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Abstract. We provide a new construction of infraparticle states in the
massless Nelson model. The approximating sequence of our infraparticle
state does not involve any infrared cut-offs. Its derivative w.r.t. the time
parameter t is given by a simple explicit formula. The convergence of
this sequence as t → ∞ to a nonzero limit is then obtained by the Cook
method combined with stationary phase estimates. To apply the latter
technique, we exploit recent results on regularity of ground states in the
massless Nelson model, which hold in the low coupling regime.
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1. Introduction

The massless Nelson model is a time-honoured theoretical laboratory for the
infrared aspects of QED. One of its variants, which we consider in this work,
describes one non-relativistic massive particle (‘the electron’), interacting with
massless scalar bosons (‘the photons’). The coupling between the electrons and
photons is chosen in such a way that the model exhibits the infraparticle prob-
lem, i.e. it does not contain physical states describing the electron in empty
space. In other words, the electron is always encircled by an ever larger halo
of ever softer photons, and it is a challenge to mathematically describe the
resulting composite object, usually called an infraparticle. Two milestones in
rigorous understanding of this problem are works of Fröhlich [19,21] and Pizzo
[32,33]. The latter two papers actually give a complete discussion of the in-
fraparticle in the Nelson model and of its collisions with (hard) photons. Also
collisions of an infraparticle with a Wigner-type particle (‘an atom’) in a Nelson
model with two massive particles are under control [17]. However, scattering
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of several infraparticles appears steeply difficult in the conventional approach
from [33], as discussed in detail in [17, Introduction]. One reason is that the
approximating sequence of the infraparticle state from [33] and the proof of its
convergence are technically quite intricate, which may be due to limited spec-
tral information on the model available back then. Given intervening advances
in spectral theory [1,15,16], we revisit the subject and propose a simpler ap-
proximating sequence of the infraparticle in the Nelson model. Its convergence
to a non-trivial limit is relatively straightforward, given the currently available
spectral ingredients. Needless to say, our discussion above only touched upon
the broad topic of spectral and scattering theory in non-relativistic QED, see
e.g. [3,6,8,9,13,18,36], and no systematic review is attempted here.

To explain our construction, let us recall the definition of the Nelson
model. The Hilbert space of the model is H = L2(R3

x;F), where F is the
symmetric Fock space over L2(R3

k). For introductory material on the theory
of Fock spaces, we refer the reader to [34, Sect. X.7]. Thus, we will treat ψ ∈ H
as F-valued square-integrable functions {ψ(x)}x∈R3 , whose scalar product has
the form

〈ψ1, ψ2〉H =
∫

d3x 〈ψ1(x), ψ2(x)〉F . (1.1)

The creation and annihilation operators on F are denoted by a(∗)(f), f ∈
L2(R3

k), and their sharp variants by k �→ a(∗)(k). We will also occasionally
write

Φ(f) := a∗(−if) + a(−if). (1.2)

The Hamiltonian of the Nelson model has the form

H =
(−i∇x)2

2
+ Hf + a(vx) + a∗(vx). (1.3)

Here, x and −i∇x are the position and momentum operators on L2(R3
x),

(Hf , Pf) := (dΓ(|k|),dΓ(k)) denote the energy-momentum operators of
non-interacting photons and vx(k) = v(k)e−ik·x, where v(k) := λ χκ(k)√

2|k| and

|λ| ∈ (0, λ0] is the coupling constant, whose maximal value λ0 will be suf-
ficiently small but nonzero. Here, χκ ∈ C∞

0 (R3) is a smooth approximate
characteristic function of the ball of radius κ = 1.1 We choose this function
rotation invariant, supported in the ball of radius κ and equal to one on a ball
of a slightly smaller radius (1−ε0)κ for some 0 < ε0 < 1. By the Kato–Rellich
theorem, H is a self-adjoint operator on D(1

2 (−i∇x)2 +Hf). This elementary
observation dates back to [30], for a textbook discussion in a similar model we
refer to [36, Sect. 13.3]. The origin of the infrared problem lies in the fact that
v(k)/|k| /∈ L2(R3

k), as will be recalled later in Sect. 2.
Recalling that the model is translation invariant, we denote by {Hp}p∈R3

the usual fibre Hamiltonians acting on the fibre Fock space Ffi, satisfying

H = Π∗
(∫ ⊕

d3p Hp

)
Π, Π = FeiPf ·x, (1.4)

1Although κ = 1, it is convenient to keep it in the notation.
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where F is the Fourier transform in the x variable. In our construction of
infraparticle scattering states we will identify the fibre Fock space Ffi with the
physical Fock space F which is the reason for the appearance of the unitary
Π explicitly in formula (1.8). After this identification, the fibre Hamiltonians
are the following self-adjoint operators on D(P 2

f + Hf) ⊂ F

Hp :=
1
2
(p − Pf)2 + Hf + a∗(v) + a(v), p ∈ R

3. (1.5)

We denote the infimum of the spectrum of Hp by Ep. One manifestation of the
infraparticle problem is that Ep is not an eigenvalue. This has been established
in considerable generality in [11,21,32]. For p ∈ S, where

S := { p′ ∈ R
3 | |p′|<1/3 } (1.6)

and λ0 sufficiently small we know in addition from [1] that p �→ Ep is real
analytic and |∇Ep| < 1/2 for p ∈ S (cf. Lemma 3.1). It is also well-known that
the modified Hamiltonian Hw

p , obtained from Hp by the Bogolubov transfor-
mation

a(∗)(k) �→ a(∗)(k) − fp(k), fp(k) := λ
χκ(k)√

2|k|
1

|k|(1 − ek · ∇Ep)
, ek := k/|k|,

(1.7)

is self-adjoint on D(P 2
f +Hf) and Ep is its eigenvalue at the bottom of the spec-

trum corresponding to an eigenvector φp [32]. (Its phase is chosen in the follow-
ing in accordance with [15, Definition 5.2].) Such a change in the character of
Ep is possible because fp /∈ L2(R3), and hence, the Bogolubov transformation
(1.7) is not unitarily implementable.

After these preparations we are ready to define the approximating se-
quences of the infraparticle states. Motivation for this formula is given in
Sect. 2, and in Conclusions, we relate it to the Faddeev–Kulish approach. For
any h ∈ C∞

0 (R3) supported in S and any time parameter t ∈ R, we set

ψt(x) := eiHte−iPf ·x

× 1

(2π)3/2

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W

(
fp(e−i|k|t+ik·x − 1)

)
φp, (1.8)

γ(p, x, t) :=

∫
d3kfp(k)2 sin(|k|t − k · x), (1.9)

where W (g) := ea∗(g)−a(g), g ∈ L2(R3
k), is a Weyl operator on F . It is well-

defined for g(k) := fp(k)(e−i|k|t+ik·x−1) for any (t, x) ∈ R
4. This is due to the

fact that |e−i|k|t+ik·x−1| ≤ |k|(|x|+|t|) and hence k �→ fp(k)(e−i|k|t+ik·x−1) is
square integrable, unlike fp, cf. Lemma E.1. The integral in (1.8) is well-defined
as a Bochner integral in F , since S � p �→ φp is Hölder continuous in norm
by [32] (which can also be seen by [15, formulas (1.8), (A.4) and Corollary
5.6] combined with Lemma C.3 below). This integral belongs to L2(R3

x;F) by
Lemma 4.5. Our main result is the following:
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Theorem 1.1. There is such λ0 > 0 that the following holds: For any t ∈ R,
the vector ψt given by (1.8) belongs to L2(R3

x;F). The derivative ∂tψt exists
in norm in L2(R3

x;F), and we have

∂tψt(x) = eiHte−iPf ·x

× 1

(2π)3/2

∫
d3p ei(p·x−Ept)eiγ(p,x,t)iγint(p, x, t)h(p)W (fp(e−i|k|t+ik·x − 1))φp,

(1.10)

where γint(p, x, t) := 2
∫

d3k fp(k)2(|k| − k · ∇Ep) cos(|k|t − k · x) is rapidly
decreasing in the region |x|/t < 1 (cf. Lemma 4.7). Furthermore,∫ ∞

0

dt ‖∂tψt‖H < ∞, (1.11)

hence ψ+ := limt→∞ ψt exists in the norm of L2(R3
x;F). For h �= 0 and

|λ| ∈ (0, λ0] sufficiently small, ψ+ �= 0. Analogous statements hold for incoming
scattering states.

The most remarkable part of the theorem is the explicit formula for ∂tψt

given in (1.10). It can be anticipated by formal computations on F noting the
key relation

T (p, x, t)∗ (−i∇x − Pf) T (p, x, t) = −i∇x − Pw
f ,

T (p, x, t) := W (fp(e−i|k|t+ik·x − 1))eiγ(p,x,t),
(1.12)

where Pw
f is obtained from Pf via the Bogolubov transformation (1.7). Rela-

tion (1.12) allows to reconstruct Hw
p in front of φp and make use of Hw

p φp =
Epφp. It dictates our choice of the phase γ, and it is noteworthy that the re-
sulting γint enjoys a rapid decay in t in the physical region of velocities of the
electron. This coincidence suggests that our approximating vector (1.8) cap-
tures optimally the asymptotic dynamics of the Nelson model in the infrared
regime. The decay of γint is the driving force of our convergence argument
based on the Cook method [10,35]. It also allows for a simple proof of non-
triviality of the limit for small |λ|.

Given formula (1.10) and the above remarks, it may seem very easy
to prove the theorem. But it should be kept in mind that estimate (1.11)
must hold in the norm of L2(R3

x;F), which involves the integral over the
whole space, cf. formula (1.1). To control this integral, we use the stationary
phase method, which generates derivatives w.r.t. p up to the second order (cf.
Lemma 4.1). Since differentiability of p �→ φp is not settled, we have to ap-
proximate φp with φp,σ, which come from the Nelson model with an infrared
cut-off σ > 0 in the interaction. The function p �→ φp,σ is differentiable, and
its derivatives up to the second order have only a mild infrared divergence of
the form

‖∂α
p φp,σ‖F ≤ cσ−δλ0 , |α| = 0, 1, 2, (1.13)

where δλ0 > 0 tends to zero with λ0 → 0. This estimate, and similar bounds
for the wave functions of φp,σ, rely on technical advances from [15,16]. Thus, at
our present level of understanding, we can eliminate the infrared cut-off from
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the formulation of Theorem 1.1, but not from its proof. As mentioned above,
to eliminate the cut-off also from the proof it seems necessary to establish
differentiability of p �→ φp. For some ideas in this direction, we refer to [15,
formula (1.9)] and a cancellation of infrared singularities conjectured in this
formula.

This paper is organized as follows: In Sect. 2, we provide motivation for
our infraparticle ansatz (1.8). In Sect. 3, we give some technical information,
in particular about the model with infrared cut-off. Section 4 is devoted to the
proof of Theorem 1.1. In Conclusions, we provide a brief comparison of our
infraparticle states with the Faddeev–Kulish approach. More technical parts
of the discussion are postponed to Appendices.

2. Motivation for the Infraparticle Ansatz (1.8)

The fibre decomposition and the associated transformation, both seen in (1.4),
are due to Lee, Low and Pines [27] and have been used ever since. We find
it convenient to phrase that transformation as a superposition instead. To
convey the quite trivial idea, let us first consider the simpler case of functions
Ψ ∈ L2(Rx), which can be written as Ψ = (2π)−1/2

∫
dp Ψp where Ψp = Ψp(x)

is Ψp(x) = Ψ̂pe
ipx. While Ψ �→ Ψ̂ is the Fourier transform, the integral itself

is a superposition of improper elements of L2(Rx). The former transformation
is more precise, the latter is closer to physical intuition because it displays Ψ
as the superposition of plane waves.

In the case of H = L2(Rx;F), the decomposition of Ψ ∈ H is

Ψ = (2π)−3/2

∫
R3

d3p Ψp, (2.1)

where Ψp is an improper element of H. It is singled out by its character y �→
e−ip·y (in the sense of representation theory) of the (abelian) translation group
e−iP ·y, P = −i∇x + Pf ,

e−iP ·yΨp = e−ip·yΨp. (2.2)

An informal expression for Ψp is provided by the Wigner projection onto the
isotypical component associated with the character:

Ψp = (2π)−3/2

∫
d3y e−ip·ye−iP ·yΨ = (2π)−3/2

∫
d3y e−i(P−p)·yΨ. (2.3)

Indeed, by
∫

d3p eip·y = (2π)3δ(y), we have

(2π)−3/2

∫
d3p Ψp =

∫
d3y δ(y)e−iP ·yΨ = Ψ. (2.4)

Let us also note that Ψp ”∈” L2(R3
x;F) takes values Ψp(x) in F for x ∈ R

3.
They are related to one another by

Ψp(x − y) = (e−i(−i∇x)·yΨp)(x) = (e−i(p−Pf )·yΨp)(x) = e−i(p−Pf)·yΨp(x)
(2.5)
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because Pf acts on F alone. In particular, setting x to zero and then renaming
y to −x, we get

Ψp(x) = ei(p−Pf)·xΨp(0). (2.6)

For a rigorous treatment, it is better to restate (2.1) as a unitary map

Π : H → L2(Rp;F), Ψ �→ (ΠpΨ)p∈R3 . (2.7)

This is achieved by evaluation at, say, x = 0

ΠpΨ = Ψp(0). (2.8)

By (2.1), (2.6) the inverse map of Π, i.e. Π−1 : (Ψp(0))p∈R3 �→ Ψ is

Ψ = (2π)−3/2

∫
d3p ei(p−Pf )·xΨp(0). (2.9)

We note that (2.3) can also be written as

Ψp(x) = (2π)−3/2

∫
d3y eip·ye−iPf ·yΨ(x − y) (2.10)

because of (e−iP ·yΨ)(x) = e−iPf ·yΨ(x − y). Thus

ΠpΨ = Ψp(0) = (2π)−3/2

∫
d3x e−ip·xeiPf ·xΨ(x) (2.11)

by the substitution y =: −x, which is possible because x has been disposed of
by setting x = 0 first. We conclude that ΠpΨ = F (eiPf ·xΨ).

The understanding of the ansatz (1.8) benefits from a comparison with
the van Hove model. Compared to the Nelson model, the (dynamical) electron
is replaced by an external source. More formally, the Hilbert space is F and
the Hamiltonian is

H =
∫

d3k ω(k)(a∗(k) − f̄(k))(a(k) − f(k)). (2.12)

We observe that it resembles (1.3) once x and ∇x are omitted and ω(k) = |k|
(though up to zero point energy irrelevantly differing by

∫
d3k ω(k)|f(k)|2).

Regarding f , let us first assume that f ∈ L2(R3
k) and comment on the physical

choice f(k) = −v(k)/|k| /∈ L2(R3
k) later on.

The free Hamiltonian H0, corresponding to f = 0, and the Weyl operators
W (g) (g ∈ L2(R3

k)) satisfy:

W (g1)W (g2) = e−iIm〈g1,g2〉W (g1 + g2), (2.13)

e−itH0W (g) = W (e−itωg)e−itH0 ; (2.14)

moreover, H0 is unitarily equivalent to the Hamiltonian

H = W (f)H0W (−f), (2.15)

since f ∈ L2(R3
k) and thus W (f) well-defined. In particular, W (f)Ω is the

ground state of H:

HW (f)Ω = E0W (f)Ω (2.16)
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with E0 = 0 for the above choice of zero point energy. Equations (2.13, 2.14)
imply the identities:

e−itH = e−i〈f,sin(ωt)f〉W ((1 − e−itω)f)e−itH0 , (2.17)

e−itHW (g) = e2iIm〈f,(1−e−itω)g〉W (e−itωg)e−itH . (2.18)

Using (2.17), we get

e−itHΩ = e−itE0e−i〈f,sin(ω t)f〉W ((1 − e−itω)f)Ω, (2.19)

which describes the evolution of the bare vacuum Ω. Somewhat more sugges-
tively, it is restated as

e−itHΩ = e−itE0e−2i〈f,sin(ω t)f〉W (−e−itωf)W (f)Ω. (2.20)

In this guise, it describes the approach of the unperturbed vacuum Ω to
the perturbed ground state W (f)Ω as t → +∞ (up to a numerical factor
e− 1

2 ‖f‖2
2). In fact, we note that e−itωf → 0 weakly in L2(R3

k) as t → ∞,
whence W (e−itωf) → e− 1

2 ‖f‖2
2 in the weak topology2 of operators on F . The

decreased norm can be attributed to photons lost at infinity in R
3
x.

Equation (2.18), when applied to Ψ ∈ F , states that out of the tra-
jectory e−itHΨ another one can be obtained by adding a coherent bunch of
freely moving bosons by means of W (e−itωg); in fact up to phase, the trajec-
tory e−itHW (g)Ψ results. For example, we can choose Ψ = W (f)Ω, i.e. the
perturbed ground state, in which case

e−itHW (g)W (f)Ω = e2iIm〈f,(1−e−itω)g〉W (e−itωg)e−itE0W (f)Ω. (2.21)

For g = −f , we simply recover (2.20). The unperturbed ground state Ω is
referred to as bare and the perturbed one W (f)Ω then arises in the same
picture by the dressing transformation W (f). In its own “infrared” picture
the perturbed ground state is still given by Ω, because the Weyl operator
intertwines exactly between H and H0.

The origin of the infrared problem, which arises when f /∈ L2(R3
k), is now

manifest: So to speak, the ground state W (f)Ω in (2.16) leaves the Fock space
F . While Ψ = W (f)Ω is not well-defined, a trajectory in F can be defined via
(2.21), provided that g + f ∈ L2(R3

k). To this end, the pair of Weyl operators
seen there or in (2.20) should be merged to one, as done in (2.19). Then, by
restating (2.21) for g + f = 0 as follows

Ω = eitHe−itE0eiIm〈f,e−itωf〉W ((1 − e−itω)f)Ω (2.22)

we note a similar structure as in our infraparticle vector (1.8).
These conclusions can be transposed to the Nelson model, which fibre-

wise resembles the van Hove model of coupling f(k) = −v(k)/|k| /∈ L2(R3
k).

2We use that W (e−itωf) = e− 1
2 ‖f‖2

2ea∗(e−itωf)e−a(e−itωf) in terms of quadratic forms
on the dense domain of finite particle vectors from F . Now, the claim follows from the
Riemann–Lebesgue lemma and the uniform boundedness of t �→ W (e−itωf).
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In the Nelson model, the ground state of Hw
p of total momentum p is φp in its

own (infrared) picture,

HW
p φp = Epφp. (2.23)

That state is perturbatively close to, but no longer identical to Ω, because no
Weyl operator removes the interaction terms in (1.3) exactly.

In the bare picture that state is W (−fp)φp, where

fp(k) = − f(k)
1 − ek · ∇Ep

. (2.24)

Since fp /∈ L2(R3
k), this vector is not well-defined (in contrast to φp).

Collecting fibres, cf. (2.9), we obtain (still not well-defined) states on the
mass shell p �→ Ep,

φ(x) = (2π)−3/2

∫
d3p h(p)ei(p−Pf )·xW (−fp)φp, (2.25)

where the support of h is contained in the set S, cf. (1.6). Its trajectory
φt = e−itHφ is

φt(x) = (2π)−3/2

∫
d3p h(p)ei(p·x−Ept)e−iPf ·xW (−fp)φp. (2.26)

The goal is to add a bunch of photons to φt in a way that is simple and explicit,
though not strictly compatibly with e−iHt as in (2.18), and yet in such a way
that:

• unlike (2.26), the resulting state Ψt = Ψt(x) lies in H,
• the addition is asymptotically compatible with dynamics, in the sense

that the limit

lim
t→∞ eitHΨt = ψ+ (2.27)

exists. That in fact means that e−iHtψ+ has Ψt as its explicit asymptote.
In line with (2.18), its interpretation and its use for g = −f , we modify (2.26)
to

Ψt(x) = (2π)−3/2

∫
d3p h(p)e2iγ̃W (e−iωtfp)ei(p·x−Ept)e−iPf ·xW (−fp)φp,

(2.28)

where the phase γ̃ = γ̃(x, p, t) is going to be chosen in a moment. By

e−iPf ·xW (g) = W (e−ik·xg)e−iPf ·x, (2.29)

cf. (2.13), (2.14), we get

Ψt(x) = (2π)−3/2

∫
d3p h(p)e2iγ̃ei(p·x−Ept)e−iPf ·xW (ei(k·x−ωt)fp)W (−fp)φp.

(2.30)

Now, we choose the phase by comparing (2.30) with (2.21). We recall (2.21)

e−itHW (g)W (f)Ω = e−itE0e2iIm〈f,(1−e−itω)g〉W (e−itωg)W (f)Ω, (2.31)



Vol. 25 (2024) Infraparticle States 181

and make substitutions g → eik·xfp, f → −fp. This suggests

γ̃ = Im〈fp,−(1 − e−i(ωt−k·x))fp〉 = Im〈fp, e
−i(ωt−k·x)fp〉

= −〈fp, sin(ωt − k · x)fp〉. (2.32)

Finally, we merge the Weyl operators in (2.30),

W (e−i(ωt−k·x)fp)W (−fp) = e−iγ̃W (−(1 − e−i(ωt−k·x))fp). (2.33)

We note that the argument of the last Weyl operator lies in L2(R3
k) for each

x, and we obtain from (2.30)

Ψt(x) = (2π)−3/2

∫
d3p h(p)eiγ̃ei(p·x−Ept)e−iPf ·xW (−(1 − e−i(ωt−k·x))fp)φp.

(2.34)

The result is similar but not identical to (1.8): The phases (1.9) and (2.32) have
opposite signs. The first phase is so chosen to make identity (1.12) possible.
For comparison, had the same choice been made for the (exactly solvable)
van Hove model, then the approximant to e−itHΩ would not be e−itHΩ itself,
in the form of the r.h.s. of (2.19), but e−2iγ̃e−itHΩ, leading to ψt = e−2iγ̃Ω
as a counterpart to (1.8). By γ̃ → 0 (t → ∞), we still have ψt → Ω, but
∂tψt = −2i(∂tγ̃)ψt = iγ̃intΨt with γ̃int = 2〈fp, ωcos(ωt)fp〉, in line with (1.10).

3. Preliminaries

Recall that {Hp}p∈R3 are the fibre Hamiltonians (1.5) and let {Hp,σ}p∈R3 be
their counterparts at an infrared cut-off 0 < σ ≤ κ. This means that the form
factor v, defined below (1.3), is replaced with vσ given by

vσ(k) := λ
χ[σ,κ)(k)√

2|k| . (3.1)

Here, χ[σ,κ)(k) = 1B′
σ
(k)χκ(k), B′

σ is the complement of the ball of radius σ
and 1Δ is the characteristic function of a set Δ. We remark that {Hp,σ}p∈R3

act on a dense domain in F , that is, no infrared cut-off is introduced on the
Fock space. We will work in the range of parameters for which the technical
results of [15–17] hold. That is,

|λ| ≤ λ0, σ ∈ (0, κλ0 ], p ∈ S := { p′ ∈ R
3 | |p′|<1/3}, (3.2)

where λ0 is sufficiently small and 0 < κλ0 ≤ κ. As the fibre Hamiltonians
Hp,Hp,σ are bounded from below, we can define

Ep := inf σ(Hp), Ep,σ := inf σ(Hp,σ), (3.3)

where σ denotes the spectrum. (Occasionally, we will write E
(λ)
p , E

(λ)
p,σ etc. if the

dependence on λ will play a role.) Ep enters our definition of the infraparticle
state (1.10), and our analysis relies on the following result:

Lemma 3.1 [1]. The function S×Bλ0 � (p, λ) �→ E
(λ)
p is real-analytic and non-

constant. It satisfies |∇pE
(λ)
p | ≤ 1/2 and its Hessian matrix in the p-variable

is bounded from below for p ∈ S by a positive constant, uniformly in λ.
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We recall that the modified Hamiltonians Hw
p are obtained from Hp by

the Bogolubov transformation (1.7) and their ground states are denoted φp.
Similarly, the modified Hamiltonians Hw

p,σ are obtained from Hp,σ by the trans-
formation

a(∗)(k) �→ a(∗)(k) − fp,σ(k), fp,σ(k) := λ
χ[σ,κ)(k)√

2|k|
1

|k|(1 − ek · ∇Ep,σ)

(3.4)

and their ground states are denoted φp,σ. Both φp and φp,σ are in the domain
of any power of Hf (cf. Lemma C.3) and in addition φp,σ are in the domain of
any power of the number operator N := dΓ(1), cf. Lemma C.2. For a choice
of the phases of φp, φp,σ as in [15, Definition 5.2], the following estimate holds

‖(Hf)
(φp − φp,σ)‖F ≤ cσ1/5, p ∈ S, � ∈ N0, (3.5)

provided that λ0 > 0 is readjusted for each �. It is well-known for � = 0 [32],
[17, Corollary 5.6 (a)] and for � ∈ N, it is shown in Appendix C. We will also
need the following lemma:

Lemma 3.2. Fix �1, �2 ∈ N0. Then, there exists λ̃0 > 0 and a positive function
[−λ̃0, λ̃0] � λ0 �→ δλ0 s.t. limλ0→0 δλ0 = 0 with the following property: For
any fixed λ0 ∈ [−λ̃0, λ̃0] and all σ ∈ (0, κλ0 ],

‖H
1
f N 
2∂α

p φp,σ‖F ≤ c

σδλ0
for |α| = 0, 1, 2. (3.6)

The constant c is independent of p, σ, λ within the restrictions (3.2) but may
depend on �1, �2.

In Appendix B, we show how to extract the proof of Lemma 3.2 from [15,16].
We remark that Lemma 3.1, bound (3.5), and Lemma 3.2 are the technical
basis for our discussion in the next section.

We remark that a possible dependence of the constants c in (3.6) and
(3.5) on �, �1, �2 does not cause complications, because it suffices to consider
�, �1, �2 ≤ L for some finite L fixed throughout the proof. This can be seen
from the discussion below (4.55) and from the proof of Lemma 4.4.

Notation. As we will discuss only outgoing scattering states, we set t ≥ 1. We
denote by c numerical constants which may change from line to line. These
constants are independent of σ, p, λ, t, x within the assumed restrictions, but
may depend on h, λ0, ε0, where ε0 was defined below (1.3). The functions
denoted λ0 �→ δλ0 are positive and satisfy limλ0→0 δλ0 = 0. They are inde-
pendent of σ, p within the assumed restrictions but may depend on ε0. These
functions may change from line to line.

4. Infraparticle States

The goal of this section is to provide a proof of Theorem 1.1. Our main tool
will be the stationary phase method. The estimates suitable for our purposes
are stated in the following lemma, which is proven in Appendix D.
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Lemma 4.1. Let p �→ g(p) ∈ F be weakly infinitely differentiable on some
dense domain and compactly supported in S. Let c0 be s.t. |∇Ep| < c0 < 1 for
p ∈ supp g. Then, for any 0 ≤ ε ≤ 1/2,

(∫
|x|/t≤c0

d3x

∥∥∥∥
∫

d3p ei(p·x−Ept)g(p)
∥∥∥∥

2

F

)1/2

≤ c
∑

|α|≤2

sup
p,|x|≤c0t

‖∂α
p g(p)‖F ,

(4.1)(∫
|x|/t≥c0

d3x

∥∥∥∥
∫

d3p ei(p·x−Ept)g(p)
∥∥∥∥

2

F

)1/2

≤ ct−1/2+ε
∑

|α|≤2

sup
p,|x|≥c0t

(
1

(1 + t + |x|)ε
‖∂α

p g(p)‖F

)
. (4.2)

The function g above may depend on (x, t).

Lemma 4.1 immediately gives the following estimate
( ∫

d3x

∥∥∥∥
∫

d3p ei(p·x−Ept)g(p)
∥∥∥∥

2

F

)1/2

≤ ct1/2
∑

|α|≤2

sup
p,x

(
1

(1 + |x|)1/2
‖∂α

p g(p)‖F

)
, (4.3)

which will be useful for analysing vectors (1.8) at finite t. Like in Lemma 4.1,
the function g may depend on (x, t). We note that we cannot apply (4.3) or
Lemma 4.1 directly to the infraparticle vector (1.8), since differentiability of
p �→ φp is out of control. In the course of our discussion, we will approximate
φp with φp,σ in a suitable manner, which will introduce an x-dependence of
g.

As a first step of our analysis, we compute and estimate derivatives of
eiγ(p,x,t) w.r.t. p, x, t. The following is a result of a straightforward computa-
tion:

∂te
iγ(p,x,t) = eiγ(p,x,t)i

∫
d3k fp(k)2|k| cos(|k|t − k · x), (4.4)

∂xi
eiγ(p,x,t) = −eiγ(p,x,t)i

∫
d3k fp(k)2ki cos(|k|t − k · x), (4.5)

∂xj
∂xi

eiγ(p,x,t) = −eiγ(p,x,t)

∫
d3k fp(k)2kj cos(|k|t − k · x)

×
∫

d3kfp(k)2ki cos(|k|t − k · x) (4.6)

− eiγ(p,x,t)i

∫
d3kfp(k)2kikj sin(|k|t − k · x). (4.7)

Now, we estimate the above expressions together with their derivatives w.r.t.
p.
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Lemma 4.2. The following bounds hold

|∂α
p ∂


te
iγ(p,x,t)| ≤ c(1 + log(1 + t + |x|))2, (4.8)

|∂α
p ∂β

x eiγ(p,x,t)| ≤ c(1 + log(1 + t + |x|))2, (4.9)

for |α|, |β| ≤ 2, � ≤ 1.

Proof. We see from (4.4)–(4.7) that the derivatives w.r.t. x, t produce expres-
sions which are uniformly bounded in x, t due to the additional factors ki, |k|,
which regularize the singularity of f2

p at |k| = 0. Hence, it suffices to study the
expression

∂pj
∂pi

eiγ(p,x,t) = ∂pj

(
eiγ(p,x,t)i∂pi

γ(p, x, t)
)

= eiγ(p,x,t)
(
i∂pj

γ(p, x, t)
)(

i∂pi
γ(p, x, t)

)
+eiγ(p,x,t)i∂pj

∂pi
γ(p, x, t). (4.10)

Making use of (E.4), we obtain

|∂pj
∂pi

eiγ(p,x,t)| ≤ c(1 + log(1 + t + |x|))2, (4.11)

where the dependence of c on parameters is as discussed in Sect. 3. This
concludes the proof. �

As a next step of our discussion, we compute derivatives of the following
auxiliary vector

ĝ(t,x)(p) := W
(
fpm(t, x)

)
φp, m(t, x) := u(t, x) − 1, u(t, x) := e−i|k|t+ik·x

(4.12)

w.r.t. (t, x) up to the second order. We will abbreviate m := m(t, x), u :=
u(t, x).

Lemma 4.3. The function (t, x) �→ ĝ(t,x)(p) is infinitely often partially differ-
entiable in the norm of F and the following formulas hold

∂tĝ(t,x)(p) = W
(
fpm

)
i
(
Φ(fp∂tm) + Im〈fpm, fp∂tm〉)φp, (4.13)

∂2
t ĝ(t,x)(p) = −W (fpm)

(
Φ(fp∂tm) + Im〈fpm, fp∂tm〉)2

φp

+W (fpm)i
(
Φ(fp∂

2
t m) + Im〈fpm, fp∂

2
t m〉)φp (4.14)

∂xi
ĝ(t,x)(p) = W

(
fpm

)
i
(
Φ(fp∂xi

m) + Im〈fpm, fp∂xi
m〉)φp, (4.15)

∂xj
∂xi

ĝ(t,x)(p) = W
(
fpm

)
i
(
Φ(fp∂xj

m) + Im〈fpm, fp∂xj
m〉)

×i
(
Φ(fp∂xi

m) + Im〈fpm, fp∂xi
m〉)φp

+W
(
fpm

)
i
(
Φ(fp∂xj

∂xi
m) + Im〈fp∂xj

m, fp∂xi
m〉

+ Im〈fpm, fp∂xj
∂xi

m〉)φp, (4.16)

where Φ(F ) := a∗(−iF ) + a(−iF ), F ∈ L2(R3
k), as defined in (1.2).

Proof. We note that, by Lemma C.3, φp belongs to D(H

f ) for any � ∈ N.

We observe that for any fixed (t, x) the function fpm(t, x) ∈ L2
ω(R3

k), and it is
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infinitely often differentiable in (t, x) in the norm of L2
ω(R3

k) (see Appendix A).
For the first derivative w.r.t. xi, this follows from

m(t, x + (Δx)iei) = m(t, x) + (Δx)i(∂xim)(t, x)

+(Δx)2i

∫ 1

0
ds (1 − s) (∂2

xi
m)(t, x + s(Δx)iei), (4.17)

and the fact that |k|−1∂

xi

m(t, x) is bounded in k for any � ∈ N0. For higher
derivatives, we simply replace m with ∂


xi
m in (4.17). The arguments regard-

ing the derivatives w.r.t. t are analogous. Thus, we can compute the deriva-
tives using Lemma A.2, which gives the formulas from the statement of the
lemma. �

Now, we analyse the regularized variants of the vectors from (4.12)

ĝσ
(t,x)(p) := W

(
fpm(t, x)

)
φp,σ. (4.18)

We note the following fact:

Lemma 4.4. There hold the bounds

‖∂α
p ∂


t ĝ
σ
(t,x)(p)‖F ≤ c

(1 + log(1 + |x| + t))3

σδλ0
, (4.19)

‖∂α
p ∂β

x ĝσ
(t,x)(p)‖F ≤ c

(1 + log(1 + |x| + t))3

σδλ0
, (4.20)

for �, |α|, |β| ≤ 2 and σ ∈ (0, κλ0 ]. The x and t derivatives exist in the norm
of F . The derivatives w.r.t. p exist in the weak sense on the domain of finite
particle vectors with compactly supported wave functions (cf. [34, p. 208]). The
bound (4.20) still holds if ∂β

x is replaced with Hf , Pf,i, P
2
f,i or ∂xi

Pf,i.

Proof. We consider only (4.20) for |α| = 2, |β| = 2 as the remaining cases are
analogous and simpler. To handle the resulting expressions, it is convenient to
define, for s �→ Fs as in Lemma A.2,

Φ̃s(F ) := Φ(∂sFs) + Im〈Fs, ∂sFs〉. (4.21)

Using this notation and recalling (4.16), we can write

∂xj
∂xi

ĝσ
(t,x)(p) = W

(
fpm

){
iΦ̃xj

(fpm)iΦ̃xi
(fpm) + i∂xj

Φ̃xi
(fpm)

}
φp,σ

= W
(
fpm

)
Polxi,xj

(fpm)φp,σ, (4.22)

where in the last step we denoted the expression in curly brackets by the
symbol Polxi,xj

(fpm) to further abbreviate the notation. Now, we compute
the first derivative w.r.t. momentum. We recall that these derivatives must
only exist weakly on the domain of finite particle vectors, i.e. after taking a
scalar product with such vectors. This will control the unbounded operators
acting on φp,σ below and, in particular, allow us to differentiate p �→ φp,σ in
(4.25) below. In this sense, we compute:

∂pî
∂xj

∂xi
ĝσ
(t,x)(p) = W

(
fpm

)
iΦ̃pî

(fpm)Polxi,xj
(fpm)φp,σ (4.23)

+W
(
fpm

)
∂pî

(
Polxi,xj

(fpm)
)
φp,σ (4.24)
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+W
(
fpm

)
Polxi,xj

(fpm)∂pî
φp,σ. (4.25)

Now, we compute the respective contributions to ∂pĵ
∂pî

∂xj
∂xi

ĝσ
(t,x)(p): (4.23)

gives

∂pĵ

(
W

(
fpm

)
iΦ̃pî

(fpm)Polxi,xj
(fpm)φp,σ

)
= W

(
fpm

)
iΦ̃pĵ

(fpm)iΦ̃pî
(fpm)Polxi,xj

(fpm)φp,σ (4.26)

+W
(
fpm

)
i∂pĵ

(Φ̃pî
(fpm)Polxi,xj

(fpm))φp,σ (4.27)

+W
(
fpm

)
iΦ̃pî

(fpm)Polxi,xj
(fpm)∂pĵ

φp,σ. (4.28)

From (4.24), we obtain

∂pĵ

(
W

(
fpm

)
∂pî

Polxi,xj
(fpm)φp,σ

)
= W

(
fpm

)
iΦ̃pî

(fpm)∂pî
Polxi,xj

(fpm)φp,σ

+W
(
fpm

)
∂pĵ

∂pî

(
Polxi,xj

(fpm)
)
φp,σ

+W
(
fpm

)
∂pî

Polxi,xj
(fpm)∂pĵ

φp,σ.

(4.29)

From (4.25), we get

∂pĵ

(
W

(
fpm

)
Polxi,xj

(fpm)∂pî
φp,σ

)
= W

(
fpm

)
iΦ̃pî

(fpm) Polxi,xj
(fpm)∂pî

φp,σ

+W
(
fpm

)
∂pĵ

(
Polxi,xj

(fpm)
)
∂pî

φp,σ

+W
(
fpm

)
Polxi,xj

(fpm)∂pî
∂pĵ

φp,σ.

(4.30)

To estimate these expressions, we recall from Lemma 3.2 that ∂α
p φp,σ are in

the domain of any power of N and ‖N 
∂α
p φp,σ‖F ≤ c
σ

−δλ0 . Thus making use
of the number bounds (A.2), we have

‖∂p
ĵ
∂p

î
∂xj ∂xi ĝ

σ
(t,x)(p)‖F ≤ Pol(‖fpm‖2, ‖fp∂xim‖2, ‖fp∂xj ∂xim‖2)σ−δλ0 . (4.31)

Here Pol is a certain polynomial in the specified norms, which also includes
‖∂α

p fpm‖2. We recall, however, that fp(k) := λ χκ(k)√
2|k|

1
|k|(1−ek·∇Ep) , thus deriva-

tives of fp w.r.t. p only change the behaviour of this function in the angular
variable ek but not in the |k|-variable. As our estimates are insensitive to the
angular behaviour, we omitted these derivatives in the notation in (4.31). We
have

‖fpm‖2 ≤ c|λ|(1 + log(1 + |x| + t))1/2, ‖fp∂xim‖2 ≤ c|λ|, ‖fp∂xi∂xj m‖2 ≤ c|λ|,
(4.32)

where the first inequality follows from Lemma E.3 and the last two follow
directly from the definition of fp in (1.7), since m(t, x) := e−i|k|t+ik·x − 1. By
inspection, we see that Pol is at most of the sixth order in ‖fpm‖2 (cf. (4.26)),
which concludes the proof of estimates (4.19), (4.20).

As for the last statement of the lemma, the case of Hf , Pf,i, P
2
f,i is covered

by the fact that the derivatives w.r.t. p should exist only weakly on vectors
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which belong to domains of these operators. After computing these derivatives,
one pulls Hf , Pf,i, P

2
f,i to the right through the Weyl operator according to

HfW (fpm) = W (fpm)(Hf + a∗(|k|fpm) + a(|k|fpm) + ‖|k|1/2fpm‖2
2),

(4.33)

for which we refer to [12, eq. (3.20) and Prop. 3.11]. Next one applies Lem-
mas 3.2 and A.1. The case of Pf,i∂xi

requires more consideration as the deriv-
ative w.r.t. xi should exist in the norm of F . To check that Pf,iW (fpm)φp,σ

is partially differentiable w.r.t. x in the norm of F , we write, analogously to
(4.33),

Pf,iW (fpm)φp,σ = W (fpm)(Pf,i + a∗(kifpm) + a(kifpm) + 〈fp, kifp〉)φp,σ

(4.34)

and refer to Lemma A.2. By a computation, we obtain
∂xi

Pf,iW (fpm)φp,σ = Pf,i∂xi

(
W (fpm)

)
φp,σ, (4.35)

where ∂xi

(
W (fpm)

)
is the explicit formula from Lemma A.2, and then proceed

as in the discussion of Hf , Pf,i, P 2
f,i above. �

Now, we are ready to analyse the infraparticle vector (1.8).

Lemma 4.5. There is such λ0 > 0 that for any |λ| ∈ (0, λ0] and t ∈ R, the
integral3

Ψt(x) :=
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm(t, x)

)
φp (4.36)

has the following properties:
(a) Ψt ∈ L2(R3

x;F).
(b) Ψt is differentiable in t in the norm of L2(R3

x;F) and

∂tΨt(x) =

∫
d
3
p e

i(p·x−Ept)( − iEp + i∂tγ(p, x, t) + iIm〈fpm, fp∂tm〉)

× e
iγ(p,x,t)

h(p)W
(
fpm

)
φp

+

∫
d
3
p e

i(p·x−Ept)
e

iγ(p,x,t)
h(p)W

(
fpm

)
(a

∗
(fp∂tm) − a(fp∂tm))φp.

(4.37)

Proof. As for (a), to prove that x �→ Ψt(x) is square integrable, we intend
to apply Lemma 4.1. However, we lack information about the differentiability
of p �→ φp. To circumvent this problem, we introduce an x-dependent cut-off
σx := κλ0/(1 + |x|)M , where M is sufficiently large but fixed. We insert into
(4.36)

φp = (φp − φp,σx
) + φp,σx

(4.38)

and obtain

Ψt(x) =
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)
(φp − φp,σx

) + Ψσx
t (x).

(4.39)

3 This Ψt(x) differs from the one defined in (2.30) by the factor (2π)−3/2e−iPf ·x.
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Here, Ψσx
t (x) is given by (4.36) with φp replaced with φp,σx

. Concerning the
first term on the r.h.s. of (4.39), we have by (3.5)∥∥∥∥

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W

(
fpm

)
(φp − φp,σx

)
∥∥∥∥

F
≤ c(κλ0)

1/5

(1 + |x|)M/5
.

(4.40)

Thus, this term is manifestly in L2(R3
x;F) for 2M/5 > 3. As for the last term

on the r.h.s. of (4.39), estimate (4.3) gives

‖Ψσx
t ‖H ≤ ct1/2

∑
|α|≤2

sup
p,x

(
1

(1 + |x|)1/2
‖∂α

p (eiγ(p,x,t)ĝσx

(t,x)(p))‖F

)
. (4.41)

The expression on the r.h.s. above is finite for any fixed t by Lemmas 4.2, 4.4,
provided δλ0 of Lemma 4.4 satisfies Mδλ0 < 1/2. This concludes the proof of
part (a).

Part (b) is a straightforward computation, provided we can show differ-
entiability in the norm of L2(R3

x;F). To this end, we use the Taylor theorem
(cf. formula (4.17))∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
(

W
(
fpm(t + Δt, x)

) − W
(
fpm(t, x)

)
Δt

− ∂tW
(
fpm(t, x)

))
φp

= Δt

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0

ds (1 − s)
{
∂2

τW
(
fpm(τ, x)

)|τ=t+sΔt

}
φp. (4.42)

Now, we obtain from Lemma A.3 that (4.42) tends to zero with Δt → 0 in
the norm of L2(R3

x;F). Differentiability in the norm of L2(R3
x;F) of other

ingredients of (4.36) can be shown by analogous and simpler arguments. Now,
formula (4.37) follows by an application of Lemma A.2. �

Lemma 4.6. The vectors Ψt ∈ L2(R3
x;F), t ∈ R, defined in (4.36) have the

following properties:
(a) Ψt is in the domain of Pf,i, P

2
f,i, Hf and the following formula holds

(HfΨt)(x) =
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)

×(
Hw

f + a∗(|k|fpu) + a(|k|fpu)

+〈fp, |k|fp〉 − 2Re〈fp, |k|fpu〉)φp. (4.43)

(b) Ψt is in the domain of −i∂xi
, (−i∂xi

)2, −i∂xi
Pf,i and the following for-

mula holds

(−i∂xi
− Pf,i)2Ψt(x) =

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W

(
fpm

)(
pi − Pw

f,i

)2
φp.

(4.44)
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(c) Ψt is in the domain of (a∗(v) + a(v)) and the following formula holds

(a∗(v) + a(v))Ψt(x) =
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)

×((a∗(v) + a(v))w + 2Re〈fpu, v〉)φp, (4.45)

where (a∗(v) + a(v))w = a∗(v) + a(v) − 2〈fp, v〉 in accordance with (1.7).

Proof. We start with some computations on F which are justified by
Lemma A.2. Since W

(
fpm

)
φp is in the domain of Hf , we can write for any

fixed t

HfΨt(x) =
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)HfW
(
fpm

)
φp

=
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)

×(
Hf+a∗(|k|fpm)+a(|k|fpm) + ‖|k|1/2fpm‖2

2

)
φp

=
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)

×(
Hw

f + a∗(|k|fpu) + a(|k|fpu)

+〈fp, |k|fp〉 − 2Re〈fp, |k|fpu〉)φp, (4.46)

where we made use of Hw
f = Hf − a∗(|k|fp) − a(|k|fp) + ‖ |k|1/2fp‖2

2 (cf.
formula (4.33)) and

− ‖|k|1/2fp‖2
2 + ‖|k|1/2fpm‖2

2 = 〈fp, |k|fp〉 − 2Re〈fp, |k|fpu〉. (4.47)

Analogously, we obtain for � ∈ {1, 2},

(Pf,i)
Ψt(x) =
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)

×(
Pw

f,i + a∗(kifpu)+a(kifpu)+〈fp, kifp〉 − 2Re〈fp, kifpu〉)

φp.

(4.48)

Furthermore, we can exchange −i∂xi
with the p-integral defining Ψt. In fact,

similarly as in (4.42), we write

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

(
W

(
fpm(t, x + (Δxi)ei)

) − W
(
fpm(t, x)

)
Δxi

−∂xi
W

(
fpm(t, x)

))
φp
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= (Δxi)
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0

ds (1 − s)
{
∂2

x′
i
W

(
fpm(t, x′)

)|x′=x+s(Δxi)ei

}
φp (4.49)

and make use of Lemma A.3 to take the limit Δxi → 0. Thus, we can write

− i∂xi
Ψt(x) =

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×(
pi + ∂xi

γ(p, x, t) + Im〈fpm, fp∂xi
m〉)W (fpm)φp

+
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×(a∗(kifpu) + a(kifpu))φp. (4.50)

Combining the above computations, we also obtain

−i∂xi
Pf,iΨt(x)

=
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)
(
pi + ∂xi

γ(p, x, t) + Im〈fpm, fp∂xi
m〉)

×W
(
fpm

)(
Pf,i+a∗(kifpm)+a(kifpm) + 〈fpm, kifpm〉)φp

+
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)

×(
Pf,i+a∗(kifpm)+a(kifpm) + 〈fpm, kifpm〉)

×(a∗(kifpu) + a(kifpu))φp = Pf,i(−i∂xi
)Ψt(x). (4.51)

Thus, we get from (4.48) and (4.50)

(−i∂xi
− Pf,i)Ψt(x) =

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W

(
fpm

)

×( − Pw
f,i + pi + ∂xi

γ(p, x, t) + Im〈fpm, fp∂xi
m〉 − 〈fp, kifp〉

+2Re〈fp, kifpu〉)φp

=
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)(
pi − Pw

f,i)φp, (4.52)

where we used that

Im〈fpm, fp∂xi
m〉 − 〈fp, kifp〉 + 2Re〈fp, kifpu〉

= Re〈fp, kifpu〉 = −∂xi
γ(p, x, t). (4.53)

By iteration of (4.52), we get

(−i∂xi
− Pf,i)
Ψt(x) =

∫
d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W

(
fpm

)(
pi − Pw

f,i

)

φp.

(4.54)

We remark that at the level of formal computations, relations (4.52), (4.54)
can also be obtained from (1.12). Finally, we obtain
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(a∗(v) + a(v))Ψt(x) =
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)W
(
fpm

)
((a∗(v) + a(v))w

+ 2Re〈fpu, v〉)φp. (4.55)

One can see, by analogous arguments as in the proof of Lemma 4.5 (a), that all
vectors above are in L2(R3

x;F): First, we apply the shift (4.39) and estimate
the term involving φp − φp,σx

with the help of the bound (3.5). The presence
of H


f in (3.5) allows us to control both Pf,i and the creation and annihilation
operators acting on φp − φp,σx

as for example in the case of (4.51). To the
latter operators, we apply the energy bounds (A.3) and note that all the re-
sulting ‖ · ‖ω-norms are finite. Next, we study the term proportional to φp,σx

using Lemma 4.1. Staying with the case of (4.51), we can rewrite the relevant
vector as {Pf,i(−i∂x′

i
Ψσx

t (x′))|x′=x}x∈R3 and estimate the r.h.s. of (4.3) using
Lemmas 4.2, 4.4. In particular, the last part of Lemma 4.4 plays a role here,
since estimate (4.3) gives

‖{Pf,i(−i∂x′
i
Ψσx

t (x′))|x′=x}x∈R3‖H

≤ ct1/2
∑

|α|≤2

sup
p,x

(
1

(1 + |x|)1/2
‖∂α

p ({∂x′
i
eiγ(p,x′,t)Pf,iĝ

σx

(t,x′)(p)}|x′=x)‖F

)
.

(4.56)

From (4.54), (4.51) we also obtain that {(−i∂xi
)2Ψt(x)}x∈R3 is in L2(R3

x;F).
This concludes the proof. �

Proof of Theorem 1.1. We recall that ψt(x) := 1
(2π)3/2 eiHte−iPf ·xΨt(x) as seen

in (1.8). By Lemma 4.5, t �→ Ψt is differentiable in the norm in L2(R3
x;F).

Next, by applying the Stone theorem to eiHt, we obtain the differentiability of
t �→ ψt in the norm of L2(R3

x;F), provided that the vector {e−iPf ·xΨt(x)}x∈R3 ∈
L2(R3

x;F) is in the domain of H. This is easily checked using Lemma 4.6. In
particular, to verify that this vector is in the domain of (−i∇x)2, we apply the
Stone theorem to x �→ e−iPf ·x and use that Ψt is in the domain of P 2

f . Now,
we compute

∂tψt(x) =
1

(2π)3/2
eiHtiHe−iPf ·xΨt(x) +

1

(2π)3/2
eiHte−iPf ·x∂tΨt(x)

=
1

(2π)3/2
eiHte−iPf ·xi

(
1

2
(−i∇x − Pf)

2Ψt(x) + HfΨt(x)

+(a∗(v) + a(v))Ψt(x) − i∂tΨt(x)

)

=
1

(2π)3/2
eiHte−iPf ·x

∫
d3p ei(p·x−Ept)eiγ(p,x,t)iγint(p, x, t)h(p)W (fpm)φp,

(4.57)

where in the last step we made use of the formulas in Lemmas 4.5, 4.6, the
fact that Hw

p φp = Epφp, and of the relations

〈fp, |k|fp〉 − 2Re〈fp, |k|fpu〉 + ∂tγ(p, x, t) + Im〈fpm, fp∂tm〉 = 0,

2Re〈fpu(t, x), v〉 = γint(p, x, t),
(4.58)
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where v was defined below (1.3). To show (1.11), we proceed similarly as
in the proof of Lemma 4.5: We choose a (t, x)-dependent cut-off as follows:
σ(t,x) = κλ0/(1 + t + |x|)M where M ∈ N is fixed. We make a shift φp =
(φp − φp,σ(t,x)) + φp,σ(t,x) and insert it into the formula for the norm of ∂tψt:

‖∂tψt‖H ≤ 1

(2π)3/2

∥∥∥∥
{ ∫

d3p ei(p·x−Ept)eiγ(p,x,t)iγint(p, x, t)h(p)

×W (fp(e−i|k|t+ik·x − 1))(φp − φp,σ(t,x) )

}
x∈R3

∥∥∥∥
H

+
1

(2π)3/2

∥∥∥∥
{ ∫

d3p ei(p·x−Ept)eiγ(p,x,t)iγint(p, x, t)h(p)

×W (fp(e−i|k|t+ik·x − 1))φp,σ(t,x)

}
x∈R3

∥∥∥∥
H

. (4.59)

We note that by (3.5) the term involving (φp − φp,σ(t,x)) is integrable in t in
the norm of L2(R3

x;F) for M sufficiently large. Our strategy to estimate the
second term on the r.h.s. of (4.59) is to combine Lemmas 4.1, 4.7 and 3.2. In
our case, g of Lemma 4.1 has the form

g(t,x)(p) := eiγ(p,x,t)iγint(p, x, t)h(p)W (fp(e−i|k|t+ik·x − 1))φp,σ(t,x) . (4.60)

We rewrite this expression as follows:

g(t,x)(p) = eiγ(p,x,t)iγint(p, x, t)h(p)ĝσ(t,x)

(t,x) (p),

ĝσ
(t,x)(p) := W (fp(e−i|k|t+ik·x − 1))φp,σ.

(4.61)

First, we note that by Lemma 4.7, for c0 as in Lemma 4.1,

|∂α
p γint(p, x, t)| ≤ |λ|2 cM̃

tM̃
for |x|/t ≤ c0 < 1, (4.62)

|∂α
p γint(p, x, t)| ≤ |λ|2 c

t
| log (t)| for |x|/t ≥ c0, (4.63)

and |α| = 0, 1, 2. Furthermore, we have by Lemma 4.2

|∂α
p eiγ(p,x,t)| ≤ c(1 + log(1 + t + |x|))2. (4.64)

Given (4.62)–(4.64), Lemmas 4.1 and 4.4, for any 0 < ε < 1/2, we can choose
λ0 so small, that

‖∂tψt‖H ≤ |λ|2 c

t3/2−ε
(4.65)

which concludes the proof of (1.11). Hence, by the Cook method [10], we obtain
the existence of the limit ψ+.

To see that ψ+ �= 0 under the specified conditions, we write

‖ψ+,(λ)‖H ≥ ‖ψ
(λ)
t=0‖H −

∫ ∞

0

dt ‖∂tψ
(λ)
t ‖H, (4.66)

where we included the dependence on λ explicitly in the notation. We recall
that all constants in our discussion are uniformly bounded in |λ| ∈ (0, λ0].
Thus, by estimate (4.65), the second term on the r.h.s. of (4.66) tends to zero
as λ → 0. So it suffices to show that ‖ψ

(λ)
t=0‖H is bounded from below uniformly
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in λ from some neighbourhood of zero. We collect the relevant ingredients:
First, we recall that by [15, formula (5.2)]

‖φ(λ)
p − Ω‖F ≤ c|λ|1/4. (4.67)

Furthermore, we obtain from (4.32), (E.4)

‖f (λ)
p (e−i|k|t+ik·x − 1)‖2 ≤c|λ|(1 + log(1 + t + |x|))1/2,

|γ(p, x, t)| ≤c|λ|2(1 + log(1 + t + |x|)). (4.68)

Considering the above, we have

ψ
(λ)
t=0(x)

=
1

(2π)3/2

∫
d3p eip·xeiγ(λ)(p,x,0)h(p)W (f (λ)

p (eik·x − 1))φ(λ)
p (4.69)

=
1

(2π)3/2

∫
d3p eip·xeiγ(λ)(p,x,0)h(p)W (f (λ)

p (eik·x − 1))(φ(λ)
p − Ω) (4.70)

+
1

(2π)3/2

∫
d3p eip·xeiγ(λ)(p,x,0)h(p)

(
W (f (λ)

p (eik·x − 1)) − 1
)
Ω (4.71)

+
1

(2π)3/2

∫
d3p eip·x(

eiγ(λ)(p,x,0) − 1
)
h(p)Ω (4.72)

+
1

(2π)3/2

∫
d3p eip·xh(p)Ω. (4.73)

Thus, it is manifest from estimates (4.68), (4.67), combined with an argument
as in (A.9) that

ψ
(λ)
t=0(x) = (F−1h)(x)Ω + O(|λ|1/4(1 + log(1 + |x|))), (4.74)

where F is the Fourier transform and we have ‖O(|λ|1/4(1+log(1+ |x|)))‖F ≤
c|λ|1/4(1+log(1+ |x|)). Clearly, we can write for any compact subset Δ ⊂ R

3

‖ψ
(λ)
t=0‖H ≥

( ∫
Δ

d3x ‖ψ
(λ)
t=0(x)‖2

F

)1/2

≥
( ∫

Δ

d3x |(F −1h)(x)|2
)1/2

− c|λ|1/4

( ∫
Δ

d3x (1 + log(1 + |x|))2
)1/2

.

(4.75)

For any Δ intersecting with the support of F−1h, the first term in the second
line of (4.75) is positive and independent of λ. As the second term tends to
zero as λ → 0, this concludes the proof. �

It remains to prove the following estimates.

Lemma 4.7. Consider the expression

γint(p, x, t) := 2
∫

d3k fp(k)2(|k| − k · ∇Ep) cos(|k|t − k · x). (4.76)

The following bounds hold:
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(a) Fix some 0 < c0 < 1. For any M ∈ N, there exists a constant cM , uniform
in p ∈ S, s.t.

sup
(|x|/t)≤c0

|γint(p, x, t)| ≤ |λ|2 cM

tM
. (4.77)

(b) For all p ∈ S and (t, x) ∈ R
4

|γint(p, x, t)| ≤ |λ|2 c

t
| log t|. (4.78)

Analogous estimates hold if we replace p �→ fp(k)2(|k| − k · ∇Ep) in (4.76) by
its arbitrary derivatives w.r.t. p.

Proof. Proceeding to spherical coordinates d3k = dΩ(ek)|k|2d|k|, we have

γint(p, x, t) =
∫

dΩ(ek)
∫ ∞

0

d|k| f(|k|, ek, p) cos(|k|t(1 − ek · v)),

f(|k|, ek, p) := |λ|2 χκ(k)2

2
1

(1 − ek · ∇Ep)
,

(4.79)

where we set v := x/t. We suppose that |v| ≤ c0 < 1 and consider part (a) of
the lemma. By integrating by parts w.r.t. |k| and exploiting that sine vanishes
at zero, we obtain

γint(p, x, t) = −
∫

dΩ(ek)

∫ ∞

0

d|k| ∂|k|f(|k|, ek, p)
1

t(1 − ek · v)
sin(|k|t(1 − ek · v)).

(4.80)

Now, we can continue integrating by parts, exploiting that ∂|k|f vanishes in
a fixed neighbourhood of zero due to our assumptions on χκ (1.3). The fact
that (1 − ek · v) is never zero in this case gives the claim.

Proceeding to (b), we suppose that |v| ≥ c0 > 0 as the case |v| ≤ c0 is
settled by (a). We choose the third axis in the direction of v and write

γint(p, x, t)

=
∫

|k|≥1/t

d|k|
∫ 2π

0

dϕ

∫ 1

−1

d cos(θ) f(|k|, e(cos(θ), ϕ), p)

× cos(|k|t(1 − |v| cos(θ))) + O(t−1)

= −
∫

|k|≥1/t

d|k|
∫ 2π

0

dϕ

∫ 1

−1

d cos(θ) f(|k|, e(cos(θ), ϕ), p)

× 1
t|k||v|

d

d cos(θ)
sin(|k|t(1 − |v| cos(θ))) + O(t−1)

= −
∫

|k|≥1/t

d|k|
∫ 2π

0

dϕ f(|k|, e(cos(θ), ϕ), p)

× 1
t|k||v| sin(|k|t(1 − |v| cos(θ)))|cos θ=1

cos θ=−1 + O(t−1)

+
∫

|k|≥1/t

d|k|
∫ 2π

0

dϕ

∫ 1

−1

d cos(θ)
(

d

d cos(θ)
f(|k|, e(cos(θ), ϕ), p)

)
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× 1
t|k||v| sin(|k|t(1 − |v| cos(θ))). (4.81)

By estimating | sin(|k|t(1 − |v| cos(θ)))| ≤ 1 everywhere above and using that
the integration in |k| is over a compact set, the claim follows from

1
t

∫
κ≥|k|≥1/t

d|k| 1
|k| ≤ c′

t
| log(t)|. (4.82)

This concludes the proof. �

5. Conclusions

In this paper, we proposed a new construction of infraparticle states in the
massless Nelson model. The approximating sequence does not involve infrared
cut-offs and the proof of convergence is relatively simple: Taking the spectral
results from [1,15,16] for granted, it amounts to the Cook method combined
with the stationary phase method, like for basic Schrödinger operators. It is
legitimate to ask how the new infraparticle state compares with the established
knowledge on the infrared problem in the Nelson model. To partially answer
this question, we provide some heuristic remarks on the relation of our states to
the Faddeev–Kulish approach. First, we note that the asymptotically dominant
part of the wave packet (1.8) should propagate along the ballistic trajectory
x = ∇Ept, thus ψt should have the same limit as

ψD
t (x) := eiHt

∫
d3p h(p) e−i(Ep+Hf)teiγ(p,∇Ept,t)

×W
(
fp(1 − ei|k|t−ik·∇Ept)

)
eiHf t

1
(2π)3/2

ei(p−Pf )·xφp. (5.1)

To proceed, let us second quantize also the electrons, denote their creation
and annihilation operators by b(∗) and the common vacuum of the electrons
and photons by Ω. Expressing φp ∈ F by its n-particle wave functions φn

p , we
define its renormalized creation operator in a standard manner [2]:

b̂∗
w(p) :=

∞∑
n=0

1√
n!

∫
d3nk φn

p (k1, . . . , kn)a∗(k1) . . . a∗(kn) b∗(p − (k1 + · · · + kn)),

(5.2)

so that 1
(2π)3/2 ei(p−Pf)·xφp can be identified with b̂∗

w(p)Ω. Now recalling that
fp(k) = v(k) 1

|k|−k·∇Ep
, we can write

W
(
fp(1 − e

i|k|t−ik·∇Ept
)
)

= exp

(
− i

∫ t

0
dτ e

iHfτ {
a

∗(
ve

−ik·∇Epτ )
+ a

(
ve

−ik·∇Epτ )}
e

−iHfτ

)

= e
iCpt

e
−iγ(p,∇Ept,t)

Texp

(
−i

∫ t

0
dτ e

iHfτ {
a

∗(
ve

−ik·∇Epτ )
+ a

(
ve

−ik·∇Epτ )}
e

−iHfτ

)
,

(5.3)
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where Cp :=
∫

d3k v(k)2

|k|−k·∇Ep
is finite and the time-ordered exponential UD(t) :=

Texp( . . . ) is the Dollard modifier of the Nelson model, cf [14, formula (3.6)].
Thus, (5.1) can be rewritten as

ψD
t = eiHt

∫
d3p h(p) e−i(Ep+Hf−Cp)tUD(t)eiHf tb̂∗

w(p)Ω. (5.4)

We recall from [14], that a direct application of the Faddeev–Kulish prescrip-
tion to the Nelson model leads to a formula which differs from (5.4) only by a
substitution b̂∗

w(p) → b∗(p). We believe that this discrepancy can be attributed
to the quantum mechanical origin of the Dollard formalism which makes it dif-
ficult to reconcile with the electron mass renormalization present in the model.
We think that formula (5.4) is a correct implementation of the Faddeev–Kulish
formalism in the Nelson model and hope that the findings of the present paper
will lead to a rigorous proof of convergence of ψD

t as t → ∞.
There are several other future research directions, which we would like

to point out. They include a proof of expected properties of infraparticle
states familiar from [33] such as the convergence of asymptotic electron ve-
locity and asymptotic photon fields on our states and the clustering relation,
i.e. 〈ψ+

1 , ψ+
2 〉 = 〈h1, h2〉, where the former scalar product is in H, the latter

in L2(R3
k) and hj are related to ψ+

j := limt→∞ ψj,t, j = 1, 2, via (1.8). These
problems appear to be within reach of available methods and are not treated
here mainly to keep this paper within reasonable limits. A more intriguing,
but still quite tractable problem, is to provide a non-perturbative proof of the
Weinberg’s soft photon theorem [38] in the massless Nelson model. Such a
proof would provide a useful benchmark to test various perturbative versions,
e.g. [23,31], currently considered in the context of the Strominger’s ‘infrared
triangle’ [37]. Another meaningful direction is to apply our construction of
infraparticle scattering states to more sophisticated models, such as the Nel-
son model without the UV cut-off or the Pauli–Fierz model. This direction
faces, however, a technical challenge of generalizing the spectral results from
[1,15,16] to these theories. There is a solid basis for such endeavours, e.g.
[4,5,8,9,20,24,25,28,29], but also a lot of work remains to be done.

Acknowledgements

We would like to thank D. Buchholz, J. Fröhlich, S. Lill and J. Mund for
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A Energy Bounds and Derivatives of the Weyl Operators

We introduce the following subspace of L2(R3
k):

L2
ω(R3

k) := {f ∈ L2(R3
k) | ‖f‖ω := ‖(1 + |k|−1/2)f‖2 < ∞}. (A.1)

We recall that N := dΓ(1),Hf := dΓ(|k|) and state the standard energy and
number bounds [7]:

Lemma A.1. Let f1, . . . , fn ∈ L2(R3
k). Then

‖a(∗)(f1) . . . a(∗)(fn)(1 + N)−n/2‖F ≤ cn‖f1‖2 . . . ‖fn‖2. (A.2)

Let f1, . . . , fn ∈ L2
ω(R3

k). Then,

‖a(∗)(f1) . . . a(∗)(fn)(1 + Hf)−n/2‖F ≤ cn‖f1‖ω . . . ‖fn‖ω. (A.3)

Formula (A.4) is also well-known, but we provide a proof for the reader’s
convenience.

Lemma A.2. Let R � s �→ Fs ∈ L2
ω(R3

k) be differentiable in the norm ‖ · ‖ω.
Then, s �→ W (Fs)ψ, ψ ∈ D(H1/2

f ), is differentiable in the norm of F and

∂sW (Fs)ψ = W (Fs)(a∗(∂sFs) − a(∂sFs) + iIm〈Fs, ∂sFs〉)ψ. (A.4)

Also, s �→ a(∗)(Fs)ψ is differentiable w.r.t. s in the norm of F and ∂sa
(∗)(Fs)ψ

= a(∗)(∂sFs)ψ. If ψ ∈ D(N1/2) then analogous statements hold for s �→ Fs

differentiable in the norm ‖ · ‖2.

Proof. Using the Weyl relations W (F )W (G) = e−iIm〈F,G〉W (F + G), F,G ∈
L2(R3

k),

1
Δs

(
W (Fs+Δs) − W (Fs)

)

= W (Fs)
1

Δs
(W (−Fs)W (Fs+Δs) − 1)

= W (Fs)
1

Δs
(eiIm〈Fs,Fs+Δs−Fs〉W (Fs+Δs − Fs) − 1)

= W (Fs)
1

Δs

(
eiIm〈Fs,Fs+Δs−Fs〉 − 1

)
W (Fs+Δs − Fs) (A.5)

+ W (Fs)
1

Δs

(
W (Fs+Δs − Fs) − 1

)
. (A.6)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Considering (A.5), we obtain immediately

lim
Δs→0

1
Δs

(
eiIm〈Fs,Fs+Δs−Fs〉 − 1

)
= iIm〈Fs, ∂sFs〉. (A.7)

Furthermore, it is easy to see that in the norm of F
lim

Δs→0
W (Fs+Δs − Fs)ψ = ψ. (A.8)

In fact, denoting Φ(F ) := a∗(−iF ) + a(−iF ), we can write

W (Fs+Δs − Fs)ψ = ψ +
{

eiΦ(Fs+Δs−Fs) − 1
Φ(Fs+Δs − Fs)

}
Φ(Fs+Δs − Fs)ψ. (A.9)

By the spectral theorem, the norm of the expression in curly bracket above
is bounded uniformly in Δs. On the other hand, by the assumed form of
differentiability

Φ(Fs+Δs − Fs)ψ = Δs Φ(∂sFs)ψ + Φ(o(Δs))ψ, (A.10)

where ∂sFs ∈ L2
ω(R3

k) and the rest term satisfies

lim
Δs→0

‖o(Δs)‖ω

Δs
= 0. (A.11)

Thus, by the energy bounds of Lemma A.1, we obtain that (A.10) tends to
zero in the norm of F as Δs → 0 which gives (A.8).

Concerning (A.6), we write again Fs+Δs − Fs = Δs ∂sFs + o(Δs), which
gives

1
Δs

(
W (Fs+Δs − Fs) − 1

)
ψ

=
1

Δs

(
e−iIm〈Δs ∂sFs,o(Δs)〉W (Δs∂sFs)W (o(Δs)) − 1

)
ψ. (A.12)

To take the limit Δs → 0 above, we note

lim
Δs→0

1
Δs

(
e−iIm〈Δs∂sFs,o(Δs)〉 − 1) = 0,

lim
Δs→0

1
Δs

(
W (o(Δs)) − 1

)
ψ = 0,

(A.13)

where the latter limit is computed as in (A.10) using (A.11). Also, we exploit
that by the Stone theorem

lim
Δs→0

1
Δs

(W (Δs∂sFs) − 1)ψ = iΦ(∂sFs)ψ. (A.14)

Finally, substituting (A.14), (A.7) to (A.5), (A.6), we obtain (A.4). The last
statement of the lemma is proven by analogous arguments. �

Lemma A.3. Under the assumptions of Lemma 4.5, for any fixed t,

sup
0≤Δxi≤1

∥∥∥∥
{ ∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0
ds(1 − s)

{
∂2

x′
i
W

(
fpm(t, x′)

)|x′=x+s(Δxi)ei

}
φp

}
x∈R3

∥∥∥∥
H

< ∞, (A.15)
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sup
0≤Δt≤1

∥∥∥∥
{ ∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0
ds(1 − s)

{
∂2

τ W
(
fpm(τ, x)

)|τ=t+sΔt

}
φp

}
x∈R3

∥∥∥∥
H

< ∞. (A.16)

Proof. Let us prove (A.15). Since φp is in the domain of any power of Hf (cf.
Lemma C.3), we can compute ∂2

x′W
(
fpm(τ, x′)

)
using Lemma A.2:

∂2
x′W

(
fpm(τ, x′)

)
φp

= W
(
fpm(τ, x′)

)
(a∗(∂x′fpm(τ, x′)) − a(∂x′fpm(τ, x′))

+ iIm〈fpm(τ, x′), ∂x′fpm(τ, x′)〉)2φp (A.17)

+W
(
fpm(τ, x′)

)
(a∗(∂2

x′fpm(τ, x′)) − a(∂2
x′fpm(τ, x′))

+ i∂x′Im〈fpm(τ, x′), ∂x′fpm(τ, x′)〉)φp. (A.18)

Next, exploiting the energy bounds (A.3) to control the creation and annihila-
tion operators acting on φp, we apply the shift (4.38) and estimate (3.5). More
explicitly, we rewrite the expression under the norm in (A.16) as follows:∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0

ds (1 − s)
{
∂2

x′W
(
fpm(τ, x′)

)|x′=x+s(Δxi)ei

}
φp

=
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0

ds (1 − s)
{
∂2

x′W
(
fpm(τ, x′)

)|x′=x+s(Δxi)ei

}

×(1 + Hf)−1(1 + Hf)(φp − φp,σx
) (A.19)

+
∫

d3p ei(p·x−Ept)eiγ(p,x,t)h(p)

×
∫ 1

0

ds (1 − s)
{
∂2

x′W
(
fpm(τ, x′)

)|x′=x+s(Δxi)ei

}
φp,σx

. (A.20)

By (3.5) and σx := κλ0/(1+ |x|)M , M sufficiently large, we obtain that (A.19)
remains bounded for 0 ≤ Δxi ≤ 1 in the norm of L2(R3

x;F). As for (A.20),
estimate (4.3) gives

‖(A.20)‖H ≤ ct1/2

×
∑

|α|≤2

sup
p,x

sup
s∈[0,1]

(
1

(1 + |x|)1/2
‖∂α

p (eiγ(p,x,t){∂2
x′ ĝ

σx
(τ,x′)(p)}|x′=x+s(Δxi)ei

)‖F
)

,

(A.21)

where ĝσx

(τ,x′) was defined in (4.18). Expression (A.21) also remains bounded
for 0 ≤ Δxi ≤ 1 by Lemma 4.4. (From the discussion above, it is manifest
that ∂2

x′
i

in (A.21) does not act on σx. In fact, ∂2
x′

i
appears already in (A.15),

whereas the shift φp → φp,σx
was applied later in (A.20)). The proof of (A.16)

is analogous.
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B Proof of Lemma 3.2

We write φp,σ = {fn
w,p,σ}n∈N0 in terms of the Fock space wave functions. Given

Lemma B.1 and formula (B.3), we can write

‖H
1
f N 
2∂α

p φp,σ‖F ≤
( ∞∑

n=0

n2(
1+
2)‖∂α
p fn

w,p,σ‖2
2

)1/2

≤ c

σδ′
λ0

( ∞∑
n=0

1
n!

(c
1,
2λ)n| log σ|n
)1/2

≤ c

σδλ0
, (B.1)

for some constants c
1,
2 and δλ0 > 0 which tends to zero as λ0 → 0. To
handle the powers of Hf we used that the UV cut-off κ = 1 and consequently
the wave functions fn

w,p,σ are supported in unit balls in each variable k1, . . . , kn

separately. This gives Lemma 3.2.
In preparation for the proof of Lemma B.1, we state a general relation

for wave functions of a Fock space vector:

fn
w,p,σ(k1, . . . , kn) =

1√
n!

〈Ω, a(k1) . . . a(kn)φp,σ〉. (B.2)

This formula is meaningful by considerations in [15, Appendix D]. Let us now
introduce the following auxiliary functions:

g0
σ := c and gn

σ (k1, . . . , kn) :=
n∏

i=1

cλχ[σ,κ∗)(ki)
|ki|3/2

, n ≥ 1, (B.3)

where κ∗ := (1−ε0)−1κ is slightly larger than κ and 0 < ε0 < 1 was introduced
below (1.3).

Lemma B.1. The following estimates hold

|∂α
p fn

w,p,σ(k1, . . . , kn)| ≤ 1√
n!

(
1

σδλ0

)|α|
gn

σ (k1, . . . , kn) for |α| ≤ 2. (B.4)

Proof. In [16, formula (4.42)], the following functions are introduced4

f̂n
p,σ(k1, . . . , kn) := W ∗(fp,σ)a(k1) . . . a(kn)φp,σ, (B.5)

where W (fp,σ) := ea∗(fp,σ)−a(fp,σ) and the r.h.s. above is well-defined by con-
siderations from [15, Appendix D]. In Proposition 4.7 of [16] and in the sub-
sequent discussion in this reference, the following bounds are shown

‖∂α
p f̂n

p,σ(k1, . . . , kn)‖F ≤
(

1
σδλ0

)|α|
gn

σ (k1, . . . , kn) for |α| ≤ 2. (B.6)

In view of (B.3), the r.h.s. depends on numerical constants, whose dependence
on various parameters is specified at the end of Sect. 3. We note that for |α| = 0
(B.4) follows immediately from (B.6) and (B.2).

4 For consistency with the notation from [15–17], we use similar symbols for several different

functions: fp,σ are defined in (3.4) and f̂n
p,σ in (B.5).
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As for the case |α| = 1, we can write

∂pj
(a(k1) . . . a(kn)φp,σ) = ∂pj

(W (fp,σ)f̂n
p,σ(k1, . . . , kn)). (B.7)

The term in which the derivative acts on f̂n
p,σ(k1, . . . , kn) is immediately esti-

mated using (B.6) for |α| = 1. As for the remaining term, we estimate

‖∂pj
(W (fp,σ))f̂n

p,σ(k1, . . . , kn)‖F

≤ 2‖a(∂pj
fp,σ)W (fp,σ)f̂n

p,σ(k1, . . . , kn)‖F

+ ‖∂pj
fp,σ‖2 ‖f̂n

p,σ(k1, . . . , kn)‖F (B.8)

≤ 2
∫

d3k0 |(∂pj
fp,σ)(k0)| ‖f̂n+1

p,σ (k0, k1, . . . , kn)‖F

+ c| log(σ)|1/2 ‖f̂n
p,σ(k1, . . . , kn)‖F . (B.9)

For differentiability of the Weyl operator, we refer to Lemma A.2 and the fact
that f̂n

p,σ is in the domain of H
1/2
f (cf. [15, formula (D.8)]). The bound on

‖∂pj
fp,σ‖2 follows from Lemma E.4. This, together with (B.6), gives (B.4) for

|α| = 1.
Now, we consider the case |α| = 2. Again, we can write

∂pj
∂pi

(
a(k1) . . . a(kn)φp,σ

)
= ∂pj

∂pi

(
W (fp,σ)f̂n

p,σ(k1, . . . , kn)
)
. (B.10)

The term in which both derivatives act on f̂n
p,σ is immediately estimated using

(B.6). Let us consider the term in which one derivative acts on W (fp,σ) and
another on f̂n

p,σ. Similarly as in (B.8), we have

‖∂pj

(
W (fp,σ)

)
∂pi

f̂n
p,σ(k1, . . . , kn)‖F

≤ 2‖a(∂pj
fp,σ)∂pi

f̂n
p,σ(k1, . . . , kn)‖F + ‖∂pj

fp,σ‖2 ‖∂pi
f̂n

p,σ(k1, . . . , kn)‖F .

(B.11)

The last term on the r.h.s. of (B.11) clearly satisfies the required bound by
(B.6) and Lemma E.4. As for the first term above, we note that

a(∂pj
fp,σ)∂pi

f̂n
p,σ(k1, . . . , kn)

= −
(∫

d3k0 (∂pj
fp,σ)(k0)fp,σ(k0)

)
∂pi

(W (fp,σ)∗a(k1) . . . a(kn)φp,σ)

+
∫

d3k0 (∂pj
fp,σ)(k0)∂pi

(W (fp,σ)∗a(k0)a(k1) . . . a(kn)φp,σ), (B.12)

where we first computed the derivative of f̂n
p,σ and then used a(g)W (fp,σ)∗ =

W (fp,σ)∗(a(g) − 〈g, fp,σ〉) for g = ∂pj
fp,σ. The last expression is immediately

estimated using (B.6) for |α| = 1. We still have to estimate a contribution to
(B.10), where both derivatives act on W (fp,σ):
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‖∂pi∂pj (W (fp,σ))f̂n
p,σ(k1, . . . , kn)‖F

≤ ‖(a∗(∂pj fp,σ) − a(∂pj fp,σ))(a∗(∂pifp,σ) − a(∂pifp,σ))W (fp,σ)f̂n
p,σ(k1, . . . , kn)‖F

+‖(a∗(∂pi∂pj fp,σ) − a(∂pi∂pj fp,σ))W (fp,σ)f̂n
p,σ(k1, . . . , kn)‖F . (B.13)

This expression can be estimated by a linear combination of terms of the form:

‖∂α1
p fp,σ‖2 ‖∂α2

p fp,σ‖2 ‖f̂n
p,σ(k1, . . . , kn)‖F , (B.14)

‖∂α1
p fp,σ‖2 ‖a(∂α2

p fp,σ)W (fp,σ)f̂n
p,σ(k1, . . . , kn)‖F , (B.15)

‖a(∂α1
p fp,σ)a(∂α2

p fp,σ)W (fp,σ)f̂n
p,σ(k1, . . . , kn)‖F , (B.16)

where |α1|, |α2| ≤ 2. Expression (B.14) is estimated using (B.6) for |α| = 0
and Lemma E.4. Expression (B.15) is estimated as in (B.9). As for (B.16), it
can be bounded by

(B.16) ≤
∫

d3k′d3k′′ |∂α1
p fp,σ(k′)| |∂α2

p fp,σ(k′′)| ‖f̂n+2
p,σ (k′, k′′, k1, . . . , kn)‖F ,

(B.17)

which is estimated with the help of (B.6) for |α| = 0 and Lemma E.4. �

C Proof of Estimate (3.5)

Lemma C.1. For any � ∈ N0, the maximal coupling constant λ0 > 0 can be
chosen sufficiently small, so that there exists a constant c such that

‖H

f (φp − φp,σ)‖F ≤ cσ1/5. (C.1)

Proof. First, we will prove

‖(Hw
p )
(φp − φp,σ)‖F ≤ cσ1/5. (C.2)

To this end, we recall from [32], [15, Lemma 3.6] the form of the modified
Hamiltonian on D(P 2

f + Hf)

Hw
p,σ =

1
2
Γ2

p,σ +
∫

d3k αp,σ(ek)|k|a∗(k)a(k) + cσ
p , (C.3)

where
Γp,σ := ∇Ep,σ − (p − Pw

f,σ), Pw
f,σ := W (fp,σ)PfW (fp,σ)∗,

αp,σ(ek) := (1 − ek · ∇Ep,σ),
(C.4)

cσ
p :=

1
2
p2 − 1

2
(p − ∇Ep,σ)2 − λ2

∫
d3k

χ[σ,κ)(k)
2|k|2αp,σ(ek)

. (C.5)

The corresponding quantities at σ = 0 are denoted by dropping σ in the
notation. We will use the standard bounds from [32]

|Ep − Ep,σ| ≤ cσ, |∇Ep − ∇Ep,σ| ≤ cσ1/4, ‖φp − φp,σ‖F ≤ cσ1/2,

(C.6)

see also [15, Theorem 2.1 (b), Corollary 5.6], [17, Proposition A.2].
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Now we proceed by induction: for � = 0 the estimate holds by the third
bound in (C.6). For the inductive step, we compute

‖(Hw
p )	(φp − φp,σ)‖F = ‖(Hw

p )	−1(Epφp − Hw
p φp,σ)‖F

≤ ‖(Hw
p )	−1(Epφp − Ep,σφp,σ)‖F + ‖(Hw

p )	−1(Hw
p − Hw

p,σ)φp,σ‖F .

(C.7)

The first term on the r.h.s. of (C.7) is O(σ1/5) by the induction hypothesis and
the first estimate in (C.6). Concerning the last term on the r.h.s. of (C.7), we
note that there are three contributions to Hw

p − Hw
p,σ coming from the three

terms in the Hamiltonian (C.3). They have the following properties: First, by
(C.6), |cp − cσ

p | ≤ cσ1/4. Thus, by Lemma C.2,

‖(Hw
p )
−1(cp − cσ

p )φp,σ‖F ≤ cσ1/4−δλ0 . (C.8)

Clearly, for λ0 > 0 sufficiently small, the last expression is O(σ1/5). The second
contribution is dΓ((αp,σ(ek) − αp(ek))|k|), where |αp,σ(ek) − αp(ek)| ≤ cσ1/4

by (C.6). Thus, Lemma C.2 gives

‖(Hw
p )
−1dΓ((αp,σ(ek) − αp(ek))|k|)φp,σ‖F ≤ cσ1/4−δλ0 . (C.9)

Concerning the third contribution, (Γ2
p −Γ2

p,σ), we note that on D(P 2
f +Hf),

(Pw
f,σ)i = W (fp,σ)Pf,iW (fp,σ)∗ = (Pf)i − a∗(kifp,σ) − a(kifp,σ) + 〈fp,σ , kifp,σ〉

= (Pw
f )i − a∗(ki(fp,σ − fp)) − a(ki(fp,σ − fp)) + (〈fp,σ , kifp,σ〉 − 〈fp, kifp〉).

(C.10)

Consequently, Γp,σ = Γp + ΔΓp,σ, where

(ΔΓp,σ)i = −a∗(ki(fp,σ − fp)) − a(ki(fp,σ − fp)) +
(〈fp,σ, kifp,σ〉 − 〈fp, kifp〉)

+(∇Ep,σ − ∇Ep)i. (C.11)

Considering that (Γ2
p−Γ2

p,σ) = −Γp·ΔΓp,σ−ΔΓp,σ ·Γp−(ΔΓp,σ)2, Lemmas C.2
and E.5 give

‖(Hw
p )
−1(Γ2

p − Γ2
p,σ)φp,σ‖F ≤ cσ1/4−δλ0 . (C.12)

This concludes the proof of (C.2). Now, (C.1) follows from Lemma C.3. �

Lemma C.2. Let h1, . . . , h
 be real-valued measurable functions (in momentum
space) which are bounded on compact sets. Then,

‖dΓ(h1) . . . dΓ(h
)φp,σ‖F ≤ c


σδλ0

(
sup

|k1|≤κ∗
|h1(k1)| . . . sup

|k�|≤κ∗
|h
(k
)|

)
,

(C.13)

where c
, δλ0 may depend on �. Furthermore, if f1, . . . , f
̃ ∈ L2(R3
k) are sup-

ported in a ball of radius κ∗, then we get

‖dΓ(h1) . . . dΓ(h
)a(∗)(f1) . . . a(∗)(f
̃)φp,σ‖F

≤ c
,
̃

σδλ0

(
sup

|k1|≤κ∗
|h1(k1)| . . . sup

|k�|≤κ∗
|h(k
)|

) (‖f1‖2 . . . ‖f
̃‖2

)
, (C.14)
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where c
,
̃ and δλ0 may depend on �, �̃. The estimate also holds for an arbitrary
permutation of the (� + �̃)-element set of operators on the l.h.s. of (C.14).

Proof. We consider (C.13) for � = 1. Let fn
w,p,σ be the n-photon wave functions

of φp,σ. Then, by [17, Proposition A.4], we have

|fn
w,p,σ(k1, . . . , kn)| ≤ 1√

n!
gn

σ(k1, . . . , kn), (C.15)

where gn
σ are defined as in (B.3). Thus,

‖dΓ(h1)φp,σ‖2
F ≤

∞∑
n=1

1

n!

∫
d3nk (h1(k1) + · · · + h1(kn))2|gn

σ (k1, . . . , kn)|2

≤
(

sup
|k|≤κ∗

|h(k)|
)2 ∞∑

n=1

n2

n!

∫
d3nk |gn

σ (k1, . . . , kn)|

≤ c

σδλ0

(
sup

|k|≤κ∗
|h(k)|

)2

, (C.16)

where we estimated as in (B.1). Generalization to arbitrary � is straightfor-
ward.

As for (C.14), we first commute all the operators a(∗)(fj) to the left and
thus get a linear combination of terms of the form

‖a(∗)(f ′
1) . . . a(∗)(f ′


̃
)(1 + N)−
̃(1 + N)
̃(dΓ(hi1) . . . dΓ(hi�′ ))φp,σ‖F , (C.17)

where f ′
i(k) = hj1(k) . . . hjl

(k)fi(k) and the functions hj included in f ′
i do not

appear in the product of dΓ(hi1) in (C.17). Now using the number bounds
(A.2) on creation and annihilation operators, assumption on the supports of
fi and (C.13), we obtain the claim.

Lemma C.3. For any � ∈ N, the operators H

f (i + Hw

p )−
 are bounded.

Proof. Let ψ ∈ F , ‖ψ‖F = 1, be in the domain of H

f . Then, we can write

‖(1 + Hw
p )−	H	

f ψ‖≤‖(
(1 + Hw

p )−	 − (1 + Hw
p,σ)−	)H	

f ψ‖F

+‖(1 + Hp,σ)−	(W (fp,σ)∗HfW (fp,σ))	‖F . (C.18)

Exploiting the concrete expression for W (fp,σ)∗HfW (fp,σ) and standard en-
ergy bounds for the Hamiltonian Hp,σ, i.e. the boundedness of (1+Hp,σ)−
H


f

(cf. [22, Appendix D]), we obtain that the last term is uniformly bounded in
σ. Now since limσ→0 Hw

p,σ = Hw
p in the norm-resolvent sense, we complete

the proof by first taking σ → 0 on the r.h.s. and then taking supremum over
ψ. (The statement about the norm-resolvent convergence is verified using the
resolvent identity and explicit formulas for Hw

p,σ − Hw
p , appearing in the proof

of Lemma C.1).
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D Proof of Lemma 4.1

D.1 Proof of (4.2)

Let V :=
⋃

|λ|≤λ0
{∇E

(λ)
p | p ∈ supp g} and Vδ be an open set containing the

closed set V . Since |∇E
(λ)
p | < c0 < 1 for p ∈ S, we can ensure that Vδ is in

the interior of the ball of radius c0 centered at zero. As we show below by the
non-stationary phase method, for x/t /∈ Vδ and any ψ of norm one from the
dense domain in the statement of Lemma 4.1∣∣∣∣χ{|x|/t/∈Vδ}(x)

∫
d3p ei(p·x−E(λ)

p t)〈ψ, g(p)〉F

∣∣∣∣
≤ c(1 + |x| + t)−2χ{|x|/t/∈Vδ}(x)

∑
|α|≤2

sup
p

|〈ψ, ∂α
p g(p)〉F |, (D.1)

where c is independent of g, x, t. Hence, considering that |x|/t ≥ c0 implies
(x/t) /∈ Vδ, we obtain for any 0 < ε < 1,
∫

|x|≥c0t

d3x sup
‖ψ‖F≤1

∣∣∣∣
〈

ψ,

∫
d3p ei(p·x−E(λ)

p t)g(p)
〉

F

∣∣∣∣
2

≤
∫

|x|≥c0t

d3x c(1 + |x|)−4+2ε

⎛
⎝ ∑

|α|≤2

sup
p,|x′|≥c0t

1
(1 + |x′| + t)ε

‖∂α
p g(p)‖F

⎞
⎠

2

,

(D.2)

which gives (4.2).
Estimate (D.1) is obtained by a slight generalization of Corollary of The-

orem XI.14 from [35], which makes the dependence of the r.h.s. on g explicit.
Namely, we set v := x/t and write

p · x − E(λ)
p t = (|x| + t)F (λ)

v (p), F (λ)
v (p) :=

p · v − E
(λ)
p

|v| + 1
, (D.3)

and note that

|∇pF
(λ)
v (p)| =

∣∣∣∣v − ∇E
(λ)
p

|v| + 1

∣∣∣∣ > ε > 0. (D.4)

Here, ε can be chosen uniformly in p ∈ S, |λ| ≤ λ0 and v /∈ Vδ since V :=⋃
|λ|≤λ0

{∇E
(λ)
p | p ∈ supp g} is a compact set contained in the open set Vδ. We

can thus write the following identity

ei(p·x−E(λ)
p t) = ei(|x|+t)F (λ)

v (p) =
1

i(|x| + t)
∇pF

(λ)
v (p) · ∇pe

i(|x|+t)F (λ)
v (p)

|∇pF
(λ)
v (p)|2

,

(D.5)

substitute it to the l.h.s. of (D.1) and integrate by parts w.r.t. p. By repeating
this procedure, we obtain (D.1). The uniformity of the constant in (D.1) in
v /∈ Vδ, |λ| ≤ λ0 and g follows from the uniformity of ε.
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D.2 Proof of (4.1)

As we show below by the the stationary phase method, we have for all x ∈ R
3

∣∣∣∣χ{|x|/t≤c0}(x)
∫

d3p ei(p·x−E(λ)
p t)〈ψ, g(p)〉F

∣∣∣∣
≤ ct−3/2χ{|x|/t≤c0}(x)

∑
|α|≤2

sup
p

|〈ψ, ∂α
p g(p)〉F |. (D.6)

Thus, we get
∫

|x|≤c0t

d3x sup
‖ψ‖F≤1

∣∣∣∣
〈

ψ,

∫
d3p ei(p·x−Ept)g(p)

〉
F

∣∣∣∣
2

≤
∫

|x|≤c0t

d3x c(t−3)
( ∑

|α|≤2

sup
p,|x′|≤c0t

‖∂α
p g(p)‖F

)2

, (D.7)

which gives (4.1).
Estimate (D.6) is obtained by generalizing the Corollary of Theorem

XI.15 from [35] so as to make the dependence of the r.h.s. of (D.6) on g
explicit. Again, the non-trivial part is to make sure that the constant c in
(D.6) is independent of g, x, t and uniform in |λ| ≤ λ0. To carefully keep track
of this aspect, let us recall Theorem XI.15 of [35]:

Theorem D.1 [35]. Let f be a C∞ real-valued function defined in a neighbour-
hood of 0 in R

n. Suppose that (∇f)(0) = 0 and that its Hessian matrix at zero
is invertible. Then, there is a neighbourhood O of 0 s.t. for any s > n/2 there
is a c so that for all u ∈ C∞

0 (O) and τ ≥ 1∣∣∣∣
∫

dnp eif(p)τu(p)
∣∣∣∣ ≤ cτ−n/2

∑
|α|≤s

sup
p

|∂α
p u(p)|. (D.8)

Moreover, given such an f0, there exist neighbourhoods O1 and O2 of zero with
O1 ⊂ O2 ⊂ O and a neighbourhood N of f0 in the C
(O2) topology (for some
�) so that (D.8) holds for all u ∈ C∞

0 (O1) and f ∈ N .

We denote u(p) := 〈ψ, g(p)〉F , v := x/t ∈ V δ and consider the following
integrals

I
(λ)
v,t (u) :=

∫
d3p eiF (λ),vtu(p), F (λ),v(p) := p · v − E(λ)

p . (D.9)

We note for future reference that for any fixed |λ| ≤ λ0, v ∈ V δ the func-
tion F (λ),v has exactly one critical point in S by invertibility of the relation
p �→ ∇E

(λ)
p given by Lemma 3.1. Now for any given F (λ),v we consider neigh-

bourhoods O1,O2 of its critical point and a neighbourhood N of F (λ),v in the
C
(O2) topology as in the second part of Theorem D.1. Let Bv,r be an open
ball of radius r centered at v and Jλ,r := (λ − r, λ + r). It is easy to see using
Lemma 3.1 that for r sufficiently small,

{F (λ′),v′ | (λ′, v′) ∈ Jλ,r × Bv,r} ⊂ N . (D.10)
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In fact, it is enough to check that

sup
p∈S

|∂α
p

(
p · (v − v′) − (E(λ)

p − E(λ′)
p )

)| ≤ cr (D.11)

for |α| ≤ � which follows from analyticity of (p, λ) �→ E
(λ)
p . By reducing r again,

we can also ensure that the critical points do not approach the boundary of
O1, that is,

{p ∈ O1 |∇pF (λ′),v′ = 0, (λ′, v′) ∈ Jλ,r × Bv,r } ⊂ O1. (D.12)

In fact, if this relation was violated, there would be a sequence of critical points
O1 � pn → p ∈ O1\O1 corresponding to a sequence (λ′

n, v′
n) ∈ Jλ,r × Bv,r.

Since r is such that (D.10) holds (and all F (λ′),v′
in (D.10) have critical points

in O1) this latter sequence must have accumulation points at the boundary of
Jλ,r × Bv,r. By passing to Jλ,r/2 × Bv,r/2, we exclude the sequence.

Since the sets Jλ,r × Bv,r form a covering of the compact set [−λ0, λ0] ×
V δ, we can choose a finite sub-covering, labelled by the resulting centers
(λ1, v1), . . . , (λm, vm). We denote the neighbourhoods O1, corresponding to
F (λ1),v1 , . . . , F (λm),vm , as O1,1, . . . ,O1,m. We denote by χO1,j

∈ C∞
0 (O1,j) the

approximate characteristic function of O1,j . Using (D.12), we can choose it in
such a way, that the critical points of F (λ′),v′

, (λ′, v′) ∈ Jvj ,rj
× Bvj ,rj

, are
outside of the support of 1 − χO1,j

. Then, for each λ ∈ [−λ0, λ0], v ∈ V δ, we
write

I
(λ)
v,t (u) = I

(λ)
v,t (χO1,j

u) + I
(λ)
v,t ((1 − χO1,j

)u), (D.13)

where j is chosen so that (λ, v) ∈ Jλj ,r × Bvj ,r. Now, since the Hessian matrix
of p �→ E

(λ)
p has the positivity property from Lemma 3.1, the first term on the

r.h.s. of (D.13) satisfies the estimate from Theorem D.1,

|I(λ)
v,t (χO1,j

u)| ≤ ct−3/2
∑

|α|≤2

sup
p

|∂α
p u(p)| (D.14)

with a constant chosen from a finite set, corresponding to F (λ1),v1 , . . . , F (λm),vm .
To treat the second term on the r.h.s. of (D.13), we write similarly as in (D.5)

ei(p·x−E(λ)
p t) = eiF (λ),v(p)t =

1
it

∇pF
(λ),v(p) · ∇pe

iF (λ),v(p)t

|∇pF (λ),v(p)|2 (D.15)

and integrate twice by parts. For p in the support of 1 − χO1,j
and (λ, v) ∈

Jλj ,r × Bvj ,r, the denominator satisfies

|∇pF
(λ),v(p)| = |v − ∇E(λ)

p | > εj > 0, (D.16)

by our choice of χO1,j
and relation (D.12). Thus, we obtain

|I(λ)
v,t ((1 − χO1,j

)u)| ≤ ct−2
∑

|α|≤2

sup
p

|∂α
p u(p)|. (D.17)
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Summing up, for v ∈ V δ, λ ∈ [−λ0, λ0],∣∣∣∣
∫

d3p eiF (λ),vtu(p)
∣∣∣∣ ≤ ct−3/2

∑
|α|≤2

sup
p

|∂α
p u(p)|, (D.18)

with a constant independent of u, x, t and uniform in |λ| ≤ λ0. Using this and
(D.1) we verify (D.6).

E Properties of Functions fp, fp,σ

We recall from (1.7), (3.4) the definitions:

fp(k) := λ
χκ(k)√

2|k|
1

|k|(1 − ek · ∇Ep)
, fp,σ(k) := λ

χ[σ,κ)(k)√
2|k|

1
|k|(1 − ek · ∇Ep,σ)

.

(E.1)

We start with the following preparatory lemma.

Lemma E.1. For n = 1, 2, . . ., there holds the bound∫
χκ(k)2

|k|3 |e−i|k|t+ik·x − 1|nd3k ≤ cn(1 + log(1 + t + |x|)). (E.2)

Proof. We estimate∫
χκ(k)2

|k|3 |e−i|k|t+ik·x − 1|nd3k

≤
∑
ε=±

∫
ε(t−ek·x)≥0

dΩ(ek)
∫ κ

0

d|k|
|k| |e−iε|k|ε(t−ek·x) − 1|n

≤
∑
ε=±

∫
ε(t−ek·x)≥0

dΩ(ek)
∫ κ(1+t+|x|)

0

d|k|
|k| |e−iε|k| − 1|n

≤ c

∫ κ

0

d|k|
|k| |e−i|k| − 1|n + c2n

∫ κ(1+t+|x|)

κ

d|k|
|k|

≤ cn(1 + log(1 + t + |x|)). (E.3)

This completes the proof.

Lemma E.2. There holds the following bound for |α| = 0, 1, 2

|∂α
p γ(p, x, t)| ≤ c|λ|2(1 + log(1 + t + |x|)). (E.4)

Proof. We have

∂pi
fp(k) = λ

χκ(k)√
2|k|3/2

1
(1 − ek · ∇Ep)2

∂pi
(ek · ∇Ep), (E.5)

∂pj
∂pi

fp(k) = λ
χκ(k)√
2|k|3/2

{
2

1
(1 − ek · ∇Ep)3

∂pj
(ek · ∇Ep)∂pi

(ek · ∇Ep)

+
1

(1 − ek · ∇Ep)2
∂pj

∂pi
(ek · ∇Ep)

}
. (E.6)
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Thus by Lemma 3.1, we have

|fp(k)|, |∂pi
fp(k)|, |∂pj

∂pi
fp(k)| ≤ cλ

χκ(k)√
2|k|3/2

. (E.7)

Now, we write

∂α
p γ(p, x, t) =

∫
d3k ∂α

p (fp(k)2) sin(|k|t − k · x). (E.8)

Clearly, estimates (E.7) and Lemma E.1 give (E.4). (Here, we made use of
| sin y| = |Im eiy| = |Im(eiy − 1)| ≤ |eiy − 1|.)
Lemma E.3. Let m(t, x) := (e−i|k|t+ik·x − 1). Then, for |α| ≤ 2, |β| ≤ 2,

|〈∂α
p fpm(t, x), ∂β

p fpm(t, x)〉| ≤ c|λ|2(1 + log(1 + t + |x|)). (E.9)

Proof. Follows immediately from (E.7) and Lemma E.1. Indeed, we have∫
d3k |(∂α

p fp)(k)(∂β
p fp)(k)| |e−i|k|t+ik·x − 1|2

≤ c|λ|2
∫

d3k
χκ(k)2

2|k|3 |e−i|k|t+ik·x − 1|2

≤ c|λ|2(1 + log(1 + t + |x|)), (E.10)

which concludes the proof.

Lemma E.4. The following bounds hold

|∂α
p fp,σ(k)| ≤ cλ

χ[σ,κ)(k)√
2|k|3/2

for |α| = 0, 1,

|∂α
p fp,σ(k)| ≤ c

σδλ0
λ

χ[σ,κ)(k)√
2|k|3/2

for |α| = 2.

(E.11)

Proof. The estimates follow from definition (3.4) via computations analogous
to (E.5)–(E.6). For the relevant estimates on derivatives of S � p �→ Ep,σ up
to the third order, see [15, Theorem 2.1].

Lemma E.5. The following bounds hold

‖ki(fp,σ − fp)‖2 ≤ cσ1/4, |〈fp,σ, kifp,σ〉 − 〈fp, kifp〉| ≤ cσ1/4. (E.12)

Proof. Definitions (E.1) give

fp(k) − fp,σ(k) = λ
χ[0,σ](k)√

2|k|3/2

1
(1 − ek · ∇Ep)

+λ
χ[σ,κ](k)√

2|k|3/2

(
1

(1 − ek · ∇Ep)
− 1

(1 − ek · ∇Ep,σ)

)
, (E.13)

where χ[0,σ] is the characteristic function of a ball of radius σ centered at zero.
Now considering that |∇Ep − ∇Ep,σ| ≤ cσ1/4 (cf. (C.6) above), we can write
for any β > 0

‖ |k|β(fp,σ − fp)‖2 ≤ c(σβ + σ1/4). (E.14)
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Setting β = 1, we obtain the first bound in (E.12). As for the second estimate,
we note that

|〈fp,σ, kifp,σ〉 − 〈fp, kifp〉| ≤
∫

d3k |k|∣∣(fp,σ(k) − fp(k))(fp,σ(k) + fp(k))
∣∣

≤ ‖ |k|1/2(fp,σ − fp)‖2

(‖ |k|1/2fp,σ‖2+‖ |k|1/2fp‖2

)
.

(E.15)

Applying (E.14) with β = 1/2 and considering that ‖ |k|1/2fp,σ‖2, ‖ |k|1/2fp‖2 ≤
c, we conclude the proof. �
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