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Abstract. Subshifts of deterministic substitutions are ubiquitous objects
in dynamical systems and aperiodic order (the mathematical theory of
quasicrystals). Two of their most striking features are that they have low
complexity (zero topological entropy) and are uniquely ergodic. Random
substitutions are a generalisation of deterministic substitutions where the
substituted image of a letter is determined by a Markov process. In stark
contrast to their deterministic counterparts, subshifts of random substi-
tutions often have positive topological entropy, and support uncountably
many ergodic measures. The underlying Markov process singles out one
of the ergodic measures, called the frequency measure. Here, we develop
new techniques for computing and studying the entropy of these frequency
measures. As an application of our results, we obtain closed form formulas
for the entropy of frequency measures for a wide range of random sub-
stitution subshifts and show that in many cases there exists a frequency
measure of maximal entropy. Further, for a class of random substitution
subshifts, we prove that this measure is the unique measure of maximal
entropy. These subshifts do not satisfy Bowen’s specification property
or the weaker specification property of Climenhaga and Thompson and
hence provide an interesting new class of intrinsically ergodic subshifts.

Mathematics Subject Classification. 37B10, 37A25, 37A50, 52C23.

1. Introduction

A (deterministic) substitution replaces each symbol in a finite or infinite string
by a concatenation of symbols, according to a fixed rule. If this replacement is
instead performed randomly, we speak of a random substitution. The data
necessary to determine a random substitution can be given in terms of a
tuple (ϑ,P), where ϑ encodes all the possible replacement rules and P the
associated probability parameters. To a given random substitution (ϑ,P), we
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associate a sequence space Xϑ, called a random substitution subshift. In non-
degenerate cases, this subshift does not depend on the choice of P. The bi-
infinite sequences x ∈ Xϑ are characterised by the property that every pattern
in x can be generated by iterating ϑ, starting from a single symbol. Funda-
mental properties of ϑ are mirrored by topological, combinatorial and measure
theoretic properties of Xϑ. The influence of P is captured by the choice of a
particular probability measure μP on Xϑ, called the frequency measure of
(ϑ,P). In many cases, these subshifts combine, in a non-trivial manner, prop-
erties of classic examples such as subshifts of finite type and (deterministic)
substitution subshifts. In fact, these two well-studied classes can be interpreted
as special cases of random substitution subshifts [18,37].

Positive topological entropy for random substitutions was identified in the
pioneering work of Godrèche and Luck [16] in 1989, where they introduced and
focused on a single example, the random Fibonacci substitution. This was later
shown to hold in general for random substitutions [37] and places them in stark
contrast to their deterministic counterparts. While they have positive entropy,
indicating disorder, random substitutions often admit long-range correlations
presenting as a non-trivial pure-point component in the diffraction spectrum
of a corresponding quasicrystal [4,16,28]. This competition between order and
disorder, and between long- and short-range correlations suggests an intricate
combinatorial structure which warrants careful study.

The presence of an inherent hierarchical structure allows for the applica-
tion of renormalisation methods in the study of random substitutions. Leverag-
ing these techniques, the topological entropy was calculated for several exam-
ples of random substitution subshifts, see for instance [16,30], and a unified
approach was later provided in [17]. There, it was shown that for subshifts of
primitive and compatible random substitutions, the topological entropy coin-
cides with the notion of inflation word entropy, which is characterised in terms
of the substitution branching process as opposed to the subshift. This builds a
natural bridge to the point of view adopted in formal language theory, where
random substitutions—known as (stochastic) E0L, or L systems—are classi-
fied according to the set of accessible inflation words [35,40]. Similarly, the
Martin boundaries of random substitutions, studied by Denker and Koslicki
[23] are limiting objects of the stochastic process induced by a random substi-
tution, rather than being defined for the associated subshift.

Topological entropy is almost by definition blind to the generating proba-
bilities assigned to a random substitution. This is not the case for aspects such
as word frequencies and diffraction spectra, which are almost-sure properties
in the limit of an appropriate substitution Markov process [33]. Alternatively,
these properties can be associated with the frequency measure μP, which is
ergodic with respect to the shift-action [19]. It is therefore reasonable to treat
entropy on the same footing, interpreting it as a quantity that is generic with
respect to a frequency measure that reflects the underlying Markov process.
What’s more, this perspective more closely reflects the original context con-
sidered by Godrèche and Luck [16], who were interested in random substitu-
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tions providing models for generating physical quasicrystals, whose empirical
entropy will depend on the underlying Markov process.

A seminal paper of Mandelbrot on turbulence in a fluid [26], which
inspired the first formal setup of random substitutions in the physics liter-
ature [33], initiated the research into fractal percolation [7,20,32]. Random
substitutions have proved a useful tool to model this phenomenon [11,12] and
it was shown by Dekking, Grimmett and Meester [10,11] that varying the
underlying generating probabilities gives rise to several phase transitions. In
the one-dimensional setting, we show that the associated entropy depends con-
tinuously on the generating probabilities and give a closed form expression in
many cases. This enables us to single out those parameters that give maximal
entropy. We expect that many of the methods established in this paper can
be generalized to higher dimensions, which would provide a way to determine
the phase in a random percolation model that gives rise to maximal entropy.

More explicitly, we study the entropy of frequency measures correspond-
ing to primitive random substitutions (isolated examples have been previously
studied in [39]). We show that the entropy of these measures coincides with a
new notion of entropy characterised in terms of inflation words (Theorem 3.3).
For subshifts of primitive and compatible random substitutions, we demon-
strate the existence of a measure of maximal entropy that is realised as a weak
limit of frequency measures (Theorem 4.2). Further, under mild conditions, we
prove that there exists a frequency measure of maximal entropy, and for a large
class of random substitution subshifts, we verify that this measure is the unique
measure of maximal entropy (Theorem 4.8). Indeed, determining dynamical
systems which are intrinsically ergodic (i.e. those which exhibit a unique mea-
sure of maximal entropy) is a fundamental problem at the interface of ergodic
theory and topological dynamics, and stems from the foundational work of
Bowen [5]. There, it was shown that a dynamical system which is expansive
and satisfies the specification property is intrinsically ergodic. Bowen’s proof
relies on combinatorial arguments to establish a (weak) Gibbs property for a
certain measure of maximal entropy, from which uniqueness of the measure
follows. Beyond specification, for instance for β-shifts, similar strategies can
be employed [8,9]. However, as with Bowen’s proof, central to these strategies
is the use of a Gibbs property. In our case there exists an obstruction to using
these methods in that frequency measures of maximal entropy do not satisfy
the Gibbs properties given in [5,8,9]. Nevertheless, by establishing a weaker
Gibbs property on cylinder sets of inflation words (Lemma 4.11), we are able
to circumvent this obstruction to obtain Theorem 4.8.
Outline. In Sect. 2 we introduce our key notation and definitions. We sum-
marise the main results on topological entropy from [17] in Sect. 2.3, and give
the definition of the frequency measure corresponding to a primitive random
substitution in Sect. 2.4.

In Sect. 3 we introduce the notion of measure theoretic inflation word
entropy and state our first main result, Theorem 3.3, which shows, for primi-
tive random substitutions, that this new notion of entropy coincides with the
entropy of the corresponding frequency measure. We also obtain explicit upper



280 P. Gohlke et al. Ann. Henri Poincaré

and lower bounds. Under some additional assumptions, closed form expressions
for the entropy can be obtained from Theorem 3.5.

We conclude with Sects. 4 and 5. Section 4 is devoted to measures of
maximal entropy and intrinsic ergodicity of random substitution subshifts,
and Sect. 5 contains a number of examples that illustrate our main results and
a collection of open questions.

2. Preliminaries

The symbolic notation introduced in this section is mostly in line with [3,25],
to which we refer the reader for further details. For background on random
substitutions as introduced below, we point the reader to [19,37].

An alphabet A = {a1, . . . , ad}, for some d ∈ N, is a finite set of symbols
ai, which we call letters, equipped with the discrete topology. A word u with
letters in A is a finite concatenation of letters, namely u = ai1 · · · ain

for some
n ∈ N. We write |u| = n for the length of the word u, and for m ∈ N, we
let Am denote the set of all words of length m with letters in A. We set
A+ =

⋃
m∈N

Am and let AZ = {· · · ai−1ai0ai1 · · · : aij
∈ A for all j ∈ Z}

denote the set of all bi-infinite sequences with elements in A and endow AZ

with the product topology. With this topology, the space AZ is compact and
metrisable.

If i and j ∈ Z with i ≤ j, and x = · · · x−1x0x1 · · · ∈ AZ, then we let
x[i,j] = xixi+1 · · · xj . We use the same notation if v ∈ A+ and 1 ≤ i ≤ j ≤ |v|.
For u and v ∈ A+ (or v ∈ AZ), we write u � v if u is a subword of v, namely if
there exist i and j ∈ Z with i ≤ j so that u = v[i,j]. For u and v ∈ A+, we set
|v|u to be the number of (possibly overlapping) occurrences of u as a subword
of v.

If u = ai1 · · · ain
and v = aj1 · · · ajm

∈ A+, for some n and m ∈
N, we write uv for the concatenation of u and v, that is, we set uv =
ai1 · · · ain

aj1 · · · ajm
∈ An+m. The abelianisation of a word u ∈ A+ is the

vector Φ(u) ∈ N
d
0, defined by Φ(u)i = |u|ai

for all i ∈ {1, . . . , d}.
For a set B, we let #B be the cardinality of B and let F(B) be the set

of non-empty finite subsets of B.

2.1. Random Substitutions and Their Subshifts

We define a random substitution via the data that is required to determine its
action on letters. In the second step we extend it to a random map on words.

Definition 2.1. Let A = {a1, . . . , ad} be a finite alphabet. A random substitu-
tion ϑP = (ϑ,P) is a finite-set-valued function ϑ : A → F(A+) together with
a set of non-degenerate probability vectors

P=

{

pi=(pi,1, . . . , pi,ri) : ri=#ϑ(ai), pi ∈ (0, 1]ri and

ri∑

j=1

pi,j=1 for all 1≤i ≤ d

}

,



Vol. 24 (2023) Measure Theoretic Entropy 281

such that

ϑP : ai �→

⎧
⎪⎪⎨

⎪⎪⎩

s(i,1) with probability pi,1,
...

...
s(i,ri) with probability pi,ri

,

for every 1 ≤ i ≤ d, where ϑ(ai) = {s(i,j)}1≤j≤ri
. We call each s(i,j) a real-

isation of ϑP(ai). If there exists an integer � ≥ 2 such that |s(i,j)| = � for
all i ∈ {1, . . . , d} and j ∈ {1, . . . , ri}, then we call ϑP a constant length ran-
dom substitution of length �. If ri = 1 for all i ∈ {1, . . . , d}, then we call ϑP

deterministic.

Example 2.2. (Random period doubling) Let A = {a, b}, and let p ∈ (0, 1).
The random period doubling substitution ϑP = (ϑ,P) is the constant length
substitution given by

ϑP :

⎧
⎪⎨

⎪⎩

a �→
{

ab with probability p,

ba with probability 1 − p,

b �→ aa with probability 1,

with defining data ra = 2, rb = 1, s(a,1) = ab, s(a,2) = ba, s(b,1) = aa,
P = {pa = (p, 1−p),pb = (1)}, and corresponding set-valued function ϑ : a �→
{ab, ba}, b �→ {aa}.

In the following we describe how a random substitution ϑP determines
a (countable state) Markov matrix Q, indexed by A+ × A+. We interpret the
entry Qu,v as the probability to map a word u to a word v under the random
substitution. Formally, Qai,s(i,j) = pi,j for j ∈ {1, . . . , ri} and Qai,v = 0 if
v /∈ ϑ(ai). We extend the action of ϑP to finite words by mapping each letter
independently to one of its realisations, distinguishing random substitutions
from S-adic systems. More precisely, given n ∈ N, u = ai1 · · · ain

∈ An and
v ∈ A+ with |v| ≥ n, we let

Dn(v) = {(v(1), . . . , v(n)) ∈ (A+)n : v(1) · · · v(n) = v}
denote the set of all decompositions of v into n individual words and set

Qu,v =
∑

(v(1),...,v(n))∈Dn(v)

n∏

j=1

Qaij
,v(j) .

In words, ϑP(u) = v with probability Qu,v.
For u ∈ A+, let (ϑn

P(u))n∈N be a stationary Markov chain on some prob-
ability space (Ωu,Fu, Pu), with Markov matrix given by Q, that is

Pu[ϑn+1
P (u) = w | ϑn

P(u) = v] = Pv[ϑP(v) = w] = Qv,w,

for all v and w ∈ A+, and n ∈ N. In particular, we have

Pu[ϑn
P(u) = v] = (Qn)u,v
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for all u and v ∈ A+, and n ∈ N. We often write P for Pu if the initial word is
understood. In this case, we also write E for the expectation with respect to
P. As before, we call v a realisation of ϑn

P(u) if (Qn)u,v > 0 and set

ϑn(u) = {v ∈ A+ : (Qn)u,v > 0}
to be the set of all realisations of ϑn

P(u). Conversely, we may regard ϑn
P(u) as

the set ϑn(u), endowed with the additional structure of a probability vector. If
u = a ∈ A is a letter, we call a word v ∈ ϑk(a) a (level-k) inflation word. The
approach of defining a random substitution in terms of an associated Markov
chain goes back to work of Peyrière [33] and was pursued further by Koslicki
[22], and Denker and Koslicki [23].

For many structural properties of ϑP the choice of (non-degenerate) prob-
ability vectors is immaterial. In these cases, one sometimes refers to ϑ instead
of ϑP as a random substitution, see for instance [17]. On the other hand, for
some applications, one needs additional structure on the probability space. In
fact, there is an underlying branching process, similar to a Galton–Watson
process, that allows one to construct more refined random variables, see [19]
for further details.

Given a random substitution ϑP = (ϑ,P) over an alphabet A =
{a1, . . . , ad} with cardinality d ∈ N, we define the substitution matrix M =
MϑP

∈ R
d×d of ϑP by

Mi,j = E[|ϑP(aj)|ai
] =

rj∑

k=1

pj,k|s(j,k)|ai
.

Since M has only non-negative entries, its spectral radius is also a real eigen-
value of maximal modulus, denoted by λ. For notational convenience, we
denote the maximal length of a (level-1) inflation word by

|ϑ| = max{|u| : u ∈ ϑ(a), a ∈ A}.

By construction, 1 ≤ λ ≤ |ϑ|, where λ = 1 occurs precisely if M is column-
stochastic. This corresponds to the trivial case of a non-expanding random
substitution, which we discard in the following. If the matrix M is primitive
(i.e. if there exists a k ∈ N such that all the entries of Mk are positive), Perron–
Frobenius theory implies that λ is a simple eigenvalue and that the correspond-
ing left and right eigenvectors L = (L1, . . . , Ld)� and R = (R1, . . . , Rd)� can
be chosen to have strictly positive entries. We normalise these eigenvectors
according to ‖R‖1 = 1 = L� R. In this situation, we call λ the Perron–
Frobenius eigenvalue of ϑP, and L and R the left and right Perron–Frobenius
eigenvectors of ϑP, respectively.

Definition 2.3. We say that ϑP is primitive if M = MϑP
is primitive and its

Perron–Frobenius eigenvalue satisfies λ > 1.

We emphasise that for a random substitution ϑP, being primitive is inde-
pendent of the (non-degenerate) data P. In this sense, primitivity is a property
of ϑ rather than ϑP.
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Remark 2.1. Primitivity is a standard assumption, both for deterministic and
random substitutions. More general (random) substitutions can be treated
by bringing M into an upper block-triangular normal form via an appropriate
permutation of letters. Throughout most of this paper we stick to the primitive
case to avoid technicalities.

For a constant length primitive random substitution of length �, an ele-
mentary calculation shows that λ = �; and for a given primitive random sub-
stitution ϑP with Perron–Frobenius eigenvalue λ and for k ∈ N, we have that
Mk

ϑP
= Mϑk

P
and hence the Perron–Frobenius eigenvalue of ϑk

P is λk.
Given a random substitution ϑP = (ϑ,P), a word u ∈ A+ is called (ϑ-

)legal if there exists an ai ∈ A and k ∈ N such that u appears as a subword
of some word in ϑk(ai). We define the language of ϑ by Lϑ = {u ∈ A+ :
u is ϑ-legal} and, for w ∈ A+ ∪ AZ, we let L(w) = {u ∈ A+ : u � w} denote
the language of w.

Definition 2.4. The random substitution subshift of a random substitution
ϑP = (ϑ,P) is the system (Xϑ, S), where Xϑ = {w ∈ AZ : L(w) ⊆ Lϑ}
and S denotes the (left) shift map, defined by S(w)i = wi+1 for each w ∈ Xϑ.

If ϑP is primitive, the corresponding sequence space Xϑ is always non-
empty [19]. The notation Xϑ mirrors the fact that the random substitution
subshift does not depend on the choice of P. We endow Xϑ with the subspace
topology inherited from AZ, and since Xϑ is defined in terms of a language, it
is a compact S-invariant subspace of AZ. Hence, Xϑ is a subshift. For n ∈ N,
we write Ln

ϑ = Lϑ ∩ An and Ln(w) = L(w) ∩ An to denote the subsets of
Lϑ and L(w), respectively, consisting of words of length n. We also note that,
when ϑ is primitive, Xϑk = Xϑ for all k ∈ N.

The set-valued function ϑ naturally extends to Xϑ, where for w =
· · · w−1w0w1 · · · ∈ Xϑ we let ϑ(w) denotes the (infinite) set of sequences of
the form v = · · · v−2v−1.v0v1 · · · , with vj ∈ ϑ(wj) for all j ∈ Z. By definition,
it is easily verified that ϑ(Xϑ) ⊂ Xϑ. Some properties of ϑ are reminiscent of
continuous functions, although ϑ itself is not a function. The following prop-
erty will be useful in our discussion of intrinsic ergodicity (Sect. 4.2) and is
also of independent interest.

Lemma 2.5. If ϑP = (ϑ,P) is a random substitution and X ⊂ AZ is compact,
then ϑ(X) is compact.

Proof. It suffices to show that ϑ(X) is closed. Let (y(n))n∈N denote a sequence
in ϑ(X) and assume that this sequence converges to some y ∈ AZ. We need
to show that y ∈ ϑ(X). To this end, let (x(n))n∈N be a sequence in X with
y(n) ∈ ϑ(x(n)) for all n ∈ N. By compactness of X, this sequence has an
accumulation point x = · · · x−1x0x1 · · · ∈ X. By restricting to an appropriate
subsequence, we may assume that

x
(m)
[−n,n] = x[−n,n]

for all m and n ∈ N with m ≥ n. In which case,

y
(n)
[−n,n] = w

(n)
−n · · · w(n)

−1 .w
(n)
0 · · · w(n)

n
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with w
(n)
j ∈ ϑ(xj) for all j ∈ {−n, . . . , n}. As (y(m))m∈N converges to y, we

may assume, for n ∈ N,

y [−n,n] = w
(n)
−n · · · w(n)

−1 .w
(n)
0 · · · w(n)

n ,

again by possibly restricting to an appropriate subsequence. By a standard
diagonal argument utilising the pigeonhole principle, we can choose wj ∈ ϑ(xj)
for all j ∈ Z such that y = · · · w−2w−1.w0w1w2 · · · . Namely, we have that
y ∈ ϑ(x). �

2.2. Special Classes of Random Substitutions

Primitive random substitutions produce a wide variety of subshifts, including
for example all topologically transitive shifts of finite type [18] as well as all
(primitive) deterministic substitution subshifts. It is therefore reasonable to
expect that further assumptions on the random substitution are required in
order to obtain a more detailed control over its (measure theoretic) entropy.
Indeed, there is a useful property which allows us to obtain more precise esti-
mates that can be shown to fail in the general primitive setting. Recall that
for v = v1 · · · vn the random word ϑP(v) = ϑP(v1) · · · ϑP(vn) can be written
as a concatenation of the random variables ϑP(v1), . . . , ϑP(vn). In general,
there might be several realisations of (ϑP(v1), . . . , ϑP(vn)) that concatenate
to the same realisation of ϑP(v). In some situations this phenomenon can be
excluded.

Definition 2.6. We say that ϑP has unique realisation paths if for every v ∈ Ln
ϑ

and k ∈ N, the random variable (ϑk
P(v1), . . . , ϑk

P(vn)) is completely determined
by ϑk

P(v).

While the definition above is most adequate for our purposes, it is worth
pointing out that the property of having unique realisation paths does not
depend on the choice of P. Indeed, it is straightforward to verify that ϑP

has unique realisation paths if and only if for all v ∈ Ln
ϑ and k ∈ N the

concatenation map

ϑk(v1) × · · · × ϑk(vn) → Lϑ, (w1, . . . , wn) �→ w1 · · · wn

is injective.
The property of having unique realisation paths might appear difficult to

check in general. However, there is a general class of random substitutions that
satisfy this condition and that is of relevance in the context of random tilings.
In the following, we denote by a marginal of ϑP a deterministic substitution
� on the same alphabet A, such that �(a) ∈ ϑ(a) for all a ∈ A.

Definition 2.7. We say that a primitive random substitution ϑP is geometri-
cally compatible if there is a real number λ > 1 and a vector L with strictly
positive entries, such that L is a left eigenvector with eigenvalue λ for all
marginals of ϑP.

In this situation, it is easy to check that λ and L are indeed Perron–
Frobenius data for the substitution matrix M of ϑP. Geometric compatibility
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is equivalent to the assumption that λ and the corresponding eigenline spanned
by L are independent of the choice of P, which is easy to check for a given
example. Moreover, it provides a natural setting in which a random substi-
tution can be interpreted as a random inflation rule on an associated tiling
dynamical system. In this geometric model, every letter ai is identified with a
tile of length Li. This motivates the term geometrically compatible.

Remark 2.2. The class of geometrically compatible random substitutions con-
tains all (primitive) constant-length random substitutions. Indeed, if ϑP is of
length � we have λ = � and Li = 1 for all 1 ≤ i ≤ d, irrespective of P.

Geometric compatibility is also a generalization of primitive compati-
ble random substitutions. Compatibility has been a standard assumption in
much recent work on random substitutions and is particularly useful in those
settings, where ϑ instead of ϑP is regarded as a random substitution.

Definition 2.8. We say that a random substitution ϑP = (ϑ,P) is compatible
if for all a ∈ A, and u and v ∈ ϑ(a), we have Φ(u) = Φ(v).

Observe that compatibility is independent of the choice of probabilities,
and that a random substitution ϑP = (ϑ,P) is compatible if and only if for all
u ∈ A+, we have that |s|a = |t|a for all s and t ∈ ϑ(u), and a ∈ A. We write
|ϑ(u)|a to denote this common value, and let |ϑ(u)| denote the common length
of words in ϑ(u). In which case, letting M = MϑP

denote the substitution
matrix of ϑP, we have that Mi,j = |ϑ(aj)|ai

for all ai and aj ∈ A. Note that
the random period doubling substitution defined in Example 2.2 is compat-
ible, since Φ(ab) = Φ(ba) = (1, 1)�, and is primitive, since the square of its
substitution matrix is positive.

The class of geometrically compatible random substitutions contains all
compatible random substitutions and all constant length random substitutions
but is not confined to them.

Example 2.9. Let ϑP be the primitive random substitution on the alphabet
A = {a, b} defined by

ϑP :

⎧
⎪⎨

⎪⎩

a �→ abb,

b �→
{

a with probability p,

bb with probability 1 − p.

This random substitution is geometrically compatible with L = (2, 1)� and
λ = 2. It is neither of constant length nor compatible.

Example 2.10. Let ϑP be the primitive random substitution defined by

ϑP : a �→
{

a with probability p,

ab with probability 1 − p,
b �→

{
a with probability q,

ba with probability 1 − q.

This is neither geometrically compatible nor does it have unique realisation
paths. The latter can be seen from the fact that both (a, ba) and (ab, a) are
two different realisations of (ϑP(a), ϑP(b)) that give rise to the same word
aba ∈ ϑ(ab).
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Constant Length Compatibility

Geometric Compatibility

Unique Realisation Paths

Figure 1. Implication diagram for some conditions on prim-
itive random substitutions

Remark 2.3. Like primitivity, geometric compatibility is stable under taking
powers of the random substitution at hand. That is, if ϑP is geometrically
compatible, then so is ϑn

P for all n ∈ N. This is because the Perron–Frobenius
data (λ,L) of ϑP is independent of P, which in turn implies that the Perron–
Frobenius data (λn,L) of ϑn

P is independent of P.

Lemma 2.11. Every primitive, geometrically compatible random substitution
has unique realisation paths.

Proof. Let ϑP be primitive and geometrically compatible. Since the same holds
for ϑk

P, we may restrict to the case k = 1 in the following. Let v ∈ Ln
ϑ and let

u be a realisation of the random word

ϑP(v) = ϑP(v1) · · · ϑP(vn)

and (u1, . . . , un) a corresponding realisation of (ϑP(v1), . . . , ϑP(vn)) satisfying

u = u1 · · · un.

Let M1 be the substitution matrix of a marginal of ϑP with v1 �→ u1. Since L
has strictly positive entries, there is a unique 1 ≤ m ≤ |u| such that

LΦ(u[1,m]) = LΦ(u1) = LM1Φ(v1) = λLv1 .

This determines u1 = u[1,m] unambiguously. Inductively, we find that uk is
uniquely determined by u for all 1 ≤ k ≤ n. �

For the reader’s convenience, we summarize the relation between different
characterisations of primitive random substitutions in Fig. 1.

2.3. Topological Entropy

The non-trivial topological entropy of random substitution subshifts distin-
guishes them from subshifts of deterministic substitutions, which always have
zero topological entropy, see [34]. The topological entropy was calculated for
several families of random substitutions in [16,30]. There, the topological
entropy was calculated from the growth rate of inflation words. This approach
was unified by Gohlke [17], where the notion of inflation word entropy was
introduced for compatible primitive random substitutions and shown to equal
the topological entropy of the corresponding subshift.

For completeness, let us take a moment to recall the definition of the
topological entropy of a subshift, see [6,38] for further details. Given a subshift
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(X,S), we define the language of the subshift by L(X) = {x[j,k] : x ∈ X, j ≤ k}
and for each n ∈ N, we let Ln(X) denote the set of all words of length n in
L(X). The topological entropy htop(X) of the system (X,S) is defined to be
the quantity

htop(X) = lim
n→∞

1
n

log(#Ln(X)). (2.1)

Given a primitive and compatible random substitution ϑP = (ϑ,P) over the
alphabet A = {a1, . . . , ad}, we have that L(Xϑ) = Lϑ. For each m ∈ N, let
qm = (qm,1, . . . , qm,d) denote the vector defined by

qm,i = log(#ϑm(ai)) (2.2)

for i ∈ {1, . . . , d}. When the limit exists, the inflation word entropy of type i
is defined by

ti(ϑP) = ti(ϑ) = lim
m→∞

qm,i

|ϑm(ai)| .

Theorem 2.12. [17, Theorem 17] Let ϑP = (ϑ,P) be a primitive and compatible
random substitution over the alphabet A = {a1, . . . , ad} with cardinality d ∈ N.
Let λ denote the Perron–Frobenius eigenvalue of ϑP, and let R be the right
Perron–Frobenius eigenvector of ϑP. For all i ∈ {1, . . . , d}, the inflation word
entropy ti(ϑ) exists, is independent of i, and is equal to the topological entropy
htop(Xϑ) of the system (Xϑ, S). Moreover, for all m ∈ N, we have

1
λm

q�
mR ≤ ti(ϑ) = htop(Xϑ) ≤ 1

λm − 1
q�

mR, (2.3)

where the lower bounds are non-decreasing in m. Further, htop(Xϑ) can be
calculated as

htop(Xϑ) = ti(ϑ) = lim
m→∞

1
λm

q�
mR = sup

m∈N

1
λm

q�
mR.

In general, it is difficult to obtain a closed form formula for the topological
entropy using Theorem 2.12. The difficulty lies in quantifying the overlaps of
sets of the form ϑm(u), for u ∈ ϑ(ai). However, if the random substitution
satisfies either of two mild conditions, then it is possible to obtain a closed
form expression for the topological entropy using Theorem 2.12.

Definition 2.13. A random substitution ϑP = (ϑ,P) is said to satisfy the iden-
tical set condition if

u and v ∈ ϑ(a) =⇒ ϑk(u) = ϑk(v)

for all a ∈ A and k ∈ N. It is said to satisfy the disjoint set condition if

u and v ∈ ϑ(a) with u 
= v =⇒ ϑk(u) ∩ ϑk(v) = ∅

for all a ∈ A and k ∈ N.

Remark 2.4. An easy way to satisfy the identical set condition is to assume
that ϑ(a) = ϑ(b) for all a, b ∈ A. In this case, the corresponding random
substitution subshift is a coded shift, generated by the set ϑ(a). However,
this structure is not necessary for the identical set condition as one may see



288 P. Gohlke et al. Ann. Henri Poincaré

from the example ϑ : a, b �→ {abc, bac}, c �→ {a}. For further discussion of the
identical set condition and the disjoint set condition we refer to the examples
in Sect. 5 and [17].

Corollary 2.14. [17, Corollary 18] Assume the setting of Theorem 2.12. If ϑP

satisfies the identical set condition, then

htop(Xϑ) =
1
λ
q�
1 R =

1
λ

d∑

i=1

Ri log(#ϑ(ai)).

If ϑP satisfies the disjoint set condition, then

htop(Xϑ) =
1

λ − 1
q�
1 R =

1
λ − 1

d∑

i=1

Ri log(#ϑ(ai)).

Thus, if ϑP satisfies the identical set condition, then the topological
entropy of its subshift achieves the lower bound given in (2.3) with m = 1, and
if ϑP satisfies the disjoint set condition, then it achieves the upper bound given
in (2.3) with m = 1. In fact, one can show that these bounds are attained pre-
cisely when ϑP satisfies the identical/disjoint set condition. The random period
doubling substitution defined in Example 2.2 satisfies the disjoint set condi-
tion. Hence, it follows by Corollary 2.14 that the corresponding subshift has
topological entropy equal to log(22/3), noting that λ = 2 and R = (23 , 1

3 )�.

2.4. Frequency Measures

For v ∈ L(X) and m ∈ Z, we define the cylinder set of v at position m by

[v]m = {w ∈ X : wm+i = vi for all 0 ≤ i ≤ |v| − 1}
and set [v] = [v]0 for convenience. The union of the collection of cylinder sets
that specify the zeroth position,

ξ(X) = {[v]m : v ∈ Lϑ, 1 − |v| ≤ m ≤ 0}},
with {∅} forms a semi-ring of sets, which generates the Borel σ-algebra B(X).
Hence, any content with mass one defined on ξ(X) ∪ {∅} extends uniquely to
a probability measure on B(X) by the Hahn-Kolmogorov extension theorem.
As we will see shortly, frequency measures are defined in this manner.

Given a primitive random substitution ϑP, the expected frequency of a
word v ∈ Lϑ is defined by

freq(v) = lim
k→∞

E[|ϑk
P(a)|v]

E[|ϑk
P(a)|] ,

where this limit is independent of the choice of a ∈ A. In fact, we have the
stronger property that the word frequencies exist P-almost surely in the limit
of large inflation words and are given by freq(v) for all v ∈ Lϑ, see [19] for
further details. It turns out that these frequencies naturally define an ergodic
measure supported on Xϑ.
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Proposition 2.15. [19, Proposition 5.3, Theorem 5.9] Let ϑP be a primitive
random substitution with subshift Xϑ 
= ∅. Define μP : ξ(Xϑ) ∪ {∅} → [0, 1]
by μP(∅) = 0, μ(Xϑ) = 1, and μP([v]m) = freq(v) for v ∈ Lϑ and m ∈
{1 − |v|, 2 − |v|, . . . , 0}. The set function μP is a content with mass one which
extends uniquely to a shift-invariant ergodic probability measure on B(Xϑ).

We call the measure μP defined in Proposition 2.15 the frequency mea-
sure corresponding to the random substitution ϑP. Alternatively, frequency
measures can be defined in terms of the right Perron–Frobenius eigenvector of
a sequence of induced random substitutions (treating words as letters), which
encode information on word frequencies; in particular,

μP([a]) = freq(a) = Ra and lim
k→∞

E[|ϑk
P(a)|]

E[|ϑk−1
P (a)|] = λ, (2.4)

for a ∈ A – see [19] for further details.
Observe that frequency measures are dependent on the probabilities of

the substitution. As such, for the subshift of a primitive random substitution
that is non-deterministic, there exist uncountably many frequency measures
supported on this subshift [19]. In contrast, the subshift of a primitive deter-
ministic substitution has precisely one frequency measure, which is the unique
ergodic measure [34].

3. Measure Theoretic Entropy

If T is an invertible measure preserving transformation of a probability space
(X,B, ν) and if ξ is a finite measurable partition of X with

∨
i∈Z

T−i(ξ) = B,
up to null sets, then we define the entropy h(T, ν) of ν with respect to T by

h(T, ν) = lim
n→∞

1
2n

∑

A∈ξn

−ν(A) log(ν(A)),

where ξk =
∨k−1

i=−k T−i(ξ) for k ∈ N. In the case when X ⊆ AZ is a subshift
and ν is an S-invariant probability measure supported on X, it is known that,
for m ∈ N,

h(Sm, ν) = lim
n→∞

1
n

∑

u∈Lmn(X)

−ν([u]) log(ν([u])) = mh(S, ν),

where Lk(X) denotes the set of all words of length k in the language L(X) of
X, for k a natural number. Since a primitive random substitution ϑP = (ϑ,P)
satisfies L(Xϑ) = Lϑ, the entropy of a frequency measure μP supported on Xθ

is given by

h(S, μP) = lim
n→∞

1
n

∑

u∈Ln
ϑ

−μP([u]) log(μP([u])).

In what follows we will predominantly be concerned with computing the invari-
ant h(S, μp) and so when it is clear from the context, we write h(μp) for
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h(S, μp); this will be the case in all of what follows, except in the proof of
Theorem 4.8.

Two additional concepts, which we will utilise in the proof of Theorem
4.8 is the entropy and conditional entropy of a partition. In order to define
these quantities, let η be a second measurable partition of X. The entropy
Hν(η) of η with respect to ν is defined to be the quantity

Hν(η) =
∑

A∈η

−ν(A) log(ν(A)),

and we note that, by Fekete’s Lemma,

h(T, ν) = inf
n∈N

1
2n

Hν(ξn). (3.1)

The entropy of ξ given η with respect to ν is defined by

Hν(ξ | η) = −
∑

A∈η

ν(A)HνA
(ξ),

where νA : B �→ ν(A ∩ B)/ν(A) denotes the normalized restriction of ν to the
set A.

We will mostly be concerned with partitions that are generated by some
random map U , that is, a measurable function on a probability space (Ω,F , ν).
More precisely, if U has a finite image Im(U) (i.e. if it takes only finitely many
values), it generates the partition

ξ(U) = {U−1(u) : u ∈ Im(U)}.

To avoid heavy notation, we set

Hν(U) := Hν(ξ(U)),

in such situations. If we are dealing with two such random maps U and V , we
set

Hν(U ,V) := Hν(ξ((U ,V)))

where

ξ((U ,V)) = ξ(U) ∨ ξ(V) := {A ∩ B : A ∈ ξ(U), B ∈ ξ(V)},

is a common refinement of the partitions generated by U and V. Condi-
tional entropies are defined accordingly. Namely, Hν(U | V) = Hν(ξ(U) | ξ(V)),
Hν(U ,V |W) = Hν(ξ(U) ∨ ξ(V) | ξ(W)) and Hν(U | V,W) = Hν(ξ(U) | ξ(V) ∨
ξ(W)), where U ,V and W are random maps on (Ω,F , ν).

In the proof of our main results, we will freely use several properties of
(conditional) entropy. For the reader’s convenience we list the most important
ones in the following; compare [38, Ch. 4].

Lemma 3.1. Let U ,V and W be (measurable) random maps with finite image
as above. Then,
(1) Hν(U) ≤ log(#Im(U)), with equality precisely if ν ◦ U−1 is equi-

distributed.



Vol. 24 (2023) Measure Theoretic Entropy 291

(2) Hν(U) ≤ Hν(U ,V), with equality precisely if U determines V (up to
nullsets).

(3) Hν(U ,V) = Hν(V) + Hν(U | V).
(4) Hν(U | V) ≤ Hν(U), with equality if and only if U and V are independent.
(5) Hν(U | V,W) ≤ Hν(U | V).
(6) Hν(U ,V |W) = Hν(U |W) + Hν(V | U ,W).

We refer the reader to [6,38] for further details concerning the entropy of
a measure preserving transformation and that of a partition.

3.1. Main Results

The aim of this section is to relate the entropy of the frequency measure μP

to a sequence of entropy vectors which are related to inflation words ϑn(a)
with n ∈ N and a ∈ A. This will establish a natural analogue to the results on
topological entropy presented in Section 2.3. However, we emphasise that our
present setting is more general as we do not require the random substitution
to be compatible. We make the standing assumption that ϑP is a primitive
random substitution throughout.

Definition 3.2. For a primitive random substitution ϑP on A and m ∈ N, we
let Hm = (Hm,a)a∈A denote the vector with entries Hm,a = HP(ϑm

P (a)) for all
a ∈ A.

As a further notational tool, we write H(p) for the entropy of the vector
(p, 1 − p), that is,

H(p) = −p log(p) − (1 − p) log(1 − p).

Our most general result on the relation between the entropy of μP and the
sequence of entropies assigned to the Markov processes (ϑn

P(a))n∈N, with a ∈
A, takes the following form.

Theorem 3.3. Let ϑP be a primitive random substitution with Perron–Frobenius
eigenvalue λ and right eigenvector R. Let μP be its frequency measure on
(Xϑ, S). Then, for all k ∈ N,

1
λk

H�
k R − H(λ−k) ≤ h(μP) ≤ 1

λk − 1
H�

k R.

In particular,

h(μP) = lim
k→∞

1
λk

H�
k R.

In particularly convenient situations it is possible to omit the counterterm
H(λ−k). This is the case if ϑP has unique realisation paths, which allows us to
gain more control over the bounds for the measure theoretic entropy. Moreover,
in the case when the random substitution satisfies the disjoint set condition
we obtain a closed form formula. We also obtain a closed form formula when
the random substitution satisfies the identical set condition, provided the pro-
duction probabilities satisfy the following condition.
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Definition 3.4. Let ϑP = (ϑ,P) be a random substitution satisfying the iden-
tical set condition. We say that ϑP has identical production probabilities if for
all a ∈ A, k ∈ N and v ∈ ϑk(a), we have

P[ϑk−1
P (u1) = v] = P[ϑk−1

P (u2) = v]

for all u1 and u2 ∈ ϑ(a).

Theorem 3.5. Assume that ϑP is a primitive random substitution with unique
realisation paths, with Perron–Frobenius eigenvalue λ and right eigenvector R.
Then, for all k ∈ N,

1
λk

H�
k R ≤ h(μP) ≤ 1

λk − 1
H�

k R,

where the upper bound is an equality if and only if ϑk
P satisfies the disjoint set

condition. The lower bound is an equality if and only if ϑk
P satisfies the identical

set condition with identical production probabilities. Further, the sequence of
lower bounds (λ−nH�

nR)n∈N is non-decreasing in n.

Remark 3.1. The conditions that allow us to obtain closed expressions for the
entropy in Theorem 3.5 have been formulated in a manner that parallels our
discussion of topological entropy. They can also be rephrased in probabilistic
terms. More precisely, ϑP satisfies the disjoint set conditions if and only if
ϑP(a) is determined by ϑn

P(a) for all n ∈ N and a ∈ A. The identical set
condition with identical production probabilities holds for ϑP if and only if
the random words ϑP(a) and ϑn

P(a) are independent for all n ≥ 2 and a ∈ A.

Comparing Theorem 3.3 and Theorem 3.5 one of the most striking dif-
ferences is that the term H(λ−k) does not appear in the lower bound under
the assumption of unique realisation paths. It is natural to inquire whether
this term can also be dropped in the more general case of primitive random
substitutions. That this is not the case can be seen from the following example.

Example 3.6. Let p ∈ (0, 1) and let ϑP be the random substitution defined by

ϑP :

⎧
⎪⎨

⎪⎩

a �→
{

a with probability p,

aba with probability 1 − p,

b �→ bab.

This random substitution gives rise to the periodic subshift
Xϑ = {(ab)Z, (ba)Z}, which has entropy 0. On the other hand, M is primitive
and HP(ϑP(a)) > 0.

In general, the measure theoretic entropy h(μP) depends on the choice
of P. As a consequence of Theorem 3.3 we obtain that the dependence on the
probability parameters is continuous.

In the following, we regard P as a vector in R
r equipped with the

Euclidean topology, where r =
∑d

i=1 ri =
∑d

i=1 #ϑ(ai) and d is the cardinality
of the alphabet. We emphasize that we assume that P is non-degenerate in
the sense that all probabilities are assumed to be strictly positive.
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Corollary 3.7. Assume the setting of Theorem 3.3. The map P �→ h(μP) is
continuous.

Proof. For 0 < ε < 1 let Dε be the domain of those P such that all entries
of P are greater than ε. Since we get the complete domain of P as a (nested)
union over all Dε, it is enough to show that the map P �→ h(μP) is continuous
on Dε for arbitrary ε. The general strategy of the proof is to represent h(μP)
as a uniform limit of continuous functions on Dε via Theorem 3.3.

Recall that all of the data λ,Hm,R depend implicitly on P. By prim-
itivity λ > 1 is a simple eigenvalue for all P. Since the substitution matrix
depends analytically on the probability parameters, we can resort to funda-
mental facts in perturbation theory; compare for example [21]. In particular, λ
depends analytically on P ∈ Dε and since λ is simple, so does R. The entries
of Hm inherit continuity from the fact that the maps P �→ P[ϑm

P (a) = u] are
continuous for all a ∈ A and u ∈ A+. Hence, the function

sm : P �→ 1
λm

H�
mR,

is continuous in P for all m ∈ N. With this notation, Theorem 3.3 can be
rephrased as

λm − 1
λm

h(μP) ≤ sm(P) ≤ h(μP) + H(λ−m), (3.2)

for all m ∈ N. Note that h(μP) is uniformly bounded from above by the
topological entropy of Xϑ and λ is bounded from below by its minimal value
λε > 1 on the compact set Dε. Therefore, the convergence

lim
m→∞ sm(P) = h(μP)

is uniform on Dε which implies the assertion. �

3.2. Renormalisation

Properties adhering to a (deterministic) substitution subshift can often be
expressed more directly in terms of the corresponding substitution. A key
observation in this regard is that a substitution subshift exhibits a self-similar
structure that relates it directly to the substitution action via a renormalisation
step. More precisely, every sequence in the subshift can be decomposed into
inflation words of type ϑ(a), with a ∈ A such that replacing ϑ(a) by a gives
another sequence in the subshift. This corresponds to an (average) change of
the scale by a factor λ. In the primitive case, keeping track of letter frequencies
during this procedure provides a consistency relation that immediately shows
that they must form a right Perron–Frobenius eigenvector of the substitution
matrix.

A similar procedure works for word frequencies, if the substitution is
replaced by an induced substitution [34]. This can be extended to primitive
random substitutions [19, Prop. 5.8], showing that the probability distribution
μ(n) on Ln

ϑ, given by

μ(n)(w) = μP([w]),
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is the unique normalised Perron–Frobenius eigenvector of an appropriate
induced substitution matrix Mn, for all n ∈ N. This gives the following self-
consistency relation, which was shown as the first step in the proof of [19,
Prop. 5.8].

Lemma 3.8. Let ϑP be a primitive random substitution. Then, for all w ∈ Ln
ϑ,

μP([w]) =
∑

v∈Ln
ϑ

μP([v])
1
λ

|ϑ|∑

m=1

m∑

j=1

P[ϑP(v)[j,j+n−1] = w ∧ |ϑP(v1)| = m].

It will be convenient to interpret the expression appearing in Lemma 3.8
via the distribution of an appropriate random variable that mirrors the action
of ϑP on the initial distribution μP, together with the choice of the origin in
the inflation word decomposition.

Lemma 3.9. For n ∈ N, μ(n) is the distribution of a random word Wn on a
finite probability space (Ωn, Pn), defined as follows. The space

Ωn = {(v, u1, . . . , un, j) : v ∈ Ln
ϑ, ui ∈ ϑ(vi), 1 ≤ j ≤ |u1|}

is equipped with the probability vector

Pn : (v, u1, . . . , un, j) �→ 1
λ

μP([v])
n∏

i=1

P[ϑP(vi) = ui].

The random word Wn is defined via

Wn : (v, u1, . . . , un, j) �→ (u1 · · · un)[j,j+n−1].

Proof. Let w ∈ Ln
ϑ. We note that W−1

n ({w}) comprises all those elements in
Ωn such that the property (u1 · · · un)[j,j+n−1] = w holds. That is,

Pn(Wn = w) =
∑

v∈Ln
ϑ

∑

u1,...,un

|u1|∑

j=1

1
λ

μP([v])
n∏

i=1

P[ϑP(vi) = ui] δw,(u1...un)[j,j+n−1]
.

Comparing with the expression in Lemma 3.8, we further note that

P[ϑP(v)[j,j+n−1] = w ∧ |ϑP(v1)| = m]

=
∑

u1,...,un

n∏

i=1

P[ϑP(vi) = ui] δm,|u1| δw,(u1...un)[j,j+n−1]
.

From this, we obtain that Pn(Wn = w) = μP([w]) and the claim follows. �
Remark 3.2. We may interpret the factors occurring in the definition of Pn in
terms of the renormalisation step. The term λ−1 corresponds to a change of
scale due to the expansion of the length of words, μP([v]) reflects the choice of a
word before the inflation step, and each of P[ϑP(vi) = ui] gives the probability
of mapping vi to the particular word ui as we apply the random substitution.
Marginalized to (prefixes) of v, the distribution induced by Pn and μP are
closely related but different in general. To be more precise, we will be interested
in the random variable

V[1,m] : (v, u1 · · · un, j) �→ v[1,m]
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for some m � n. Integrating out the dependencies on u2, . . . , un and j in the
first step, we obtain

Pn(V[1,m] = v′) =
1
λ

∑

v,v[1,m]=v′
μP([v])

∑

u1

|u1|P[ϑP(v1) = u1]

=
1
λ

μP([v′])E[|ϑP(v1)|].
The additional factor λ−1

E[|ϑP(v1)|] accounts for the fact that starting the
inflation word decomposition of a word within some u1 ∈ ϑ(v1) is more prob-
able if E[|ϑP(v1)|] is large.

Lemma 3.9 provides us with an alternative way to calculate the measure
theoretic entropy that will be instrumental for the proof of our main theorems.

Lemma 3.10. The measure theoretic entropy h(μP) of (Xϑ, S, μ) satisfies

h(μP) = lim
n→∞

1
n

HPn
(Wn).

Proof. Let In : v �→ v be the identity map on Ln. By the definition of measure
theoretic entropy,

h(μP) = lim
n→∞

1
n

Hμ(n)(In).

Since μ(n) = Pn ◦ W−1
n by Lemma 3.9, it follows that Hμ(n)(In) = HPn

(Wn).
�

3.3. Control Over Large Deviations

A useful property of any primitive random substitution ϑP is that its Perron–
Frobenius eigenvalue λ can be regarded as an inflation factor. In the case
that ϑP is of constant length �, this interpretation is exact in the sense that
|ϑ(v)| = �|v| for all v ∈ A+ and all realisations of ϑP(v). If ϑP is compatible,
|ϑ(v)| is still independent of the realisation but might deviate slightly from λ|v|.
However, we still obtain that λ is arbitrarily close to the actual ratio |ϑ(v)|/|v|
for large enough values of |v|. This is a consequence of the following result on
the length of inflation words which is a mild adaptation of [34, Proposition 5.8]
and hence given without proof.

Lemma 3.11. Let ϑP = (ϑ,P) be a primitive random substitution that is com-
patible. Then, given an ε > 0, there exists n0 ∈ N such that for all v ∈ A+

with |v| > n0,

|v|(λ − ε) < |ϑ(v)| < |v|(λ + ε).

Moreover, letting τ denote the modulus of the second largest eigenvalue of Mϑ,
there exists a constant D > 0 so that, for all i ∈ {1, 2, . . . , d} and m ∈ N,

λmLi − Dτm ≤ |ϑm(ai)| ≤ λmLi + Dτm.

In general, such a strong statement does not hold if we drop the assump-
tion of compatibility. However, the probability that |ϑP(v)| deviates by a pos-
itive fraction from λ|v| decays quickly with |v| for typical choices of v. We will
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make this more precise in the following lemma in a form that is useful for our
purposes.

Lemma 3.12. Let λ− < λ < λ+ and for each n ∈ N fix a positive number
m = m(n) < n such that limn→∞ m(n) = ∞. Further, let

An = {(v, u1, . . . , un, j) : λ−m ≤ |u2 · · · um| ≤ λ+m},

for all n ∈ N. Then, limn→∞ Pn(An) = 1.

Proof. Let Au
n := {(u2, . . . , um) : λ−m ≤ |u2 · · · um| ≤ λ+m} be the set of

(u2, . . . , um)-tuples that extend to elements in An. By definition of Pn and
An,

Pn(An) =
1
λ

∑

v[1,m]

μP([v[1,m]])
∑

u1

|u1|P[ϑP(v1) = u1]

∑

(u2,...,um)∈Au
n

m∏

i=1

P[ϑP(vi) = ui]

=
1
λ

∑

v[1,m]

μP([v[1,m]])E[|ϑP(v1)|] P[λ−m ≤ |ϑP(v2 · · · vm)| ≤ λ+m].

We claim that for μP-almost every v ∈ Xϑ, it is

lim
m→∞ P[λ−m ≤ |ϑP(v2 · · · vm)| ≤ λ+m] = 1. (3.3)

This can be seen as follows. By ergodicity of μP, for μP-almost every v and
every given δ > 0 it holds that

m(Ra − δ) ≤ |v[2,m]|a ≤ m(Ra + δ),

for each a ∈ A and large enough m ∈ N. In this case, it follows by standard
large deviation arguments (see for example [13]) that for all δ′ > 0,

∑

i,vi=a

|ϑP(vi)| ≤ (1 + δ′)m(Ra + δ)E[|ϑP(a)|], (3.4)

up to a set E = E(m, v, δ, δ′) whose probability decays exponentially with m.
By the definition of the substitution matrix M , we have

E[|ϑP(a)|] =
∑

b∈A
E[|ϑP(a)|b] =

∑

b∈A
Mba.

Summing over a ∈ A in (3.4), we obtain that

|ϑP(v2 · · · vm)| ≤ m(1 + δ′)
( ∑

a,b∈A
MbaRa + δ|ϑ|

)

= m(1 + δ′)(λ + δ|ϑ|),

up to an exponentially decaying probability. Choosing δ, δ′ small enough, we
get

|ϑP(v2 · · · vm)| ≤ λ+m
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in these cases. The estimate for the lower bound works by completely analogous
arguments. Hence, we have that there exists c = c(v) > 0 and m0 = m0(v)
such that

P[λ−m ≤ |ϑP(v2 · · · vm)| ≤ λ+m] ≥ 1 − e−mc,

for all m ≥ m0. In particular, (3.3) holds μP-almost surely and we get by
dominated convergence,

lim
n→∞ Pn(An) =

1
λ

∫

Xϑ

E[|ϑP(v1)|] dμP(v) = 1.

�

3.4. The Upper Bound

As a first step towards the proof of our main theorems, we establish the
sequence of upper bounds for the measure theoretic entropy that we stated
in Theorems 3.3 and 3.5. For ease of notation, we let ϕ denote the function

ϕ : x �→ −x log(x),

for positive x ∈ R, and set ϕ(0) = 0. To handle various terms that are of
no concern for the main calculations, we also recall some standard notation
on error terms. Given a positive function f : N → R, we denote by O(f) any
function g : N → R such that g(n)/f(n) is bounded in n. Similarly, we write
o(f) for a function g : N → R such that g(n)/f(n) converges to 0 as n → ∞.

Proposition 3.13. Let ϑP be a primitive random substitution. Then,

h(μP) ≤ 1
λk − 1

H�
k R,

for all k ∈ N.

Proof. It suffices to show the relation for k = 1, since μP remains the same
measure for all powers of ϑP. By Lemma 3.10, it is possible to control h(μP)
via the entropy of Wn. We wish to refer to data in Ωn via a set of appropriate
random variables. To this end we introduce (or recall in the case of V[1,m])

• V[1,m] : (v, u1 · · · un, j) �→ v[1,m] for all 1 ≤ m ≤ n,
• J : (v, u1, . . . , un, j) �→ j,
• Uk : (v, u1 · · · un, j) �→ uk for all 1 ≤ k ≤ n,
• U[k,�] = (Uk, . . . ,U�) for 1 ≤ k ≤ � ≤ n.

Also recall that Wn is given by (u1 · · · un)[j,j+n−1]. On average, the words uk

have length λ, and therefore, in typical situations, Wn in fact only depends
on uk with 1 ≤ k ≤ m(n), with m(n) ≈ n/λ. This motivates the following
notation. Fix a small ε > 0 and let λ− = λ − ε. Further, let n ∈ N and

m = m+(n) =
⌈ n

λ−

⌉
.

As a first step, we bound the entropy by

HPn
(Wn) ≤ HPn

(U[1,m],J ) + HPn
(Wn | U[1,m],J ).
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Setting

An = {(v, u1, . . . , un, j) ∈ Ωn | |u2 · · · um| ≥ n}.

we note that on An, Wn is given by (u1 · · · um)[j,j+n−1] and hence is completely
determined by U[1,m] and J . On AC

n , we can bound the (conditioned) entropy
of Wn by

log(#Ln
ϑ) ≤ n log(#A).

With these two observations, we get

HPn
(Wn | U[1,m],J ) ≤ Pn(AC

n )n log(#A).

By Lemma 3.12, the term Pn(AC
n ) converges to 0 as n → ∞ and hence

HPn
(Wn) ≤ HPn

(U[1,m],J ) + o(n).

On the other hand, since both J and U1 have a bounded number of realisa-
tions,

HPn
(U[1,m],J ) = HPn

(U[2,m]) + O(1).

Conditioning on V[1,m], we therefore get

HPn
(Wn) ≤ HPn

(U[2,m]) + o(n) ≤ HPn
(V[1,m]) + HPn

(U[2,m] | V[1,m]) + o(n).
(3.5)

For the calculation of the entropy HPn
(V[1,m]), recall from Remark 3.2 that

Pn(V[1,m] = v[1,m]) =
1
λ

μP([v[1,m]])E[|ϑP(v1)|]. (3.6)

In the following, we will convince ourselves that the modification by the factor
λ−1

E[|ϑP(v1)|] is inessential for our purposes. To this end, we make use of the
general observation that ϕ(pq) = pϕ(q) + qϕ(p). For an arbitrary probability
vector (pi)i∈I and a finite sequence of real numbers q = (qi)i∈I , this implies

∑

i∈I

ϕ(piqi) � max
i∈I

ϕ(qi) +
∑

i∈I

qiϕ(pi).

Using this for I = Lϑ, and the probability vector with entries μP([v[1,m]]), we
obtain via (3.6),

HPn
(V[1,m]) =

∑

v[1,m]∈Lm
ϑ

ϕ

(
1
λ

μP([v[1,m]])E[|ϑP(v1)|]
)

= O(1) +
∑

v[1,m]∈Lm
ϑ

E[|ϑP(v1)|]
λ

ϕ(μP([v[1,m]])).

Recall that m = m(n) implicitly depends on n and note that we can rewrite

1
n

∑

v[1,m]∈Lm
ϑ

E[|ϑP(v1)|]
λ

ϕ(μP([v[1,m]]))

=
m

n

∫

Xϑ

− log(μP([v[1,m]]))
m

E[|ϑP(v1)|]
λ

dμP(v).
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Due to the ergodicity of μP and the Shannon-MacMillan-Breiman theo-
rem, we have that − log(μP([v[1,m]]))/m converges to h(μP) in L1(Xϑ, μP) and
hence we also get L1-convergence for the product with an arbitrary uniformly
bounded function g on Xϑ. Applying this to g : v �→ λ−1

E[|ϑP(v1)|] yields

lim
n→∞

1
n

HPn
(V[1,m]) =

1
λ−

h(μP)
∑

v1∈A
μP([v1])

E[|ϑP(v1)|]
λ

=
1

λ−
h(μP)

1
λ

∑

a,b∈A
MbaRa =

1
λ−

h(μP). (3.7)

We next turn to the calculation of the conditional entropy HPn
(U[2,m] |

V[1,m]). Denoting by Pn,v[1,m] the normalized restriction of Pn to {V[1,m] =
v[1,m]}, we get via straightforward calculation

Pn,v[1,m] [U[2,m] = (u2, · · · , um)] =
m∏

i=2

P[ϑP(vi) = ui].

and thereby

HPn,v[1,m]
(U[2,m]) =

m∑

i=2

HP(ϑP(vi)) = H�
1 Φ(v[2,m]).

Using (3.6), this yields

HPn
(U[2,m] | V[1,m]) =

1
λ

∑

v[1,m]∈Lm
ϑ

μP([v[1,m]])E[|ϑP(v1)|]H�
1 Φ(v[2,m]).

For the corresponding asymptotic behaviour we note that, again by ergodicity
of μP, Φ(v[2,m])/m converges to R for μP-almost every v. Thus,

lim
n→∞

1
n

HPn
(U[2,m] | V[1,m]) =

1
λ−

H�
1 R

∑

v1∈A
μP([v1])

E[|ϑP(v1)|]
λ

=
1

λ−
H�

1 R.

(3.8)

Hence, combining the contributions from (3.7) and (3.8), we get by (3.5),

h(μP) = lim
n→∞

1
n

HPn
(Wn) ≤ 1

λ−

(
h(μP) + H�

1 R).

As ε → 0, we obtain λ− → λ and hence

h(μP) ≤ 1
λ − 1

H�
1 R,

completing the proof. �

The sequence of vectors (H�
n )n∈N can be bounded via a matrix-recursion

that involves the substitution matrix.

Proposition 3.14. Let ϑP be a primitive random substitution. Then, for every
n, k ∈ N, we have that

H�
n+k ≤ H�

n Mk + H�
k ,
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to be understood elementwise. In particular,

H�
n+kR ≤ λkH�

nR + H�
k R.

If ϑP has unique realisation paths, equality occurs precisely if ϑn
P(a) is com-

pletely determined by ϑn+k
P (a).

Proof. First, let v ∈ Lm
ϑ and note that the random variable ϑn

P(v) can be
written as a function of (ϑn

P(v1), . . . , ϑn
P(vm)). Due to the independence of the

random variables in the last tuple, we obtain that

HP(ϑn
P(v)) ≤ HP

(
ϑn
P(v1), . . . , ϑn

P(vm)
)

=
m∑

i=1

HP(ϑn
P(vi)) = H�

n Φ(v).

If ϑP has unique realisation paths, we even obtain equality. Using the Markov
property of the substitution process in the first step, we get for every a ∈ A,

HP(ϑ
n+k
P (a)|ϑk

P(a)) =
∑

v∈ϑk
P(a)

P[ϑk
P(a) = v]HP(ϑ

n
P(v))

≤ H�
n

∑

v∈ϑk
P(a)

P[ϑk
P(a) = v]Φ(v)

= H�
n E[Φ(ϑk

P(a))] = H�
n Mkea,

again with equality in case of unique realisation paths. Therefore, for all a ∈ A,

HP(ϑn+k
P (a)) ≤ HP(ϑn+k

P (a)|ϑk
P(a)) + HP(ϑk

P(a)) ≤ H�
n Mkea + Hk,a.

The first inequality is an equality precisely if ϑk
P(a) is completely determined

by ϑn+k
P (a) and the second inequality is an equality, provided that ϑP has

unique realisation paths. �

Corollary 3.15. Let ϑP be a primitive random substitution. Then, for all n ∈
N,

1
λn − 1

H�
nR ≤ 1

λ − 1
H�

1 R.

If ϑP has unique realisation paths, we have equality for all n ∈ N if and only
if ϑP satisfies the disjoint set condition.

Proof. Given n ≥ 2, iterating the relation H�
nR ≤ λn−1H�

1 R+H�
n−1R yields

H�
nR ≤ H�

1 R
n−1∑

k=0

λk =
λn − 1
λ − 1

H�
1 R,

immediately giving the required inequality. Given the property of unique real-
isation paths, equality holds if and only if ϑn

P(a) completely determines ϑP(a)
for all a ∈ A and n ∈ N. This is just a reformulation of the disjoint set
condition; compare Remark 3.1. �
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3.5. The Lower Bound

In this section, we will establish the lower bounds for the measure theoretic
entropy in Theorems 3.3 and 3.5. Again, our proof relies heavily on the self-
consistency relation for μP presented in Sect. 3.2.

Proposition 3.16. Let ϑP be a primitive random substitution with associated
measure μP. Then,

h(μP) ≥ 1
λk

H�
k R − H(λ−k),

for all k ∈ N. If ϑP has unique realisation paths, it is

h(μP) ≥ 1
λk

H�
k R,

for all k ∈ N.

Proof. Again, it suffices to consider the case k = 1. We take over the notation
from the proof of Proposition 3.13 with one modification. For ε > 0, we now
consider λ+ = λ + ε and set

m = m−(n) =
⌈ n

λ+

⌉
.

This is to ensure that Wn and J determine U2 · · · Um on a set of large proba-
bility, given by

Bn = {(v, u1, . . . , un, j) : |u2 · · · um| ≤ n − |ϑ|}.
Using standard properties of conditional entropy, we get

HPn
(Wn) ≥ HPn

(Wn | V[1,m]) ≥ HPn
(U[2,m] | V[1,m]) − HPn

(U[2,m] |Wn). (3.9)

Just like in the proof of Proposition 3.13 it follows that

lim
n→∞

1
n

HPn
(U[2,m] | V[1,m]) =

1
λ+

H�
1 R.

It remains to find an adequate upper bound for HPn
(U[2,m] |Wn). To that end,

we introduce an additional random variable on Ωn via

�m : (v, u1, . . . , un, j) �→ |u2 · · · um|.
Next, we obtain

HPn
(U[2,m] |Wn) ≤ HPn

(U[2,m] |Wn,J , �m) + HPn
(J , �m |Wn)

= HPn
(U[2,m] |Wn,J , �m) + O(log(m)).

(3.10)

The last step follows because the number of distinct realisations of (J , �m) can
be bounded from above by |ϑ|2m. Conditioned on Wn,J , �m, and provided
�m ≤ n − |ϑ|, knowledge of U[2,m] is equivalent to knowledge of

|U|[2,m] : (v, u1, . . . , un, j) �→ (|u2|, . . . , |um|).
Indeed, on the set Bn (that is, if �m ≤ n − |ϑ|) we observe that Wn,J and �m

determine the word u2 · · · um, such that knowing the lengths of the individual
words allows us to infer (u2, . . . , um). By conditioning,

HPn
(U[2,m] |Wn,J , �m) ≤ HPn

(|U|[2,m] |Wn,J , �m)
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+HPn
(U[2,m] | |U|[2,m],Wn,J , �m).

Let M = maxa∈A #ϑ(a), implying #σ(U[2,m]) ≤ Mm. By the observations
above, we can bound

HPn
(U[2,m] | |U|[2,m],Wn,J , �m) ≤ Pn(BC

n )m log(M).

Since P (BC
n ) → 0 as n → ∞ by Lemma 3.12, it follows that

HPn
(U[2,m] |Wn,J , �m) ≤ HPn

(|U|[2,m] | �m) + o(n). (3.11)

If ϑP has unique realisation paths, we even get that Wn,J , �m determine U[2,m]

completely on Bn, yielding

HPn
(U[2,m] |Wn,J , �m) = o(n),

by an analogous argument. Given �m = �, the number of possible values of
|U |[2,m] is bounded above by the number of choices to decompose a block of
length � into m − 1 smaller blocks, that is, by the binomial coefficient

(
�−1
m−2

)
.

Using this bound on Bn and the fixed bound Mm on BC
n , we obtain

HPn
(|U|[2,m] | �m) ≤

n−|ϑ|∑

�=m−1

Pn[�m = �] log
(

� − 1
m − 2

)

+ Pn(BC
n )m log(M)

≤ log
(

n

m − 2

)

+ o(n) ≤ nH((m − 2)/n) + o(n).

Since we have seen in (3.10) and (3.11) that HPn
(|U|[2,m] | �m) bounds

HPn
(U[2,m] |Wn) up to a term of order o(n), we get from (3.9) that

h(μP) = lim
n→∞

1

n
HPn

(Wn) ≥ lim
n→∞

1

n
HPn

(U[2,m] | V[1,m]) − lim sup
n→∞

HPn
(U[2,m] | Wn)

≥ 1

λ+
H�

1 R − H(λ−1
+ )

ε→0−−−→ 1

λ
H�

1 R − H(λ−1).

If ϑP has unique realisation paths, we have HPn
(U[2,m] |Wn) = o(n), which

gives the stronger bound

h(μP) ≥ 1
λ

H1R,

in this case. �

For the remainder of this section, we restrict to the case of unique reali-
sation paths.

Proposition 3.17. Let ϑP be a primitive random substitution with unique real-
isation paths. Then,

H�
n+k ≥ H�

n Mk

for all n, k ∈ N. Equality holds if and only if ϑn+k
P (a) is independent of ϑn

P(a)
for all a ∈ A.
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Proof. As in the proof of Proposition 3.14, we obtain

H(ϑn+k
P (a)) ≥ H(ϑn+k

P |ϑn
P(a)) = H�

n Mkea,

for all a ∈ A. Equality holds if and only if ϑn+k
P (a) and ϑn

P(a) are independent
random variables. �

Corollary 3.18. Let ϑP be primitive with unique realisation paths. Then, for
all m ≤ n,

1
λm

H�
mR ≤ 1

λn
H�

nR.

Equality holds for all m ≤ n if and only if ϑP satisfies the identical set condi-
tion with identical production probabilities.

Proof. By Proposition 3.17, we get
1
λn

H�
nR ≥ 1

λn
H�

mMn−mR =
1

λm
H�

mR.

Equality for all m ≤ n holds precisely if
1
λn

H�
nR =

1
λ
H�

1 R,

for all n ∈ N. This is the case if and only if for all a ∈ A, ϑP(a) is independent
from ϑn

P(a) for all n ∈ N, which means that ϑn−1
P (v) has the same distribtu-

tion for all possible realisations v of ϑP(a). This is precisely the identical set
condition with identical production probabilities. �

With the results established thus far, our main results follow in a straight-
forward manner.

Proof of Theorem 3.3. The fact that

λ−kH�
k R − H(λ−k) ≤ h(μP) ≤ (λk − 1)−1H�

k R

for all k ∈ N follows directly by combining Proposition 3.13 and Proposition
3.16. The convergence of λ−kH�

k R as k → ∞ can be seen from the reformu-
lation of this relation in (3.2). �

Proof of Theorem 3.5. The upper and lower bounds for h(μP) were established
in Proposition 3.13 and Proposition 3.16. The statements on the equivalent
conditions for equality with the lower or upper bound are given in Corollaries
3.15 and 3.18. The fact that the sequence of lower bounds is non-decreasing is
also contained in Corollary 3.18. �

4. Measures of Maximal Entropy

4.1. Existence of Frequency Measures of Maximal Entropy

By comparing the results for measure theoretic entropy established in Sect.
3 with the results on topological entropy obtained in [17], we ascertain that
for random substitution subshifts there often exists a frequency measure of
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maximal entropy. In particular, as a consequence of Corollary 2.14 and Theo-
rem 3.5, we obtain that every subshift of a primitive and compatible random
substitution satisfying the identical set condition or disjoint set condition has
a frequency measure of maximal entropy. This measure of maximal entropy is
the frequency measure corresponding to uniform probabilities.

Theorem 4.1. Let ϑP = (ϑ,P) be a primitive and compatible random substitu-
tion satisfying either the disjoint set condition or the identical set condition,
with corresponding frequency measure μP. If P[ϑP(a) = s] = 1/(#ϑ(a)) for all
a ∈ A and s ∈ ϑ(a), then μP is a measure of maximal entropy for the system
(Xϑ, S).

Proof. For a ∈ A and s ∈ ϑ(a), we have that P[ϑP(a) = s] = 1/(#ϑ(a));
hence,

H�
1 R =

∑

a∈A
Ra log(#ϑ(a)).

If ϑP satisfies the disjoint set condition, then by Theorem 3.5, we have

h(μP) =
1

λ − 1

∑

a∈A
Ra log(#ϑ(a)).

Thus, it follows by Corollary 2.14 that h(μP) = htop(Xϑ), and so μP is a
measure of maximal entropy.

Assume that ϑP satisfies the identical set condition. Before we can apply
Theorem 3.5, we first need to verify that ϑP has identical production proba-
bilities. To this end, let a ∈ A, and u and v ∈ ϑ(a). Since ϑP is compatible,
|u|b = |v|b for all b ∈ A. Hence, if t ∈ ϑ2(a), it follows that

P[ϑP(u) = t] =
∏

b∈A
(#ϑ(b))−|u|b =

∏

b∈A
(#ϑ(b))−|v|b = P[ϑP(v) = t].

By way of induction, let n ∈ N and assume that P[ϑn−1
P (u) = w] = [ϑn−1

P (v) =
w] for all w ∈ ϑn(a). Since ϑP satisfies the identical set condition, for all
t ∈ ϑn+1(a) we have t ∈ ϑn(u) ∩ ϑn(v), so

P[ϑn
P(u) = t] =

∑

w∈ϑn−1(u)

P[ϑn−1
P (u) = w] P[ϑP(w) = t]

=
∑

w∈ϑn−1(v)

P[ϑn−1
P (v) = w] P[ϑP(w) = t] = P[ϑn

P(v) = t].

Therefore, by induction, ϑP has identical production probabilities, and thus,
by Theorem 3.5, we have

h(μP) =
1
λ

∑

a∈A
Ra log(#ϑ(a)).

This with Corollary 2.14 yields that h(μP) = htop(Xϑ). Namely, μP is a mea-
sure of maximal entropy. �
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In general, a primitive and compatible random substitution with uniform
probabilities need not give rise to a frequency measure of maximal entropy:
see, for instance, Example 5.4. However, for any subshift of a primitive and
compatible random substitution, a measure of maximal entropy can be realised
as a weak limit of frequency measures.

Theorem 4.2. Let X be the subshift of a primitive and compatible random sub-
stitution. There exists a sequence of frequency measures (μn)n such that μn

converges weakly to a measure of maximal entropy μ for the system (X,S).

Proof. Let ϑP = (ϑ,P) be a primitive and compatible random substitution
that gives rise to the subshift Xϑ, and let λ denote the Perron–Frobenius
eigenvalue of the substitution matrix Mϑ. Then, for all n ∈ N, the substitution
ϑn gives rise to the same subshift as ϑ, namely Xϑ. Let Pn denote the family
of probability vectors corresponding to uniform probabilities on ϑn, and let
μn denote the frequency measure corresponding to the random substitution
(ϑn,Pn). Since the space of probability measures supported on a compact
set and endowed with the weak topology is compact, there exists a probability
measure μ and a subsequence (nk)k of the natural numbers such that (μnk

)k∈N

converges weakly to μ. By Theorem 3.5, we have

h(μnk
) ≥ 1

λnk

∑

a∈A
Ra log(#ϑnk(a))

for all k ∈ N. By Theorem 2.12, the right hand term converges to the topolog-
ical entropy of the system (X,S) as k tends to infinity. Hence,

lim sup
k→∞

h(μnk
) ≥ htop(Xϑ),

and so it follows, by the upper semi-continuity of measure theoretic entropy,
that h(μ) = htop(Xϑ). �

4.2. Intrinsic Ergodicity

For a class of primitive random substitutions satisfying the disjoint set condi-
tion, the frequency measure of maximal entropy given by Theorem 4.1 is the
unique measure of maximal entropy among all shift-invariant Borel probability
measures. This is the content of the main result of this section (Theorem 4.8).
The random substitutions considered here are all constant length and recog-
nisable, the definition of which is given below. Recognisablity also appears in
the work of Miro et al [27] on topological mixing of random substitutions and
in Rust’s paper on periodic points [36].

Definition 4.3. Let ϑP = (ϑ,P) denote a random substitution over a finite
alphabet A, and suppose that |ϑ(a)| is well-defined for all a ∈ A. We call ϑP

recognisable if for all x ∈ Xϑ there exist a unique y = · · · y−1y0y1 · · · ∈ Xϑ

and a unique integer k ∈ {0, . . . , |ϑ(y0)| − 1} with S−k(x) ∈ ϑ(y).

Observe that if ϑP is recognisable, then so is ϑm
P for all m ∈ N, and if

ϑP is of constant length �, then recognisability implies that every x ∈ Xϑ is
contained in precisely one of the sets Sk(ϑ(Xϑ)) for k ∈ {1, . . . , �}. Further, we



306 P. Gohlke et al. Ann. Henri Poincaré

have the following local version of recognisability. This is similar to the case
of deterministic substitutions where an equivalence between global and local
recognisability holds. Intuitively, local recognisability means that applying a
finite window to a sequence is enough to determine the position and the type
of the inflation word in the middle of that window.

Lemma 4.4. Let ϑP = (ϑ,P) denote a primitive random substitution over an
alphabet A, and suppose that |ϑ(a)| is well-defined for all a ∈ A. If ϑP is recog-
nisable, then there exists a smallest natural number κ(ϑ), called the recognis-
ability radius of ϑ, with the following property. If x ∈ ϑ([a]) for some a ∈ A
and x[−κ(ϑ),κ(ϑ)] = y[−κ(ϑ),κ(ϑ)] for some y ∈ Xϑ, then y ∈ ϑ([a]).

Proof. By way of contradiction, suppose there is no radius of recognisability. In
which case, there exists a sequence of tuples ((x(k), y(k)))k∈N with (x(k), y(k)) ∈
ϑ([a])×ϑ([a])C and x

(k)
[−k,k] = y

(k)
[−k,k] for all k ∈ N. Let (x, y) ∈ Xϑ ×Xϑ be an

accumulation point of this sequence. By recognisability,

Xϑ =
⊔

b∈A

|ϑ(b)|−1⊔

k=0

Sk(ϑ([b])),

and by construction, x = y. Due to Lemma 2.5, and since S is continuous, we
have that Sk(ϑ([b])) is compact for all b ∈ A and k ∈ Z. Hence, both ϑ([a]) and
ϑ([a])C are compact. It therefore follows that x ∈ ϑ([a]) and x = y ∈ ϑ([a])C ,
leading to a contradiction. �

Lemma 4.5. Assume the setting of Lemma 4.4. If the random substitution ϑP

is recognisable, then it satisfies the disjoint set condition.

Proof. By way of contradiction, suppose that ϑP does not satisfy the disjoint
set condition. In which case, there exist a ∈ A, and s and t ∈ ϑ(a) with s 
= t
and ϑ(s) ∩ ϑ(t) 
= ∅. For x ∈ [a], observe that there exist y and z ∈ ϑ(x)
such that y[0,|ϑ(a)|−1] = s, z[0,|ϑ(a)|−1] = t, and y coincides with z at all other
positions. Hence, there exists a w ∈ ϑ(y) ∩ ϑ(z) that can be constructed by
mapping s and t to the same word v ∈ ϑ(s) ∩ ϑ(t). This is a contradiction to
recognisability. �

The converse of this statement does not hold: a counterexample is given
by the random period doubling substitution. When establishing intrinsic ergod-
icity for certain random substitutions, we will be concerned with recognisability
for some power of those random substitutions. It follows from a simple recur-
sive argument that the recognisability radius of ϑm

P grows (asymptotically) at
most with the inflation factor as m increases. For constant length substitutions
the precise result reads as follows.

Lemma 4.6. Let ϑP = (ϑ,P) be a primitive random substitution of constant
length �. If ϑP is recognisable, then for all m ∈ N, we have that

κ(ϑm) ≤ �m − 1
� − 1

κ(ϑ).
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Proof. We proceed by induction. The result is immediate for m = 1. Assume
it holds for some m ∈ N, and note, by primitivity, that Xϑ = Xϑm . Let a ∈ A,
x ∈ ϑm+1([a]) and y ∈ Xϑ with x[−k,k] = y[−k,k] for k = �κ(ϑm) + κ(ϑ); in
particular, y ∈ ϑ(Xϑ). Let v ∈ ϑm([a]) be such x ∈ ϑ(v), and let w ∈ Xϑ

such that y ∈ ϑ(w). Applying local recognisability to the pair (Sj�x, Sj�y) for
each j ∈ {−κ(ϑm), . . . , κ(ϑm)}, in combination with Lemma 4.5, we obtain
that v[−κ(ϑm),κ(ϑm)] = w[−κ(ϑm),κ(ϑm)]. By the definition of κ(ϑm), this implies
w ∈ ϑm([a]) and so y ∈ ϑ(w) ⊆ ϑm+1([a]), yielding

κ(ϑm+1) ≤ �κ(ϑm) + κ(ϑ) = κ(ϑ)
m∑

j=0

�j =
�m − 1
� − 1

κ(ϑ),

where the second to last equality follows from the inductive hypothesis. �

Since every primitive recognisable random substitution ϑP satisfies the
disjoint set condition, if ϑP is compatible, then Theorem 4.1 gives that the fre-
quency measure corresponding to uniform probabilities is a measure of maxi-
mal entropy. Without compatibility, we may not utilise Theorem 2.12 to obtain
a formula for the topological entropy of the corresponding subshift. However,
we can compute directly the topological entropy for a class of random sub-
stitution subshifts that includes all the non-compatible random substitution
subshifts for which we prove intrinsic ergodicity in Theorem 4.8. This is the
content of Lemma 4.7. Combining this with Theorem 3.5 gives that the fre-
quency measure corresponding to uniform probabilities is a measure of maxi-
mal entropy.

Lemma 4.7. Let ϑP be a primitive recognisable random substitution of constant
length �. If there exists an N ∈ N such that #ϑ(a) = N for all a ∈ A, then

htop(Xϑ) =
1

� − 1
log(N). (4.1)

In particular, the frequency measure μ corresponding to uniform probabilities
is a measure of maximal entropy for the subshift Xϑ.

Proof. For m ∈ N, we have

Lm�
ϑ =

⋃

v∈Lm+1
ϑ

⋃

u∈ϑ(v)

�⋃

j=1

{
u[j,j+�m−1]

}
.

Since by our hypothesis and Lemma 4.5 we have #ϑ(v) = N |v| for all v ∈
Lm+1

ϑ , it follows that #Lm�
ϑ ≤ �Nm+1#Lm+1

ϑ , and so

htop(Xϑ) = lim
m→∞

log(#Lm�
ϑ )

m�
≤ 1

�
log(N) +

1
�
htop(Xϑ). (4.2)

On the other hand,

Lm�
ϑ ⊇ ϑ(Lm

ϑ ) =
⋃

v∈Lm
ϑ

ϑ(v),
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By recognisability, there is a number r ≤ κ(ϑ) such that for u, v ∈ Lm
ϑ with

v[r+1,m−r] 
= u[r+1,m−r] we have ϑ(u)∩ϑ(v) = ∅. Hence, #Lm�
ϑ ≥ Nm#Lm−2r

ϑ ,
so

htop(Xϑ) = lim
m→∞

1
m�

log(#Lm�
ϑ ) ≥ 1

�
log(N) +

1
�
htop(Xϑ). (4.3)

Combining (4.2) and (4.3) and rearranging yields (4.1). To see that μ is a
measure of maximal entropy for the subshift Xϑ, observe that by Theorem 3.5
and Lemma 4.5, we have

h(μ) =
1

� − 1

∑

a∈A
Ra

∑

s∈ϑ(a)

1
N

log(N) =
1

� − 1
log(N),

since #ϑ(a) = N for all a ∈ A and
∑

a∈A Ra = 1. Hence h(μ) = htop(Xϑ).
�

Remark 4.1. In contrast to the compatible case, it is not true in general that
for a primitive and constant length random substitution the measure corre-
sponding to uniform probabilities is a measure of maximal entropy. We present
an example of such a random substitution in Example 5.3.

We now give the statement of the main result of this section, Theorem
4.8.

Theorem 4.8. Let ϑP = (ϑ,P) be a primitive recognisable random substitution
of constant length � and assume that at least one of the following holds:

(i) ϑ(a) has the same cardinality for all a ∈ A;
(ii) ϑP is compatible and � is the only non-zero eigenvalue of the substitution

matrix.
Under these hypotheses, the system (Xϑ, S) is intrinsically ergodic. Moreover,
the unique measure of maximal entropy is the frequency measure corresponding
to uniform probabilities.

The proof of Theorem 4.8 is presented in Sect. 4.4. We note that the
subshifts considered in Theorem 4.8 do not satisfy the specification property
of Bowen [5] or the weaker specification property of Climenhaga and Thompson
[8]. Compare also Remark 4.2 below.

4.3. Gibbs Properties of Frequency Measures

The proof of Theorem 4.8 follows a similar approach to the proof that the
Parry measure is the unique measure of maximal entropy for irreducible shifts
of finite type, due to Adler and Weiss [2]. An important feature of their proof
is a Gibbs property, which states that for the measure of maximal entropy
μ, there exist constants A,B > 0 such that Ae−|u|h ≤ μ([u]) ≤ Be−|u|h for
every legal word u, where h denotes the topological entropy of the system.
Such a Gibbs property does not hold for the subshifts considered in Theorem
4.8. However, we can obtain a weaker Gibbs property for cylinder sets of exact
inflation words. This is the content of Lemma 4.12, which utilises the following
auxiliary results.
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Lemma 4.9. Let ϑP = (ϑ,P) be a primitive random substitution with cor-
responding frequency measure μP. If for every ai ∈ A, the length |ϑ(ai)| is
well-defined, then for all v ∈ Lϑ and w ∈ ϑ(v),

μP([w]) ≥ 1
λ

μP([v])P[ϑP(v) = w].

If in addition, ϑP is recognisable and constant length, and |ϑ(v)| > 2κ(ϑ), then

μP([w]) =
1
λ

∑

u∈L|v|
ϑ

μP([u])P[ϑP(u) = w].

Proof. Let v ∈ Lϑ and let w ∈ ϑ(v) be fixed. Let n = |w| and Jn(v) = {u ∈
Ln

ϑ : u[1,|v|] = v}. Since we assumed that the lengths of inflation words are
well-defined, the relation in Lemma 3.8 simplifies to

μP([w]) =
1
λ

∑

u∈Ln
ϑ

μP([u])
|ϑ(u1)|∑

j=1

P[ϑP(u)[j,j+|w|−1] = w]

Using that [v] is the union of all [u] with u ∈ Jn(v) we thereby obtain

μP([w]) ≥ 1

λ

∑

u∈Jn(v)

μP([u])P[ϑP(u)[1,|w|] = w] =
1

λ

∑

u∈Jn(v)

μP([u])P[ϑP(v) = w]

=
1

λ
μP([v])P[ϑP(v) = w].

If ϑP is recognisable and of constant length, and |ϑ(v)| > 2κ(ϑ), then there is
a unique way to decompose w into inflation words. However, there might still
be several words u ∈ Lϑ with |u| = |v| such that w ∈ ϑ(u). Lemma 3.8 yields

μP([w]) =
1
λ

∑

u∈L|v|
ϑ

μP([u])P[ϑP(u) = w].

�

Lemma 4.10. Let ϑP = (ϑ,P) be a primitive random substitution satisfying
the disjoint set condition. Assume that P[ϑP(a) = s] = 1/#ϑ(a) for all a ∈ A
and s ∈ ϑ(a) and that at least one of the following conditions is satisfied:

(i) ϑP is of constant length � and #ϑ(a) = #ϑ(b) for all a, b ∈ A;
(ii) ϑP is compatible and the second largest eigenvalue τ of the substitution

matrix satisfies |τ | < 1.
Under these hypotheses, there exists a constant c > 0 such that P[ϑm

P (a) =
w] ≥ ce−|w|htop(Xϑ) for all m ∈ N, a ∈ A and w ∈ ϑm(a). In particular, when
ϑP is of constant length, we have that P[ϑm

P (a) = w] = ehtop(Xϑ)e−|w|htop(Xϑ).

Proof. As ϑP satisfies the disjoint set condition, by induction, for a ∈ A,
m ∈ N and w ∈ ϑm(a),

P[ϑm
P (a) = w] =

1
#ϑm(a)

. (4.4)
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Let us first consider case (i). Since ϑP satisfies the disjoint set condition, we
have #ϑm(a) = #ϑm(b) for all a, b ∈ A. Hence, by Corollary 2.14, and since the
right Perron–Frobenius eigenvector R of ϑP is normalised so that ‖R‖1 = 1,
we have

log(#ϑm(a)) =
∑

b∈A
Rb log(#ϑm(b)) = (�m − 1)htop(Xϑ)

=|ϑm(a)|htop(Xϑ) − htop(Xϑ).

Taking the exponential of both sides, we conclude from (4.4) that P[ϑP(a) =
w] = ehtop(Xϑ)e−|w|htop(Xϑ). Let us now consider case (ii). Since the Perron–
Frobenius eigenvalue λ of ϑP is simple, we can split the substitution matrix
M as M = λRL� + N , where R and L are respectively the right and left
Perron–Frobenius eigenvectors of ϑP and where NRL� = 0 = RL�N . Since
ϑP satisfies the disjoint set condition, it follows by [17, Lemma 10], that q�

m =
q�
1

∑m−1
k=0 Mk, for all m ∈ N, and where qm is as defined in (2.2). Hence,

q�
m = q�

1

m−1∑

k=0

Mk = q�
1

m−1∑

k=0

λkRL� + q�
1

m−1∑

k=0

Nk

=
λm − 1
λ − 1

q�
1 RL� + q�

1

m−1∑

k=0

Nk = (λm − 1)htop(Xϑ)L� + q�
1

m−1∑

k=0

Nk.

By construction, τ is the dominant eigenvalue of N , and so there exists a c > 0
and n ∈ N such that ‖Nk‖∞ < ckn|τ |k for all k ∈ N. Hence, there is r ∈ R

with |τ | < r < 1 such that ‖Nk‖∞ < crk. We therefore obtain

log(#ϑm(a)) = qm,a ≤ (λm − 1)Lahtop(Xϑ) +‖q1‖∞
m−1∑

k=0

‖Nk‖∞

≤ (λm − 1)Lahtop(Xϑ) +
c

1 − r
‖q1‖∞,

where qm,a is as defined in (2.2). On the other hand, by Lemma 3.11, we have
that

|ϑm(a)| ≥ Laλm − D|τ |m ≥ Laλm − D,

for some D > 0. Hence, there exists a constant C > 0 such that log(#ϑm(a)) ≤
|ϑm(a)|h + C. Taking the exponential of both sides, we conclude from (4.4)
that P[ϑm

P (a) = w] ≥ e−|w|he−C . Setting c = e−C completes the proof. If ϑP is
additionally assumed to be of constant length, then τ = 0 since the eigenvalues
of the matrix associated to a constant length substitution are integers. In
this case, the matrix M satisfies M = λRL�, where L = (1, . . . , 1) by the
constant length property. Thus, it follows by the same arguments as above
that log(#ϑm(a)) = (λm − 1)htop(Xϑ). Taking the exponential of both sides,
it follows from (4.4) that P[ϑm

P (a) = w] = ehtop(Xϑ)e−|w|htop(Xϑ). �

Lemma 4.11. If ϑP = (ϑ,P) satisfies either of the conditions of Lemma 4.10,
and if μP denotes the corresponding frequency measure, then there exists a
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constant c > 0 such that

μP([w]) ≥ μP([v])
c|v|

|w|e|w|htop(Xϑ)

for all v ∈ Lϑ, m ∈ N and w ∈ ϑm(v). If, in addition, ϑP is constant length
and recognisable and |v| > 2κ(ϑ), then

μP([w]) ≤ |v|e|v|htop(Xϑ)

|w|e|w|htop(Xϑ)
.

Proof. Let v ∈ Lϑ, m ∈ N and w ∈ ϑm(v) be fixed. Applying Lemma 4.9 to
ϑm
P yields

μP([w]) ≥ 1
λm

μP([v])P[ϑm
P (v) = w]. (4.5)

Since ϑP is compatible or constant length, we can decompose w into subwords
w = w(1) · · · w(|v|) such that w(j) ∈ ϑm(vj) for all j ∈ {1, . . . , |v|}. Hence, it
follows by Lemma 4.10 that there is a constant c > 0 such that

P[ϑm
P (v) = w] =

|v|∏

j=1

P[ϑm
P (vj) = w(j)]

≥
|v|∏

j=1

c e−|w(j)|htop(Xϑ) = c|v|e−|w|htop(Xϑ). (4.6)

By Lemma 3.11, there is a universal constant D > 0 such that λm ≤ D|ϑm(a)|
for all m ∈ N and a ∈ A. Combining this with (4.5) and (4.6) yields the
required result.

Now, assume additionally that ϑP is recognisable and of constant length
�. Then by Lemma 4.10 we have that P[ϑm

P (u) = w] = e|u|htop(Xϑ)e−|w|htop(Xϑ)

for every u ∈ L|v|
ϑ with w ∈ ϑ(u). Thus, the lower bound follows by identical

arguments to the above, taking c = ehtop(Xϑ). For the upper bound, observe
that if |v| > 2κ(ϑ), we also have |ϑm(v)| = �m|v| > 2κ(ϑm), for all m ∈ N by
Lemma 4.6. Hence, noting that |u| = |v| and �−m = |v|/|w|, we find by Lemma
4.9,

μP([w]) =
1

�m

∑

u∈L|v|
ϑ

μP([u])P[ϑm
P (u) = w] ≤ |v|e|v|htop(Xϑ)

|w|e|w|htop(Xϑ)
.

�

In the proof of Theorem 4.8 we only require the lower bound of Lemma
4.11. However, the upper bound allows us to show that the subshifts we con-
sider in Theorem 4.8 do not satisfy the Gibbs property, therefore do not satisfy
the specification property of [5]. Instead, these subshifts satisfy the following
Gibbs-like property.
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Lemma 4.12. Let ϑP be a random substitution satisfying the conditions of The-
orem 4.8, and let μP denote the corresponding frequency measure. Then there
exist constants c1, c2 > 0 such that for all a ∈ A, m ∈ N and w ∈ ϑm(a),

c1
|w|e

−|w|htop(Xϑ) ≤ μP([w]) ≤ c2
|w|e

−|w|htop(Xϑ).

Proof. The lower bound follows immediately from Lemma 4.11, taking c1 =
mina∈A cμP([a]) where c is the constant given by Lemma 4.11. For the
upper bound, let M be the least integer such that �M > 2κ(ϑ) and set
c2 = maxu∈Lϑ, |u|≤�M |u|e|u|htop(Xϑ). Clearly μP([w]) ≤ c2e−|w|htop(Xϑ)/|w| if
|w| ≤ �M , since μP is a probability measure. On the other hand, if m > M
and w ∈ ϑm(a) then it follows by Lemma 4.11 that there is a v ∈ ϑM (a) such
that

μP([w]) ≤ |v|e|v|htop(Xϑ)

|w|e|w|htop(Xϑ)
≤ c2

|w|e
−|w|htop(Xϑ).

�

Remark 4.2. The upper bound on μP in Lemma 4.12 is irreconcilable with the
bound for the unique measure of maximal entropy on subshifts with a weak
specification property established in [8, Lemma 5.12]. For the subshifts Xϑ with
random substitutions as in Theorem 4.8, μP (with P the uniform distribution)
is the unique measure of maximal entropy. Hence, each such Xϑ does not satisfy
the weak specification property in [8]. In particular, Theorem 4.8 establishes
intrinsic ergodicity for subshifts beyond the more classical context of subshifts
with (weak) specification.

4.4. Proof of Theorem 4.8

We now present the proof of Theorem 4.8. In addition to the Gibbs property
proved in the previous section, we also utilise the following result, which is
proved in [14].

Lemma 4.13. [14, Lemma 8.8] Let (X, d) be a compact metric space and
let � be a Borel probability measure on X. If B ⊂ X is measurable
and (ξn)n∈N is a sequence of finite measurable partitions of X for which
limn→∞ maxP∈ξn

diam(P ) = 0, then there exists a sequence of sets (An)n∈N

with An ∈ σ(ξn) and limn→∞ �(An�B) = 0. Here, σ(ξn) denotes the sigma
algebra generated by the partition ξn.

Proof of Theorem 4.8. Let μ denote the frequency measure of maximal
entropy given by Theorem 4.1 or Lemma 4.7, and let m ∈ N. For each
k ∈ {0, . . . , �m − 1}, let Xm,k denote the subset of Xϑ defined by Xm,k =
Sk(ϑm(Xϑ)). It follows by recognisability that these subsets are pairwise dis-
joint for different choices of k. Note, by Lemma 2.5 the subsets Xm,k are closed,
and since by the constant length property

S�m

(Xm,k) = S�m

(Sk(ϑm(Xϑ))) = Sk(ϑm(SXϑ)) = Sk(ϑm(Xϑ)) = Xm,k,
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Xm,k is S�m

-invariant. In other words, Xm,k is a subshift under S�m

. Since
every x ∈ Xϑ can be split into level m inflation words, we have

Xϑ =
�m−1⊔

k=0

Xm,k,

where the union is disjoint due to recognisability. Lemma 4.6 implies that
r = �κ(ϑ)/(� − 1)� + 1 satisfies

�mr >
�m − 1
� − 1

κ(ϑ) + �m ≥ κ(ϑm) + �m.

By the constant length property, this ensures that every word of length at
least 2r�m has a unique decomposition into inflation words. This together
with Lemma 4.4 implies, for all u ∈ L2r

ϑ and w ∈ ϑm(u), that |w| = 2r�m and
Sr�m

([w]) ⊂ ϑm(Xϑ). Let us consider the following partition of Xm,k:

ξm,k = Sr�m ({
Sk([w]) : w ∈ ϑm(u) and u ∈ L2r

ϑ

})
.

This in turn yields a partition of Xϑ, namely

ξm =
�m−1⋃

k=0

ξm,k.

By way of a contradiction, assume that ν 
= μ is another ergodic measure of
maximal entropy. Since distinct ergodic measures are mutually singular, there
exists an S-invariant set B with μ(B) = 0 and ν(B) = 1. Note, the diameter
of the atoms of ξm tends uniformly to zero as m tends to infinity, and so
(ξm)m∈N meets the requirements of Lemma 4.13. Applying it to the measure
�′ = (μ+ν)/2 we obtain that, given ε > 0, there exists m ∈ N and Am ∈ σ(ξm)
such that

(μ + ν)(Am�B) < ε. (4.7)

For k ∈ {0, . . . , �m − 1}, let Am,k = Am ∩ Xm,k and Bm,k = B ∩ Xm,k, and
define the conditional probability measures μm,k and νm,k by

μm,k =
1

μ(Xm,k)
μ|Xm,k

and νm,k =
1

ν(Xm,k)
ν|Xm,k

.

For all j ∈ {0, . . . , �m − 1}, we have Sk−j(Xm,j) = Xm,k, and since μ and ν
are S-invariant and since the sets Xm,k are disjoint, it follows that

μ(Xm,k) = μ(Xm,j) =
1

�m
and ν(B ∩ Xm,k) = ν(B ∩ Xm,j) =

1
�m

.

Consequently, νm,k(Bm,k) = �m ν(B ∩ Xm,k) = 1. On the other hand,
μm,k(Bm,k) = �mμ(B ∩ Xm,k) = 0. Since {Xm,k : k ∈ {0, . . . , �m − 1}} forms
a partition of Xϑ, we can rewrite (4.7) as

�m−1∑

k=0

(μm,k + νm,k)(Am,k�Bm,k) = �m
�m−1∑

k=0

(μ + ν)((Am�B) ∩ Xm,k)

= �m(μ + ν)(Am�B) < �mε.
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Hence, there exists a k′ such that

(μm,k′ + νm,k′)(Am,k′�Bm,k′) < ε. (4.8)

Here we observe that Am,k′ ∈ σ(ξm,k′), and recall, if |v| ≥ 2�mr, then the word
v has a unique inflation word decomposition under ϑm. Therefore, there exists
a unique j ∈ {0, . . . , �m − 1} such that [v] ⊂ Xm,j .

Note that the system (Xm,j , S
�m

) equipped with the measure νm,j is
an induced subshift obtained from (Xϑ, S) equipped with the measure ν by
inducing on Xm,j . Hence, by Abramov’s formula [1],

h(S, ν) =
1

�m
h(S�m

, νm,j).

We now proceed by similar arguments to Adler and Weiss’ [2] proof that
Markov shifts are intrinsically ergodic, applied to the system (Xm,k′ , S�m

)
and the S�m

-invariant measures μm,k′ and νm,k′ . For ease of notation, in the
following we write k = k

′
and T = S�m

. Note that

αm,k = {Sk([w]) : w ∈ ϑm(a), a ∈ A}
forms a generating partition of Xm,k, and by the fact that ϑP is of constant
length and recognisable,

ξm,k =
r−1∨

j=−r

T−j(αm,k).

Let ηm = {Am,k,Xm,k \ Am,k} and for a set A ⊆ Xm,k denote by tm(A) the
number of atoms in ξm,k that intersect A. By definition, and using (3.1), we
have

2r�mh(S, ν) = 2rh(S�m

, νm,k) ≤ Hνm,k
(ξm,k)

≤ Hνm,k
(ηm) + Hνm,k

(ξm,k|ηm)

≤ log(2) + νm,k(Am,k) log(tm(Am,k))

+ νm,k(Xm,k \ Am,k) log(tm(Xm,k \ Am,k)).

Let Sr�m+k[w] ∈ ξm,k, with w ∈ ϑm(v) for some v ∈ L2r
ϑ . By Lemma 4.11, we

have that

μm,k(Sr�m+k([w])) = �mμ([w]) ≥ μ([v])
c2r

2re2�mrhtop(Xϑ)
≥ Ce−2r�mhtop(Xϑ),

taking C = c2r(minv∈L2r
ϑ

μ([v]))/2r. We have that C > 0 since μ([v]) > 0 for
all v ∈ Lr

ϑ. Hence,

tm(Am,k) ≤ 1
C

μ(Am,k)e2�mrhtop(Xϑ) and

tm(Xm,k \ Am,k) ≤ 1
C

μ(Xm,k \ Am,k)e2�mrhtop(Xϑ).

This yields 0 ≤ log(2) − log(C) + νm,k(Am,k) log(μm,k(Am,k)). By (4.8), we
have that μm,k(Am,k) < ε and νm,k(Am,k) > 1 − ε. This implies the following
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contradiction:

0 ≤ lim
ε→0

(log(2) − log(C) + (1 − ε) log(ε)) = −∞.

�

From Lemma 4.11, we have used only the lower bound in the proof of
Theorem 4.8. Since this inequality holds under less restrictive conditions, it
seems natural to inquire whether Theorem 4.8 can be sharpened accordingly
by replacing the constant length assumption with a weaker condition. However,
a closer inspection reveals that the last part of the proof relies on the detailed
control that the constant length assumption provides. A definite answer there-
fore remains as an open problem.

5. Examples and Open Questions

In this section we present examples of random substitution subshifts that
exhibit various properties. We first present several examples that illustrate the
main results of this paper and their applications to two prototypical examples
of random substitutions, the random period doubling (Example 5.2) and ran-
dom Fibonacci (Example 5.4) substitutions. We then consider some familiar
examples of subshifts which can be obtained as subshifts of primitive random
substitutions, including the golden mean shift (Example 5.5) and the Dyck
shift (Example 5.7). A summary of the key properties of each of the examples
is presented in the table below.

5.1 5.2 5.3 5.4 5.5 5.6 5.7

Unique r. paths ✓ ✓ ✓ ✓ ✓ ✓ ✗

Compatible ✗ ✓ ✗ ✓ ✗ ✓ ✗

Constant length ✓ ✓ ✓ ✗ ✗ ✓ ✗

(ISC)/(DSC) (DSC) ✗ (DSC) (DSC) (DSC) (ISC) ✗

Recognisable ✓ ✗ ✗ ✗ ✗ ✗ ✗

Frequency MME ✓ ✓ ✗ ✗ ✓ ✓ ?
Intrinsically ergodic ✓ ? ? ? ✓ ✓ ✗

By the existence of a frequency measure of maximal entropy, we mean
that there exists a choice of probabilities on the given set-valued substitution
that gives rise to a frequency measure of maximal entropy. In particular, when
we say there does not exist such a frequency measure of maximal entropy, we
do not rule out the possibility that there exists another random substitution
that gives rise to the same subshift for which the corresponding frequency
measure is a measure of maximal entropy.

We first give an example of a random substitution which satisfies the
conditions of Theorem 4.8, thus gives rise to an intrinsically ergodic subshift.
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Example 5.1. Let ϑ be the random substitution defined by

ϑ :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �→
{

aaa with probability 1/2,

abb with probability 1/2,

b �→
{

bba with probability 1/2,

aba with probability 1/2,

with associated subshift Xϑ and corresponding frequency measure μ. One can
verify that ϑ is recognisable and satisfies the conditions of Theorem 4.8 (specif-
ically (i)). Hence, μ is the unique measure of maximal entropy for the system
(Xϑ, S). By Theorem 3.5, we have

h(μ) = htop(Xϑ) =
1
2

log(2).

Example 5.2. (Random period doubling) Let p ∈ (0, 1), let ϑp be the random
substitution defined by

ϑp :

⎧
⎪⎨

⎪⎩

a �→
{

ab with probability p,

ba with probability 1 − p,

b �→ aa,

and let μp denote the corresponding frequency measure. We have that ϑp is
compatible and satisfies the disjoint set condition, so it follows by Theorem
3.5 that

h(μp) = −2
3
(p log(p) + (1 − p) log(1 − p)).

Moreover, by Theorem 4.1, we have that μ1/2 is a measure of maximal entropy
for the system (Xϑ, S). It is known that ϑp is not recognisable; therefore, we
are unable to apply Theorem 4.8, so it remains open as to whether or not this
is the unique measure of maximal entropy.

For each of the previous two examples, the frequency measure correspond-
ing to uniform probabilities was a measure of maximal entropy. However, this
is not the case for all primitive random substitutions satisfying the disjoint set
condition, as is demonstrated by the following example. Here, the frequency
measure of greatest entropy occurs at a non-uniform choice of probabilities,
and this frequency measure is not a measure of maximal entropy.

Example 5.3. Let p ∈ (0, 1) and let ϑP be the random substitution defined by

ϑp :

⎧
⎪⎨

⎪⎩

a �→
{

aa with probability p,

ab with probability 1 − p,

b �→ ba,

with corresponding frequency measure μp and subshift Xϑ. Since ϑp is constant
length and satisfies the disjoint set condition, it follows by Theorem 3.5 that

h(μp) = − 1
2 − p

(p log p + (1 − p) log(1 − p)).
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Figure 2. Plot of h(μp) for p ∈ (0, 1)

The value of p that maximises the above expression is p = τ−1 (Fig. 2), where
τ is the golden ratio, for which the corresponding entropy is

h(μτ−1) = log τ ≈ 0.481212.

On the other hand, one can compute that the topological entropy of the system
(Xϑ, S) is

htop(Xϑ, S) =
∞∑

n=1

1
2n

log n ≈ 0.507834,

so μτ−1 is not a measure of maximal entropy. Thus, the conclusion of Theo-
rem 4.1 does not hold without compatibility, even for constant length random
substitutions. We note that the topological entropy equals log σ, where σ is
Somos’s quadratic recurrence constant [15, p. 446]. It is an open question as
to whether σ is algebraic or transcendental.

The previous examples all satisfy the disjoint set condition, so we could
obtain a closed form expression for the entropy via Theorem 3.5. This is not
the case for our next example, the random Fibonacci substitution, which is
compatible but does not satisfy either the disjoint or identical set condition.

Example 5.4. (Random Fibonacci) Let ϑRF denote the random substitution
defined by

ϑRF :

⎧
⎪⎨

⎪⎩

a �→
{

ab with probability 1/2,

ba with probability 1/2,

b �→ a,

and let μRF denote the corresponding frequency measure. Since ϑRF satisfies
neither the identical set condition nor the disjoint set condition, Theorem 3.5
does not yield a closed form formula for the measure theoretic entropy of μRF.
However, we may use Theorem 3.5 to obtain a sequence of bounds on h(μRF).
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Indeed, we have λ−kH�
k R ≤ h(μRF) ≤ (λk − 1)−1H�

k R for all k ∈ N, and a
computer-assisted calculation of H�

6 R yields

0.3908 <
1
λ6

H�
6 R ≤ h(μRF) ≤ 1

λ6 − 1
H�

6 R < 0.4140,

noting that λ = τ , where τ is the golden ratio. It was shown in [16,29] that

htop(XϑRF) =
∞∑

m=2

log(m)
τm+2

≈ 0.444399,

so μRF is not a measure of maximal entropy. By taking higher powers, we
obtain frequency measures of greater entropy. If we consider the square of ϑRF

with uniform probabilities, namely

ϑRF,2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a �→

⎧
⎪⎨

⎪⎩

baa with probability 1/3,

aba with probability 1/3,

aab with probability 1/3,

b �→
{

ab with probability 1/2,

ba with probability 1/2,

and let μRF,2 be the corresponding frequency measure, then by Theorem 3.5
and a computer-aided calculation of H�

3 R we obtain

0.4177 <
1
λ6

H�
3 R ≤ h(μRF,2) ≤ 1

λ6 − 1
H�

3 R < 0.4424.

Here, λ2 is the Perron–Frobenius eigenvalue of ϑRF,2. Hence, h(μRF) <
h(μRF,2) < htop(XϑRF), so μRF,2 is still not a measure of maximal entropy,
but has strictly greater entropy than μRF. Theorem 4.2 gives that a measure
of maximal entropy can be obtained as a weak limit of frequency measures. In
particular, if (μRF,n)n∈N is the sequence of frequency measures corresponding
to the n-th power of ϑRF with uniform probabilities, then there exists a subse-
quence (μRF,nk

)k∈N that converges weakly to a measure of maximal entropy.
As to whether the system (XϑRF , S) is intrinsically ergodic, this remains open.

We now consider applications of our results to other common subshifts
in symbolic dynamics. It was shown in [18] that every topologically transitive
shift of finite type can be obtained as the subshift of a primitive random
substitution. For the golden mean shift, it is possible to obtain the Parry
measure as a weak limit of frequency measures corresponding to primitive
random substitutions.

Example 5.5. (The golden mean shift) The golden mean shift is the shift of
finite type over the alphabet {a, b} defined by the forbidden word set F = {bb}.
The subshift X can be obtained as the subshift of the random substitution

ϑ :

⎧
⎪⎨

⎪⎩

a �→
{

aa with probability τ−1,

aba with probability τ−2,

b �→ b.
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However, this random substitution is not primitive, so we cannot directly apply
our results. To circumvent this issue, let ε ∈ (0, 1) and let ϑε be the random
substitution defined by

ϑε :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �→
{

aa with probability τ−1,

aba with probability τ−2,

b �→
{

b with probability 1 − ε,

abb with probability ε,

and let με denote the corresponding frequency measure. For all ε ∈ (0, 1), ϑε

is a primitive random substitution with unique realisation paths satisfying the
disjoint set condition. Let μ be the weak limit of με as ε → 0. By compactness,
μ is a shift-invariant probability measure. Also note that X is the support of μ.
One can show that Ra,ε/(λε−1) → τ2/(τ2+1) as ε → 0, where λε and Ra,ε are
the Perron–Frobenius eigenvalue and the entry of the right Perron–Frobenius
eigenvector corresponding to the letter a, respectively. Thus, it follows by the
upper semi-continuity of entropy and Theorem 3.5 that

h(μ) ≥ lim sup
ε→0

h(με) = lim sup
ε→0

1
λε − 1

H�
1 R

≥ lim sup
ε→0

−1
λε − 1

Ra,ε(τ−2 log τ−2 + τ−1 log τ−1)

=
τ2

τ2 + 1
(2τ−2 + τ−1) log τ = log τ ,

where in the last equality we have used the characteristic equation τ2 = τ +1.
Since htop(X,S) = log τ and the Parry measure is the unique measure of
maximal entropy [2,31], we conclude that μ must be the Parry measure.

We note that the algorithm in [18] yields a primitive random substitution
that gives rise to the golden mean shift. However, a closer inspection reveals
that if the corresponding frequency measure is the Parry measure then we
require two of the realisations to occur with probability zero and the result-
ing random substitution is the random substitution ϑ defined in Example 5.5,
which is not primitive. As to whether there exists a primitive random substi-
tution for which the Parry measure is the corresponding frequency measure
remains open. Our next example is a sofic shift for the which the unique mea-
sure of maximal entropy can be obtained as a frequency measure of a primitive
random substitution.

Example 5.6. (A sofic shift) Let p ∈ (0, 1), let ϑp be the random substitution
defined by

ϑp : a, b �→
{

ab with probability p,

ba with probability 1 − p,

and let μp denote the corresponding frequency measure. In [19, Proposition
6.7], the measure theoretic entropy of μp was calculated directly and shown to
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be

h(μp) = −1
2
(p log(p) + (1 − p) log(1 − p)).

Since ϑp satisfies the identical set condition and has identical production prob-
abilities, Theorem 3.5 gives an alternative method of obtaining this formula.
Moreover, by Theorem 4.1, for p = 1/2, the measure μp is a measure of max-
imal entropy. Notice that ϑp is of constant length, but not recognisable since
it does not satisfy the disjoint set condition. Hence, Theorem 4.8 may not be
applied. However, it was shown in [19, Corollary 6.8] that the subshift associ-
ated to ϑp is a sofic shift, thus intrinsically ergodic. Hence, μp with p = 1/2 is
the unique measure of maximal entropy for the system (Xϑ, S).

We finally present an example of a random substitution subshift which
has multiple measures of maximal entropy. This is the Dyck shift, which was
shown in [24] to support two distinct ergodic measures of maximal entropy.

Example 5.7. (The Dyck shift) For i ∈ {1, 2, 3, 4}, let pi = (pi,1, pi,2, pi,3) be a
probability vector and let P = {p1,p2,p3,p4}. Define the random substitution
ϑP over the alphabet A = {(, ), [, ]} by

ϑP :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( �→

⎧
⎪⎨

⎪⎩

( with probability p1,1,

(() with probability p1,2,

([] with probability p1,3,

) �→

⎧
⎪⎨

⎪⎩

) with probability p2,1,

()) with probability p2,2,

[]) with probability p2,3,

[ �→

⎧
⎪⎨

⎪⎩

[ with probability p3,1,

[() with probability p3,2,

[[] with probability p3,3,

] �→

⎧
⎪⎨

⎪⎩

] with probability p4,1,

()] with probability p4,2,

[]] with probability p4,3.

The corresponding subshift is the Dyck shift, which supports two distinct
measures of maximal entropy [19]. The random substitution ϑP does not have
unique realisation paths since, for example, the word (()) can be obtained as
two different realisations of () under ϑP. Consequently, it is difficult to verify
whether or not either or both of the ergodic measures of maximal entropy can
be obtained as frequency measures.

This final example motivates the following open question.

Question 5.8. Under what conditions does a primitive random substitution
give rise to an intrinsically ergodic subshift?

We have presented three examples of random substitutions which give rise
to intrinsically ergodic subshifts. In general it appears to be difficult to deduce
whether a random substitution subshift is intrinsically ergodic. The absence of
a Gibbs property and specification provide obstacles to adapting many of the
conventional methods for checking whether a subshift is intrinsically ergodic.
Further, there does not appear to be an easy way of extending the proof of
Theorem 4.8 to the case where the substitution is not recognisable or constant
length. As such, we leave a definitive answer to future work.
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