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Abstract. We consider the dynamics t �→ τt of an infinite quantum lat-
tice system that is generated by a local interaction. If the interaction
decomposes into a finite number of terms that are themselves local inter-
actions, we show that τt can be efficiently approximated by a product of
n automorphisms, each of them being an alternating product generated
by the individual terms. For any integer m, we construct a product for-
mula (in the spirit of Trotter) such that the approximation error scales
as n−m. Our bounds hold in norm, pointwise for algebra elements that
are sufficiently well approximated by finite volume observables.

1. Introduction

For any two matrices A and B, Lie proved the celebrated product formula

eA+B = lim
n→∞

(
eA/neB/n

)n

. (1.1)

There is a long line of similar formulae of increasing generality, pioneered
by Trotter [1], simplified by Chernoff [2] for semigroups on Banach spaces,
see e.g., [3]. In the particular setting of quantum mechanics where A,B are
densely defined semibounded self-adjoint operators and exp(itA), exp(itB) and
exp(it(A + B)) are the corresponding unitary groups, the product formula
was proved under general assumptions by Kato [4] and Ichinose [5], see also
[6]. It plays a crucial role in functional integration, see in particular [7]. For
related results in the context of the quantum Zeno effect, we refer to [8], and
point further to [9] for a historical overview, in particular in the case of Gibbs
semigroups.
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The recent interest in proving general product formulae with explicit con-
trol of the rate of convergence has been motivated by two related developments
in many-body quantum systems. On the one hand in quantum information
theory, operator products arise as quantum circuits and a product formula
is interpreted as a simulation algorithm for the time evolution of a quantum
system [10–12]. On the other hand in condensed matter physics, operator prod-
ucts are referred to as finite depth quantum circuits and play a central role in
the classification of gapped phases [13], as they can be used to define the very
notion of equivalence of states. In both cases, the concepts have recently been
tested experimentally, see e.g., [14,15].

In both applications, the rate of convergence of the product formula to
the full dynamics is of crucial importance: for quantum simulation because
it determines the number of quantum gates required to simulate to a given
error, for gapped phases because it relates to the degree of entanglement of
ground states. The standard general product formulae yield a rather poor
scaling of either n−1/2 or at best n−1, see again [3]. In fact, in the case of
Gibbs semigroups, there exist pairs of unbounded operators for which the
norm difference is lower bounded by L(t)n−1, see [9]. Furthermore, beyond the
mere scaling, sharp constants are essential and may prove fatal in a many-
body setting. Indeed, for a lattice system having N degrees of freedom, the
error diverges as N → ∞, even in the strong operator topology, which is the
natural topology as soon as A,B are unbounded. This is related to the infrared
catastrophe: If two states are locally close to each other but the error extends
to spatial infinity, then they are in fact orthogonal.

In this work, we consider d-dimensional quantum lattice systems in the
infinite volume limit. The dynamics is an automorphism group t �→ τΦ

t of the
quasi-local algebra (which is a C*-algebra) generated by a local Hamiltonian
formally given by

H =
∑
X

Φ(X) =
k∑

j=1

Kj (1.2)

where the Kj ’s correspond to an arbitrary grouping of the interaction terms.
We provide product formulae and prove explicit bounds for sufficiently local-
ized observables: For any m ∈ N, there is a product automorphism denoted
π

(m)
t,n such that

∥∥∥τΦ
t (O) − π

(m)
t,n (O)

∥∥∥ ≤ Cm,t,k(O)n−m (1.3)

for any almost local observable. The constant Cm,t,k(O) depends on both the
observable O and the Hamiltonian. The convergence we consider here is in the
C*-norm, pointwise for sufficiently localized elements of the algebra. In other
words, we consider the strong topology of operators acting on the C*-algebra.
This is a purely Banach space result.

As in (1.1), π
(m)
t,n are compositions of the individual dynamics generated

by each Kj individually. The general form of the product π
(m)
t,n was proposed

by Suzuki [16] although in the Hilbert space setting, see also [17], and used
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recently by Childs et al. [18], but only for finite systems with bounds that
diverge in the volume.

From a technical point of view, we find it convenient to consider almost
exclusively the interaction norms, see Definition (2.2), that measure the local
size of extensive observables of the type (1.2). We extend their definition to
be able to consider interactions localized in (possibly infinite) subsets of the
lattice (see also [19]) and remark that this construction is well-suited to discuss
almost local observables. Crucially, the unbounded ∗-derivation formally given
by ∑

X

i[Φ(X), ·]

is well-defined on the set of almost local observables: it maps this set into
itself, and we quantify explicitly the weakening of the localization induced by
its action in terms of the interaction norms.

We further wish to point out two related results. Firstly, a slightly differ-
ent approach to a product formula was taken in [20], focussing on the ‘quasi-
adiabatic’ properties of product formulae, namely the error when projected
onto the ground state space. Secondly, a similar spatial product factorization
with sharp error bounds was derived in [21]: it is not based on the Trotter
strategy but it uses rather directly the Lieb–Robinson bound, see also [22].

While the results hold for a general decomposition (1.2), in applica-
tions the factors Kj will be chosen so as to be commuting Hamiltonians,
namely each Kj is a sum of mutually commuting interaction terms Φj(X),
i.e., [Φj(X),Φj(X ′)] = 0 for all X,X ′. Such Hamiltonians have the prop-
erty that the corresponding automorphism τ

Φj

t (O) is strictly local in that the
support of the observable O grows at most by the range of the interaction,
uniformly in the time t. Propagation, which is obviously present in the full
dynamics τΦ

t (O) arises then through the alternating action of the automor-
phisms {τΦj : j = 1, . . . , k}. While the Lieb–Robinson bound is at the heart of
the proofs, the product formulae provide a very clear picture of the mechanism
of propagation.

In the context of quantum simulation, much attention is given to the error
made in the approximation upon truncation of the product formula to a finite
number of terms. As we shall see, the error has a complicated dependence on
a number of parameters and we shall discuss this in detail later. We already
point out now (i) that the error is exponential in the total time t, (ii) that the
number of factors in π

(m)
t,n is proportional to n and to the number k of factors

in the decomposition of the Hamiltonian, and that it is exponential in the
order m of approximation, and (iii) that unlike in the original Trotter product
formula, the times involved in the various factors of π

(m)
t,n are not all equal,

although they are all of order t
n ; in fact, the time evolution runs backwards

for a fraction of the factors, giving rise to a fractal path, see Fig. 1 at the end
of Sect. 4.

Finally, we comment on the relation of the present work to [23]. While
we start with a Hamiltonian evolution and approximate it with a finite depth
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quantum circuit, [23] goes beyond, although only in one dimension. The start-
ing point there is an almost locality preserving unitary (ALPU, an automor-
phism satisfying a Lieb–Robinson bound), which is not a priori generated by
a Hamiltonian. Generalizing the index defined in [24], and in the case that the
index of the ALPU vanishes, Theorem 5.8 in [23] goes on to prove that the
automorphism is in fact well approximated by a finite depth quantum circuit.
The construction there is of a very different nature than ours and the suc-
cessive layers of the circuit have increasing interaction range but decreasing
strength and they act over a decreasing time interval.

2. Setting

Let (Γ,d) be a metric graph, where d is the graph distance. We assume that Γ
is d-dimensional in the sense that supx∈Γ |{y ∈ Γ : d(x, y) = r}| = ω(1+r)d−1.
For any subset X ⊂ Γ, we define for any r > 0 the set X(r) = {x ∈ Γ :
d(x,X) ≤ r} which is an r-fattening of the set X.

To each site x ∈ Γ, we associate a finite-dimensional complex Hilbert
space Hx and define for any finite Λ ⊂ Γ,

HΛ :=
⊗
x∈Λ

Hx and AΛ := B(HΛ) ,

where B(Hx) denotes the bounded linear operators over Hx. Moreover, we
identify A ∈ AΛ0 with A ⊗ IΛ\Λ0 ∈ AΛ whenever Λ0 ⊂ Λ. With this, we can
inductively define the algebra of local observables

Aloc :=
⋃

Λ∈Pfin(Γ)

AΛ

where the union is taken over Pfin(Γ), the set of all finite subsets of Γ. If O ∈
Aloc, then supp(O) is the smallest set X such that O ∈ AX . The completion
of Aloc with respect to the norm topology is a C∗-algebra which is called the
quasi-local algebra and we denote it by A. The above construction of A is
completely standard and we refer to [3,25] for further details.

2.1. Interactions and Hamiltonians

Definition 2.1. An interaction is a map Φ : Pfin(Γ) → Aloc such that

Φ(X) ∈ AX , Φ(X) = Φ(X)∗,

for all X ∈ Pfin(Γ).

We turn the set of interactions into a Banach space in the following way.
Let 0 < p ≤ 1 and let

ξb : [0,∞) → (0,∞) , ξb(x) = e−bxp

,

for any b > 0. The function ξb is a decreasing, logarithmically superadditive
function, namely ξb(x + y) ≥ ξb(x)ξb(y), that is summable in the following
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sense

‖ξb‖1 := sup
y∈Γ

∑
x∈Γ

ξb(d(x, y)) < ∞, (2.1)

since Γ is finite dimensional.

Definition 2.2. Let D(X) := max{d(x, y) : x, y ∈ X} denote the diameter of
the set X ⊂ Γ. The interaction norm of an interaction Φ is given by

~Φ~b := sup
x∈Γ

∑
X∈Pfin(Γ):

x∈X

‖Φ(X)‖
ξb(D(X))

. (2.2)

For fixed b > 0, we denote the Banach space of interactions with finite ~ · ~b-
norm by Bb and set

B :=
⋃
b>0

Bb .

An interaction Φ therefore belongs to B if it belongs to at least one Bb.
If Φ ∈ Bb0 , it then follows by definition that Φ ∈ Bb for all 0 < b ≤ b0. Note
that while each Bb is a Banach space, their union B is not.

Finally, we shall denote B∞ =
⋂

b>0 Bb, namely Φ ∈ B∞ if and only if
Φ ∈ Bb for all b > 0.

We point out the norm ~ · ~b indicates both the rate of decay of the
interaction and its intensity in the sense that the total interaction at any
given x ∈ Γ is bounded by the interaction norm:

sup
x∈Γ

∥∥∥
∑

X∈Pfin(Γ):
x∈X

Φ(X)
∥∥∥ ≤ ~Φ~b .

We will also need the notion of an interaction that is almost localized in some
set Z ⊂ Γ.

Definition 2.3. Let Z ⊂ Γ and let DZ(X) := D(X) + d(X,Z). Let

~Φ~b,Z := sup
x∈Γ

∑
X∈Pfin(Γ):

x∈X

‖Φ(X)‖
ξb(DZ(X))

. (2.3)

We denote Bb(Z) the corresponding Banach space of interactions and define

B(Z) :=
⋃
b>0

Bb(Z) .

Note that the replacement of the diameter by DZ(X) captures the decay
of the interaction Φ(X) in the size of X and in the distance from X to Z. If
Φ ∈ Bb(Z), then the total contribution of Φ at a given point x is not only
finite, but it decays with the distance of x to Z,∥∥∥

∑
X∈Pfin(Γ):

x∈X

Φ(X)
∥∥∥ ≤ ~Φ~b,Z ξb(d(x,Z)) . (2.4)
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Indeed, we first write
∥∥∥

∑
X∈Pfin(Γ):

x∈X

Φ(X)
∥∥∥ ≤

∑
X∈Pfin(Γ):

x∈X

‖Φ(X)‖
ξb(DZ(X))

ξb(DZ(X)). (2.5)

Given x ∈ X, let z, z0 ∈ Z and x0 ∈ X be such that d(x,Z) = d(x, z),
d(X,Z) = d(x0, z0). Then,

d(x,Z) = d(x, z) ≤ d(x, z0) ≤ d(x, x0) + d(x0, z0) ≤ DZ(X). (2.6)

Since ξb is a decreasing function, we have that ξb(DZ(X)) ≤ ξb(d(x,Z)) which
yields (2.4) when plugged in (2.5).

In general, the sum of an interaction is not convergent in A, but such a
local Hamiltonian defines a dynamics and a densely defined *-derivation on A.
Moreover, if an interaction is almost localized in a finite set, then the sum is
convergent and defines what we shall call an almost local observable in A.

We start with the latter.

Lemma 2.4. Let Z ∈ Pfin(Γ) and Φ ∈ B(Z). The sum

GΦ :=
∑

X∈Pfin(Γ)

Φ(X) (2.7)

is convergent in A. Moreover,

‖GΦ‖ ≤ Cb~Φ~b,Z |Z|
for all b > 0, where the right-hand side is infinite whenever Φ /∈ Bb(Z).

Proof. Let b > 0 be such that Φ ∈ Bb(Z). Then for any Λ ∈ Pfin(Γ),
∑

X∈Pfin(Γ):
X∩Λc �=∅

‖Φ(X)‖ ≤
∑

x∈Λc

∑
X	x

‖Φ(X)‖

and we conclude by (2.4) that∥∥∥
∑

X∈Pfin(Γ):
X∩Λc �=∅

Φ(X)
∥∥∥ ≤ ~Φ~b,Z

∑
x∈Λc

ξb(d(x,Z)).

The integrability (2.1) of ξb and the finiteness of Z imply that
limΛ↗Γ

∑
x∈Λc ξb(d(x,Z)) = 0. The second claim follows from

‖GΦ‖ ≤
∑
x∈Γ

∑
X∈Pfin(Γ):

x∈X

‖Φ(X)‖
ξb(DZ(X))

ξb(DZ(X)) ≤ ~Φ~b,Z

∑
x∈Γ

ξb(d(x,Z))

where we used (2.6). We decompose
∑

x∈Γ =
∑∞

n=0

∑
x:d(x,Z)=n to finally get

the bound

‖GΦ‖ ≤ ~Φ~b,Z

∞∑
n=0

∑
z∈Z

∑
x:d(x,z)=n

ξb(n) ≤ Cb~Φ~b,Z |Z|

where Cb = ω
∑∞

n=0(1 + n)d−1ξb(n) is convergent. �
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Definition 2.5. An almost local observable is an element O ∈ A for which there
exists Z ∈ Pfin(Γ) and a Φ ∈ B(Z) such that O = GΦ. We denote the set of
almost local observables by L(Z), respectively, Lb(Z) whenever the rate b is
fixed.

Slightly abusing language, we shall call Z the almost support of O ∈ L(Z).
Moreover, we say that the interaction Φ in the definition is an interaction
associated with O.

Let us now turn to interactions that are supported in the whole set Γ.
They are locally finite, but the fact that they are extensive implies that a sum
as in (2.7) is divergent. This suggests the following definition.

Definition 2.6. A family of self-adjoint operators H = {HΛ : Λ ∈ Pfin(Γ)}
with supp(HΛ) = Λ is a local Hamiltonian if there exists an interaction Φ ∈ B
such that

HΛ =
∑
X⊂Λ

Φ(X) .

We denote the set of local Hamiltonians by L.

Let H be a local Hamiltonian associated with an interaction Φ ∈ Bb.
Let (Λn)n∈N be an increasing and absorbing sequence of finite sets. For an
observable O ∈ AZ , we have that if n > m

‖[HΛn
− HΛm

, O]‖ ≤
∑

X⊂Λn:
X∩(Λc

m∩Z) �=∅

2‖O‖‖Φ(X)‖

≤ 2‖O‖
∑
x∈Z

∑
X	x:

X∩Λc
m �=∅

‖Φ(X)‖
ξb(DZ(X))

ξb(DZ(X))

≤ 2‖O‖|Z|~Φ~bξb(d(Z,Λc
m))

since DZ(X) = D(X) ≥ d(Z,Λc
m). Hence, (i[HΛn

, O])n∈N is a Cauchy sequence
and limn→∞[HΛn

, O] exists in A.

2.2. Strongly Continuous Dynamics and Derivations

Let H ∈ L with interaction Φ ∈ B. The finite volume dynamics R � t �→
eitHΛOe−itHΛ satisfies a Lieb–Robinson bound. While the proof runs along the
general lines of [26], we reproduce it in Appendix A in the specific setting of
this paper; see also Section 4 in [27]. By standard arguments (see the previously
cited reference or the original [28]), the Lieb–Robinson bound implies that

τΦ
t (O) = lim

Λ↗Γ
eitHΛOe−itHΛ

exists for all O ∈ Aloc and that it extents to a strongly continuous group of
∗-automorphisms of A. The corresponding generator δΦ of the dynamics τΦ

t is
given by

d

dt
τΦ
t (O) = τΦ

t (δΦ(O)) .
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A core for δΦ is the local algebra Aloc, see e.g., Proposition 6.2.3 in [25] where
δΦ is explicitly given as the limit

δΦ(O) = lim
Λ→Γ

i[HΛ, O] =
∑

X∈Pfin(Γ)

i[Φ(X), O], (2.8)

and the sum is convergent by the remark immediately after Definition 2.6.
For a general Hamiltonian in L, neither τΦ

t (O) nor δΦ(O) is strictly local
even if O ∈ Aloc. However, we shall prove later that for any finite Z, L(Z)
belongs to the domain of δΦ and it is invariant under the action of the deriva-
tion. Similarly, the Lieb–Robinson bound implies that L(Z) is invariant under
the action of τΦ

t .
Let r ∈ N0. For any local observable O ∈ AZ , we write

τΦ
t (O) = EZ(r)(τΦ

t (O)) +
∞∑

n=r

(
EZ(n+1)(τΦ

t (O)) − EZ(n)(τΦ
t (O))

)
(2.9)

where EX is the projection onto the subalgebra AX . Now, if Φ ∈ Bb′ , then the
Lieb–Robinson bound for τΦ

t implies that, for any b′′ < b′ and n ∈ N,

‖ (EZ(n) − id) (τΦ
t (O))‖ ≤ 2‖O‖|Z|

Mb′−b′′
eκ(b′,b′′)|t|ξb′′(n) , (2.10)

where

Mε := sup{|X|ξε(D(X)) : X ∈ Pfin(Γ)} (2.11)

is finite for any ε > 0, and the constant in the exponent is given by

κ(b′, b′′) := 2~Φ~b′Mb′−b′′ . (2.12)

These estimates now yield the following proposition.

Proposition 2.7. Let Z ⊂ Γ and O ∈ Lb(Z) with associated interaction Ψ. Let
Φ ∈ Bb′ and let τΦ

t be the corresponding dynamics. Then τΦ
t (O) ∈ Lb′′ (Z) for

any b′′ < min{b, 2−pb′}. There is an interaction τΦ
t (Ψ) associated with τΦ

t (O)
such that

~τΦ
t (Ψ)~b′′,Z ≤ C(b, b′, b′′)eκ(b′, 1

2 (b′′+2−pb′))|t|~Ψ~b,Z ,

where the constant depends only on b, b′, b′′.

Proof. Let Ψ ∈ Bb(Z) be the interaction associated with O, namely O =∑
X∈Pfin(Γ) Ψ(X). We construct an interaction, denoted τΦ

t (Ψ), such that
τΦ
t (O) =

∑
X∈Pfin(Γ) τΦ

t (Ψ)(X) as follows. We decompose each τΦ
t (Ψ(Y ))

according to (2.9) with r = 0 and gather contributions supported in a given
set X to get

τΦ
t (Ψ)(X) := EX(τΦ

t (Ψ(X))) +
∞∑

n=1

∑
Y ∈Pfin(Γ):

X=Y (n)

(EY (n) − EY (n−1)) (τΦ
t (Ψ(Y ))).

(2.13)
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Using (2.10), all terms in the sum are bounded above by

∥∥(EY (n) − EY (n−1))(τΦ
t (Ψ(Y )))

∥∥ ≤ 2‖Ψ(Y )‖|Y (n)|
Mb′−b̃

eκ(b′,b̃)|t|ξb̃(n), (2.14)

for any b̃ < b′. The first term is bounded above by ‖Ψ(X)‖ since EX is a
projection; for simplicity, we shall rather use the estimate (2.14) with n = 0
in the following.

Let x ∈ Γ. We claim that
∑

X∈Pfin(Γ):
x∈X

‖τΦ
t (Ψ)(X)‖

ξb′′ (DZ(X)) is uniformly bounded.

We shall use (2.13) together with the estimate (2.14). If x ∈ X = Y (n),
then in particular Bn(x) ∩ Y �= ∅ and so

∑
X∈Pfin(Γ):

x∈X

‖τΦ
t (Ψ)(X)‖

ξb′′(DZ(X))

≤ 2ω

Mb′−b̃

∞∑
n=0

∑
y∈Bn(x)

∑
Y ∈Pfin(Γ):

y∈Y

‖Ψ(Y )‖
ξb(DZ(Y ))

|Y |ξb−b′′(DZ(Y ))
ξb̃(n)

ξb′′(2n)
(1 + n)deκ(b′,b̃)|t|.

In this estimate, we firstly recalled that X = Y (n) and used DZ(Y (n)) ≤
DZ(Y ) + 2n to conclude that ξb′′(DZ(X)) ≥ ξb′′(DZ(Y ))ξb′′(2n), secondly
factorized 1

ξb′′ = ξb−b′′
ξb

. We also used that |Y (n)| ≤ ω|Y |(1 + n)d. Hence,

sup
x∈Γ

∑
X∈Pfin(Γ):

x∈X

‖τΦ
t (Ψ)(X)‖

ξb′′(DZ(X))
≤ S(b̃, b′′)

2ωMb−b′′

Mb′−b̃

~Ψ~b,Zeκ(b′,b̃)|t|

where we used that S(b̃, b′′) =
∑∞

n=0
ξb̃(n)

ξb′′ (2n) (1 + n)2d is finite because we can

pick b̃ such that b′′ < 2−pb̃ since b′′ < 2−pb′ to ensure the convergence of the
series. For simplicity, we make the specific choice b̃ = 1

2 (b′′ + 2−pb′) and let
C(b, b′, b′′) = 2ωS(b̃, b′′)Mb−b′′

Mb′−b̃
. �

Remark 2.8. (i) A less detailed but clearer way to formulate the result would
be that the *-subalgebra of almost local observables supported in Y is an
invariant subspace for τΦ

t for t in a compact interval.
(ii) One could wish to take the propagation into account in this result and
prove rather that τΦ

t (L(Z)) ⊂ L(Z(v|t|)), at least in the case of an interaction
Φ that decays exponentially. This is of course true as L(Z(v|t|)) and L(Z) are
equal as sets, but equipped with different norms. Since however the bound
would still be superpolynomially large in time (because the support of each
individual interaction term grows with time and hence the decay rate of the
interaction does worsen), there is no real gain in doing so.

The derivation δΦ associated with a local interaction is in general
unbounded on A and accordingly not everywhere defined. As pointed out ear-
lier, Aloc is a core on which it is given explicitly as the limit of a commutator.
We prove that δΦ extends to the set of almost local observables and that, as
for the automorphism τΦ

t , the sets L(Y ) are invariant under the action of δΦ.
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Instead of considering δΦ as an unbounded operator on observables, we
find it more convenient to define it on the set of interactions B and to show
that it extends to a bounded linear operator Bb → Bb′ for appropriate pairs
(b, b′). A similar approach was in fact already taken in [27].

Definition 2.9. Let Φ,Ψ ∈ B. The interaction δΦ(Ψ) is defined by

δΦ(Ψ)(X) :=
∑

Y,Y ′∈Pfin(Γ):
Y ∩Y ′ �=∅, Y ∪Y ′=X

i[Φ(Y ),Ψ(Y ′)] (2.15)

for any X ∈ Pfin(Γ).

Note that the condition Y ∩ Y ′ �= ∅ is only for clarity since the commutator
vanishes if it is not satisfied.

Remark 2.10. If O ∈ AZ and Ψ is the interaction trivially associated with it,
namely Ψ(Z) = O and Ψ(X) = 0 otherwise, then the definition above yields
an interaction such that∑

X∈Pfin(Γ)

δΦ(Ψ)(X) =
∑

Y ∈Pfin(Γ)

i[Φ(Y ), O] = δΦ(O)

as in (2.8), justifying the notation δΦ.

Proposition 2.11. Let Z ⊂ Γ and let Ψ ∈ Bb(Z). Let Φ ∈ Bb′ . If δΦ(Ψ) is
defined as in (2.15), then δΦ(Ψ) ∈ Bb′′(Z) for any b′′ < min{b, b′} and

~δΦ(Ψ)~b′′,Z ≤ 4Mmin{b,b′}−b′′~Φ~b′ ~Ψ~b,Z . (2.16)

Proof. For x ∈ Γ, we wish to estimate
∑

X∈Pfin(Γ):
x∈X

∑
Y,Y ′∈Pfin(Γ):

Y ∩Y ′ �=∅, Y ∪Y ′=X

2‖Φ(Y )‖‖Ψ(Y ′)‖
ξb′′(DZ(X))

. (2.17)

There are two possibilities for the second sum, either x ∈ Y or x ∈ Y ′ \ Y . In
the first case, we can bound the sum by

∑
Y ∈Pfin(Γ):

x∈Y

2‖Φ(Y )‖
ξb′(D(Y ))

∑
y∈Y

∑
Y ′∈Pfin(Γ):

y∈Y ′

‖Ψ(Y ′)‖
ξb(DZ(Y ′))

ξb′(D(Y ))ξb(DZ(Y ′))
ξb′′(DZ(Y ∪ Y ′))

and in the second case the bound is similar. Now d(Z, Y ∪ Y ′) ≤ d(Z, Y ′).
What is more, since Y, Y ′ are not disjoint, D(Y ∪Y ′) ≤ D(Y )+D(Y ′) so that
monotonicity and superadditivity yield

ξb′(D(Y ))ξb(DZ(Y ′))
ξb′′(DZ(Y ∪ Y ′))

≤ ξmin{b,b′}(D(Y ) + D(Y ′) + d(Z, Y ′))
ξb′′(D(Y ) + D(Y ′) + d(Z, Y ∪ Y ′))

≤ ξmin{b,b′}−b′′(D(Y ) + DZ(Y ′))

Since b′′ < min{b, b′}, we conclude that

~δΦ(Ψ)~b′′,Z ≤ C~Φ~b′~Ψ~b,Z ,

where C = 4 supY,Y ′∈Pfin(Γ)

{|Y |ξmin{b,b′}−b′′(D(Y ) + DZ(Y ′))
} ≤ 4Mmin{b,b′}−b′′ ,

as announced. �
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Remark 2.12. We note that this is valid for any set Z, not necessarily finite. If
Z ∈ Pfin(Γ), then by the proposition both Ψ and δΦ(Ψ) correspond to almost
local observables GΨ and GδΦ(Ψ) in L(Z) and the map GΨ �→ δΦ(GΨ) :=
GδΦ(Ψ) provides the announced extension of δΦ from Aloc to the set of almost
local observables in A. Moreover, the proposition shows that if Φ ∈ Bb′ , then
the map δΦ is well-defined for any interaction in B and that it is a bounded
linear operator Bb(Z) → Bb′′(Z) for any b′′ < min{b, b′} and any subset Z.
The upper bound on ‖δΦ‖L(Bb(Z),Bb′′ (Z)) provided by the proof diverges as
b′′ → min{b, b′}, but it can be taken to be uniform in Z.

We conclude this section with a joint corollary of Proposition 2.7 and
2.11. For any Z ∈ Pfin(Γ), the set L(Z) of almost local observables is invariant
under the action of τΦ

t and δΦ for any t in a compact interval. It follows
in particular that Duhamel’s formula and its iterates to arbitrary order are
well-defined.

Corollary 2.13. Let H ∈ L with interaction Φ ∈ B. The function t �→ τΦ
t is

infinitely often strongly differentiable on the algebra of almost local observables.
In particular, if O ∈ L(Z) for some Z ∈ Pfin(Γ), then Duhamel’s formula

τΦ
t (O) = O +

n−1∑
j=1

tj

j!
(
δΦ

)j
(O) +

∫

Σn
t

τΦ
sn

(
(δΦ)n(O)

)
dns (2.18)

is well-defined for any n ∈ N. We denoted Σn
t := {0 ≤ s1 ≤ . . . ≤ sn ≤ t} and

dns = dsn . . . ds1.

3. A Product Automorphism of Lowest Order

With these preliminaries at hand, we now prove the validity of what is some-
times referred to as the symmetric Trotter product formula in the context of
an infinite quantum lattice system. Let H ∈ L be a local Hamiltonian with
interaction Φ ∈ B. We assume that

HΛ =
k∑

j=1

Kj,Λ (3.1)

where Kj,Λ ∈ L are local Hamiltonians with corresponding interactions Φj ∈
B. We denote τ j

t = τ
Φj

t and δj = δΦj . Let us first consider the automorphism
of A defined by

σ
(1)
t (O) := τ1

t/2 ◦ · · · ◦ τk
t/2 ◦ τk

t/2 ◦ · · · ◦ τ1
t/2(O). (3.2)

We assume that Φ ∈ Bb′ and Φj ∈ Bbj
for j = 1, . . . , k. We denote

N := max {~Φ~b′ ,~Φ1~b1 , . . . ,~Φk~bk
} . (3.3)
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Theorem 3.1. Let n ∈ N, t ∈ R+, μ = t
n and let

π
(1)
t,n(O) :=

(
σ(1)

μ

)n

(O).

Let Z ∈ Pfin(Γ) and let b > 0. There are positive constants C, v depending only
on b, b′, b1, . . . , bk and k such that if O ∈ Lb(Z),

∥∥∥τΦ
t (O) − π

(1)
t,n(O)

∥∥∥ ≤ C~Ψ~b,Z |Z| (N t)3evt

n2
.

Here, Ψ is an interaction associated with O.

Note that in the case k = 2, namely H = A+B, and in finite volume, the
product automorphism reduces to the adjoint action of

(
ei t

2n Bei t
n Aei t

2n B
)n

,

which is indeed well-known to converge to the adjoint action of eit(A+B) as
n → ∞. While the convergence is trivially uniform in the observable O in finite
volume (the finite volume algebras being finite dimensional), this uniformity
cannot be expected to hold in the infinite volume limit. Pointwise convergence
in norm is a consequence of the general Banach space theory originally due to
Chernoff, see again [3]. In this context, the interest of Theorem 3.1 is that it
provides an explicit rate of convergence n−2, for any almost local O ∈ L(Z)
and any finite set Z (a fortiori for any strictly local observable).

Proof of Theorem 3.1. We first decompose the time interval [0, t] in n subin-
tervals of width μ = t

n to get the following telescopic sum:

τΦ
t (O) − π

(1)
t,n(O) =

n−1∑
j=0

(
σ(1)

μ

)j (
(τΦ

μ − σ(1)
μ )

(
(τΦ

μ )n−j−1(O)
))

. (3.4)

For any almost local observable Õ ∈ Lb′′(Z), we see that

d

ds

(
σ(1)

s ◦ τΦ
−s

)
(Õ)

∣∣∣
s=0

= (2
k∑

j=1

δj

2
− δΦ)(Õ) = 0

by (3.2) and (3.1). Similarly, but with a little more algebra,

d2

ds2

(
σ(1)

s ◦ τΦ
−s

)
(Õ)

∣∣∣
s=0

=
(

1
4

k∑
j=1

{ j∑
l=1

δlδj +
k∑

l=j+1

δjδl + δj
k∑

l=1

δl − 2δjδΦ

+
k∑

l=1

δlδj +
k∑

l=j+1

δlδj +
j∑

l=1

δjδl − 2δjδΦ
}

− 2
k∑

j=1

1
2
δjδΦ + δΦδΦ

)
(Õ).

Writing
∑k

j=1

∑j
l=1 δlδj = (δΦ)2−∑k

j=1

∑k
l=j+1 δlδj and proceeding similarly

for the second-to-last term of the second line, we conclude that this derivative
vanishes again by δΦ =

∑k
j=1 δj . Thus,

τΦ
μ (Õ) − σ(1)

μ (Õ) = −
(
σ(1)

s ◦ τΦ
−s

)
(τΦ

μ (Õ))
∣∣∣
s=μ

s=0
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= −
∫

Σ3
μ

d3

ds3
3

(
σ(1)

s3
◦ τΦ

−s3

)
(τΦ

μ (Õ))d3s. (3.5)

Distributing the three derivatives across the 2k factors of σ
(1)
s3 ◦τΦ

−s3
inserts

three derivations to the product τ1
s3/2 ◦ · · · ◦ τk

s3
◦ · · · ◦ τ1

s3/2 ◦ τΦ
−s3

(τΦ
μ (Õ)).

By Propositions 2.7 and 2.11, all terms are well-defined and belong to L(Z)
since τΦ

μ (Õ) ∈ L(Z). Specifically, each application of an automorphism yields
an exponential factor and the three derivations provide an additional N 3,
see (3.3). Moreover, each of these operations yields an additional multi-
plicative constant, resulting in an overall factor that depends on k and on
the rates b′, b1, . . . , bk, but it is independent of n. It follows that for any
b̃ < min{b′′, 2−pb′, 2−pb1, . . . , 2−pbk}, the interaction norm of each term is
bounded by CN 3ec((k+1)s3+μ)~Õ~b′′,Z , where (k + 1)s3 + μ is the total time

(in absolute value) involved in
(
σ

(1)
s3 ◦ τΦ

−s3

)
(τΦ

μ (Õ)) and the constant c is the
maximum of all (2k + 1) constants κ(·, ·) given by Proposition 2.7. Finally, we
recall from (3.4) that Õ = (τΦ

μ )n−j−1(O) = τΦ
(n−j−1)μ(O) with O ∈ Lb(Z),

so that its b′′-interaction norm (with b′′ < min{b, 2−pb′}) is bounded by
Cec(n−j−1)μ~Ψ~b,Z , where C, c are, again, independent of n. Gathering all
estimates,

�
�
�

(
τΦ
μ − σ(1)

μ

) (
(τΦ

μ )n−j−1(O)
)�
�
�

b̃,Z
≤ C~Ψ~b,ZN 3ec(n−j)μ

∫

Σ3
μ

ec(k+1)s3d3s

≤ C~Ψ~b,Zec(n−j)μ (Nμ)3

3!
ec(k+1)μ.

Since σ
(1)
μ preserves the operator norm, each term of (3.4) is bounded by
∥∥∥(σ(1)

μ )j((τΦ
μ − σ(1)

μ )((τΦ
μ )n−j−1(O)))

∥∥∥ ≤ C~Ψ~b,Z |Z|evt(Nμ)3

by Lemma 2.4, where we used that c(n − j + (k + 1))μ ≤ vt, where v = c(k +
2). This estimate being uniform across the n terms of (3.4), we immediately
conclude with the claim of the theorem. �

4. Arbitrary Order

The symmetric Trotter formula discussed in the previous section has an error
of order n−2. As pioneered by Suzuki in, e.g., [16], a recursive construction
can be build upon it to generate higher order product formulae. We now show
that they too extend to the infinite volume setting.

4.1. Time Reversal

Let us recall the automorphism σ
(1)
t defined for all t ∈ R by (3.2). Since

σ
(1)
t is a composition of automorphisms, it is an automorphism, but the fact

that the individual factors do not commute with each other breaks the group
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property of the fundamental time evolution τΦ
t ◦ τΦ

s = τΦ
t+s. However, the

specific ‘symmetric’ form of (3.2) implies that

σ
(1)
−t ◦ σ

(1)
t = id.

A product automorphism having this property shall be called time-reversal
symmetric. Theorem 3.1 shows that, despite its label (1), the corresponding
product automorphism π

(1)
t,n is in fact a second-order approximation of τΦ

t . This
improvement from any odd order to the next even order is in fact general for
time-reversal symmetric product approximations.

Proposition 4.1. Let m ∈ N and let {σ
(2m−1)
μ : μ ∈ R} be an (2m− 1)-th order

product approximation of τΦ
μ in the sense that

dj

dμj

(
τΦ
μ (Õ) − σ(2m−1)

μ (Õ)
)∣∣∣∣

μ=0

= 0 (j ∈ {0, . . . , 2m − 1}) (4.1)

for any Õ ∈ L(Y ). If σ
(2m−1)
μ is time-reversal symmetric,

σ
(2m−1)
−μ ◦ σ(2m−1)

μ = id,

then it is a (2m)-th order approximation of τΦ
μ .

Proof. The identity

Õ = τΦ
−µ ◦ (τΦ

µ − σ
(2m−1)
µ )(Õ) + (τΦ

−µ − σ
(2m−1)
−µ ) ◦ σ

(2m−1)
µ (Õ) + σ

(2m−1)
−µ ◦ σ

(2m−1)
µ (Õ)

and time-reversal symmetry imply that

τΦ
−μ ◦ (τΦ

μ − σ(2m−1)
μ )(Õ) + (τΦ

−μ − σ
(2m−1)
−μ ) ◦ σ(2m−1)

μ (Õ) = 0.

The derivative of order 2m of this equation at μ = 0 reduces by (4.1) to

d2m

dμ2m

(
τΦ
μ − σ(2m−1)

μ

)
(Õ)

∣∣∣∣
μ=0

+
d2m

dμ2m

(
τΦ
−μ − σ

(2m−1)
−μ

)
(Õ)

∣∣∣∣
μ=0

= 0,

which concludes the proof since the two derivatives of even order are
equal. �
4.2. Suzuki’s Ansatz

We now recall Suzuki’s inductive construction [16] of higher-order product
formulae, translated in the present language of automorphisms. Since Sect. 3
provides a time reversal symmetric approximation of order 2, we shall use it
to anchor the induction. For that, we first let σ

(2)
μ := σ

(1)
μ for any μ ∈ R.

Let σ
(2m)
μ be a time-reversal symmetric (2m)-th order product approx-

imation of τΦ
μ in the sense of (4.1). A higher order approximation can be

constructed as follows. Let r = 2
 + 1 ≥ 3 be an odd integer and let

sm :=
1

(r − 1) − (r − 1)
1

2m+1
. (4.2)

We immediately point out firstly that 2
sm +(1− (r−1)sm) = 1 and secondly
that −1 + (r − 1)sm = sm(r − 1)

1
2m+1 , and so

(r − 1)s2m+1
m + (1 − (r − 1)sm)2m+1 = 0. (4.3)
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We now define the following product automorphisms:

σ(2m+1)
μ :=

(
σ(2m)

smμ

)� ◦ σ
(2m)
(1−(r−1)sm)μ ◦

(
σ(2m)

smμ

)�
, σ(2m+2)

μ := σ(2m+1)
μ . (4.4)

This procedure provides, given an odd integer r, a family of automorphisms
{σ

(2m+1)
μ : m ∈ N} parametrized by μ ∈ R.

For the following result, recall the setting of Sect. 3.

Theorem 4.2. Let 
 ≥ 1 and r = 2
 + 1. For all m ≥ 1, {σ
(m)
s : s ∈ R} is

time-reversal symmetric. Let n ∈ N, t ∈ R+, and μ = t
n . Define

π
(m)
t,n :=

(
σ(m)

μ

)n

.

Let Z ∈ Pfin(Γ) and let b > 0. There are positive constants C, v such that if
O ∈ Lb(Z), then

∥∥∥τΦ
t (O) − π

(m)
t,n (O)

∥∥∥ ≤ C~Ψ~b,ZN α+1|Z| t
α+1evt

nα
, (4.5)

with α =

{
m , if m is even

m + 1 , if m is odd
.

Here, Ψ is an interaction associated with O. The constants C, v depend on
b, b′, b1, . . . , bk, k, r and the order m, but they are independent of Z, n and t.

Proof. The symmetry for all m is immediate by (4.4) since σ
(1)
μ is symmetric.

The estimate holds by Theorem 3.1 for m = 1, 2, so we proceed by induction.
We assume that σ

(2m)
μ is a (2m)-th order approximation of τΦ

μ and that the
claim of the theorem holds for 2m. We write as in (3.4)

τΦ
t (O) − π

(2m+1)
t,n (O) =

n−1∑
j=0

(
σ(2m+1)

μ

)j (
(τΦ

μ − σ(2m+1)
μ )

(
(τΦ

μ )n−j−1(O)
))

, (4.6)

and proceed with an estimate on (τΦ
μ −σ

(2m+1)
μ )(Õ) for an almost local observ-

able Õ ∈ L(Y ). Here again, we decompose the interval [0, μ] into r = 2
 + 1
intervals according to (4.4) and obtain

τΦ
μ (Õ) − σ(2m+1)

μ (Õ) =

�−1∑
j=0

(
σ(2m)

smμ

)j ◦
(
τΦ

smμ − σ(2m)
smμ

)
◦

(
τΦ
((2�−j−1)sm+s̃m)μ

)
(Õ)

+
(
σ(2m)

smμ

)� ◦
(
τΦ

s̃mμ − σ
(2m)
s̃mμ

)
◦ (

τΦ
�smμ

)
(Õ)

+
�∑

j=1

(
σ(2m)

smμ

)� ◦ σ
(2m)
s̃mμ ◦

(
σ(2m)

smμ

)j−1 ◦
(
τΦ

smμ − σ(2m)
smμ

)

◦
(
τΦ
(�−j)smμ

)
(Õ)

where we denoted s̃m = 1 − (r − 1)sm. By the induction hypothesis,
dj

dμj

(
τΦ
μ (Õ) − σ

(2m)
μ (Õ)

)∣∣∣
μ=0

= 0 for all j = 0, . . . , 2m. This and the above
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identity imply first of all that the same holds with σ
(2m+1)
μ instead of σ

(2m)
μ ,

and secondly that

d2m+1

dμ2m+1

(
τΦ
μ (Õ) − σ

(2m+1)
μ (Õ)

)∣∣∣
μ=0

=
(
2
s2m+1

m + s̃2m+1
m

)
d2m+1

dν2m+1

(
τΦ
ν (Õ) − σ

(2m)
ν (Õ)

)∣∣∣
ν=0

.

Since 2
 = r − 1, this vanishes by (4.3), so that σ
(2m+1)
μ is a (2m + 1)-th

order approximation. Since σ
(2m+1)
μ is time-reversal symmetric we get from

Proposition 4.1 that the (2m + 2)-th derivative similarly vanishes at μ = 0.
Hence,

τΦ
μ (Õ) − σ(2m+1)

μ (Õ) = −
∫

Σ2m+3
μ

d2m+3

du2m+3

(
σ(2m+1)

u ◦ τΦ
−u

) (
τΦ
μ (Õ)

)
d2m+3u,

and we can proceed as in the proof of Theorem 3.1.
There are rm(2k − 2) + 1 factors in σ

(2m+1)
u and hence a total of

22m+3(rm(k − 1) + 1)2m+3 terms in the derivative, each of them involving a
combination of 2m+3 derivations from {δΦ}∪{δj : j = 1, . . . , k}. If u(m) is the
total time (in absolute value) involved in σ

(m)
u (for example, u(1) = u(2) = ku),

then u(2m+1) = (r−1)smu(2m)+|(1 − (r − 1)sm)| u(2m) = (2(r−1)sm−1)u(2m)

since 1 − (r − 1)sm = −sm(r − 1)
1

2m+1 < 0. Hence,

u(2m+1) =
( m∏

j=1

(2(r − 1)sj − 1)
)

ku.

Setting Õ = (τΦ
μ )n−j−1(O), we conclude by Propositions 2.7 and 2.11 that

d2m+3

du2m+3

(
σ

(2m+1)
u ◦ τΦ

−u

) (
τΦ
(n−j)µ(O)

)
b̃,Z

≤ C Ψ b,ZN 2m+3ecµ(n−j)ec(u
(2m+1)+u),

for any b̃ < min{b, 2−pb′, 2−pb1, . . . , 2−pbk} where C, c depend on k, the rates
b, b′, b1, . . . , bk as well as the choice of r and m. Integrating this over the simplex
Σ2m+3

μ and gathering all constants yields
∥∥∥∥
(
σ(2m+1)

μ

)j (
(τΦ

μ − σ(2m+1)
μ )

(
(τΦ

μ )n−j−1(O)
))∥∥∥∥ ≤ C~Ψ~b,Z(Nμ)2m+3|Z|evt,

where the constant v depends again on k, b, b′, b1, . . . , bk, r,m. Since there are
n such terms in (4.6), we have now proved that (4.5) holds for 2m + 1 and
therefore also for 2m + 2 by the definition (4.4) of σ

(2m+2)
μ , concluding the

induction. �

Remark 4.3. The theorem should not be misinterpreted as an invitation to
take a limit in m. Rather, it provides for each fixed m a formula that scales as
n−m as n → ∞, while t is arbitrary but fixed. As can be read from the proof,
the constant C scales as rm2

erm

m! , underlying the importance of picking a small
possible r, namely r = 3, 5.
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Figure 1. The discrete time steps in σ
(m)
μ for r = 3 on the

left and r = 5 on the right, for the same order m = 9 and
in the case k = 2. There is an order of magnitude difference
between the number of terms involved, with the ratio of the
number of terms being 542+1

342+1 � 7.7

In the definition (4.4), the interval of size μ is split into r = 2
 + 1
subintervals of width smμ (for 2
 of them) and (1− (r − 1)sm) (for the middle
one). As is clear in the proof (see also [16]) this choice is largely arbitrary. The
claim of the theorem would continue to hold if these r coefficients were replaced
by r other real coefficients {pm,j : j ∈ {1, . . . , r}} provided pm,j = pm,r+1−j

for all j = 1, . . . , 
 as well as

r∑
j=1

pm,j = 1, and
r∑

j=1

p2m+1
m,j = 0. (4.7)

Reality of the coefficients ensures that π
(m)
t,n are automorphisms and the sym-

metric choice of coefficient on either side of pm,	+1 is for time-reversal sym-
metry. Clearly, there is no non-trivial positive solution of these equations, and
(4.4) indeed has pm,	+1 = −sm(r − 1)

1
2m+1 < 0, as already pointed out. The

appearance of such a negative time evolutions to improve the order of the
approximation is reminiscent of the decomposition proposed in [21].

Remark 4.4. If r = 3, then |sm|, |1 − (r − 1)sm| > 1 with limm→∞ sm = 1,
limm→∞(1 − (r − 1)sm) = −1 and so the individual time intervals in the
product scale as t

n , independently of m for large m. On the other hand, if
r = 5, 7, . . ., then |sm|, |1 − (r − 1)sm| < 1 with limm→∞ sm = 1

r−2 and
limm→∞(1 − (r − 1)sm) = − 1

r−2 . Hence, the individual time intervals in the
product scale as 1

(r−2)m
t
n . The inductive construction and the appearance of

negative signs yield a fractal path in the time domain. This behavior—already
noted in [16]—is exhibited in Fig. 1.
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τ 1 τ 2

Figure 2. A cartoon of the action of a finite depth quantum
circuit on a 1-dimensional spin chain, in blue. Since each layer
is generated by a commuting Hamiltonian, it is a product of
commuting unitaries. Propagation is induced by the alternat-
ing action of overlapping layers

5. Quantum Simulation: Decomposition in Commuting
Hamiltonians

5.1. Finite Depth Unitary Quantum Circuits

So far, the results are completely general in the sense that they do not require
any assumption on the Hamiltonians Kj,Λ ∈ L beyond their locality. In con-
crete applications however, the choice of decomposition of H is determined by
the requirement that each Kj,Λ is a sum of terms acting on spatially disjoint
subsets of the lattice and hence mutually commuting. In the simple example of
a one-dimensional lattice with nearest-neighbor interaction, namely Φ(X) = 0
if X �= {x, x + 1} for some x ∈ Z, one would choose Φ1,Φ2 to be supported
on pairs of neighboring sites {2x, 2x + 1}, respectively {2x + 1, 2x + 2}. Each
dynamics τΦ1

t , τΦ2
t is then strictly local and corresponds to the action of quan-

tum gates in parallel, as illustrated in Fig. 2.
In this setting where a product formula is referred to as a finite depth

unitary quantum circuit, Theorem 4.2 provides a quantitative bound on the
error in the approximation of the full dynamics τt by a circuit. The number of
factors in the product automorphism is referred to as the depth of the circuit.
We point out that the following is valid in arbitrary spatial dimensions.

Corollary 5.1. Let Φ be a finite range interaction, namely Φ(X) = 0 if
D(X) > R for a fixed R > 0. Let Z ∈ Pfin(Γ) and O ∈ L(Z). For any m ∈ N,
there is a finite depth unitary quantum circuit of depth O(ε− 1

m ) approximating
τΦ
t (O) within error ε, as ε → 0.

Proof. The depth h of the circuit π
(m)
t,n is proportional to n. Hence, imposing

that the bound (4.5) is less than ε yields the claim, since α ≥ m. �

With (4.5), we further point out that, as should be expected, the depth of
the circuit diverges as |Z| 1

m with the volume of the support Z. The depth is
furthermore exponential in time, but with a rate v

m that is smaller for a higher
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order product automorphism. The depth of the circuit proposed in [21] scales
as O (

t polylog(Ntε−1)
)
, namely better in the total time. However, this is

divergent in the size of the system N , and uses O (
polylog(Ntε−1)

)
additional

ancilla qubits to achieve the scaling.
In the context of finite range interactions and for a strictly local observ-

able, one may wish to decompose the telescopic sum (3.4) rather as

τΦ
t (O) − π

(1)
t,n(O) =

n−1∑
j=0

(
τΦ
μ

)j
(
(τΦ

μ − σ(1)
μ )

(
(σ(1)

μ )n−j−1(O)
))

, (5.1)

since (σ(1)
μ )n−j−1(O) is strictly local. If the Kj,Λ’s are all commuting

Hamiltonians, all factors in (σ(1)
μ )n−j−1 induce no propagation beyond the

range R of the interactions so that (σ(1)
μ )n−j−1(O) is strictly supported in

Z((n−j−1)(2k−1)R) and of operator norm O. However, while the action of all
derivations δΦ, δj is again strictly local, increasing the support by R, the bound
‖δΥ(Õ)‖ ≤ C~Υ~b,Y |Y |‖Õ‖ valid for an observable Õ ∈ AY yields an esti-
mate

C|Z|3n3dμ3‖O‖,

where d is the spatial dimension, for every term of (5.1). One would therefore
obtain ‖τΦ

t (O) − π
(1)
t,n(O)‖ = O(n3d−2), emphasizing the need for a careful use

of the Lieb–Robinson bound on the very short time intervals of width O(n−1).
This also shows that the physical propagation is in fact much slower than what
can be read off from the diagram in Fig. 2.

5.2. Long Range Interactions

While long range interactions pose no issue for our main theorem, Theorem 4.2,
they cannot be decomposed as a finite depth unitary quantum circuit as just
described. A necessary intermediate step is a truncation to finite range inter-
action. We now comment the error induced by neglecting the interactions
between far enough lattice points.

Let Φ ∈ Bb′ and ΦR ∈ Bb′ be defined by

ΦR(X) =

{
Φ(X) , if D(X) ≤ R

0 , otherwise
.

Then, for any b′′ < b′,
∑
X	x

‖ΦR(X) − Φ(X)‖
ξb′′(D(X))

=
∑

X	x:D(X)>R

‖Φ(X)‖
ξb′(D(X))

ξb′−b′′(D(X))

so that ~ΦR − Φ~b′′ ≤ ξb′−b′′(R + 1)~Φ~b′ . Moreover,

τΦR
t (O) − τΦ

t (O) =
∫ t

0

τΦR
s

(
δΦR − δΦ

)
(τΦ

t−s(O))ds

so that if O ∈ Lb(Z) with associated interaction Ψ,



4482 S. Bachmann, M. Lange Ann. Henri Poincaré

∥∥∥τΦR
t (O) − τΦ

t (O)
∥∥∥ ≤ Ct sup

s∈[0,t]

‖(δΦR − δΦ)(τΦ
s (O))‖

≤ Ct|Z| sup
s∈[0,t]

~ΦR − Φ~b′′~τΦ
s (O)~b̃,Z

≤ Ct|Z|eκ(b′, 1
2 (b̃+2−pb′))|t|~Φ~b′~Ψ~b,Zξb′−b′′(R + 1)

by Propositions 2.7,2.11 and Lemma 2.4, where b̃ < min{b, 2−pb′}, since
δΦR − δΦ = δΦR−Φ. In other words, the error associated with the trunca-
tion of the interaction is superpolynomially small in the range R. In order
to achieve an error O(ε), the range must be chosen as R = O(ξ−1

b′−b′′(ε)) =

O((log ε− 1
b′−b′′ )

1
p ). A commuting decomposition for an interaction of range R

requires of the order of k = Rd terms in d dimensions, and since the con-
stant in the Trotter error is exponentially large in the number of terms, (4.5)
and the lower bound exp

(
(log ε− 1

b′−b′′ )
d
p

)
≥ ε− 1

b′−b′′ yield a circuit depth

h = O (
ε− c

m

)
for a constant c > 1 that depends on b′ and b′′.
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Appendix A. Lieb–Robinson Bounds

In this section, we show that the dynamics generated by an interactions in the
class B =

⋃
b>0 Bb satisfy a Lieb–Robinson bound. The Banach spaces Bb of

interactions with finite ~ ·~b-norm are defined in Sect. 2, where we also defined
the local Hamiltonian H ∈ L associated with Φ ∈ B.

Proposition A.1. Let Φ ∈ Bb and let Λ ∈ Pfin(Γ). Let X,Y ⊂ Λ with X∩Y = ∅

and A ∈ AX , B ∈ AY . For any b′ < b, we have that

‖[eitHΛAe−itHΛ , B]‖
‖A‖‖B‖ ≤ 2min{|X|, |Y |}

Mb−b′

(
eκ(b,b′)|t| − 1

)
ξb′(d(X,Y ))

where κ(b, b′) = 2~Φ~bMb−b′ and Mε := sup{|X|ξε(D(X)) : X ∈ Pfin(Γ)}.
Proof. We denote τΛ

t (A) = eitHΛAe−itHΛ and let f(t) = [τΛ
t (A), B]. Then

f ′(t) =
∑

Z∩X �=∅
[iτΛ

t ([Φ(Z), A]), B] and by Jacobi’s identity,

f ′(t) = −i[f(t),
∑

Z∩X �=∅

τΛ
t (Φ(Z))] −

∑
Z∩X �=∅

i[[B, τΛ
t (Φ(Z))], τΛ

t (A)].

The first term being norm preserving, we conclude that

‖f(t)‖
‖A‖ ≤ ‖[A,B]‖

‖A‖ + 2
∑

Z∩X �=∅

‖Φ(Z)‖
∫ |t|

0

‖[τΛ
s (Φ(Z)), B]‖
‖Φ(Z)‖ ds,

see Lemma A.1 in [26], namely

CB(X, t) ≤ CB(X, 0) + 2
∑

Z∩X �=∅

‖Φ(Z)‖
∫ |t|

0

CB(Z, s)ds

where CB(X, t) = sup{‖A‖−1‖[τΛ
t (A), B]‖ : A ∈ AX}. Iterating this step, it

follows that

CB(X, t) ≤ CB(X, 0) +
∞∑

n=1

2n|t|n
n!

∑
Zn∩Zn−1 �=∅

· · ·
∑

Z1∩X �=∅

CB(Zn, t)
n∏

j=1

‖Φ(Zj)‖.

Since CB(Z, 0) = 0 whenever Z ∩ Y = ∅ and CB(Z, 0) ≤ 2‖B‖ otherwise, we
conclude that

CB(X, t) ≤ 2‖B‖δX,Y + 2‖B‖
∞∑

n=1

2n|t|n
n!

an (A.1)

where δX,Y = 0 if X ∩ Y = ∅ and δX,Y = 1 otherwise, and we denote
an = an(X,Y ) =

∑
Zn∩Zn−1 �=∅

Zn∩Y �=∅

· · · ∑Z1∩X �=∅

∏n
j=1 ‖Φ(Zj)‖. We claim that

an(X,Y ) ≤ Mn−1
b−b′~Φ~n

b

∑
x∈X

ξb′(d(x, Y )). (A.2)

First of all,
a1(X,Y ) ≤

∑
X∩Z �=∅,Y ∩Z �=∅

‖Φ(Z)‖ ≤
∑
x∈X

∑
Z	x:Y ∩Z �=∅

‖Φ(Z)‖
ξb′(D(Z))

ξb′(D(Z))

≤ ~Φ~b′
∑
x∈X

ξb′(d(x, Y ))
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by monotonicity of ξb′ , since d(x, Y ) ≤ D(Z). The same inequality holds with
X and Y exchanged. This is (A.2) for n = 1 since b′ < b implies that ~Φ~b′ ≤
~Φ~b. We continue by induction, obtaining

an+1(X,Y ) =
∑

Z1∩X �=∅

‖Φ(Z1)‖an(Z1, Y )

≤ Mn−1
b−b′~Φ~n

b

∑
x∈X

∑
Z1	x

‖Φ(Z1)‖
ξb(D(Z1))

ξb(D(Z1))
∑
z∈Z1

ξb′(d(z, Y ))

We factorize ξb(r) = ξb−b′(r)ξb′(r) and bound

ξb′(D(Z1))ξb′(d(z, Y )) ≤ ξb′(d(x, z) + d(z, Y )) ≤ ξb′(d(x, Y ))

by monotonicity and logarithmic subadditivity, since D(Z1) ≥ d(x, z). With
this,

an+1(X,Y ) ≤ Mn
b−b′~Φ~n+1

b

∑
x∈X

ξb′(d(x, Y ))

as announced.
The sets X,Y appearing symmetrically in the estimates above, the right-

hand side of (A.2) can be improved to the minimum of
∑

x∈X ξb′(d(x, Y )) and∑
y∈Y ξb′(d(y,X)). It remains to use

min
{ ∑

x∈X

ξb′(d(x, Y )),
∑
y∈Y

ξb′(d(y,X))
}

≤ min{|X|, |Y |}ξb′(d(X,Y ))

and to plug the resulting bound into (A.1) to get

CB(X, t) ≤ 2‖B‖
[
δX,Y +

min{|X|, |Y |}ξb′(d(X,Y ))
Mb−b′

∞∑
n=1

(2|t||||Φ|||bMb−b′)n

n!

]
.

If X ∩ Y = ∅, this reads

‖[τΛ
t (A), B]‖ ≤ 2‖A‖‖B‖min{|X|, |Y |}

Mb−b′

(
e2|t||||Φ|||bMb−b′ − 1

)
ξb′(d(X,Y ))

which is the claim of the proposition. �

The proof yields the following bound that is valid for any X,Y not necessarily
disjoint:

‖[eitHΛAe−itHΛ , B]‖
‖A‖‖B‖

≤ 2‖A‖‖B‖
Mb−b′

gb,b′(t)min
{ ∑

x∈X

ξb′(d(x, Y )),
∑
y∈Y

ξb′(d(y,X))
}

where gb,b′(t) = eκ(b,b′)|t| − (1 − δX,Y ).
As pointed out earlier, the proof runs along the general lines of [26]. It

only differs in the estimate of an because of the choice of a different norm and
a slightly more general class of interactions. In particular, in the case p < 1,
the subexponential decay in d(X,Y ) has its origin in the subexponential decay
of the interaction Φ ∈ Bb.
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It is also a well-known fact that the Lieb–Robinson bound yields the
existence of the dynamics in the infinite volume limit. We provide here a
short proof in the specific setting of this paper. We now consider an increasing
sequence of subsets Λn that is absorbing in the sense that for any x ∈ Γ, there
is N such that x ∈ Λn for all n ≥ N .

Corollary A.2. Let Φ ∈ Bb, let X ∈ Pfin(Γ) and A ∈ AX . For all n such that
X ⊂ Λn, let τn

t (A) = eitHΛn Ae−itHΛn . The sequence τn
t (A) is convergent to

τt(A). Moreover, t �→ τt extends to a strongly continuous group of automor-
phisms on A.

Proof. We note that if n > m, then

τm
−t ◦ τn

t (A) − A =
∫ t

0

τm
−s (i[HΛn

− HΛm
, τn

s (A)]) ds

Since HΛn
− HΛm

=
∑

Z∩(Λn\Λm) �=∅
Φ(Z), we conclude that

‖τn
t (A) − τm

t (A)‖ ≤
∑

Z∩(Λn\Λm) �=∅

∫ |t|

0

‖[Φ(Z), τn
s (A)]‖ds

The Lieb–Robinson bound now yields
∑

Z∩(Λn\Λm) �=∅

‖[Φ(Z), τn
s (A)]‖

≤ 2‖A‖eκ(b,b′)|s|

Mb−b′

∑
Z∩(Λn\Λm) �=∅

‖Φ(Z)‖
∑
x∈X

ξb′(d(x,Z))

for any b′ < b. The sum over Z can be upper bounded by
∑

z∈Λn\Λm

∑
Z	z.

We introduce the factor ξb′(D(Z)) and use the logarithmic superadditivity of
ξb′ and finally the bound d(x, z) ≤ d(x,Z) + D(Z) to get

∑
Z∩(Λn\Λm) �=∅

‖Φ(Z)‖
∑
x∈X

ξb′(d(x,Z))

≤
∑

z∈Λn\Λm

∑
Z	z

‖Φ(Z)‖
ξb′(D(Z))

∑
x∈X

ξb′(d(x,Z) + D(Z))

Note that Φ ∈ Bb implies that ~Φ~b′ < ∞ for all b′ < b. It remains to use the
bound d(x, z) ≤ d(x,Z) + D(Z) to get

‖τn
t (A) − τm

t (A)‖ ≤ 2‖A‖~Φ~b′

Mb−b′κ(b, b′)
eκ(b,b′)|t| ∑

z∈Λn\Λm

∑
x∈X

ξb′(d(x, z)).

The summability of ξb′ and the fact that X is a finite set implies that the
sum vanishes as n,m → ∞. In other words, (τn

t (A))n is Cauchy sequence in
A (uniformly in t for t in a compact set) and hence convergent.

The limiting map τt is bounded (since ‖τt(A)‖ = ‖A‖) on the dense set
of local observables. Therefore, it extends to a bounded linear map on A. The
group property follows from that of the finite volume approximations. �
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