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Vanishing of the Anomaly in Lattice Chiral
Gauge Theory

Vieri Mastropietro

Abstract. The anomaly cancellation is a basic property of the Standard
Model, crucial for its consistence. We consider a lattice chiral gauge theory
of massless Wilson fermions interacting with a non-compact massive U(1)
field coupled with left- and right-handed fermions in four dimensions. We
prove in the infinite volume limit, for weak coupling and inverse lattice
step of the order of boson mass, that the anomaly vanishes up to sub-
leading corrections and under the same condition as in the continuum.
The proof is based on a combination of exact Renormalization Group,
non-perturbative decay bounds of correlations and lattice symmetries.

1. Introduction and Main Results

1.1. Chiral Gauge Theory

The perturbative consistence (renormalizability) of the Standard Model relies
on the vanishing of the anomalies, achieved under certain algebraic conditions
[1] severely constraining the elementary particles charges and providing a par-
tial explanation of the charge quantization. In order to go beyond a purely
perturbative framework in terms of diverging series [2], one needs a lattice
formulation with functional integrals with cut-off much higher than the exper-
iments scale; due to triviality [3,4], the cut-off cannot be completely removed,
at least in the electroweak sector, and hence, the theory can be seen as an
effective one.

One expects a relation between the perturbative renormalizability prop-
erties and the size of the cut-off. The electroweak theory is renormalizable [5,6]
so that a construction up to exponentially large cut-off could be in principle
possible, and such cut-off is much higher than the scales of experiments. How-
ever, this requires as a crucial prerequisite that the anomalies cancel, at least
to a certain extent. This rises the natural question: does the anomaly cancel
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at a non-perturbative level with finite lattice, under the same condition as in
the continuum?

In the continuum, the cancellation is based on compensations at every or-
der [7] based on dimensional regularizations and symmetries, but finite lattice
cut-off produce corrections and the question is if they cancel or not. Jaco-
bian arguments are used to support vanishing of higher-order contributions to
anomalies but are essentially one loop results, as shown in [8]. Topological ar-
guments explain the anomaly cancellation on a lattice [9] with classical gauge
fields, but in the quantum case they work only at lowest order (one loop). The
cancellation would be obtained if a non-perturbative regulator for lattice chiral
gauge theories could be found, but this is a long-standing unsolved problem
and only order by order results are known [10,11].

We consider a lattice chiral gauge theory, given by 2N massless fermions
in four dimensions, labelled by an index i = 1, . . . , 2N ; we also define the
indices i1 = 1, . . . , N and i2 = N + 1, . . . , 2N . If the gamma matrices are

γ0 =
(

0 I
I 0

)
γj =

(
0 iσj

−iσj 0

)
, γ5 =

(
I 0
0 −I

)
(1)

and σL
μ = (σ0, iσ), σR

μ = (σ0,−iσ),

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(2)

the formal continuum action is given by the following expression:∫
dxFμ,νFμ,ν

+
∑
i1

∫
dx
[
ψ+

i1,L,xσL
μ (∂μ + λQi1Aμ)ψ−

i1,L,x + ψ+
i1,R,xσR

μ ∂μψ−
i1,L,x

]

∑
i2

∫
dx
[
ψ+

i2,R,xσR
μ (∂μ + λQi2Aμ)ψ−

i2,R,x + ψ+
i2,L,xσL

μ ∂μψ−
i2,L,x

]
(3)

with μ = (0, 1, 2, 3) and Fμν = ∂μAν −∂νAμ. Note that the R fermions of kind
i1 and the L fermions of kind i2 decouple and are fictitious, non-interacting
degrees of freedom, which are convenient to introduce in view of the lattice
regularization, see e.g. [12–14]. The total current coupled to Aμ is

jT
μ =

∑
i1

Qi1ψ
+
i1,L,xσL

μ ψ−
i1,L,x +

∑
i2

Qi2ψ
+
i2,R,xσR

μ ψ−
i2,R,x (4)

and the axial and vector part of the current is

jT,V
μ =

1
2

∑
i

Qijμ,i,x jT,A
μ =

1
2

∑
i

Qiε̃ij
5
μ,i,x (5)

with ε̃i1 = −ε̃i2 = 1, jμ,i,x = ψ̄i,xγμψi,x, j5
μ,i,x = ψ̄i,xγ5γμψi,x and ψi,x =

(ψ−
i,L,x, ψ−

i,R,x), ψ̄i,x = (ψ+
i,L,x, ψ+

i,R,x)γ0. Note the chiral nature of the theory,
as in the current the fermion with different chiralities has different charges.
An example of chiral theory is obtained setting Qi2 = 0; in such a case one
is describing N fermions with the same chirality interacting with a gauge
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field. A physically more important example is given by the U(1) sector of the
Standard Model with no Higgs and massless fermions; in this case N = 4,
i1 = (ν1, e1, u1, d1) are the left-handed components and i2 = (ν2, e2, u2, d2)
the right-handed of the leptons and quarks. A formal application of Noether
theorem with classical fermions and bosons says that the invariance under
phase and chiral symmetry, implying the current conservation ∂μjT

μ = 0. If the
fermions are quantum (and the bosons classical), the conservation of current is
reflected in Ward identities, and it turns out that anomalies generically break
the conservation of jT

μ,i,x unless

N∑
i1=1

Q3
i1 −

N∑
i2=1

Q3
i2 = 0 (6)

In the elecroweak sector, the physical values Qν1 = Qe1 = −1, Qu1 = Qd1 =
1/3, Qν2 = 0, Qe2 = −2, Qu2 = 4/3, Qd2 = −2/3 verify (6), if Q are the hy-
percharges and an index for the three colours of quarks is added. Remarkably
the hyperchrges (and therefore the charges) are constrained to physical values
by purely quantum effects. The question is therefore if in a lattice regulariza-
tion of (3) and considering Aμ a quantum field, the chiral current is conserved
under the same condition (6) at a non-perturbative level.

1.2. The Lattice Chiral Gauge Theory

The lattice chiral gauge theory is defined by its generating function

eW(J,J5,φ) =
∫

P (dA)
∫

P (dψ)eV (ψ,A,J)+Vc(ψ)+B(J5,ψ)+(ψ,φ) (7)

where Aμ,x : Λ → R, Λ = [0, L]4 ∩ aZ4, L = Ka, K ∈ N eμ, μ = 0, 1, 2, 3 an
orthonormal basis, Aμ,x = Aμ,x+Leμ

(periodic boundary conditions) and the
bosonic integration is

P (dA) =
1

NA

[∏
x∈Λ

3∏
μ=0

dAμ,x

]
e−SG(A) (8)

with

SG = a4
∑

x

[
1
4
Fμ,ν,xFμ,ν,x +

M2

2
Aμ,xAμ,x + (1 − ξ)(dμAμ)2

]
(9)

is the action of a non-compact lattice U(1) gauge field with a gauge fixing and
a mass term, Fμ,ν = dνAμ − dμAν and dνAμ = a−1(Aμ,x+eνa − Aμ,x), NA is
the normalization. The bosonic simple expectation

EA(Aμ1,x1 ...Aμn,xn
) =
∫

P (dA)Aμ1,x1 ...Aμn,xn
(10)

is expressed by the Wick rule with covariance

gA
μ,ν(x, y) = δμ,ν

1
L4

∑
k

eik(x−y)

|σ|2 + M2

(
δμ,ν +

ξσ̄μσν

(1 − ξ)|σ|2 + M2

)
(11)
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with σμ(k) = (eikμa − 1)a−1, k = 2πn/L, n ∈ N
4 and k ∈ [−π/a, π/a)4. The

bosonic truncated expectation

ET
A (F ; · · · ;F ) =

∂n

∂λn
log
∫

P (dA) eF (A)
∣∣∣
λ≡0

(12)

is expressed by the Wick rule restricted to the connected terms.
We denote by ψ±

i,s,x the Grassmann variables, with i = 1, .., 2N the par-
ticle index; s = L,R the chiral index; anti-periodic boundary conditions are
imposed and

{ψ+
i,s,x, ψ+

i′,s′,x′} = {ψ+
i,s,x, ψ−

i′,s′,x′} = {ψ−
i,s,x, ψ−

i′,s′,x′} = 0 (13)

We define ψ±
i,s,x = 1

L4

∑
k e±ikxψ̂±

i,s,k, with ψ̂±
i,s,k another set of Grassmann

variable, k = 2π/L(n + 1/2), n ∈ N
4 and k ∈ [−π/a, π/a)4. The fermionic

Gaussian measure is defined as, i = 1, .., 2N , s = L,R

P (dψ) =
1

Nψ

⎡
⎣∏

i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦ e−SF (14)

where Nψ a normalization and, if ψ±
i,x = (ψ±

i,L,x, ψ±
i,R,x)

SF =
1
2a

2N∑
i=1

a4
∑

x

[∑
μ

(ψ+
i,xγ0γμψ−

i,x+eμa − ψ+
i,s,x+eμaγ0γμψ−

i,x)

+ r(ψ+
i,xγ0ψ

−
i,x+eμa + ψ+

i,x+eμaγ0ψ
−
i,x − ψ+

i,xγ0ψ
−
i,x)

]
(15)

We can write therefore

SF =
1
2a

2N∑
i=1

a4
∑

x

[∑
μ

∑
s=L,R

(ψ+
i,s,xσs

μψ−
i,s,x+eμa − ψ+

i,s,x+eμaσs
μψ−

i,s,x)

+r(ψ+
i,L,xψ−

i,R,x+eμa + ψ+
i,L,x+eμaψ−

i,R,x − ψ+
i,L,xψ−

i,R,x

+ψ+
i,R,xψ−

i,L,x+eμa + ψ+
i,R,x+eμaψ−

i,L,x − ψ+
i,R,xψ−

i,L,x)

]
(16)

The fermionic simple expectation

Eψ(ψε1
i1,x1

...ψεn
in,xn

) =
∫

P (dψ)ψε1
i1,x1

...ψεn
in,xn

(17)

is expressed by the anticommutative Wick rule with covariance

gψ
i (x, y) =

∫
P (dψ)ψi,xψ̄i,y =

1
L4

∑
k

eik(x−y)ĝψ
i (k) (18)

with

ĝi,k =

(∑
μ

iγ0γμa−1 sin(kμa) + a−1γ0r
∑

μ

(1 − cos kμa)

)−1

(19)



Vol. 25 (2024) Vanishing of the Anomaly. . . 1051

The interaction is

V (A,ψ, J) = V1(A,ψ, J) + V2(A,ψ, J)

V1(A,ψ, J) = a4
∑
i,s,x

[
O+

μ,i,s,xG+
μ,i,s,x + O−

μ,i,s,xG−
μ,i,s

]

V2(A,ψ, J) =
r

2
a4
∑
i,x

[
ψ+

i,L,xH+
μ,i,xψ−

i,R,x+eμa (20)

+ ψ+
i,L,x+eμaH−

μ,i,xψ−
i,R,x + ψ+

i,R,xH+
μ,i,xψ−

i,L,x+eμa

+ψ+
i,R,x+eμaH−

μ,i,xψ−
i,L,x

]
(21)

with

G±
μ,i,s(x) = a−1(: e∓iaQi(λbi,sAμ,x+Jμ,x) : −1)

H±
μ,i,x = a−1(e∓iaQiJμ,x − 1)

O+
μ,i,s,x =

1
2
ψ+

i,s,xσs
μψ−

i,s,x+eμa

O−
μ,i,s,x = −1

2
ψ+

i,s,x+eμaσs
μψ−

i,s,x (22)

with, if i1 = 1, N and i2 = N + 1, ..., 2N

bi1,L = bi2,R = 1; bi1,R = bi2,L = 0 (23)

and : e±iaλQiAμ(x) := e±iλQiaAμ(x)e
1
2 (λQi)

2a2gA
μ,μ(0,0).

The mass counterterm is

Vc =
∑

i

a−1νia
4
∑

x

(ψ+
i,L,xψ−

i,R,x + ψ+
i,R,xψ−

i,L,x) (24)

Finally, the source term is

B = a4
∑
μ,x

J5
μ,xj5

μ,x j5
μ,x =

∑
i,s

ε̃iεsQjZ
5
i,sψ

+
x,i,sσ

s
μψ+

x,i,s

with ε̃i1 = −ε̃i2 = 1 and εL = −εR = 1. νi and Z5
i,s are parameters to be fixed

by the renormlization conditions, see below.

Remark. The term proportional to r in SF (16) is called Wilson term. If r = 0,
the fermionic propagator ĝi,k has, in the L → ∞ limit, several poles; this
has the effect that the low energy behaviour of the lattice theory would not
correspond to the continuum target theory (3); the presence of the Wilson
term r �= 0 has the effect that only the physical pole k = 0 is present but the
chiral symmetry is broken [15].

1.3. Physical observables

The fermionic 2-point function is

SΛ
i,s,s′(x, y) =

∂2

∂φ+
i,s,x∂φ−

i,s′,y
WΛ(J, J5, φ)|0 (25)
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and the Fourier transform is

ŜΛ
i,s,s′(k) = a4

∑
x

SΛ
i,s,s′(x, 0)e−ikx (26)

The vertex functions are

ΓΛ
μ,i′,s(z, x, y) =

∂3

∂Jμ,z∂φ+
i′,s,x∂φ−

i′,s,y

W(J, J5, φ)|0

Γ5,Λ
μ,i′s(z, x, y) =

∂3

∂J5
μ,z∂φ+

i′,s,x∂φ−
i′,s,y

W(J, J5, φ)|0 (27)

The Fourier transform is

Γ̂Λ
μ,i′,s(k, p) = a4

∑
z

a4
∑

y

e−ipz−ikyΓΛ
μ,i′,s(z, 0, y) (28)

and similarly is defined Γ̂5,Λ
μ,i′s(k, p). The three current vector V V V and axial

AV V correlations are:

ΠΛ
μ,ν,ρ(z, y, x) =

∂3WΛ

∂Jμ,z∂Jν,y∂Jρ,x
|0; Π5,Λ

μ,ν,ρ(z, y, x) =
∂3WΛ

∂J5
μ,z∂Jν,y∂Jρ,x

|0
(29)

and

Π̂Λ
μ,ν,ρ(p1, p2) = a4

∑
y

a4
∑

x

e−ip1y−ip2xΠΛ
μ,ν,ρ(0, y, x)

Π5,Λ
μ,ν,ρ(p1, p2) = a4

∑
y

a4
∑

x

e−ip1y−ip2xΠ5,Λ
μ,ν,ρ(0, y, x) (30)

1.4. Ward Identities

The correlations are connected by relations known as Ward identities. They
can be obtained by performing the change of variables

ψ±
i,s,x → ψ±

i,s,xe±iQiαx (31)

with αx is a function on aZ4, with the periodicity of Λ. Let Q(ψ+, ψ−) be
a monomial in the Grassmann variables and Qα(ψ+, ψ−) be the monomial
obtained performing the replacement (31) in Q(ψ+, ψ−). It holds that
∫ ⎡⎣∏

i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦Q(ψ+, ψ−) =

∫ ⎡⎣∏
i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦Qα(ψ+, ψ−) .

(32)
as both the left-hand side and the right-hand side of (32) are zero unless
the same Grassmann field appears once in the monomial; hence, the fields
ψ+

i,s,x, ψ−
i,s,x come in pairs and the α dependence cancels. By linearity of the

Grassmann integration, the property (32) implies the following identity, valid
for any function f on the finite Grassmann algebra:

∫ ⎡⎣∏
i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦ f(ψ) =

∫ ⎡⎣∏
i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦ fα(ψ) , (33)
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with fα(ψ) the function obtained from f(ψ), after the transformation (31).
We apply now (33) to (7); the phase in the non-local terms can be exactly
compensated by modifying J , that is we get

W (J, J5, φ) = W (J + dμα, J5, eiQαφ) (34)

where J + dμα is a shorthand for Jμ,x + dμαx and eiQαφ is a shorthand for
e±iQiαxφ±

i,s,x; by differentiating, we get the Ward identities (WI)∑
μ

σμ(p)Π̂Λ
μ,ν1,..,νn

(p1, ., pn) = 0 p = p1 + ..pn

∑
μ

σμ(p)Γ̂Λ
μ,i,s(k, p) = Qi(ŜΛ

i,s,s(k) − ŜΛ
i,s,s(k + p))

∑
ν

σν(p1)Π̂5,Λ
μ,ν,ρ(p1, p2) =

∑
ρ

σρ(p2)Π̂5,Λ
μ,ν,ρ(p1, p2) = 0 (35)

Remark. The above Ward identities represent the conservation of the vector
part of the current coupled to the gauge field Aμ; in particular, the first is the
lattice counterpart of ∂μ < jT,V

μ ; jT,V
ν1

; . . . jT,V
νn

>T = 0, see (5).

1.5. Main result

Our main result is the following, denoting by limL→∞ ŜΛ
i,s,s′(k) and similarly

the other correlations.

Theorem 1.1. Let us fix r = 1 and Ma ≥ 1. There exists λ0, C independent on
L, a,M such that, for |λ| ≤ λ0(Ma), it is possible to find νi, Z5

i,s continuous
functions in λ such that
(1) The limits L → ∞ of ŜΛ

i,s,s′(k), Γ̂Λ
μ,i′,s(k, p), Γ̂5,Λ

μ,i′,s(k, p) ΠΛ
μ,ν,ρ(p1, p2),

Π5,Λ
μ,ν,ρ(p1, p2) exist and limk→0 ŜΛ

i,s(k) = ∞ and limk,p→0
Γ̂5,Λ

μ,i′,s
(k,p)

Γ̂Λ
μ,i′,s

(k,p)
= εsI

where εL = −εR = 1.
(2) The AVV correlation verifies∑

μ

σμ(p1 + p2)Π̂5
μ,ρ,σ(p1, p2)

=
∑
μ,ν

εμ,ν,ρ,σ
1

2π2
σμ(p1)σν(p2)

[∑
i1

Q3
i1 −

∑
i2

Q3
i2

]
+ rρ,σ(p1, p2)

(36)

with |r(p1, p2)| ≤ Caϑp̄2+ϑ, p̄ = max(|p1|, |p2|) and ϑ = 1/2.

Remarks.
(1) The correlations are written in the form of expansions which are conver-

gent in the limit of infinite volume, provided that the lattice cut-off is
smaller than the boson mass.

(2) The counterterms νi are chosen so that the fermions remain massless
in the presence of interactions; the parameters Z5

i,s are fixed so that
the charge associated with the vector and axial current are the same, a
condition present also at a perturbative level [7].
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(3) Under the condition
[∑

i1
Q3

i1
−
∑

i2
Q3

i2

]
= 0 we have

∑
μ σμ(p)Π̂Λ

μ,ν,σ

(p1, p2) = 0 and
∑

μ σμ(p)Π̂5,Λ
μ,ρ,σ(p1, p2) = O(aϑp̄2+ϑ) expressing the con-

servation of the chiral current in the sense of correlations and up to
subdominant terms for momenta far from the cut-off. The vanishing of
the anomaly, obtained up to now only at a purely perturbative level, is
proved with a finite lattice cut-off, even if the cut-off breaks important
symmetries [15] on which the perturbative cancellation was based, like
the Lorentz or the chiral one, and excluding non-perturbative effects. The
anomaly cancellation condition is the same as in the continuum case. The
lattice regularization plays an essential role; with momentum one a much
weaker result holds [16].

(4) Anomalies are strongly connected with transport properties in condensed
matter [17–19], and we use indeed techniques recently developed for the
proof of universality properties in metals to the anomaly cancellation
on a lattice [20–29]. Such methods have their roots in the Gallavotti
tree expansion [30], the Battle–Brydges–Federbush formula [31] and the
Gawedzki–Kupiainen–Lesniewski formula [32,33] (see e.g. [34] for an in-
troduction).

1.6. Future Perspectives

We have constructed the theory assuming that 1/a ≤ (λ0/|λ|)M , that is the
cut-off is smaller than the boson mass and we have established (36) for generic
values of the coupling. In this regime after the integration of the Aμ the the-
ory have scaling dimension D = 4 + n − 3nψ/2 if n is the order and nψ the
number of fields. This requires that the “effective coupling” λ2/M2 times the
energy cut-off must be not too large so that the expansions are convergent.
In order to reach higher cut-off one notes that the boson propagator (11) is
composed by two terms: one which behaves as O(1/k2) for k2 >> M2 and
the other which is O(1) for k2 >> M2. If the second term does not contribute
the scaling dimension improves and it corresponds to a renormalizable theory
D = 4 − 3nψ/2 − nA, so in principle one can consider cut-offs higher than M
and up to an exponentially large values |λ2 log a| ≤ ε0. In order to have that
the second term does not contribute full gauge invariance (broken in our case
by the mass and gauge fixing term) is not necessarily required but is sufficient
the gauge invariance in the external fields, expressed in the form of Ward iden-
tities. It is indeed known that renormalizability is preserved in QED, at the
perturbative level, even if a mass is added to photon, see e.g. [35,36]; if one
restricts to gauge-invariant observables, the contribution of the not-decaying
term of the propagator is vanishing as a consequence of the current conserva-
tion. To get exponentially high cut-off in d = 4, QED at a non-perturbative
level is technically demanding, as it would require a simultaneous decomposi-
tion in the bosons and fermions, but the analogous statement can be rigorously
proven in d = 2 vector models [37].



Vol. 25 (2024) Vanishing of the Anomaly. . . 1055

In the absence of the Wilson term r = 0, we get the conservation of the
chiral current in the form of a WI given by the first of (35), if Π̂μ,ν1,...,νn

is ob-
tained replacing Jμ in G±

μ,j,s with bi,sJ̃μ,x. As a consequence, the averages of in-
variant observables are ξ independent. This follows from
∂ξ

∫
P (dA)

∫
[
∏

i,s,x dψ+
i,s,xdψ−

i,s,x]O = 0, with O(A,ψ) invariant; indeed,

∂ξ

∫
P (dA)

∫ ⎡⎣∏
i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦O

=
1
L4

∑
p

∂ξ ĝ
−1
μ,ν(p)

∫
P (dA)Âμ,pÂν,−p

∫ ⎡⎣∏
i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦O

(37)

from which we get, using that Âμ,p = ĝA
μ,ρ

∂
∂Aρ,−p

ĝA
μ,ρ′(p)∂ξ(ĝA(p))−1

μ,ν ĝA
ν,ρ(p)

∂2

∂Ĵρ,p∂Ĵρ′,−p

∫
P (dA)

∫ ⎡⎣∏
i,s,x

dψ+
i,s,xdψ−

i,s,x

⎤
⎦O(A + J̃ , ψ)|0 (38)

By noting that ∂(ĝA)−1 = −(ĝA)−1∂ξ ĝ
A(ĝA)−1 and ∂ξ ĝ

A is proportional to
σ̄μσν , by using ∂α

∫
P (dA)

∫
[
∏

i,s,x dψ+
i,s,xdψ−

i,s,x]O(A + dα, ψ)|0 = 0; then,
∂ξW is vanishing. Therefore, if r = 0 in the average of invariant observables
one can set ξ = 0 and the theory is perturbatively renormalizable. One expects
to be able to reach exponentially high cut-off.

The Wilson term r �= 0, physically necessary to avoid fermion doubling
[15], breaks the WI and the conservation of chiral current for generic values
of the charges, according to (36). Therefore generically the theory is non-
renormalizable at scales greater than M and one cannot expect in general to be
able to reach exponentially high cut-offs. However, choosing the charges so that
[
∑

i1
Q3

i1
−
∑

i2
Q3

i2
] = 0 the contribution of the non-decaying term vanishes up

to subdominant terms, making possible in principle to reach exponentially high
cut-offs. The anomaly cancellation for 1/a ≤ M is therefore a prerequisite for
reaching higher cut-offs. In the case of the U(1) sector of the Standard Model,
one has also to introduce an Higgs boson to generate the fermion mass; one
can distinguish a region higher than the boson mass generated by the Higgs,
where the second term of the boson propagator does not contribute due to the
anomaly cancellation and the WI; and a lower one, when the infinite volume
limit can be taken using the infrared freedom of QED and the massive nature
of weak forces. Further challenging problems arise considering the anomaly
associated to the SU(2) sector.
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2. Proof of Theorem 1.1

In the following, we denote by C or by C1, C2.. generic λ,L, a-independent
constants. We integrate the bosonic variables Aμ in (7), obtaining

VF (ψ, J) = log
∫

P (dA)eV1(ψ,A,J) (39)

where, by (12)

VF (ψ, J) = a4
∑

x

∑
i,ε=±

a−1
(
e−iaεQiJμ,x − 1

)
Oε

μ,s,i

+
∞∑

n=2

a4n
∑

x1,...,xn

∑
ε,i
μ,s

⎡
⎣ n∏

j=1

O
εj

ij ,μj ,sj ,xj
eiεjaQij

Jμj,xj

⎤
⎦

1
n!

a−nET
A (: eiε1bi1,s1λaQi1Aμ1,x1 :; ...; : eiεnbin,snλaQin Aμn,xn :)

which can be rewritten as, if x = x1, .., xn, i = i1, ..., in, μ = μ1, ..., μn,m =
m1, ..,mn

VF (ψ, J) = a4
∑

x

∑
i,ε=±

a−1
(
e−iaεQiJμ,x − 1

)
Oε

μ,s,i

+
∞∑

n=2

∞∑
m=0

a4n
∑

x1,...,xn

∑
ε,i,μ,s,m∑

j mj=m

1
n!

⎡
⎣ n∏

j=1

O
εj

ij ,μj ,sj ,xj
(Jμj ,xj

)mj

⎤
⎦Hn,m(x, ε, i, μ, s,m) (40)

with

Hn,m(x, ε, i, μ, s,m) =
a−n

n!
(iaεjQij

)mj

mj !
]

ET
A (: eiε1bi1,s1λaQiAμ1,x1 :; ...; : eiεnbin,snλaQin Aμn,xn )

(41)

and ||Hn,m|| = L−4a4n sup ε,i,μ,s,m∑
j mj=m

∑
x1,...,xn

|Hn,m|.

Lemma 2.1. The kernels in (40) the following bound, for n ≥ 2, m ≤ 3 and
uniformly in L

||Hn,m|| ≤ Cna−(4−3n−m)N (|λ|/(Ma))2(n−1) (42)

Proof of Lemma 2.1. We write the truncated expectations in (41) by the Battle–
Brydges–Federbush formula, see e.g. Theorem 3.1 in [31] (for completeness a
sketch of the proof is in Appendix 1), n ≥ 2
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ET
A (eiε1bi1,s1λQi1Aμ1,x1 ; ...; eiεnbin,snλaQin Aμn,xn )

=
∑

T∈T n

∏
{j,j′}∈T

g̃A
μjμj′ (xj , xj′)

∫
dpT (t)e−V (X;t), (43)

where X = ((x1, ε1, i1, μ1, s1,m1); ..; (xn, εn, in, μn, sn,mn)), Tn is the set of
connected tree graphs on {1, 2, . . . , n}, the product

∏
{i,j}∈T runs over the

edges of the tree graph T ,

g̃A
μjμj′ (xj , xj′) = λ2a2εjbij ,sj

Qij
εj′bij′ ,sj′ Qij′ g

A
μjμj′ (xj , xj′), (44)

V (X; t) is obtained by taking a sequence of convex linear combinations, with
parameters t, of the energies V (Y ) of suitable subsets Y ⊆ X, defined as

V (Y ) =
∑

j,j′∈Y

λ2εjεj′bij ,sj
Qij

bij′ ,sj′ Qij′ a
2gA

μj ,μj′ (xj , xj′)

= EA

⎛
⎜⎝
⎡
⎣∑

j∈Y

λbij ,sj
Qij

aεjAμj
(xj)

⎤
⎦

2
⎞
⎟⎠ (45)

and dpT (t) is a probability measure, whose explicit form is recalled in the
Appendix 1. We use the bounds

|gA
μ,ν(x, y)|1 = a4

∑
x

|gA
μ,ν(x, y)| ≤ CM−2 |gA

μ,μ(x, y)| ≤ Ca−2 (46)

so that

||Hn,m|| ≤ Cn
1 L−4 sup

ε,i,μ,s,m∑
j mj=m

a4n
∑

x1,...,xn

a−n+m

n!

∑
T∈T n

∏
{j,j′}∈T

|g̃A
μjμj′ (xj , xj′)|

∫
dpT (t)e−V (X;t)| (47)

Moreover, V (Y ) is stable, that is

V (Y ) = E

⎛
⎜⎝
⎡
⎣∑

j∈Y

λbij ,sj
Qij

aεjAμj
(xj)

⎤
⎦

2
⎞
⎟⎠ ≥ 0 (48)

hence V (X; t) ≥ 0 and e−V (X;t) ≤ 1 so that
∫

dpT (t)e−V (X;t) < 1 therefore

||Hn,m|| ≤ Cn
2

a−n+m

n!

∑
T∈T n

∏
{j,j′}∈T

a2|gA
μjμj′ (xj , xj′)|1

≤ Cn
3

a−n+m

n!

∑
T∈T n

(aM−1)2(n−1) (49)

and finally using that
∑

T∈T n
1 ≤ Cn

4 n! by Cayley’ formula [40] we finally get
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||Hn,m|| ≤ Cn
5 a−n+m(aM−1)2(n−1)

= Cn
5 a−(4−3n−m)N (|λ|/(Ma))2(n−1) (50)

�

After the integration of Aμ, the generating function can be written as a
Grassmann integral:

eW(J,J5,φ) =
∫

P (dψ)eV (N+1)(ψ,J,J5,φ) (51)

with

V (N+1)(ψ, J, J5, φ) = VF (ψ, J)+V2(ψ, J)+Vc(ψ)+B(J5, ψ)+(ψ, φ) (52)

The fermionic propagator is massless, that is it has a power law decay at large
distances, and this requires a multiscale analysis based on Wilson Renormal-
ization Group.

We introduce parameters γ > 1 and N ∈ N such that1 γN ≡ π/(16a);
moreover, we introduce f̃(t);R+ → R a C∞ non-decreasing function = 0 for
0 ≤ t ≤ γN−1 and = 1 for t ≥ γN ; we define also χN (t) = 1 − f̃(t) which is
therefore non-vanishing for t ≤ γN . We introduce the propagator

g
(N+1)
i (x, y) =

1
L4

∑
k

eik(x−y)f̃(|k|T )ĝψ
i (k) (53)

with |k−k′|T the distance on the 4-dimensional torus [−π/a, π/a)4. Therefore,
for any K ∈ N we have

|g(N+1)
i (x, y)| ≤ γ3(N+1) CK

1 + (γN+1|x − y|T̃ )K
(54)

where |x − y|T̃ is the distance on the [−L,L)4 torus. The above bound is
derived by (discrete) integration by parts, see e.g. §3.3 of [34], using that2 in
the support of f̃(|k|T ) one has

∑
μ(1 − cos kμa)2/a2 ≥ C/a2 and the volume

of the support of f̃ is ≤ C/a4.
We can write therefore, using the addition property of Gaussian Grass-

mann integrals, see e.g. §2.4 of [34]

eW(J,J5,φ) =
∫

P (dψ(≤N))
∫

P (dψ(N+1))eV (N+1)(ψ(≤N)+ψ(N+1),J,J5,φ)

=
∫

P (dψ(≤N))eV (N)(ψ(≤N),J,J5,φ) (55)

1Any choice for γN ensuring that in the support of 1− f̃ does not include the doubled poles,
that is the poles of ĝ(k) with r = 0 different from k = 0, could be done.
2The bound (54)follows from the presence of the Wilson term; if r = 0 a power law is found

due to the presence of poles in the support of f̃(k).
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V(N) =
ET
N+1 V N+1

+

ET
N+1

V (N+1)

V (N+1)

+

ET
N+1

V (N+1)

V (N+1)

V (N+1) + ...

Figure 1. Graphical representation of (56); the
first term represents ET

N+1(V
(N+1)), the second

1
2ET

N+1(V
(N+1);V (N+1)) and so on

where

V (N)(ψ(≤N), J, J5, φ) =
∞∑

n=1

1

n!
ET

N+1(V (N+1)(ψ(≤N)

+ψ(N+1), J, J5, φ); ...; V (N+1)(ψ(≤N) + ψ(N+1), J, J5, φ))

(56)

and ET
N+1 is the truncated expectation with respect to the integration

P (dψ(N+1)) (Fig. 1).
Using the linearity of the truncated expectations, one gets, if γ = ε, s,

i, μ, β

V (N)(ψ(≤N), J, J5, φ) = a4(la+lb+m)
∑

x,y,z,γ

W
(N)
la,lb,m(x, y, z, γ)

⎡
⎣ la∏

j=1

ψ
≤N,εj

xj ,ij ,sj

⎤
⎦
⎡
⎣ lb∏

j=1

φ
εj

yj ,ij ,sj

⎤
⎦
⎡
⎣ m∏

j=1

Jβj
μj ,zj

⎤
⎦

(57)

with ε = ±, and Jβ
xj

is Jxj
or J5

xj
for β = (0, 1). Note that the W (N) are

a series in the kernels Hn,m. In the lb = 0 case (the presence of φ briefly
discussed in the Appendix 2) calling W

(N)
la,0,m ≡ W

(N)
la,m, we define ||W (N)

l,m || =

L−4 supγ a4 l+4 m
∑

x,z |W (N)
l,m (x, z, γ)|.

Lemma 2.2. The kernels in (55) verify, for |λ| ≤ λ0(Ma), |νi| ≤ C(|λ|/(Ma))2,
λ0, C, C1 independent on a, L,N , l ≤ 2,m ≤ 3, |d| is the distance between any
coordinate in x, z

||dsW
(N)
l,m || ≤ C1γ

DN (58)

with D = 4 − 3l/2 − m − s.

Proof of Lemma 2.2. We rewrite V (N+1) (52) in a more compact way as

V (N+1) =
∑
P

ψ̃(≤N+1)(P )J̃(P )W (N+1)(P ) (59)
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with P set of field labels and ψ̃(P ) =
∏

f∈P ψ
(≤N)ε(f)
i(f),s(f),x(f), J̃(P ) =

∏
f∈P J

β(f)
x(f) .

We get therefore, inserting (59) in (56) if P = Q1 ∪ Q2... ∪ Qn

V
(N)

(ψ
≤N

, J, J
5
) =

∑
n

1

n!

∑
P

∑
P1,...Pn
Q1,...Qn

ψ̃
(≤N)

(P )

ET
N+1(ψ̃

(N+1)
(P1/Q1); . . . ; ψ̃

(N+1)
(Pn/Qn))

[
n∏

i=1

W
(N+1)

(Pi)J̃(Pi)

]

(60)

We use the Gawedzki–Kupiainen–Lesniewski [32,33] (a sketch of the proof is
in Appendix 1; see also (see e.g. §A.3 of [38], §2 of [34] or Appendix D of [39])

ET
N+1(ψ̃

(N+1)(P1); ...; ψ̃(N+1)(Ps))

=
∑

T∈Tn

∏
{i,j}∈T

g(N+1)(xi, yj)
∫

dPT (t) det GN+1,T (t) (61)

where Tn denotes the set of all the ‘spanning trees’ on xP1 , . . . , xPs
, that is a set

of lines which becomes a tree graph on {1, 2, . . . , s} if one contracts in a point
all the point in xP = ∪f∈P x(f), the product

∏
{i,j}∈T runs over the unordered

edges of the T , t = {ti,i′ ∈ [0, 1], 1 ≤ i, i′ ≤ s}, dPT (t) is a probability measure
(whose form is specified in the Appendix 1) with support on a set of t such
that ti,i′ = ui · ui′ for some family of vectors ui ∈ R

s of unit norm and
GN+1,T (t) is a (n − s + 1) × (n − s + 1) matrix, whose elements are given by
GN+1,T

ij,i′j′ = ti,i′g(N+1)(xij , yi′j′) such that if =< ui ⊗ A
(N+1)

x(f−
ij )

, ui′ ⊗ B
(N+1)

x(f+
i′j′ )

>

then the matrix element can be written as a scalar product

GN+1,T
ij,i′j′ = < ui ⊗ A

(N+1)

x(f−
ij )

, ui′ ⊗ B
(N+1)

x(f+
i′j′ )

>

= (ui · ui′)
1
Ld

∑
k

Ā
(N+1)

x(f−
ij ),k)

B
(N+1)

x(f+
i′j′ ),k)

(62)

with A
(N+1)

x(f−
ij ,k)

= eikx(f−
ij )
√

fN (k)ḡN (k) and B
(N+1)

x(f+
i′j′ ),k)

= e
ikx(f+

i′j′ ))
√

fN (k)gN (k).

The determinants are bounded by the Gram–Hadamard inequality, see
e.g. §2 of [34], stating that, if M is a square matrix with elements Mij of the
form Mij =< Ai, Bj >, where Ai, Bj are vectors in a Hilbert space with scalar
product < ·, · >, then |det M | ≤

∏
i < Ai, Ai >

1
2 < Bi, Bi >

1
2 . Therefore,

|det GN+1,T | ≤ C
∑

i |Pi|
1 γ3N

∑
i[|Pi|−(n−1))/2] (63)

We get, setting |Pi| ≡ ni, |Qi| ≡ li, 0 ≤ li ≤ ni,
∑

i mi = m, l =
∑

i li and
||x|sg(N+1)(x)|1 ≤ C2γ

−N−s

||W (N)
l,m || ≤

∞∑
n=1

Cn
3

1
n!

∑
n1,...nn

∑
l1,...ln∑

i li=l

[
n∏

i=1

ni!
li!(ni − li)!

]
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∑
T

Cs
2γ−N((n−1)+s)C

∑
i ni

1 γ3N[∑i(ni−li)/2−(n−1)]

[
n∏

i=1

||WN+1(Pi)||
]

(64)

and
∑

T∈Tn
≤ n!C

∑
i ni

4 , see e.g. Lemma A3.3 of [38], Lemma 2.4 of [34] or
Lemma D.4 of [34], so that

||W (N)
l,m || ≤

∞∑
n=1

Cn
6

∑
n1,...nn

∑
l1,...ln∑

i li=l

[
n∏

i=1

(C5)
∑

i ni
ni!

li!(ni − li!)

]

γ−4N(n−1)γ−Nsγ3N
∑

i(ni−li)/2

[
n∏

i=1

γN(4−3ni/2−mi)

]

[∏
i

(|λ|/Ma)max(2(ni/2−1),1−mi)

]

Note that
∑

l≤n[(C5)n−lCl
5

n!
l!(n−l)! ] = (2C5)n we get

||W (N)
l,m || ≤

∞∑
n=1

Cn
8 γN(4−3l/2−m−s)

∏
i

[∑
ni

Cni
7 (|λ|/Ma)max(2(ni/2−1),1−mi)

]

(65)
As
∑

i mi = m ≤ 3 the sum over ni is bounded by

∏
i

[∑
ni

Cni
7 (|λ|/Ma)max(2(ni/2−1),1−mi)

]
≤ Cn

8 (|λ|/Ma)2 max(n−3,1) (66)

so that for λ small enough

||W (N)
l,m || ≤ γN(4−3l−m)C9

[
1 +

∞∑
n=4

Cn
8 (|λ|/Ma)2(n−3)

]

≤ C1γ
N(4−3l/2−m) (67)

�

In order to integrate
∫

P (dψ(≤N))eV (N)(ψ(≤N),J,J5) (55), we need to take
into account the presence of terms with positive or negative scaling dimension
D = 4 − 3l/2 − m, as can be read from (58).

In order to do that, we extract from V (N) the terms with non-negative
dimension. This is done defining an L (localization) linear operation acting on
the kernels of ŴN

l,m (the Fourier transform of WN
l,m in (55)) in the following

way; LŴN
l,m(k) = WN

l,m(k) for (n,m) �= (2, 0), (2, 1) and

LŴN
2,0(k) = ŴN

2,0(0) +
sin kμa

a
∂μŴN

2,0(0) LŴN
2,1(k, k + p) = ŴN

2,1,μ(0, 0)

(68)
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We write therefore

eW(J,J5,0) =
∫

P (dψ(≤N))eLV (N)(ψ(≤N),J,J5)+RV (N)(ψ(≤N),J,J5) (69)

with R = 1 − L (renormalization) and RV (N) is equal to (87) with W
(N)
l,m

replaced by RW
(N)
l,m ; the R operation produce an improvement in the bound,

see e.g. §4.2 of [34]; for instance, RŴN
2,0(k) admits, by interpolation, a bound

similar to the one for ŴN
2,0(k) times a factor O(γ−2N ) due to the derivatives

and an extra O(γ2 h), with h the scale associated with the external fields due
to the k2. Hence, the R operation produces on such terms an improvement
O(γ2(h−N)). In coordinate space, the action consists in producing a derivative
in the external field and a “zero”, that is the difference of two coordinates, see,
e.g. §3 of [22].

Using symmetry considerations, see Appendix 3, we get

LV(N)(ψ, J, J5) = a4
∑

x

∑
i,s

[
nN,s,iγ

N (ψ+
i,L,xψ−

i,R,x + ψ+
i,R,xψ−

i,L,x)

+zN,i,sσ
s
μψ+

i,s,x∂̃μψ+
i,s,x

+Z̃J
i,s,NJμ,xψ+

i,s,xσs
μψ−

i,s,x + εsε̃iZ̃
5
i,s,NJ5

μ,xψ+
i,s,xσs

μψ−
i,s,x

]

with εL = −εR = 1, ε̃i1 = −ε̃i2 = 1, nN,s,iγ
−N = ŴN

2,0(0), zN,s,i = ∂μŴN
2,0(0)

and Z̃J
i,s,N = ŴN

2,1(0, 0), Z̃5
i,s,N = ŴN

2,1(0, 0), respectively, with J and J5.
It is possible to include the marginal quadratic terms in the fermionic

Gaussian integration in the following way

P (dψ(≤N))e
∑

i,s zh,i,sZh,s,ia
4∑

x σs
μψ+

i,s,x∂̃μψ+
i,s,x ≡ PZN

(dψ(≤N)) (70)

where ∂̃ is the discrete derivative and

ĝ
(≤N)
i (k) = χN (k)

(∑
μ

γ0γ̃
N
μ a−1i sin(kμa)

+a−1γ̂N
0

∑
μ

(1 − cos kμa)

)−1

(71)

γ̃N
0 =

(
0 ZN,L,i(k)I

ZN,R,i(k)I 0

)

γ̃N
j =

(
0 iZN,L,i(k)σj

−iZN,R,i(k)σj 0

)
(72)

with ZN,s,i(k) = 1+χ−1
N (k)zN,s,i, and we set ZN,s,i ≡ 1+ zN,s,i. We can write

therefore

eW(J,J5,0)

=
∫

PZN
(dψ(≤N))eL̃V (N)(

√
ZN ψ(≤N),J,J5)+RV (N)(

√
ZN ψ(≤N),J,J5) (73)
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V(N−1)=
ET
N (L +R)V N

+

ET
N

(L+R)V (N)

(L+R)V (N)

+

ET
N

(L+R)V (N)

(L+R)(V (N)

(L+R)V (N)+ ...

Figure 2. Graphical representation of (78); the first
term represent ET

N ((L + R)V (N+1)), the second 1
2ET

N ((L +
R)V (N+1); (L + R)V (N+1)) and so on

where we have rescaled the fields writing

L̃V(N)(
√

ZNψ, J, J5)

= a4
∑

x

∑
i,s

[
νN,s,iγ

N
√

ZN,L,iZN,R,i(ψ+
i,L,xψ−

i,R,x + ψ+
i,R,xψ−

i,L,x)

+ZJ
i,s,NJμ,xψ+

i,s,xσs
μψ−

i′,s,x + εsε̃iZ
5
i,s,NJ5

μ,xψ+
i,s,xσs

μψ−
i,s,x

]
(74)

with νN,s,i

√
ZN,L,iZN,R,i = nN,s,i and Z̃J

i,s,N/Zi,s,N = ZJ
i,s,N , Z̃5

i,s,N/Zi,s,N =
Zi,s,N .

We choose χN (t) ≡ χ0(γ−N t) with χ0(t);R+ → R a C∞ non-increasing
function = 1 for 0 ≤ t ≤ γ−1 and = 0 for t ≥ 1; we write

χN (t) =
N∑

h=−∞
fh(t) fh(t) = χ0(γ−ht) − χ0(γ−h+1t) (75)

with fh(t) with support in γh−1 ≤ t ≤ γh+1. We can write χN (t) = χN−1(t)+
fN (t) and

ĝ
(≤N)
i (k) = ĝ

(≤N−1)
i (k) + ĝ

(N)
i (k) (76)

with ĝ
(N)
i (k) given by (71) with χN (k) replaced by fN (k) and Zi,s,N (k) re-

placed Zi,s,N . We write therefore

eW(J,J5,0) =
∫

PZN
(dψ(≤N−1))

∫
PZN

(dψ(N))

eL̃V (N)(
√

ZN ψ(≤N),J,J5)+RV (N)(
√

ZN ψ(≤N),J,J5)

=
∫

PZN
(dψ(≤N−1))eV (N−1)(

√
ZN ψ(≤N−1),J,J5) (77)

where

V (N−1) =
∑

n

1
n!

ET
N (L̃V (N) + RV (N), ...; L̃V (N) + RV (N)) (78)

with VN given by (60); a graphical representation is shown in Fig. 2. Using
more compact notation

V (N−1) =
∑
P,P̃

ψ̃(≤N−1)(P )J̃(P )W (N−1)(P ) (79)
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V(N− 1)=
ET
N (L+ R)V N

+

ET
N

LV (N )

LV (N )

+

E T
N

LV (N )

RET
N+1

V (N+1)

+

RET
N+1

V (N+1)

V (N+1)

LV (N )

...

Figure 3. Graphical representation of some term in(80)

By using the linearity of the truncated expectations and expressing RV N

by (56) we can write, calling ET (V ; ...;V ) = ET (V ;n) (78) as, see Fig. 3

V (N−1) =
∑

n

1
n!

ET
N (L̃V (N) +

∑
m

1
m!

RET
N+1(V

(N+1);m);n) (80)

From (80), we see that W (N−1) is a function of W (N+1), νN , ZNZJ
N , Z5

N .
The procedure can be iterated in a similar way writing

PZN
(dψ(≤N−1)) = PZN −1(dψ(≤N−2))PZN

(dψ(N−1)) (81)

and V (N−1) = LV (N−1) + RV (N−1) with L acting on the kernels W (N−1) as
(68), so that, after modifying the wave function renormalization and rescaling,
we get to ∫

PZN−1(dψ(≤N−2))
∫

PZN−1(dψ(N−1))

eL̃V (N−1)(
√

ZN−1ψ(≤N−1),J,J5)+RV (N−1)(
√

ZN−1ψ(≤N−1),J,J5) (82)

Therefore, after integrating in the same way ψ(N−1), ψ(N−2), ..., ψ(h+1)

eW(J,J5,0) =
∫

PZh
(dψ(≤h))eV (h)(

√
Zhψ(≤h),J,J5) (83)

with PZh
(dψ(≤h)) with propagator

ĝ
(≤h)
i (k) = χh(k)

(∑
μ

γ0γ̃
h
μa−1i sin(kμa)

+a−1γ̂h
0

∑
μ

(1 − cos kμa)

)−1

(84)

γ̃h
0 =

(
0 Zh,L,i(k)I

Zh,R,i(k)I 0

)

γ̃h
j =

(
0 iZh,L,i(k)σj

−iZh,R,i(k)σj 0

)
(85)

and

L̃V(h)(
√

Zhψ, J, J5)

= a4
∑

x

∑
i,s

[
νh,sγ

h
√

Zh,L,iZh,R,i(ψ+
i,L,xψ−

i,R,x + ψ+
i,R,xψ−

i,L,x)
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+ZJ
i,s,hJμ,xψ+

i,s,xσs
μψ−

i′,s,x + εsε̃iZ
5
i,s,hJ5

μ,xψ+
i,s,xσs

μψ−
i,s,x

]
(86)

and finally, if γ = α, s, i, μ, β

V (h−1)(
√

Zhψ(≤h−1), J, J5)

=
∑
l,m

a4l+4m
∑
x,z

∑
γ

W
(h−1)
l,m (x, z, γ)

⎡
⎣ l∏

j=1

ψ
≤h−1,εj

xj ,ij ,sj

⎤
⎦
⎡
⎣ m∏

j=1

Jβj
μj ,zj

⎤
⎦ (87)

and
||Wh−1)

l,m || = L−4 sup
γ

a4l+4m
∑
x,z

|W (h−1)
l,m (x, z)| (88)

The νk,i is a relevant running coupling constant representing the the renormal-
ization of the mass of the fermion of type i; Zk,i,s = (Zk,i,s, Z

J
k,i,s, Z

5
k,i,s) are

the marginal couplings and represent, respectively, the wave function renor-
malization of the fermion of type i and chirality s, and the renormalization
of the current and of the axial current. By construction, W (h−1) is a func-
tion of the kernels W (N+1) in V N+1 and of the running coupling constants
νN ,ZN , ..., νh,Zh; moreover, the running coupling constants verify recursive
equations of the form

νh−1,i = γνh,i + βh
ν,i(νN , ..., νh,W (N+1))

Zh−1,i,s = Zh,i,s + βh
ν,i,s(νN ,ZN ..., νh,Zh,W (N+1)) (89)

As should be clear from the previous pictures, the Wh and the βh can be
conveniently represented in terms as a sum of labelled trees, called Gallavotti
trees, see Fig. 4, defined in the following way (for details, see, e.g. §3 of [34]).

Let us consider the family of all trees which can be constructed by joining
a point r, the root, with an ordered set of n ≥ 1 points, the endpoints of
the unlabelled tree, so that r is not a branching point. n will be called the
order of the unlabelled tree and the branching points will be called the non-
trivial vertices. The unlabelled trees are partially ordered from the root to the
endpoints in the natural way; we shall use the symbol < to denote the partial

v0
v

v

hv N N + 1

Figure 4. A Gallavotti tree
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order. The number of unlabelled trees is ≤ 4n, see, e.g. §2.1 of [34]. The set of
labelled (or Gallavotti) trees Th,n are defined adding the above labels

(1) We associate a label h ≤ N −1 with the root and we introduce a family of
vertical lines, labelled by an integer taking values in [h,N +1] intersecting
all the non-trivial vertices, the endpoints and other points called trivial
vertices. The set of the vertices v of τ will be the union of the endpoints,
the trivial vertices and the non-trivial vertices. The scale label is hv and,
if v1 and v2 are two vertices and v1 < v2, then hv1 < hv2 . sv is the number
of subtrees with root v. Moreover, there is only one vertex immediately
following the root, which will be denoted v0 and cannot be an endpoint;
its scale is h + 1.

(2) To the end-points v of scale, hv ≤ N is associated L̃V (hv); there is the
constraint that the vertex v′ immediately preceding v, that is hv′ = hv−1
is non-trivial (as RL = 0). The end-points with hv ≤ N can be of type ν
or Z.

(3) To the end-points v of scale hv = N + 1 is associated one of the terms in
V (N+1)

(4) Among the end-points, one distinguish between the normal ones, associ-
ated with terms not containing Jμ, J5

μ, whose number is n̄ = n − m, and
the others which are called special.

(5) There is an R operation associated with each vertex except the end-
points and v0; if the tree contributes to RV h, it is associated R while if
it contributes to βh is associated L and sv0 ≥ 2.

(6) A subtree with root at scale k is called trivial if contains only the root
and an endpoint of scale k + 1

The effective potential can be written as:

V (h)(
√

Zhψ(≤h), J, J5) =
∞∑

n=1

∑
τ∈Th,n

V (h)(τ,
√

Zhψ(≤h), J, J5) , (90)

where, if v0 is the first vertex of τ and τ1, .., τsv0
are the subtrees of τ with

root v0, V (h) is defined inductively by the relation, h ≤ N − 1

V (h−1)(τ,
√

Zhψ(≤h), J, J5) =
(−1)sv0+1

sv0 !
ET

h[
V̄ (h)(τ1,

√
Zhψ(≤h), J, J5); ..; V̄ (h)(τsv0

,
√

Zhψ(≤h), J, J5)
]

(91)

where ET
h is the truncated expectation with propagator g

(h)
i and

• if τi is non-trivial V̄ (h)(τi,
√

Zhψ(≤h), J, J5) = RV (h)(τi,
√

Zhψ(≤h), J, J5)
• if τ is trivial it is equal to one of the terms in L̃V (h) if h < N , or to the

one of the terms in V (N+1) if h = N .

We can write therefore the kernels in (87) as

W
(h)
l,m(x, z) =

∞∑
n=1

∑
τ∈Th,n

W
(h)
l,m(τ, x, z) (92)
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It is also convenient to write

Th,n = T 1
h,n ∪ T 2

h,n (93)

with T 1
h,n is the subset of Th,n containing all the trees with only end-points

associated with L̃V k, while T 2
h,n contains the trees with at least one end-point

associated with V N+1. We define

W
i(h)
l,m (x, z, γ) =

∞∑
n=1

∑
τ∈T i

h,n

W
(h)
l,m(τ ;x, z, γ) (94)

with i = 1, 2 and W
(h)
l,m = W

1(h)
l,m +W

2(h)
l,m . A similar decomposition can be done

for

βh
ν =

∞∑
n=1

∑
τ∈T 2

h,n

βh
ν (τ) βh

Z =
∞∑

n=1

∑
τ∈T 2

h,n

βh
Z(τ) (95)

In this case by the compact support of the propagator only trees contributing
to T 2

h,n are present; the contribution from T 1 are “chain graphs” and the
localization corresponds in momentum space to setting k = 0, and ĝh(0) = 0.
Finally, we can write

Π5
μ,ν,ρ =

N∑
h=−∞

Π5,1
h,μ,ν,ρ +

N∑
h=−∞

Π5,2
h,μ,ν,ρ (96)

with Π5,i
h,μ,ν,ρ =

∑∞
n=1

∑
τ∈T i

h,n
Wh

0,3(τ). The following lemma holds, see Ap-
pendix 2.

Lemma 2.3. There exists a constant ε such that, for |Zk| ≤ eε(aM)2 ,
max(|νN |, . . . , |νh|, (λ/Ma)2 ≤ ε than if m ≤ 3, d is the distance between
any two coordinate

||dsW
j(h)
l,m || ≤ Cl+mγ(4−(3/2)l−m−s)hγϑj(h−N)εmax(l/2−1,1) (97)

with ϑ1 = 0 and ϑ2 = ϑ for a constant ϑ = 1/2; moreover,

|βh
ν | ≤ εγϑ(h−N) |βh

Z | ≤ εγϑ(h−N) (98)

The bound is proven showing the convergence of the expansion in νk, λ
under a smallness condition which is independent from h. Note that if we
perform a multiscale integration setting L = 0 then the condition would be
that λ ≤ εh with εh going to zero a h → −∞. The bound is similar to the one
in Lemma 1.2, with the same “dimensional” factor γ(4−(3/2)l−m)h.

A crucial point is that the contributions from trees T 2, that is the terms
obtained by the contraction of the irrelevant terms, have a gain γϑ(h−N) with
respect to the dimensional bounds. This fact, and the bound (98) with Zh−1 =
1 +
∑N

k=h βk
Z implies

|Z−∞ − 1| ≤ Cε |Z−∞ − Zh| ≤ Cεγϑ(h−N) (99)
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that is the wave function and the vertex renormalization is bounded uniformly
in h. In addition, we can rewrite (100) as

νh−1,i = γ−h

(
νN,i +

N∑
k=h

γkβ
(h)
ν,i

)
(100)

We consider the system

νh−1,i = γ−h

⎛
⎝−

∑
k≤h

γkβ
(h)
ν,i

⎞
⎠ (101)

We can regard the right side of (101) as a function of the whole sequence
νk,i, which we can denote by ν = {νk}k≤N so that (101) can be read as
a fixed point equation ν = T (ν) on the Banach space of sequences ν such
that ||ν|| = supk≤N γϑ(k−N)|νk| ≤ Cλ2(Ma)−2. By a standard proof, see, e.g.
Appendix A5 of [41], it is possible to prove that there is a choice of νi such
that the sequence is bounded for any h. With this choice

|νh| ≤ Cγϑ(h−N)ε (102)

This means that the νh,i is bounded so that the condition required in Lemma 2.3
is fulfilled; moreover, it is an easy consequence of the Proof of Lemma 2.3 and of
(102) that the limit L → ∞ can be taken; the proof is standard, see Appendix
E of [41]. Finally, we can choose Z5

i,s = 1 + O(ε) so that

Z5
i,s,−∞ = ZJ

i,s,−∞ (103)

We finally to apply the above results and get bounds for the three current
function. By (96) and the bound (97) with l = 0,m = 3, s = 0, we get∣∣∣∣∣

N∑
h=−∞

Π5
h,μ,ν,ρ(x, y, 0)

∣∣∣∣∣
1

≤ C

N∑
h=−∞

γh < CN (104)

hence the Fourier transform Π̂5
h,μ,ν,ρ(p1, p2) is continuous; in addition (97) with

l = 0,m = 3, s = 1 + ϑ/2 and j = 2∣∣∣∣∣
N∑

h=−∞

(
|x|1+ϑ/2 + |y|1+ϑ/2

)
Π5,2

h,μ,ν,ρ(x, y, 0)

∣∣∣∣∣
1

≤ C

N∑
h=−∞

γ−ϑ/2hγϑ(h−N) < C̄N

(105)
hence

∑N
h=−∞ Π̂5,2

h,μ,ν,ρ has continuous derivative.

Note that
∑N

h=−∞ Π̂5,1
h,μ,ν,ρ has a part from trees containing νh end-points

verifying (102), which by the above argument is again differentiable. We remain
then with the contribution from trees with three end points associated with
Z5, ZJ , ZJ . We can write the propagator as

g
(h)
i,s,s′(x, y) = δs,s′

1
L4

∑
k

fh(|k|T )
−iσs

μkμ
eik(x−y) + rh

i,s,s′(x, y) (106)
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where rh(x, y) is defined by the above equation as the difference; one can verify,
again by integration by parts, that for any K

|g(h)
i,s,s′(x, y)| ≤ 1

Zh,i,s
γ3(h+1) CK

1 +
(
γh+1|x − y|T̃

)K
|r(h)

i,s,s′(x, y)| ≤ γ3(h+1)γh−N CK

1 +
(
γh+1|x − y|T̃

)K (107)

The above decomposition says that the lattice propagator is equal to the con-
tinuum one up to a term with a similar decay with an extra γh−N . Again the
contribution of such terms is differentiable and finally we can replace the Zh

terms in
∑N

h=−∞ Π̂5,1
h,μ,ν,ρ with Z−∞ up again to differentiable terms, by (99).

In conclusion, we get, see Fig. 5

Π̂μ,ρ,σ (p1, p2) = Π̂a
μ,ρ,σ(p1, p2) + R̂μ,ρ,σ (p1, p2) (108)

with, p = p1 + p2,

Π̂a
μ,ρ,σ(p1, p2) =

∑
h1

h2,h3

∑
i,s

ε̃iεsQ
3
i

Z5
−∞,i,s

Z−∞,i,s

ZJ
−∞,i,s

Z−∞,i,s

ZJ
−∞,i,s

Z−∞,i,s

∫
dk

(2π)4
Tr

fh1(k)
iσs

μkμ
iσs

μ

fh2

iσs
μ(kμ + pμ)

iσs
ν

fh3

iσs
μ(kμ + p2

μ)
(iσs

ρ)

(109)

(108) says that the Fourier transform of the 3-current correlation can be de-
composed in the sum of two terms; the first Π̂a

μ,ρ,σ(p1, p2) is continuous and is a
sum of triangle graphs equal to the its analogue in the non-interacting continu-
ous case with momentum regularization, with vertex and wave function renor-
malizations depending on the species and chirality. The second R̂μ,ρ,σ(p1, p2)
is a complicate series of terms which is differentiable.

The renormalizations in Π̂a
μ,ρ,σ(p1, p2) are, however, the same appearing

in the 2-point and vertex correlations so that we can use the Ward identities;
we can write, see Appendix 2

Ŝi,s(k) =
1

(iσs
μkμ)

(
I

Zi,s,−∞
+ r1(k)

)
(110)

and

Γ̂μ,i,s(k, p) =
1

(iσs
μkμ)

ZJ
i,s,−∞

Z2
i,s,−∞

(iσs
μ + r2,μ(k, p))

1
(iσs

μ(kμ + pμ))
(111)

with |r1(k)| ≤ C(a|k|)ϑ and |r2,μ(k, p)| ≤ C(a|k|)ϑ with |p| ≤ |k|.
By inserting (110), (111) in the Ward identities (35), we get exact rela-

tions between the wave and vertex renormalizations, that is

ZJ
−∞,i,s

Z−∞,i,s
= 1 (112)
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= +

Figure 5. Graphical representation of (108)

Note the crucial fact that the contribution from the terms ri,μ, coming from
the trees T 2, is subleading. In conclusion, we get

Π̂5
μ,ρ,σ = Îμ,ρ,σ + R̂μ,ρ,σ (113)

with R̂ with Holder continuous derivative and

Îμ,ρ,σ(p1, p2) =

(∑
i

ε̃iQ
3
i

)∫
dk

(2π)4
Tr

χ(k)
� k γμγ5

χ(k + p)
� k+ � p γν

χ(k + p2)
� k+ � p2

γσ

(114)
Note that Îμ,ρ,σ(p1, p2) is the anomaly for non-interacting relativistic con-
tinuum fermions with a momentum regularization which violates the vector
current conservation, see [29], §3.6 for the explicit computation

∑
μ

(p1,μ + p2,μ)Îμ,ν,σ =
(
∑

i ε̃iQ
3
i )

6π2
p1,αp2,βεαβνσ

∑
ν

p1,ν Îμ,ν,σ =
(
∑

i ε̃iQ
3
i )

6π2
p1,αp2,βεαβμσ (115)

up to O(aϑ|p̄|2+ϑ) corrections. In contrast to Îμ,ρ,σ, we have that R̂μ,ρ,σ has
not a simple explicit expression, being expressed in terms of a convergent
series depending on all the lattice and interaction details. However, we use the
differentiability of R̂μ,ρ,σ(p1, p2) to expand it at first order obtaining, again up
to O(aϑ|p̄|2+ϑ) corrections, using the Ward identity

1
6π2

(∑
i

ε̃iQ
3
i

)
p1,αp2,βεαβμσ +

∑
ν

p1,ν

(
R̂μ,ν,σ(0, 0)

+
∑

a=1,2

∑
ρ

pa,ρ
∂R̂μ,ν,σ

∂pa,ρ
(0, 0)

)
= 0

This implies that
R̂μ,ν,σ(0, 0) = 0 (116)

and

∂R̂μ,ν,σ

∂p2,β
= − 1

6π2
ενβμσ

(∑
i

ε̃iQ
3
i

)
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∂R̂μ,ν,σ

∂p1,β
(0, 0) =

1
6π2

ενβμσ

(∑
i

ε̃iQ
3
i

)
(117)

Finally, using such values we get

∑
μ

(p1,μ + p2,μ)Π̂5
μ,ν,σ(p1, p2) =

∑
α,β

(
∑

i ε̃iQ
3
i )

6π2
p1,αp2,βεαβνσ

+
∑
μ,β

(p1,μ + p2,μ)

(
R̂μ,ν,σ

∂p2,β
(0, 0)p2,β +

R̂μ,ν,σ

∂p1,β
(0, 0)p1,β

)
(118)

and the second term in the r.h.s. is

− 1
6π2

(p1,μ + p2,μ)
∑

a=1,2

(−1)apa,βενβμσ

(∑
i

ε̃iQ
3
i

)

=
1

3π2
p1,μp2,βενβμσ

(∑
i

ε̃iQ
3
i

)
(119)

which implies Theorem 1.1 �
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3. Appendix 1: Truncated Expectations

3.1. The Brydges–Battle–Federbush Formula

The starting point is the formula

EA

(
n∏

i=1

eiεiαiAμi
(xi)

)
= e

− 1
2

∑
i,j εiεjαiαjgA

μi,μj
(xi,xj) (120)

Let us define
e−V ≡ e− 1

2

∑
j,j′∈X V̄j,j′ (121)

with X = (1, 2, .., n) and
∑

i,j∈X V̄i,j =
∑

i≤j Vi,j V̄i,i = Vi,i and Vi,j = (V̄i,j +
V̄j,i)/2.

The connected part e−V (X)|T (corresponding to the truncated expecta-
tion) verify

e−V (X) =
∑

π

∏
Y ∈π

e−V (Y )|T (122)

where π are the partitions of X, that is Y1, Y2, ... with Y1 ∪ Y2 ∪ .. = X.
If X1 = {1}, we can define

WX(X1; t1) =
∑

�

t1(l)Vl (123)

where � = (j, j′) is a pair of elements j, j′ ∈ X and t1(l) = t1 if l crosses the
boundary of X1 (∂X1), that is if it connect 1 with j �= 1; t1(�) = 1 otherwise.
More explicitly,

WX(X1, t1) = V1,1 + t1
∑
k≥2

V1,k +
∑

2≤k≤k′
Vk,k′

= t1

⎛
⎝V1,1 +

∑
k≥2

V1,k +
∑

2≤k≤k′
Vk,k′

⎞
⎠

+(1 − t1)

⎛
⎝V1,1 +

∑
2≤k≤k′

Vk,k′

⎞
⎠

= t1V (X) + (1 − t1) (V (X1) + V (X/X1)) (124)

We get WX(X1, 0) = V (X1) + V (X/X1), that is if t1 = 0 X1 is disconnected
from the rest. Therefore, using that ∂1W (X1, t1) =

∑
k≥2 V1,k =

∑
l1

Vl1 we
can write

e−V (X) =
∫ 1

0

dt1∂1e
−WX(X1,t1) + e−WX(X1,0) (125)

and

e−V (X) =
∫ 1

0

dt1
∑
k≥2

V1,ke−WX(X1,t1) + e−V (X1)e−V (X/X1) (126)

We have therefore expressed e−V (X) as the sum of two terms; in the first
there is a bond (1, k) between X1 and the rest is found, in the second X1 is
decoupled. If n = 2, the first term is the connected part.
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If n �= 2, we further decompose the first term in the r.h.s of (126); we
write X2 = {1, k} and∫ 1

0

dt1
∑
k≥2

V1,ke−WX(X1,t1)

=
∫ 1

0

dt1
∑
k≥2

V1,k

∫ 1

0

dt2∂t2e
−WX(X1,X2;t1,t2)

+
∫ 1

0

dt1
∑
k≥2

V1,ke−WX(X1,X2;t1,0) (127)

where

WX (X1,X2, t1, t2) = (1 − t2) [WX2(X1, t1) + V (X/X2)] + t2WX (X1, t1)
(128)

and for X2 = (1, 2)

WX (X1,X2, t1, t2) = V1,1 + V2,2 + t1t2
∑
k≥3

V1,k + t1V1,2

+t2
∑
k≥3

V2,k +
∑

3≤k≤k′
Vk,k′ (129)

Suppose that X = {1, 2, 3} and X2 = {1, 2}, then WX3(X1,X2, t1, t2) = V1,1 +
V2,2 + t1t2V1,3 + t1V1,2 + t2V2,3 + V3,3 and∫ 1

0

dt1V1,2e
−WX(X1,t1) =

∫ 1

0

dt1V1,2

∫ 1

0

dt2(t1V1,3 + V2,3)e−WX(X1,X2;t1,t2)

+
[∫ 1

0

dt1V1,2e
−WX2 (X1;t1)

]
e−V (X/X2) (130)

and the first term is connected; similar expressions for X2 = {1, 3}.
Proceeding in this way

e−V (X) =
n∑

r=1

∑
Xr⊂X

∑
X1,..,Xr−1

∑
T

[∏
�∈T

Vl

]

⎡
⎣ ∑

X1,..,Xr−1

∫ 1

0

dt1...

∫ 1

0

dtr−1

∏
�∈T

∏r−1
k=1 tk(�)
tn(�)

e−WXr (X1,..,Xr−1;t1,..,tr−1)

⎤
⎦

e−V (X/Xr) (131)

where X1 ⊂ X2 ⊂ ...Xr−1 are sets such that |Xi| = i, T is a tree composed by
r − 1 lines � = (j, j′) such that all the boundaries ∂Xk are intersected at least
by a line � = (j, j′),

WX (X1, . . . , Xr; t1, . . . , tr) =
∑

l

t1(l)t2(l) . . . tr(l)Vl (132)

with ti(l) = ti if l crosses ∂Xi and ti(l) = 1 otherwise, n(l) is the max over
k such that l crosses ∂Xk. For instance, in the case (130) the trees are l1 =
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(1, 2), l2 = (2, 3) so that t1(l1) = t1, t1(l2) = 1, t2(l2) = t2; and l1 = (1, 2),
l2 = (1, 3) so that t1(l1) = t1 and t1(l2) = t1,t2(l2) = t2.

We can reverse the sum over T and X∑
T

∑
X1,...,Xr−1

=
∑

X1,...,Xr−1

∑
T

(133)

where in the l.h.s. the sets have to be compatible with T . If n′(�) is the minimal

k such that � crosses Xk we have
∏r−1

k=1 tk(�)
tn(�)

= tn′(�) . . . tn(�)−1 and, see, e.g.
Lemma 2.3 in [34]

∑
X1,...,Xr−1

fixedT

∫ 1

0

dt1 . . .

∫ 1

0

dtr−1tn′(�) . . . tn(�)−1 = 1 (134)

By calling

dpT (t) =
∑

X1,..,Xr−1
fixedT

∏r−1
k=1 tk(l)
tn(l)

(135)

we get

e−V (X)|T =
∑
T

[∏
�∈T

Vl

]∫ 1

0

dtdpT (t)εe
∑

�∈X tn′(�)...tn(�)−1V� (136)

where � ∈ X means j, j′ ∈ (1, .., n).

3.2. The Gawedzki–Kupiainen–Lesniewski Formula

We can write the simple expectations as

E
(
ψ̃(P1)...ψ̃(Pr)

)
=
∫ ∏

i,j

dηi,je
−
∑

j,j′ Vjj′ (137)

with Vjj′ =
∑|Pj |

i=1

∑|P ′
j |

i′=1 η+
xij

g(xij , xi′j′)η−
xi′j′ and η±

i,j is a set of Grassmann

variables. Again, we can write e−
∑

j,j′ Vjj′ as in (131) obtaining

ET
(
ψ̃(P1)...ψ̃(Pr)

)
= (138)

∫ ∏
dη+

i,jdη−
i,j

∑
T

[∏
l∈T

Vl

]∫ 1

0

dtdpT (t)ε−
∑

�∈Xtn′(�)...tn(�)−1V� (139)

with V� =
∑

i

∑
i′ η+

i,jg(xij , xi′j′)η−
i,j , � = (j, j′). For each tree T , we divide

the η in the ones appearing in T , called η̃, and the rest, called η̄ so that, if∑
�∈X′ tn′(�)...tn(�)−1V� = Ṽ (t) + V̄ (t) with V̄ (t) obtained setting η̃ = 0

ET
(
ψ̃(P1)...ψ̃(Pr)

)
=
∑
T

[∏
l∈T

g�

]∫ 1

0

dtdpT (t)
∫ ∏

dη̄+
i,jdη̄−

i,jε
−V̄ (t) (140)

and
∏

dη̄+
i,jdη̄−

i,jε
−V̄ (t) = det GT with GT with elements tn′(j,j′)...tn(jj′)−1

g(xij , xi′j′). Fixed T we can relabel the Xk so that tj ...tj′−1 = ujuj′ with
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u1 = v1, uj = tj−1uj−1 + vj

√
1 − t2j−1 with vj orthonormal, and u1u2 = t1,

u1u3 = t1t2, u2u3 = t2 and so on.

4. Appendix 2: Proof of Lemma 2.3

The proof is a generalization of the Proof of Lemma2.2 adapted to the tree
structure. We define Pv as the set of field labels of the external fields of v and
if v1, . . . , vsv

are the sv vertices immediately following v, we denote by Qvi
the

intersection of Pv and Pvi
. This definition implies that Pv = ∪iQvi

. The union
of the subsets Pvi

\Qvi
are the internal fields of v. The set of all Pv, v ∈ τ is

called P, and the set of all Pv with v ∈ τi is called Pi. From (91) we get, if
nv0 is the number of coordinate

V (h)(τ) =
∑
P

a4nv0

∑
xv0

W
(h)
τ,P (xv0)

⎡
⎣ ∏

f∈Pv0

√
Zhψ

ε(f)(≤h)
x(f),i(f),s(f)

⎤
⎦
⎡
⎣∏

f

J(xf )

⎤
⎦

(141)
By definition, we have a truncated expectation associated with each v in the
tree τ non-associated with an end-point; we can write each of them by the
Gawedzki–Kupiainen–Lesniewski formula. The R operation is applied and by
an iterative procedure one can show that the number of zeros associated with
propagators of T and the derivative on the fields is bounded by a constant; see
e.g. §3 of [22].

The bound is obtained using the Gram bound for the determinant; to each
vertex is therefore associated a spanning tree Tv which is used to perform the
sum over the coordinate difference, and T = ∪vTv. The sum over coordinates
of the propagators in T and the estimates of the determinants give a factor
γ−4hv(sv−1)γ3/2hv(

∑
i |Pvi

|−|Pv|), if Sv is the number of subtrees with root v.
The renormalization produces a factor

∏
v γ−zv(hv−hv′ ) is produced by the

R operation and zv = 2 if |Pv| = 2 and there are no J fields, zv = 1 if
|Pv| = 2 and there is a single J field, zv = 0 otherwise. To the end points
not ν, Z is with i ψ fields and j J fields is associated by lemma 2.1 a factor
γ(4−3iv/2−jv)N (λiv/2(aM)2−iv ) with (4 − 3iv/2 − jv) < 0 and iv ≥ 4 and
(aM)2−iv < (aM)−2. We get therefore

a4nv0

∑
xv0

|Wτ,P (xv0) | ≤ L4
∑
T

∏
v not e.p.

1
sv!

C
∑sv

i=1 |Pvi
|−|Pv|γ−4hv(sv−1)

γ3/2hv(
∑

i |Pvi
|−|Pv|)

[∏
v

γ−zv(hv−hv′ )

]

⎡
⎣ ∏

v e.p. not ν,Z

γ(4−3iv/2−jv)N

⎤
⎦
[ ∏

v e.p. ν

γhv

]
εn̄

(142)
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By using that

∑
v

(hv − h)(sv − 1) =
∑

v

(hv − hv′)

⎛
⎝∑

i,j

mi,j
v − 1

⎞
⎠

∑
v

(hv − h)

(∑
i

|Pvi
| − |Pv|

)

=
∑

v

(hv − hv′)

⎛
⎝∑

i,j

imi,j
v − |Pv|

⎞
⎠ (143)

where mi,j
v is the number of end-points following v with i ψ fields and j J

fields, we get

a4nv0

∑
xv0

|Wτ,P,T (xv0) | ≤ L4γ
−h
[
−4+

3|Pv0 |
2 −

∑
i,j(3i/2−4)mi,j

v0

]
εn̄

∏
v not e.p.

{
1

sv!
C
∑sv

i=1 |Pvi
|−|Pv|γ−(−4+ 3|Pv|

2 −
∑

i,j(3i/2−4)mi,j
v +zv)(hv−hv′ )

}

[ ∏
v e.p. not ν

γ(4−3iv/2−jv)N

][ ∏
v e.p. ν

γhv

]

We use now that

γh
∑

i,j mi,j
v0

∏
v not e.p.

γ
∑

i,j(hv−hv′ )mi,j
v =

∏
v e.p.

γhv∗ (144)

where v∗ is the first non-trivial vertex following v; this implies

γh
∑

i,j(3i/2−4)mi,j
v0

∏
v not e.p.

γ
∑

i,j(3i/2−4)mi,j
v (hv−hv′ )

=
∏

v e.p not ν

γhv∗ (3iv/2−4)
∏

v e.p. ν

γ−hv (145)

so that

a4nv0

∑
xv0

|Wτ,P,T (xv0) | ≤ L4γ
−h
[
−4+

3|Pv0 |
2

] ∏
v e.p not ν

γhv∗ (3iv/2−4)εn̄

∏
v not e.p.

{
1

sv!
C
∑sv

i=1 |Pvi
|−|Pv|γ−(−4+ 3|Pv|

2 +zv)(hv−hv′ )
}

[ ∏
v e.p. not ν

γ(4−3iv/2−jv)N

]
(146)

Finally, we use the relation[ ∏
v e.p.

γhv∗ jv

][ ∏
v e.p.

γ−hv∗ jv

]
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=

[ ∏
v e.p.

γhv∗ jv

]
γ−h

∑
i,j jmi,j

v0

∏
v not e.p.

γ−
∑

i,j(hv−hv′ )jmi,j
v (147)

and using that
∑

i,j jmi,j
v = nJ

v , we finally get (jv = 0 if v is a ν-e.p.)

a4nv0
∑
xv0

|Wτ,P,T (xv0 ) | ≤ L4γ
−h

[
−4+

3|Pv0 |
2 +nJ

v0

]
εn̄
h

∏
v not e.p.

{
1

sv !
C
∑sv

i=1 |Pvi
|−|Pv|γ−

(
−4+

3|Pv|
2 +zv+nJ

v

)
(hv−hv′)

}

⎡
⎣ ∏

v e.p. not ν,Z

γ(4−3iv/2−jv)(N−hv∗ )

⎤
⎦

In conclusion,

a4nv0
∑
xv0

|Wτ,P,T (xv0 ) | ≤ L4γ−hdv0 Cnεn̄

[∏
ṽ

1

sṽ !
γ−dṽ(hṽ−hṽ′ )

]⎡
⎣ ∏

v e.p. not;ν,Z

γ(4−3iv/2−jv)(N−hv∗ )

⎤
⎦

(148)

where ṽ ∈ Ṽ are the vertices on the tree such that
∑

i |Pvi
|− |Pv| �= 0, ṽ′ is the

vertex in Ṽ immediately preceding ṽ or the root; dv = −4 + 3|Pv|
2 + nJ

v + zv.
Finally, the number of addenda in

∑
T∈T is bounded by

∏
v sv! C

∑sv
i=1 |Pvi

|−|Pv|,
see e.g. §2.1 of [38]. In order to bound the sums over the scale labels and P,
we first use the inequality

∏
ṽ

γ−dṽ(hṽ−hṽ′ ) ≤
[∏

ṽ

γ− 1
2 (hṽ−hṽ′ )

][∏
ṽ

γ− 3|Pṽ|
4

]
(149)

where ṽ are the non-trivial vertices, and ṽ′ is the non-trivial vertex immediately
preceding ṽ or the root. The factors γ− 1

2 (hṽ−hṽ′ ) in the r.h.s. allow to bound
the sums over the scale labels by Cn and

∑
P

∏
ṽ γ− 3|Pṽ|

4 ≤ Cn, see §3.7 of of
[34].

Let us consider the improvement of the bound. If T ∗ is the set of trees
with at least an end-point not of ν, Z type then, for 0 < ϑ < 1
∑

τ∈T ∗

∑
P,T

a4nv0

∑
xv0

|Wτ,P,T (xv0) | ≤ L4γ(4−(3/2)l−m)hγϑ(h−N)εmax(l/2−1,1)

(150)
To prove (150), let be v̂ the non-trivial vertex following an end-point not of
ν, Z type; hence, we can rewrite in (148)

[∏
ṽ

γ−dṽ(hṽ−hṽ′ )

]
=

[∏
ṽ

γ−(dṽ−ϑ)(hṽ−hṽ′ )

]
γϑ(h−hv̂) (151)
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and

γϑ(h−hv̂)

⎡
⎣ ∏

v e.p. not ν,Z

γ(4−3iv/2−jv)(N−hv∗ )

⎤
⎦ ≤ γϑ(h−N) (152)

as
∏

v e.p. not ν,Z γ(4−3iv/2−jv)(N−hv∗ ) ≤ γ−ϑ(N−hv̂) as there is at least an end-
point not ν, Z. Noting that dṽ −ϑ > 0 one can perform the sum as above, and
the same bound is obtained with an extra γϑ(h−N). �

In the presence of a φ term, there is a new relevant coupling proportional
to ψφ, whose local part is vanishing again by the compact support of the
propagator. We can compare the bound from the one of a term of the effective
potential with l = 2 with two ν end-points. On each tree there is a vertex with
scale h̄ which is the root of the subtree to which belong both the end-points
associated with (ψφ); there is an integral missing giving an extra factor γ4h̄ and
a γ−2h̄ from the lack of the ν end-points. There is a decay factor proportional
to x − y at scale γh̄ and, from the trees belonging to T ∗, an extra γϑ(h−N);
see e.g. §3.D of [25]. A similar argument holds for the vertex function. Finally
the proof of the L → ∞ limit is an easy corollary of the Proof of Lemma 2.3,
see e.g. Appendix D of [25].

5. Appendix 3: Symmetries

By symmetry, there are no quadratic contributions with i′ �= i. There is invari-
ance under the transformation ψ±

k,s → εsψ
∓
k̃,s

σ1, Jk Ak → Jk̃, Ak̃ invariant, if

k̃ is equal to k with k0, k1 replaced with −k0,−k1 and k2, k3 invariant. As j =
(2, 3) σ1σjσ1 = −σj hence

∑
k sin kjψ

+
k,sσjψ

−
k,s →

∑
k sin kjψ

−
k̃,s

σ1σjσ1ψ
+

k̃,s
=∑

k sin kjψ
+
k,sσ0ψ

−
k and for j = 0, 1 σ1σjσ1 = σj hence

∑
k sin kjψ

+
k,sσ0ψ

−
k →∑

k sin kjψ
−
k̃,s

σ1σjσ1ψ
+

k̃,s
=
∑

k sin kjψ
+
k,sσjψ

−
k,s; and

∑
k cos kjψ

+
k,Lσ0ψ

−
k,R →∑

k − cos kiψ
−
k̃,L

σ1σ0σ1ψ
+

k̃,R
. Similarly there is invariance under the transfor-

mation ψ±
k,s → εsψ

∓
k̃,s

σ2, Jk Ak → Jk̃, Ak̃ invariant, if k̃ is equal to k with k0, k2

replaced with −k0,−k2 and k1, k3 invariant. As σ2σjσ2 = −σj j = (1, 3) hence∑
k sin kjψ

+
k,sσjψ

−
k,s →

∑
k sin kjψ

−
k̃,s

σ1σjσ1ψ
+

k̃,s
=
∑

k sin kjψ
+
k,sσ0ψ

−
k and for

j = 0, 2 σ2σjσ2 = σj hence
∑

k sin kjψ
+
k,sσ0ψ

−
k →

∑
k sin kjψ

−
k̃,s

σ1σjσ1ψ
+

k̃,s
=∑

k sin kjψ
+
k,sσjψ

−
k,s; and

∑
k cos kjψ

+
k,Lσ0ψ

−
k,R → −

∑
k cos kiψ

−
k̃,L

σ1σ0σ1ψ
+

k̃,R
.

We can write
∑

k k2ψ
+

k̃,s
A2ψ

−
k̃,s

=
∑

k k2[aσ0 + bμσ1 + cμσ2 + dμσ3]. We

apply the first transformation to
∑

k k2ψ
+
k,sψ

−
k,s(aσ0 + bσ1 + cσ2 + dσ3) →

−
∑

k k2ψ
+

k̃
σ1(aσ0 + bσ1 + cσ2 + dσ3)σ1ψ

−
k̃

= −
∑

k k2ψ
+
k,sψ

−
k,s(aσ0 + bσ1 −

cσ2 − dσ3)σ1ψ
−
k hence a = b = 0. Now we apply the second transforma-

tion then
∑

k k2ψ
+
k,sψ

−
k,sσ2(cσ2 + dσ3)σ2 → −

∑
k k2ψ

+

k̃,s
ψ−

k̃,s
(cσ2 − dσ3) =∑

k k2ψ
+

k̃,s
ψ−

k̃,s
(cσ2−dσ3) hence d = 0. Then

∑
k k2ψ

+

k̃,s
Aψ−

k̃,s
=
∑

k k2bψ
+
k,sσ2ψ

−
k,s,

and the geeral relation follows from isotropy. Proceeding in a similar way with
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the terms with different chirality
∑

k k2b̃ψ
+

k̃,L
σ2ψ

−
k̃,R

→ −
∑

k k2b̃ψ
+

k̃,L
σ2ψ

−
k̃,R

hence b̃ = 0.
Finally by the first tranformation

∑
k ψ+

k,Lψ−
k,R(aσ0 + bσ1 + cσ2 +dσ3) →∑

k ψ+

k̃,L
σ1(aσ0+bσ1+cσ2+dσ3)σ1ψ

−
k̃,R

=
∑

k ψ+
k,L(aσ0+bσ1−cσ2−dσ3)σ1ψ

−
k,R

so that c = d = 0; by the second
∑

k ψ+
k,Lψ−

k,R(aσ0 + bσ2) →
∑

k ψ+

k̃,L
σ2(aσ0 +

bσ1)σ2ψ
−
k̃,R

=
∑

k ψ+
Lσ2(aσ0 − bσ1)σ2ψ

−
k,R; hence, b = 0.
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