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H1 Scattering for Mass-Subcritical NLS
with Short-Range Nonlinearity and Initial
Data in Σ

N. Burq, V. Georgiev, N. Tzvetkov and N. Visciglia

Abstract. We consider short-range mass-subcritical nonlinear Schrödinger
equations, and we show that the corresponding solutions with initial data
in Σ scatter in H1. Hence we up-grade the classical scattering result
proved by Yajima and Tsutsumi from L2 to H1. We also provide some
partial results concerning the scattering of the first order moments, as well
as a short proof via lens transform of a classical result due to Tsutsumi
and Cazenave–Weissler on the scattering in Σ.

1. Introduction

In this paper, we are interested in the long-time behavior of solutions to the fol-
lowing Cauchy problems associated with the defocusing nonlinear Schrödinger
equations (NLS):{

i∂tu + Δu − u|u|p = 0, (t, x) ∈ R × R
n

u(0, .) = ϕ.
(1.1)

It is well known, by combining Strichartz estimates and a contraction argu-
ment, that the Cauchy problems above are locally well posed for every initial
datum ϕ ∈ H1(Rn) with time of existence which depends only on the size
of the initial datum in H1(Rn), provided that 0 < p < 4

n−2 if n ≥ 3 and
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0 < p < ∞ if n = 1, 2. Then the conservation of mass and conservation of the
energy:

E(u(t, x)) =
1
2

∫
Rn

|∇u(t, x)|2dx +
1

p + 2

∫
Rn

|u(t, x)|p+2dx,

(the energy is positive since we consider the defocusing NLS) imply that the
H1(Rn) norm of the solution is uniformly bounded and hence the local theory
can be iterated in order to provide a global well-posedness result. There is a
huge literature around this topic; for simplicity we quote the very complete
book [7] and all the references therein. We also recall that the much more
difficult critical nonlinearity p = 4

n−2 for n ≥ 3 has been extensively studied
more recently starting from the pioneering paper [3] in the radial case and its
extension in the non-radial setting in [11]. In the sequel, in order to emphasize
the dependence of the nonlinear solution from the initial datum, we shall write
uϕ(t, x) to denote the unique global solution to (1.1) where ϕ ∈ H1(Rn) and
p is assumed to be given.

Once the existence of global solutions is established, it is natural to
look at the long-time behavior. In the range of mass-supercritical and energy-
subcritical nonlinearities, namely 4

n < p < 4
n−2 for n ≥ 3 and 4

n < p < ∞ for
n = 1, 2, it has been proved that nonlinear solutions to NLS behave as free
waves as t → ±∞. More precisely, we have the following property:

∀ϕ ∈ H1(Rn) ∃ϕ± ∈ H1(Rn) s.t. ‖uϕ(t, x) − eitΔϕ±‖H1(Rn)
t→±∞−→ 0,

provided that
4
n

< p <
4

n − 2
for n ≥ 3,

4
n

< p < ∞ for n = 1, 2.

(1.2)

We point out that the scattering property (1.2) can be stated in the following
equivalent form

‖e−itΔuϕ(t, x) − ϕ±‖H1(Rn)
t→±∞−→ 0 (1.3)

by using the fact that the group eitΔ is an isometry in H1(Rn). The property
(1.2) is known in the literature as the asymptotic completeness of the wave op-
erator in H1(Rn), or more quickly H1(Rn) scattering. Roughly speaking, (1.2)
implies that for large times (both positive and negative) the nonlinear evolution
can be approximated in H1(Rn) by a linear one with a suitably modified ini-
tial data which represents the nonlinear effect. The literature around H1(Rn)
scattering in the mass-supercritical and energy-subcritical case is huge. Beside
the already quoted reference [7] and the bibliography therein, we mention at
least [17] in the case n ≥ 3 and [22] for n = 1, 2. More recently shorter proof
of scattering in the energy space H1(Rn) for mass-supercritical and energy-
subcritical NLS has been achieved by using the interaction Morawetz esti-
mates, first introduced in [11]. We mention in this direction [9,10,24,31] and
all the references therein. We recall that the scattering of nonlinear solutions
to free waves in the energy space has been extended to the energy critical case,
namely p = 4

n−2 when n ≥ 3, in a series of papers starting from the pioneering
articles [3] and [11] for n = 3. Its extension in higher dimension is provided
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in [26,30]. In the mass critical case p = 4
n , the H1(Rn) scattering property

follows from [13–15].
Notice that the mass-subcritical nonlinearities, namely 0 < p < 4

n , do
not enter in the analysis above. In fact, we can introduce the intermediate
nonlinearity p = 2

n which is a discriminant between short-range ( 2
n < p < 4

n )
and long-range nonlinearity (0 < p ≤ 2

n ). More specifically, one can prove that
in the long-range mass-subcritical setting nonlinear solutions do not behave as
free waves. In this direction, we mention [1] and [7], where it is proved that the
scattering property fails in the L2(Rn) topology for every nontrivial solution
to NLS, even for initial datum which is very smooth. The precise statement
can be given in the following form:

lim sup
t→±∞

‖uϕ(t, x) − eitΔψ‖L2(Rn) > 0,

∀(ϕ,ψ) ∈ C∞
0 (Rn) × L2(Rn), (ϕ,ψ) �= (0, 0), provided that 0 < p ≤ 2

n
.

On the contrary in the short-range mass-subcritical case, following [28],
one can show the following version of scattering:

∀ϕ ∈ Σn ∃ϕ± ∈ L2(Rn) s.t.

‖uϕ(t, x) − eitΔϕ±‖L2(Rn)
t→±∞−→ 0, provided that

2
n

< p <
4
n

(1.4)

where the space Σn is the following one:

Σn =
{

ϕ ∈ H1(Rn)|
∫
Rn

|x|2|ϕ|2dx < ∞
}

,

endowed with the norm

‖ϕ‖2
Σn

=
∫
Rn

(|∇ϕ|2 + |ϕ|2 + |x|2|ϕ|2)dx.

Some properties of the data-to-scattering-states map have been considered in
[21] in the mass-subcritical case. As an outcome, one can deduce a mild ill-
posedness of this operator in the L2 topology.

Notice that the result in [28] is very general, in the sense that the full
set of short-range mass-subcritical nonlinearities 2

n < p < 4
n is covered, and

is sharp in view of the aforementioned result in [1]. However, the weakness of
(1.4) is that although the initial datum is assumed to belong to the space Σn,
the convergence to free waves is proved only in the L2(Rn) sense.

The main aim of this paper is to overcome, at least partially, this fact
and to up-grade the convergence from L2(Rn) to H1(Rn) by assuming that
the initial datum belongs to the space Σn. We can now state the main result
of this paper

Theorem 1.1. Assume 2
n < p < 4

n , then for every ϕ ∈ Σn there exist ϕ± ∈
H1(Rn) such that

‖uϕ(t, x) − eitΔϕ±‖H1(Rn)
t→±∞−→ 0. (1.5)
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We remark that by the conservation of mass and energy we get

sup
t

‖uϕ(t, x)‖H1(Rn) < ∞. (1.6)

By using this fact, along with an interpolation argument and (1.4), it is easy
to deduce that one can conclude

‖uϕ(t, x) − eitΔϕ±‖Hs(Rn)
t→±∞−→ 0, s ∈ [0, 1) (1.7)

for 2
n < p < 4

n . However, the convergence in H1(Rn) stated in Theorem 1.1 is
more delicate and is the main contribution of the paper.

We point out that Theorem 1.1 covers the full set of short-range mass-
subcritical nonlinearities 2

n < p < 4
n , despite previous results where only a

subset of short-range nonlinearities was treated. We quote in this direction
[8] and [27], where the following property (which is stronger than H1(Rn)
scattering) is proved:

∀ϕ ∈ Σn ∃ϕ± ∈ Σn s.t.

‖e−itΔuϕ(t, x) − ϕ±‖Σn

t±∞−→ 0, provided that pn ≤ p <
4
n

(1.8)

where

pn =
2 − n +

√
n2 + 12n + 4
2n

, (1.9)

i.e., pn is the larger root of the polynomial nx2+(n−2)x−4 = 0 (see Appendix
for a short proof of (1.8) via the lens transform). One can check that pn > 2

n
for every n ≥ 1, and hence the results in [8] and [27] do not cover the full set of
short-range mass-subcritical nonlinearities. Notice also that, despite the fact
that (1.2) and (1.3) are equivalent, it is not clear whether or not (1.8) implies

‖uϕ(t, x) − eitΔϕ±‖Σn

t→±∞−→ 0. (1.10)

In fact it is well known that, due to the dispersion, the Σn norm grows quadrat-
ically in time along free waves and hence the group eitΔ is not uniformly
bounded w.r.t. the Σn topology. Only in some very few special cases, it is
proved that (1.8) implies (1.10) (see [2]). Summarizing the main point in The-
orem 1.1 is that we cover the full range of nonlinearities 2

n < p < 4
n ; however,

our conclusion is weaker than (1.8) which on the other hand is available for a
more restricted set of nonlinearities.

We point out that our approach to prove Theorem 1.1 is based only on
Hilbert space considerations and we don’t rely on Strichartz estimates. In fact,
Strichartz estimates in collaboration with boundedness of a family of space-
time Lebesgue norms that arise from the pseudoconformal energy are the key
tools in [8] and [27]. However, in order to close the estimates, following this
approach, some restrictions appear on the nonlinearity and hence the lower
bound p ≥ pn is needed.

We also underline that in order to prove Theorem 1.1 we take the result
in [28] (see (1.4)) as a black-box and we prove how to go from L2(Rn) to
H1(Rn) convergence. The proof of Theorem 1.1 is obtained as a combination
of [28] and the following result.
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Theorem 1.2. Let ϕ ∈ Σn, 0 < p < 4
n and assume that there exist ϕ± ∈

H1(Rn) such that ∥∥|uϕ(t, x)| − |eitΔϕ±|∥∥
L2(Rn)

t→±∞−→ 0, (1.11)

then

‖∇uϕ(t, x)‖L2(Rn)
t→±∞−→ ‖∇ϕ±‖L2(Rn). (1.12)

Notice that in Theorem 1.2 on the one hand we allow the nonlinearity p
to be mass-subcritical (both short-range and long-range); on the other hand,
we assume (1.11) which is granted in the short-range setting by the stronger
condition (1.4).

Next we do some considerations about the convergence of the second-
order moments of solutions to (1.1) to free waves, if the initial datum belongs
to Σn. We recall that the classical definition of scattering in Σn (see [7] and all
the references therein) is provided by (1.8), which unfortunately we are not able
to show in the full set of short-range mass-subcritical nonlinearities. Moreover,
as already mentioned above it is unclear how, even if (1.8) is established, one
can compare the nonlinear solutions to free waves as described in (1.10). On
the other hand, notice that (1.10) is a very strong request since it requires to
compare asymptotically quantities which diverge for large times. In fact, it is
well known that for free waves the second-order moments grow quadratically
and hence the request (1.10) seems to be very hard to prove (in fact it is known
in very few cases, see [2]). On the other hand, for free waves with initial datum
in Σn we have that the renormalized second-order moments

∫
Rn

|x|2
t2 |eitΔϕ|2dx

are bounded and we have a precise limit as t → ±∞ (see for instance [29]).
As a consequence, it seems quite natural to understand whether or not we can
compare the renormalized second-order moment of the nonlinear solution with
the renormalized second-order moment of the free wave. The aim of next result
is to show that scattering of renormalized second-order moments is equivalent
to the regularity of the scattering state ϕ±.

Theorem 1.3. Let p, ϕ, ϕ± as in Theorem 1.1, then we have the following equiv-
alence: ∥∥∥ |x|

t
(uϕ(t, x) − eitΔϕ±)

∥∥∥
L2(Rn)

t→±∞−→ 0 ⇐⇒ ϕ± ∈ Σn.

Unfortunately, we can prove the property ϕ± ∈ Σn only for a subset of
short-range mass-subcritical NLS, namely the ones treated in the references
[8,27]. Indeed once (1.8) is established, we get for free ϕ± ∈ Σn provided that
ϕ ∈ Σn. We believe that the property ϕ± ∈ Σn, which appears in Theorem 1.3,
is an interesting question of intermediate difficulty compared with the proof of
scattering in Σn as described in (1.8). We think it deserves to be investigated
in the full set of short-range mass-subcritical nonlinearities.

Next we make a further comment about the condition ϕ± ∈ Σn; in par-
ticular, we show its connection with a question of regularity for a family of
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Cauchy problems. First we introduce the pesudo-conformal transformation of
uϕ(t, x), which will play a crucial role in the sequel:

wϕ(t, x) =
1

tn/2
ūϕ

(
1
t
,
x

t

)
ei |x|2

4t . (1.13)

We recall that the key point in [28] is the proof of the existence of the functions
w±

ϕ ∈ L2(Rn) such that

‖wϕ(t, x) − w±
ϕ ‖L2(Rn)

t→0±
−→ 0. (1.14)

The following connection is well known (see (3.1) in [27], (14) in [28]) for
2
n < p < 4

n :

ϕ̂±(ξ) = (2i)
n
2 w̄±

ϕ (2ξ). (1.15)

As a consequence, we get, based on elementary Fourier analysis, the following
equivalence: ∫

Rn

|x|2|ϕ±|2dx < ∞ ⇐⇒ w±
ϕ ∈ Ḣ1(Rn). (1.16)

By using (1.16) and writing the partial differential equation solved by wϕ(t, x)
(see Sect. 2), we get that the property ϕ± ∈ Σn (appearing in Theorem 1.3) is
equivalent to study up to the time t = 0 the H1(Rn) regularity of solutions to
the following Cauchy problem:{

i∂tw + Δw − t−α(n,p)w|w|p = 0, (t, x) ∈ (0,∞) × R
n, α(n, p) = 2 − np

2 .

w(1, .) ∈ Σn.

We believe that the analysis of the Cauchy problem above, up to time t = 0
and for 2

n < p < 4
n , has its own independent interest.

We conclude the introduction by quoting the papers [18] and [19] where
the question of scattering theory is studied in negative Sobolev spaces for a
family of long-range mass-subcritical nonlinearities. In particular, a series of
conditional scattering results are achieved in the aforementioned papers. We
finally mention [4] where the authors prove in dimension n = 1 new proba-
bilistic results about scattering and smoothing effect of the scattering states in
weighted negative Sobolev spaces in the mass-subcritical short-range regime.
The result has been extended in higher dimensions under the radiality condi-
tion in [20].

2. The Pseudo-Conformal Transformation

Let uϕ(t, x) be the unique global solution to (1.1) with initial condition ϕ ∈ Σn,
then following [28] we introduce the pseudo-conformal transformation wϕ(t, x)
defined by (1.13). Notice that wϕ(t, x) is well defined for (t, x) ∈ (0,∞) × R

n

and (t, x) ∈ (−∞, 0)×R
n. We shall focus mainly on the restriction of wϕ(t, x)

on the strip (t, x) ∈ (0,∞) × R
n, which is of importance in order to prove

Theorem 1.1 as t → ∞, by a similar argument we can treat the case t → −∞
by using the restriction of wϕ(t, x) on the strip (t, x) ∈ (−∞, 0)×R

n. One can
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check by direct computation that wϕ(t, x) is solution to the following partial
differential equation:

i∂twϕ + Δwϕ − t−α(n,p)wϕ|wϕ|p = 0, (t, x) ∈ (0, ∞) × R
n, α(n, p) = 2 − np

2
.

(2.1)

Notice that in the regime of short-range nonlinearity we have that t−α(n,p) ∈
L1(0, 1) and in the regime of long-range nonlinearity we have that t−α(n,p) /∈
L1(0, 1). Hence the nonlinearity p = 2

n is borderline to guarantee local inte-
grability in a neighborhood of the origin of the weight t−α(n,p) which appears
in front of the nonlinearity in (2.1). As already mentioned in the introduction,
the key idea in [28] is to deduce the L2(Rn) scattering property for the solution
uϕ(t, x) as t → ∞ by showing that the following limit exists

lim
t→0+

wϕ(t, x) in L2(Rn).

Notice that even if wϕ(t, x) ∈ Σn for t �= 0, it is not well defined at t = 0 and
hence to show the existence of the limit above as t → 0+ is not obvious. In
order to achieve this property in [28], it is first proved that the limit above
exists in L2(Rn) in the weak sense, and then in a second step the convergence
is up-graded to strong convergence in L2(Rn).

We collect in the next proposition the key properties of wϕ(t, x) that will
be useful in the sequel.

Proposition 2.1. Let ϕ ∈ Σn, 0 < p < 4
n−2 for n ≥ 3 and 0 < p < ∞ for

n = 1, 2. Let wϕ(t, x) be the pseudoconformal transformation associated with
uϕ(t, x) as in (1.13), then we have the following properties:

wϕ(t, x) ∈ C((0,∞); Σn) (2.2)

and

tα(n,p)‖∇wϕ(t, x)‖2
L2(Rn) +

2
p + 2

‖wϕ(t, x)‖p+2
Lp+2(Rn)

= ‖∇wϕ(t, x)‖2
L2

d

dt
tα(n,p) > 0. (2.3)

In particular for 0 < p < 4
n we have

sup
t∈(0,1]

(
tα(n,p)‖∇wϕ(t, x)‖2

L2(Rn) + ‖wϕ(t, x)‖p+2
Lp+2(Rn)

)
< ∞. (2.4)

The estimate (2.4) plays a fundamental role in [28] and will be of crucial
importance in the sequel along the proof of Theorem 1.2. The basic idea to
establish (2.4) is to multiply first the equation (2.1) by tα(n,p), and then in a
second step the corresponding equation is tested with the function ∂tw̄ϕ(t, x).
Then the proof follows by integration by parts and by considering the real
part of the identity obtained. Concerning the property (2.2), it follows from
the definition of wϕ(t, x) and from the fact that ϕ ∈ Σn implies uϕ(t, x) ∈
C((0,∞); Σn) (see [7] for a proof of this fact).
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3. Proof of Theorem 1.1

We shall treat in detail the case t → ∞ (by a similar argument one can treat
t → −∞). Let ϕ+ ∈ L2(Rn) be given in (1.4), then we shall prove ϕ+ ∈ H1(Rn)
and also

e−itΔuϕ(t, x) t→∞−→ ϕ+ in H1(Rn). (3.1)

This will complete the proof of (1.5) since e−itΔ are isometries in H1(Rn).
Notice also that by (1.6) in conjunction with the fact that eitΔ are isometries
in L2(Rn) commuting with the operator ∇ we get:

sup
t

‖e−itΔuϕ(t, x)‖H1(Rn) < ∞. (3.2)

On the other hand, (1.4) implies

‖e−itΔuϕ(t, x) − ϕ+‖L2(Rn) = ‖uϕ(t, x) − eitΔϕ+‖L2(Rn)
t→∞−→ 0,

namely we have convergence of e−itΔuϕ(t, x) to ϕ+ in L2(Rn). By combining
this fact with (3.2), we conclude on the one hand ϕ+ ∈ H1(Rn), on the other
hand we get the weak convergence

e−itΔuϕ(t, x) t→∞
⇀ ϕ+ in H1(Rn). (3.3)

We claim that (3.1) follows provided that we show

‖∇(e−itΔuϕ(t, x))‖L2(Rn)
t→∞−→ ‖∇ϕ+‖L2(Rn). (3.4)

In fact by combining (3.4) with the following convergence

‖e−itΔuϕ(t, x)‖L2(Rn)
t→∞−→ ‖ϕ+‖L2(Rn)

(which in turn follows from (1.4)), we get

‖e−itΔuϕ(t, x)‖H1(Rn)
t→∞−→ ‖ϕ+‖H1(Rn). (3.5)

Then we have weak convergence in H1(Rn) by (3.3) and convergence of the
norms by (3.5); hence, we get strong convergence in H1(Rn). We conclude
since (3.4) follows by (1.12) in Theorem 1.2 in conjunction with the fact that
eitΔ are isometries in L2(Rn) commuting with the operator ∇. Notice that the
assumptions of Theorem 1.2 are satisfied, in fact (1.11) is weaker than (1.4)
and ϕ+ ∈ H1(Rn) has been established above.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 follows from two lemma in conjunction with an
argument that we borrow from [29], where the precise long-time behavior of
moments is considered for a family of mass-supercritical NLS.

Lemma 4.1. For p ∈ (0, 4
n ), we have the following property:∥∥∇uϕ(t, x) − i

x

2t
uϕ(t, x)

∥∥
L2(Rn)

t→∞−→ 0.
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Proof. By using (1.13), we get

∇wϕ(t, x) =
1

tn/2+1
∇ūϕ

(
1
t
,
x

t

)
ei |x|2

4t +
i

2tn/2+1
xūϕ

(
1
t
,
x

t

)
ei |x|2

4t

and hence

‖∇wϕ(t, x)‖L2(Rn) =
∥∥∥∥1

t
∇ūϕ

(
1
t
, x

)
+ i

x

2
ūϕ

(
1
t
, x

) ∥∥∥∥
L2(Rn)

.

Then we get∥∥∥∥∇uϕ

(
1
t
, x

)
− i

tx

2
uϕ

(
1
t
, x

) ∥∥∥∥
L2(Rn)

= t‖∇wϕ (t, x) ‖L2(Rn), ∀t ∈ (0, 1]

and by (2.4) we have∥∥∥∥∇uϕ

(
1
t
, x

)
− i

tx

2
uϕ

(
1
t
, x

) ∥∥∥∥
L2(Rn)

= O(t−
α(n,p)

2 +1).

We conclude by considering the limit as t → 0+ (and hence 1
t → ∞) and by

noticing the −α(n,p)
2 + 1 > 0. �

Lemma 4.2. For p ∈ (0, 4
n ), we have:

∀ε > 0 ∃tε, Rε > 0 s.t. sup
t>tε

∫
|x|>Rεt

|x|2
t2

|uϕ(t, x)|2dx < ε. (4.1)

Proof. We have the identity

|wϕ(s, x)|2 =
1
sn

∣∣∣∣uϕ

(
1
s
,
x

s

) ∣∣∣∣
2

and hence ∫
|x|>R

|x|2|wϕ(s, x)|2 =
∫

|x|>R

|x|2
∣∣∣∣uϕ

(
1
s
,
x

s

) ∣∣∣∣
2
dx

sn

= s2

∫
s|x|>R

|x|2
∣∣∣∣uϕ

(
1
s
, x

) ∣∣∣∣
2

dx.

If we denote s = 1
t , we get the following identity:∫

|x|>Rt

|x|2
t2

|uϕ(t, x)|2dx =
∫

|x|>R

|x|2
∣∣∣∣wϕ

(
1
t
, x

) ∣∣∣∣
2

dx, ∀R > 0.

Hence in order to get the conclusion (4.1) we are reduced to prove:

∀ε > 0 ∃t̃ε, R̃ε s.t. sup
t∈(0,t̃ε]

∫
|x|>R̃ε

|x|2|wϕ(t, x)|2dx < ε. (4.2)

More precisely showing smallness of the contribution to the renormalized
second-order moment of uϕ(t, x) for large times in the exterior of a cone is
equivalent to showing smallness of the contribution to the second-order mo-
ment of wϕ(t, x) for small times in the exterior of a cylinder. In order to prove
(4.2), first we introduce a non-negative function ψ ∈ C∞(Rn) such that:
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(1) ψ(x) = ψ(|x|);
(2) ψ(x) = |x|, ∀|x| > 1;
(3) ψ(x) = 0, ∀|x| < 1

2 .

Along with ψ, we introduce the rescaled functions ψR(x) = Rψ
(

x
R

)
. First

notice that there exists C > 0 such that:

sup
t∈(0,1)

R>0

(∫
Rn

(ψR(x))2|wϕ(t, x)|2dx

) 1
2 ≤ C sup

t∈(0,1)

‖xwϕ(t, x)‖L2(Rn)

≤ C sup
t∈(0,1)

‖xwϕ(t, x) + 2it∇wϕ(t, x)‖L2(Rn)

+ 2C sup
t∈(0,1)

‖t∇wϕ(t, x)‖L2(Rn) < ∞, (4.3)

where at the last step we have used (2.4) to control the term ‖t∇wϕ(t, x)‖L2(Rn),
and the following identity (in turn coming from the definition of wϕ)

sup
t∈(0,1)

‖xwϕ(t, x) + 2it∇wϕ(t, x)‖L2(Rn)

= sup
t∈(0,1)

∥∥∥∥∇uϕ

(
1
t
, x

)∥∥∥∥
L2(Rn)

along with (1.6) to control ‖xwϕ(t, x) + 2it∇wϕ(t, x)‖L2(Rn). Next by elemen-
tary computations we get:∣∣∣∣∣ d

dt

∫
Rn

(ψR(x))2|wϕ(t, x)|2dx

∣∣∣∣∣ ≤ C

∫
Rn

ψR(x)|∇ψR(x)||wϕ(t, x)||∇wϕ(t, x)|dx

≤ C‖∇wϕ(t, x)‖L2(Rn)

( ∫
Rn

(ψR(x))2|wϕ(t, x)|2dx

) 1
2 ≤ Ct− α

2 , ∀t ∈ (0, 1), ∀R > 0,

(4.4)

where we have used at the last step (2.4) along with the bound (4.3). Notice
that in order to conclude (4.2) it is sufficient to show that for every ε > 0 there
exist t̃ε, R̃ε > 0 such that

sup
t∈(0,t̃ε]

∫
Rn

(ψR̃ε
(x))2|wϕ(t, x)|2dx < ε. (4.5)

In order to select t̃ε, R̃ε > 0 with this property, notice that by (4.4) we get

sup
t∈(0,t̄]

∫
Rn

(ψR(x))2|wϕ(t, x)|2dx ≤
∫
Rn

(ψR(x))2|wϕ(t̄, x)|2dx

+ C

∫ t̄

0

τ− α
2 dτ, ∀t̄ ∈ (0, 1), ∀R > 0

and hence it is sufficient to choose t̄ = t̃ε such that C
∫ t̃ε

0
τ− α

2 dτ < ε
2 and

R = R̃ε in such a way that
∫
Rn(ψR̃ε

(x))2|wϕ(t̃ε, x)|2dx < ε
2 (notice that this

choice of R̃ε is possible by (2.2)). �
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Proof of Theorem 1.2. By Lemma 4.1, we have that (1.12) is equivalent to∥∥∥∥ x

2t
uϕ(t, x)

∥∥∥∥
L2(Rn)

t→∞−→ ‖∇ϕ+‖L2(Rn). (4.6)

Next we show that (4.6) is almost satisfied if we compute the L2 norm in the
more restricted region inside the cone |x| < Rt, for R > 0 that will be chosen
larger and larger. More precisely, we shall prove the following fact:∫

|x|<Rt

|x|2
t2

|uϕ(t, x)|2dx
t→∞−→ 4

∫
|x|< R

2

|x|2|ϕ̂+(x)|2dx. (4.7)

By combining this property with (4.1) and by noticing that∫
|x|< R

2

|x|2|ϕ̂+(x)|2dx
R→∞−→

∫
Rn

|x|2|ϕ̂+(x)|2dx = ‖∇ϕ+‖2
L2 ,

we conclude (4.6).
In order to prove (4.7), we shall use the following asymptotic formula to

describe free waves (see [16] and [25]):
∥∥∥∥eitΔh − ei |x|2

4t

(2it)
n
2

ĥ
( x

2t

) ∥∥∥∥
L2(Rn)

t→∞−→ 0, ∀h ∈ L2(Rn), (4.8)

where ĥ(ξ) denotes the Fourier transform of h, which in turn implies∥∥∥∥|eitΔh| −
∣∣ĥ( x

2t )
∣∣

(2t)
n
2

∥∥∥∥
L2(Rn)

t→∞−→ 0, ∀h ∈ L2(Rn). (4.9)

Next for every R > 0 fixed we get by the Minkowski inequality∥∥∥∥ |x|
t

(
|uϕ(t, x)| −

∣∣ϕ̂+( x
2t

)∣∣
(2t)

n
2

)∥∥∥∥
L2(|x|<Rt)

≤
∥∥∥∥ |x|

t

(
|uϕ(t, x)| − |eitΔϕ+|

)∥∥∥∥
L2(|x|<Rt)

+

∥∥∥∥ |x|
t

(
|eitΔϕ+| −

∣∣ϕ̂+( x
2t

)∣∣
(2t)

n
2

)∥∥∥∥
L2(|x|<Rt)

. (4.10)

Next notice that for any fixed R > 0 inside the cone |x| < Rt we have that the
weight |x|

t is uniformly bounded and hence by combining (4.9) with (1.11) we
conclude that both terms on the r.h.s. in (4.10) converge to zero as t → ∞,
and hence: ∥∥∥∥ |x|

t

(
|uϕ(t, x)| −

∣∣ϕ̂+( x
2t )

∣∣
(2t)

n
2

)∥∥∥∥
L2(|x|<Rt)

t→∞−→ 0,

which in turn implies∫
|x|<Rt

|x|2
t2

|uϕ(t, x)|2dx −
∫

|x|<Rt

|x|2
t2

∣∣∣∣ϕ̂+

( x

2t

) ∣∣∣∣
2

dx

(2t)n

t→∞−→ 0.

By a change of variable, we get (4.7).
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5. Proof of Theorem 1.3

We show separately the two implications.
Proof of ⇒. Recall that we have the property uϕ(t, x) ∈ Σn for every

t > 0, since ϕ ∈ Σn (see [7]). Moreover, by assumption we have∥∥∥∥ |x|
t

(uϕ(t, x) − eitΔϕ+)
∥∥∥∥

L2(Rn)

t→∞−→ 0

and in particular there exists t̄ such that

‖|x|(uϕ(t̄, x) − eit̄Δϕ+)‖L2(Rn) < ∞. (5.1)

Since we know that uϕ(t̄, x) ∈ Σn necessarily we have by (5.1) and the
Minkowski inequality that eit̄Δϕ+ ∈ Σn and hence, by the invariance of the
space Σn under the linear flow eitΔ, we deduce

ϕ+ = e−it̄Δ(eit̄Δϕ+) ∈ Σn.

Proof of ⇐. We use the following well-known identity:
x

t
(uϕ − eitΔϕ+) =

1
t
(x + 2it∇)uϕ − 2i∇(uϕ − eitΔϕ+) − 1

t
eitΔ(xϕ+).

Notice that by Lemma 4.1 the L2 norm of the first term on the r.h.s. converges
to zero as t → ∞. The same property holds for the second term on the r.h.s.
due to Theorem 1.1. The conclusion follows since eitΔ is an isometry in L2 and
hence also the third term on the r.h.s. converges to zero as t → ∞.

6. Appendix: Scattering in Σn Via Lens Transform,
pn ≤ p < 4

n

The aim of this appendix is to provide alternative proof of the results estab-
lished in [8] and [27] by using the lens transform (instead of the pseudocon-
formal energy which is the key tool in [8] and [27]). We introduce, following
[4–6], for every time t ∈ (−π

4 , π
4 ) the lens transform acting as follows on time

independent function G : Rn → R:

LtG(x) = (cos(2t))− n
2 G

( x

cos(2t)

)
e−i |x|2 tan(2t)

2 , x ∈ R
n.

By direct computation, we have that if we denote

H = −Δ + |x|2, (6.1)

then we get the following identity:

ei(t(s))H = Lt(s) ◦ eisΔ, where t(s) =
arctan(2s)

2
. (6.2)

Moreover, we have that if the function uϕ(t, x) is solution to (1.1), then the
function vϕ(t, x) defined as follows:

vϕ(t(s), x) := Lt(s)

(
uϕ(s, ·)

)
(x) (6.3)
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solves the following Cauchy problem⎧⎪⎨
⎪⎩

i∂tvϕ − Hvϕ + cos(2t)−α(n,p)vϕ|vϕ|p = 0, (t, x) ∈ (−π
4 , π

4 ) × R
n,

α(n, p) = 2 − np
2

vϕ(0, x) = ϕ ∈ Σn,

(6.4)

where H is defined in (6.1). Notice that the main advantage of the lens trans-
form compared with the pseudoconformal transform is that the full norm Σn

is involved in the energy associated with (6.4), and not only the H1(Rn) norm.
Therefore, the lens transform seems to be a suitable tool to study the scattering
in Σn.

We recall that the Cauchy problem (6.4) admits one unique solution

vϕ(t, x) ∈ C
(
[0,

π

4

)
; Σn) ∩ Lr

loc

(
[0,

π

4

)
;W1,s(Rn)) (6.5)

where (r, s) is an admissible Strichartz couple (namely 2
r + n

s = n
2 and r ≥ 2 for

n ≥ 3, r > 2 for n = 2, r ≥ 4 for n = 1) and W1,s(Rn) denotes the harmonic
Sobolev spaces associated, namely

W1,s(Rn) = {w ∈ Ls(Rn) s.t. H
1
2 w ∈ Ls(Rn)}

endowed with the norm ‖w‖W1,s(Rn) = ‖w‖Ls + ‖H
s
2 w‖Ls . Following [12], one

can show that for 1 < s < ∞ there exists C > 0 such that
1
C

(‖∇u‖Ls(Rn) + ‖〈x〉u‖Ls(Rn)) ≤ ‖u‖W1,s(Rn) ≤ C(‖∇u‖Ls(Rn)

+‖〈x〉u‖Ls(Rn)). (6.6)

Moreover, it is well known that Strichartz estimates are available (locally in
time) for the group e−itH , under the same numerology for which they are sat-
isfied (globally in time) for e−itΔ (they can be obtained simply by applying
the lens transform). Hence we have all the tools necessary to construct local
solutions to (6.4) by repeating mutatis mutandis the same computations nec-
essary to construct local solutions for the usual NLS. Notice that the chain
rule in the framework of the harmonic Sobolev spaces is essentially reduced to
the classical chain rule in the usual Sobolev spaces by (6.6). In order to show
that the solution can be extended on the full interval [0, π

4 ] with regularity
(6.5) we can rely on the following conservation law:

d

dt

(
cos(2t)α(n,p)‖vϕ(t, x)‖2

Σn
+

2
p + 2

‖vϕ(t, x)‖p+2
Lp+2(Rn)

)

= ‖vϕ(t, x)‖2
Σn

d

dt
cos(2t)α(n,p) < 0, ∀t ∈

[
0,

π

4

)
(6.7)

whose proof follows the same argument to get (2.4) in the context of the
pseudoconformal transformation. Since the weight cos(2t)α(n,p) has no zero in
the interval [0, π

4 ), we have a control of the Σn norm of the solution up to time
t = π

4 and hence we can globalize in [0, π
4 ]. A similar discussion holds in the

interval [−π/4, 0].
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We have the following result that reduces the question of scattering in
Σn for uϕ(t, x) solution to (1.1) (see (1.8)) to the extendibility (by continuity)
of the function vϕ(t, x) up to time t = π

4 in the space Σn.

Proposition 6.1. Let ϕ ∈ Σn, 0 < p < 4
n−2 for n ≥ 3 and 0 < p < ∞ for

n = 1, 2. Then we have the following equivalence:

∃ϕ+ ∈ Σn s.t. ‖e−isΔ(uϕ(s, y)) − ϕ+‖Σn

s→∞−→ 0 ⇐⇒ ∃v+ ∈ Σn s.t. ‖vϕ(t, x)

− v+‖Σn

t→ π
4

−
−→ 0.

Proof. The identity (6.2) is equivalent to

e−isΔ = e−i(t(s))H ◦ Lt(s)

and hence

e−isΔ(uϕ(s, y)) = e−i(t(s))H
(
Lt(s)(uϕ(s, ·)

)
= e−i(t(s))H(vϕ(t(s), y))

where we have used at the last step (6.3). We conclude since e−i(t(s))H are
isometries in Σn and lims→∞ t(s) = π

4 . �

6.1. The Case pn < p < 4
n−2

In this subsection, we provide an alternative proof of the following result first
established in [27] (see also [7]).

Theorem 6.1 ([27]). Assume pn < p < 4
n−2 for n ≥ 3 and pn < p < ∞ for

n = 1, 2 (here pn is defined in (1.9)). Then for every ϕ ∈ Σn there exists
ϕ+ ∈ Σn such that

‖e−itΔ(uϕ(t, x)) − ϕ+‖Σn

t→∞−→ 0.

Proof. By Proposition 6.1, we have to prove ‖vϕ(t, x) − v+‖Σn

t→ π
4

−
−→ 0, where

v+ ∈ Σn. In the rest of the proof, we shall denote v = vϕ. Next we denote by
(r, p + 2), the couple of exponents such that

2
r

+
n

p + 2
=

n

2
(6.8)

and we shall first prove v ∈ Lr((0, π
4 );W1,p+2(Rn)). It is easy to check that

the couple (r, p + 2) is Strichartz admissible in any dimension n ≥ 1. In view
of (6.5), it is sufficient to prove the existence of t0 ∈ (0, π

4 ) such that v ∈
Lr((t0, π

4 );W1,p+2(Rn)), and in turn it is sufficient to show that supτ∈(t0, π
4 )

‖v‖Lr((t0,τ);W1,p+2(Rn)) < ∞. Notice that the main advantage of working with
τ < π

4 is that in the following computation we deal with finite quantities. By
Strichartz estimates available for the propagator eitH , we get:

‖v‖Lr((t0,τ);W1,p+2(Rn))

≤ C‖v(t0)‖Σn
+ C‖ cos(2t)−α(n,p)v|v|p‖Lr′ ((t0,τ);W1,(p+2)′ (Rn)) (6.9)

where t0 is an arbitrary point in the interval [0, π
4 ) that we shall fix later, r′, p′

denote conjugate exponents and τ is arbitrary in (t0, π
4 ). Notice that by the
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chain rule and Hölder inequality w.r.t. space and time we can continue the
estimate as follows:

. . . ≤ C‖v(t0)‖Σn

+C‖ cos(2t)−α(n,p)‖
L

r
r−2 (t0, π

4 )
‖v‖Lr((t0,τ);W1,(p+2)(Rn))‖v‖p

L∞((t0,τ);Lp+2(Rn)).

(6.10)

Due to (6.7) (which implies supt∈(0, π
4 ) ‖v(t, x)‖p+2

Lp+2 < ∞), we can absorb the
second term on the r.h.s. in (6.10) in the l.h.s. in (6.9) provided we have
cos(2t)−α(n,p) ∈ L

r
r−2 (0, π

4 ) and t0 is close enough to π
4 . This integrability con-

dition is equivalent to α(n,p)r
r−2 < 1 which in turn, thanks to (6.8), is equivalent

to np2 + (n − 2)p − 4 > 0 (recall that α(n, p) = 2 − np
2 ). We conclude since we

recall pn is the larger root of the algebraic equation nx2 + (n − 2)x − 4 = 0.
To deduce the existence of the limit v+ by the Duhamel formulation and dual
of Strichartz estimates we have for any couple 0 < τ < σ < π

4 :

‖v(τ) − v(σ)‖Σn
=

∥∥∥∫ σ

τ

ei(t−s)H cos(2s)−α(n,p)v(s)|v(s)|pds
∥∥∥

Σn

=
∥∥∥∫ σ

τ

e−isH cos(2s)−α(n,p)v(s)|v(s)|pds
∥∥∥

Σn

≤ C
∥∥∥ cos(2s)−α(n,p)v(s)|v(s)|p

∥∥∥
Lr′ ((τ,σ));W1,(p+2)′ (Rn))

.

Arguing as above and by using v ∈ Lr((t0, π
4 );W1,p+2(Rn)), we can continue

as follows:

· · · ≤ C‖ cos(2t)−α(n,p)‖
L

r
r−2 (τ,σ)

‖v‖Lr((τ,σ);W1,(p+2)(Rn))

τ,σ→ π
4

−
−→ 0.

�

6.2. The Case pn ≤ p < 4
n−2

, n ≥ 3

Next result includes the one in [27] with the extra bonus that it covers the
limit case p = pn. We shall give the proof for n ≥ 3; however, the result is true
also for n = 1, 2. We recall that compared with the original proof in [8] we deal
with the equation obtained after the lens transform, which is adapted to work
in the Σn space, rather than the pseudoconformal transformation that seems
to perform better in the H1(Rn) setting. Another point is that we give a proof
of the key alternative (6.11) or (6.12) below, based on a continuity argument.
This is different of the proof given in [8] based on a fixed point. We restrict
below to the case n ≥ 3; however, following [8] the proof can be adapted to
the case n = 1, and the case n = 2 has been treated in [23].

Theorem 6.2 ([8]). Assume n ≥ 3 and pn ≤ p < 4
n−2 (pn is defined in (1.9)),

then for every ϕ ∈ Σn there exists ϕ+ ∈ Σn such that

‖e−itΔ(uϕ(t, x)) − ϕ+‖Σn

t→∞−→ 0.



1370 N. Burq et al. Ann. Henri Poincaré

Proof. By Proposition 6.1, we are reduced to prove ‖vϕ(t, x) − v+‖Σn

t→ π
4

−
−→ 0,

where v+ ∈ Σn. In the rest of the proof, we shall denote v = vϕ.
We claim that we have the following alternative for every 4

n+2 < p < 4
n−2

(notice 4
n+2 < pn): - either there exists v+ ∈ Σn such that

‖v(t, x) − v+‖Σn

t→ π
4

−
−→ 0; (6.11)

- or we have the lower bound

inf
t∈[0, π

4 )
‖v(t, x)‖p

Σn

(∫ π
4

t

| cos(2τ)|− 4α(n,p)
4−p(n−2) dτ

) 4−p(n−2)
4

> 0. (6.12)

We shall prove first how the alternative (6.11) or (6.12) implies the result. We
need to exclude the scenario (6.12) under the extra condition pn ≤ p < 4

n−2 .
Indeed if by the absurd (6.12) is true, then we get by (6.7)

d

dt

(
cos(2t)α(n,p)‖v(t, x)‖2

Σn
+

2
p + 2

‖v(t, x)‖p+2
Lp+2(Rn)

)

≤ −2ε
2
p

0 α(n, p) sin(2t) cos(2t)α(n,p)−1

(∫ π
4

t

| cos(2τ)|− 4α(n,p)
4−p(n−2) dτ

)−4+p(n−2)
2p

,

t ∈
(
0,

π

4

)
,

where ε0 > 0 is the infimum in (6.12). Notice that cos(2t) behaves as (π
4 − t)

when t → π
4

− and hence we get by elementary computations

d

dt

(
cos(2t)α(n,p)‖v(t, x)‖2

Σn
+

2
p + 2

‖v(t, x)‖p+2
Lp+2(Rn)

)

≤ −c0

(
t − π

4

)−1− np2+p(n−2)−4
2p

, t ∈
(
0,

π

4

)
for a suitable c0 > 0. Notice that the function at the r.h.s. fails to be integrable
on (0, π

4 ) as long as p ≥ pn, and hence by integration on the interval (0, π
4 ) we

easily get a contradiction.

Next we give a proof of the alternative (6.11) or (6.12) which is based on
the following remark.

Lemma 6.1. Given two sequences ak, bk > 0 for k ∈ N and p > 0, define

fk : R+ → R as follows fk(s) = s − ak − bks1+p. Assume that akb
1
p

k
k→∞−→ 0,

then there exists k̄ such that for every k > k̄ there exist 0 < ck < dk < ∞ such
that

{s ∈ R
+ s.t. fk(s) ≤ 0} = [0, ck] ∪ [dk,∞).

Proof. One can check that the function fk has one unique maximum at the
point s̄k > 0 given by the condition f ′

k(s̄k) = 0, namely s̄p
k = 1

(p+1)bk
. Moreover,

fk is increasing for s < s̄k, decreasing for s > s̄k, lims→∞ fk(s) = −∞ and
fk(0) < 0. We conclude provided that we show that for k large enough we have
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fk(s̄k) > 0. By direct computation, we get fk(s̄k) = 1

(p+1)
1
p b

1
p
k

−ak− 1

(p+1)
1+ 1

p b
1
p
k

and hence the condition fk(s̄k) > 0 is equivalent to 1

(p+1)
1
p

− 1

(p+1)
1+ 1

p
> akb

1
p

k

which is satisfied for k large enough due to the assumption akb
1
p

k
k→∞−→ 0. �

We can now complete the proof of the alternative (6.11) or (6.12) in the
general setting 4

n+2 < p < 4
n−2 . Since now on we shall use that under this

condition on p we have
∫ π

4
0

| cos(2τ)|− 4α(n,p)
4−p(n−2) dτ < ∞. We shall prove that

if (6.12) is false then (6.11) is satisfied. If (6.12) is false, then there exists a
sequence tk ∈ (0, π

4 ) and εk > 0 such that

tk
k→∞−→ π

4
and ‖v(tk, x)‖p

Σn

( ∫ π
4

tk

| cos(2τ)|−
4α(n,p)

4−p(n−2) dτ

) 4−p(n−2)
4

= εk
k→∞−→ 0.

(6.13)

In the sequel, we denote v(tk, x) = vk. Next we choose the Strichartz admissible
couple (r, q) such that

1 − 2
q

=
p(n − 2)

2n

and by Strichartz estimates and Hölder inequalities (in space and time)

‖v‖Lr((tk,t);W1,q(Rn)) ≤ C‖vk‖Σn
+ C‖ cos(2t)−α(n,p)v|v|p‖

Lr′ ((tk,t);W1,
2nq

2n+pq(n−2) (Rn))

≤ C‖vk‖Σn

+C

( ∫ π

4

tk

| cos(2τ)|−
4α(n,p)

4−p(n−2) dτ

) 4−p(n−2)
4

‖v‖p

L∞((tk,t);L
2n

n−2 (Rn))
‖v‖Lr((tk,t);W1,q(Rn))

(6.14)

and by the Sobolev embedding and elementary inequalities, we can continue
the estimate as follows

· · · ≤ C‖vk‖Σn

+C

( ∫ π
4

tk

| cos(2τ)|−
4α(n,p)

4−p(n−2) dτ

) 4−p(n−2)
4

‖v‖p
L∞((tk,t);Σn)‖v‖Lr((tk,t);W1,q(Rn))

≤ C‖vk‖Σn

+C

( ∫ π
4

tk

| cos(2τ)|−
4α(n,p)

4−p(n−2) dτ

) 4−p(n−2)
4

‖v − vk‖p
L∞((tk,t);Σn)‖v‖Lr((tk,t);W1,q(Rn))

+C

( ∫ π
4

tk

| cos(2τ)|−
4α(n,p)

4−p(n−2) dτ

) 4−p(n−2)
4

‖vk‖p
Σn

‖v‖Lr((tk,t);W1,q(Rn)).

Due to (6.13), we have that if we choose k large enough, then the last term on
the r.h.s. can be estimated by 1

2‖v‖Lr((tk,t);W1,q(Rn)). Hence we can absorb it
on the l.h.s. and we get
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‖v‖Lr((tk,t);W1,q(Rn)) ≤ C‖vk‖Σn

+C

( ∫ π

4

tk

| cos(2τ)|−
4p

4−p(n−2) dτ

) 4−p(n−2)
4

‖v − vk‖p
L∞((tk,t);Σn)‖v‖Lr((tk,t);W1,q(Rn)).

(6.15)

Again by Strichartz estimates and triangular inequality, we get

‖v − vk‖L∞((tk,t);Σn) ≤ ‖vk‖Σn
+ ‖v‖L∞((tk,t);Σn)

≤ C‖vk‖Σn
+ C‖ cos(2t)−α(n,p)v|v|p‖

Lr′ ((tk,t);W1,
2nq

2n+pq(n−2) (Rn))

and hence we can estimate the r.h.s. as above and we get for k large enough

‖v − vk‖L∞((tk,t);Σn) ≤ C‖vk‖Σn

+C

( ∫ π
4

tk

| cos(2τ)|−
4α(n,p)

4−p(n−2) dτ

) 4−p(n−2)
4

‖v − vk‖p
L∞((tk,t);Σn)‖v‖Lr((tk,t);W1,q(Rn))

+
1

2
‖v‖Lr((tk,t);W1,q(Rn)). (6.16)

Next we introduce the functions Xk : (tk, π
4 ) → R

+ defined as follows: Xk(t) =
‖v − vk‖L∞((tk,t);Σn) + ‖v‖Lr((tk,t);W1,q(Rn)). Notice that by (6.15) and (6.16)
we get

Xk(t) ≤ C‖vk‖Σn
+ C

(∫ π
4

tk

| cos(2τ)|− 4α(n,p)
4−p(n−2) dτ

) 4−p(n−2)
4

(Xk(t))p+1

and hence Xk(t) belongs to the sublevel {fk(s) ≤ 0} where fk(s) is as in

Lemma 6.1, with ak = C‖vk‖Σn
and bk = C(

∫ π
4

tk
| cos(2τ)|− 4α(n,p)

4−p(n−2) dτ)
4−p(n−2)

4 .

Notice that akb
1
p

k
t→∞−→ 0 by (6.13) and hence if we choose k = k̄ + 1 (following

the notations of the Lemma 6.1) we get, since Xk̄+1(t) are continuous functions
and Xk̄+1(tk̄+1) = 0, that Xk̄+1(t) leaves for every t ∈ (tk̄+1,

π
4 ) in the cor-

responding bounded connected component [0, ck̄+1] provided by Lemma 6.1.
Summarizing, we get v(t, x) ∈ Lr((0, π

4 );W1,q(Rn)) ∩ L∞((0, π
4 ); Σn). Going

back to the Duhamel formulation, using Strichartz estimates and Hölder in-
equality in space and time (in the same spirit as in (6.14)) we get for every
0 < τ < σ < π

4 :

‖v(τ) − v(σ)‖Σn
=

∥∥∥∥∥
∫ σ

τ

ei(t−s)H cos(2s)−α(n,p)v(s)|v(s)|pds

∥∥∥∥∥
Σn

=

∥∥∥∥∥
∫ σ

τ

e−isH cos(2s)−α(n,p)v(s)|v(s)|pds

∥∥∥∥∥
Σn

≤ C‖ cos(2s)−α(n,p)v(s)|v(s)|p‖
Lr′ ((τ,σ);W1,

2nq
2n+pq(n−2) (Rn))
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≤ C

(∫ π
4

0

| cos(2τ)|− 4α(n,p)
4−p(n−2) dτ

) 4−p(n−2)
4

‖v‖p

L∞((τ,σ);L
2n

n−2 (Rn))
‖v‖Lr((τ,σ);W1,q(Rn))

τ,σ→ π
4

−
−→ 0.

where at the last step we have used the property v(t, x) ∈ Lr((0, π
4 );W1,q(Rn))∩

L∞((0, π
4 ); Σn) established above and the Sobolev embedding Σn ⊂ L

2n
n−2 . �
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