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Canonical Quantization of the
Electromagnetic Field in Arbitrary ξ-Gauge

Fernando Falceto

Abstract. We carry out the canonical quantization of the electromagnetic
field in arbitrary ξ-gauge and compute its propagator. In this way we fill
a gap in the literature and clarify some existing confusion about Feyn-
man iε prescription for the propagator of the electromagnetic field. We
also discuss the BRST quantization and investigate the apparent singu-
larities present in the theory when the gauge parameter ξ takes the value
−1. We find that this is a mere artifact due to the choice of basic modes
and show that in the appropriate basis the commutation relations and
the BRST transformation are, in fact, independent of the gauge param-
eter. The latter only appears as the coefficient of a BRST exact term
in the Hamiltonian, which constitutes an extremely simple proof of the
independence of any physical process on the gauge parameter ξ.

1. Introduction

A most important lesson I learned from Krzysztof’s research and teaching is
that there is no good Theoretical Physics without honest Mathematics. This
belief is visible already in his very first contributions [1]. As I could experience
myself when working with him, he struggled (and made me struggle too) to
derive physical results in a convincing (or rigorous) mathematical way, see for
instance [2–6] as some paradigmatic examples of this in a great variety of areas
in Mathematics and Physics.

This intransigent attitude is certainly most valuable for the advance of
Theoretical Physics, since, as we all know, there are occasions in which some
results are commonly accepted and even appear in text books, but they have
not been properly derived. They are sometimes guessed or obtained in a non-
rigorous way.

Dedicated to the memory of my dearest professor and friend, Krzysztof Gawȩdzki.
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It is somehow surprising that we can encounter one of these instances
in the realm of elementary-free quantum field theory: the propagator of the
U(1) gauge field Aμ in a general ξ-gauge. A problem perfectly well defined
in mathematical terms whose proper solution I was not able to find in the
literature.

The Lagrangian density in the Gupta–Bleuler formalism for arbitrary
gauge parameter ξ reads

Lem = −1
4
FμνFμν − 1

2ξ
(∂μAμ)2, Fμν = ∂μAν − ∂νAμ (1)

where I use the positive time signature for the Minkowski metric, i. e. g =
diag(1,−1,−1,−1).

Actually, in their original papers [7,8], the authors consider the particular
case ξ = 1, nowadays known as Feynman gauge. This case is the most thor-
oughly studied in the literature, see for instance [9] for a rigorous treatment.
Here we will consider an arbitrary value for the gauge parameter ξ, instead.

After quantizing the theory defined by the Lagrangian in (1), one may
derive the Feynman propagator

〈0| TAμ(x)Aν(y) |0〉 = lim
ε→0+

∫
R4

Πε
μν(p)e−ip(x−y) d4p

(2π)4
. (2)

If you check the literature you will find that, starting at least from de classical
review papers [10,11] and continuing with the majority of most popular text
books [12–18], the propagator in momentum space is written as

Πε
μν(p) =

−i
p2 + iε

(
gμν − (1 − ξ)

pμpν

p2

)
. (3)

An expression that when inserted into (3), and due to the poles at p0 = ±|�p|
in the ξ-dependent term, produces an undefined or divergent result. Hence, it
cannot be considered as a valid expression for the propagator in momentum
space.

Notably, in [14] it is suggested to derive the expression for Πε
μν by in-

verting the quadratic form in the action with the iε term included. Namely,
solving for Πε

νρ(p) in

i
(
gμν(p2 + iε) − (1 − ξ−1)pμpν

)
Πε

νρ(p) = δμ
ρ . (4)

From which one gets

Πε
μν(p) =

−i
p2 + iε

(
gμν − (1 − ξ)

pμpν

p2 + iξε

)
,

that, for ξ �= 0, cures the pole ambiguity leading to a well defined propagator in
x-space. Notice, however, that for ξ = 0 the problem persists and, moreover,
the location of the poles depends on ξ: If ξ > 0 two poles are under the
positive p0 real line and two more over the negative one, then the standard
(anticlockwise) Wick rotation is allowed; but if ξ < 0 we have one pole on
each side of the positive real line and the same in the negative one, hence the
Wick rotation that leads to the Euclidean formulation of the theory is not
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permitted any more. It is surprising that a parameter that is supposed to have
no physical meaning affects so deeply the consistency of the theory.

Actually, the proposal (4) has not a very solid justification. It is intro-
duced just for solving the pole ambiguity and because it leads to the right
result for the scalar and the gauge field in Feynman gauge (ξ = 1).

In [19] Claude Itzykson and Jean-Bernard Zuber carry out a sounder
derivation of the propagator within the canonical quantization formalism. The
authors follow an indirect procedure, though. They consider the massive Proca
theory with the ξ-term added and after quantizing and computing the propa-
gator they take the massless limit. Their result is

Πε
μν(p) =

−i
p2 + iε

(
gμν − (1 − ξ)

pμpν

p2 + iε

)
, (5)

that, as we will see later, agrees with the right expression. This form of the
propagator, without further proof, is also collected in [20,21]

There are, however, two weak points in this derivation. First, it follows
the slippery procedure of breaking the gauge symmetry by the addition of a
mass term and then going to the limit in which the symmetry is restored. In
second place for ξ < 0 it has tachyonic particles. (The authors already notice
this and restrict themselves to positive values of the gauge parameter.) In fact,
the equations of motion for the theory are

(∂μ∂μ + m2)Aν − (1 − ξ−1)∂ν∂μAμ = 0

whose plane wave solutions have momenta p2 = m2, with three polarization
vectors q orthogonal to p and one more solution polarized in the direction of
p with p2 = ξm2. Then if ξ < 0 the p-polarized mode is tachyonic and the
causality issue appears again in this case. This seems to reinforce the idea that
there may be some subtlety or causal violation when ξ < 0. Which, as we will
show, is not the case.

A third approach is followed by more metric-minded people [22–27]. It
consists in interpreting Feynman’s iε prescription as a complex deformation of
the Minkowski metric, or more generally a pseudo Riemannian one. In our case
of interest and in order to account for the iε term, we simply add an imaginary
piece to the temporal part of the metric [26]

gε
μν = gμν + iεδ0μδ0ν

so that we must replace p2 in the propagator with

gε
μνpμpν = p2 + iεp20

that in the ε → 0+ limit is equivalent to (5). Of course, the previous defor-
mation of the metric is linked to Wick rotation (see also [28] that illustrates
the use of complex metrics to induce topology change and more recently [29]
and [30] in connection with quantum field theory and quantum gravity, respec-
tively). Anyhow, we should keep in mind, as emphasized by Matt Visser in [27]
who I quote here, that “Feynman’s iε prescription ... was originally developed
as a pragmatic trick for encoding causality” in the propagator, and it is this
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prescription which “justifies flat-space Wick rotation” and not the other way
around.

Hence in order to solve the puzzle, and according to the previous remark,
one must find the Feynman propagator for arbitrary ξ-gauge following the
standard pathway of quantum field theory and then try to implement the iε
“pragmatic trick”. I have seen the exercise proposed in different text books
but I did not find its solution in the physics literature, the goal of this paper
is to remedy this omission. We will complete the paper with an account of the
BRST quantization of the theory.

2. Canonical Quantization in ξ-Gauge

In order to quantize a free field theory one usually looks for the normal modes
(plane wave solutions) whose amplitudes satisfy, after applying the canonical
quantization prescriptions, the commutation relations of creation and annihi-
lation operators. From these we construct the Fock space of states for the free
theory, the Hamiltonian and all the relevant operators.

In our case the equations of motion are

∂μ∂μAν +
1 − ξ

ξ
∂ν∂μAμ = 0. (6)

At this point one usually takes ξ = 1 (Feynman gauge) that, as we said,
was the original proposal of Gupta and Bleuler [7,8]. Of course, the reason for
that choice is that in the Feynman gauge the equations have a basis of plane
wave solutions of the form

ũμ(x) = kμe−ipx, p2 = 0, (7)

where k is an arbitrary polarization vector. It is customary to consider for every
p the basis of four polarization modes: temporal k(0) = (1,�0), longitudinal
k(3) = (0, �p/|�p|) and the two transverse ones k(j) = (0,�k (j)), j = 1, 2 with
�k (j) · �p = 0 and �k (j) · �k (j′) = δjj′ .

For ξ �= 1, however, if we plug the plane wave solution into (6) we obtain
the necessary condition

p2kν +
1 − ξ

ξ
(p · k)pν = 0, (8)

which, multiplying it by pν and contracting indices, leads to

p2(p · k) = 0,

but if p2 = 0 and ξ �= 1 we derive from (8) p · k = 0 and vice versa.
Hence, the polarization vector k should satisfy the additional condition

of being orthogonal to p. While transverse modes above are still solutions of
the equations of motion, the temporal and longitudinal modes are not, only
their sum survives. It seems that there is a mode missing.

To find the hidden mode we must modify the ansatz. The situation is
reminiscent of the resonance in an harmonic oscillator where solutions of the
form t cos(ωt) appear.
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Actually, one can straightforwardly check that

uμ(x) =
(

kμ + i
1 − ξ

1 + ξ
(k · x)pμ

)
e−ipx, p = (|�p|, �p), (9)

is a solution of (6) for any k. The idea of adding an x-linear term to the polar-
ization vector is already mentioned in [19], although formulated in a somehow
vague or cryptic way. Referring to the solution of (6), the authors write: “Nec-
essarily, [it] involves δ(p2) and δ′(p2).” Ours is a precise implementation of this
idea.

Now, we can use these solutions to complete the basis of modes. In doing
so one must keep in mind that the goal is to perform the canonical quantization
at constant time, so it would be advisable to look for a basis which is orthogonal
(or rather δ-orthogonal) when integrated in space. This requirement conflicts
with the x dependence of the polarization vector in (9), except if we choose its
temporal component x0 or, in other words, except if we take k = k(0) = (1,�0)
in the new solutions.

To be precise we will consider the following basis of solutions

u
(0)
�p (x) = (k(0) + i

1 − ξ

1 + ξ
x0p)e−ipx

u
(3)
�p (x) = (k(3) − i

1 − ξ

1 + ξ
x0p)e−ipx = |�p|−1p e−ipx − u

(0)
�p (x)

u
(j)
�p (x) = k(j)e−ipx, j = 1, 2

with k(λ), λ = 0, 1, 2, 3, the orthogonal vectors that we introduced before and
p = (|�p|, �p).

Defining new (time dependent) polarization vectors, ε(λ)(�p, x0), we can
write more compactly:

u
(λ)
�p (x) = ε(λ)(�p, x0)e−ipx with ε(λ)(�p, x0) = k(λ) + i(gλ0 + gλ3)

1 − ξ

1 + ξ
x0p.

Notice that this basis reduces to the standard one when ξ = 1, making therefore
possible to compare our results with those in the Feynman gauge.

The new polarization vectors satisfy (complex) orthonormality and com-
pleteness relations, namely

ε(λ)μ (�p, x0)∗ε(λ
′)

ν (�p, x0)gμν = gλλ′
, ε(λ)μ (�p, x0)∗ε(λ

′)
ν (�p, x0)gλλ′ = gμν ,

which implies ∫
R3

u
(λ)
�p,μ(x)∗u(λ′)

�q,ν (x)gμν d3x = (2π)3gλλ′
δ3(�p − �q),

∫
R3

u
(λ)
�p,μ(x0, �x)∗u(λ′)

�p,ν (x0, �y)gλλ′ d3p = (2π)3gμνδ3(�x − �y).

That are the conditions for having a complete orthonormal basis of modes at
fixed time, as we sought.
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The next step in the standard quantization procedure for free theories is
to write the field as a superposition of these modes,

Aμ(x) =
∫ 3∑

λ=0

(a(λ)
�p ε(λ)μ (�p, x0)e−ipx + a

(λ)
�p

†
ε(λ)μ (�p, x0)∗eipx)

d3p

(2π)3
√

2|�p| ,

where a
(λ)
�p

†
is the adjoint operator of a

(λ)
�p which guarantees the hermiticity of

the field Aμ(x).
Its inverse relation reads

3∑
λ=0

a
(λ)
�p ε(λ)μ (�p) =

∫
(iȦμ + |�p|Aμ + i

1 − ξ

2ξ

pμ

|�p|∂νAν)eipx d3x√
2|�p| .

Using the canonical commutation relations between the fields Aμ and
their momenta

π0 = −1
ξ
(Ȧ0 + �∇ �A), �π = �̇A + �∇A0

and the previous expressions relating the gauge field and the creation annihi-
lation operators, one can derive the commutation relations of the latter. The
way we computed them involves elementary analysis but it is a little tedious,
though. We give here only the final result that, by the way, is so simple that
it should deserve a more direct way to derive it. Our final result is that the
only nonvanishing commutation relations are

[a(0)
�p , a

(0)
�q

†
] = −(2π)3

1 + ξ

2
δ3(�p − �q)

[a(3)
�p , a

(3)
�q

†
] = (2π)3

1 + ξ

2
δ3(�p − �q)

[a(j)
�p , a

(j′)
�q

†
] = (2π)3δ3(�p − �q)δjj′ , j, j′ = 1, 2. (10)

Once we have determined the commutation relations of the creation an-
nihilation operators we can construct the space of states in the usual way:
the Fock space obtained from the vacuum |Ω〉, defined as the only state killed
by all annihilation operators, by acting on it with the creation operators. For

instance, one particle states are |�p, λ〉 =
√

2|�p|a(λ)
�p

† |Ω〉, where we adopt the
usual Lorentz invariant normalization. In fact, from the commutation relations
and the properties of the vacuum one has

〈 �p, j | �q, j′ 〉 = 2|�p|(2π)3δ3(�p − �q)δjj′ , j, j′ = 1, 2

for the transverse modes, while for the temporal and longitudinal ones (λ, λ′ =
0 or 3) we get

〈 �p, λ | �q, λ′ 〉 = (1 + ξ)|�p|(2π)3δ3(�p − �q)Jλλ′ , J =
(−1 0

0 1

)
,

i.e., the scalar product is of the indefinite type.
In the Feynman gauge, ξ = 1, and more generally for ξ > −1, we have the

standard scenario in which the temporal creation operators produce negative
square norm states. However, for ξ < −1 the situation is inverted: Temporal
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states have a positive square norm while longitudinal states (generated by
a
(3)
�p ) have a negative one. Also when ξ = −1 we have that both, temporal and

longitudinal states, have zero norm and the scalar product is degenerate. One
may wonder if there is some singularity in the theory when ξ = −1 or it is an
artifact of our procedure.

This is somehow reminiscent of what happens at the black hole horizon
where the radial and temporal directions exchange there signatures and the
metric is singular. In that case the singularity is due to the choice of coordinates
and there is nothing physically meaningful behind. As we shall see later we
have here exactly the same situation. But, for now, let us proceed to compute
other relevant operators of the theory like the Hamiltonian and the momentum.

We consider in first place the normal ordered Hamiltonian H, which is
derived in the standard way from the Gupta–Bleuler Lagrangian (1) and can
be computed integrating in space the following density

H =
1
2

: �̇A2 − (�∇A0)2 − (�∇ × �A)2 : − 1
2ξ

: (Ȧ0)2 + (�∇ �A)2 : (11)

After performing the integration we can write H in terms of the creation
annihilation operators to give

H =

∫
|p|(a(1)

p
†
a
(1)
p + a

(2)
p

†
a
(2)
p )

d3p

(2π)3

+
2

(1 + ξ)2

∫
|p|

(
(a

(3)
p

† − a
(0)
p

†
)(a

(3)
p + ξa

(0)
p ) + (a

(3)
p

†
+ ξa

(0)
p

†
)(a

(3)
p − a

(0)
p )

)
d3p

(2π)3
.

(12)

Notice that in the Feynman gauge ξ = 1 the expression simplifies notably and
we obtain the standard result

Hξ=1 = −
∫

|�p|a(λ)
�p

†
a
(λ′)
�p gλλ′

d3p

(2π)3
.

Going back to the general case, if we compute the action of the Hamil-
tonian on the transverse modes we obtain the expected result H |�p, j〉 =
|�p| |�p, j〉 , j = 1, 2, but when we do the same for the temporal and longitu-
dinal modes we have some surprise. In fact,(

H |�p, 0〉
H |�p, 3〉

)
= |�p| M

(|�p, 0〉
|�p, 3〉

)
, M =

1
1 + ξ

(
2ξ 1 − ξ

ξ − 1 2

)
.

But notice that detM = 1 and TrM = 2, which implies that M is non-
diagonalizable (except if it is the identity which occurs for ξ = 1, the Feynman
gauge). This means that there is not a basis of states with energy well defined,
indeed one can check that the only eigenstate of H in the 0, 3 polarization
space is |�p, 0〉+ |�p, 3〉 with eigenvalue |�p|. One may wonder how this is possible
given that H is a Hermitian operator. The apparent contradiction is solved
if we recall that the scalar product in the space of longitudinal and temporal
modes is indefinite or, in other words, Hermiticity of H implies

M†J = JM

which does not guarantee the diagonalizability of M.
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Moving on to the momentum operator, associated with the invariance
under spatial translations, it can be obtained from the density

�P =: Ȧμ
�∇Aμ +

1 − ξ

ξ
(Ȧ0 + �∇ �A)�∇A0 :

and, once performed the spatial integration we obtain the momentum operator

�P = −
∫

�p a
(λ)
�p

†
a
(λ′)
�p gλλ′

d3p

(2π)3
+

1 − ξ

1 + ξ

∫
�p(a(3)

�p

†
a
(3)
�p − a

(0)
�p

†
a
(0)
�p )

d3p

(2π)3
.

We have no surprises in this occasion and the momentum of one particle states
is well defined and as expected

�P |�p, λ〉 = �p |�p, λ〉 .

After this brief account of the quantization of the theory we proceed to
fulfill our initial goal.

3. Feynman Propagator

We are now in position to compute the Feynman propagator, i.e., the expec-
tation value in vacuum of the time ordered product of gauge fields,

Dμν(x, y) = 〈Ω|TAμ(x)Aν(y)|Ω〉.
As this result is the main goal (and probably the main contribution) of the
paper we will present it with certain detail.

Expanding the gauge fields in terms of the creation annihilation operators
we have

Dμν(x, y)

= θ(x0−y0)
∫∫ ∑

λ,λ′
ε(λ)μ (�p, x0)ε(λ

′)
ν (�q, y0)∗ 〈Ω|a(λ)

�p a
(λ′)
�q

†|Ω〉e−i(px−qy)

d3q

(2π)3
√

2|�q|
d3p

(2π)3
√

2|�p|

+θ(y0−x0)
∫∫ ∑

λ,λ′
ε(λ

′)
ν (�q, y0)ε(λ)μ (�p, x0)∗ 〈Ω|a(λ′)

�q a
(λ)
�p

†|Ω〉e−i(qy−px)

d3q

(2π)3
√

2|�q|
d3p

(2π)3
√

2|�p| (13)

where we have omitted terms containing expectation values like 〈Ω|a(λ)
�p a

(λ′)
�q |Ω〉,

〈Ω|a(λ)
�p

†
a
(λ′)
�q |Ω〉 and 〈Ω|a(λ)

�p

†
a
(λ′)
�q

†|Ω〉 that always vanish.
From the commutation relations we obtain

〈Ω|a(λ)
�p a

(λ′)
�q

†|Ω〉 = (2π)3
(

−gλλ′ +
1 − ξ

2
(gλ0gλ′0 − gλ3gλ′3)

)
δ3(�p − �q)

and using the δ-function we can particularize to the case �q = �p, which we do
in the following.
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The completeness relations, for two different times, acquire an extra term

ε(λ)μ (�p, x0)ε(λ
′)

ν (�p, y0)∗gλλ′ = gμν + i
1 − ξ

1 + ξ
(x0 − y0)

pμpν

|�p| ,

where the identity k(0) + k(3) = p/|�p| was used. By the same token, removing
the transverse modes from the sum, we get

ε(λ)μ (�p, x0)ε(λ
′)

ν (�p, y0)∗(gλ0gλ′0 − gλ3gλ′3)

= k(0)
μ k(0)

ν − k(3)
μ k(3)

ν + i
1 − ξ

1 + ξ
(x0 − y0)

pμpν

|�p| .

Putting everything together we obtain
∑
λ,λ′

ε(λ)μ (�p, x0)ε(λ
′)

ν (�q, y0)∗ 〈Ω|a(λ)
�p a

(λ′)
�q

†|Ω〉

= (2π)3Rμν(�p, x0 − y0)δ3(�p − �q) (14)

with

Rμν(�p, t) = −gμν +
1 − ξ

2

(
k(0)

μ k(0)
ν − k(3)

μ k(3)
ν − it

pμpν

|�p|
)

and remember that we have defined (pμ) = (|�p|, �p).
Therefore, the propagator (13) reads

Dμν(x, y) =
∫ (

θ(x0 − y0)Rμν(�p, x0 − y0)e−ip(x−y)

+θ(y0 − x0)Rμν(�p, y0 − x0)e−ip(y−x)
) d3p

(2π)32|�p|
The contribution of the first term of Rμν , proportional to gμν , can be

obtained using the standard iε Feynman trick, in fact

lim
ε→0+

∫ ∞

−∞

−igμν

p2 + iε
e−ip0 (x0−y0) dp0

2π

=
−gμν

2|�p|
(
θ(x0 − y0)e−i|�p|(x0−y0) + θ(y0 − y0)e−i|�p|(y0−x0)

)
,

where in the left-hand side p2 = p20 − |�p|2.
The other term, dependent on ξ, is of a different nature. Actually, the

presence of a term linear in the difference of times suggests a derivative of
the exponential which in turns implies the existence of a double pole. If for
definiteness we consider the case x0 > y0, then completing appropriately the
integration contour in the lower complex half-plane and applying the method
of residues one gets

lim
ε→0+

∫ ∞

−∞

pμpν

(p2 + iε)2
e−ip0 (x0−y0) dp0

2π
= −i

∂

∂p0

[
pμpν

(p0 + |�p|)2 e−ip0 (x0−y0)

]
p0=|�p|

where, in the previous expressions, I take (pμ) = (p0,−�p).
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Now observe that computing the derivative above one has

∂

∂p0

[
pμpν

(p0 + |�p|)2
]

p0=|�p|
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4|�p| μ, ν = 0

0 μ �= 0, ν = 0

−pμpν

4|�p|3 μ, ν �= 0

=
k
(0)
μ k

(0)
ν − k

(3)
μ k

(3)
ν

4|�p| ,

and [
pμpν

(p0 + |�p|)2
∂

∂p0
e−ip0 (x0−y0)

]
p0=|�p|

= −i(x0 − y0)
pμpν

4|�p|2 e−i|�p|(x0−y0)

where in the right-hand side of the last expression we recover the on shell
convention (pμ) = (|�p|,−�p).

From the previous identities, combined with the appropriate coefficients,
one finally obtains the desired result

Dμν(x, y) = lim
ε→0+

∫ −i
p2 + iε

(
gμν − (1 − ξ)

pμpν

p2 + iε

)
e−ip (x−y) d4p

(2π)4
,

which agrees with the propagator in [19], but it has been derived in this occa-
sion following a quite orthodox path.

4. BRST Symmetry

To give a more complete account of the quantization of the electromagnetic
field for arbitrary gauge fixing parameter, ξ, and to study its unitarity, it is
convenient to incorporate the Faddeev–Popov ghosts and the Bechi–Rouet–
Stora–Tuytin (BRST) symmetry. This will be the content of the present sec-
tion.

First we introduce the ghost and the antighost, a pair of real, Grassmann,
scalar fields c and c that should be quantized with anticommutators (violating
therefore the spin-statistics correspondence, hence its name). Its Lagrangian
is

Lgh = i(∂μc)(∂μc),

with equations of motion

∂μ∂μc = 0, ∂μ∂μc = 0

and canonically conjugated momenta

πc = iċ, πc = −iċ.

Notice the minus sign in the definition πc which is due to the Grassmannian
character of the classical fields.
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The solutions of the equations of motion are plane waves exp(−ipx), (pμ) =
(|�p|, �p), and using them we expand the fields in modes in the following conve-
nient way

c(x) =
∫

(α�pe−ipx + α�p
†eipx)

d3p

(2π)3
√

2|�p|

c(x) =
∫

(iα�pe−ipx − iα�p
†eipx)

d3p

(2π)3
√

2|�p| ,

where the expansion is arranged to guarantee the Hermiticity of the quantum
fields.

From the canonical anticommutation relations between the fields and
their momenta we deduce that the only nonvanishing anticommutators of the
new creation annihilation operators are

{α�p, α
†
�q} = {α�p, α

†
�q} = (2π)3δ3(�p − �q)

while the latter ones commute with those of the gauge field a�p and a†
�p.

Of course, the full Lagrangian

L = Lem + Lgh

possesses the rigid BRST symmetry given by

δηAμ(x) = −iη ∂μc(x)
δηc(x) = 0

δηc(x) =
1
ξ
η ∂μAμ(x) (15)

where η is a real Grassmann variable that parameterizes the transformation.
The meaning of the BRST symmetry is somehow more transparent if we write
it in terms of the creation and annihilation operators

δηa
(0)
�p = −η |�p|α�p, δηa

(0)
�p

†
= η |�p|α�p

†,

δηa
(3)
�p = −η |�p|α�p, δηa

(3)
�p

†
= η |�p|α�p

†,

δηα�p = η
2|�p|
ξ + 1

(a(3)
�p − a

(0)
�p ), δηα�p

† = η
2|�p|
ξ + 1

(a(3)
�p

† − a
(0)
�p

†
), (16)

and all the rest (a(j)
�p , j = 1, 2, α�p and there adjoints) do not transform. With

the previous expressions it is immediate to see the nilpotency of the BRST
symmetry, i.e., δηδη′ = 0.

The next step is to find the operator, QBRST, that, acting on the Fock
space of the ghosts and gauge fields, implements the symmetry. Equivalently,
it should induce the BRST transformations of (16) with

δηX = η [[ QBRST,X ]] ,

where [[ , ]] stands for the commutator or the anticommutator depending on
whether X has even or odd ghost number.
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One can check that the operator we seek is

QBRST =
2

ξ + 1

∫
|�p|

(
(a(3)

�p − a
(0)
�p )α�p

† + α�p(a
(3)
�p

† − a
(0)
�p

†
)
)

d3p

(2π)3
;

that is self adjoint, nilpotent, commutes with the Hamiltonian and annihilates
the vacuum |Ω〉. The previous properties guarantee that we have a well-defined
dynamics in the quotient space

Hphys = ker(QBRST)�ran(QBRST),

which correctly inherits a scalar product from the Fock space. Moreover, one
can check that the scalar product is positive definite which provides the arena
to build a sensible physical theory. This is the reason why we denote by Hphys

the final Hilbert space.
There is still a problem with our construction: as we already mentioned

before, some singularities happen when ξ = −1. For instance the BRST oper-
ator diverges. The question again is whether this is something essential in the
Gupta–Bleuler quantization or it is a mere artifact of our procedure. It turns
out that the second possibility holds and it is possible to carry out the quan-
tization without any singular value for ξ, except ξ = ∞ which is the essential
singularity (we refer to [9] for an interesting discussion of the origin of this
singularity). In the next section we will show how to proceed.

5. Light-like Polarized Modes

If we trace back the origin of the singularity at ξ = −1 it is immediately
evident that there is already a problem in the definition of the basic solutions
u
(0)
�p and u

(3)
�p : Both diverge when ξ → −1.

It is also clear that we may cure the problem by changing the basis so
that it is valid for any finite ξ. One particularly useful choice is to consider the
new modes

v�p,μ = u(3)
μ + u(0)

μ = |�p|−1pμe−ipx (17)

v�p,μ =
1 + ξ

4
(u(3)

μ − u(0)
μ ) =

(
1 + ξ

4
|�p|−1pμ − i

1 − ξ

2
x0pμ

)
e−ipx, (18)

where we define p as the negative energy partner of p, i.e., (pμ) = (−|�p|, �p).
These solutions are well defined and linearly independent for any finite ξ. Note,
besides, that they are light-like polarized, i.e.,

v∗
μvμ = v∗

μvμ = 0.



Vol. 25 (2024) Canonical Quantization of the Electromagnetic Field... 529

We expand the field in terms of the new modes (together with the original
transversal ones)

A(x) =
∫ ∑

j=1,2

(a(j)
�p u

(j)
�p (x) + a

(j)
�p

†
u
(j)
�p (x)∗)

d3p

(2π)3
√

2|�p|

+
∫

(b�p v�p(x) + b�p v�p(x) + b�p
†v�p(x)∗ + b�p

†
v�p(x)∗)

d3p

(2π)3
√

2|�p| ,

(19)

where we introduce the annihilation creation operators b�p, b�p, b�p
†, b�p

†
associ-

ated with the light-like modes. They are related to the temporal and longitu-
dinal ones by

b�p =
1
2
(a(3)

�p + a
(0)
�p )

b�p =
2

1 + ξ
(a(3)

�p − a
(0)
�p ), (20)

and their nonvanishing commutation relations are

[b�p, b�q
†
] = [b�p, b�q

†] = (2π)3δ3(�p − �q)

as can be easily deduced from the commutation relation of a(0), a(3) and their
adjoints.

If we rewrite the BRST transformations in terms of the light-like opera-
tors we get the simple form

δηb�p = −η|�p|α�p, δηb�p
† = η|�p|α�p

†,

δηb�p = 0, δηb�p
†

= 0,

δηα�p = 0, δηα�p
† = 0,

δηα�p = η|�p|b�p, δηα�p
† = η|�p|b�p

†
, (21)

which exhibits the symmetric role played by the operators of the ghosts α�p, α�p

and those of the light-like modes of the electromagnetic field b�p, b�p. Finally,
the BRST charge is

QBRST =
∫

|�p|
(
b�pα�p

† + α�pb�p
†) d3p

(2π)3
.

Observe that in terms of these modes the commutation relations and the
BRST transformations are independent of the gauge fixing parameter ξ. One
is tempted to say that the latter has disappeared completely from the theory,
which would contradict the fact that the propagator of the gauge field actually
depends on ξ.

The apparent paradox is solved by noticing that in order to compute the
propagator we must know the evolution of the operators and for that we also
need the Hamiltonian. It is in the expression of the latter where the parameter
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ξ still appears. In fact, one can verify

Hgh =
∫

|�p|(α†
�pα�p) + α†

�pα�p)
d3p

(2π)3

Hem =
∫

|�p|(a(1)
�p

†
a
(1)
�p + a

(2)
�p

†
a
(2)
�p + b�p

†
b�p + b�p

†b�p +
1 − ξ

2
b�p

†
b�p)

d3p

(2π)3

and the last term in the integrand of Hem gives rise to the ξ-dependent term
of the propagator. Note in passing that, on the one hand, [QBRST,Hem] +
[QBRST,Hgh] = 0 and, on the other hand, the ξ-dependent term is BRST
exact, i.e.,

|�p|b�p
†
b�p = {QBRST,

1
2
(α�p

†b�p + b�p
†
α�p)}

and, therefore, vanishes on Hphys. These two properties show, in the most
simple way, that the dynamics of the theory is well defined on Hphys and it is
independent of ξ as one should expect.

6. Conclusions

We have shown that in order to carry out the canonical quantization of the
electromagnetic filed in arbitrary ξ-gauge one should go beyond the plane
wave like solutions and allow for more general ones. Once the appropriate
basis of solutions is chosen it is immediate to find the commutation relations
of the creation and annihilation operators and the propagator with the correct
Feynman’s iε prescription.

The singularity that we find for ξ = −1 is a consequence of the choice of
basic modes that actually are not defined for that particular value of the gauge
parameter. It is somehow reminiscent of the black hole horizon issue, where
the singularity of the metric is associated with a bad choice of coordinates.
Exactly as in the previous case, in the so-called light-like basis the singularity
disappears and, actually, the dependence on ξ reduces to the coefficient of a
BRST exact term in the Hamiltonian. This proves in a very simple way that
physical processes are independent of ξ.

Despite the fact that no singularity occurs, it is still interesting to con-
sider the special value ξ = −1. In this gauge there is a sort of decoupling of
chiralities. Indeed, if we define light cone coordinates x± = x3 ± x0, where
direction 3 is along the propagation of the gauge field (assumed a plane wave)
and also A± = A3 ± A0, the equations of motion for this particular value of ξ
can be written

∂2
x+A− = 0, ∂2

x−A+ = 0.

Notice that both chiralities are not completely decoupled as the equations are
second order. Given its special properties this chiral gauge (ξ = −1) might
lead to some simplification in the computation of Feynman diagrams.

Another question is whether we can interpret the iε prescription as a
deformation of the action. The letter is necessary if we want to implement
correctly the quantization by functional integral in Minkowski space. This can
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be done for scalar or Dirac fields and is motivated by the need of a damping
factor in the Gaussian integrals. We have shown that the recipe given in [14]
does not work for ξ < 0; hence, the question is if there are some other prescrip-
tion that works for every ξ and to what extent it is related to the damping
property. The ideas of deforming the metric, as discussed in [22–27], may shed
some light on this question, although, in this case, we might have to pay the
price of breaking covariance in the action.
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