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Abstract. The decay of solutions to the Klein–Gordon equation is studied
in two expanding cosmological spacetimes, namely

• the de Sitter universe in flat Friedmann–Lemâıtre–Robertson–Walker
(FLRW) form and

• the cosmological region of the Reissner–Nordström–de Sitter (RNdS)
model.

Using energy methods, for initial data with finite higher-order energies,
decay rates for the solution are obtained. Also, a previously established
decay rate of the time derivative of the solution to the wave equation, in
an expanding de Sitter universe in flat FLRW form, is improved, proving
Rendall’s conjecture. A similar improvement is also given for the wave
equation in the cosmological region of the RNdS spacetime.
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1. Introduction

The aim of this article is to obtain exact decay rates for solutions to the
Klein–Gordon equation in a fixed background of some expanding cosmological
spacetimes. The two spacetimes we will consider are the de Sitter universe in
flat Friedmann–Lemâıtre–Robertson–Walker (FLRW) form and the cosmolog-
ical region of the Reissner–Nordström–de Sitter (RNdS) model. The problem
we consider is linear, in that the background is fixed. This constitutes a first
step towards understanding the more complicated nonlinear coupled problem,
where one also considers the effect of the energy–momentum tensor of the so-
lution to the Klein–Gordon equation on the Einstein equation. This nonlinear
coupled problem is much more complicated and usually requires, as a first
step, a detailed understanding of our simpler linear problem.

There are several motivations behind the interest in this question. Firstly,
one may consider the linear wave equations as a proxy for the Einstein equa-
tions, with the ultimate goal of understanding the qualitative behaviour of
solutions to the Einstein equations. (The vacuum Einstein equations become
wave-like equations in harmonic coordinates; see for example [18, §5.4, p. 110]).
After this first step, one may then proceed to consider linearised Einstein equa-
tions (which can be reduced to tensor wave-like linear equations) and, finally,
the full nonlinear Einstein equations. With the addition of a positive cosmo-
logical constant to the Einstein field equations, the expectation is that the
resulting accelerated expansion has a dominating effect on the decay of solu-
tions. Precise estimates on solutions may then prove useful in formulating and
proving cosmic no-hair theorems (e.g. [3,7]).

The wave equation �gφ = 0 in expanding cosmological spacetimes (M, g)
has been amply studied in the literature; see for example [5,8,10,23] and the
references therein. It is a natural question to also study the Klein–Gordon
equation �gφ − m2φ = 0, the degenerate version of which, when m2 = 0,
is the wave equation. For example, in [23, §6], also the case of the Klein–
Gordon equation in the Schwarzschild–de Sitter spacetime is considered. In
[21], the asymptotic behaviour of the solutions to the Klein–Gordon equation
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near the Big Bang singularity is studied, while we investigate the asymptotics
of the Klein–Gordon equation in the far future in the case of the de Sitter
universe in flat FLRW form, and in the cosmological region of the Reissner–
Nordström–de Sitter solution. Recently, in [11] (see also [26] and [22]), among
other things, decay estimates for the solutions to the Klein–Gordon equation
were obtained in de Sitter models (see in particular, Corollary 2.1 and the less
obvious Proposition 3.1 of [11]). However, these results are proved via Fourier
transformation (reminiscent of our mode calculation in Appendix A (Section
6)) and do not seem to be as sharp as our Theorem 3.1.

The wave equation in the de Sitter spacetime having flat three-dimensional
spatial sections was considered in Rendall [20]. There, it was shown that the
time derivative ∂tφ =: φ̇ decays at least as e−Ht = (a(t))−1, where H =

√
Λ/3

is the Hubble constant and Λ > 0 is the cosmological constant. Moreover, it
was conjectured that the decay is of the order e−2Ht = (a(t))−2. The almost-
exact conjectured decay rate of |φ̇| � (a(t))−2+δ (where δ > 0 can be chosen
arbitrarily at the outset) follows as a corollary of a result shown recently [8,
Remark 1.1]. We improve this result, to obtain full conformity with Rendall’s
conjecture, in our result Theorem 2.3.

Finally, from the pure mathematical perspective, analysis of linear wave
equations on Lorentzian manifolds is a natural topic of study within the realm
of hyperbolic partial differential equations and differential geometry; see for
example [2], [25, §7, Chap. 2].

A naive heuristic indication of the effect of the accelerated expansion
on the decay of the solution, based on physical energy considerations, can
be obtained as follows. Considering an expanding FLRW model with flat n-
dimensional spatial sections of radius a(t), we have on the one hand that the
energy density of a solution φ of the Klein–Gordon equation is of the order of
m2φ2. On the other hand, if the wavelength of the particles associated with φ
follows the expansion, then it is proportional to a(t), and so the energy varies
as E2 ∼ m2 + p2 ∼ A + B

(a(t))2 , where A,B > 0 are constants. Thus,

m2φ2(a(t))n ∝
(
A +

B

(a(t))2
)
,

giving m2φ2 ∼ (a(t))−n(A + B
(a(t))2 ). As ȧ � 0 (expanding FLRW spacetime),

the term A+ B
(a(t))2 approaches a finite positive value, and so one may expect

φ ∼ (a(t))− n
2 .

We will find out that in fact things are much more complicated: this decay
rate is valid only for |m| � n

2 . In order to obtain precise conjectures on the
expected decay, we will consider Fourier modes for spatially periodic solutions
to the Klein–Gordon equation or, equivalently, consider the expanding de Sit-
ter universe in flat FLRW form with toroidal spatial sections. This exercise
already demonstrates that the underlying decay mechanism is the cosmologi-
cal expansion, as opposed to dispersion. The Fourier mode analysis, which is
peripheral to the rest of the paper, is relegated to Appendix A (Section 6).
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In the cosmological region of the Reissner–Nordström–de Sitter space-
times, the expanding region is foliated by spacelike hypersurfaces of ‘constant
r’. One expects the decay rate with respect to r, for the solution to the Klein–
Gordon equation, in the cosmological region of the Reissner–Nordström–de
Sitter spacetime, to be the same as the one for the de Sitter universe in flat
FLRW form, when et is replaced by r. We show that this expectation is correct,
and a suitable modification of the technique used in the case of the de Sitter
universe in flat FLRW form does enable one to obtain the expected decay rates
also for the case of the Reissner–Nordström–de Sitter spacetime.

Our main results are as follows:

• Theorem 2.3 considers the m = 0 case (wave equation), and we obtain
a decay estimate on ∂tφ, improving a corollary of [8, Theorem 1], and
proving the aforementioned Rendall’s conjecture.

• Theorem 5.3 improves [8, Theorem 2], and we obtain a decay estimate
on ∂rφ, using a similar method to the one we use for proving Rendall’s
conjecture.

• Theorem 3.1 gives the decay rate of the solutions φ to the Klein–Gordon
equation in the de Sitter universe in flat FLRW form.

• Theorem 4.2 gives the decay rate of the solutions φ to the Klein–Gordon
equation in the cosmological region of the RNdS model.

Theorems 2.3, 3.1, 4.2 and 5.3 are stated and proved in Sects. 2–5, respectively.
The Fourier mode analysis for spatially-periodic solutions to the Klein–Gordon
equation is given in Appendix A(Section 6), while Appendix B (Section 7)
contains a technical lemma which is needed in the proof of Theorem 3.1.
Finally, in Appendix C (Section 8), we establish the sharpness of the bound
of the |m| = n

2 case of Theorem 3.1.

1.1. Relation of Our Results to Previous Work

Our decay rates for the Klein–Gordon equation solutions in the case of the de
Sitter universe can be retrieved from the article [26] by setting x = e−t, Y = R

n

therein. However, the methods used are entirely different: our proof in this case
is more explicit and more elementary (relying on energy methods, rather than
technical tools from microlocal analysis of partial differential operators).

In the article [13], the Klein–Gordon equation is studied in the Nariai
spacetime using energy methods, and en route it is also established that solu-
tions of the Klein–Gordon equation decay exponentially in the de Sitter case
(with spherical spatial sections). However, the decay rates are not given ex-
plicitly.

The article [9] contains a general discussion of redshift estimates, which
we use to prove our results in the context of the Reissner–Nordström–de Sitter
spacetime. Similar estimates are used in the article [23] to study the wave
equation in the Schwarzschild–de Sitter spacetime, of which the Reissner–
Nordström–de Sitter spacetime is a perturbation for large radius. Nevertheless,
we do not appeal to these results, and instead of extracting what we need from
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these sources, we give a less technical, self-contained derivation for the conve-
nience of the reader in Sect. 4.5. Here, we follow [8] (where a similar derivation
was given for the wave equation).

2. Decay in the de Sitter Universe in Flat FLRW Form; m = 0

In [8, Theorem 1], the following result was shown:

Theorem 2.1. Suppose that
• δ > 0,
• I ⊂ R is an open interval of the form (t∗,+∞), t0 ∈ I,
• a(·) ∈ C1(I) with ȧ(t) � 0 for t � t0, and ε > 0 is such that

∫ ∞

t0

1
(a(t))ε

dt < +∞,

• n � 2,
• (M, g) is an expanding FLRW spacetime with flat n-dimensional sections,
given by I × R

n, with the metric

g = −dt2 + (a(t))2
(
(dx1)2 + · · · + (dxn)2

)
, (1)

• k > n
2 + 2, φ0 ∈ Hk(Rn), φ1 ∈ Hk−1(Rn), and

• φ is a smooth solution to the Cauchy problem
⎧
⎨

⎩

�gφ = 0, (t � t0, x ∈ R
n),

φ(t0,x) = φ0(x) (x ∈ R
n),

∂tφ(t0,x) = φ1(x) (x ∈ R
n).

Then

∀t � t0, ‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2+ε+δ
.

Here, the symbol � is used to mean that there exists a constant C(δ),
independent of ε, such that

‖∂tφ(t, ·)‖L∞(Rn) � C(δ) (a(t))−2+ε+δ
.

We also use the standard notation Hk(Rn) for the Sobolev space,

‖φ‖2
Hk(Rn) :=

∫

Rn

∑

|α |�k

(∂αφ)2dnx < +∞ for φ ∈ Hk(Rn),

where α = (α1, . . . , αn) ∈ N
n
0 , N0 = {0, 1, 2, 3, . . .}, |α| := α1 + · · · + αn, and

∂α = (∂x1)
α1 · · · (∂xn

)αn ; see for example [27, p. 249] or [25, Chap. 4].

Remark 2.2. (Smoothness assumption on the solution φ) In Theorem 2.1 (and
later also in Theorems 2.3, 3.1, 4.2, 5.1, 5.3), we will assume, for the sake
of simplicity of exposition, that the solution φ to the wave/Klein–Gordon
equation is smooth. However, these theorems are also true without this as-
sumption. To see this, we note that for non-smooth solutions with initial data
in Hk × Hk−1, we can approximate the initial data by smooth functions in
Hk×Hk−1, prove the bounds for the Hk norms of the corresponding solutions,



2350 J. Natário, A. Sasane Ann. Henri Poincaré

and then take limits. Since the solution of the problem with rough initial data
is in C0(I,Hk) ∩ C1(I,Hk−1), these bounds will continue to be true in the
limit, and we can then use the Sobolev embedding theorem. This enables one
to drop the smoothness assumption.

In Theorem 2.1, in particular, if a(t) = eHt, where H is the Hubble
constant, then since ε > 0 can be taken to be arbitrarily small, we obtain

‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2+δ = e−(2−δ)Ht,

and this is in agreement with Rendall’s conjecture up to the small quantity
δ > 0. We will show below that in fact one gets the exact rate (a(t))−2 when
n > 2. There is no loss of generality in assuming that H = 1. Our result is the
following.

Theorem 2.3. Suppose that
• I ⊂ R is an open interval of the form (t∗,+∞), t0 ∈ I,
• n > 2,
• (M, g) is the expanding de Sitter universe in flat FLRW form, with flat

n-dimensional sections, given by I × R
n, with the metric

g = −dt2 + e2t
(
(dx1)2 + · · · + (dxn)2

)
,

• k > n
2 + 2, φ0 ∈ Hk(Rn), φ1 ∈ Hk−1(Rn), and

• φ is a smooth solution to the Cauchy problem
⎧
⎨

⎩

�gφ = 0, (t � t0, x ∈ R
n),

φ(t0,x) = φ0(x) (x ∈ R
n),

∂tφ(t0,x) = φ1(x) (x ∈ R
n).

Then

∀t � t0, ‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2
.

Proof. We proceed in several steps.
Step 1: Bound on Δφ.
We will follow the preliminary steps of the proof of [8, Theorem 1] in order to
obtain a bound on Δφ, which will be needed in the proof of our Theorem 2.3.
We repeat this preliminary step here from [8, §2.2] for the sake of completeness
and for the convenience of the reader.

For a vector field X = Xμ∂μ, it can be shown that

∇μXμ =
1√−g

∂μ(
√

−gXμ),

where g := det[gμν ] is the determinant of the matrix [gμν ] describing the metric
in the chart. Then, it follows that

�gφ = ∇μ(∂μφ) =
1√−g

∂μ(
√

−g∂μφ).

Thus, �gφ = 0 can be rewritten as ∂μ(
√−g∂μφ) = 0. With the metric for the

de Sitter universe in flat FLRW form given by

g = −dt2 + (a(t))2
(
(dx1)2 + · · · + (dxn)2

)
,



Vol. 23 (2022) Decay of Klein–Gordon Equation Solutions 2351

the wave equation can be rewritten as ∂μ(an∂μφ) = 0, that is,

−φ̈ − nȧ

a
φ̇ +

1
a2

δij∂i∂jφ = 0.

We recall (see e.g. [27, Appendix E]) that the energy–momentum tensor for
the wave equation is

Tμν = ∂μφ∂νφ − gμν

2
∂αφ∂αφ. (2)

Then, it can be shown that ∇μTμν = 0. From (2), we have in particular that

T00 =
1
2

(
φ̇2 + a−2δij∂iφ∂jφ

)
.

Define the vector field

X = a2−n ∂

∂t
.

Then, X is future-pointing (g(X, ∂t) < 0) and causal (X is time-like since
g(X,X) < 0). We form the current J , given by

Jμ = TμνXν .

Then, (set m = 0 in [18, Ex.5.7(1), p. 116], but a justification is given below)

J = (X · φ)grad φ − 1
2
g(grad φ, grad φ)X. (�)

Here, X · φ is the application of X on φ. To see (�), note that

LHS = gμνJν =gμνTνσa2−nδσ0 =gμν
(
(∂νφ)(∂σφ) − gνσ

2
(∂αφ)(∂αφ)

)
a2−nδσ0

= a2−nφ̇gμν∂νφ − 1
2
(∂αφ)(∂αφ)a2−nδμ0, and

RHS = a2−nφ̇gαμ∂αφ − 1
2
gαβ(∂θφ)gθα(∂σφ)gσβa2−nδμ0

= a2−nφ̇gαμ∂αφ − 1
2
(∂βφ)(∂βφ)a2−nδμ0.

It follows from (�) that g(J, J) � 0, so that J is causal. Also, J is past-
pointing. To see this, we choose E1, . . . , En orthogonal and spacelike such
that {X,E1, . . . , En} forms an orthogonal basis in each tangent space. Then,
expressing grad φ = c0X + c1E1 + · · · cnEn, we obtain

g(J,X) = (g(X, grad φ))2 − 1
2
g(grad φ, grad φ) · g(X,X)

=
(c0)2

2
(g(X,X))2− 1

2
(
(c1)2g(E1, E1) + · · ·

+(cn)2g(En, En)
)

· g(X,X)�0.

Set N = ∂
∂t , the future unit normal vector field. We define the energy E

by

E(t) =
∫

{t}×Rn

JμNμ =
∫

Rn

a2T00d
nx =

∫

Rn

1
2

(
a2φ̇2 + δij∂i∂jφ

)
dnx.
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We note that [X, ∂μ] = [a2−n∂t, ∂μ], and

[a2−n∂t, ∂t] = −(2 − n)a1−nȧ∂t,

[a2−n∂t, ∂j ] = a2−n∂t∂j − ∂j(a2−n∂t) = 0,

so that dxi[X, ∂μ] = 0. The deformation tensor Π associated with the multiplier
X is

Π :=
1
2
LXg =

1
2
LX(−dt2 + a2δijdxidxj) = −dtLXdt +

a2−n

2
2aȧδijdxidxj

:= −dtLXdt + ȧa3−nδijdxidxj .

Here, we used the facts LX(a2) = a2−n ∂
∂ta

2 = a2−n2aȧ and LXdxi = 0
(since 0 = LX(dxi(∂μ)) = (LXdxi)μ + dxi([X, ∂μ]) = (LXdxi)μ + 0). We have
0 = LX(dt(∂μ)) = (LXdt)μ + dt[X, ∂μ], and so from the above expression for
[X, ∂μ], we obtain

LXdt = (2 − n)ȧa1−ndt.

Thus, Π = (n − 2)ȧa1−ndt2 + ȧa3−nδijdxidxj .
It can be shown that ∇μJμ = TμνΠμν . Indeed, from the expression for the

Lie derivative of the metric given in [18, Exercise 2, p. 93] and the expression
for the divergence of TμνXν given in [18, §5.2], we have

TμνΠμν =
1
2
Tμν(LXg)μν =

1
2
Tμν(∇μXν + ∇νXμ)=

1
2
(∇μJμ + ∇μJμ)=∇μJμ.

So the ‘bulk term’ is

∇μJμ = T μνΠμν

= (n−2)ȧa1−nφ̇2+
n−2

2
ȧa1−n∂αφ∂αφ+ȧa−1−nδij∂iφ∂jφ− n

2
ȧa1−n∂αφ∂αφ

= (n − 1)ȧa1−nφ̇2 � 0.

For each R > 0, define the set B0 := {(t0,x) ∈ I × R
n : 〈x,x〉Rn � R2}. The

future domain of dependence of B0 is the set

D+(B0) :=
{

p ∈ M
∣∣∣

Every past inextendible causal curve
through p intersects B0.

}
.

(Here by a causal curve, we mean one whose tangent vector at each point is a
causal vector. A curve c : (a, b) → M which is smooth and future directed1 is
called past inextendible if lim

t→a
c(t) does not exist.)

Let t1 > t0. We will now apply the divergence theorem to the region

R := D+(B0) ∩ {(t,x) ∈ M : t � t1}.

For preliminaries on the divergence theorem in the context of a time-oriented
Lorentzian manifold, we refer the reader to [27, Appendix 7]. We have

∫

R
(∇μJμ)ε =

∫

∂R
J ⌟ ε,

1That is, ċ is future-pointing.
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where ∂R denotes the boundary of R, ε is the volume form on M induced by
g, and ⌟ denotes contraction in the first index.

Since J is past-pointing, the boundary integral over the null portion C of
the boundary ∂R is nonpositive. Also, because ∇μJμ is nonnegative, we have
that the volume integral over R is nonnegative. This gives an inequality on the
two boundary integrals, one over B0 and the other over B1 := D+(B0) ∩ {t =
t1}, as follows:

∫

B0

1
2
(a2φ̇2 + δij∂iφ∂jφ)dnx �

∫

B1

1
2
(a2φ̇2 + δij∂iφ∂jφ)dnx.

Passing the limit R → ∞ yields E(t0) � E(t1). (We note that the radius of
B1 also goes to infinity as R → ∞.) As the choice of t1 > t0 was arbitrary,
we have that for all t � t0, E(t) � E(t0) < ∞. The finiteness of E(t0) follows
from our assumption that φ0 ∈ Hk(Rn) and φ1 ∈ Hk−1(Rn) for a k satisfying
k > n

2 + 2 � 1. From here, it follows that for all t � t0,
∫

Rn

φ̇2dnx � 1
a2

, and
∫

Rn

δij∂iφ∂jφdnx � 1.

But since each partial derivative ∂iφ is also a solution of the wave equation,
and as k � 2, we obtain, by applying the above to the partial derivatives ∂iφ,
that also

∫

Rn

(Δφ)2dnx � 1.

In fact, since k > n
2 + 2, we also obtain that for a k′ > n

2 , ‖Δφ‖Hk′ (Rn) � 1.

Finally, by the Sobolev inequality (see e.g. [14, (7.30), p. 158]), we obtain

‖Δφ‖L∞(Rn) � 1. (3)

This completes Step 1 of the proof of Theorem 2.3. We note that this step
loses two derivatives when we drop the smoothness assumption on φ.

Step 2: The wave equation in conformal coordinates.
The key point of departure from the earlier derivation of the estimates

from [8] is the usage of ‘conformal coordinates’, which renders the wave equa-
tion in a form where it becomes possible to integrate, leaving essentially just
the time derivative of φ with other terms (e.g. Δφ) for which we have a known
bound. An application of the triangle inequality will then deliver the desired
bound.

Define τ =
∫ t

t0

1
a(s)

ds. Then we obtain that
dτ

dt
=

1
a(t)

and a(t)
d
dt

=
d
dτ

.
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With a slight abuse of notation, we write a(τ) := a(t(τ)). Then, dt =
a(τ)dτ . So g = −dt2 + (a(t))2

(
(dx1)2 + · · · + (dxn)2

)
= (a(τ))2

(
− dτ2 + δij

dxidxj
)
. The wave equation �gφ = 0 can be rewritten as ∂μ(

√−g ∂μφ) = 0,
and so we obtain ∂μ(an+1∂μφ) = 0. Separating the partial derivative operators
with respect to the τ and x coordinates, we obtain the wave equation in con-
formal coordinates ∂τ (an−1∂τφ) = an−1Δφ, where Δ is the usual Laplacian
on R

n. This completes Step 2 of the proof of Theorem 2.3.
Step 3: n > 2 and a(t) = et. We have

τ =
∫ t

t0

1
es

ds = e−t0 − 1
et

= e−t0 − 1
a
, (4)

and so a(τ) =
1

e−t0 − τ
. We note that τ ∈ [0, e−t0). Also,

a(τ = 0) =
1

e−t0
= et0 = a(t = t0).

Integrating ∂τ (an−1∂τφ) = an−1Δφ from τ = 0 to τ , we obtain

an−1∂τφ − a(t0)n−1 ∂τφ|τ=0 =
∫ τ

0

Δφ
1

(e−t0 − τ)n−1
dτ,

and so an−1a∂tφ = a(t0)n−1a(t0) ∂tφ|t=t0
+

∫ τ

0

Δφ
1

(e−t0 − τ)n−1
dτ, that is,

∂tφ = (a(t))−n
(
a(t0)nφ1 +

∫ τ

0

Δφ
1

(e−t0 − τ)n−1
dτ

)
.

Hence, using the bound from (3), namely ‖Δφ(t, ·)‖L∞(Rn) � C for all t � t0,

‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−n
(
a(t0)n‖φ1‖L∞(Rn)+

∫ τ

0

‖Δφ(t, ·)‖L∞(Rn)

1
(e−t0 − τ)n−1

dτ
)

= (a(t))−n
(
a(t0)n‖φ1‖L∞(Rn) +

C

n − 2

(
(e−t0 − τ)2−n − (e−t0)2−n

))

= (a(t))−n
(
a(t0)n‖φ1‖L∞(Rn) +

C

n − 2

(
(a(t))n−2 − (a(t0))n−2

))

� (a(t))−n(a(t))n−2
(a(t0)n‖φ1‖L∞(Rn)

(a(t))n−2
+

C

n−2

(
1 −

(a(t0)
a(t)

)n−2))

� 1
(a(t))2

(a(t0)n‖φ1‖L∞(Rn)

(a(t0))n−2
+

C

n − 2
(1 − 0)

)
.

Hence,

‖∂tφ(t, ·)‖L∞(Rn) � 1
(a(t))2

(
(a(t0))2‖φ1‖L∞(Rn)+

C

n − 2

)
,

and so

‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2.

This completes the proof of Theorem 2.3. �
Remark 2.4. The case when n = 2 and a(t) = et:

Integrating ∂τ (a∂τφ) = aΔφ from τ = 0 to τ , we obtain

a∂τφ − a(t0) ∂τφ|τ=0 =
∫ τ

0

Δφ
1

e−t0 − τ
dτ,
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and so

∂tφ = (a(t))−2

(
a(t0)2φ1 +

∫ τ

0

Δφ
1

e−t0 − τ
dτ

)
.

Hence,

‖∂tφ(t, ·)‖L∞(R2)

� (a(t))−2

(
a(t0)2‖φ1‖L∞(R2) +

∫ τ

0

‖Δφ(t, ·)‖L∞(R2)
1

e−t0 − τ
dτ

)

= (a(t))−2
(
a(t0)2‖φ1‖L∞(R2)+C

(
− log(e−t0 −τ)

∣∣∣
τ

0

))

= (a(t))−2(log a(t))
(

a(t0)2‖φ1‖L∞(R2)

log a(t)
+C

(
1 − log a(t0)

log a(t)

))

� (a(t))−2(log a(t))
(

a(t0)2‖φ1‖L∞(R2)

t0
+C

)
,

and so

‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2 log a(t).

This can be viewed as an improvement to [8, Theorem 1] in the special case
when a(t) = et and n = 2, since

log a(t) = t � eδt = 1 + δt + · · · .

Remark 2.5. The case when a(t) = tp, p � 1:
One can prove an analogue of Theorem 2.3 when a(t) = tp as well. In

this case, the ε from Theorem 2.1 can be chosen to be any number satisfying

ε >
1
p
,

and so Theorem 2.1 gives the decay estimate

‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2+ 1
p +δ = t−(2p−1−δ′),

where δ′ > 0 can be chosen arbitrarily. We can improve this to the following:

‖∂tφ(t, ·)‖L∞(Rn) � (a(t))−2+ 1
p = t−(2p−1).

The proof is the same, mutatis mutandis, as that of Theorem 2.3.

Remark 2.6. Using a similar method, one can also obtain an improvement to
[8, Theorem 2]. But we will postpone this discussion until after Sect. 4, since
we will need some preliminaries about the RNdS spacetime, which will be
established in Sect. 4.

3. Decay in the de Sitter Universe in Flat FLRW Form

The Klein–Gordon equation is �gφ − m2φ = 0, that is,
1√−g

∂μ(
√

−g ∂μφ) − m2φ = 0.
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In the case of the de Sitter universe in flat FLRW form, we obtain

− φ̈ − nȧ

a
φ̇ +

1
a2

δij∂i∂jφ − m2φ = 0. (5)

In this section, we will prove Theorem 3.1. We arrive at the guesses for
the specific estimates given in Theorem 3.1, based on an analysis using Fourier
modes, assuming spatially periodic solutions. This Fourier mode analysis is
given in ‘Appendix 6’.

Theorem 3.1. Suppose that
• I ⊂ R is an open interval of the form (t∗,+∞), t0 ∈ I,
• m ∈ R,
• n > 2,
• (M, g) is the expanding de Sitter universe in flat FLRW form, with flat

n-dimensional sections, given by I × R
n, with the metric

g = −dt2 + e2t
(
(dx1)2 + · · · + (dxn)2

)
,

• k > n
2 + 2, φ0 ∈ Hk(Rn), φ1 ∈ Hk−1(Rn), and

• φ is a smooth solution to the Cauchy problem
⎧
⎨

⎩

�gφ − m2φ = 0, (t � t0, x ∈ R
n),

φ(t0,x) = φ0(x) (x ∈ R
n),

∂tφ(t0,x) = φ1(x) (x ∈ R
n).

Then, for all t � t0, we have

‖φ(t, ·)‖L∞(Rn) �

⎧
⎪⎨

⎪⎩

a− n
2 if |m| > n

2 ,
a− n

2 log a if |m| = n
2 ,

a− n
2 +

√
n2
4 −m2

if |m| < n
2 .

Remark 3.2. We recall that the conformally invariant wave equation in n + 1
dimensions is (

�g − n − 1
4n

Rg

)
φ = 0,

where Rg is the scalar curvature of the metric g; see for instance [27]. If g is a
FLRW metric with flat n-dimensional spatial sections, having the form given
by (1), then

Rg =
2nä

a
+

n(n − 1)ȧ2

a2
.

Thus, in de Sitter space in flat FLRW form, the conformally invariant wave
equation can be interpreted as a Klein–Gordon equation, with the mass pa-
rameter satisfying m2 = n2−1

4 . From [8, Appendix 7], we have

‖φ(t, ·)‖L∞(Rn) � a
1−n
2 , (6)

which follows from using the fact that the L∞-norm of ψ(·, t), defined by
φ = a1− n+1

2 ψ (see [8, eq. (178)]), is uniformly bounded with respect to t. The
estimate (6) is in complete agreement with the result of our Theorem 3.1, since

the relation n2

4 − m2 = 1
4 reduces our bound a− n

2 +

√
n2
4 −m2

precisely to a
1−n
2 .
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3.1. Preliminary Energy Function and Estimates

Define the energy–momentum tensor T by

Tμν = ∂μφ∂νφ − 1
2
gμν(∂αφ∂αφ + m2φ2).

Then, ∇μTμν = 0. Also, in particular,

T00 =
1
2

(
φ̇2 +

1
a2

|∇φ|2 + m2φ2

)
= T 00.

Set X = a−n ∂
∂t . Then, X is time-like and hence causal, and X is future-

pointing. Define J by Jμ = TμνXν . Then, J is causal and past-pointing. Let
N = ∂t. Define the energy E by

E(t) =
∫

{t}×Rn

JμNμ =
∫

Rn

1
2

(
φ̇2 +

1
a2

|∇φ|2 + m2φ2

)
dnx.

Define

Π =
1
2
LXg = −dtLXdt + a−n+1ȧ

(
(dx1)2 + · · · + (dxn)2

)
.

As LXdt = −na−n−1ȧdt, we have

Π = na−n−1ȧdt2 + a−n+1ȧ
(
(dx1)2 + · · · + (dxn)2

)
.

Hence,

∇μJμ = TμνΠμν =
a−n−1ȧ

2

(
2nφ̇2 +

2
a2

|∇φ|2
)

� 0.

For R > 0, define B0 := {(t0,x) ∈ I ×R
n : 〈x,x〉Rn � R2}. The future domain

of dependence of B0 is denoted by D+(B0). Let t1 > t0. We will apply the
divergence theorem to the region R := D+(B0) ∩ {(t,x) ∈ M : t � t1}. We
have ∫

R
(∇μJμ)ε =

∫

∂R
J ⌟ ε.

Using
• ∇μJμ � 0, and
• the fact that the boundary contribution on C, the null portion of ∂R, is

nonpositive (since J is causal and past-pointing),
we obtain the inequality

∫

B0

1
2

(
φ̇2+

1
a2

|∇φ|2+m2φ2

)
dnx �

∫

B1

1
2

(
φ̇2+

1
a2

|∇φ|2+m2φ2

)
dnx.

Passing the limit R → ∞ yields E(t1) � E(t0) < +∞. As t1 > t0 was arbitrary,
we obtain

∀t � t0, E(t) =
∫

Rn

1
2

(
φ̇2 +

1
a2

|∇φ|2 + m2φ2

)
dnx � E(t0) � ∞.

From here, it follows that for all t � t0,∫

Rn

φ̇2dnx � 1,

∫

Rn

|∇φ|2dnx � a2, and
∫

Rn

φ2dnx � 1 (if m �= 0).
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But since each partial derivative (∂x1)i1 · · · (∂xn)inφ is also a solution of the
Klein–Gordon equation, it follows from φ0 ∈ Hk(Rn) and φ1 ∈ Hk−1(Rn)
for a k > n

2 + 2, that also φ(t, ·) ∈ Hk(Rn) and ∂tφ(t, ·) ∈ Hk−1(Rn), and
moreover,

‖φ̇‖Hk′ (Rn) � 1, ‖∂iφ‖Hk′ (Rn) � a, and ‖φ‖Hk′ (Rn) � 1 (if m �= 0),

where k′ := k − 1.

3.2. The Auxiliary Function ψ and Its PDE

Motivated by the decay rate we anticipate for φ, we define the auxiliary func-
tion ψ by ψ := aκφ, where

κ :=

{
n
2 if |m| � n

2 ,
n
2 −

√
n2

4 − m2 if |m| � n
2 .

Then, using (5), it can be shown that ψ satisfies the equation

ψ̈ + (κ2 − nκ + m2)ψ + (n − 2κ)ψ̇ − 1
a2

Δψ = 0. (7)

3.3. The Case |m| > n
2

We have κ = n
2 , so that n − 2κ = 0, while κ2 − nκ + m2 = m2 − n2

4 , and thus
(7) becomes

ψ̈ − 1
a2

Δψ +
(
m2 − n2

4

)
ψ = 0.

We note that if φ ∈ H�(Rn) and φ̇ ∈ H�−1(Rn) for some �, then ψ ∈ H�(Rn)
too, and also

ψ̇ =
n

2
a

n
2 −1ȧφ + a

n
2 φ̇ ∈ H�−1(Rn).

Define the new energy E , associated with the ψ-evolution, by

E(t) :=
1
2

∫

Rn

(
ψ̇2 +

1
a2

|∇ψ|2 +
(
m2 − n2

4

)
ψ2

)
dnx.

Then, using the fact that a = et = ȧ > 0, and also Eq. (7), we obtain

E ′(t) =
∫

Rn

(
ψ̇ψ̈ − aȧ

a4
|∇ψ|2 +

1
a2

〈∇ψ,∇ψ̇〉 +
(
m2 − n2

4

)
ψψ̇

)
dnx

�
∫

Rn

(
ψ̇ψ̈ +

1
a2

〈∇ψ,∇ψ̇〉 +
(
m2 − n2

4

)
ψψ̇

)
dnx

�
∫

Rn

(
ψ̇

( 1
a2

Δψ −
(
m2 − n2

4

)
ψ

)
+

1
a2

〈∇ψ,∇ψ̇〉 +
(
m2 − n2

4

)
ψψ̇

)
dnx

=
1
a2

∫

Rn

(
ψ̇Δψ + 〈∇ψ,∇ψ̇〉

)
dnx =

1
a2

∫

Rn

∇ · (ψ̇∇ψ)dnx.
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For a fixed t, and for a ball B(0, r) ⊂ R
n, where r > 0, it follows from

the divergence theorem (since ψ̇ and ∇ψ are smooth) that
∫

B(0,r)

∇ · (ψ̇∇ψ)dnx =
∫

∂B(0,r)

ψ̇ 〈∇ψ,n〉dσr,

where dσr is the surface area measure on the sphere Sr = ∂B(0, r) and n is
the outward-pointing unit normal. The right-hand side surface integral tends
to 0 as r → +∞, by an application of Lemma 7.1, given in ‘Appendix 7’.

So for t � t0, we have E ′(t) � 0, which yields E(t) � E(t0). In particular,
for all t � t0, ‖ψ(t, ·)‖L2(Rn) � C, that is, ‖a

n
2 φ(t, ·)‖L2(Rn) � C, and so2

‖φ(t, ·)‖L2(Rn) � a− n
2 . (8)

Then, with enough regularity on φ0, φ1 at the outset, that is, if φ0 ∈ Hk(Rn)
and φ1 ∈ Hk−1(Rn) for a k > n

2 +2, and by considering (∂x1)i1 · · · (∂xn)inφ as
a solution to the Klein–Gordon equation, we arrive at3

‖φ(t, ·)‖Hk′ (Rn) � a− n
2 ,

where k′ := k − 2. As k′ = k − 2 > n
2 , we have, using the Sobolev inequality,

that

∀t � t0, ‖φ(t, ·)‖L∞(Rn) � a− n
2 .

This completes the proof of Theorem 3.1 in the case when |m| > n
2 .

3.4. The Case |m| < n
2

We have κ = n
2 −

√
n2

4 − m2, n−2κ = 2
√

n2

4 − m2 > 0, and κ2−nκ+m2 = 0.
Equation (7) becomes

ψ̈ + 2

(√
n2

4
− m2

)

ψ̇ − 1
a2

Δψ = 0.

Defining Ẽ(t) :=
1
2

∫

Rn

(

ψ̇2 +
1
a2

|∇ψ|2
)

dnx, we obtain

Ẽ ′(t) =

∫

Rn

(

ψ̇ψ̈ − ȧ

a3
|∇ψ|2 +

1

a2
〈∇ψ, ∇ψ̇〉

)

dnx

=

∫

Rn

(

ψ̇

(

−2

(√
n2

4
−m2

)

ψ̇+
1

a2
Δψ

)

− ȧ

a3
|∇ψ|2+

1

a2
〈∇ψ,∇ψ̇〉

)

dnx

=−2

(√
n2

4
−m2

) ∫

Rn

ψ̇2dnx− ȧ

a3

∫

Rn

|∇ψ|2dnx.

2We note that to reach this conclusion, we used Lemma 7.1, for which we need

ψ̇(t, ·), ∇ψ(t, ·) ∈ H1(Rn), which means that the initial conditions for φ must be such that
φ0 ∈ H2(Rn) and φ1 ∈ H1(Rn).
3Note that in order to use the estimate (8), for Dφ := (∂x1 )i1 · · · (∂xn)inφ replacing
φ, where |(i1, . . . , in)| =: k′, we must ensure that the initial conditions for Dφ, namely

(Dφ(t0, ·), Dφ̇(t0, ·)), are in (H2(Rn), H1(Rn)), which is guaranteed if the initial condition
for φ, namely (φ0, φ1), is in (Hk(Rn), Hk−1(Rn)), with k − k′ = 2.
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Using a = et = ȧ, we obtain

Ẽ ′(t) = −4

(√
n2

4
− m2

)
1
2

∫

Rn

ψ̇2dnx − 2
1
2

∫

Rn

1
a2

|∇ψ|2dnx

� −min

{

4

(√
n2

4
− m2

)

, 2

}

· 1
2

∫

Rn

(

ψ̇2 +
1
a2

|∇ψ|2
)

dnx

= − θ · Ẽ(t),

where

θ := min

{

4

(√
n2

4
− m2

)

, 2

}

> 0.

So Ẽ ′(t) + θ · Ẽ(t) � 0. Multiplying throughout by eθt > 0, we obtain
d
dt

(eθt · Ẽ(t)) � 0.

Integrating from t0 to t yields eθt · Ẽ(t) � eθt0 · Ẽ(t0), that is, Ẽ(t) � e−θt. So

‖ψ̇(t, ·)‖L2(Rn) �
√

2 Ẽ(t) � e− θ
2 t.

We have ψ(t,x) = ψ(t0,x) +
∫ t

t0

(∂tψ)(s,x)ds, and so

‖ψ(t, ·)‖L2(Rn) � ‖ψ(t0, ·)‖L2(Rn) +
∫ t

t0

‖(∂tψ)(s, ·)‖L2(Rn)ds,

� A +
∫ t

t0

Be− θ
2 sds = A + B

e− θ
2 t0 − e− θ

2 t

θ/2
� C.

Thus, for all t � t0, we have

‖φ(t, ·)‖L2(Rn) = a−κ‖ψ(t, ·)‖L2(Rn) � a−κ.

By considering (∂x1)i1 · · · (∂xn)inφ and using the Sobolev inequality, we have

∀t � t0, ‖φ(t, ·)‖L∞(Rn) � a−κ = a−( n
2 −

√
n2
4 −m2 ).

This completes the proof of Theorem 3.1 in the case when |m| < n
2 .

3.5. The Case |m| = n
2

We have κ = n
2 , and equation (7) becomes ψ̈ − 1

a2
Δψ = 0.

Defining the same energy as we used earlier in the case when |m| < n
2 ,

Ẽ(t) :=
1
2

∫

Rn

(
ψ̇2 +

1
a2

|∇ψ|2
)

dnx,

we obtain

Ẽ ′(t) =
∫

Rn

(
ψ̇ψ̈ − ȧ

a3
|∇ψ|2 +

1
a2

〈∇ψ,∇ψ̇〉
)

dnx
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=
∫

Rn

(
ψ̇

1
a2

Δψ− ȧ

a3
|∇ψ|2+

1
a2

〈∇ψ,∇ψ̇〉
)

dnx

=− ȧ

a3

∫

Rn

|∇ψ|2dnx � 0.

So Ẽ(t) � Ẽ(t0) for t � t0. In particular, ‖ψ̇(t, ·)‖L2(Rn) � B for t � t0. Again,

ψ(t,x) = ψ(t0,x) +
∫ t

t0

(∂tψ)(s,x)ds,

gives

‖ψ(t, ·)‖L2(Rn) � ‖ψ(t0, ·)‖L2(Rn) +
∫ t

t0

‖(∂tψ)(s, ·)‖L2(Rn)ds,

� A′ +
∫ t

t0

Bds � A + Bt � log a.

Thus, for all t � t0, we have

‖φ(t, ·)‖L2(Rn) = a−κ‖ψ(t, ·)‖L2(Rn) � a−κ log a.

Hence (by considering (∂x1)i1 · · · (∂xn)inφ and using the Sobolev inequality),

∀t � t0, ‖φ(t, ·)‖L∞(Rn) � a− n
2 log a. (9)

(One can show that this bound is sharp; see Appendix C (Section 8).)
This completes the proof of Theorem 3.1.

4. Decay in the Cosmological Region of the RNdS Spacetime

The Reissner–Nordström–de Sitter (RNdS) spacetime (M, g) is a solution to
the Einstein–Maxwell equations with a positive cosmological constant, and
it represents a pair4 of antipodal charged black holes in a spherical5 universe
which is undergoing accelerated expansion. The Reissner–Nordström–de Sitter
metric in n + 1 dimensions is given by

g = − 1
V

dr2 + V dt2 + r2dΩ2,

where

V = r2 +
2M

rn−2
− e2

rn−1
− 1,

4We note that there is no solution analogous to RNdS but with only one black hole. This is
analogous to (but much more complicated than, and still not fully understood) the fact that
one cannot have a single electric charge on a spherical universe. (Gauss’s law requires that
the total charge must be zero.) In fact, the fundamental solution of the Laplace equation
on the sphere gives a unit positive charge at some point and a unit negative charge at
the antipodal point. One can have more than two black holes, for instance the so-called
Kastor–Traschen solution [17].
5‘Spherical’ here means that the Cauchy hypersurface (that is, ‘space’) is an n-sphere.
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and dΩ2 is the unit round metric on Sn−1. The constants M and e are pro-
portional to the mass and the charge, respectively, of the black holes, and the
cosmological constant is chosen to be

Λ =
n(n − 1)

2
by an appropriate choice of units.

Consider the polynomial

p(r) := rn−1V (r) = rn+1 − rn−1 + 2Mr − e2.

As p(0) = −e2 < 0 and as p(r) r→∞−→ ∞, it follows that p will have a real root
in (0,+∞), and the largest real root of p, which we denote by rc, must be
positive. If r > rc, then clearly p(r) > 0, and so also V (r) > 0.

It can also be seen that p has at most three distinct positive roots. Sup-
pose, on the contrary, that p has more than three distinct positive roots:
r1 < r2 < r3 < r4. Applying Rolle’s theorem to p on [ri, ri+1] (i = 1, 2, 3),
we conclude that p′ must have three distinct roots r′

i ∈ (ri, ri+1) (i = 1, 2, 3).
Applying Rolle’s theorem to p′ on [r′

i, r
′
i+1] (i = 1, 2), we conclude that p′′

must have two distinct roots r′′
i ∈ (r′

i, r
′
i+1) (i = 1, 2). But

p′′ = rn−3n(n + 1)
(
r2 − (n − 1)(n − 2)

n(n + 1)

)
,

which has only one positive root, a contradiction.
The ‘subextremality’ assumption on the RNdS spacetime made in The-

orem 3.1 refers to a nondegeneracy of the positive roots of p: we assume that
there are exactly three positive roots, r−, r+ and rc, and 0 < r− < r+ < rc.
These describe the event horizon r = r+, and the Cauchy ‘inner’ horizon r =
r−. It can be seen that the subextremality condition then implies p′(rc) > 0.
(Indeed, p′(rc) cannot be negative, as otherwise p would acquire a root larger
than rc since p(r) r→∞−→ ∞. Also, if p′(rc) = 0, then Rolle’s theorem implies
again that p′ would have three positive roots, ones in (r−, r+) and (r+, rc),
and one at rc, which is impossible, as we had seen above.) p′(rc) > 0 implies
that V ′(rc) > 0. We will also assume that

V ′′(rc) > 0.

(See [6, Appendix 6] for the range of parameters for which this is guaranteed.)
Our assumptions have the following consequence, which will be used in our
proof of Theorem 4.2.

Lemma 4.1 (Global redshift) V ′(r) > 0 for all r � rc.

Proof. We have

V ′(r) =
rp′(r) − (n − 1)p(r)

rn
=

2rn+1 + 2(3 − n)Mr + (n − 1)e2

rn
=:

q(r)
rn

.

As V ′(rc) > 0, we have q(rc) > 0. Also, V ′′(rc) > 0 and so V ′ is increasing
near rc. But then q(r) = rnV ′(r) is also increasing near rc, and in particular,
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q′(rc) � 0. Let us suppose that there exists an r∗ > rc such that V ′(r∗) = 0,
and let r∗ be the smallest such root. Then, q(r∗) = 0 too. We note that

q′ = 2(n + 1)rn + 2(3 − n)M,

and so q′ can have only one nonnegative root, namely
(

(n−3)
n+1 M

) 1
n � 0.

1◦ r∗ is a repeated root of q. Then, q′(r∗) = 0.

If in addition q′(rc) = 0, then we arrive at a contradiction, since q′

then has two positive roots (at rc and at r∗), which is impossible.

If q′(rc) > 0, then we arrive at a contradiction as follows. As q
is increasing near rc, and since q(rc) > 0 = q(r∗), it follows by the
intermediate value theorem that there is some r′

c ∈ (rc, r∗) such that
q(r′

c) = q(rc). But by Rolle’s theorem applied to q on [rc, r
′
c], there must

exist an r′
∗ ∈ (rc, r

′
c) such that q′(r′

∗) = 0. Again, q′ acquires two zeros
(at r∗ and at r′

∗), which is impossible.
2◦ r∗ is a simple root of q. But as q(r) r→∞−→ ∞, it follows that there must

be at least one more root r∗∗ > r∗ of q. By Rolle’s theorem applied to q
on [r∗, r∗∗], it follows that q′(r′

∗∗) = 0 for some r′
∗∗ ∈ (r∗, r∗∗).

If in addition q′(rc) = 0, then we arrive at a contradiction, since q′

then has two positive roots (at rc and at r′
∗∗), which is impossible.

If q′(rc) > 0, then, as in the last paragraph of 1◦ above, there exists
an r′

∗ ∈ (rc, r
′
c) ⊂ (rc, r∗) such that q′(r′

∗) = 0. Thus, q′ again gets two
positive roots (at r′

∗ and at r′
∗∗), which is impossible.

This shows that our assumption that V ′ is zero beyond rc is incorrect. �

We will need the previous result in Sect. 4.5 in the analysis following (12)
(where in particular V ′ appears in the denominator).

The hypersurfaces of constant r are spacelike cylinders with a future-
pointing unit normal vector field N = V

1
2 ∂

∂r and volume element dVn =
V

1
2 rn−1dtdΩ.

The global structure of a maximal spherically symmetric extension of this
metric can be depicted by a conformal Penrose diagram shown below, repeated
periodically; see for example [7].

We are interested in the behaviour of the solution to the Klein–Gordon
equation in the cosmological region R5 of this spacetime (see Figure 1), bounded
by the cosmological horizon branches CH+

1 , CH+
2 , the future null infinity I +,

and the point i+. In particular, we want to obtain estimates for the decay rate
of φ as r → ∞. We guess the decay rates simply by substituting r instead of
et in the estimates we had obtained for the decay rate of φ with respect to t in
the case of the de Sitter universe in flat FLRW form from the previous Sect. 3.

We will prove the following result.
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Figure 1. Conformal diagram of the Reissner–Nordström–
de Sitter spacetime

Theorem 4.2. Suppose that
• ε > 0,
• m ∈ R,
• M > 0,
• e > 0,
• n > 2,
• (M, g) is the (n + 1)-dimensional subextremal Reissner–Nordström–de

Sitter solution given by the metric

g = − 1
V

dr2 + V dt2 + r2dΩ2,

where

V = r2 +
2M

rn−2
− e2

rn−1
− 1,

and dΩ2 is the metric of the unit (n − 1)-dimensional sphere Sn−1,
• k > n

2 + 2, and
• φ is a smooth solution to �gφ − m2φ = 0 such that

‖φ‖Hk(CH+
1 ) < +∞ and ‖φ‖Hk(CH+

2 ) < +∞,

where CH+
1 � CH+

2 � R × Sn−1 are the two components of the future
cosmological horizon, parameterised by the flow parameter of the global
Killing vector field ∂

∂t . (For CH+
1 and CH+

2 , we use the usual Sobolev
norms for R × Sn−1; see e.g. [4].)

Then, there exists a r0 large enough so that for all r � r0,

‖φ(r, ·)‖L∞(R×Sn−1) �
{

r− n
2 +ε if |m| > n

2 ,

r− n
2 +

√
n2
4 −m2 +ε if |m| � n

2 .
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4.1. Preliminary Energy Function

For a φ defined in the cosmological region R5, we define

φ′ :=
∂φ

∂r
and φ̇ :=

∂φ

∂t
.

We will also use the following notation:

/̊∇φ gradient of φ on Sn−1 with respect to the unit round metric,
| /̊∇φ| norm with respect to the unit round metric,
/̊Δφ Laplacian of φ on Sn−1 with respect to the unit round metric,
/̊g determinant of the unit round metric.

Suppose that φ satisfies the Klein–Gordon equation �gφ − m2φ = 0. Recall
that the energy–momentum tensor associated with φ is given by

Tμν = ∂μφ∂νφ − 1
2
gμν(∂α∂αφ + m2φ2).

Thus,

T (N,N) =
(

φ′2 − 1
2

(−1)
V

(
φ′2(−V ) + φ̇2 1

V
+

1
r2

| /̊∇φ|2 + m2φ2
))

V

=
1
2

(
V φ′2 +

1
V

φ̇2 +
1
r2

| /̊∇φ|2 + m2φ2
)
.

Define X := V
1
2

rn−1 N = V
1
2

rn−1 V
1
2 ∂

∂r = V
rn−1

∂
∂r . We define the energy

E(r) :=
∫

R×Sn−1
T (X,N)dVn

=
1
2

∫

R×Sn−1

(
V 2φ′2 + φ̇2 +

V

r2
| /̊∇φ|2 + m2V φ2

)
dtdΩ.

4.2. The Auxiliary Function ψ and Its PDE

The Klein–Gordon equation �gφ − m2φ = 0 can be rewritten as:

1√−g
∂μ(

√
−g ∂μφ) − m2φ = 0,

⇔ 1

rn−1
√

/̊g
∂μ(rn−1

√
/̊g gμν∂νφ) − m2φ = 0.

This becomes

1

rn−1
√

/̊g

(
∂r(rn−1

√
/̊g (−V )∂rφ) + ∂t(rn−1

√
/̊g

1
V

∂tφ) +
rn−1

√
/̊g

r2
/̊Δφ

)
− m2φ = 0

that is,

−(V φ′)′ − (n − 1)
r

V φ′ +
φ̈

V
+

1
r2

/̊Δφ − m2φ = 0,

⇔ φ′′ +
(n − 1)

r
φ′ +

V ′

V
φ′ − φ̈

V 2
− 1

r2V
/̊Δφ +

m2

V
φ = 0.
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Define ψ := rκφ, where

κ =

⎧
⎪⎪⎨

⎪⎪⎩

n

2
if |m| � n

2
,

n

2
−

√
n2

4
− m2 if |m| � n

2
.

Then, using the PDE for φ, it can be shown that

ψ′′ +
(

V ′

V
+

n − 1
r

− 2κ

r

)
ψ′ − ψ̈

V 2
− 1

r2V
/̊Δψ + θψ = 0, (10)

where θ :=
m2

V
+

κ

r

(1
r

− V ′

V

)
− κ

r2
(n − 1 − κ).

4.3. The Case |m| > n
2

Then, κ = n
2 , and (10) becomes

ψ′′ +
(

V ′

V
− 1

r

)
ψ′ − ψ̈

V 2
− 1

r2V
/̊Δψ + θψ = 0, (11)

where

θ := −n

2

(n

2
− 1

) 1
r2

+
m2

V
+

n

2r

(
1
r

− V ′

V

)
.

We will use an energy function to obtain the required decay of ψ for large
r, and in order to do so, we will need to keep careful track of the limiting
behaviour of the various functions appearing in the expression for θ and the
coefficients of the PDE (11). We will do this step-by-step in a sequence of
lemmas.

Lemma 4.3. Given any ε > 0, there exists an r0 large enough so that for all
r � r0,

2 + ε

r
� V ′

V
� 2 − ε

r
.

Proof. This follows immediately from

lim
r→∞ r

V ′

V
= lim

r→∞ r ·
2r − 2(n−2)M

rn−1 + e2(n−1)
rn

r2 + 2M
rn−2 − e2

rn−1 − 1
= lim

r→∞
2 − 2(n−2)M

rn + e2(n−1)
rn+1

1 + 2M
rn − e2

rn+1 − 1
r2

=2.

�

Lemma 4.4. There exists r0 large enough so that for r � r0, we have θ > 0.

(We note that the proof uses the fact that |m| > n
2 , and so this result is

specific to this subsection.)

Proof. As lim
r→∞

r2

V
= lim

r→∞
1

1+ 2M
rn − e2

rn+1 − 1
r2

=1, there exists a r′
0 such that

r2

V
� 1 − ε
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for r � r′
0. Also, by the previous lemma, there exists a r0 > r′

0 such that
V ′
V � 2+ε

r for all r � r0. Then, we have for r > r0 that

θ =
1
r2

(
−n

2

(n

2
− 1

)
+ m2 r2

V
+

n

2

(
1 − V ′

V
r
))

� 1
r2

(
−n2

4
+

n

2
+ m2(1 − ε) +

n

2

(
1 − (2 + ε)

r
r
))

=
1
r2

(
δ − ε

(
δ +

n

2
+

n2

4

))
,

where δ := m2 − n2

4 > 0.

Taking ε at the outset small enough so as to satisfy 0 < ε < δ

δ+ n
2 + n2

4

, we

see that θ > 0 for r � r0. �

Define the energy

E(r) :=
1
2

∫

R×Sn−1

(
ψ′2 +

1
V 2

ψ̇2 +
1

r2V
| /̊∇ψ|2 + θψ2

)
dtdΩ.

(We assume for the moment that this is finite for a sufficiently large r0. Later
on, in the subsection on redshift estimates, we will see how our initial finiteness
of Sobolev norms of φ on the two branches CH+

1 , CH+
2 of the cosmological

horizon guarantees this.)
We now proceed to find an expression for E ′(r), and to simplify it, we

will use (11), and the divergence theorem, to get rid of the terms involving ψ̈

and /̊Δψ, the spherical Laplacian of ψ:

E ′(r) =
∫

R×Sn−1

(
ψ′ψ′′ +

1
2

( 1
V 2

)′
ψ̇2 +

1
V 2

ψ̇ψ̇′ +
1
2

( 1
r2V

)′
| /̊∇ψ|2

+
1

r2V
〈 /̊∇ψ, ( /̊∇ψ)′〉 +

θ′

2
ψ2 + θψψ′

)
dtdΩ

=
∫

R×Sn−1

(
ψ′

(
−

(V ′

V
− 1

r

)
ψ′ +

1
V 2

ψ̈ +
1

r2V
/̊Δψ −��θψ

)

+
1
2

( 1
V 2

)′
ψ̇2 +

1
V 2

ψ̇ψ̇′ +
1
2

( 1
r2V

)′
| /̊∇ψ|2

+
1

r2V
〈 /̊∇ψ, ( /̊∇ψ)′〉 +

θ′

2
ψ2 +���θψψ′

)
dtdΩ

=
∫

R×Sn−1

(
−

(V ′

V
− 1

r

)
ψ′2 +

�
�

��1
V 2

ψ̈ψ′ +
�

�
��1

V 2
ψ̇ψ̇′

+
1

r2V

(���ψ′ /̊Δψ +
������〈 /̊∇ψ, ( /̊∇ψ)′〉

)

+
1
2

( 1
V 2

)′
ψ̇2 +

1
2

( 1
r2V

)′
| /̊∇ψ|2 +

θ′

2
ψ2

)
dtdΩ.

We note that in the above, getting rid of the spherical Laplacian by using
the divergence theorem is allowed because the compact sphere Sn−1 has no
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boundary. For the second time derivative, however, there is a boundary at
infinity (with two connected components), namely

lim
t→+∞

∫

Sn−1
ψ̇ψ′dΩ − lim

t→−∞

∫

Sn−1
ψ̇ψ′dΩ,

which can be seen to be equal to 0, by Lemma 7.3 from ‘Appendix B’.
Thus,

E ′(r)=
∫

R×Sn−1

(
−

(V ′

V
−1

r

)
ψ′2+

1
2

( 1
V 2

)′
ψ̇2+

1
2

( 1
r2V

)′
| /̊∇ψ|2 +

θ′

2
ψ2

)
dtdΩ.

Let ε > 0 be given. Then, there exists an r0 large enough such that:

(a)
V ′

V
− 1

r
� 2 − ε

r
− 1

r
=

1 − ε

r
,

(b)
( 1

V 2

)′
= −2

V ′

V

1
V 2

� −2
(2 − ε)

r

1
V 2

,

(c)
( 1

r2V

)′
= − 1

r2V

(2
r

+
V ′

V

)
� − 1

r2V

(2
r

+
2 − ε

r

)
= − 1

r2V

(4 − ε)
r

,

(d)
θ′

θ
=

1
r

(−n
2 (n

2 − 1)(−2)− m2V ′
r3V 2 − n

2r5 ( 1
r − V ′

V ) + n
2r4 (− 1

r2 − V ′′V −V ′2
V 2 )

−n
2 (n

2 − 1) + m2

r2V + n
2r3 ( 1

r − V ′
V )

)

� 1
r
(−2 + ε).

Hence, using (a)–(d) above, we obtain

E ′(r) =

∫

R×Sn−1

(
−

(V ′

V
− 1

r

)
ψ′2 +

1

2

( 1

V 2

)′
ψ̇2 +

1

2

( 1

r2V

)′
| /̊∇ψ|2 +

θ′

2
ψ2

)
dtdΩ

�
∫

R×Sn−1

(
− (1 − ε)

r
ψ′2 +

1

2

(−2)(2 − ε)

rV 2
ψ̇2 +

1

2

(−1)

r2V

(4 − ε)

r
| /̊∇ψ|2

+
1

2

1

r
(−2 + ε)θψ2

)
dtdΩ

= −1

r

1

2

∫

R×Sn−1

(
2(1 − ε)ψ′2 + 2(2 − ε)

1

V 2
ψ̇2 + (4 − ε)

1

r2V
| /̊∇ψ|2

+(2 − ε)θψ2) dtdΩ

� −2(1 − ε)

r
E(r).

Using Grönwall’s inequality (see e.g. [12, Appendix 7(j)]), we obtain

E(r) � E(r0)e
∫ r
r0

− 2(1−ε)
r dr = E(r0)

( r

r0

)−2(1−ε)

� r−2+2ε.

Thus,
∫

R×Sn−1
θψ2dtdΩ � 2E(r) � r−2+2ε, and so

∫

R×Sn−1
ψ2dtdΩ � r2ε

r2θ
� r2ε

r2 1
r2

= r2ε.

Hence, ‖ψ(r, ·)‖L2(R×Sn−1) � rε. Consequently,

‖φ(r, ·)‖L2(R×Sn−1) � r− n
2 +ε.
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Recall that Sn−1 admits n(n−1)
2 independent Killing vectors, given by

Lij = xi ∂

∂xj
− xj ∂

∂xi
,

for i < j (under the usual embedding Sn−1 ⊂ R
n). As ∂

∂t and Lij are Killing
vector fields, it follows that φ̇ and Lij · φ are also solutions to �gφ − m2φ = 0.
Commuting with the Killing vector fields ∂

∂t and Lij , if we assume at the
moment6 that at r0 we have ‖φ(r0, ·)‖Hk({r=r0}) < +∞, then we also obtain
for all r � r0 that ‖φ(r, ·)‖Hk′ (R×Sn−1) � r− n

2 +ε, where k′ = k − 2 > n
2 . By

the Sobolev inequality,7 ‖φ(r, ·)‖L∞(R×Sn−1) � r− n
2 +ε.

This completes the proof of Theorem 4.2 in the case when |m| > n
2 (pro-

vided we show the aforementioned finiteness of energy, which will be carried
out in Sect. 4.5 on redshift estimates).

4.4. The Case |m| � n
2

Let ε′ > 0 be given. Define

Ẽ(r) =
1
2

∫

R×Sn−1

(
ψ′2 +

1
V 2

ψ̇2 +
1

r2V
| /̊∇ψ|2 +

ε′

r2
ψ2

)
dtdΩ.

We now proceed to find an expression for Ẽ ′(r), and we will simplify it using
(10) and the divergence theorem, in order to get rid of the terms involving ψ̈
and the spherical Laplacian of ψ:

Ẽ ′(r)

=
∫

R×Sn−1

(
ψ′ψ′′ +

1
2

( 1
V 2

)′
ψ̇2 +

1
V 2

ψ̇ψ̇′ +
1
2

( 1
r2V

)′
| /̊∇ψ|2

+
1

r2V
〈 /̊∇ψ, ( /̊∇ψ)′〉 − ε′

r3
ψ2 +

ε′

r2
ψψ′

)
dtdΩ

=
∫

R×Sn−1

(

ψ′
(

−
(V ′

V
+

n − 1
r

− 2κ

r

)
ψ′ +

�
��̈ψ

V 2
+

����
1

r2V
/̊Δψ − θψ

)

+
1
2

( 1
V 2

)′
ψ̇2 +

�
�

��1
V 2

ψ̇ψ̇′ +
1
2

( 1
r2V

)′
| /̊∇ψ|2 +

��������
1

r2V
〈 /̊∇ψ, ( /̊∇ψ)′〉

− ε′

r3
ψ2 +

ε′

r2
ψψ′

)
dtdΩ

=
∫

R×Sn−1

(
−

(V ′

V
+

n − 1
r

− 2κ

r

)
ψ′2+

1
2

( 1
V 2

)′
ψ̇2

6This will be proved later in the subsection on redshift estimates.
7The part of the Sobolev embedding theorem concerning inclusion in Hölder spaces holds for
a complete Riemannian manifold with a positive injectivity radius and a bounded sectional
curvature; see e.g. [16, §3.3, Thm.3.4] or [4, Ch.2].
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+
1
2

( 1
r2V

)′
| /̊∇ψ|2− ε′

r3
ψ2

)
dtdΩ

+
(

ε′

r2
− θ

)∫

R×Sn−1
ψψ′dtdΩ.

Again, for getting rid of the spherical Laplacian, we use the divergence theo-
rem, noting that the sphere Sn−1 has no boundary. For handling the second
time derivative, as before, we note that there is a boundary at infinity (with
two connected components), which can be seen to be equal to 0, by Lemma 7.3
from Appendix B (Section 7). Thus,

Ẽ ′(r) =
∫

R×Sn−1

(
−

(V ′

V
+

n−1
r

− 2κ

r

)
ψ′2+

1
2

( 1
V 2

)′
ψ̇2+

1
2

( 1
r2V

)′
| /̊∇ψ|2

− ε′

r3
ψ2

)
dtdΩ

+
(

ε′

r2
− θ

)∫

R×Sn−1
ψψ′dtdΩ.

Now, there exists an r0 large enough such that for all r � r0, we have:

(i)
V ′

V
+

n−1
r

− 2κ

r
� 2−ε′

r
+

n−1
r

− 2κ

r
=

1−ε′+(n−2κ)
r

� 1−ε′

r
, using n−2κ�0.

(ii)
( 1

V 2

)′
� −2(2 − ε′)

r
· 1
V 2

.

(iii)
( 1

r2V

)′
� − 1

r2V

(2
r

+
2 − ε′

r

)
.

Using (i), (ii) and (iii), it can be seen that

Ẽ′(r) �
∫

R×Sn−1

(
− (1−ε′)

r
ψ′2− 1

2

2(2−ε′)
rV 2

ψ̇2− 1

2

1

r2V

(2

r
+

2−ε′

r

)
| /̊∇ψ|2− ε′

r3
ψ2

)
dtdΩ

+

(
ε′

r2
− θ

) ∫

R×Sn−1
ψψ′dtdΩ

� −1

r

1

2

∫

R×Sn−1

(
2(1−ε′)ψ′2+2(2−ε′)

1

V 2
ψ̇2+(4 − ε′)

1

r2V
| /̊∇ψ|2+

2ε′

r2
ψ2

)
dtdΩ

+

(
ε′

r2
− θ

) ∫

R×Sn−1
ψψ′dtdΩ.

Hence, Ẽ ′(r) � −2(1 − ε′)
r

Ẽ(r) +
( ε′

r2
− θ

)∫

R×Sn−1
ψψ′dtdΩ. We have

θ =
m2

V
+

κ

r

(1
r

− V ′

V

)
− κ

r2
(n − 1 − κ)

=
1
r2

(m2

V
r2

+ κ
(
1 − V ′

V
r
)

− κ(n − 1 − κ)
)
.

As
V

r2

r→∞−→ 1 and
V ′

V
r

r→∞−→ 2, it follows that

r2θ
r→∞−→ m2

1
+ κ(1 − 2) − κ(n − 1 − κ) = m2 − κn + κ2 = 0.
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Thus, given ε′ > 0, there exists an r0 large enough such that for r � r0,
|r2θ| < ε′, that is, |θ| < ε′

r2 . So

Ẽ ′(r) � −2(1 − ε′)
r

Ẽ(r) +
( ε′

r2
− θ

)∫

R×Sn−1
ψψ′dtdΩ

� −2(1 − ε′)
r

Ẽ(r) +
( ε′

r2
+

ε′

r2

) ∣∣
∣∣

∫

R×Sn−1
ψψ′dtdΩ

∣∣
∣∣ .

The Cauchy–Schwarz inequality applied to the last integral gives
∣∣∣∣

∫

R×Sn−1
ψψ′dtdΩ

∣∣∣∣ �
√∫

R×Sn−1
ψ2dtdΩ ·

√∫

R×Sn−1
ψ′2dtdΩ

�
√

2r2

ε′ Ẽ(r) ·
√

2 Ẽ(r) =
2r√
ε′ Ẽ(r).

So we obtain

Ẽ ′(r) � −2(1 − ε′)
r

Ẽ(r) +
2ε′

r2

2r√
ε′ Ẽ(r) = (−2 + 2ε′ + 4

√
ε′)

1
r
Ẽ(r).

Application of Grönwall’s inequality yields

Ẽ(r) � Ẽ(r0)e
∫ r
r0

(−2+2ε′+4
√

ε′) 1
r dr =

Ẽ(r0)

r−2+2ε′+4
√

ε′
0

r−2+2ε′+4
√

ε′
.

So
∫

R×Sn−1
ψ2dtdΩ =

2r2

ε′
1
2

∫

R×Sn−1

ε′

r2
ψ2dtdΩ � 2r2

ε′ Ẽ(r)

� 2r2

ε′
Ẽ(r0)

r−2+2ε′+4
√

ε′
0

r−2+2ε′+4
√

ε′
=

2Ẽ(r0)

ε′r−2+2ε′+4
√

ε′
0

r2ε′+4
√

ε′
.

Thus, ‖ψ(r, ·)‖L2(R×Sn−1) �

√
2Ẽ(r0)

ε′
1

r−1+ε′+2
√

ε′
0

rε′+2
√

ε′
, and so

‖φ(r, ·)‖L2(R×Sn−1) �

√
2Ẽ(r0)

ε′
1

r−1+ε′+2
√

ε′
0

r−κ+ε′+2
√

ε′
.

Given ε > 0, arbitrarily small, we can choose ε′ = ε′(ε) > 0 small enough so
that ε′ + 2

√
ε′ < ε at the outset, so that ‖φ(r, ·)‖L2(R×Sn−1) � r−κ+ε. Again

assuming at the moment that at r0 we have ‖φ(r0, ·)‖Hk({r=r0}) < +∞, and
by commuting with the Killing vector fields ∂

∂t and Lij , then we also obtain
for all r � r0 that

‖φ(r, ·)‖Hk′ (R×Sn−1) � r−( n
2 −

√
n2
4 −m2 )+ε,

where k′ = k − 2 > n
2 . By the Sobolev inequality, this yields

‖φ(r, ·)‖L∞(R×Sn−1) � r−( n
2 −

√
n2
4 −m2 )+ε.



2372 J. Natário, A. Sasane Ann. Henri Poincaré

This completes the proof of Theorem 4.2 in the case when |m| � n
2 (provided

we show the finiteness of energy, which will be carried out in the subsection
on redshift estimates below).

4.5. Redshift Estimates

The last step is to use redshift estimates to transfer finiteness of the energies
along the branches CH+

1 and CH+
2 of the cosmological horizon to finiteness at

r = r0, justifying the finiteness of the energies E(r0) and Ẽ(r0) assumed in
the previous two subsections. Here, we do not include all the details of the
computations, since they are analogous to the corresponding estimates given
in [8, §3.6], and the interested reader can also find the details for our case spelt
out in the arxiv version of our paper [19].

Define u := t +
∫ r

r∗

1
V

dr, where r∗ > rc is arbitrary, but fixed. Then,

du = dt +
1
V

dr.

The Reissner–Nordström–de Sitter metric can be rewritten using the coordi-
nates (u, r, . . .), instead of the old (t, r, . . .)-coordinates, as follows:

g = − 1
V

dr2 + V dt2 + r2dΩ2 = V du2 − 2dudr + r2dΩ2.

This new coordinate system (u, r, . . .) extends across the cosmological horizon
r = rc (where V = 0). The hypersurfaces of constant u are null and transverse
to the cosmological horizon. Thus, only one of the branches of the cosmological
horizon, namely CH+

1 , is covered by the (u, r, . . .)-coordinates. (In order to
cover the other branch CH+

2 , where u = −∞, we can introduce

v := −t +
∫ r

r∗

1
V

dr,

and use the (v, r, . . .)-coordinate chart.) We will only consider CH+
1 in the

remainder of this subsection, since CH+
2 can be treated analogously.

The Killing vector field K = ∂
∂u = ∂

∂t is well defined across CH+
1 and

is null on the cosmological horizon CH+
1 , even though the t-coordinate is not

defined there. Consider the vector field in the (u, r, . . .)-coordinate chart, Y =
( ∂

∂r )u. The subscript u means that the integral curves of Y in the (u, r, . . .)-
coordinate chart have a constant u-coordinate. Then, du(Y ) = 0 and dr(Y ) =
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1. In the (t, r, . . .)-coordinate chart, Y can be expressed as Y = ∂
∂r − 1

V
∂
∂t . Let

the vector field X be defined by X = V
1
2

rn−1 N = V
rn−1

∂
∂r in the old (t, r, . . .)-

coordinate chart. To find the expression for X in the (u, r, . . .)-coordinate chart
induced basis vectors, we first find N = − grad r

|grad r| in the (u, r, . . .)-coordinate

chart induced basis vectors. If ω := − 1√
V

dr, then N = gμνων = 1√
V

(
∂

∂u +

V ∂
∂r

)
. So X =

√
V

rn−1 N = 1
rn−1 ( ∂

∂u + V ∂
∂r ). The energy

E(r) =

∫

R×Sn−1
T (X, N)dVn =

1

2

∫

R×Sn−1

(
V 2φ′2+ φ̇2+

V

r2
| /̊∇φ|2+ m2V φ2

)
dtdΩ

r→rc−→ 1

2

∫

R×Sn−1 (CH+
1 )

(K · φ)2dudΩ +
1

2

∫

R×Sn−1 (CH+
2 )

(K · φ)2dvdΩ

(since V (rc) = 0). So E(r) ‘loses control’ of the transverse and angular deriva-
tives as r → rc. To remedy this problem, we define a new energy Ẽ, by adding
Y to X, obtaining

Ẽ(r) := E(r) +
∫

R×Sn−1
T (Y,N)dVn.

In (t, r, . . .)-coordinates, N =
√

V ∂r. So T (Y,N) = 1√
V

(T (N,N) − T (∂t, ∂r)).

We have T (∂t, ∂r) = φ̇φ′. So

Ẽ(r) = E(r)+

∫

R×Sn−1

(
1√
V

1

2

(
V φ′2+

φ̇2

V
+

| /̊∇φ|2
r2

+m2φ2
)
− 1√

V
φ̇φ′

) √
V rn−1dtdΩ

= E(r)+

∫

R×Sn−1

1

2

(
V (Y · φ)2+

1

r2
| /̊∇φ|2+m2φ2

)
rn−1dtdΩ.

We now have

Ẽ(rc) = E(rc) +
rn−3
c

2

∫

R×Sn−1

| /̊∇φ|2dudΩ +
rn−3
c

2

∫

R×Sn−1

| /̊∇φ|2dvdΩ

+
m2rn−1

c

2

∫

R×Sn−1

φ2dudΩ +
m2rn−1

c

2

∫

R×Sn−1

φ2dvdΩ,

so that using Ẽ instead of E allows some control of the angular derivatives
as r → rc. Note that Ẽ(rc) is equivalent to ‖φ‖2

H1(CH+
1 )

+ ‖φ‖2
H1(CH+

2 )
. We

will now compute the deformation tensor Ξ corresponding to the multiplier Y .
We have [− 1

V ∂t, ∂r] = −V ′
V ∂t, L∂r

g = V ′
V dr2 + V ′dt2 + 2rdΩ2, and L− 1

V ∂t
g =

2V dt (− V ′
V 2 )dr. Hence, Ξ = 1

2LY g = 1
2V ′du2 + rdΩ2. We have du = −g(Y, ·).

Also, we recall that Tμν = ∂μφ∂νφ − gμν

2 (∂αφ∂αφ + m2φ2),

TμνΞμν =
1
2
V ′(Y ·φ)2 +

1
r3

| /̊∇φ|2 − n − 1
2r

〈dφ, dφ〉 − n − 1
2r

m2φ2. (12)
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We have 〈dφ, dφ〉 = −2(K · φ)(Y · φ) − V (Y · φ)2 + 1
r2 | /̊∇φ|2. Combining

(12) and the above, we obtain

TμνΞμν =
(V ′

2
+

n−1
2r

V
)
(Y ·φ)2+

n−1
r

(K ·φ)(Y ·φ)− n−3
2r3

| /̊∇φ|2− n−1
2r

m2φ2

=
V ′

2

(
Y ·φ+

n−1
rV ′ (K ·φ)

)2

− (n−1)2

2r2V ′ (K ·φ)2− n−3
2r3

| /̊∇φ|2− n−1
2r

m2φ2.

Now as V ′(r) > 0 for r � rc (global redshift), it follows that the first
summand in the last expression is nonnegative, and so we obtain the inequality

TμνΞμν � − (n − 1)2

2r2V ′ (K · φ)2 − n − 3
2r3

| /̊∇φ|2 − n − 1
2r

m2φ2. (13)

Now suppose that r0 is fixed. As r2V ′(r) > 0 for all r ∈ [rc, r0], we have
min

r∈[rc,r0]
r2V ′(r) > 0. Thus, − (n−1)2

2r2V ′ � − (n−1)2

min
r∈[rc,r0]

r2V ′(r) =: −C1(r0). Similarly,

for r ∈ [rc, r0],
1
r3

� 1
r3
c

, and so −n−3
2r3 � −n−3

2r3
c

=: −C̃2(rc). Also, for r ∈

[rc, r0], − (n−1)
2r m2 � − (n−1)

2rc
m2 =: −C3(rc). If we set Π := 1

2LXg, then from
Step 1 of the proof of Theorem 5.3 (see in particular the inequality (17) on
page 35), we have for r > rc that

TμνΠμν � −
(

1 +
n

2
+

e2

2rn−1
c

)
1

rn+2
| /̊∇φ|2 � −

(
1 +

n

2
+

e2

2rn−1
c

)
1

rn+2
c︸ ︷︷ ︸

=:
˜̃
C2(rc)

| /̊∇φ|2.

Set C2(rc) := C̃2(rc) + ˜̃
C2(rc). We have

TμνΠμν + TμνΞμν � −max{C1(r0), C2(rc), C3(rc)}︸ ︷︷ ︸
=:C(rc,r0)>0

·
(
(K ·φ)2 + | /̊∇φ|2 + φ2

)
.

For r1 ∈ (rc, r0), and T > 0, define D = {r = r1} ∩ {−T � t � T}. We
now apply the divergence theorem, with the current J corresponding to the
multiplier X +Y , in the region T = D+(D) ∩ {r � r0}. Noticing that the flux
across the future null boundaries is less than or equal to 0, we obtain, after
passing the limit T → ∞, that

Ẽ(r1) − Ẽ(r0) � −
∫ r0

r1

∫

R×Sn−1
C(r0, rc)

(
(K · φ)2 + | /̊∇φ|2+φ2

)
rn−1dtdΩdr.

(14)

But

Ẽ(r) =
1
2

∫

R×Sn−1

(
V 2φ′2 + φ̇2 +

V

r2
| /̊∇φ|2 + m2V φ2

)
dtdΩ

+
1
2

∫

R×Sn−1

(
V (Y · φ)2 +

1
r2

| /̊∇φ|2 + m2φ2

)
rn−1dtdΩ.
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We have
∫ r0

r1

∫

R×Sn−1
(K ·φ)2rn−1dtdΩdr�

∫ r0

r1

∫

R×Sn−1
φ̇2rn−1

0 dtdΩdr � 2rn−1
0

∫ r0

r1

Ẽ(r)dr

∫ r0

r1

∫

R×Sn−1
| /̊∇φ|2rn−1dtdΩdr �

∫ r0

r1

∫

R×Sn−1

| /̊∇φ|2
r2

rn−1r2dtdΩdr � 2r2
0

∫ r0

r1

Ẽ(r)dr
∫ r0

r1

∫

R×Sn−1
φ2rn−1dtdΩdr � 2

m2

∫ r0

r1

Ẽ(r)dr.

Using the above three estimates, it follows from (14) that

Ẽ(r1) − Ẽ(r0) �= −
∫ r0

r1

k(r0, rc)Ẽ(r)dr, (15)

where k(r0, rc) := C(r0, rc)(2rn−1
0 + 2r2

0 + 2
m2 ). Now suppose r2 is such that

rc < r1 < r2 < r0. If we redo all of the above steps in order to obtain (15),
but with r2 replacing r0, we obtain

Ẽ(r1) − Ẽ(r2) � −
∫ r2

r1

k(r2, rc)Ẽ(r)dr, (16)

where k(r2, rc) = C(r2, rc)(2rn−1
2 + 2r2

2 + 2
m2 ). But

k(r2, rc) � max{C1(r2), C2(rc), C3(rc)} ·
(

2rn−1
0 + 2r2

0 +
2

m2

)
.

As C1(r2)= (n−1)2

min
r∈[rc,r2]

r2V ′(r) � (n−1)2

min
r∈[rc,r0]

r2V ′(r) =C1(r0), k(r2, rc) � k(r0, rc). From

(16), we get

Ẽ(r1) − Ẽ(r2) � −
∫ r2

r1

k(r2, rc)Ẽ(r)dr � −
∫ r2

r1

k(r0, rc)Ẽ(r)dr.

Consequently, for all r2 ∈ [r1, r0), Ẽ(r2) � Ẽ(r1) +
∫ r2

r1

k(r0, rc)Ẽ(r)dr. By

the integral form of Grönwall’s inequality (see e.g. [24, Thm. 1.10]), we obtain
for all r2 ∈ [r1, r0) that

Ẽ(r2) � Ẽ(r1)e
∫ r2
r1

k(r0,rc)dr = Ẽ(r1)ek(r0,rc)·(r2−r1).

As r2 ↗ r0, we get Ẽ(r0) � Ẽ(r1)ek(r0,rc)·(r0−r1). This holds for all r1 ∈
(rc, r0). Passing the limit as r1 ↘ rc, we obtain Ẽ(r0) � Ẽ(rc)ek(r0,rc)·(r0−rc).

So E(r0)� Ẽ(r0)� Ẽ(rc)ek(r0,rc)·(r0−rc) � Ẽ(rc)� ‖φ‖2
H1(CH+

1 )
+‖φ‖2

H1(CH+
2 )

<∞.

Commuting with the Killing vector fields ∂
∂t and Lij , we see that the

hypothesis from Theorem 4.2, namely ‖φ‖Hk(CH+
1 ) < +∞ and ‖φ‖Hk(CH+

2 ) <

+∞, for some k > n
2 +2, yields also ‖φ‖Hk({r=r0}) � ‖φ‖Hk(CH+

1 )+‖φ‖Hk(CH+
2 ) <

+∞. We now show that this justifies the assumption used in the previous two
subsections. For simplicity, we only consider just one of the energies

E(r) =
1
2

∫

R×Sn−1

(
ψ′2 +

1
V 2

ψ̇2 +
1

r2V
| /̊∇ψ|2 + θψ2

)
dtdΩ.
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(The proof of the finiteness of Ẽ(r0) is entirely analogous.) As ψ = rκφ, we
obtain finiteness of the last summand, namely

∫

R×Sn−1
θ(r0) (ψ(r0, ·))2 dtdΩ � θ(r0)r2κ

0 ‖φ(r0, ·)‖2
H1({r=r0}) < +∞.

We have
∫

R×Sn−1
(φ′(r0, ·))2 dtdΩ � 2E(r0)

(V (r0))2
< +∞.

Since ψ′(r0, ·) = κrκ−1
0 φ(r0, ·) + rκ

0φ′(r0, ·), and as φ(r0, ·) ∈ H1({r

= r0}), we have ψ(r0, ·) ∈ L2(R × Sn−1), that is,
∫

R×Sn−1
(ψ′(r0, ·))2 dtdΩ <

+∞.
We also have

∫

R×Sn−1

1
(V (r0))

2

(
ψ̇(r0, ·)

)2

dtdΩ � r2κ
0

(V (r0))
2 ‖φ(r0, ·)‖2

H1({r=r0}) < +∞.

Finally,
∫

R×Sn−1

1
r2
0V (r0)

| /̊∇ψ(r0, ·)|2dtdΩ � ‖φ(r0, ·)‖2
H1({r=r0}) < +∞.

Thus, each summand in the expression for E(r0) is finite. This completes the
proof of Theorem 4.2.

5. Decay in RNdS When m = 0, the Wave Equation

In [8, Theorem 2], the following result was shown:

Theorem 5.1. Suppose that
• δ > 0,
• M > 0,
• e � 0,
• n > 2,
• (M, g) is the (n + 1)-dimensional subextremal Reissner–Nordström–de

Sitter solution given by the metric

g = − 1
V

dr2 + V dt2 + r2dΩ2,

where

V = r2 +
2M

rn−2
− e2

rn−1
− 1,

and dΩ2 is the metric of the unit (n − 1)-dimensional sphere Sn−1,
• k > n

2 + 2, and
• φ is a smooth solution to �gφ = 0 such that

‖φ‖Hk(CH+
1 ) < +∞ and ‖φ‖Hk(CH+

2 ) < +∞,

where CH+
1 � CH+

2 � R × Sn−1 are the two components of the future
cosmological horizon, parameterised by the flow parameter of the global
Killing vector field ∂

∂t .
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Then, there exists a r0 large enough so that for all r � r0,

‖∂rφ(r, ·)‖L∞(R×Sn−1) � r−3+δ.

Using a method similar to the one we used to show Rendall’s conjecture
in Theorem 2.3, we can improve the almost-exact bound of r−3+δ to r−3.

Remark 5.2. As observed in [8, Remark 1.4], this decay rate bound of r−3

for ∂rφ is in fact the decay rate one would expect in the light of Rendall’s
conjecture. Indeed, for freely falling observers in the cosmological region, one
has

r(τ) ∼ eτ ∼ a(τ),

where τ is the proper time, and a(τ) is the radius of a comparable de Sitter
universe in flat FLRW form, giving

∂rφ ∼ ∂τφ

∂τr
∼ e−2τ

eτ
∼ 1

r3
.

Thus, our improved version of Theorem 5.1 is the following result.

Theorem 5.3. Suppose that
• M > 0,
• e � 0,
• n > 2,
• (M, g) is the (n + 1)-dimensional subextremal Reissner–Nordström–de

Sitter solution given by the metric

g = − 1
V

dr2 + V dt2 + r2dΩ2,

where

V = r2 +
2M

rn−2
− e2

rn−1
− 1,

and dΩ2 is the metric of the unit (n − 1)-dimensional sphere Sn−1,
• k > n

2 + 2, and
• φ is a smooth solution to �gφ = 0 such that

‖φ‖Hk(CH+
1 ) < +∞ and ‖φ‖Hk(CH+

2 ) < +∞,

where CH+
1 � CH+

2 � R × Sn−1 are the two components of the future
cosmological horizon, parameterised by the flow parameter of the global
Killing vector field ∂

∂t .
Then, there exists a r0 large enough so that for all r � r0,

‖∂rφ(r, ·)‖L∞(R×Sn−1) � r−3.

Proof. Step 1: We will first establish the following estimates: there exists an
r0 large enough such that for all r � r0,

‖φ̈(r, ·)‖L∞(R,Sn−1) � 1, ‖ /̊Δφ(r, ·)‖L∞(R,Sn−1) � 1.

We will follow [8, §3.2] in order to obtain the bounds above, which will be
needed in Step 2 of our proof below. We repeat this preliminary step here
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from [8, §3.2] for the sake of completeness and for the convenience of the
reader.

Suppose φ satisfies the wave equation �gφ = 0. The energy–momentum
tensor associated with φ is given by Tμν = ∂μφ∂νφ − 1

2gμν∂α∂αφ. Thus,

T (N,N)=
(
φ′2− 1

2
(−1)
V

(
φ′2(−V )+

φ̇2

V
+

1
r2

| /̊∇φ|2
))

V =
1
2

(
V φ′2+

φ̇2

V
+

1
r2

| /̊∇φ|2
)
.

Define X :=
V

1
2

rn−1
N =

V
1
2

rn−1
V

1
2

∂

∂r
=

V

rn−1

∂

∂r
.

The current J is given by Jμ := TμνXν . We define the energy

E(r) :=
∫

R×Sn−1
T (X,N)dVn =

1
2

∫

R×Sn−1

(
V 2φ′2+φ̇2 +

V

r2
| /̊∇φ|2

)
dtdΩ.

The deformation tensor Π associated with the multiplier X is given by

Π =
1
2
LXg = − 1

V
drLXdr +

V

2rn−1

V ′

V 2
dr2 +

V ′V
2rn−1

dt2 +
V

rn−1
rdΩ2.

It can be shown that LXdr =
( V ′

rn−1
− (n − 1)V

rn

)
dr. Thus,

Π = − 1
V

( V ′

rn−1
− (n − 1)V

rn

)
dr2+

V ′

2rn−1V
dr2+

V ′V
2rn−1

dt2+
V

rn−1
rdΩ2

=
V ′

2rn−1

(
− 1

V
dr2 + V dt2

)

︸ ︷︷ ︸
=:Π(1)

+
n − 1
rn

dr2

︸ ︷︷ ︸
=:Π(2)

+
V

rn−2
dΩ2

︸ ︷︷ ︸
Π(3)

.

We have

TμνΠ(1)
μν =

V ′

2rn−1

(
− 1

2
V φ′2− 1

2V
φ̇2− 1

2r2
| /̊∇φ|2

+
1
V

(
φ̇2− 1

2
V

(
φ′2(−V ) + φ̇2 1

V
+

1
r2

| /̊∇φ|2
)))

=
V ′

2rn−1

(
− 1

r2
| /̊∇φ|2

)
.

Also, TμνΠ(2)
μν =

(n − 1)
2rn

(
V 2φ′2 + φ̇2 +

V

r2
| /̊∇φ|2

)
. Finally,

TμνΠ(3)
μν =

V

rn−2

( 1
r4

| /̊∇φ|2− (n − 1)
2r2

(
φ′2(−V )+φ̇2 1

V
+

1
r2

| /̊∇φ|2
))

=
V

rn+2
| /̊∇φ|2 +

(n − 1)
2rn

(
V 2φ′2−φ̇2− V

r2
| /̊∇φ|2

)
.

Consequently, the full bulk term is

∇μJμ = TμνΠμν =
(n − 1)

rn
V 2φ′2 + | /̊∇φ|2

( V

rn+2
− V ′

2rn+1

)
.

Using the expression for V , we compute

V

rn+2
− V ′

2rn+1
= − 1

rn+2

(
1 +

(n + 1)e2

2rn−1
− nM

rn−2

)
.
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For r > rc, we have V (r) > 0, and so

1 +
(n + 1)e2

2rn−1
− nM

rn−2
= 1 − n

2

(
r2 +

2M

rn−2
− e2

rn−1
− 1

)
− n

2
+

e2

2rn−1

= 1 − n

2
V (r) − n

2
+

e2

2rn−1

� 1 − 0 − n

2
+

e2

2rn−1
� 1 +

n

2
+

e2

2rn−1
c

=: C.

Hence,

∇μJμ = TμνΠμν � − C

rn+2
| /̊∇φ|2. (17)

For each T < 0, define the set C := {r = r0} ∩ {−T � t � T}. Also, consider
the region S := D+(C) ∩ {r � r1}.

We will apply the divergence theorem to the current J on the region S.
As the flux across the future null boundaries is nonpositive, we have

−
∫ r1

r0

∫

R×Sn−1

C

rn+2
| /̊∇φ|2dtdΩdr �

∫

S
(∇μJμ)ε

∫

null
part

J⌟ ε

︸ ︷︷ ︸
�0

+
∫

{r=r1}
J⌟ ε

︸ ︷︷ ︸
−E(r1)

+
∫

{r=r0}
J⌟ ε

︸ ︷︷ ︸
E(r0)

.

So E(r0) − E(r1) � −
∫ r1

r0

∫

R×Sn−1

C

r3
| /̊∇φ|2dtdΩdr. We have

∫

R×Sn−1
| /̊∇φ|2dtdΩ =

∫

R×Sn−1

V

r2
| /̊∇φ|2 r2

V
dtdΩ � 2E(r) · r2

V
=

2r2

V
E(r).

Since

lim
r→∞

2r2

V
= lim

r→∞
2

1 + 2M
rn − e2

rn+1 − 1
r2

=
2
1
,

there exists an r0 large enough such that for all r � r0, |2r2

V − 2| < 1, and in
particular, (0 <)2r2

V < 3. Hence,

E(r1) � E(r0)+
∫ r1

r0

∫

R×Sn−1

( C

r3
| /̊∇φ|2

)
dtdΩdr � E(r0)+

∫ r1

r0

3C

r3
E(r)dr.
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Using Grönwall’s inequality (see for e.g. [24, Thm. 1.10]), we obtain

E(r1) � E(r0)e
∫ r1
r0

3C
r3

dr � C(r0)E(r0),

as was also noted in [8, Eq.(71)]. Thus, we have in particular that there exists
an r0 large enough such that for all r � r0,

∫

R×Sn−1
φ̇2dtdΩ � 1, and

∫

R×Sn−1
| /̊∇φ|2dtdΩ � 1.

Commuting with the Killing vector fields ∂
∂t and Lij , we obtain (after the

transferral of the finiteness of the energies along the branches CH+
1 and CH+

2

of the cosmological horizon to finiteness at r = r0, and an application of
Sobolev’s inequality) that for all r � r0,

‖φ̈(r, ·)‖L∞(R,Sn−1) � 1, and ‖ /̊Δφ(r, ·)‖L∞(R,Sn−1) � 1.

Step 2: In this step, we will write the wave equation in new coordinates which
‘equalises’ the magnitude of the coefficient weights for the r and t coordinates
in the matrix of the metric.

To this end, we define ρ =
∫ r

r0

1
V (r)

dr. Then,
dρ

dr
=

1
V (r)

and V (r)
d
dr

=
d
dρ

.

With a slight abuse of notation, we write V (ρ) := V (r(ρ)). We have

g = − 1
V

dr2 + V dt2 + r2dΩ2 = −V dρ2 + V dt2 + (r(ρ))2dΩ2.

The wave equation �gφ = 0 can be rewritten as ∂μ(
√−g ∂μφ) = 0, which

becomes ∂μ(V rn−1∂μφ) = 0. Separating the differential operators with respect
to the ρ, t, . . . coordinates, we obtain

∂ρ(rn−1∂ρφ) = rn−1φ̈ + V rn−3 /̊Δφ.

Integrating from ρ0 := ρ(r0) = 0 to ρ = ρ(r), we obtain

rn−1∂ρφ − rn−1
0 (∂ρφ)|ρ=ρ0

=
∫ ρ

0

(
rn−1φ̈ + V rn−3 /̊Δφ

)
dρ,

and so rn−1V ∂rφ = rn−1
0 V (r0) (∂rφ)|r=r0

+
∫ ρ

0

(
rn−1φ̈ + V rn−3 /̊Δφ

)
dρ, i.e.,

∂rφ =
(r0

r

)n−1 V (r0)
V (r)

(∂rφ)|r=r0
+

1
rn−1V

∫ ρ

0

(
rn−1φ̈ + V rn−3 /̊Δφ

)
dρ.

Hence,

‖∂rφ(r, ·)‖L∞(R×Sn−1)

�
(r0

r

)n−1 V (r0)
V (r)

‖(∂rφ)(r0, ·)‖L∞(R×Sn−1)

+
1

rn−1V

∫ ρ

ρ0

(
rn−1‖φ̈(r, ·)‖L∞(R×Sn−1)+V rn−3‖ /̊Δφ(r, ·)‖L∞(R×Sn−1)

)
dρ.
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Using the fact that V ∼ r2 for r � r0, with r0 large enough, and the estimates
from Step 1 above, we obtain

‖∂rφ(r, ·)‖L∞(R×Sn−1) � A

rn+1
+

B

rn+1

∫ ρ

ρ0

(r(ρ))n−1 dρ

� A

rn+1
+

B

rn+1

∫ r

r0

rn−1 1
V (r)

dr

� A

rn+1
+

B′

rn+1

∫ r

r0

rn−3dr.

Recalling that n > 2, we have

‖∂rφ(r, ·)‖L∞(R×Sn−1) � A

rn+1
+

B′

rn+1

1
(n − 2)

(rn−2 − rn−2
0 ) � 1

r3
.

This completes the proof of Theorem 5.3. �
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6. Appendix A: Fourier Modes (de Sitter in Flat FLRW Form)

In this appendix, we outline the Fourier modal analysis that motivates the spe-
cific estimates given in Theorem 3.1, starting with spatially periodic solutions
to the Klein–Gordon equation. We only give highlights, since the computations
are similar to the ones in [8], and moreover, the details can be found in the
arxiv version of our paper [19].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Let T
n = R

n/(2πZ)n. Suppose that the ‘spatially periodic’ φ : R × T
n

→ R satisfies the Klein–Gordon equation (5). Writing

φ =
∑

k∈Zn

ck(t)ei〈k,x〉,

(5) yields c̈k + nȧ
a ċk + k2

a2 ck + m2ck = 0, where k2 := 〈k,k〉. So

d
dt

(anċk) + an−2(k2 + m2a2)ck = 0. (18)

Let τ =
∫

1
a(t)dt. Then, d

dt = 1
a

d
dτ , and so (18) becomes (with d

dτ =:′ )

(an−1c′
k)′ + an−1(k2 + m2a2)ck = 0. (19)

Defining dk by ck =: a− n−1
2 dk, we have

d′′
k +

(
k2 + m2a2 − (n − 1)

2
a′′

a
− (n − 1)(n − 3)

4

(a′

a

)2
)

dk = 0. (20)

Now if a(t) = et, then we may take τ = −e−t, so that −t = log(−τ), that is,
−τ = e−t. We remark that relative to our earlier use of conformal coordinates
in (4) on page 10, we are taking t0 = +∞ for simplicity. Then, (20) becomes

d′′
k +

(
k2 − μ

τ2

)
dk = 0, (21)

where μ := n − 1 + (n−1)(n−3)
4 − m2. The general solution to this equation is8

given by

C1

√
τ Jν(|k|τ) + C2

√
τ Yν(|k|τ), (22)

where ν satisfies ν2 = 1
4 + μ = n2

4 − m2. Here, Jν denotes the Bessel function
of the first kind,

Jν(z) =
∞∑

m=0

(−1)m

m!Γ(m + ν + 1)

(z

2

)2m+ν

,

and Yν is the Bessel function of the second kind,

Yν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
,

where the right-hand side is replaced by its limiting value if ν is an integer.
Without loss of generality, in the solution (22), we may only consider ν such
that Re(ν) � 0.

We note that as t → ∞, −τ = e−t ↘ 0, and so τ ↗ 0. We now use the
asymptotic expansions of Jν(z) and Yν(z) as z ↗ 0 (see e.g. [1, 9.1.7–9]):

1◦ If ν �= 0 (that is, m �= ±n
2 ), then as τ ↗ 0, we have

Jν(|k|τ) = C(−τ)ν + O(|τ |),
Yν(|k|τ) = A(−τ)ν + B(−τ)−ν + C(−τ)2−ν + O(|τ |).

8See for example [28, p. 95]. For the relevant notation, see also [28, pages 82,100,101].
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Using these, as τ ↗ 0 or t → ∞, |ck| = C ′e−(n
2 −Re(ν))t + O(e− n+1

2 t).
Thus, we expect φ to satisfy

‖φ(t, ·)‖L∞(Rn) �
{

a− n
2 if |m| > n

2 ,

a− n
2 +

√
n2
4 −m2

if |m| < n
2 .

2◦ If ν = 0 (that is, m = ±n
2 ), then as τ ↗ 0, we have

Jν(|k|τ) = C + O(|τ |),
Yν(|k|τ) = C log(−τ) + O(|τ |).

Using these, we get |ck| = (A + Bt)e− n
2 t + O(e− n+1

2 t) as t → +∞. Thus,
we expect φ to satisfy

‖φ(t, ·)‖L∞(Rn) � a− n
2 log a if m = ±n

2
.

Summarising, φ is expected to have the decay

‖φ(t, ·)‖L∞(Rn) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a− n
2 if |m| >

n

2
,

a− n
2 log a if |m| =

n

2
,

a− n
2 +

√
n2
4 −m2

if |m| <
n

2
.

This motivates the decay estimates in Theorem 3.1.

7. Appendix B

In this section, we prove the technical result we had used in the proof of
Theorem 3.1, in Sect. 3.

Lemma 7.1. If f, g ∈ H1(Rn), then lim
r→+∞

∫

Sr

fgdσr = 0.

Proof. By the Cauchy–Schwarz inequality,
∣∣∣
∣

∫

Sr

fgdσr

∣∣∣
∣

2

�
∫

Sr

|f |2dσr ·
∫

Sr

|g|2dσr,

and so, it is enough to show that

lim
r→∞

∫

Sr

|f |2dσr = 0.

Suppose this does not hold. Then, there exists an increasing sequence (rk)k

such that rk
k→∞−→ ∞, and there exists an ε > 0 such that for each k,

∫

Srk

|f |2dσrk
> ε.

(The plan is to use the trace theorem to fatten these Srk
-slices to ‘annuli’ Ak

and obtain ‖f‖2
H1(Ak) > ε̃ > 0 for all k, giving the contradiction that

∞ > ‖f‖2
H1(Rn) >

∑

k

‖f‖2
H1(Ak) >

∑

k

ε̃ = +∞.
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So we will construct a subsequence (rkm
)m of (rk)k and a sequence (δm)m of

positive numbers such that rk1 < rk1 + δ1 < rk2 < rk2 + δ2 < rk3 < · · · ,
and such that for the ‘annuli’ Am := {x : rkm

< |x| < rkm
+ δm}, we have

‖f‖2
H1(Am) > ε̃. We will need to keep track of the constants in the trace

theorems on our annuli Am, and we will use the following [15, p. 41].) �

Theorem 7.2. Let Ω be a bounded open subset of Rn with a Lipschitz boundary
Γ. Then, for f ∈ H1(Ω) and for all ε ∈ (0, 1),

‖f‖2
L2(∂Ω) �

‖μ‖C1(Ω)

δ

(
ε1/2‖∇f‖2

L2(Ω) + (1 + ε−1/2)‖f‖2
L2(Ω)

)
,

where μ ∈ C1(Ω,Rn) is such that μ · n � δ on ∂Ω, and n is the outer normal
vector.

If Ω is an annulus A = {x : r < ‖x‖ < R} (which is clearly bounded,
open, and also it has the Lipschitz boundaries which are the two spheres Sr

and SR), then with μ(x) = x, we have

μ · n = ‖x‖ =
{

R on SR,
r on Sr

}
� r =: δ.

Also, if we take ε = 1/4, then

‖f‖2
L2(Sr) � ‖f‖2

L2(∂A) � 3
‖μ‖C1(A)

r
‖f‖2

H1(A).

As ‖μ‖C1(A) = max
A

‖μ‖ + max
A

|∇ · μ| = R + n, we obtain

‖f‖2
L2(Sr) � 3

R + n

r
‖f‖2

H1(A).

Now, we will construct (rkm
)m and (δm)m.

We choose k1 such that rk1 > n. Let δ1 be such that 0 < δ1 < rk1 − n.
Then, for the annulus A1 := {x : rk1 < ‖x‖ < rk1 + δ1}, we have

‖f‖2
H1(A1)

� rk1/3
(rk1 + δ1) + n

‖f‖2
L2(Srk1

) � 1/3
1 + δ1+n

rk1

ε >
1/3

1 + 1
ε =

ε

6
=: ε̃.

Now suppose rk1 , . . . , rkm
, δ1, . . . , δm possessing the desired properties have

been constructed. Choose km+1 such that rkm+1 > rkm
+δm. Let δm+1 be such

that 0 < δm+1 < rkm+1 − n.
Then, for the annulus Am+1 := {x : rkm+1 < ‖x‖ < rkm+1 + δm+1}, we

have

‖f‖2
H1(Am+1)

>
rkm+1/3

(rkm+1 + δm+1) + n
‖f‖L2(Srkm+1

) � 1/3

1 + δm+1+n
rkm+1

ε >
ε

6
= ε̃.

This completes the induction step.
So we have arrived at the contradiction that

+∞ > ‖f‖2
H1(Rn) �

∑

m

‖f‖2
H1(Am) �

∑

m

ε̃ = +∞.
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This shows that our original assumption was incorrect, and so

lim
r→∞

∫

Sr

|f |2dσr = 0,

completing the proof of our lemma. �
An analogous result also holds for the cylinder R × Sn−1. This was used

in the proof of our Theorem 4.2.

Lemma 7.3. If n � 3 and f, g ∈ H1(R × Sn−1), then

lim
t→+∞

∫

Sn−1
fgdΩ = 0 = lim

t→−∞

∫

Sn−1
fgdΩ.

Proof. (Sketch) The proof is based on the same idea as the above, but is
somewhat simpler, since the radius of Sn−1 does not change, and the constants
one has in the trace theorem for a ‘cylindrical band’ of the form (a, b) × Sn−1

already work, as opposed to having to keep careful track, via Theorem 7.2, of
the constants in the earlier case when the radii of the Sn−1

r were changing.
Proceeding in the same way as in the previous lemma, we assume that

¬
(

lim
t→+∞

∫

Sn−1
|f |2dΩ = 0

)
,

and so there exists an ε > 0 and a sequence (tk)k∈N such that lim
k→∞

tk = +∞,

and

lim
k→+∞

∫

Sn−1
|f(tk, ·)|2dΩ > ε.

In order to fatten the ‘circle’ {tk} × Sn−1 to a cylindrical band of the form
I = (tk, tk + δ)×Sn−1, while keeping the L2-norm of f on the band uniformly
(in k) bigger than a fixed positive quantity, one can use the inequality

‖f(tk, ·)‖L2(Sn−1) � C‖f‖H1(I×Sn−1).

This follows from [25, Prop. 4.5, p. 287], by taking Ω = [tk, tk +δ]×Sn−1. The
rest of the proof is along the same lines. �

8. Appendix C: Sharpness of Bound When |m| = n
2
in

Theorem 3.1

In this appendix, we will show the sharpness of the bound from Theorem 3.1
we had obtained for the decay of the solution to the Klein–Gordon equation
in the de Sitter universe in flat FLRW form, when |m| = n

2 . Let us recall this
bound:

∀t � t0, ‖φ(t, ·)‖L∞(Rn) � a− n
2 log a.

If |m| = n
2 , then with ψ := a

n
2 φ, we had seen that

ψ̈ − 1
a2

Δψ = 0.
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We will now construct a solution ψ that satisfies

‖ψ(t, ·)‖L2(Rn) ∼ A + Bt as t → ∞,

showing that

‖φ(t, ·)‖L2(Rn) ∼ (A + Bt)a− n
2 as t → ∞,

and so the bound

‖φ(t, ·)‖L2(Rn) � (A + Bt)a− n
2 for all large t

cannot be improved.
We want

ψ̈ − 1
e2t

Δψ = 0. (23)

Taking the Fourier transform with respect to only the (spatial) x-variable, and
denoting

ψ̂(t, ξ) :=
∫

Rn

ψ(t,x)ei〈ξ,x〉dnx,

(23) becomes

∂2

∂t2
ψ̂(t, ξ) +

‖ξ‖2

e2t
ψ̂(t, ξ) = 0, (24)

which is a family of ordinary differential equations in t, parameterised by
ξ ∈ R

n. For a fixed ξ ∈ R
n, the general solution to the ODE (24) is given by

ψ̂(t, ξ) = C1(ξ) · J0(‖ξ‖e−t) + C2(ξ) · Y0(‖ξ‖e−t),

where

• J0 is the Bessel function of first kind and of order 0, and
• Y0 is the Bessel function of second kind and of order 0.

In order to construct our ψ, we will make special choices of C1 and C2.
We recall [1, (9.1.7–8)] that

J0(z) ∼ 1,

Y0(z) ∼ 2
π

log z

as z ↘ 0 (z ∈ R).
Now as t → ∞, e−t ↘ 0, and so from the above limiting behaviour of J0

and Y0, we obtain that as t → ∞,

ψ̂(t, ξ) ∼ C1(ξ) · 1 + C2(ξ) ·
(

2
π

log(‖ξ‖e−t)
)

= C1(ξ) +
2
π

C2(ξ) log ‖ξ‖ − 2
π

t · C2(ξ).

By Plancherel’s identity (see e.g. [25, Prop. 3.2]),

‖ψ̂(t, ·)‖L2(Rn) = ‖ψ(t, ·)‖L2(Rn).
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Since we want the linear behaviour in t of ‖ψ(t, ·)‖L2(Rn), we keep C2 nonzero,
but may take C1 ≡ 0. Then, as t → ∞,

ψ̂(t, ξ) = C2(ξ) · Y0(‖ξ‖e−t).

In order to have ψ̂(t, ·) (and so also ψ(t, ·)) in L2(Rn) for all t, we choose C2

to have a sufficiently fast decay.
We recall [1, §9.2.2] that

Y0(z) =

√
2
πz

(
sin

(
z − π

4

)
+ O

( 1
|z|

))

as z → ∞ (z ∈ R). So we have

Y0(‖ξ‖e−t) =

√
2

π‖ξ‖e−t

(
sin

(
‖ξ‖e−t − π

4

)
+ O

( 1
‖ξ‖e−t

))

as ‖ξ‖ → +∞ (and t is kept fixed). So to arrange ψ̂(t, ·) ∈ L2(Rn) for all t, we
may take

C2(ξ) :=
‖ξ‖

(‖ξ‖2 + 1)1+
n
4

.

(Also this choice makes

ξ �→ C2(ξ) log ‖ξ‖ ∈ L2(Rn),

which will be needed below.)
Then, ψ̂(t, ·) ∈ L2(Rn) for all t. Also, as t → ∞,

ψ̂(t, ξ) ∼ 2
π

(
‖ξ‖

(‖ξ‖2 + 1)1+
n
4

log ‖ξ‖
︸ ︷︷ ︸

=:f∈L2(Rn)

−t
‖ξ‖

(‖ξ‖2 + 1)1+
n
4

︸ ︷︷ ︸
=:g∈L2(Rn)

)
,

and

‖ψ̂(t, ·)‖L2(Rn) � 2
π

(
t ‖g‖L2(Rn)︸ ︷︷ ︸

�=0

−‖f‖L2(Rn)

)
� 0

for large t.
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