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1. Introduction

Stochastic partial differential equations (SPDEs) play a prominent role in mod-
ern analysis, probability theory and mathematical physics due to their effec-
tiveness in modeling different phenomena, ranging from turbulence to interface
dynamics. At a structural level, several progresses in the study of nonlinear
problems have been made in the past few years, thanks to Hairer’s work on
the theory of regularity structures [16,17] and to the theory of paracontrolled
distributions [15] based on Bony paradifferential calculus [3].

Without entering into the details of these approaches, we stress that a
common hurdle in all of them is the necessity of applying a renormalization
scheme to cope with ill-defined product of distributions. In all these instances,
the common approach consists of introducing a suitable e-regularization scheme
which makes manifest the pathological divergences in the limit ¢ — 0T, see,
e.g., [16]. This strategy is very much inspired by the standard approach to a
similar class of problems which appears in theoretical physics and, more pre-
cisely, in quantum field theory on Minkowski spacetime, studied in momentum
space.

Despite relying on a specific renormalization scheme, all these approaches
have been tremendously effective in developing the solution theory of nonlin-
ear stochastic partial differential equations in the presence of an additive white
noise. At the same time, not much attention has been devoted to computing ex-
plicitly the expectation value and the correlations of the underlying solutions,
features which are of paramount relevance in the applications, especially when
inspired by physics.

In view of these comments, in a recent paper, [11], a novel framework
has been developed to analyze scalar, nonlinear SPDEs in the presence of an
additive white noise. The inspiration as well as the starting point for such
work comes from the algebraic approach to quantum field theory, see [6,23]
for reviews. In a few words this is a specific setup which separates on one side
observables, collecting them in a suitable unital x-algebra encoding specific
structural properties ranging from dynamics, to causality and the canonical
commutation relations. On the other side, one finds states, that is normalized,
positive linear functionals on the underlying algebra, which allow to recover
via the GNS theorem the standard probabilistic interpretation of quantum
theories.

Without entering into more details, far from the scope of this work, we
stress that this approach, developed to be effective both in coordinate and in
momentum space, has the key advantage of allowing an analysis of interacting
theories within the realm of perturbation theory [5]. Most notably, renormal-
ization plays an ubiquitous réle and, following an approach a la Epstein-Glaser,
this is codified intrinsically within this framework without resorting to any
specific ad hoc regularization scheme [7].

From a technical viewpoint, the main ingredients in this successful ap-
proach are a combination of the algebraic structures at the heart of the pertur-
bative series together with the microlocal properties both of the propagators



Vol. 24 (2023) An Algebraic and Microlocal Approach 2445

ruling the linear part of the underlying equations of motion and of the two-
point correlation function of the chosen state.

In [11], it has been observed that the algebraic approach could as well be
adapted also to analyze stochastic, scalar semi-linear SPDEs such as

E® = ¢ + F[®]. (1.1)

Here, ® must be interpreted as a random distribution on the underlying mani-
fold M, € denotes the standard Gaussian, real white noise centered at 0 whose
covariance is E[¢(x)¢(y)] = d(z — y). Furthermore, F': R — R is a nonlinear
potential which can be considered for simplicity of polynomial type, while F is
a linear operator either of elliptic or of parabolic type—see [11] for more details
and comments.

Following [5] and inspired by the so-called functional formalism (8,10,
14], we consider a specific class of distributions with values in polynomial
functionals over C°°(M). While we refer a reader interested in more details to
[11], we sketch briefly the key aspects of this approach. The main ingredients
are two distinguished elements

(f:0) = /Msomf(x)u(x), 1(fs0) = /Mf(w)u(w)

where p is a strictly positive density over M, ¢ € C°°(M) while f €
C§°(M). These two functionals are employed as generators of a commutative
algebra A whose composition is the pointwise product. The main rationale at
the heart of [11] and inspired by the algebraic approach [5] is the following:
The stochastic behavior codified by the white noise £ can be encoded in A by
deforming its product setting for all 71,75 € A

(11 m2)(fi ) = Z % [(5Diag2 ® Q% - (r¥ @ Tz(k))} (f @ Litani @)
E>0
:Ztk(f®11+2k§80)a (1.2)
k>0

where Ti(k), 1 = 1,2 indicate the k-th functional derivatives, while Q) =
GoG*. Here G (resp. G*) is a fundamental solution associated to E (resp. E*,
the formal adjoint of E'), while o indicates the composition of distributions. By
a careful analysis of the singular structure of G and in turn of () one can infer
that the distributions ¢ are well-defined on M?*+2 up to the total diagonal
Diagyy, o of M?%%2 that is, tx(;¢) € D'(M?*+2\ Diagy . ,)-

Yet, adapting to the case in hand the results of [7], in [11] it has been
proven that it is possible to extend ty to £, € D’(M?*+2). This renormalization
procedure, when existent, might not be unique, but the ambiguities have been
classified, giving ultimately a mathematical precise meaning to Equation (1.2).
For a further applications of these techniques to the analysis of a priori ill-
defined product of distributions, see [12].

As a consequence, one constructs a deformed algebra A.g whose elements
encompasses at the algebraic level the information brought by the white noise.
Without entering into many details, which are left to [11] for an interested



2446 A. Bonicelli et al. Ann. Henri Poincaré

reader, we limit ourselves at focusing our attention on a specific, yet instructive
example. More precisely, we highlight that, if one evaluates at the configuration
¢ = 0 the product of two generators ® of A.g, one obtains

(@@ ®) (f30) = Qniag, (f);

where f € C§°(M) and where = QTD:gz indicates a renormalized version of
the otherwise ill-defined composition between the operator @ and dpjag,. The
latter is the standard bi-distribution lying in D’(M x M) such that dp;ag, (h) =
Jay () h(z, ) for every h € Cg°(M x M).

A direct inspection shows that we have obtained the expectation value
E(p?(z)) of the random field $?(z), where $:=G x* £ is the so-called stochastic
convolution, which is a solution of Eq. 1.1 when F' = 0 and for vanishing initial
conditions. With a similar procedure one can realize that A.g encompasses the
renormalized expectation values of all finite products of the underlying ran-
dom field. Without entering into further unnecessary details, we stress that an
additional extension of the deformation procedure outlined above allows also
to identify another algebra whose elements encompass at the algebraic level
the information on the correlations between the underlying random fields. All
these data have been applied in [11] to the ®3 model. This has been considered
as a prototypical case of a nonlinear SPDE and it has been analyzed at a per-
turbative level constructing both the solutions and their two-point correlations.
Most notably renormalization and its associated freedoms have been intrinsi-
cally encoded yielding order by order in perturbation theory a renormalized
equations which takes them automatically into account. It is worth stressing
that although an analysis of the convergence of the perturbative series is still
not within our grasp, a notable advantage of the approach introduced in [11]
lies in its applicability to a vast class of interactions, including all polynomial
ones. On the contrary the existence and uniqueness results for an SPDE based
either on the theory of regularity structures or on that of paracontrolled dis-
tributions require that the underlying model lies in the so-called subcritical
regime. Without entering in the technical details, it entails that it is finite the
number of distributions which need to be renormalized. This requirement does
not apply to the approach used in this paper, hence allowing an investigation
of specific models which cannot otherwise be discussed.

In view of the novelty of [11], several questions are left open and goal
of this paper is to address and solve a specific one. Most notably the class
of SPDEs considered in the above reference contains only scalar distributions
and consistently a real Gaussian white noise. Yet, there exists several models
not falling within this class and a notable one, at the heart of this paper, goes
under the name of stochastic nonlinear Schrédinger equation.

The reasons to consider this model are manifold. From a physical view-
point, such specific equation is used in the analysis of several relevant physical
phenomena ranging from Bose-Einstein condensates to type II superconduc-
tivity when coupled to an external magnetic field [9,25,26]. From a math-
ematical perspective, such class of equations is particularly relevant for its
distinguished structural properties and it has been studied by several authors,
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see, e.g., [4,20,21] for a list of those references which have been of inspiration
to this work.

It is worth stressing that in many instances the attention has been given
to the existence and uniqueness of the solutions rather than in their explicit
construction or in the characterization of the mean and of the correlation
functions. It is therefore natural to wonder whether the algebraic approach
introduced in [11] can be adapted also to this scenario. A close investigation of
the system in hand, see Sect. 1.1 for the relevant definitions, unveils that this
is not a straightforward transition and a close investigation is necessary. The
main reason can be ascribed to the presence of an additive complex Gaussian
white noise, see Eqgs. (1.4) and (1.5) which entails that the only non-vanishing
correlations are those between the white noise and its complex conjugate. This
property has severe consequences, most notably the necessity of modifying
significantly the algebraic structure at the heart of [11].

A further remarkable difference with respect to the cases considered in
[11] has to be ascribed to the singular structure of the fundamental solution
of the Schrodinger operator. Without entering here into the technical details,
we observe that especially the Epstein-Glaser renormalization procedure bears
the consequences of this feature, since this calls for a thorough study of the
scaling degree of all relevant integral kernels with respect to the submanifold
A?’HQ = {(%\216+2, Topio) |t = ... = topso} C M?#*+2 rather than with respect
to the total diagonal Diagy, o of M2*+2 asin [11].

As we shall discuss in Sect. 5.2, the distinguished role of this richer sin-
gular structure emerges in the analysis of the subcritical regime which occurs
only if the space dimension is d = 1, contrary to what occurs in many parabolic
models as highlighted in [11].

The goal of this work will be to reformulate the algebraic approach to
SPDEs for the case on a nonlinear Schrodinger equation and for simplicity of
the exposition we shall focus our attention only to the case of R4t! as an un-
derlying manifold. Although the extension to more general curved backgrounds
[11,24] is possible with a few minor modifications, we feel that this might lead
us astray from the main goal of showing the versatility of the algebraic ap-
proach and thus we consider only the scenario which is more of interest in the
concrete applications.

In the next subsection, we discuss in detail the specific model that we
study in this paper, but, prior to that, we conclude the introduction with a
short synopsis of this work. In Chapter 2, we introduce the main algebraic and
analytic ingredients necessary in this paper. In particular, we discuss the no-
tion of functional-valued distributions, adapting it to the case of an underlying
complex valued partial differential equation. In addition we show how to con-
struct a commutative algebra of functionals using the pointwise product and
we discuss the microlocal properties of its elements. We stress that we refer to
[18,19] for the basic notions concerning the wavefront set and the connected
operations between distributions, while we rely on [11, App. B] for a concise
summary of the scaling degree of a distribution and of its main properties. A
reader interested on the interplay between microlocal techniques and Besov
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spaces, which appear naturally in the context of SPDEs, should refer instead
to [13]. In Sect. 3, we prove the existence of A(,CQ a deformation of the algebra
identified in the previous analysis and we highlight how it can codify the infor-
mation of a complex white noise. Renormalization is a necessary tool in this
construction and it plays a distinguished réle in Theorem 3.4 which is one of
the main results of this work. In Sect. 4, we extend the analysis first identifying
a non-local algebra constructed out of A% and then deforming its product so
to be able to compute multi-local correlation functions of the underlying ran-
dom field. At last, in Sect. 5 we focus our attention on the stochastic nonlinear
Schrodinger equation. First we show how to construct at a perturbative level
the solutions using the functional formalism. In particular we show that, at
each order in perturbation theory, the expectation value of the solution vanish-
es and we compute up to first order the two-point correlation function. As last
step, we employ a diagrammatic argument to discuss under which constraint
on the dimension of the underlying spacetime, the perturbative analysis to all
orders has to cope with a finite number of divergences, to be tamed by mean-
s of renormalization. In this respect, we greatly improve a similar procedure
proposed in [11, Sec. 6.3].

1.1. The Stochastic Nonlinear Schrodinger Equation

In this short subsection, we introduce the main object of our investigation,
namely the stochastic nonlinear Schridinger equation on Rt d > 1. In ad-
dition, throughout this paper, we assume that the reader is familiar with the
basic concepts of microlocal analysis, see, e.g., [19, Ch. 8], as well as with the
notion of scaling degree, see in particular [7] and [11, App. BJ.

More precisely, with a slight abuse of notation, by D’(R?) we denote the
collection of all random distributions and, inspired by [21] we are interested in
¥ € D'(R?) such that

Oh = —A + Ay + €, (1.3)

where A € R, A is the Laplace operator on the Euclidean space R?, while ¢
plays the role of the time coordinate along R. The parameter x € N controls
the nonlinear behavior of the equation and it is here left arbitrary since, in
our approach, it is not necessary to fix a specific value, although a reader
should bear in mind that, in almost all concrete models, e.g., Bose-Einstein
condensates or the Ginzburg—Landau theory of type II superconductors, k = 1.
At the same time, we remark that the framework that we develop allows to
consider a more general class of potentials in Eq. (1.3), but we refrain from
moving in this direction so to keep a closer contact with models concretely used
in physical applications. For this reason, unless stated otherwise, henceforth we
set £ = 11in Eq. (1.3). The stochastic character of this equation is codified in &,
which is a complex, additive Gaussian random distribution, fully characterized
by its mean and covariance:

El()] = E[E(f)] =0, (1.4)
E(§(f)&(h) = E(E(£)E(R) =0, EE()8(h) = (F.h)Le, 5
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where f,h € D(RYH1), while (,)> represents the standard inner product in
L?(R9*t1). The symbol E stands for the expectation value.

Remark 1.1. We stress that we have chosen to work with a Gaussian white
noise centered at 0 only for convenience and without loss of generality. If
necessary and mutatis mutandis we can consider a shifted white noise, i.e., £
is such that the covariance is left unchanged from Eq. (1.4) while

EE(N] =»(f) and E[E(f)] =2(f),
where p € (R, while o(f) = [ dzp(z)f(z).

Rd+1

To conclude the section, we observe that the linear part of Eq. (1.3)
is ruled by the Schrédinger operator L = i0; + A, which is a formally self-
adjoint operator. For later convenience, we introduce the fundamental solution
G € D'(RM! x R4*1) whose integral kernel reads

/ z—vyl2
_O=t) -, (1.6)
(4mi(t —t'))=

where z = (t,z), y = (t',y) while © is the Heaviside function.

(;(x’y)::

Remark 1.2. Observe that, in comparison with the cases considered in [11], L
is not a microhypoelliptic operator. We can estimate the singular structure of
G using the following standard microlocal techniques, see [19]. Since G is a
fundamental solution of the Schrédinger operator L = i0; + A, it holds that

WF(5Dmgz) CWF(G) C WF(éDmgz) U (Char(L ® I) N Char(I® L)),
where

Opiaga € D'(RPETY) | DR*Y) 5 f(21,22) = Spiag, (/)

i/ dzy f(z1,21), (1.7)
Rd+1

and where Char denotes the characteristic set of the operator. If we combine
this information with the smoothness of Eq. (1.6) when ¢ # ¢/, we can conclude
that

WF(G) C {(t,z,t,z,w, k, —w, —k) € T*(R24FTD\ {0})}
U{(t,z,t,y,w,0,—w,0) € TRV \ {01} (1.8)

Observe that the first set in Eq. (1.8) is the wavefront set of dpjqg,, While the
second one accounts for the contribution of the characteristic set of L. It is
noteworthy that, since G(z,y) in Eq. (1.6) is manifestly singular as x # y and
t =/, this second contribution to Equation (1.8) cannot be empty.

This entails that, being the wavefront set a conical subset, there exist
only three possible outcomes: 1) w > 0, 2) w < 0 or 3) w € R\ {0}. Alas, to
the best of our knowledge, an exact evaluation of the wave front set of G is not
present in the literature and it is highly elusive to a direct calculation. From
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our viewpoint the reason lies in the interplay between the Heaviside function
and the oscillatory kernel

le—y|?
=
K(z,y)= ——.
(=.9) (Ari(t — )2
As a matter of fact, since K (w, k) = &(w—|k|?) and since (L@I)K = (I9L)K =
0, using [22, Thm. IX.44], it descends that

WF(K) = {(t.z,t,y,w,0, —w,0 € T*(R*T1)\ {0}, |w > 0)}.

Here, we have used the convention that, for all ¢ € L1(R%), ¢(k)= Jpa da e
¢(x). Hence one cannot use Hormander criterion for multiplication of distri-
butions to define G as a product between the Heaviside distribution and K.
This is the main reason which makes the evaluation of the wavefront set of G
rather elusive.

In view of the estimate in Eq. (1.8), we will consider the worst case
scenario, namely the third option above, where w € R\ {0}. For the sake
of the analytical constructions required in this paper, this assumption is not
restrictive because we are interested in working with products of distributions
of the form G - G*, where G* is the fundamental solution of the formal adjoint
of L, namely i0; + A. The definition of such product requires renormalization,
and this distinguished feature is independent from the form of the second
component of the right hand side of Equation (1.8).

Remark 1.3 (Notation). In our analysis, we shall be forced to introduce a cut-
off to avoid infrared divergences; namely, we consider a real valued function
x € D(R41) and we define

Gy =G -(1®x).

We stress that this modification does not change the microlocal structure of
the underlying distribution, i.e., WF(Gy) = WF(G). Therefore, since the cut-
off is ubiquitous in our work and in order to avoid the continuous use of the
subscript x, with a slight abuse of notation we will employ only the symbol
G, leaving x understood.

2. Analytic and Algebraic Preliminaries

In this section, we introduce the key analytic and algebraic tools which are
used in this work, also fixing notation and conventions. As mentioned in the
Introduction, our main goal is to extend and to adapt the algebraic and mi-
crolocal approach to a perturbative analysis of stochastic partial differential
equations (SPDEs), so to be able to discuss specific models encoding complex
random distributions. In particular, our main target is the stochastic nonlinear
Schrodinger equation as in Eq. (1.3) and, for this reason we shall adapt all the
following definitions and structures to this case, commenting when necessary
on the extension to more general scenarios.
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The whole algebraic and microlocal program is based on the concept of
functional-valued distribution which is here spelt out. We recall that with
E(R?) (resp. D(R?)) we indicate the space of smooth (resp. smooth and com-
pactly supported) complex valued functions on R? endowed with their standard
locally convex topology.

Remark 2.1. As mentioned in Introduction, due to the presence of a complex
white noise in Eq. (1.3), we cannot apply slavishly the framework devised in
[11] since it does not allow to account for the defining properties listed in Eq.
(1.4). Heuristically, one way to bypass this hurdle consists of adopting a dif-
ferent viewpoint which is inspired by the analysis of complex valued quantum
fields such as the Dirac spinors, see, e.g., [1]. More precisely, using the notation
and nomenclature of Sect. 1.1, we shall consider 1 and v as two a priori inde-
pendent fields, imposing only at the end the constraint that they are related
by complex conjugation. As it will become clear in the following, this shift of
perspective has the net advantage of allowing a simpler construction of the
algebra deformations, see in particular Theorem 3.4 avoiding any potential or-
dering problem between the field and its complex conjugate. This might arise
if we do not keep them as independent.

Definition 2.2. Let d,m € N. We call functional-valued distribution
u € D'(R™!; Func) a map

w: DR x ERM) x ERT™Y) = C, (f,m, 1) = ul(finn'), (21)
which is linear in the first entry and continuous in the locally convex topology
of D(R4*1) x E(RI*!) x E(RIHL). In addition, we indicate the (k, k')-th order
functional derivative as the distribution u**) € D'(R¥! x ... x R™!: Func)

k+k'+1

such that

WM @@, ® - @1,
ak+k'

= ; 4
0s1...0s,0s) ...0s}, u(fs;s1m SNk

+0, 811+ S + 1)) : (2.2)
s1=--=sp=s1=--=s),=0
We say that a functional-valued distribution is polynomial if 3 (k, k') € Ny x
No with Ny = N U {0} such that u**) = 0 whenever at least one of these
conditions holds true: k > k or k¥’ > k’. The collection of all these functionals
is denoted by D’(R4*+1; Polc).

Observe that the subscript C in D’(R*!; Fune) and in D’(R4*1; Polc)
is here introduced in contrast to the notation of [11] to highlight that, since
we consider an SPDE with an additive complex white noise, we need to work
with a different notion of functional-valued distribution. More precisely, Eq.
(2.1) codifies that, in addition to the test-function f, we need two independent
configurations, 77,77 in order to build a functional-valued distribution. The goal
is to encode in this framework the information that we want to consider a priori
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as independent the random distribution v and 1 in Eq. (1.3). Their mutual
relation via complex conjugation is codified only at the end of our analysis.
An immediate structural consequence of Definition 2.2 can be encoded in the
following corollary, whose proof is immediate and, therefore we omit it.

Corollary 2.3. The collection of polynomial functional-valued distributions can
be endowed with the structure of a commutative C-algebra such that for all
u,v € D'(R™1L; Polc), and for all f € D(RITY) and n,n’ € E(RIHL),

(wo)(f;m,n") = u(fim,n" )o(fin,n'). (2.3)

A close inspection of Eq. (2.2) suggests the possibility of introducing a
related notion of directional derivative of a functional u € D’(R4*!; Func) by
taking an arbitrary but fixed ¢ € &(R?*!) and setting for all (f,n) € D(R4*1),

Scu(fimn') =utO(fo¢nn) and Seu(fin, ') =u®V(f & Gnn).
(2.4)

In order to make Definition 2.2 more concrete, we list a few basic examples
of polynomial functional-valued distributions, which shall play a key roéle in
our investigation, particularly in the construction of the algebraic structures
at the heart of our approach.

Ezample 2.4. For any f € D(RY1) and 5,7 € ER*), we call
i) = [ defo)
Rd+1
e(finl) = [ def@ta),
Rd+1

B(fnn) = [ de (@),

where dz is the standard Lebesgue measure on R?*!. Notice that ® and ®
are two independently defined functionals and a priori they are not related by
complex conjugation as the symbols might suggest. This difference originates
from our desire to follow an approach similar to the one often used in quantum
field theory, see, e.g., [1], when analyzing the quantization of spinors. In this
case it is convenient to consider a field and its complex conjugate as a priori
independent building blocks, since this makes easier the implementation of the
canonical anticommutation relations. Here we wish to follow a similar rationale
and we decided to keep the symbols ® and ® as a memento that, at the end
of the analysis, one has to restore their mutual relation codified by complex
conjugation.

In addition, we can construct composite functionals, namely for any p, g €
N, f € D(R™!) and n,7' € (R, we call

" f,n,1) = (®9®")(f,n,1) = /RM d f(x)n®(x)(n)*(x).  (2.5)

. . —k =k
Observe that, for convenience, we adopt the notation |®|?* = ¢*®" = &~ dF.
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One can readily infer that, for allp,q € N, 1, &, &, &' ®7 € D’ (R Polc).
On the one hand, all functional derivatives of 1 vanish, while, on the other hand

7(071)
OO (f @min,) = & (f @) = /R dz f(@)m (),

whereas ®**) = ( for all &’ # 0 or if £ > 1. A similar conclusion can be
drawn for ® and for & ®4.

In the spirit of a perturbative analysis of Eq. (1.3), the next step consists
of encoding in the polynomial functionals the information that the linear part
of the dynamics is ruled by the Schrodinger operator L = id; + A. To this
end, let u € D'(R¥*L; Func) and let G be the fundamental solution of L whose
integral kernel is as per Eq. (1.6). Then, for all 7,7 € E(R9*+!) and for all
f e DRI,

(G@®u)(fin,n') =u(G® fin,n), (2.6)

where, in view of Remark 1.2 and of [19, Th. 8.2.12] G ® f € C*(R4*1) is
such that, for all h € D(R™), (G ® f)(h) = G(f @ h).

We can now collect all the ingredients introduced, building a distinguished
commutative algebra. We proceed in steps, adapting to the case in hand the
procedure outlined in [11]. As a starting point, we introduce

AS = €[1,,3) (2.7)

that is the polynomial ring on &(R?*!) whose generators are the functionals
1,®, ® defined in Example 2.4. The algebra product is the pointwise one intro-
duced in Corollary 2.3. Subsequently we encode the action of the fundamental
solution of the Schrodinger operator as

G®AS = {uec DR Fune) |u=G@®wv, withv € A5}, (2.8a)
G®AS = {uec DR Fune) |u=G®v, withv e A5},  (2.8b)
where the action of G is defined in Eq. (2.6). Here, G stands for the complex
conjugate of the fundamental solution G as in Eq. (1.6). Its action on a function
is defined in complete analogy with Eq. (2.6). In order to account for the

possibility of applying to our functionals more than once the fundamental

solution G, as well as G, we proceed inductively defining, for every j > 1
AS = EJAT JUG® AT | UG ® AT ). (2.9)

Since A;C_l C .A;C» for all j > 1, the following definition is natural.

Definition 2.5. Let A%, j > 0, be the rings as per Eq. (2.7) and (2.9). Then,
we call AC the unital, commutative C-algebra obtained as the direct limit
AT =lim AS .
— "

Remark 2.6. For later convenience, it is important to realize that A® (resp.
A;C, j > 0) can be regarded as a graded algebra over &(R*1) i.e.,
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C C j
A = @ vam,vlvl/7 AJ = @ M‘Zn,m’,l,l"

m,l,m’,l’ €Ny m,l,m’,l’ €Ny

(2.10)

Here, My, im0 is the E(Rd“)—module generated by those elements in which
the fundamental solutions G and G act [ and !’ times, respectively, while the
overall polynomial degree in ® is m and the one in ® is m’. The components
of the decomposition of AC are defined as Mm oy = Mo 10 N .AC In
the following, a relevant role is played by the polynomlal degree of an element
lying in A®, ignoring the occurrence of G and G. Therefore, we introduce

£ J K J
Yo = D) My 3 = @ My 211
1,I'eNg 1,I'eéNg
Pﬁm p<m
g<m/ g<m/

Since it holds that My C My for all & > 0, the direct limit is well defined
and it holds:

A€ = lim My (2.12)

m, m’—oo

To conclude the section, we establish an estimate on the wavefront set of the
derivatives of the functionals lying in AC, see Definition 2.5. To this end, we
fix the necessary preliminary notation, namely, for any & € N we set

ODiag, € D'(RUTVF) | DRIFIF) 5 f(z,++,2%) = Opiag, (f)
:/ d-rlf(xlv"' 71’1)7 (213)
Rd+1
where z1, -,z € R4,

Definition 2.7. For any but fixed m € N, let us consider any arbitrary partition
of the set {1,...,m} into the disjoint union of p non-empty subsets [1&...W1,,

p being arbitrary. Employing the notations Z,, = (z1,...,Z,) € R(¢+tD™ and
tm = (t1,-..,tm) € R™, as well as their counterpart at the level of covectors,
we set

Crni=1 (bs s Oy k) € T*REFD™\ {0} |31 € {1,...,m — 1},

{1,...,m} =1, W...W I such that Vi # j,
V(a,b) € I; x I, then t, #t, and Vj € {1,...,1},

tn, =tm Vn,m € I; and Zwmzo,Zk‘m:O , (2.14)

mGIJ- melj
where |I;| denotes the cardinality of the set I;. Accordingly, we call
DY (R Polg) = {u € D'(RHD; Polg) | WEF(u*F+)
C Cripry1, VE, K >0} (2.15)
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Remark 2.8. We observe that the elements of the space Df(R(@+1); Polc) are
distributions generated by smooth functions, as one can deduce from Egs.
(2.14) and (2.15) setting k = k' = 0.

Remark 2.9. The space @'C(R(d“); Polc) is stable with respect to the action
of the fundamental solution G and of its complex conjugate, more precisely

Gar, Gote DR Pole), V7 e DL (R Pol) .

The proof of this property follows the same lines of [11, Lemma 2.14], and
thus, we omit it. We underline that the only difference concerns the different
form of WF(G), which is nonetheless accounted for by the definition of the
sets in Eq. (2.14).

Another important result pertains the estimate of the scaling degree of
G ® 7. Before dwelling into its calculation, we recall the definition of weighted
scaling degree at a point: given u € D'(R¥*!) and f € D(R*1), consider the
scaled function fy(t,z) = A\=(@+2) f(\=2¢, A= z) and uy(f) = u(fy).

=5 R0t =0}

In this work, we are interested in the scaling degree with respect to the hy-
persurface Ay, see [7]. Under the aforementioned parabolic scaling, the fun-
damental solution G behaves homogeneously and a direct computation shows
that wsdp, (G) = wsdy, (G) = d. Having in mind the preceding properties and
referring to [11, App. B] and [11, Lemma 2.14 ] for the technical details, it

holds
WSdAi+k1+k2 (G ® T)(k17k2) 7WSdAi+k1+k2 (é ® 7—)(791,162) < 0,

whenever wsd 1451+ (T)(kl’kQ) < oc. Here, wsdi+x,+r, denotes the scaling
t t
degree with respect to the subset

1+ki+ka _ . = — —
At B 2 = {(tl,...,t1+k1+k2,1‘1,...,!E1+k1+k2)|If1 = ---—t1+k1+k2}
C RUE@HDA+k1+k2)

Remark 2.10. We underline that the choice of a parabolic scaling, weighting
the time variable twice the spatial ones, is natural since this is the scaling
transformation under which the linear part of the Schrédinger equation as
well as its fundamental solution are scaling invariant.

The following proposition is the main result of this section.

Proposition 2.11. Let A® be the algebra introduced in Definition 2.5. In view
of Definition 2.7, it holds that

AC € DL (R Polc) .
Proof. In view of the characterization of A® as an inductive limit, see Defi-

nition 2.5, it suffices to prove the statement for each A? as in Eq. (2.7) and
(2.9). To this end, we proceed inductively on the index j.
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Step 1 — j = 0: In view of Eq. (2.7), it suffices to focus the attention on the
collection of generators u, , = 3P4, p,q > 0, see Example 2.4. If p = ¢ = 0,
there is nothing to prove since we are considering the identity functional 1
whose derivatives are all vanishing. Instead, in all other cases, we observe that
a direct calculation shows that the derivatives yield either smooth functionals
or suitable products between smooth functions and Dirac delta distributions.
Per comparison with Definition 2.7, we can conclude

WEF(ul5+)) C Cpypr1.

D.q
Step 2 — j > 1: As first step, we observe that if u € A;C. N Dy (RTHL; Polc),
then G ® u,G ® u € D (R¥*1;Polc). As a matter of fact, Eq. (2.6) entails
that, for every k, k' >0, (G ® u)**) = w**) . (G © 1, ), the dot standing
for the pointwise product of distributions, while 1 stands here for the identity
operator. Since WF (u(**)) C Cj4 s 41 per hypothesis, it suffices to apply [11,
Lemma 2.14], see Remark 2.9, in combination with Remark 1.2 to conclude
that WF((G ® u)®*)) C Cjip41. The same line of reasoning entails that an
identical conclusion can be drawn for G.

We can now focus on the inductive step. Therefore, let us assume that
the statement of the proposition holds true for Ag;. In view of Eq. (2.9), .A;C 1
is generated by .A;C-, G® A}C and G ® A;C. On account of the inductive step, it
suffices to focus on the pointwise product of two functionals, say u and v lying
in one of the generating algebras.

For definiteness, we focus on u € A;C and v € A;C-, the other cases following
suit. Using the Leibniz rule, for every k, k' > 0, it turns out that (uv)(’“’k') is a
linear combination with smooth coeflicient of products of distributions of the
form u®?) @v(@9) with 0 < p < k,0 < g < k' and p+q = k while p'+¢' = k.
The inductive hypothesis entails

WF(u®?)) C Cpypi1, and WE0@I)) C Cpyprys.

A direct inspection of Eq. (2.14) entails that if (¢, 2, w1, K1, Sp4p/ Yptp' Ws, Ky)
€ Cpyp+1 while (¢, x,wa, K2, Tgtq's Zgtq/» Wry Kz) € Cygrqr+1 then

(ta €, W1 + w2, K1 + K2,y Sptp's Yp+p'y Wsy Ky Tqtq' s Rg+q’» Wrs ’%Z) S Ck+k:’+1 )

from which it descends that WF (u(P?) @ v(4:4)) C Cjypry1. O

3. The Algebra A(_CQ

The algebra A® introduced in Definition 2.5 does not codify the information
associated to the stochastic nature of the underlying white noise.

In order to encode such datum in the functional-valued distributions and
in the same spirit of [11], we introduce a new algebra which is obtained as
a deformation of the pointwise product of A®. As it will be manifest in the
following discussion, this construction is a priori purely formal unless a suitable
renormalization procedure is implemented
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Remark 3.1. As a premise, we introduce the following bi-distribution, con-
structed out of the fundamental solution G € D’(R¥*! x R4*1) as per Eq.
(1.6):

Q =G oG e D'(RH! x RHY), (3.1)

where o denotes the composition of bi-distributions, namely, for any fi, fo €
D(Rd+l X Rd-i—l)7

Q(f1, f2) = (GoG)(f1® f2)
=[(G®G) - (lar1 @ Ibiag, ® Lat1)](f1 ® lay1 @ 1gy1 ® f2).

Here, with a slight abuse of notation, 14,1 € D’(R%*+1) stands for the distribu-
tion generated by the constant smooth function 1 on R%*! while - indicates the
pointwise product of distributions, see [19, Thm. 8.2.10]. Further properties of
the composition o are discussed in [11, App. A].

From the perspective of the stochastic process at the heart of Eq. (1.3),
we observe that the bi-distribution () codifies the covariance of the complex
Gaussian random field ¢ = G * £. More explicitly, it holds

E[@(f1)@(f2)] = Q(f1, f2), Vfi, f2 € DR x R, (3.2)

Observe, in addition that @ can be read also as a solution of the stochastic
linear Schrodinger equation, namely Eq. (1.3) setting A = 0.

To conclude our excursus on the bi-distribution @), we highlight two no-
table properties of its singular structure:

1. in view of [19, Thm. 8.2.14],
WE(Q) € WE(G).
2. as a consequence of [11, Lemma B.12],
wsd 2 (Q) < oo,

where wsdpz(Q) denotes the scaling degree of the distribution @ €
D'(RIH x RIH1) with respect to A2:={(t1, 71, t2, 22) € RITIXRIHTL ¢ =

ta).

We are now in a position to introduce the sought deformation which
encodes the stochastic properties due to the complex white noise present in Eq.
(1.3). Inspired by [11], as a tentative starting point we set, for any 71,75 € AC,
f € D(R™L) and n,n' € ERITY),

1 —Qk
[Tl Q T2](f; n, 77/) = k§> ]; k: Ky o) (6Diagz ® Q®k1 ®Q 2)
0 1,
- k1+]€22:k

kl,kz had k2,k1
[71( )®72( )] (f ® Ligor;n,n). (3.3)

Here with ® we denote the tensor product though modified in terms of a
permutation of its arguments, which, at the level of integral kernel, reads
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(ODiags ® Q% ®@®k2) . [Tl(kl’kz)®7—2(k2’kl)]
k1 ks

- k1,k
:5(£17£2)HHQ(Zjvz;)Q(yfayé)Tl( ! 2)(m15217"’7zk13y17"'7yk2)
j=1¢=1
ko, k
7_2( 2, 1)(332,21,...,z,’cl,yll,...,y,;Q). (3.4)

Remark 3.2. We observe that only a finite number of terms contributes to the
sum on the right hand side of Eq. (3.3) on account of the polynomial nature
of the functional-valued distributions 7 and 75. Nonetheless, at this stage, the
right hand side of Eq. (3.3) is only a formal expression, since it can include a
priori ill-defined structures such as the coinciding point limit of Q and Q. In the
following theorem, we shall bypass this hurdle by means of a renormalization
procedure so to give meaning to Eq. (3.3) for any 71,7 € AC.

The main motivation for the introduction of a deformation of the al-
gebraic structure is to build an explicit algorithm for computing expectation
values and correlation functions of polynomial expressions in the random fields
@ =Gx¢and o = G * . For this reason, let us illustrate the stochastic in-
terpretation of the deformed product - and its link to the expectation values
via the following example.

Example 3.3. Formally, at the level of integral kernels and referring to the
defining properties of the complex white noise in Eq. (1.4), it holds that

E[$°(/)] =E [ /( o 85 G z')G(w,y’)é(w’)ﬁ(y/)f(x)]

~——
=0

= [ iy Glaa )Gl B[S )EW)] 1) =
(Rd+1)2
for every f € D(R*+!). Now let us consider the expectation value of |p|> = $:

E[23()] =E

/(Rd+1)z dz'dy’ G(z, g;’)é(% y/)f(l'/)g(y/)f(x)]

- / da'dy G(x, 2\ G,y ) E[¢(2)E(y)] [ (x)
(Rd+1)2 N———

5@ 1)
= /Rd+1 da’ G(z,2")G(z,2") f(z) = (G o G*)(fIDiag,) = Q(fODiag, ),

where we used Eq. (1.5) together with the relation between the fundamental
solution of L and its formal adjoint G*, G*(z,z’) = G(2/, x), c.f. Remark 1.2.
On account of Egs. (3.3) and (3.9), we can compute

(@@ ®)(f3m.7) = D*(fin,7),
((I) Q 6)(fa naﬁ) = ‘I)E(fﬂ%ﬁ) + Q(f(SDiagz)~

Observe that, fixing ' = 7, the two configurations are no longer indepen-
dent, allowing us to make contact with the stochastic nature of the equation.



Vol. 24 (2023) An Algebraic and Microlocal Approach 2459

Evaluating these expressions for n = 0, we obtain
(@@ ®)(f;0,0) = 0=E[R*(f)], (¢ 2)(f;0,0)
= Q(f(SDiaQQ) = E’[@@(f)]
As stated in Remark 3.2, the expressions above are a priori ill-defined, account-
ing for the singular contribution Qdpiag,. This problem is tackled in Theorem
3.4.
This example can be readily extended to arbitrary polynomial expressions

of ¢ and P, highlighting how our guess for the deformed product -¢ codifies
properly the expectation values.

Theorem 3.4. Let AC be the algebra introduced in Definition 2.5 and let Mo, m
be the moduli as per Remark 2.6. There exists a linear map F(.CQ : AC -

D (R Pole) such that:
1. for any T € My,0, Mo.1, it holds
C .
I (r)=r1; (3.5)
2. for any T € AT, it holds
C _ C
I (Ger)=Gal (),

I (Ger) =Gl (r) (3.6)
3. for any T € A® and ¢ € E(RITY), it holds
C _ C C IR C
Iy -0y =0dyol',, Iy, oy =dg0l,,
C _ C C -\ — ,7C
7 (yr) =4I, (1), I, (r) =T, (1), (3.7)
where &y, denotes the directional functional derivative along v as per Eq.

(2.0);

4. denoting by 0(,.q)(7) = WSdDiagp+q+l(T(p’q)) the weighted scaling degree
of P9 with respect to the total diagonal of (R¥1)PHa+1 see [11, Rmk.
B.9], it holds

0(p7q)(1—‘(_CQ (1)) < o0, V7 e AC. (3.8)

Proof. Strategy The construction of a map F(?Q satisfying the conditions in
the statement of the theorem goes by induction with respect to the indices m
and m’ in the decomposition A® = @m’m,eN My, discussed in Remark 2.6.
Since the proof shares many similarities with the counterpart in [11] for the
case of a stochastic, scalar, partial differential equation, we shall focus mainly
on the different aspects. We start from Equation (3.5) and, for 71, ..., 7, € A®,

we set
F(,[:Q (T1...7n) := FCQ (r)Q----0 F(,CQ (Tn) (3.9)

where the product -¢ is given by Eq. (3.3). As we anticipated above, the right
hand side of Eq. (3.9) might be only formal since the product - is not a priori
well defined on the whole D (R**1; Polc).
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The Case d = 1: In this scenario, the divergence of Qdpiag, needs no tam-
ing. Working at the level of integral kernels, see Eq. (1.6), the composition
Q = G o G yields a contribution proportional to [ dt/t ~ log(t), which is
locally integrable. As a consequence, in such scenario the proof does not need
renormalization and it is straightforward starting from the condition in the
statement of the theorem as well as from Eq. (3.9).

The Case d > 2: Step 1. We start by showing that, whenever F(,CQ is well defined

for 7 € A® in such a way in particular that Eqgs. (3.7) and (3.8) hold true,
then the same applies for G ® 7 and G ® 7. We shall only discuss the case of
G ® 1, the other following suit.

First of all we notice that I‘(_CQ (G ®7) is completely defined by Eq. (3.6).

In addition, Equation (3.8) for FCQ (G ® 1) is a direct consequence of Remark

2.9. Finally, Eq. (3.7) descends from an iteration of the following argument,
namely, for any 7,7’,¢ € E(R41) and f € D(RIH),

5o T (G@T)(fmn) = 6c o T (T)(G @ fim,n') =T, (6eT)(G @ fim,n)
=T, (G@dT)(fimn) =T, (6G @ 7)(fin 1)
=T, 0dc(G@T)(frmn).

With these data in our hand, we can start the inductive procedure.

Step 2: (m,m’) = (1,1). As a starting point, we observe that Eq. (3.5) com-
pletely determines the map FfCQ restricted to the moduli My 0y and Mg ). In
addition, all other required properties hold true automatically. Next, we focus
our attention on M 1. In order to consistently construct I“,CQ on M1y, we

rely on an inductive argument with respect to the index j subordinated to the
decomposition—see Remark 2.6:

. i c
May = @Mém) ) Mfu) =M NA;
jEN
Setting j = 0, we observe that
M((]l,l) = Spang(Rd-H;C){l, (I),E, @6} .
On account of the previous discussion, we are left with the task of defining the
action of FCQ on ®®. This suffices since FfCQ can be consequently extended to
the whole M, |, by linearity. Recalling that ®® is defined as in Eq. (2.5), we
set, formally, for any n,7’ € E&(RI*!) and f € D(RIH),
L5 (90)(fim, 1) == [T, (@) - T (@) (f3m,7)
= (Ija(fﬂ%n/) + (G ! é)(f & 1d+1) )

where in the last equality we exploited Eq. (3.3) and where G - G denotes the
pointwise product between G and G.

We observe that the above formula is purely formal due to the presence

of the product G- G which is a priori ill-defined. As a matter of fact, due to the
microlocal behavior of G codified in Remark 1.2 and using Hérmander criterion
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for the multiplication of distributions [19, Th. 8.2.10], we can only conclude
that G-G € D'(R xR\ AF). Since wsd 2 (G-G) = 2d, [11, Thm. B.§] and

—

[11, Rmk. B.9] entail the existence of an extension G - G € D' (R x R4+1) of
G - G which preserves both the scaling degree and the wave-front set. Having

chosen once and for all any such extension, we set for all 7,7’ € &(R¥*!) and
f e DR,

TS (W) (f;m,1) 1= VE(fin,0) + (G- C)(f 1) (3.10)

To conclude, we observe that Eq. (3.10) implies Eqgs. (3.7) and (3.8) by direct
inspection, as well as that FCQ (VW) € D (R Polc) on account of Remark
1.2.

Having consistently defined FC on M?l 1), We assume that the map F(,CQ
has been coherently asmgned on M(1 1 and we prove the inductive step by
either r = G® 7’

constructing it on M’1. . We remark that, given 7 € M7

(1, 1) (1, 1)’
with 7/ € M(l 1 (the case with the complex conjugate G is analogous), or
T =TTy with 71 € M{l,o) UG ® M{l,O) UG ® M{l,o) while 7 € M{O,l) UG ®
Mo 1y uG@M(Ol)

In the first case, F‘,CQ (1) is defined as per Step 1. of this proof, using in
addition the inductive hypothesis. In the second one, we start from the formal
expression which descends from Eq. (3.9). It yields for all n,1’ € &(R9*!) and
f e DR,

Lo () (i) = 05, (1) - T, () (f5m,m')
=[5, (r)T%, (m))(f3m0) + U (f ® 13),

where
U(f ®13) = [(0piag, ® Q) - (T, (1) VBT () ON(f @ 1), (3.11)

and where FCQ (11 )F(,CQ (72) denotes the pointwise product between the functional-
valued distributions, which is well defined on account of Remark 2.8. Yet, Eq.
(3.11) involves the product of singular distributions and it calls for a renormal-
ization procedure. First of all, we observe that, due to the microlocal behavior

of Q—cf. Remark 3.1—and due to the inductive hypothesis entailing
WF(TS, (1)), WR(I, (r2) ) € Ca
it follows that
U € DRI AL,
where AP8:={(£,7) € (R¥1)*|3a,b € {1,2,3,4},a # b, t, = t,}.
This estimate can be improved observing that, whenever (75\, x) € A?’Big \

A%, one of the factors among (6piag, ®Q), F% (1)1 and F(F:Q (72) 1 is smooth
and the product of the remaining two is well-defined.
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As a consequence, U € D’((R41)*\ A}). Furthermore, [11, Rmk. B.7]
here applied to the weighted scaling degree guarantees that

wsdps (U) < wsdps (6piag, © Q) + wsdps (IS, (r1) WV &I, (7))
< wsdy2(0Diag,) + wsdy2(Q) + wsd 2 (F‘?Q ()10
+ wsd 2 (FECQ(T2)(0,1>) < .

Once more, [11, Thm. B.8] and [11, Rem. B.9] entail the existence of an
extension U € D'((R¥1)*) of U € D'((R¥*+1)*\ A}) which preserves both the
scaling degree and the wave-front set. Eventually, we set

L5 () (fsm,n') = 05, ()T (m)I(fin,0') + U(f @ 13). (3.12)
By direct inspection, one can realize that Eq. (3.12) satisfies the conditions
codified in Egs. (3.7) and (3.8). This concludes the proof for the case (m,m') =
(1,1).
Step 3: Generic (m, m’). We can now prove the inductive step with respect to
the indices (m,m’). In particular, we assume that I‘(_CQ has been consistently
assigned on M, ,,/y and we prove that the same holds true for M, 41 m)-
We stress that one should prove the same statement also for M, p/ 1), but

since the analysis is mutatis mutandis the same as for My, 41,m/), We omit it.
Once more we employ an inductive procedure exploiting that M, 41,m/) =

EBJEN M{mﬂ ) with MZM_H m/)::M(mH,m’) N .A;C. First of all, we focus on
the case 7 = 0, observing that

M?m—&-l,m’) = spang(RdH;C){l, @,5, ey (Perl@m } .
On account of the inductive hypothesis, the map F‘,CQ has been already assigned

on all the generators of JV[? but ®™+1%™ . Hence, to determine FCQ on

m+1,m’)
the whole M?mﬂ ) it suffices to establish its action on @™ 1@ extending

it by linearity. To this end, we exploit again Eq. (3.9) which, on account of the
explicit form of Equation (3.3), yields

—m/

05, (@™ 1)) (f;n,7') =

m*im’ ki <m N 1) <TZ/) [Qar, - (T, (@)™ )T (B)™ (S5 )

k
k=0

where m + 1 Am’ = min{m + 1,m'} and where the symbol Qo is a shortcut
notation for

Q2i(f) = (GG)®F - (Optag, ® 1k)(f @ log—1). Vf € DRHY).

We observe that although the distribution Q2 is a priori ill-defined, as dis-
cussed in Step 2 of this proof, GG € D'((R¥*1)2\ A?) admits an extension

GG. In turn, this yields a renormalized version of Qay, i.e.,

Qo (f) 1= (GO)®* - (Oping, ® 15)(f © Lan1) -
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Bearing in mind these premises, we set

S (@™ "™ )] (f3m,7)

m+1Am’ /
m+1\ /m'\ 4
— | (1C
k=0
(@)™ (@)™ M (fsm,0)
which is well defined since it involves only products of distributions generated
by smooth functions. All required properties of FfCQ are satisfied by direct
inspection.
Finally, we discuss the last inductive step, namely we assume that F(_CQ has
J
(m+1,m")
this end, let us consider 7 € M

. : o j+1
and we construct it consistently on J\/[(m L) To
J+1

(mt1,m)" Similarly to the inductive procedure

in Step 2., on account of the definition of M{:@L,m'

been assigned on M

) and of the linearity of

F(,CQ, it suffices to consider elements 7 either of the form 7 = G ® 7/ with

e Mnger/) or of the form
T=m.om,  mEM L UGEM] L UG®M] .,
1e€{1,...,¢}, {eN,

where for any ¢ € {1,...,¢} it holds m;,m} € N\ {0} and Zle m; =m+1
and Zle m; =m'.

We observe that in the first case the sought result descends as a direct
consequence of Step 1. and of the inductive hypothesis. Hence, we focus on-
ly on the second one. In view of the inductive hypothesis, F‘,CQ has already
been assigned on 7; for all ¢ € {1,...,¢}. As before, Eq. (3.9) yields a formal
expression, namely

L5 (n)(fimen)
= Z Z F(N1,...,Ng; My, ..., M)

N,M>0 Ni+..+N=N+M
Mi+...+My=N+M

| Gpian @ Q2N @QY) - (UMM UMM
(f ® Lo—rpontons; '), (3.13)

where we have introduced the notation I‘(,CQ (1:) = U; and where the symbols
F(N1,...,Ng; My, ..., M;) are C-numbers stemming from the underlying com-
binatorics. Their explicit form plays no réle, and hence, we omit them. First
of all, since we consider only polynomial functionals, only a finite number of
terms in the above sum is non-vanishing. Nonetheless, the expression in Eq.
(3.13) is still purely formal and renormalization needs to be accounted for. To
be more precise, let us introduce

Unat = |(0piag, ® Q®Y ®@®M) . (Ul(Nl’Ml)éQ...®UE(NZ’M2)>] .
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On the one hand, by [19, Thm. 8.2.9],
WF(3piag, @ Q%N ® QM) C {(@0, Zanvansi ey Gon,onr) € TH(RITHHH2NF2M (o} |
(e, ko) € WF (0piag, ) » (ZaNn+205@2N,20 ) € WF(Q®N ® @®M)} ,
while, on the other hand, by the inductive hypothesis, WF(UZ-(N“M”) C CN,+M;+1
for any i € {1,...,¢}. These two data together with [19, Thm. 8.2.10] imply
Un. € D/(MAH2N+2M Af+2N+2M’Big), where

(+2N+2M Big (/7 .
Ay = {(tesen+20, Togyont2nr)

c R(d+1)(€+2N+2M) |E|’L,]
e{l,....0+2N +2M} t; =t;}.
In addition, again by [19, Thm. 8.2.10], it holds

WE(Un,m) = {(§£722N+2M,79\Z + E’eanNl,Ml + (}\/Nl,Mlv oy Qg M, (}\,N(,Mg)
e T (RT)TENEENN {0} | (@1, ke) € WF (3Ding, ),
(Zontam, @an+2m) € WE(QEY ®@®M),
(w3 2Nt Kis v, ) € Crinan Vi€ {1, 01}

This estimate can be improved through the following argument, which is a
generalization of the one used in Step 2. Let {A, B} be a partition of the index
set {1,. £+2N+2M}, in two disjoint sets such that if {tl, Z1,.. tp+2N+2M,
$€+2N+2M} = {tA,l‘A,tB,IB} then t, # t;, for any t, € tA and ty € tB In
such scenario, the integral kernel of Uy s can be decomposed as

Unm(ti, 21, ..., teqoN+2m, TogyanN+20)

= K{ p(ta,Ba)Sn v (ta, B, 5, 25) KR 3 (tB,7) |

where the kernel Sy, M(fA, T A,tAB, Zp) is smooth on such a partition and where
K Jf\lf, M(?A, ZTa)and K ﬁ M(tAB, Zp) are kernels of distributions appearing in the
definition of the map F(,C on 3\/[ (k) with Kk < m+1, ¥ < m and p <
j + 1. This, together With the inductive hypothesis, implies that the product
(K ]‘é,’ M@K ar)-Sn s is well defined. Since this argument is independent from
the partition {A, B}, it follows that Uy, ay € D/ (MF2NFT2M\ \LF2N+2MY) "y
conclude, observing that

WSdAf+2N+21vI (UN,M) < WSdAf+2N+2M (6Diag[ ® Q®N ® @@M)
¢
+ ZWSdA1+N7:+Mi (Ui(Nq‘,yMi)) < o0,
i=1
once more, [11, Thm. B.8] and [11, Rem. B.9] grant the existence of an ex-
tension UN,M c 'D/((RdJrl)éJrZNJrQM) of U € @/((Rd+1)z+2N+2M \ Af+2N+2M)
which preserves the scaling degree and the wave-front set. This allows us to
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set

FCQ(T)(fvnvn/): Z Z ?(Nla"'va;Mla"wM@)'(/jN,M~

N,M>0 Ni+...4+N,=N+M
Mi+..+M=N+M

(3.14)

Following the same strategy as in the proof of [11, Thm. 3.1], mutatis mu-
tandis, one can show that Eq. (3.14) satisfies the conditions required in the
statement of the theorem. g

A map F(.CQ satisfying the properties listed in Theorem 3.4 is the main
ingredient for introducing a deformation of the pointwise product allowing
the class of functional-valued distributions to encode the stochastic behavior
induced by the white noise. This is codified in the algebra introduced in the
following theorem, whose proof we omit since, being completely algebraic, it
is analogous to the one of [11, Cor. 3.3].

Remark 3.5. We observe that the deformation map FCQ introduced above is

similar to the inverse of the one used to define Wick ordering, see, e.g., [2,
Sec.2].

Theorem 3.6. Let 1"% : A® — DL (R Pole) be the linear map introduced
via Theorem 3.4. Moreover, let us set A(_CQ = I’(,CQ (A). In addition, let

-1 -1
UL re, Uz 1= F<,CQ [F(,CQ (ul)F(,CQ (uQ)],Vul,ug € A(,CQ. (3.15)
Then, (.A(,CQ, -Fa_:Q) s a unital, commutative and associative C-algebra.

Uniqueness The main result of the previous section consists of the existence of
a map I‘fCQ satisfying the condition as per Theorem 3.4 and which, through a
renormalization procedure, codifies at an algebraic level the stochastic proper-
ties of ¥ induced by the complex white noise £. In the following we shall argue
that the map P(,CQ is not unique and, to this end, it is convenient to focus on

Eq. (3.10) and in particular on G - G € D’(R4*+! x R4*+1). As discussed above,
this is an extension of G - G € D'(R4T! x R\ A?). Due to [11, Thm. B.g]
and [11, Rem. B.9], such an extension might not be unique depending on the
dimension d € N of the underlying space.

In spite of this, we can draw some conclusions on the relation between
different prescriptions for the deformation map F(_CQ and in turn for the asso-
ciated algebras A(,CQ. Results in this direction are analogous to those stated in
[11, Thm. 5.2]. Hence mutatis mutandis we adapt them to the complex sce-
nario. Once more we do not give detailed proofs, since these can be readily
obtained from the counterparts in [11]. The following two results characterize
completely the arbitrariness in choosing the linear map F(,CQ, as well as the
ensuing link between the deformed algebras.

Theorem 3.7. Let I‘(,CQ7 I‘(,CQ/ : A® — D (R4L: Pole) be two linear maps satis-
fying the requirements listed in Theorem 3.4. There exists a family {Cy e }o.0en,
of linear maps Cy o : A€ — My satisfying the following properties
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e For all m,m’ € N such that either m < j+1 orm’ < j' +1, it holds
Cjg' [Man,ms] = 0,
e For all ¢,¢' € Ny and for all T € A®, it holds
Cov[G®T)=G®Coplr], Coo|G®T)=G® Coplr],
o For all £,¢' € N and for all ¢ € E(RL;C), it holds
§c0Cry = Corp 00, 5z 0 Coer = Coor—1 0 0.
o For all T € My, , it holds

F(.CQ/(T) = F(.CQ (T4 Cr—1,m—1(7)).

Corollary 3.8. Under the hypothesis of Theorem 3.7, the algebras .A(,CQ =
FCQ (AC) and AC{Q = FSCQI(.AC), defined as per Theorem 3.6, are isomorphic.

4. The Algebra A(EQ

The construction of Sect. 3 allows to compute the expectation values of the sto-
chastic distributions appearing in the perturbative expansion of the stochastic
nonlinear Schrédinger equation, as we shall discuss in Sect. 5.

Alas, this falls short from characterizing, again at a perturbative level, the
stochastic behavior of the perturbative solution on Eq. (1.3), since it does not
allow the computation of multi-local correlation functions, which are instead
of great relevance for applications.

Similarly to the case of expectation values, also correlation functions can
be obtained through a deformation procedure of a suitable non-local algebra
constructed out of AECQ. Before moving to the main result of this section, we
introduce the necessary notation.

As a starting point, we need a multi-local counterpart for the space of
polynomial functional-valued distributions, namely

TSR Pol) := C & P D (R Polg). (4.1)
>1
We are also interested in
T(AS) = R C) @ DAY (4.2)
>0
As anticipated, we encode the information on correlation functions through

a deformed algebra structure induced over T¢ (A(,CQ). The main ingredient is the
bi-distribution @ € D’'(R¥*! x R¥*1) we introduced in Sect. 3, which is the 2-
point correlation function of the stochastic convolution G ® £. Starting from
Q we construct the following product eq: for any 71 € Di;((R1)*1; Polc) and
9 € D ((RTH)2; Pole), for any f1 € D((RIF1)%), fo € D((RH1)*2) and for
all p,n' € E(RITT)
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(11 8¢ 72)(f1 @ f2;m,71)
1 —®k -
= > Tallg! [(ltzl+ez QM Q) (u%khk?)@ug’“*kl))}
k>0 e

k1 —‘rEg:k
(f1 @ foa @ lag;m, 7). (4.3)
Here, ® codifies a particular permutation of the arguments of the tensor prod-
uct as in Eq. (3.4).
Theorem 4.1. Let .A(,CQ = I’(_CQ (AC) be the deformed algebra defined in Theorem

3.6 and let us consider the space TSR Pole) introduced in Eq. (4.1), as
well as the universal tensor module ‘J'C(.A(_CQ) defined via Eq. (4.2). Then, there

exists a linear map I‘(,CQ : TC(ACQ) — TL (R Pole) satisfying the following
properties:
1. For all 71...,7¢ € .A(_CQ with 7 € I‘fCQ Myyp) or 7 € I‘fCQ (Mo,1), see
Remark 2.6, it holds
F?Q(T1®...®Tg) =T .QF(.CQ(T2®"'®T7’L)7 (44)

where g is the product defined via Eq. 4.3.
2. For any 11,...,7¢ € A(_CQ, n,n € EM;C) and fi,..., f, € DR C)
such that there exists I C {1,...,n} for which

U supp(£:) 0 supp(£;) = 0,

iel Jj¢1
it holds
F(SQ(TI ®X...Q Tn)(fl ®...0 fn;77,77/)
= |T¢, <®ﬂ> T, ®TJ (fi®...® fainn).
iel J¢I

3. Denoting by 505? the functional derivatives in the direction of (,( €
ERFL,C), I‘(.CQ satisfies the following identities:

C _ C
Lo (r)=71, VT€A,

I5, 06 =6c0l,, T¢, 00z=0z0I5,, V(e€&R™HC),  (4.6)

°Q

F(EQ(71®...®G®Ti®...®Tn)

i— n—i (47)
= (05, @GR N @IC (M ®...OT Q... OT,).
o _
F.Q(T1®...®G®Ti®...®7ﬁn) (4.8)

= (03 @G RPN @I (M ®...OT @ ... O T,).
forallm,...,m E.A(_CQ, n € Np.

Similarly to Sect. 3, through a map I“f@ we can induce an algebra structure.
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Theorem 4.2. Let F(,CQ : ‘J'C(ACQ) — ‘JJCC(Rd“; Polc) be a linear map satisfying
the constraints of Theorem 4.1 and let us define

Ae, =TG5 (A7) CTERM; Pole). (4.9)
Furthermore, let us consider the bilinear map org, A(,CQ X .A(,CQ — .A(.CQ

-1

—1
T1 .FEQ To 1= F(E:Q (F(SQ (Ul) (39 FE:Q (ul)) V711,79 € .A(.:Q (410)

Then, (.A(,CQ, ong) identifies a unital, commutative and associative algebra.

Remark 4.3. For the sake of brevity, we omit the proofs of Theorems 4.1 and
4.2 since, barring minor modifications, they follow the same lines of those
outlined in [11, Sec. 4].

Ezxample 4.4. To better grasp the role played by this deformation of the alge-
braic structure, in total analogy with Example 3.3 we compare the two point
correlation function of the random field ¢, defined via Equation (3.2), with
the functional counterpart

I3, (@) (f1 @ fa;1,1) = (P og ®)(f1 ® fain, ) = ® © B(f1 ® fo;7,7)
+ [(12 ® Q) : (6Diag2®6Diag2)] (fl ® f2 ® 127777ﬁ)
=P QR P(f1 @ fain, M) + Qf1 ® f2).

which, evaluated at the configurations n = 0, yields (® eg ®)(f1 ® f2;0,0) =
QU1 ® f2) = wa(f1 ® f2).

Note that we could have also computed the correlation function of the
random field ¢ with itself, obtaining zero. More generally, the two-point corre-
lation function of a polynomial expression of ¢ and ® with itself turns out to
be trivial, while the one of the expression and its complex conjugate contains
relevant stochastic information, as shown in Sect. 5.

Similarly to the case of the deformation map F(_CQ and the algebra ACQ,
also for I'S , and the algebra AS , one can discuss the issue of uniqueness due
to the renormalization procedure exploited in the construction of I'C . The
following theorem deals with this hurdle. Once more we do not give a detailed
proof, since it can be readily obtained from the counterpart in [11].

Theorem 4.5. Let F?Q F(EQ/ : A‘,CQ — TSR Pole) be two linear maps sat-
isfying the requirements listed in Theorem 4.1. Then, there exists a fami-
ly {Cm’ﬂ'}m,m’ entio of linear maps Cpy s : ‘J”C(A(,CQ) — ‘J'C(.ACQ), the space

‘J’C(.A(_CQ) being defined via Eq. (4.2), satisfying the following properties:
1. For all j € Ny, it holds
Con,m [(AS)®7] € Moy g @ -+ @ Mo s
while, if either m; <1l; —1 orm} <l —1 for somei € {1,...,j}, then
CovMpym, @...®@ Mmj,m/j] =0.
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2. For all j € NU{0} and uy...,u; € .A(,CQ, the following identities hold
true:

O [h @ ... 0 G®up @ ... @ uy
(5%2((’; D G®5§§ig Y ® Crp o 11 ® ... @ ],
O [n @ ... 0 G@up @ ... @ uy

k k)
(5%z(ag 1) ®G®6%z(ig )®Cm,m’[ul ®®uj]7

6y Com. ot (U1 ® ... @ uj] = Z(Jm(a)’m, [ ® ... ® Syt @ ... ®ujl,

J
5ECm’m/[u1 ®®Uﬂ = ZCm,m/(a)[ul ®®5wua ®®u]],

where m(a); = m; if i # a and m(a), = my — 1, while dy, by are the
directional derivatives with respect to 1,7 € E(RITL;C), see Definition
2.2. Here G € D' (R4 xR is a fundamental solution of the parabolic

operator L.
3. Let us consider two linear maps I'C | TC "L AC S D (R4 Polc) com-
patible with the constraints of Theorem 3.4. For all wpm, my, - - - s Uy, €

AT with Uy m!, € M, my for all i € {1,...,5} and for fi,...,f; €
D(RHL) it holds

T8, (0, (ty oy, @ - @ iy ) (1 ® - ® )
=TS, (0%, (Umymg @ - ® Uy )) (1 @ ... ® )

+ > Te, [FC ®|9|Cm o, (@Hum“,ﬁ)] (@Hﬁ)
GeP(1,....5) I€G i€l I€G i€l

Here, P(1,...,7) denotes the set of all possible partitions of {1,...,j} into

non-empty disjoint subsets while mg = (my)reg, where mp:=73 ;. m;.

5. Perturbative Analysis of the Nonlinear Schrodinger
Dynamics

In the following, we apply the framework devised in Sects. 3 and 4 to the study
of the stochastic nonlinear Schrédinger equation, that is Eq. (1.3), where we
set for simplicity x = 1.

The first step consists of translating the equation of interest to a function-
al formalism, replacing the unknown random distribution ¢ with a polynomial
functional-valued distribution ¥ € D’(R¥*!; Polc) as per Definition 2.2. Re-
calling that we denote by G' € D'(R¥*! x R¥*!) the fundamental solution of
the Schrodinger operator, see Eq. (1.6), the integral form of Eq. (1.3) reads

U =30+ \G® U2 AER,, (5.1)
where ® € D'(R¥*1; Polc) is the functional defined in Example 2.4.
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Equation (5.1) cannot be solved exactly and therefore we rely on a per-
turbative analysis. Hence, we expand the solution as a formal power series in
the coupling constant A\ € Ry with coefficients lying in A® C Di, (R¥*1; Polc),
see Definition 2.5:

VA =) NFy, Fy, € AC. (5.2)
k>0
The coefficients of Eq. (5.2) are determined through an iteration procedure
yielding, at first orders

Fy=9,
P =G® 39, (5.3)
Fy =G ® (FLF; + 2Ry Fo ),

while the k-th order contribution reads

Fp = > G®(FiFr,Fy,), k> 3. (5.4)
k1,ka,k3€Ng
k1+ka+kz=k—1
We also underline that the k-th coefficient is constructed out of lower order
coefficients.

Remark 5.1. Working on R?*! we are forced to introduce a cut-off function
X € D(R4H1) in order to implement the necessary support conditions yielding a
well-defined convolution G®u, see [19, Chap. 4]. As per Remark 1.3, henceforth
the cut-off is left implied.

The perturbative expansion of Eq. (5.2) is particularly useful for com-
puting statistical quantities at every order in perturbation theory by means of
the deformation maps, as outlined in the preceding sections. In what follows,
we explicitly calculate the expectation value of the solution at first order in A,
as well as its two point correlation function.

Ezxpectation value The strategy is thus the following: we first construct the
formal perturbative solution W[A] in the algebra A[A] and then, on account
of Theorem 3.6 and of the stochastic interpretation of the map I‘(_CQ introduced
in Theorem 3.4, we consider F(,CQ(\I/[[)\]]). Bearing in mind this comment we
consider

U, [A] =T (B[AD) = Y NTE (F) € AS [A]. (5.5)
k

where we exploited Eq. (5.2) as well as the linearity of I‘(,CQ.

As outlined in Example 3.3, the action of I‘(,CQ on elements lying in A®
coincides with the expectation value of the equivalent expression in terms of
the random field ¢. In view of Eq. (5.5) up to the first order in perturbation
theory, it holds

VA = @ + A\G ® 202 + O(\?).
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Hence, taking into account the defining properties of FCQ encoded in Egs. (3.5)
and (3.6), the n-shifted expectation value of the solution reads

E[n[N()] = TS (PN (f50,7) = T, (@)(f37,7)
+ AT (G ® BO%)(f30,7) + O(N?)
= O(f;n,7) + AG @ T (B2%)(f;7,7) + O(N?),

for all f € D(R1),n € E(RUT). Notice that, at this stage, we have restored
the information that ® and ® are related by complex conjugation by choosing

n and 7 as the underlining configurations. The explicit expression of -¢ in Eq.
(3.3) entails

I (D0%)(f50,7) = (@ @ T, (9))(f;1,7) = ®*(f;7,7)
+ 2(6piags @ Q)(ODiags ® POpiag,)(f @ Spiags; N7
= 0P*(f;n,7) +2C2(f3n,7),
where C' € &(RI*1!) is a smooth function whose integral kernel reads C(x) =

X(7)(G - G)(5,®Y). Here, G - G is any but fixed extension of G-G € D'(R4*1! x
R4\ A?) to the whole R4+ x R4+ see the proof of Theorem 3.4. We
adopted the notation v, to underline that its expectation value is in terms
of the shifted random distribution ¢, = G ® £ + 1, which is still Gaussian,
but with expectation value E[p,] = 7. To wit, the centered Gaussian noise
properties can be recollected setting n = 0. Thus, the expectation value of the
solution up to order O(\?) reads

Elyo[N]] = O(X%). (5.6)

This result is a direct consequence of the cubic nonlinear term and it can be
extended to any order in perturbation theory.

Theorem 5.2. Let W[\] € A be the perturbative solution of Eq. (5.1). Then,
Elo[A](f)] = T, (¥[A])(f30,0) = 0, Vf € DRM).

Proof. By direct inspection of Equations (3.3) and (3.9) one can infer that the
action of F(?Q on u € A® yields a sum of terms whose polynomial degree in ®

and @ is decreased by an even number due to contractions between pairs of
fields ® and ®. Hence it is sufficient to show that all perturbative coefficients
F, of Eq. (5.2) lie in My, s with m+m’ =20+ 1 for [ € N\ {0}. If this holds
true, all terms resulting from the action of F(,CQ (u) would contain at least one
field ® or ® and their evaluation at 1 = 0 would vanish.

Let us define the vector space © C AC of polynomial functional-valued
distributions of odd polynomial degree, namely u(*1:*2)(.,0) = 0 for all u € O
with k1, ko € Ny such that &y + ko = 2[, | € N, see Definition 2.2. Observe that
O is closed under the action of F‘,CQ. In addition it holds that ujusuz € O for
any ui,ug,uz € O and if u € O, then w € O.

Focusing on the problem under scrutiny, the thesis translates into requir-
ing that U[A] € O, which via Eq. (5.2) is equivalent to Fy, € O for all k € N.
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Proceeding inductively, it holds true that, for £k = 0, Fy = ® € O. Assuming
that F; € O for any j < k € N, our goal is to prove that the same holds true
for Fj41. Invoking Equation (5.4), it holds

Frpi= Y, G®(FyFi,Fy,)
k1,kaks€eN
ki+ko+ks=k
Since k; < k for all ¢ € {1,2,3}, the inductive hypothesis entails that F}, € O.
From the aforementioned properties of O, we conclude that Fy,q1 € O. d

Remark 5.3. Theorem 5.2 holds true for any nonlinear term of the form |1[?%¢) =
@Hw““, k € N in Equation (1.3) since the proof relies on the property that
the perturbative coefficients contain an odd number of fields.

Two-point correlation function Another crucial information encoded in the
solution of an SPDE resides in the correlation functions which describe the
non-local behavior of the system. Being interested in the calculation of the two-
point correlation function, we focus on the deformed algebra .A(,CQ = F(EQ (A(_CQ),
see Theorems 4.1 and 4.2. In view of Example 4.4, the two-point correlation
function of the perturbative solution ¢, [A], n € E(RTY), localized via f1, f2 €
D(RI1L), reads

wa (g [A]; f1 @ f2) = (V.4 [A] org, V., [AD) (f1 ® fa5m,7)
= T3, [T5 (YD) @ I (PAD)] (f1 © fa; ;1)
=3 N> Ty (T4 (Fr,) @1 (Fr,)) (1 ® f2i0,7),

k=0 k1,ko
ki+ko=Ek

(5.7)

where we used once more the linearity of I‘(,CQ and F(.CQ. With reference to the

perturbative coefficients as per Eq. (5.3), Equation (5.7) up to order O(\?)
reads

wa(n[N[; f1 @ fo) = T, (T, (@) @ T, (9))(f1 @ fo;m,7)
+ALG, (I, (G ® 3%) @ T, B)(f1 @ fo;7,7)
+ AT, (IS, () @ TS, (G @ ©8°)) (1 © fo:1.7)-

Taking into account that Equation (3.5) entails that FCQ (®) =9, F(,CQ (@) =,
Equation (4.3) yields that each separate term in the last expression reads

Te, (@@ ®)(f1 @ f2;1,7) = (D og ) (f1 © fa;7,7))
= (@@ P)(f1® f2;n,7) + Q(f1 ® fa),
e, (I, (G ® 30%) @ ®)(f1 @ fo;7,7)
= (Ga 0P’ +2G @ C ) e ®)(f1 ® f2;1,7)
= (G® (P> +209) @ D)(f1 ® f2;1,7) + Q- (G ® (20D) ® 1)
(f1 ® f2in,7) +2Q - (G®C1@1)(f1 @ fas1,7),
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IS, (@@T% (G ®08))(fi ® f20,7)
= (Peg (G® 0" +2G @ C®))(f1 @ fa;m,7)
= (@0 G ® (0D +209))(fi ® f2:0.7)
+Q-10G® (209))(f1 ® f2;1,7)
+2Q - (G®C1®1)(f1 ® fa;m,7),

where 1 € D’(R41; Polc) is the identity functional defined in Example (2.4).
Gathering all contributions together and setting n = 0, at first order in A the
two-point correlation function of the perturbative solution reads

wa (oAl 11 ® f2) = QA ® f2) +20Q(G @ CL® 1)(f1 © fa)
+20Q - (G®C1R1)(fi ® f) + O(N°).  (5.8)

Remark 5.4. In this section, we limited ourselves to constructing the two-point
correlation function of the solution. However, it is important to highlight that,
using the algebraic approach, we could have studied the m-point correlation
function at any order in perturbation theory, for any m € N. Yet, being the
underlying random distribution Gaussian, all odd correlation functions vanish,
while the even ones can be computed as

wn (WAL 1 ® .. ® fm)
= (\IIQ[[)\]] .FQQ aQ[[)‘]] .FfQ s 'F‘EQ v, [A] .I‘QQ @Q [[/\H)(fl ®...® fm;0,0),

m pairs

for all f1,...,fm € D(Rdil). The curly bracket encompasses m pairs of terms
of the form W.,[A] °rg, U, [A], with m = 2m/ for any m’ € N.

5.1. Renormalized equation

As previously underlined, in order for the functional Equation (5.1) to account
for the stochastic character codified by the complex white noise in Equation
(1.3), we must deform the underlying algebra. In other words, we act on Eq.
(5.1) with the deformation map F(,CQ, see Theorem 3.4, obtaining

U, [N =TS (U[A) =T (@ + A\G @ TI?)
=0+ \G® (@Q ‘Q \I/‘Q ‘Q \I/‘Q),

where U., = F(,CQ(\I/) and V., = F(_CQ (U), while -¢ is defined in Eq. (3.3).
Yet, the presence of this deformed product makes quite cumbersome working
with Eq. (5.9). Hence, it is desirable to address whether one can rewrite such
equation in an equivalent form in which only the pointwise product enters
the game, namely we seek for the so called renormalized equation [11]. The
price to pay is the occurrence of new contributions to the equation known in
the physics literature as counter-terms. These are a by product both of the
deformation procedure (and hence of the stochastic properties of the solution)
and of the renormalization one.

(5.9)
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We now present the fundamental result of this section, which is an ex-
tension of [11, Prop. 6.6].

Theorem 5.5. Let us denote with W[\] € A® a perturbative solution of Eq.
(5.1) and with ¥., = 1"ch (0) its counterpart lying in A(_CQ. Then, there exists
a sequence of linear operator-valued functionals {My}r>1 such that

1. for all k > 1 and for all n,n’ € E(RIMY), it holds:

M (n,7) : ERITY) x ERIT) — gRITY) x (R, (5.10)

2. Every element of the sequence has a polynomial dependence on 1), 7' and,
for alli,j, k € N such that i+ j = 2k + 1, Mk(f’j)(()) =0.
In addition, calling M:=)", -, AF My, V., is a solution of

V,=0+AGa VW, 0’ +Go (MU, (5.11)
Proof. Referring to the formal power series expansion
M:=Y " MM, (5.12)
k>1

we proceed inductively with respect to the perturbative order k, providing at
every inductive step a suitable candidate M, satisfying the desired properties.
On account of Equation (3.5), at order k = 0 the solution reads ¥., = ®+0(})
and no correction is required. We can use the expression of Fj in Eq. (5.3) to
compute M at first order, namely

LHS =TS, (2 + AG ® 28?) + O()\?)
=3+ \G®DD? 420G ® CP + O(\?),
RHS = ® + \G ® ®9? + \G @ M;® + O(\?),

where C € &(R41) has been defined in the proof of Theorem 3.4 and where
with LHS and RHS we denote the left hand side and the right hand side,
respectively, of Eq. (5.11). Comparing these expressions, we conclude M; =
2CT where I is the identity operator. All the properties listed in the statement
of the theorem, as well as Eq. (5.11) up to order O(\?) are fulfilled as one can
infer by direct inspection. To complete the induction procedure we assume
that My, has been defined for all ¥’ < k — 1, k € N so to satisfy all properties
listed in the statement and so that Eq. (5.11) holds true up to order O(\).
We show how one can individuate M}, sharing the same properties up to order
O(AF+1). Mimicking the procedure adopted for k = 1 it descends

LHS = Ty 1 + \* > G ®T (Fr, Fr, Fr,) + O,
ki1+kotks=k—1
RHS=Tp+ X Y G& [T (Fp,)T.y (F,)TS, (Fi)]
ki1+ko+ks=k—1
FANN T G (M TS (Fr,)) + MG ® (M®) + O(AF).

k1+ko=k
P
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Here, T),_; summarizes all contributions up to order O(A¥) and thanks to the
inductive hypothesis it satisfies Eq. (5.11). Thus, it does not contribute to the
construction of My.

In the proof of Theorem 5.2, we introduced the vector space O C AC
of distributions v € A® having odd polynomial degree in ®, ® € AC. Since
the inductive hypothesis entails that M; has an even polynomial degree in
both ® and ® for all [ < k — 1, it follows that, since F@Q(sz) € O, then
Mklch(Fk?Q) € 0.

We can further characterize the perturbative coefficients as particular
elements of the vector space O: The specific form of the nonlinear potential
V(1,1) = 11p? implies that every Fj, | € N depends precisely on m fields ®
and on m + 1 fields ®, with m € N such that m < [. This characterization
entails that there is always an unpaired field ®. Note also that this property is
preserved by the action of I‘(_CQ since contractions collapse pairs of ® and ®. We
conclude that, besides the term involving My, all other contributions in both
sides of Eq. (5.11) are of the form P ® u, u € O. Moreover, u can be written
as u = K® with K a linear operator abiding to all the properties listed in the
statement of the theorem for the renormalization counterterms. Thus, we can
write

U, -0 NGV, +AG@V 02 —G®(MV.,)
= NG ® [K — Mi]®+ O\,

If we set M), = K, it suffices to observe that Eq. (5.11) holds true up to order
O(A\F). This concludes the induction procedure and the proof. O

Remark 5.6. We refer to [11, Rem. 6.7] for the explicit computation of the
coefficient M5 in the real scenario. The complex case can be discussed similarly.

Remark 5.7. One may wonder why Equation (5.11) does not encompass a
correction involving U.,, namely a term of the form G ® (NW.,,) with N the
same defining properties of M. Although, a priori such kind of contribution
should be taken into account, Theorem 5.5 entails that such additional term
is not necessary. Furthermore, our renormalization procedure makes a direct
contact with analogous results within other non-perturbative frameworks, such
as the theory of regularity structures and of paracontrolled calculus. More
precisely, in full analogy with [21], only correction terms linear in ¥ should be
expected.

5.2. A graphical approach to renormalizability

As we have seen in the previous sections, the construction of the algebra .A(,CQ,
which is a necessary step in order to compute at any order in perturbation
theory the expectation value of the perturbative solution, requires renormal-
ization in order to be meaningful.

As a matter of fact, in the construction of the perturbative solution only
some elements of the algebra A(,CQ are involved. The question we address in
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this section is whether we can find a condition under which the number of ill-
defined contributions to be renormalized in order to compute the expectation
value of the solution remains finite to all orders in A.

As a consequence, such a condition would tell whether one needs a finite
or infinite number of independent renormalization steps in order to compute
the expectation value of the solution at any order in perturbation theory.

This is tantamount to classifying a model as super-renormalizable or,
equivalently, sub-critical.

It is useful to tackle such problem using a graphical representation, taking
advantage of an analogous formulation for the stochastic ¢3 model analyzed
n [11]. We can associate to every perturbative contribution a graph via the
following prescription:

e the occurrence of the field ® € AC is represented by the symbol T, while
the complex conjugate field ® corresponds to |.

e The convolution with G and G is denoted by segments | and |, respectively.
e The graphical analogue of the pointwise product between elements of A€
consists of joining the roots of the respective graphs into a single vertex.

Ezxample 5.8. In order to better grasp the notation, consider the following two
examples:

o3 =\ G@@@Y.

The rules outlined above encompass all the algebraic structures required
to represent the perturbative coeflicients, but the need of renormalization oc-
curs when acting with the deformation map F(_CQ. Its evaluation against el-
ements lying in A% has been thoroughly studied in Sect.3. The net effect
amounts to a sequence of contractions between ® and @, related to the occur-
rence of powers of @ and Q. Hence, at the graphical level it translates into
progressively collapsing pairs of leaves into a single loop.

Observe how, in view of the stochastic properties of the complex white
noise, see Equation (1.4), only contractions between leaves of different colors
are allowed.

Example 5.9. The graphical counterpart of I‘.Q(q)@)(f;n,ﬁ) = Od(f;n,m) +
C(f), f € DR, n € ER™),is

r, @3 =\"+0.

The next step comnsists of identifying all possible graphs appearing in
the perturbative decomposition of a solution. From a direct inspection of the
coefficients Fj, k € N one can prove inductively that all such graphs have a
tree structure with branches of the form

Yo, Y
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Furthermore, increasing by one the perturbative order in A\ translates into
adding a vertex with this topology. Such result entails a constraint on the
class of graphs involved in the construction of a solution and it allows us
to perform an analysis with respect to the perturbative order. This differs
from the approach adopted in [11], where the authors consider a larger class,
including also graphs which do not enter the construction. As a results, we
improve the bound on the renormalizability condition.

Remark 5.10. Non-contracted leaves correspond, at the level of distribution-
s, to the multiplication by a smooth function n € &(R9*+1), which does not
contribute to the divergence of the graph. Hence, we restrict ourselves to max-
imally contracted graphs, being aware that adding uncontracted leaves does
not affect the degree of divergence.

Definition 5.11. A graph is said to be admissible if it derives from a graph
associated to any perturbative coefficient Fj via a maximal contraction of its
leaves.

Following the prescription presented above, we construct a graph G and an
associated distribution ug completely characterized by the following features:

e G has L edges and N vertices of valence 1 or 4. Here, the valence of a
vertex is the number of edges connected to it.

e FEach edge e of the graph is the pictorial representation of a propagator
G(4(e), Ty(e)), Where s(e) stands for the origin of e, while with ¢(e) we
denote the target,

o the integral kernel of ug is a product of propagators:

Ug(Il,...,ZL'M)SZ H G(xs(e)axt(e))7 (513)
ecEg

where Eg = {e;,i = 1,..., N} represents the set of edges of G.

When acting with FCQ on elements of the perturbative expansion, we
are working with distributions u € D'(U), U C RN+ As outlined in
the proof of Theorem 3.4, the singular support of u corresponds to AN =
{(t1,21,.. ., tn,zny) € REHN |t = ... = ty} and renormalization can be
dealt with via microlocal analytical techniques based on the calculation of the

scaling degree of u with respect to the submanifold AY of RV(@+1) A direct
computation yields

pDiagN(ng) (Ug) = Ld - 2(N - 1)5 (514)

where ppx (ug) is the weighted degree of divergence of ug with respect to AN,
while 2(N — 1) is the weighted co-dimension of AN, see [11, App. B].

Our goal is to find an expression of Eq. (5.14) in terms of the perturbative
order k. We divide the analysis in several steps.
Step 1: L(k) Since the number of edges is not affected by contractions into
a single vertex, at this level we can ignore the action of I'.,. We state that
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increasing by one the perturbative order corresponds to adding three edges
arranged in one of the following admissible branches:

NN

that is, the number of vertices of valence 4 coincides with the perturbative
order. This implies that

L(k) = 3k + 1. (5.15)

Step 2: N(k) The value N (k) does not depend on how the branches are ar-
ranged. It is manifest that switching a branch from a vertex to another leaves
N (k) unchanged. For this reason in what follows we refer to tree-like graphs
where all vertices of a layer are saturated before moving to the next one. As
an example, we do not consider a graph with the following shape:

but rather the simpler

Thanks to an argument similar to that of the derivation of L(k) and reasoning
on these simplified configurations, one can infer that

N(k) =3k +1.

Yet, this holds true for non-contracted graphs, while we are looking for con-
figurations showing the highest number of divergences. Since the number of
vertices of valence 1 at fixed perturbative order k is 2k + 1 and, in view of the
observation that there remains always a single non-contracted leaf, performing
all permissible contractions amounts to removing 1(2k + 1 — 1) = k vertices,
namely

N(k)=3k+1—k=2k+1. (5.16)

Step 3 We can express the perturbative order k in terms of N by inverting
Eq. (5.16), namely
N -1

k=5 (5.17)

Since every admissible configuration has an odd number of vertices, k(N) is
an integer. Inserting this expression of the perturbative order in Eq. (5.15) we
obtain

L(N)= SN -

1
N -3 (5.18)
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We are interested in the scenarios when only a finite number of graphs shows
a singular behavior. In the present setting, this condition translates into re-
quiring that, for IV large enough, the degree of divergence of admissible graphs
becomes negative.

Theorem 5.12. If d = 1, only a finite number of graphs in the perturbative
solution of Eq. (5.1) needs to be renormalized.

Proof. In view of Eq. (5.14) and of the relations derived in the preceding steps,
it descends

plug) = Ld — 2(N —1) = (gN—%)d—ﬂN—l) )
:N(gd—2)—g+2. '

For the condition p(ug) < 0 to occur, the coefficient in front of N must be neg-
ative, so that for sufficiently large N the inequality holds true. This translates
to the inequality

3

4
—d — 2 d< —. 2
5 <0 = <3 (5.20)

O

Remark 5.18. Once the spatial dimension d has been fixed, Eq. (5.19) allows
us to find the minimal number of vertices needing renormalization and for
which further divergences do not occur. Subsequently, via Eq. (5.16), we can
also infer the maximum number of graphs requiring renormalization.

Remark 5.14. Even if in our analysis we focused on the stochastic Schrédinger
equation with a cubic nonlinearity, this approach to the study of the subcritical
regime can be extended to a more general polynomial potential of the form
||?%¢p with k > 1, as in Eq. (1.3). At a graphical level the net effect is
that admissible graphs present vertices of valence at most 2k + 2. Hence the
derivation of Eq. (5.20) follows slavishly the preceding steps, yielding that for
d = 1 we are still considering a subcritical regime, no matter the value of «.
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