z
in g(t). The

result would then follow by applying Property 3.3.1. We proceed to uniformly
(in t) bound the summand in g(t). As in the proof of Lemma 6.6 in [29], we
write (denoting κ = |κ||κ̂|):
g(t) =

∑
z∈Z

2i exp
iκz

2

(
1

t
+

1

t + s

)
sin

[
κz

2

(
1

t
− 1

t + s

)]
(ιzτtã∞, b)κ̂ ,⊥

=
∑

υ∈t−1Z

iκυ

2
exp

iκυ

2

(
1 +

t

t + s

)
2t

κυ
sin

[
κυ

2t

(
t − t2

t + s

)]
(ιυtτtã∞, b)κ̂ ,⊥

=

∫
R

iκυt exp
iκυt

2

(
1 +

t

t + s

)
2t

κυt
sin

(
κυt

2t

(
t − t2

t + s

))
(ι�υt�τtã∞, b)κ̂ ,⊥ dυ

(92)

where υt = t−1�υt�. Having established Property 3.3, the rest of the proof
follows exactly as in [29, Lemma 6.6]. �

Finally, having shown Lemma 86, we have for all A,B ∈ Uloc, any rational
vector κ ∈ R

D, s ∈ R and any choice of Banach Limit ˜limt→∞:

0 = l̃im
t→∞

1
T

∫ T

0

(
〈τta, b〉κ/t − 〈τta, b〉κ/(t+s)

)
dt

= l̃im
t→∞

1
T

∫ T

0

〈τta, b〉κ/t dt − l̃im
t→∞

1
T

∫ T

0

〈τta, b〉κ/(t+s) dt (93)

where a, b ∈ Vκ/t are the respective equivalence classes (see Eq. (56) and
below). We then proceed exactly as in the proof [29, Theorem 6.7], which
completes the proof of the hydrodynamic projection theorem for any dimension
D and for zero wavenumber and frequency.

The proofs can easily be generalised to all frequencies and wavelengths,
as all the bounds remain essentially unchanged. We consider different repre-
sentations of the groups of space and time translations on the C∗-algebra U,
for each frequency-wavenumber pair, defined as

ι̃x := eikxιx , τ̃t := eiftτt for k ∈ R
D, f ∈ R. (94)

These form representations of the groups Z
D, R respectively, by bijective linear

maps on U. They are not ∗-automorphisms like ιx and τt. However, linearity
and unitarity on the Hilbert spaces defined from the state are all that is used in
our proofs (and of course the group representation properties). Hence we can
relax the Definition of a dynamical system, Definition 2.2, to a triplet (U, ι̃, τ̃)
where τ̃ is a strongly continuous representation of the group R by bijective
linear maps {τ̃t : U ∼−→ U}t∈R, and ι̃ is a representation of the translation group
Z

D by bijective linear maps {ι̃x : U ∼−→ U}x∈ZD , and the state is required to
have the invariance property (ι̃x τ̃t(A), ι̃x τ̃t(B)) = (A,B). It is clear that if
uniform p-clustering holds for a subset of elements in Uloc under ιx , then it
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also holds under ι̃x . Under this new representation of space translations we
can construct the Hilbert space of extensive quantities as

H̃0 = Hk . (95)

Further, it is immediate that the Lieb–Robinson bound also holds for τ̃t =
eiftτt. Thus, by the Lieb–Robinson bound, in this case τ̃t is also a one-
parameter unitary group on H̃0. We then can define the space of τ̃t-invariants
Q̃,

Q̃ = {a ∈ Hk : τta = e−ifta ∀ t ∈ R}, (96)

and the orthogonal projection

P̃ : H̃0 → Q̃. (97)

Finally, it is easily seen (by p-clustering and the Lieb–Robison bound)
that if the dynamical system (U, ι, τ) and state ω is space-like pc clustering
according to Definition 3.3, then so is (U, ι̃, τ̃), ω. From there on, the results
we proved above also hold for these new quantities:

S̃a,b(κ) = lim
t→∞

1
T

∫ T

0

e−ift〈τta, b〉k+κ/t dt. (98)

4. Linearised Oscillatory Euler Equation in One Dimension

Linearised Euler equations are equations for two-point functions of local con-
served densities, in the limit of large times and large wavelengths. They can
be heuristically obtained by linearising the Euler equation around a chosen
spacetime-stationary state. See [12] for a general discussion, and [17,21] for
modern viewpoints.

In [29], it is shown, in one-dimensional quantum lattices (quantum
chains), that the theorem of hydrodynamic projection can be used to rig-
orously obtain linearised Euler equations. There aren’t many rigorous results
for the linearised Euler equation in interacting systems. Besides [29], we know
only of strong results in gases of particles at low densities within the context of
the Boltzmann equation, see for instance the survey book [58] and the recent
paper [59]; and in the hard-rod gas [60]. In the previous sections, we have
seen how both the concepts of ergodiciy and that of hydrodynamic projections
hold as well with respect to any wavenumber k and frequency f . In [29], it
was commented that the linearised Euler equation will also hold at arbitrary
wavenumber and frequency. Thus, this allows us to extend the principles of
hydrodynamic correlations to predict oscillatory behaviours. This is perhaps
the most important consequence of the observation that large-scale concepts in
fact hold with oscillatory factors. In essence, we obtain the precise mathemat-
ical structure to describe the hydrodynamic expansion near a nonzero point
in the (f,k)-plane. Currently, besides the comment in [29], we are not aware
of any other rigorous results for the oscillatory linearised Euler equation.

In this section, we illustrate this principle in a simple quantum chain,
in a non-rigorous fashion. Recall Qf,k , Eq. (58): this is the f-oscillatory
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closed subspace of the Hilbert space Hk generated by the k-extensive observ-
ables. One may consider the corresponding (f,k)-conserved densities and cur-
rents A,B ∈ Uloc: the density gives rise to the k-extensive charge ΣkA =∑

x∈ZD e−ik·xA(x) ∈ Qf,k which is f -oscillatory τt

(
ΣkA

)
= e−iftΣkA. Such

densities and currents should satisfy the oscillatory continuity equation

0 =
d
dt

A(x, t) + ifA(x, t)

+
∑

i

(
B(x + ei, t) − B(x, t) + (e−ik·ei − 1)B(x + ei, t)

)
. (99)

In terms of the infinitesimal generator i[H, ·] for τt, the k-extensive charge
satisfies [H,ΣkA] + fΣkA = 0. If such a density and current exist, then two-
point correlation functions of observables that have nonzero overlap with this
density (or more precisely, with ΣkA), should present oscillatory behaviours at
large scales of space and time. Indeed, under the (f,k)-fluid-cell mean, defined,
as on the r.h.s. of (60), with a factor eik·x−ift, correlation functions at large
scales project onto Qf,k , as per the projection Theorem 3.1. As this holds for
the oscillatory fluid-cell mean, that is under averaging with oscillatory factors,
this extracts the oscillatory behaviour of the correlation function.

For any given model, one expects only certain values of (f,k) that would
give nontrivial Qf,k �= {0}. That is, only certain type of oscillatory behaviour
can be observed (if any). A simple example is the free fermionic lattice, with
some dispersion relation E(k). In this system, creation and annihilation oper-
ators at momentum k are (E(k),k)-extensive conserved quantities, and oscil-
latory hydrodynamic projection corresponds to the oscillatory algebraic decay
of fermion two-point functions conventionally obtained by a saddle-point anal-
ysis. In fact, it is convenient to go beyond just the hydrodynamic projection
principle, and get the oscillatory linearised Euler hydrodynamic equations, as
in [29]. This gives the explicit oscillatory behaviours of correlation functions
of conserved densities. Below we discuss this, and illustrate the phenomenon
in a free fermion model. We concentrate on the one-dimensional case

D = 1. (100)

(f,k)-hydrodynamic projection is a hydrodynamic expansion, of linear-
response type, in the neighbourhood of arbitrary (f,k), which extends the
paradigm of hydrodynamics to oscillatory behaviours. It generalises ideas in
recent works on time crystals, where dynamical symmetries are used to explain
persistent oscillations in Drude weights [23,25].

4.1. Oscillatory Linearised Euler Hydrodynamics

As mentioned, in one-dimensional models, the results of [29] are stronger than
those reported in Sect. 3, as the linearised Euler equation is also proven. This
makes the asymptotic of correlation functions more explicit. At a non-rigorous
level, the formulae obtained are reviewed in [17] in the usual (non-oscillatory)
case. For our purpose, in the non-oscillatory case, it is sufficient to recall that
if Ai, Bi are pairs of conserved densities and currents, such that the extensive
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charges �i = ΣAi form a basis for the space of conserved quantities Q, then
the connected correlation function behaves as

(Ai(x, t), Aj(0, 0)) ∼ �−1
[
δ(x̄ − At̄)C

]
ij

(x = �x̄, t = �t̄, � → ∞)

(101)

where the flux Jacobian is

A j
i =

∑
l

〈Bi, Al〉0Clj , (102)

the static susceptibility matrix is

Cij = 〈Ai, Aj〉0 (with Cij the inverse matrix,
∑

j

CijCjl = δi
l ) (103)

and it is expected that, for the results to hold, the fluid-cell mean can be taken
in the more intuitive form of an average over a cell in space-time:

A(x, t) =
1
L2

L
2∑

y=− L
2

∫ L
2

− L
2

A(x + y, t + s) ds. (104)

Here the mesoscopic length can be taken as L = L(�) with L → ∞ fast enough
as � → ∞, and L/� → 0 (or as L = ε�, then taking ε → 0+ on the asymptotic
large-� result).

Three remarks are in order, see the explanations in [17]:
(i) The right-hand side of Eq. (101) is obtained from the right-hand

side of Eq. (48) by (1) expressing the continuity equation relating
(Ai(x, t), Aj(0, 0)) and (Bi(x, t), Aj(0, 0)); (2) using the projection for-
mula, Eq. (48), expressing SΣBi,ΣAj

(κ) in terms of SΣAl,ΣAj
(κ), Fourier

transforming back to real space to get (Bi(x, t), Aj(0, 0)) in terms of
(Al(x, t)Aj(0, 0)); and (3) solving the resulting continuity equation for
the matrix of correlators (Ai(x, t)Aj(0, 0)), with appropriate initial con-
dition. The solution is (101).

(ii) The fluid-cell mean (104) is different from that in (47). The latter is used
to express the rigorous projection result, but the result is expected to
hold for a variety of possible definitions of fluid-cell means. The fluid-cell
mean chosen above is more physically transparent and more convenient
for our purposes.

(iii) If there is a finite set of basis charges (a finite set of indices i), the
right-hand side of (101) is a “generalised function”. Its meaning is that
for x̄/t̄ equal to an eigenvalue of A, the large-� asymptotic decays more
slowly than 1/�, while for other velocities, it decays more rapidly. The
delta-function comes about from the normalisation condition:

Cij =
∑
x∈Z

(Ai(x, t), Aj(0, 0)) = �

∫
dx̄ (Ai(x, t), Aj(0, 0)) (105)

where we use 1 = �dx̄ and the fact that
∑

x∈Z
Ai(x, t) is independent of

time. If there is a continuous set of basis charges, as is typical in integrable
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models, then the large-� asymptotics is exactly 1/�, and the right-hand
side of (101) is an ordinary function. See [16,17].
The observation made in [29] is that all formulae apply equally well in

the oscillatory case: with the space-time translation group defined as

ηω,k
x,t : A �→ eiωt−ikxA(x, t). (106)

This is because ηω,k
x,t still is a unitary operator on the GNS space. Thus we have

a space of k-extensive observables, the equivalence classes ΣkA built using the
positive semidefinite sesquilinear form

〈A,B〉k =
∑
k∈Z

eikx(A(x), B(0)), (107)

and from it we may construct, formally, the (f, k)-conserved charges, Qf,k.
Thus, for frequency-wavenumber f, k, if Ai, Bi are pairs of oscillatory

conserved densities and currents, Eq. (99), such that �i = ΣkAi form a basis
for Qf,k, then

(Ai(x, t)
f,k

, Aj(0, 0) ) ∼ eift−ikx�−1
[
δ(x̄ − Af,k t̄)Cf,k

]
ij

(x = �x̄, t = �t̄, � → ∞) (108)

where the oscillatory flux Jacobian is[
Af,k

] j

i
=

∑
l

〈Bi, Al〉k

[
Cf,k

]lj
, (109)

the static susceptibility matrix is[
Cf,k

]
ij

= 〈Ai, Aj〉k (110)

(note that these depend on f because the basis Ai’s does), and the fluid-cell
mean is

A(x, t)
f,k

=
1
L2

L
2∑

y=− L
2

∫ L
2

− L
2

eifs−ikyA(x + y, t + s) ds, (111)

4.2. Oscillatory Behaviour from a Saddle-Point Analysis

For simplicity, and in order to verify the ideas, we consider a one-dimensional
quadratic model, where asymptotics of correlation functions can be obtained
by an elementary saddle-point analysis. Such models are integrable, and the
usual hydrodynamic projection principle has been studied widely in the context
of generalised hydrodynamics [15–17,21], and verified to agree with a saddle-
point analysis [61].

Before we do this, we note that the mathematical results reported in the
main text apply to quantum lattice models with finite local spaces, and are
based on the bosonic version of the C∗ algebra formulation of quantum sta-
tistical mechanics, where local operators commute with each other (thus, we
are describing spins). Hence, they do not cover free bosonic chains (infinite-
dimensional local space), nor free fermionic chains (fermionic formulation).
Nevertheless, most results are expected to hold in both cases, as they only
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rely on general properties of correlation functions. For the case of an infinite-
dimensional local space, some work may be needed in order to check this
statement, as some of the techniques and results we use are specific to finite-
dimensional local spaces (e.g. the Lieb–Robinson bound, in the way we have
expressed it). For the case of fermionic chains, the only differences will come
from exchanging the positions of operators, where one would need to use
AB = (−1)d(A)+d(B) if A and B are supported on disjoint subsets of Z

D,
where d(A) is the fermionic degree of the operator A. It would be a matter
of keeping track of signs at various points in the calculations and proofs; but
properties of correlation functions are well established for fermionic theories
[39]. Here, therefore, we simply take the example of a free fermionic chain, and
assume that the main hydrodynamic projection results hold. We consider the
Hamiltonian

H = −J

2

∑
x∈Z

(
c†
x+1cx + c†

xcx+1

)
, {c†

x, cy} = δx,y. (112)

We are looking to evaluate the asymptotic form of the thermal correlation
function

(cx(t), c0(0)) = ω(c†
x(t)c0(0)) =

Tr
(
e−βHc†

x(t)c0(0)
)

Tr
(
e−βH

) , cx(t) = eiHtcxe−iHt

(113)

as x, t → ∞ (as one-point functions of fermions are zero, this is the connected
correlator). The Hamiltonian (112) is diagonalised by the Fourier transform

cx =
∫ π

−π

dk√
2π

eikxa(k), {a†(k), a(k′)} = δ(k − k′) (114)

as

H = −
∫ π

−π

dk J cos k a†(k)a(k) (115)

with energy spectrum E(k) = −J cos k and

a(k, t) = eiHta(k)e−iHt = e−iE(k)ta(k). (116)

Therefore, we obtain the usual expression for the correlator

(cx(t), c0(0)) =
∫ π

−π

dk

2π
n(k)eiE(k)t−ikx, n(k) =

1
1 + eβE(k)

. (117)

A similar analysis as that below can be performed in a generalised Gibbs
ensemble (GGE), where n(k) takes an arbitrary form that characterises the
GGE.

The asymptotic behaviour is easily obtained by a saddle point anal-
ysis. With k± solving v(k±) = x/t where v(k) = E′(k) = J sin k and
k+ ∈ [−π/2, π/2], k− = sgn(k+)(π − k+), we obtain

(cx(t), c0(0)) ∼
∑
±

n(k±)√
2πitE′′(k±)

eiE(k±)t−ik±x (118)
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as t → ∞ with x/t = ξ fixed. The decay in 1/
√

t, which is slower than 1/t,
indicates that the hydrodynamic projection formula should give a generalised
function. As all factors explicitly written as functions of k± are slowly varying,
they may be assumed to be constant within the fluid cell. Then we see that
the support of the (f, k)-fluid-cell mean (111) is on k = k± and f = E(k±),
which is

ξ = v(k), f = E(k). (119)

In fact, this saddle point analysis does not provide the full information
that we need about the shape of the correlation function around the velocity
ξ = v(k). However, because we know the support, we may immediately write,
as a consequence of this saddle-point result,

( cx(t)
f,k

, c0(0) ) ∼ eift−ikx�−1δ(x̄ − v(k)t̄)R(k). (120)

The normalisation R(k) is obtained by evaluating

1
L

∫ L
2

− L
2

ds
∑
x∈Z

eikx−ifs(cx(t + s), c0(0)) ∼ �

∫
dx̄ eikx( cx(t)

f,k
, c0(0) )

(121)

where again we use 1 = �dx̄. The left-hand side is found to be eiftn(k) from
(117), while the right-hand side is found to be eiftR(k) from (120), giving

R(k) = n(k). (122)

4.3. Oscillatory Behaviour from Oscillatory Linearised Euler Hydrodynamics

We note that

eiE(k)ta(k, t) (123)

is independent of time. Further,

a(k) =
1√
2π

∑
x∈Z

e−ikxcx. (124)

Therefore, a(k) is a k-extensive, f -oscillatory charge, a(k) ∈ Qf,k, for f =
E(k), with local density

A =
c0√
2π

. (125)

It is a simple matter to verify that the associated current has the form

B =
iJ

2
√

2π

(
c−1 − eikc0

)
(126)

in that A(x, t) and B(x, t) satisfy eq. (99). Then we evaluate

Cf,k =
1√
2π

(a(k), c0) =
n(k)
2π

, 〈B,A〉k = (B, a(k)) =
n(k)v(k)

2π
(127)

and thus

Aω,k = v(k). (128)
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Hence, the prediction from hydrodynamic projections is

( cx(t)
f,k

, c0(0) ) ∼ eift−ikx�−1δ(x̄ − v(k)t̄)n(k) (129)

in agreement with (120) and (122).

5. Conclusion

We have analysed the large-time, long-wavelength behaviours of short-range
quantum spin models on Z

D.
We have first considered many-body ergodicity, which is ergodicity as

viewed from the viewpoint of local physics in the thermodynamic limit. We
contrasted it with the standard notion of ergodicity in systems with finite
degrees of freedom, and von Neumann’s quantum ergodic theorem. In particu-
lar, we have obtained strong results in KMS states. We have shown that, under
a condition of non-localisation, time averages of local observables become clas-
sical, taking the values of their ensemble averages—this is a natural notion of
ergodicity. We have also shown, under the same condition, that a time-evolved
state within a “microcanonical shell” of the KMS state—defined as pertur-
bations by elements of the C∗ algebra—is arbitrarily close to the KMS state
for 100% of the times t ∈ [0, T ] when looking at arbitrarily large intervals of
time T → ∞, under a natural metric based on local observables. These results
show that the long-time evolution locally loses a large amount of information,
in agreement with expected ergodicity.

The non-localisation condition is that the kernel of the time-evolution
operator on the GNS space should be “trivial” (one-dimensional): there should
not be non-trivial observables (elements of the C∗ algebra different from 1)
that come back to themselves after some time. This is in general hard to check,
and it would be interesting to study this condition is explicit models.

Only the new aspects of the proofs of the above many-body ergodicity
statements were presented, as the main parts follow directly from the tech-
niques presented in [28].

We have then reviewed the notion of almost-everywhere ergodicity, intro-
duced in [28,29]. This is ergodicity, as above, for almost every ray of rational
direction in space-time. It is shown in [28] to hold for all short-range quan-
tum lattices on Z

D. That is, when considering displacements not just in time,
but in space-time, there is no need for non-localisation conditions in order for
ergodicity to hold almost everywhere. This includes the parallel result on the
distance of states in the microcanonical shell, under space-time displacements.
This strongly constrains the structure of time-evolved local observables at large
times: essentially, local observables become “thin” over time. Intuitively, this
is because the finite-dimensional local space of quantum spin lattices does not
allow to have operators nontrivially supported over growing regions—only a
countable set of space-time rays (of rational direction) may remain where the
observable is nontrivial.
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We have also observed that all these ergodicity results in fact hold with
arbitrary oscillatory factors, going beyond conventional ergodicity to strong
constraints on how observables may oscillate over long times.

Almost everywhere ergodicity was then used to obtain new rigorous
results on hydrodynamic projections. We have shown that the principle of
hydrodynamic projection—by which correlation functions, at large wave-
lengths and long times, project onto the extensive conserved quantities admit-
ted by the model—hold in every short-range quantum spin model on Z

D, and
at every frequency f and wavenumber k. Projection occurs on f,k-dependent
spaces, which are kernels of the time evolution operator on f,k-dependent
Hilbert spaces, different from, but constructed in a similar way to, the GNS
space.

The hydrodynamic projection theorem naturally generalises that shown
in [29] to arbitrary dimension D > 1. However, the proof is a nontrivial exten-
sion of that presented there for D = 1, requiring the construction of new
Hilbert spaces and the analysis of their properties. The hydrodynamic pro-
jection theorem was presented in its most general form, involving arbitrary
frequency f and wavenumber k.

The almost-everywhere ergodicity and hydrodynamic projection results
underline the large universality of general ergodic and hydrodynamic princi-
ples: they emerge solely from the separation of scales, the large gap between
extensivity and locality. Further, the mathematical construction based on
Hilbert spaces built from local observables and their correlations shows the
inherent flexibility in defining notions of extensivity (or homogeneity) and sta-
tionarity, allowing for oscillations.

Finally, using this flexibility, we have considered the oscillatory linearised
Euler equation: the linearised Euler equation, but obtained from oscillatory
hydrodynamic projections instead of the conventional ones. This was proposed
in [29], where the linearised Euler equation was shown for finite-range quantum
spin chains. The equation describes the oscillatory behaviours of correlation
functions at large space-time separations. We have illustrated it, in a non-
rigorous fashion, on a free-fermion chain, showing that the oscillatory hydro-
dynamic principle correctly reproduces the oscillatory behaviour that can be
inferred from a simple saddle-point evaluation of two-point fermion correla-
tion functions at large space-time separations. This gives a proof-of-principle
for the idea that Euler-scale hydrodynamics can in fact describe oscillatory
behaviours seen at large space-time, with frequencies that are far from 0 and
wavelengths that are microscopic.

The results presented open many doors for further studies. Applying the
results to more examples, including specific structures inside the LR light-
cone, the kernel of the GNS evolution operator and the related many-body
ergodicity, and oscillatory hydrodynamic projections in interacting systems
generalising the free-fermion example, would be very interesting. It is likely
that, in integrable systems, oscillatory hydrodynamic projection would connect
with the finite-density form factor expansions of quantum models; this may
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also provide a way of defining and studying such form factor expansions in
classical models.

The results illustrate how the choice of Hilbert space relates to the large-
scale physics of interest; the important elements always lie within the kernel of
the evolution operator, but the latter can be taken as acting on local observ-
ables, or extensive observables. The idea that different Hilbert spaces relate to
different scales was introduced in [62], and it would be interesting to extend the
rigorous analysis presented here to the “diffusive” Hilbert space constructed
there.

The (f,k)-hydrodynamic projection result paves the way for a full (f,k)-
hydrodynamics, a subject which should help uncover new universal dynamics
and which we hope to investigate in the near future. In fact, going beyond sim-
ple oscillatory phases, it is also possible to re-define space- and time-translation
operators by adjoining internal motions of local observables (such as spin rota-
tions). It is clear that all proofs provided immediately generalise to this case
whenever the internal motion is an extensive internal symmetry transforma-
tion (it commutes with time evolution and acts tensorially on individual spatial
cells). It would be extremely interesting to study the related hydrodynamics.

Finally, it would be interesting to go beyond clean spin lattices, towards
quantum and classical gases of particles, and also systems with disorder. We
believe that the general methods of operator algebras, and in particular the
principles presented here, give an alternative set of tools to the traditional ones
(such as kinetic or Boltzmann equations), which have the potential to provide
new fruitful ways of understanding the emergence of large-scale behaviours
from the microscopic physics.
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Appendix A: Mathematical Set-Up

We consider a hypercubic lattice Z
D and to each site x ∈ Z

D we associate a
quantum spin described by the (matrix) algebra of observables Ux := C

Nx ,
Nx ∈ N, with the operator norm || · ||, and for all lattice points x ∈ Z

D the
dimension of the spin matrix algebra is uniformly bounded, Nx ≤ N for some
N ∈ N. To each finite Λ ⊂ Z

D we have the algebra UΛ :=
⊗

x∈Λ Ux and the
algebra of local observables is defined as the direct limit of the increasing net
of algebras {UΛ}Λ∈Pf (ZD), where Pf (ZD) denotes the set of finite subsets of
Z

D: Uloc := lim−→ UΛ. The norm completion of Uloc defines the quasi-local C∗-

algebra of the quantum spin lattice: U := Uloc. For details on the definition of
quasi-local C∗-algebras see [63, Chapter 3.2.3].

Space translations are naturally defined on Uloc and extended (by con-
tinuity) to U, see [63, Chapter 3.2.6]. Time evolution is defined explicitly
from the interaction of the quantum spin lattice, see [39, Chapter 6.2].
An interaction is defined as a map Φ : Pf (ZD) → Uloc, s.t. Φ(Λ) ∈ UΛ

and Φ(Λ) = Φ∗(Λ), ∀Λ ∈ Pf (ZD). The Hamiltonian associated with any
Λ ∈ Pf (ZD) is HΛ :=

∑
X⊂Λ Φ(X) which defines the local time evolution as

τΛ
t (A) := eitHΛAe−itHΛ , A ∈ UΛ, t ∈ R. Time evolution of the infinite sys-

tem is defined when the limit limΛ→∞ τΛ
t (A) exists in the norm for all A ∈ Uloc

and can be uniquely extended to a strongly continuous ∗-automorphism τt of
U. This can be proved for a large class of interactions, including finite range
and exponentially decaying ones [39, Theorem 6.2.11]. In particular, this holds
for dynamical systems (U, ι, τ) with interaction that satisfies for some λ > 0:

‖Φ‖λ := sup
n∈ZD

∑
X�n

‖Φ(X)‖|X|N2|X|eλ diam(X) < ∞. (130)

where diam(X) = max{|x − y| : x, y ∈ X}. This is the type of interactions
that we consider: Φ can include m-body interactions for any m, as long as the
interaction drops at least exponentially with m and at least exponentially with
the distance.

We thus define a dynamical system of a D-dimensional quantum spin
lattice model, as defined in the main text Definition 2.2:

Definition A.1 (Dynamical System). A dynamical system of a quantum spin
lattice is a triple (U, ι, τ) where U is a quasi-local C∗-algebra (as constructed
above), τ is a strongly continuous representation of the group R by ∗-
automorphisms {τt : U

∼−→ U}t∈R, and ι is a representation of the transla-
tion group Z

D by ∗-automorphisms {ιx : U
∼−→ U}x∈ZD , such that for any

Λ ∈ Pf (ZD): A ∈ UΛ =⇒ ιx(A) ∈ UΛ+x for all x ∈ Z
D. We further assume

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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that τ is such that τtιx = ιxτt, ∀t ∈ R, x ∈ Z
D, i.e. time evolution is homoge-

neous. We use the notation A(x, t) := ιxτtA.

A state of the dynamical system is defined as:

Definition A.2 (States, Invariance). A state of a dynamical system (U, ι, τ) is
a positive linear functional ω : U → C such that ‖ω‖ = 1. The set of states is
denoted by EU. A state ω ∈ EU is called space invariant if ω(ιn (A)) = ω(A),
∀A ∈ U, n ∈ Z

D and time invariant if ω(τt(A)) = ω(A), ∀A ∈ U, t ∈ R. We
will refer to a space and time invariant state simply as invariant.

Of great importance in all our results is the Lieb–Robinson bound, which
we state as in [63, Corollary 4.3.3]:

Theorem A.1 (Lieb–Robinson Bound). Consider a dynamical system (U, ι, τ)
(Definition 2.2) with interaction Φ that satisfies Equation (130), that is

‖Φ‖λ := sup
n∈ZD

∑
X�n

‖Φ(X)‖|X|N2|X|eλ diam(X) < ∞ (131)

for some λ > 0. Then, there exists a υLR > 0 such that for all local A,B ∈ Uloc

with supports supp(A) = ΛA ∈ Pf (ZD), supp(B) = ΛB ∈ Pf (ZD) respectively,
and all t ∈ R we have the bound

‖[τt(A), B]‖ ≤ 4‖A‖‖B‖|ΛA||ΛB |N2|ΛA| exp
(−λ(dist(A,B) − υLR|t|))

(132)

with υLR = 2‖Φ‖λ

λ called the Lieb–Robinson velocity.

Appendix B: Ergodicity in the Various Completions of the
Space of Local Observables

Consider any positive-semidefinite sesquilinear form 〈·, ·〉 defined on elements
of Uloc. For example, this can be the connected correlator (A,B) = ω(A†B) −
ω(A†)ω(B), or other forms defined in the main text, such as (A,B)k̂,⊥. We
define, by the usual construction, a Hilbert space H from 〈·, ·〉. On it, we
assume that we have space-time translation group actions, ιx (for x ∈ Z

d) and
τt. For the case of (A,B)k̂,⊥, as summation over the perpendicular plane is
done, there remain only a one-dimensional translation group, d = 1. We say
that we have the system (H, ι, τ).

We can generalise the definitions of clustering of Sect. 3.1 for any such
forms, so that we define: a subset C ⊂ Uloc to be called uniformly p-clustering,
with respect to 〈·, ·〉, for p > D if there exist a C > 0 s.t. for all A,B ∈ C:

|〈ιxA,B〉| ≤ C(1 + |x|)−p, ∀x ∈ Z
d. (133)

Likewise, we can adapt Definition 3.3 of space-like pc clustering to 〈·, ·〉, and
we define, as per [28, Def 3.1, Theorem 3.2], 〈·, ·〉 to be space-like ergodic when
there exists a υc such that for every A,B ∈ Uloc and υ > υc:

lim
N

1
N

N−1∑
m=0

〈ιmn τm
υ−1|n |(A), B〉 = 0. (134)



114 D. Ampelogiannis and B. Doyon Ann. Henri Poincaré

The proof of the almost everywhere ergodicity theorem [28, Theorem 3.2]
can now be adapted to the system (H, ι, τ), as long as space-like ergodicity
holds.

Further, with space-like pc-clustering for pc > d, we can define an equiv-
alence relation and similarly to the construction of the spaces of extensive
quantities, we can construct a Hilbert space by the completion of the space
of equivalence classes. We can also extend the action of ι, τ on the Hilbert
space and it will be unitary. This is a matter of replicating the methods in [29,
Section 5].

Appendix C: Space-Like Clustering Proof

Throughout this appendix we use the notation ιxτtA for space-time transla-
tions of observables A ∈ U, in order to maintain visual clarity of expressions.
We prove the following proposition:

Theorem C.1. Consider a dynamical system (U, ι, τ) with interaction satisfy-
ing Equation (130), in an exponentially clustering state (Definition 3.2). It
follows that the system is space-like exponentially clustering with respect to ω,
Definition 3.3, for the Lieb–Robison velocity υLR.

First, we show the first condition of Definition 3.3. The Lieb–Robinson
bound allows us to approximate the time evolved observables by local ones,
by projecting the time evoluted τt(A), A ∈ Uloc onto local ones σΛ(τt(A))
supported on finite Λ ⊂ Z

D. This is done by using the result [64, Corollary
4.4] and satisfies the first condition of Definition 3.3:

Lemma C.2. Let A ∈ U and consider a finite Λ ⊂ Z
D. If there is an ε > 0

such that

s‖[A,B]‖ ≤ ε‖A‖‖B‖ ∀B ∈ UZD\Λ (135)

then we can approximate A by a strictly local σΛ(A) ∈ UΛ:

‖σΛ(A) − A‖ ≤ 2ε‖A‖. (136)

This Lemma states that if an observable A ∈ U almost commutes with
every B ∈ UZD\Λ supported outside a finite Λ, then it can be well approx-
imated by a local σΛ(A) ∈ UΛ. Combined with the Lieb–Robinson bound
Equation (132) we can prove (this is also described in [63, Chapter 4.3]):

Theorem C.3. Consider a dynamical system with exponentially decaying inter-
actions, the time evolution τtA of a local A ∈ UΛ and the finite sets Λr =
∪x∈ΛBx(r), r = 1, 2, 3, . . . , where Bx(r) is the ball of radius r > 0 around x,
i.e. Λr is Λ extended by a distance r around all of its points. Then, we can
approximate τtA by the local σΛr

(τtA) ∈ UΛr
:

‖σΛr
(τt(A)) − τt(A)‖ ≤ 2εr‖A‖ (137)

with εr = C|Λ|N2|Λ| exp−λ(r − υLR|t|), r = 1, 2, 3 . . . .

Using this result we can show the first condition of space-like clustering:
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Proof of 3.3.1. The projection σ allows us to define the sequences σr(A) :=
σΛr

A required by condition 1 of Definition 3.3. Consider n ∈ Z
D and A,B ∈

Uloc with supports

supp(A) := ΛA supp(B) := Λ and supp(ιnA) := ΛA + n (138)

Let r ∈ N and by Theorem C.3 consider the local approximation of τtB by
σΛr

(τtB), supported in Λr = ∪x∈ΛBx(r):

‖σΛr
τtB − τtB‖ ≤ 2C|Λ|N2|Λ|‖B‖ exp

( − λ(r − υLR|t|)) (139)

Using this we can approximate the time evolution of observables by a local
sequence σr(τtA) := σΛr

(τtA) so that limr σr(τtA) = τtA. �

We show the uniformity condition 2 of the elements σr(τtA) in the end
of the appendix, we first proceed to show the third condition of Definition 3.3.

Proof of 3.3.2. Consider the quantity I := |ω(ιn (A)σΛr
(τtB)) − ω

(A)ω(σΛr
(τtB))|, r ∈ N where we are interested in the large r limit. By lin-

earity and the triangle inequality, it holds for any r, l ∈ N:

I =
∣∣ω

(
ιn (A)

(
σΛr

(τtB) + σΛl
(τtB) − σΛl

(τtB)
))

−ω(A)ω
(
σΛr

(τtB) + σΛl
(τtB) − σΛl

(τtB)
)∣∣

≤ ∣∣ω(
ιn (A)σΛl

(τtB)
) − ω(A)ω(σΛl

(τtB))
∣∣+

+
∣∣ω(

ιn (A)
(
σΛr

(τtB) − σΛl
(τtB)

)) − ω(A)ω
(
σΛr

(τtB) − σΛl
(τtB)

)∣∣
(140)

The idea is to control the first part using exponential clustering and
the second one using the approximation of time evolution. We now esti-
mate the quantities T1 =

∣∣ω(
ιn (A)σΛl

(τtB)
) − ω(A)ω(σΛl

(τtB))
∣∣ and T2 =∣∣ω(

ιn (A)
(
σΛr

(τtB) − σΛl
(τtB)

)) − ω(A)ω
(
σΛr

(τtB) − σΛl
(τtB)

)∣∣. Consider r
large enough and

l = �ε dist(ΛA + n,Λ)� + �ε diam(ΛA ∪ Λ)� + 2 for some
1
2

< ε < 1

(141)

We first estimate T1, using exponential clustering

T1 ≤ kΛA+n ,Λl
e−λ dist(ΛA+n ,Λl) (142)

Where we have the following bound for k(ΛA + n,Λl):

kΛA+n ,Λl
≤ u‖A‖‖σΛl

(τtB)‖|ΛA|r|Λl|r (143)

Obviously |ΛA + n| = |ΛA| and |Λl| ≤ |B0(l)||Λ|.,where |B0(l)| is the number
of lattice points in the D-ball of radius l, which is a polynomial in l of degree
D, hence it can be bounded by KlD for some constant K > 0, ∀l ≥ 1. Using
this, the chosen value for l (Eq. (141)) and the triangle inequality for dist(ΛA+
n,Λl):

|Λl| ≤ |Λ|K(�ε dist(ΛA + n,Λ)� + �ε diam(ΛA ∪ Λ)� + 2)D

≤ |Λ|KεD
(
dist(ΛA + n,Λ) + diam(ΛA ∪ Λ) + 4

)D

≤ |Λ|KεD
(|n| + dist(ΛA,Λ) + diam(ΛA ∪ Λ) + 4

)D
(144)
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Since (|n|+dist(ΛA,Λ)+diam(ΛA∪Λ)+2)D is a polynomial in |n| of degree D it
can be bounded by L|n|D for some constant L > 0 (depending on dist(ΛA,Λ),
diam(ΛA ∪ Λ)), ∀|n| ≥ 1. Hence:

|Λl| ≤ |Λ|KLεD|n|D (145)

By the explicit construction of the projection σ in [64] it holds that ‖σΛl
C‖ ≤

‖C‖, ∀C ∈ U. Additionally, since τt is a ∗-automorphism for all t ∈ R, it is
norm preserving, hence

‖σΛl
(τtB)‖ ≤ ‖B‖ (146)

Next, we can estimate dist(ΛA +n,Λl) with respect to |n| by simple geometric
arguments:

dist(ΛA + n,Λl) ≥ dist(ΛA + n,Λ) − l ≥ (1 − ε) dist(ΛA + n,Λ)
−ε diam(ΛA ∪ Λ) − 2 (147)

and
dist(ΛA + n,Λ) = min{|y − z| : y ∈ ΛA + n,z ∈ Λ}

= min{|y + n − z| : y ∈ ΛA,z ∈ Λ}
≥ min{|n| − |y − z| : y ∈ ΛA,z ∈ Λ}
= |n| − max{|y − z| : y ∈ ΛA,z ∈ Λ}
≥ |n| − diam(ΛA ∪ Λ)

(148)

Putting these together we get

e−λ dist(ΛA+n ,Λ) ≤ e2λeλ diam(ΛA∪Λ)e−λ(1−ε)|n | (149)

and combining all the estimates for the terms in T1, inequality (142) becomes

T1 ≤ ue2λKrLr|ΛA|r|Λ|rεrD‖A‖‖B‖eλ diam(ΛA∪Λ)|n|rDe−λ(1−ε)|n | (150)

To estimate T2, we use the triangle inequality and note that ω has norm 1:

T2 ≤ ‖ιnA‖‖σΛr
(τtB) − σΛl

(τtB)‖ + ‖A‖‖σΛr
(τtB) − σΛl

(τtB)‖ (151)

where ‖ιnA‖ = ‖A‖. Using the approximation of τtB, inequality (139), we get

T2 ≤ 2‖A‖2C|Λ|N2|Λ|‖B‖( exp{−λ(r − υLR|t|)} + exp{−λ(l − υLR|t|)})
(152)

We consider a compact subset T := ε′υ−1
LR [−|n|, |n|] for some 0 < ε′ < ε,

and let t ∈ T . Then, for the value (141) of l, since �y� ≥ y − 1,∀y > 0, we
have:

l − υLR|t| ≥ ε dist(ΛA + n,Λ) − 1 + ε diam(ΛA ∪ Λ) − 1 + 2 − ε′|n|
≥ ε|n| − ε diam(ΛA ∪ Λ) + ε diam(ΛA ∪ Λ) − ε′|n|
= (ε − ε′)|n| > 0

(153)

where in the second line we used relation (148). Hence:

exp{−λ(l − υLR|t|)} ≤ exp{−λ(ε − ε′)|n|} ∀t ∈ T, 0 < ε′ < ε < 1 (154)

and also limr exp{−λ(r − υLR|t|)} = 0, ∀t ∈ T . We can now take limr

of inequality 140, where the left-hand side becomes limr I = |ω(ιnAτtB) −
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ω(A)ω(B)| by continuity. The right-hand side is bounded by the estimates
(150), (151), (154), to get:

|ω(ιnAτtB) − ω(A)ω(B)| ≤
ue2λKrLr|ΛA|r|Λ|rεrD‖A‖‖B‖eλ diam(ΛA∪Λ)|n|rDe−λ(1−ε)|n |

+4CN2|Λ||Λ|‖A‖‖B‖e−λ(ε−ε′)|n |
(155)

Concluding the proof, note that for any 0 < λ̃ < λ(1 − ε) there exists a large
enough G > 0 s.t. |n|rDe−λ(1−ε)|n | ≤ Ge−λ̃|n |. Hence we arrive at the result
by defining μ := min(λ̃, λ(ε − ε′)) > 0 and

c = ‖A‖‖B‖|Λ|(ue−2KrLr|ΛA|r|Λ|r−1εrDeλ diam(ΛA∪Λ)G + 4CN2|Λ|)
(156)

to get that there exist c > 0 and a μ > 0 s.t.

|ω(ιnAτtB) − ω(A)ω(B)| ≤ ce−μ|n | (157)

for all n ∈ Z
D and for any t ∈ T = ε′υLR[−|n|, |n|], with any choice 0 < ε′ < ε

and 1/2 < ε < 1. Hence, for any υ = υLR/ε′ > υLR and choosing t = −υ−1|n|,
we have

|ω(ιnAτ−υ−1|n |B) − ω(A)ω(B)| ≤ ce−μ|n | ∀n ∈ Z
D (158)

and taking advantage of the time invariance of ω, we have established expo-
nential space-like clustering, and as a consequence space-like p-clustering for
all p. �

It remains to prove the uniformity condition, i.e. that the set {(σnτta, σm

τsb) : n,m ∈ N} is uniformly clustering, Equation (52) in Definition 3.1.

Proof of 3.3.3. We start with I := |ω(ιn (A)σΛr
(τtB))−ω(A)ω(σΛr

(τtB))| and
choose l = dist(ΛA + n,Λ). If r < l then we bound I by the space clustering
property, as in Equation (142):

Ir<l ≤ u|ΛA|r|Λl|r‖A‖‖B‖e−λ dist(ΛA+n ,Λl) (159)

and e−λ dist(ΛA+n ,Λr) ≤ e−λ|n |eλ diam(ΛA∪Λ)−λl = e−2λ|n |e2λ diam(ΛA∪Λ). Thus,
we get

Ir<l ≤ u|ΛA|r|Λ|r‖A‖‖B‖e2λ diam(ΛA∪Λ)e−2λ|n | (160)

Now, if r > l we proceed as in Eq. 140 to get

I ≤ Ir<l + 2‖A‖2C|Λ|N2|Λ|‖B‖( exp{−λ(r − υLR|t|)} + exp{−λ(l − υLR|t|)})
≤ Ir<l + 4‖A‖2C|Λ|N2|Λ|‖B‖ exp{−λ(l − υLRt)}
≤ Ir<l + 4‖A‖2C|Λ|N2|Λ|‖B‖eυLRte−λ dist(ΛA+n ,Λ)

≤ Ir<l + 4‖A‖2C|Λ|N2|Λ|‖B‖eυLRteλ diam(ΛA∪Λ)e−λ|n |

(161)

Hence, we can overall obtain a uniform in r exponential clustering. Sim-
ilarly we can repeat the process for the replacement ιnA → σr′τsιnA, which
will finally yield uniform exponential clustering for the set {(σr′τsa, σrτtb) :
r, r′ ∈ N} for any t, s ∈ R. This obviously implies uniform p-clustering for all
p. �
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Appendix D: Sesquilinear Forms Properties

Here we prove some basic properties for the sesquilinear forms used throughout
the main text.

Lemma D.1. For any k ∈ R
D and A ∈ Uloc in a p-clustering with p > D

dynamical system, it follows 〈A,A〉k ≥ 0.

Proof. Define B =
∑

x∈[0,L]D

eik·xA(x) ∈ Uloc, for L ∈ N. Then

0 ≤ (B,B) =
∑

x,y∈[0,L]D

eik·(x−y)(A(x − y), A)

=
∑

z∈[−L,L]D

( D∏
j=1

(L + 1 − |zj |)
)

eik·z (A(z), A),

z = (z1, z2, . . . , zD),

= (L + 1)D
∑

z∈[−L,L]D

eik·z (A(z), A) + o((L + 1)D−1).

(162)

We divide both sides of the inequality by (L + 1)D and the Lemma follows by
taking the limit L → ∞. That is because the first term becomes 〈A,A〉k , while
the term o((L + 1)D−1) tends to 0 for p > D, after diving by (L + 1)D and
taking L → ∞. This can be seen when writing o((L + 1)D) as a sum over all
permutations σ of z1, z2, . . . , zD and all k = 1, 2, . . . ,D, of terms of the form:

(L + 1)D−k
∑

z∈[−L,L]D

∏
|σ(zj)|eik·z (A(z), A) k = 1, 2, . . . ,D (163)

where the product is taken over a choice of k elements of z1, z2, . . . , zD. We
can bound the absolute value of any such term as follows, where we denote
SD(d) =

∣∣{x ∈ Z
D : |x| = d}∣∣ the number of lattice points on a circle of radius

d:
(L + 1)D−k

∑
z∈[−L,L]D

|z|k 1
(|z| + 1)p

≤ (L + 1)D−k
∑

z∈[−L,L]D

(|z| + 1)k

(|z| + 1)p

≤ (L + 1)D−k
DL∑
d=0

1
(d + 1)p−k

SD(d)

≤ (L + 1)D−kSD(0) + C(L + 1)D−k
DL∑
d=1

dD−1

(d + 1)p−k
, for C > 0

≤ O(LD−k) + C(L + 1)D−k
DL∑
d=1

(d + 1)D−1

(d + 1)p−k

≤ O(LD−k) + C(L + 1)D−k

∫ DL

0

dx(x + 1)D−p+k−1

= O(LD−k) + C(L + 1)D−k

(
(DL + 1)D−p+k − 1

)
.

(164)
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Dividing by (L + 1)D and taking L → ∞ we see that the right-hand side
vanishes for all k = 1, 2, . . . ,D when p > D. �

A similar result can be obtained for the forms (·, ·)k̂,⊥ and (·, ·)k̂
k′ :

Lemma D.2. For any k ∈ R
D
Q

,k′ ∈ R
D and A ∈ Uloc in a p-clustering dynam-

ical system with p > D, it follows that (A,A)k̂,⊥ ≥ 0 and (A,A)k̂
k′ ≥ 0.

Proof. The important point about the proof of Lemma D.1 is that the form
is obtained by a summation over all elements of a (sub-)group of Z

D, of the
action of these elements on one factor of the form; the proof works for any
subgroup as clustering gives a fortiori a strong enough decay. Specifically, to
see that (A,A)k̂,⊥ is non-negative we write

B =
∑

x∈[0,L]D−1

A(xih
(i)) (165)

and proceed as in Lemma D.1 from 〈B,B〉 ≥ 0. Similarly for (A,A)k̂
k′ . �

Lemma D.3. For any A,B ∈ U that are p-clustering for p > D, 〈A,B〉k is
uniformly bounded for k ∈ R

D, and

lim
k→0

〈A,B〉k = 〈A,B〉0. (166)

The same holds for (a, a)k̂
k′ .

Proof. The proof is an immediate generalisation of the proof of [29, Lemma
5.6] for p > D. �

Appendix E: Unitarity of Space-Time Translations on Various
Completions of Uloc

Consider the sesquilinear forms (·, ·)k̂,⊥ and (·, ·)k̂
k′ defined in Lemma 70. We

have to establish that ιx := ιxk̂ (x ∈ Z) and τt (t ∈ R) act unitarily on H
D−1

k̂
as representations of the groups Z and R respectively, and that τt (t ∈ R) act
unitarily on Hk̂

k′ .
We need to first show that these actions are indeed well defined on the

equivalence classes. If A ∼k̂,⊥ A′ then also ιzA ∼k̂,⊥ ιzA
′, ∀z ∈ Z, since

(ιzA − ιzA
′, ιzA − ιzA

′)k̂,⊥ =
∑

x∈H
D−1
k̂

(
ιzk̂ ιx(A − A′), ιzk̂(A − A′)

)
(167)

and ι acts unitarily inside the inner product (·, ·) defined by the connected
correlation, by space-time invariance of the state. Unitarity is also immediately
established from this fact. Finally space translations are extended to the full
Hilbert space Hk̂,⊥ by continuous extension.

For τt the situation is more complicated, as it maps local elements to
non-local ones. However, the treatment is the same as is in D = 1, see [29,
Theorem 5.11].



120 D. Ampelogiannis and B. Doyon Ann. Henri Poincaré
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