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Abstract. We discuss the Monge problem of mass transportation in the
framework of stochastic thermodynamics and revisit the problem of the
Landauer limit for finite-time thermodynamics, a problem that got the
interest of Krzysztof Gawedzki in the last years. We show that restricted
to one dimension, optimal transportation is efficiently solved numerically
by well-known methods from differential equations. We add a brief discus-
sion about the relevance this has on optimising the processing in modern
computers.

1. Introduction

The last decades have seen an increased interest in establishing a thermody-
namic understanding of nonequilibrium processes occurring in small systems.
However, unlike macroscopic systems to which thermodynamics apply, small
systems are characterised by relatively large fluctuations and time scales that
are comparable to their relaxation times, rendering a thermodynamic descrip-
tion inappropriate.

A great advance in our understanding of the thermodynamics of small
systems has been made in the last decades due mainly to two developments
[13]: on the one hand, the discovery of the nonequilibrium fluctuation relations
[11], relating the statistics of molecular fluctuations with the microscopic sym-
metries of the dynamics of small systems far from equilibrium, and ultimately
giving theoretical support for the validity of the second law of thermodynam-
ics [10,12,14,18,23], and on the other hand, the development of stochastic
thermodynamics that derives a thermodynamic framework valid for the single
fluctuating trajectories [21,27–29]. These results have been successfully applied
to a broad range of disciplines, including physics [9], chemistry [25], biological
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systems [27], active matter [30], and computer processing [33], among a host
of many others.

One such nonequilibrium process is life itself, maintained at the molec-
ular level by molecular motors determining the finely tuned kinetics of the
cell. Molecular motors are responsible of essential life processes such as vesicle
transport or cell division [15,26], and the synthesis of ATP [31]. Notwithstand-
ing the strong fluctuations these molecular complexes display, it is of central
importance to understand the efficiency molecular motors operate.

Another instance in which efficiency plays a central role is that of pro-
cessing in modern computers. On the one hand, every computation involves an
energetic thermodynamic cost. On the other hand, due to the miniaturisation
of computer processors, modern transistors operate at scales at which stochas-
tic thermodynamics applies. However, scaling of computer transistors presents
nowadays technological challenges, mostly related to the increase in dissipa-
tion, thus limiting the scaling up in the number of transistors and therefore,
the possible optimisation of the speed of computation [22]. This calls for the
development of highly efficient computing processes that operate at minimal
dissipation.

A fundamental process for computers is that of memory erasure. The
minimal amount of energy required to erase a bit of memory is given by the
celebrated Landauer limit [17], stating an energetic lower bound of kBT ln 2,
where T is the temperature and kB the Boltzmann constant. This energy
is eventually dissipated into the environment as heat. The Landauer limit
is achieved when the erasure of a bit occurs along a quasistatic process. In
practice, memory swaps happen at finite short time scales in a process which
is inherently noisy and out of equilibrium.

Fourteen years ago Krzysztof got interested on the mathematical formal-
isation of (at that time incipient area), nonequilibrium fluctuation relations
[8], as well as on the Landauer limit [1].

The memory erasure process can be stated as a finite-time nonequilibrium
process between an initial state at which a bit is observed to be in a specific
state and a final state in which the bit is absent, and indeed the Landauer
limit was experimentally verified like this [4]. In general, an external control on
the nonequilibrium transition can be devised to obtain optimal processes that
minimise, e.g. dissipation [2,24]. In particular, in Ref. [2] such optimisation
was shown to be solved for the Langevin dynamics in the overdamped limit
by the Monge–Kantorovich optimal mass transport and the Burgers equation.
This is particularly relevant in computer processing as there one searches for
minimal dissipation but at the same time, fast processing.

In 2012, Krzysztof and his colleagues published a paper [1] in which
they related the Landauer Principle [17] to the Monge–Kantorovich optimal
mass transport. In a talk by Krzysztof in Geneva in April 2013, “2nd law
of thermodynamics for fast random processes” he showed how the Landauer
Principle is related to an overdamped Langevin evolution from an initial state
to a different final state. In discussions with him, the question came up on how
to efficiently and precisely compute the dissipated energy. There were many
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methods around at the time, and Krzysztof based his discussion on the papers
by Benamou and Brenier [6,7]. He also gave a sequence of 3 talks in Helsinki on
this subject “Fluctuations relations in stochastic thermodynamics” where an
extensive list of references can be found [13]. Since the authors of [1] restricted
the discussion to 1 dimension, one can use methods from differential equations
which are more precise than the methods used in that paper. This will be part
of our contribution, which illustrates the breath of Krzysztof’s interests and
competence. We miss him.

2. Stochastic Thermodynamics

We consider finite-time nonequilibrium transitions in d dimensions, with dy-
namics described by the Langevin equation in the overdamped limit

dxt = −μ ∂xU(xt, t)dt + dξt , (1)

where U(xt, t) is a smooth control potential and ξt white noise with zero mean
〈dξi

t〉 = 0, and covariance 〈dξi
t dξj

t′〉 = 2Dijδ(t − t′)dt.
The diffusion matrix D and mobility matrix μ appearing above, are as-

sumed positive and satisfying the Einstein relation D = kBTμ where kB is the
Boltzmann constant, so that the noise models the fluctuations of a thermal
bath at temperature T .

During the nonequilibrium transition, we assume that the control poten-
tial changes from U(x0, 0) = Vi(x) at time t = 0 to U(xτ , τ) = Vf (x) at
time t = τ . Given an initial probability density �(x0, 0) = �i(x), xt defines a
Markov diffusion process for times t > 0, with generator

Lt = − (∂xU(xt, t)) · μ∂x + kBT∂x · μ∂x .

The probability density evolves according to the Fokker–Planck equation

∂t�(xt, t) = L†
t�(xt, t) , (2)

where

L†
t = ∂xμ (∂xU(xt, t)) · μ∂x + kBT∂x · μ∂x ,

is the adjoint of Lt.
Following Ref. [28], the energy balance for the single fluctuating trajec-

tories of the process Eq. (1) leads to the framework of stochastic thermody-
namics, developed to give a thermodynamic description to small systems in
contact with a heat bath and driven out of equilibrium (see, e.g. Refs. [21,27]
for a modern review).

Defining the work done on the system during the time interval τ as

W =
∫ τ

0

∂tU(xt, t)dt ,

and the heat released by the system into the environment in the Stratonovich
convention as

Q = −
∫ τ

0

∂xU(xt, t) ◦ dxt ,
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the balance

W − Q = ΔU ,

with ΔU = U(xτ , τ) − U(x0, 0), expresses the conservation of energy that
holds for every fluctuating trajectory of the transition process, in analogy to
the first law of thermodynamics.

To obtain a fluctuating version of the second law of thermodynamics, we
first notice that the entropy change associated with the transition from time
0 to τ , can be split into two contributions

ΔStot = ΔSsys + ΔSenv . (3)

The first term on the right-hand side of Eq. (3) corresponds to the entropy
change of the system due to the evolution of the probability density

ΔSsys = Ssys(τ) − Ssys(0) , (4)

where

Ssys(t) = −kB

∫
�(xt, t) ln (�(xt, t)) dxt ,

is simply the Gibbs–Shannon entropy with respect to the instantaneous prob-
ability density.

The second contribution on the right-hand side of Eq. (3) corresponds to
the change of entropy of the environment due to the dissipated heat

ΔSenv =
1
T

〈Q〉 , (5)

where 〈Q〉 is the mean heat released during the transition.
To obtain the second law, it is expedient to define the current velocity

of the process v(xt, t) [20]. We first note that the instantaneous probability
density for a Markov diffusion process can be written as

�(xt, t) = 〈δ (x − xt)〉 ≡ exp
(

−R(xt, t)
kBT

)
.

Moreover, the Fokker–Planck equation (2), yielding the evolution of �(xt, t)
can be rewritten as the advection equation

∂t� + ∂x(�v) = 0 , (6)

in the current velocity defined as

v(xt, t) = −μ

(
∂xU(xt, t) +

kBT

�(xt, t)
∂x�(xt, t)

)

= −μ ∂x (U(xt, t) − R(xt, t)) . (7)

The current velocity, defined through an appropriate limiting procedure [1,
3,20], has the interpretation of the mean local velocity of the process xt.
Correspondingly, in terms of the current velocity, the Fokker–Planck equation
is equivalent to deterministic mass transport.
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Now, using Eq. (6), the entropy change of the system Eq. (4) can be
written after integration by parts as

ΔSsys =
∫ τ

0

dtṠsys

=
∫ τ

0

dt

(
−kB

∫
(1 + ln(�(xt, t))) ∂t�(xt, t))dx

)

=
1
T

∫ τ

0

dt

∫
∂xR(xt, t) · v(xt, t) �(xt, t) dx , (8)

where Ṡsys is the time derivative of Ssys.
In the same way, the change of entropy of the environment becomes

ΔSenv = − 1
T

∫ τ

0

∫
U(xt, t)∂t�(xt, t)dx

= − 1
T

∫ τ

0

dt

∫
∂xU(xt, t) · v(xt, t) �(xt, t) dx . (9)

Combining both contributions and using Eq. (7), the total entropy change
Eq. (3) becomes

ΔStot =
1
T

∫ τ

0

dt

∫
v(xt, t) · μ v(xt, t) �(xt, t) dx . (10)

This expression implies immediately the fluctuating analogue of the second
law of thermodynamics, namely

ΔStot > 0 . (11)

3. The Optimal Mass Transport

The mass transport problem was first considered by Gaspard Monge in 1781
[19]. Roughly speaking, the problem consists in calculating the most economic
way of moving a volume of mass between two places. The modern approach
of Monge’s optimal mass problem was formalised by Kantorovich in 1942 [16]
(see also [6,32]). Optimal mass transport is nowadays referred as the Monge–
Kantorovich problem. Here we adopt Monge’s exposition.

Let �i(x) and �f (x) be two probability densities, bounded and with com-
pact support in the reals, and satisfying∫

�i(x)dx =
∫

�f (x)dx = 1 . (12)

The optimisation problem is to find an invertible smooth map ϕ :=
xf (xi), that is measure preserving, namely∫

xi(A)

�i(x) dx =
∫

A

�f (x) dx ,

and minimises the objective function∫
C (x,xf (x)) �i(x) dx , (13)
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where C (x,xf (x)) is the cost transporting the unit mass from its initial distri-
bution �i into a final distribution �f . In its original formulation, Monge consid-
ered the Euclidean distance as the cost function C (x,xf (x)) = |x − xf (x)|.
However, the cost function can be taken as C (x,xf (x)) = |x − xf (x)|r. We
will show that the case r = 2 is particularly relevant to formulate a refined
Landauer limit for finite-time processes. This case was solved by Benamou
and Brenier in 1999 [7], and was used by Krzysztof and colleagues in 2012 in
relation to the Landauer limit [1].

4. Minimal Dissipation Memory Erasure

The second law states that for any thermodynamic transformation between
two given initial and final states, the total entropy change must be positive,
such as in Eq. (11). This is valid for any thermodynamic transformation, even
for quasistatic processes occurring infinitely slowly.

Consider now a thermodynamic transformation constrained to be com-
pleted in a fixed finite time τ . Dissipation is naturally expected to be larger
than in the quasistatic transformation, and the question that arises is: what
is the minimal possible dissipation produced in a finite-time transformation?
This question was answered in Ref. [1] for isothermal stochastic systems with
Langevin dynamics in the overdamped limit of Sect. 2.

This question is particularly relevant to computer processing. Landauer
cost of information processing, stating that the erase of a bit of information is
performed at a cost of no less than kBT ln 2 dissipated heat [17]. The Landauer
limit continues to be the main reference in information processing because
the process of bit erasure is the elementary operation that produces maximal
dissipation in universal computing with transistor logic gates [22].

In this section, we review briefly this optimal solution by following Ref.
[1].

Consider the stochastic process xt of Eq. (1), driven out of equilibrium
by the control U(xt, t) from a state �i(x) at time t = 0 to a state �f (x) at
time t = τ . The goal is to obtain the optimal choice of the control U(xt, t)
minimising the dissipation, as given by Eq. (10), required to drive the system
along such transformation, over all the densities �(xt, t) and all velocity fields
v(xt, t) satisfying Eq. (6), under the constraint

�(x0, 0) = �i(x) , �(xτ , τ) = �f (x) . (14)

In other words, we need to minimise the functional

A [�i,v] =
∫ τ

0

dt

∫
v(xt, t) · μ v(xt, t) �(xt, t) dx . (15)

Apart from a factor τ , the minimisation of Eq. (15) over the fields �(xt, t)
and v(xt, t) subject to Eqs. (6) and (14), was solved by Benamou and Bre-
nier [7] (see also [1]). There it was shown that the optimal velocity current
minimising Eq. (15) is gradient

v(xt, t) = ∇φ(xt, t) , (16)
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where φ(xt, t) is convex and a solution of the Hamilton–Jacobi equation. Equa-
tion (16) implies that the optimal solution corresponds, through Eq. (7), to
the optimal control U(xt, t), and that v is also the local velocity of the optimal
control.

Restricting ourselves to smooth velocity fields v such that the Lagrangian
trajectories x(t) satisfy ẋ(t) = v(x(t), t), the solution to the advection equa-
tion (6) is given by

�(xt, t) =
∫

δ (xt − x(t;xi)) �i(xi) dxi , (17)

where x(t;xi) denotes the Lagrangian trajectory that at time t = 0 passes
through xi. Under the controlled transformation, the Lagrangian map xi �→
xf (xi) should transport the initial density �i into the final density �f .

Substituting Eq. (17) into Eq. (15), we can replace the minimisation of
the functional A over the velocity fields v into the minimisation of

A [�i,v] =
∫ τ

0

dt

∫
ẋ(xi, t) · μ ẋ(xi, t) �(xi) dxi .

over the Lagrangian flows satisfying xi �→ x(xi, τ) ≡ xf (xi) such that

�f (x) =
∫

δ (x − xf (xi)) �i(xi) dxi .

This constraint is equivalent to

�f (xf (xi))
∂(xf (xi))

∂(xi)
= �i(xi) , (18)

where ∂(xf (xi))
∂(xi)

is the Jacobean of the Lagrangian map. We require the La-
grangian map to be smooth and invertible, with a smooth inverse xf �→ xi(xf ).

Minimising first over time under the above constraints we realise that for
a positive definite matrix μ the minimal Lagrangian trajectories correspond to
straight lines

x(t;xi) =
τ − t

τ
xi +

t

τ
xf (xi) . (19)

Therefore, the optimal solution is completed once the functional

C (xf (xi)) =
∫

(xf (xi) − xi) · μ−1 (xf (xi) − xi) �i(xi)dxi , (20)

is minimised over all Lagrangian maps xi �→ xf (xi).
Equation (20) corresponds to the Monge–Kantorovich transportation prob-

lem of Eq. (13), with a quadratic cost, solved in Ref. [7], and in Refs. [1–3]
in the context of stochastic thermodynamics. In Ref. [2] it was shown that
minimisation of Eq. (20) is solved by the Burgers equation over the velocity
potential φ, and mass transport by the Burgers velocity field Eq. (6).

Once the minimiser xf (xi) is obtained, the minimal value of the func-
tional Eq. (15) is

Amin =
1
τ

Cmin ,
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where Cmin is the value of the quadratic cost Eq. (20) over the minimiser La-
grangian map Eq. (19). Then it follows that the minimum entropy production
during a transition from �i(x) to �f (x) satisfying Eq. (12) in a fixed time τ
is

〈ΔStot〉min =
1

τT
Cmin > 0 . (21)

Finally, Eq. (5) and the value Eq. (21) yield a Landauer bound for the
average dissipated heat during the erasure of one bit of information in over-
damped Langevin dynamics

〈Q〉 ≥ 1
τ

Cmin + kBT ln 2 .

5. Numerical Solution of the Assignation Problem

Given an initial �i(x) and final �f (x) densities, in this section we deal with the
problem of solving numerically the assignation problem to find the minimiser of
the Lagrangian map. This was done in Ref. [1] by means of several methods.
Direct integration of the constraint Eq. (18) was found to become unstable
at values of xi for which the derivative dxf (xi)/dxi diverges (and similarly
for the inverse map). Similar problems were also found using a rearrangement
“auction” algorithm [5]. After discussing this with Krzysztof in Geneva in 2012,
we decided to use another, hopefully faster and more precise method. In the
rest of this section, we show its implementation and discuss its performance
and general limitations.

We assume that �i(x) and �f (x) are given and without loss of generality,
satisfy Eq. (12). The minimiser of the Lagrangian map, namely the optimal
map xi �→ xf (xi) that transports �i into �f and minimises the cost Eq. (20),
satisfies Eq. (18).

We consider the optimal mass transport that was considered in Ref. [1]:

�i(x) =
1
Zi

exp
(

− a

kBT

(
x2 − α2

)2)
,

�f (x) =
1

Zf
exp

(
− a

kBT
(x − α)2

(
(x − α)2 + 3α(x − α) + 4α2)

))
, (22)

where Zi and Zf are normalisation factors so that Eq. (12) is satisfied, and
the constants a = 112 kB T μm−4 and α = 0.5μm were chosen to match the
experimental realisation of Ref. [4]. As a matter of fact, Eq. (1) models the
dynamics in the experiment with a mobility μ = 0.213877

kBT
μm2

s . Furthermore,
the control potential U(xt, t) is effectively one-dimensional1. The initial and
final densities of Eq. (22) are shown in Fig. 1.

1In [4], the experimental potential along the other two dimensions is simply confining and
time independent.
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Figure 1. The initial distribution �i(x) (black) and the final
distribution �f (x) (red). While the problem is of course quite
easy, intuitively, the issue is how to find the “best” numerical
solution. (color figure online)

The minimiser of the Lagrangian map, namely the optimal map xi �→
xf (xi) that transports �i into �f and minimises the cost Eq. (20), satisfies

∫ xi

−∞
�i(x) dx =

∫ xf (xi)

−∞
�f (x) dx , (23)

for all xi, and uniqueness is guaranteed if for each xi one chooses the minimal
xf (xi).

However, a basic problem to take into account when solving Eq. (23) is
that, if we are given �i and �f then the normalisation of the integrals is only
numerically guaranteed to the available precision of the computer. This implies
that the numerical solution ceases to exist at the ends of the supports of �i

and �f .
To have a better control over this difficulty one can solve the equivalent

constraint Eq. (18), that in one dimension reads

dxf (xi)
dxi

=
ρi(xi)

ρf(xf (xi))
. (24)

The problem of finding the minimiser map is simply transformed into
solving an ODE. Eq. (24) defines a vector field in the (xi xf ) plane that can
be easily obtained numerically2. For any point in this plane, the vector field
determines the local evolution of Eq. (24). We show this in Fig. 2 for a number
of points (xi xf ) chosen randomly.

Note that the vector field is not really defined, outside the central region
(the central lobe in Fig. 2), as the problem has infinite derivatives in the

2Here and in what follows, the numerical solutions are given in units of kBT .
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Figure 2. Vector field of the solution of the Lagrangian map
xf (xi) for the example of Eq. (22)

vertical direction. The same happens at the left and right ends of the central
area where the derivatives are zero and thus, the inverse of the Lagrangian
map is not well defined.

In view of Fig. 2, solving Eq. (24) requires to choose appropriate ini-
tial conditions. It is clear that it is a good idea to start somewhere in the
centre, at some height y ∼ 0.5 and to integrate both backwards and for-
wards. Up to numerical precision of about 10−20 we found that integrat-
ing backwards from xi = 0 fixed, the best numerical initial condition is
xf = 0.493113178303063601340966142029819 and when integrating forwards
xf = 0.493113178303063601752771313946797.

These values represent the numerical possibilities for the example of
Eq. (22). They were obtained by shooting as follows: we start with xf = 0.5,
which is about the centre of Fig. 2. We integrate backwards and check for
which xi the solution ceases to exist, either because the solution blows up (the
graph is vertical), or the solution becomes constant (the graph is horizontal).
We then try another value of xf (0) (e.g. xf = 0.46), measure the divergence
value for this new initial condition, and then solve by bisection for better and
better values of xf (0) until the value of xi at which divergence is observed,
cannot be improved any more.

To exemplify our shooting, the approximations through the bisection pro-
cedure are shown in Fig. 3 for the backward integration (left panel) and forward
integration (right panel). We needed about 110 iterations to reach the max-
imal precision. The speed of convergence can certainly be improved by, e.g.
quadratic interpolation.
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Figure 3. The successive improvement of the shooting solu-
tion by changing the initial condition until the solution exists
over a maximal extent

Figure 4. The vector field of the flow of the numerical con-
vergence, with the minimiser of the Lagrangian map overlaid
in blue (color figure online)

The solution we obtain in this way is shown in Fig. 4 as the blue curve. It
yields a discrete approximation of the minimiser of the continuous Lagrangian
map, that can be improved by increasing the numerical precision.

Finally, since the current velocity is gradient (see Eq. (16)), the current
velocity is simply the time derivative of Eq. (19) and the optimal control
potential is obtained from Eq. (7) (see Ref. [1] for further details).
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6. Conclusions

In this paper, we have explored the numerical solution of the Monge problem of
optimal transportation, applied to the bit erasure problem and the Landauer
limit explored by Krzysztof in Ref. [1].

The densities of Eq. (22) are appropriate to discuss the problem of erasing
a bit: At the initial time t = 0, the probability for a particle to be at the
left (around x = −0.5), or at the right (around x = 0.5), is the same. This
corresponds to the bit to be in state 0 or 1 with equal probability, and is well
described by a Gibbs state �i ∝ exp

(
− 1

kBT Vi(x)
)

of Eq. (22), with a potential
Vi(x) with two symmetric wells separated by a sufficiently high barrier. At final
time t = τ , the final Gibbs states �f corresponds to a potential with only one
of the two wells, in our case to a well centred at x = 0.5. This means the final
state of the bit is 1, irrespective of its initial state.

The particular choice of Eq. (22) was obtained to reasonably match those
used in the experiment reported in Ref. [4]. The entropy change between �i

and �f is ΔSsys ≈ −0.74312kB, slightly smaller than −(ln 2)kB.
To obtain the minimal dissipated heat during this transition, we reduced

the optimal mass transport in one dimensions to an ODE problem, and showed
that shooting allows to find the optimal solution through bisection. The crucial
information to obtain a convergent method was the knowledge of the vector
field of the solution space (see Fig. 2).

Plugging the solution of the minimiser Lagrangian map into Eq. (20), we
obtain the minimal cost Cmin = 1.98897268kBT . In conclusion, erasing a bit
through a transformation whose dynamics is described by Eq. (1) evolving in
a finite time τ between the states of Eq. (22) can be performed by an average
dissipated heat which is

〈Q〉 ≥
(

1
τ

1.98897268 + 0.74312
)

kBT ≥ kBT ln 2 .

We consider the value of the minimal cost that we obtained an improve-
ment to the value 1.996kBT that Krzysztof obtained in [1]. We wish we could
have discussed this with him.
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Université de Genève
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