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Explicit Diagrammatic Solution of
Normalised, Nondegenerate
Rayleigh–Schrödinger Perturbation Theory

Joel C. Pommerening and David P. DiVincenzo

Abstract. We solve the coupled recurrence relations for eigenenergies
and -vectors in nondegenerate Rayleigh–Schrödinger perturbation the-
ory under the constraint that the approximate eigenvector is normalised
to 1 in every order. The series can be expressed in terms of diagrams that
were first introduced by Bloch (Nucl Phys 6:329, 1958) for the degen-
erate, unnormalised case. Normalisation increases the number of terms
and introduces a nontrivial dependence on the diagrams’ topology to the
coefficients.

1. Introduction

Rayleigh–Schrödinger perturbation theory (RSPT) [1] is a simple, yet powerful
tool for approximating Hamiltonian spectra and eigenfunctions. Its application
is so ubiquitous that anyone who has ever done any quantum mechanics cal-
culations is likely to have used it at some point. Corrections to the eigenvalues
and eigenvectors of an unperturbed problem are given as as a power series
in a small perturbation. In the standard textbook approach (e.g. [2, Ch. 11])
corrections are determined recursively as a function of all lower-order terms.
Explicit expressions have long been known as well [3–8], but, notably, not for
the normalised eigenfunctions.

Kato [3,4] gave the first explicit solution of (generally degenerate) RSPT.
Instead of choosing an arbitrary eigenbasis, he stated the results in terms
of projectors onto (possibly still degenerate) eigenspaces. Bloch [5] modified
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these projectors, reducing the number of terms by a factor of 2. He assumed
a perturbation that completely lifts the degeneracy and concerned himself
with the construction of an appropriate basis of the degenerate unperturbed
eigenspace (“les ‘bonnes fonctions’ non perturbées”). Bloch also introduced the
diagrammatic representation described below, as well as an alternative choice
of bonnes fonctions that allowed for the restriction to a subset of diagrams,
called convex, further reducing the number of terms in order n by a factor of
(n + 1)/2.

Earlier, following Brueckner [9], Goldstone [10] used Feynman diagrams
to explicitly write down corrections to the nondegenerate ground state of an
interacting fermionic system. Huby [6] restated Bloch’s results, in a form sug-
gested by Brueckner [9], where the same terms are constructed in a different
way. He can give explicit formulas for eigenvectors and not merely projec-
tors because he considered the nondegenerate case. These expressions for the
eigenvectors were not normalised. Salzman [7] similarly focused on the nonde-
generate, unnormalised case and developed a new diagrammatic formalism, set
up to collect equivalent terms. This in principle allows for a further reduction
in the number of terms. The rules he gave for constructing diagrams do not
provide this reduction automatically, however. Equivalent terms still had to be
collected together manually. From the more mathematical direction, the equiv-
alence of Bloch’s diagram counting with that of the leaves of ordered trees can
be found in the work of Stanley [11]. More recent surveys have related term
counting in Rayleigh–Schrödinger perturbation theory to other combinatorial
objects [12].

Silverstone and Holloway [8] derived alternative formulas for the nonde-
generate eigenvalues and their unnormalised eigenvectors that formally lead to
the least number of terms, however, at the price of evaluating a large number
of derivatives. Quantifying the number of terms in the resulting Silverstone–
Holloway expression, beyond ‘more than the number of partitions of n into pos-
itive integers,’ is a non-trivial task. More recently, Magesan and Gambetta [13]
developed a formalism that preserves norms exactly by perturbatively series
expanding the generator of a unitary operator. For a given order, the canon-
ical transformation of the Hamiltonian by that unitary is then in turn series
expanded. This method does not directly give an explicit series for eigenvec-
tors and -values. Bloch’s original work still finds application in the context
of effective Hamiltonians in Jordan and Farhi’s arbitrary order perturbative
gadgets [14].

In the present work, we consider anew the perturbation of a nondegener-
ate eigenvalue in standard RSPT. The phase and normalisation freedom of the
eigenvector significantly influences the expansion. To the best of our knowl-
edge, here we give the first explicit solution which preserves the norm of the
eigenvector at 1 in every order.

In Sect. 2, we briefly review nondegenerate RSPT and the main results
of Bloch [5] that we build upon. Our new results are derived in Sect. 3. We
comment on their efficiency and how they can be improved in Sect. 4. Finally,
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in Sect. 5, we focus more on the diagrammatic aspect and show how our results
work in practice, going up to fourth order, and conclude in Sect. 6.

2. Rayleigh–Schrödinger Perturbation Theory

2.1. Recursive Definition

Given a Hamiltonian H = H0 + εV parameterised by ε ∈ [0, 1], we assume we
can expand any of its eigenvalues λ, and the corresponding eigenvector |λ〉, in
a power series in ε,

λ =
∞∑

n=0

εnλn, |λ〉 =
∞∑

n=0

εn |λn〉 , (1)

i.e. they satisfy

(H0 + εV )
∞∑

n=0

εn |λn〉 =
∞∑

n,m=0

εn+m |λm〉 λn. (2)

Sorting Eq. (2) by powers of ε and equating the coefficients gives in zeroth order
H0 |λ0〉 = λ0 |λ0〉. Usually H0 is chosen to be analytically diagonalisable; we
call λ0 and |λ0〉 the unperturbed eigenenergies and -vectors, respectively. Here
we further assume that they are discrete and nondegenerate, and we define the
complementary projectors

Pλ = |λ0〉 〈λ0| , Qλ = 1 − Pλ. (3)

For nonzero powers n ∈ N of ε, Eq. (2) gives

H0 |λn〉 + V |λn−1〉 =
n∑

m=0

|λn−m〉 λm. (4)

We can then consider the Pλ- and Qλ-components of Eq. (4) separately to
derive equations for λn and |λn〉, respectively. For the energies we get

λn = 〈λ0|V |λn−1〉 −
n−1∑

m=1

〈
λ0

∣∣λn−m

〉
λm. (5)

Note, here and throughout the paper, the convention
M∑

n=N

An = 0 for any sequence An if M < N (6)

applies. The Qλ-component gives

Qλ |λn〉 =
Qλ

λ0 − H0

(
V |λn−1〉 −

n−1∑

m=1

|λn−m〉 λm

)
, (7)

where on the right-hand side we see appearing the reduced resolvent

S =
Qλ

λ0 − H0
= Qλ

1
λ0 − H0

Qλ =
∑

λ′ �=λ

|λ′
0〉 〈λ′

0|
λ0 − λ′

0

(8)
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which, since by assumption λ0 is nondegenerate, is well-defined. For the sake
of a compact notation, there is no index λ on S, but it should be remembered
as implicit. For later reference we also define powers of S, where it will be
convenient to define S0 separately [3]

S0 = −Pλ, Sk =
Qλ

(λ0 − H0)
k

for k ∈ N. (9)

Clearly
〈
λ0

∣∣λn

〉
is not constrained by Eq. (7) or Eq. (5), and by extension

Eq. (2). The simplest choice, and one employed by many authors [6–8] , is〈
λ0

∣∣λn

〉
= 0. But it can be more convenient to use this degree of freedom to

normalise the eigenvector to 1 in every order, i.e.
N∑

n,m=0

εn+m
〈
λn

∣∣λm

〉
= 1 + O (εN+1

) ∀N ∈ N0. (10)

This way the calculated eigenvectors immediately form an orthonormal basis
(up to higher-order terms) and can be used straightforwardly to calculate
expectation values without having to manually renormalise. Equation (10)
requires the unperturbed eigenvector to be normalised,

〈
λ0

∣∣λ0

〉
= 1, and fixes

the real part of
〈
λ0

∣∣λn

〉
. Choosing to set the imaginary part to 0, we arrive at

〈
λ0

∣∣λn

〉
= −1

2

n−1∑

m=1

〈
λm

∣∣λn−m

〉
. (11)

This is not a unique phase choice (see Sect. 4), though it is the conventional
one [2, Ch. 11]. In Theorem 1, we collect Eqs. (5), (7) and (11). It is not a new
result but rarely stated explicitly for arbitrary orders.

Theorem 1. (Cohen-Tannoudji et al.) The sequences λn and |λn〉, n ∈ N that
satisfy the coupled recurrence relations

λn = 〈λ0|
(

V |λn−1〉 −
n−1∑

m=1

|λn−m〉 λm

)
, (12)

|λn〉 = −1
2

|λ0〉
n−1∑

m=1

〈
λm

∣∣λn−m

〉
+

Qλ

λ0 − H0

(
V |λn−1〉 −

n−1∑

m=1

|λn−m〉 λm

)
,

(13)

where the starting values λ0, |λ0〉 are an eigenvalue and corresponding unit
eigenvector of H0, respectively, solve Eq. (2) while preserving the normalisation
of
∑N

n=0 εn |λn〉 for every N ≥ 0 [2, Ch. 11].

2.2. Bloch Sequences and Diagrams

Bloch’s seminal paper on degenerate RSPT [5] was the main inspiration for
this paper. In this subsection, we summarise the relevant definitions and results
that we adopt from there. These also apply to the nondegenerate case straight-
forwardly, see e.g. [6], and are adapted to our notation accordingly. The result
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n = 1

n = 2

(k1) = (1)

(k1, k2) = (2, 0) (1, 1) (0, 2) n

n

k1

k2

Figure 1. Bloch diagrams. On the left are all diagrams for
n = 1 and n = 2, including the non-convex (0, 2). On the right
is some order n diagram. Following Bloch [5], we sometimes
use curved, dashed lines to represent an arbitrary diagram

for the eigenvector is
∣∣λn

〉
=
∑′

{k}n

Sk1V Sk2V . . . SknV |λ0〉 (14)

where the sum is over Bloch sequences of length n defined by

{k}n : ki ∈ N0, i = 1, 2, . . . , n,

n∑

i=1

ki = n, (15)

and the prime indicates it is restricted to those sequences that satisfy
p∑

i=1

ki ≥ p, p = 1, 2, . . . , n − 1. (16)

∣∣λn

〉
is a solution to Eq. (2); it is not normalised, but satisfies the condition〈

λ0

∣∣λn

〉
= 0, so that

〈
λ0

∣∣λ
〉

= 1. We distinguish it from the normalised one
defined in Theorem 1 with an overline.

Using Eq. (14), Eq. (5) becomes

λn =
〈
λ0

∣∣V
∣∣λn−1

〉
=
∑′

{k}n−1

〈λ0|V Sk1V Sk2V . . . Skn−1V |λ0〉 . (17)

Bloch sequences can be represented graphically as staircase diagrams
where step i has height ki and width 1, as illustrated in Fig. 1. The diagrams
satisfying Eq. (16) are those that always stay above the diagonal. They are also
called convex and are known in the combinatorics literature as Dyck paths [15,
p.76].

3. Stepwise Diagrammatic Solution

We find that when we require a normalised state vector, given the phase choice
Eq. (11), the basic structure of the solution is retained:

Theorem 2. The coupled recurrence relations in Theorem 1 are solved by λn,
|λn〉 of the form

λn =
∑

{k}n−1

e(k1, k2, . . . , kn−1) 〈λ0|V Sk1V Sk2V . . . Skn−1V |λ0〉 , (18)
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|λn〉 =
∑

{k}n

c(k1, k2, . . . , kn) Sk1V Sk2V . . . SknV |λ0〉 . (19)

where c, e are rational-valued functions.

Note that the absence of the primes on the sums in Eqs. (18) and (19)
means that we must also allow non-convex diagrams (recall Eq. (16)).

Note further that we have introduced again a series for the eigenvalue
Eq. (18), which may appear unnecessary given the existing result of Bloch
Eq. (17), with known, simple values for the coefficients e. One should, however,
view Eq. (18) as an auxiliary equation, not useful for actual evaluation of λn

(Bloch’s result is best for that), but quite useful for obtaining the coefficients
c in Eq. (19) according to the recurrence that is about to be derived. This is
made possible by the non-uniqueness of the perturbation theory in terms of
Bloch diagrams, which we explore more thoroughly in Sect. 4.

Proof. This is by complete induction on n. For n = 1, Theorem 1 gives the
first-order corrections λ1 = 〈λ0|V |λ0〉 and |λ1〉 = S1V |λ0〉. These are of the
form of Eqs. (18) and (19) with e(∅) = c(1) = 1, proving the base case.

For n > 1, assume Eqs. (18) and (19) hold for all m < n. We compute
λn, |λn〉 using Theorem 1:

λn = 〈λ0| V
∑

{k}n−1

c(k1, . . . , kn−1) Sk1V . . . Skn−1V |λ0〉

− 〈λ0|
n−2∑

m=1

∑

{k}n−m

c(k1, . . . , kn−m) Sk1V . . . Skn−mV |λ0〉

×
∑

{j}m−1

e(j1, . . . , jm−1) 〈λ0|V Sj1V . . . Sjm−1V |λ0〉 (20a)

=
∑

{k}n−1

c(k1, . . . , kn−1) 〈λ0|V Sk1V . . . Skn−1V |λ0〉

−
n−2∑

m=1

∑

{k}n−m

k1=0

∑

{j}m−1

c(0, k2, . . . , kn−m) e(j1, . . . , jm−1)

× 〈λ0|V Sk2V . . . Skn−mV S0V Sj1V . . . Sjm−1V |λ0〉 , (20b)

where in the second line we have changed the upper limit on the sum over
m from n − 1 to n − 2 since

〈
λ0

∣∣λ1

〉
= 0, and in the last line we used

〈λ0|Sk1 = −δ0,k1 〈λ0| and |λ0〉 〈λ0| = −S0. The result is of the form (18)
with e(k1, . . . , kn−1) given by Eq. (23). In Eq. (23), the δn−m,Kn−m

ensures
that the arguments of c and e are Bloch sequences.

We repeat the same reasoning for the eigenvector

|λn〉 = −1
2

|λ0〉
n−1∑

m=1

∑

{k}m

∑

{j}n−m

c(k1, . . . , km)

× c(j1, . . . , jn−m) 〈λ0|V Skm . . . V Sk1Sj1V . . . Sjn−mV |λ0〉
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+ S1V
∑

{k}n−1

c(k1, . . . , kn−1) Sk1V . . . Skn−1V |λ0〉

− S1
n−1∑

m=1

∑

{k}n−m

∑

{j}m−1

c(k1, . . . , kn−m)

× e(j1, . . . , jm−1) Sk1V . . . Skn−mV |λ0〉 〈λ0|V Sj1V . . . Sjm−1V |λ0〉
(21a)

=
n−1∑

m=1

∑

{k}m

∑

{j}n−m

1
2

(1 − δ0,k1 − δ0,j1) c(k1, . . . , km) c(j1, . . . , jn−m)

× S0V SkmV . . . Sk2V Sk1+j1V Sj2V . . . Sjn−mV |λ0〉
+
∑

{k}n−1

c(k1, . . . , kn−1) S1V Sk1V . . . Skn−1V |λ0〉

+
n−1∑

m=1

∑

{k}n−m

∑

{j}m−1

(1 − δ0,k1) c(k1, . . . , kn−m) e(j1, . . . , jm−1)

× Sk1+1V Sk2V . . . Skn−mV S0V Sj1V . . . Sjm−1V |λ0〉 . (21b)

Here we have again used |λ0〉 〈λ0| = −S0 as well as

SkSj =

⎧
⎪⎨

⎪⎩

−S0 = −Sk+j if k = j = 0,

Sk+j if k, j > 0,

0 else.
(22)

The result is of the form (19) with c(k1, . . . , kn) given by Eq. (24). Note that
in Eqs. (20) and (21) (and therefore in equations throughout the following)
argument lists can be empty. Specifically, for m = 1, e(j1, . . . , jm−1) = e(∅).
This corresponds to an appearance of λ1 in Theorem 1. �

Corollary 2.1. The functions c and e defined in Theorem 2 satisfy (n ≥ 2)

e(k1, . . . , kn−1)

= c(k1, . . . , kn−1) −
n−2∑

m=1

δ0,kn−m
δn−m,Kn−m

c(0, k1, . . . , kn−m−1) e(kn−m+1, . . . , kn−1) ,

(23)

c(k1, . . . , kn)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n−1∑′

m=1

1−δm,Km −δm,Km+1
2 c(m − Km,

decreasing index
︷ ︸︸ ︷
km, . . . , k2 )c(Km+1 − m, km+2, . . . , kn) , k1 =0,

c(k2, . . . , kn) , k1 =1,
n−1∑
m=1

δ0,kn−m+1δn−m,Kn−m−1c(k1 − 1, k2, . . . , kn−m) e(kn−m+2, . . . , kn) , k1 >1,

(24)

with the primed sum restricted to km+1 ≥ m−Km ≥ 0 so that all the arguments
of c are non-negative, and Km =

∑m
i=1 ki. For m = 1, in some of the argument
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lists, the initial index is smaller than the final index; as in Eq. (6) such an
argument list should be interpreted as an empty set. The starting values of c
and e (n = 1) are

c(1) = 1, e(∅) = 1. (25)

Note that functions c and e are independent of the Hamiltonian. We will
refer to the three cases in Eq. (24) as the k1 = 0, k1 = 1, and k1 > 1 rules.
For a diagrammatic explanation of the recurrence relations, refer to Sect. 5.1.

In Eqs. (14) and (17), all diagrams are summed up with a coefficient of 1,
or 0 if the sum is extended to non-convex diagrams. The same cannot be true
for c and e because of the factor 1/2 in

〈
λ0

∣∣λn

〉
. A nonzero

〈
λ0

∣∣λn

〉
means

that some diagrams start below the diagonal, so are definitely not convex. And
the factor 1/2 means their coefficient is generally unequal to 1.

From calculating c for all diagrams up to fourth order, cf. Sect. 5, and
selected higher-order diagrams, we anticipate that it will have the following
property, which will be useful in the subsequent analysis:

Definition 1 (Crossing Property). For any Bloch sequence (k1, . . . , kn) let
x(k1, . . . , kn) be the number of times its associated diagram intersects the
main diagonal. We say a function f has the crossing property if there is another
function g such that

f(k1, . . . , kn) = g(�x(k1, . . . , kn)/2	) (26)

for all Bloch sequences (k1, . . . , kn), i.e. f depends only on the number of times
a diagram crosses from below to above the main diagonal. Here �·	 is the ceiling
function.

If the function c has the crossing property, the problem of evaluating it
only needs to be performed on a set of representative diagrams. These diagrams
can be taken to be the ones with the Bloch sequences (cf. Eq. (15))

{k}2n = (0, 2)n, (27)

meaning 0,2 repeated n times. It is helpful below to have a separate symbol
for these specific instances of the c function:

Definition 2. t(n) = c((0, 2)n) for n > 0, and t(0) = c(1) = 1.

t(n) can be computed:

Lemma 1.

t(n) =
(

n − 1
2

n

)
=

1
22n

(
2n

n

)
=

Γ
(
n + 1

2

)
√

πΓ(n + 1)
. (28)

Proof. The generalised binomial coefficient is defined in the usual way
(

r

n

)
=

r(r − 1) . . . (r − n + 1)
n!

. (29)

We use the k1 = 0 and k1 = 1 rules of Eq. (24) to derive a recurrence
relation for t(n),

t(n)
k1=0
=

1

2

[
t(0)c

(
1, (0, 2)n−1)− t(1)t(n − 1) + c(1, 0, 2)c

(
1, (0, 2)n−2)
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− t(2)t(n − 2) + . . . +c
(
1, (0, 2)n−1) c(1)

]

k1=1
=

1

2
[t(0)t(n − 1) − t(1)t(n − 1) + t(1)t(n − 2) − t(2)t(n − 2) + · · · + t(n − 1)t(0)]

= t(0)t(n − 1) − t(1)t(n − 1) + t(1)t(n − 2)

− t(2)t(n − 2) + · · · +
(−1)n−1

2
t
(⌊n

2

⌋)2

=

n−1∑

m=0

(−1)mt
(⌈m

2

⌉)
t
(
n − 1 −

⌊m

2

⌋)
2−δm,n−1

=
1

2

2(n−1)∑

m=0

(−1)mt
(⌈m

2

⌉)
t
(
n − 1 −

⌊m

2

⌋)

=
1

2

n−1∑

m=0

t(m)t(n − 1 − m) − 1

2

n−1∑

m=1

t(m)t(n − m). (30)

Here �·�, �·	 are floor and ceiling function, respectively, rounding to the nearest
integer lesser/greater than the argument. The summands are symmetric under
reversing the order of summation, so for all but one term the factor 1/2 cancels.
But we find it convenient to instead keep all terms and group them by even and
odd indices, as done in the last line of Eq. (30). Then by bringing the latter sum
to the left-hand side, which we can also write as t(n) = 1

2 t(n)t(0) + 1
2 t(0)t(n),

and multiplying by 2, we can rewrite Eq. (30) as
n∑

m=0

t(m)t(n − m) =
n−1∑

m=0

t(m)t(n − 1 − m) = t(0)2 = 1, (31)

i.e. we find that the sum is independent of n, so we can set, for example, n = 1
to evaluate it.

To complete the proof constructively,1 consider that Eq. (31) has the
form of a discrete convolution, so we can restate it in terms of the (ordinary)
generating function of t,

g(x) =
∞∑

n=0

t(n)xn, (32)

as

g(x)2 =
∞∑

n=0

xn =
1

1 − x
(33)

with a geometric series, so we can express the generating function as a binomial
series to determine t,

g(x) =
1√

1 − x
=

∞∑

n=0

(− 1
2

n

)
(−x)n =

∞∑

n=0

(
n − 1

2

n

)
xn (34)

which gives Eq. (28). �

Note that t(n) decreases only slowly with n; asymptotically, t(n) ∼
1/

√
πn.

1Alternatively, we could now confirm that Eq. (28) satisfies Eq. (31), with the uniqueness
of the solution being guaranteed from the recursive construction of c.
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N1 = 1

N2 = 1

n1 = 3

n2 = 0

N1 = 0

n1 = 4

Figure 2. Illustration of crossing numbers. The diagram
(2, 0, 0, 2, 0, 2, 0, 3, 0) is the lowest order diagram with crossing
numbers 1, 3, 1, 0. The diagram (0, 2)n from Definition 2 is the
lowest order diagram with crossing numbers 0, n, shown here
with n = 4. Both the (main) diagonal and the upper diagonal
are illustrated here

The solution for e is slightly more complicated as, in contrast to c, it does
not depend solely on the diagram’s topology w.r.t. the main diagonal, but also
w.r.t. the upper diagonal, which is defined as the diagonal line one unit higher
than the main diagonal, as illustrated in Fig. 2.

Definition 3 (Crossing Numbers). We say a Bloch sequence (k1, . . . , kn) has
crossing numbers N1, n1, N2, n2, . . . , Nm, nm if its associated diagram crosses,
in order, above the upper diagonal N1 times, below the main diagonal n1

times, then above the upper diagonal N2 times, etc. Here m is some integer
with 1 ≤ m ≤ n/3 + 1. For concreteness there is always an even number of
crossing numbers, where the first and last one, N1 and nm, may be 0 while all
other ones are strictly positive integers such that m is well-defined.

Given a Bloch sequence (k1, . . . , kn), the crossing numbers can be con-
structed as follows:

m = 1 ; Nm = 0 ; nm = 0 ; x = 1 ;
f o r i = 1 , i ≤ n , i + +

i f
i∑

j=1

kj > i ∧
i−1∑

j=1

kj ≤ i − 1

i f x �= 1
m + + ; Nm = 0 ; nm = 0 ; x = 1 ;

Nm + + ;

e l s e i f

i∑

j=1

kj < i ∧
i−1∑

j=1

kj ≥ i − 1

nm + + ; x = 0 ;

(35)

A canonical diagram that has crossing numbers N1, . . . , nm is

(k1, . . . , kn) = ((2, 0)N1 , (0, 2)n1−1, 0, 3, 0, (2, 0)N2−1, (0, 2)n2−1, 0, 3, 0,

. . . , (2, 0)Nm−1, (0, 2)nm) (36)
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some examples of which are given in Fig. 2. For the special case that the
crossing numbers are N1, n1 = 0, 0, this sequence is empty, and we can instead
take (k1) = (1) as this canonical diagram.

The upper limit m ≤ n/3 + 1 is derived by setting N1 = nm = 0, and all
other Ni = ni = 1 in the lowest order diagram. Such a large m is somewhat
of an outlier though. If we consider a Bloch diagram (rotated by −π/4) as a
random bridge, we could develop the notion of a typical diagram. The number
of times an nth- order diagram touches or intersects the diagonal, which is an
upper bound on m, asymptotically follows a Rayleigh distribution with mean√

πn [15, p.708]. This seems to indicate that typically m ∼ √
n, i.e. in most

instances m � n.
We will now proceed to the main result of the paper, Theorem 3, in which

explicit formulas for c and e are obtained. We first briefly review the heuristics
that led us to the formulation of this theorem. We noted that if we assumed
that c had the crossing property, Lemma 1 would be sufficient to calculate c
for all diagrams. By calculating a number of examples, we made observations
about the structure of the solution, noting the dependence on the crossing
numbers only, and used these to allow further simplification of the recurrence
relations. We came to an ansatz for solving the coupled recurrence relations,
guided by the observation that our solution for e has to be consistent with c
having the crossing property.

In the end, the ansatz is proved in the following theorem by induction,
accompanied by a straightforward algebraic analysis:

Theorem 3. Let (k1, . . . , kn) be a Bloch sequence with crossing numbers
N1, n1, . . . , Nm, nm. The functions c and e defined in Theorem 2 are

c(k1, . . . , kn) = t

(
m∑

i=1

ni

)
, (37)

e(k1, . . . , kn) =
m∑

i=1

[
t

(
i∑

l=1

Nl

)
− t

(
i−1∑

l=1

Nl

)
+ δi,1

]
t

⎛

⎝
m∑

j=i

nj

⎞

⎠ , (38)

with t(x) =
(
2x
x

)
2−2x as given in Eq. (28), i.e. c has the crossing property and

e is a function of the crossing numbers only.

Proof. We verify that Eqs. (37) and (38) are consistent with Corollary 2.1.
At n = 1, we have k1 = 1 with N1 = n1 = 0, which are also the crossing
numbers for an empty diagram (∅, n = 0). Then Eqs. (37) and (38) give
c(1) = e(1) = e(∅) = 1, consistent with Eq. (25).

Suppose Theorem 3 holds for all diagrams of degree less than n. (Note
that degree simply refers to the number of entries in the Bloch sequence {k}n.)
We apply Eq. (23) to compute e(k1, . . . , kn) and show it is consistent with
Eq. (38):
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e(k1, . . . , kn) = t

⎛

⎝
m∑

j=1

nj

⎞

⎠−
m∑

i=1

Ni∑

k=1

t

⎛

⎝
i−1∑

j=1

Nj + k

⎞

⎠

×
m∑

l=i

[
t

(
l∑

h=i

Nh − k

)
− (1 − δl,i) t

(
l−1∑

h=i

Nh − k

)]
t

⎛

⎝
m∑

g=l

ng

⎞

⎠ (39a)

= t(b1) −
m∑

i=1

ai∑

k=1+ai−1

t(k)

m∑

l=i

[t(al − k) − (1 − δl,i) t(al−1 − k)] t(bl)

(39b)

= t(b1) −
m∑

l=1

t(bl)

l∑

i=1

ai∑

k=1+ai−1

t(k) [t(al − k) − (1 − δl,i) t(al−1 − k)]

(39c)

= t(b1) −
m∑

l=1

t(bl)

[
al∑

k=1

t(k)t(al − k) −
al−1∑

k=1

t(k)t(al−1 − k)

]
(39d)

=

m∑

l=1

t(bl) [t(al) − t(al−1) + δl,1] (39e)

where in Eq. (39b) we introduce ai =
∑i

j=1 Nj and bi =
∑m

j=i nj to simplify
notation, and shift the summation index k by ai−1. Then in Eq. (39c) we
switch the sums over i and l. Note that a0 = 0, a1 = N1 ≥ 0, and ai+1 > ai

for i > 0. So in Eq. (39d) we can combine the double sum over i, k into one
over k. And finally in Eq. (39e) we add and subtract the k = 0 terms, then
use Eq. (31) and get Eq. (38).

Similarly, we calculate c(k1, . . . , kn) using Eq. (24)

c(k1, . . . , kn)

= δ0,k1

1

2

⎡

⎣
b1∑

i=1

t(i − 1)t(b1 − i) −
b1−1∑

i=1

t(i)t(b1 − i)

⎤

⎦+ δ1,k1 t(b1) (40a)

+
(
1 − δ0,k1 − δ1,k1

) m∑

i=1

Ni∑

j=1

t(ai−1 + j − 1) s(Ni − j, ni, . . . , Nm, nm)

= δ0,k1

1

2

⎡

⎣
b1−1∑

i=0

t(i)t(b1 − 1 − i) − (1 − 2t(b1))

⎤

⎦+ δ1,k1 t(b1) +
(
1 − δ0,k1 − δ1,k1

)
(40b)

×
m∑

i=1

Ni∑

j=1

t(ai−1 + j − 1)

m∑

k=i

t(bk)

[
t

(
k∑

h=i

Nh − j

)
− (1 − δk,i

)
t

(
k−1∑

h=i

Nh − j

)]

=
(
δ0,k1 + δ1,k1

)
t(b1) (40c)

+
(
1 − δ0,k1 − δ1,k1

) m∑

k=1

t(bk)

k∑

i=1

ai−1∑

j=ai−1

t(j)
[
t(ak − 1 − j) − (1 − δk,i

)

× t(ak−1 − 1 − j)]

=
(
δ0,k1 + δ1,k1

)
t(b1) (40d)

+
(
1 − δ0,k1 − δ1,k1

) m∑

k=1

t(bk)

⎡

⎣
ak−1∑

j=0

t(j)t(ak − 1 − j) −
ak−1−1∑

j=0

t(j)t(ak−1 − 1 − j)

⎤

⎦
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=
(
δ0,k1 + δ1,k1

)
t(b1) +

(
1 − δ0,k1 − δ1,k1

) m∑

k=1

t(bk)
[
1 − (1 − δk,1

)]
(40e)

= t(b1) . (40f)

In Eq. (40a) note that for k1 = 0 the diagram will have 2b1 − 1 intersections
with the main diagonal, b1 − 1 of which are horizontal and thus come with a
negative sign. (This rule is a consequence of the negative sign in Eq. (24), see
Sect. 5.1, Fig. 3.) Then in Eq. (40b) we shift the index of the first sum, as well
as add and subtract the i = 0, b1 terms to the second sum and immediately
evaluate it with Eq. (31), which we then also apply to the first sum in the
following step. In Eq. (40c) we index-shift the j sum by ai−1 − 1, and switch
the k and i sums. In Eq. (40e) we use Eq. (31) again, but we have to be careful
not to apply it if the sums vanish because of Eq. (6). Since we are in the k1 > 1
term, we know that a1 = N1 ≥ 1, and ai+1 > ai for i ≥ 1 still holds, so the
only term Eq. (6) applies to is the second j sum for k = 1 since a0 = 0. �

4. On Non-uniqueness of Diagrammatic Representations

By stating a recurrence relation and initial conditions we uniquely define a
quantity. For example, combined with the initial conditions, Eqs. (12) and
(13) fix the eigenenergy and eigenvector corrections, and Eqs. (23) and (24)
uniquely define the coefficients c and e. That does not mean, however, that
c and e are necessarily the unique solutions of Eqs. (12) and (13) or that
Eqs. (12) and (13) are the unique solutions of Eq. (2).

Since we are considering the nondegenerate case, eigenvectors are deter-
mined up to a factor. We are fixing the normalisation with Eq. (10), but that
still leaves a phase freedom. The zeroth-order phase is set by our choice of |λ0〉.
We can modify this phase in higher orders of ε by adding an imaginary part
to Eq. (11). An arbitrary imaginary part would generally change the structure
of Eq. (19), but we could preserve it, e.g. by setting

〈
λ0

∣∣λn

〉→
⎧
⎨

⎩
−∑(n−1)/2

m=1

〈
λm

∣∣λn−m

〉
if n is odd,

−∑n/2−1
m=1

〈
λm

∣∣λn−m

〉− 1
2

〈
λn/2

∣∣λn/2

〉
if n is even.

(41)

This reduces the number of diagrams but comes at the cost of a more compli-
cated rule requiring an even/odd distinction.

Note that if the Hamiltonian is real-symmetric, Eqs. (11) and (41) are
equivalent, equal, yet Eq. (41) still provides the more compact description in
terms of the number of diagrams. This brings us to the main point of this
section: Once norm and phase are fixed, the eigenvector is uniquely defined,
but the representation in terms of diagrams is not. The eigenenergy is of course
independent of the factor in front of the eigenvector but has a similar freedom
with regard to the decomposition into diagrams.

Definition 4. A Bloch sequence (k1, . . . , kn) containing q − 1 zeroes, q =
1, . . . , n, can be represented equivalently by q strings of positive integers
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zi ∈ N
k, k = 0, . . . , n − q + 1 (note that null strings, k = 0, are allowed). Z is

defined as the mapping between a Bloch sequence and the set of zi strings:

Z : (k1, . . . , kn) �→ (z1, . . . , zq) : (k1, . . . , kn) = (z1, 0, z2, . . . , 0, zq) . (42)

We also define the operators T , L, and D (“total”, “length”, and “difference”)
applied to string z:

for z = j1j2 . . . jk : T (z) =
k∑

i=1

ji, L(z) = k, D(z) = T (z) − L(z). (43)

As an example for the map Z, we can write

Z : (1, 3, 0, 0, 1) �→ ({1, 3},Ø, {1}) . (44)

Here n = 5, q = 3, and we see the appearance of integer strings zi of varying
length, including the null string.

Theorem 4. In the expansion of the eigenenergy, Eq. (18), all diagrams that
differ only by a permutation of z strings correspond to the same matrix element.

Similarly, in the expansion of the eigenvector, Eq. (19), diagrams that
share the same first string and otherwise differ only by a permutation of the
remaining strings correspond to the same matrix element.

Proof. Suppose the mth component of a Bloch sequence (k1, . . . , kn) vanishes,
km = 0. The term this sequence contributes to the energy correction is

〈λ0|V Sk1V . . . Skm−1V S0V Skm+1V . . . SknV |λ0〉
= −〈λ0| V Sk1V . . . Skm−1V |λ0〉 〈λ0|V Skm+1V . . . SknV |λ0〉
= −〈λ0| V Skm+1V . . . SknV |λ0〉 〈λ0|V Sk1V . . . Skm−1V |λ0〉
= 〈λ0|V Skm+1V . . . SknV S0V Sk1V . . . Skm−1V |λ0〉 .

(45)

Suppose km is the Mth zero in the Bloch sequence, and Z(k1, . . . , kn) =
(z1, . . . , zq). Equation (45) implies that (z1, . . . , zM , zM+1, . . . , zq) has the same
operator content as (zM+1, . . . , zq, z1, . . . , zM ), i.e. the operator content is
invariant under cyclical permutation of strings. Now, let kj be the Jth zero,
w.l.o.g. assume j > m

〈λ0| V S
k1V . . . S

km−1V S
0
V S

km+1V . . . S
kj−1V S

0
V S

kj+1V . . . S
kn V |λ0〉

= (−1)
2 〈λ0| V S

k1V . . . S
km−1V |λ0〉 〈λ0| V S

km+1V . . . S
kj−1V |λ0〉

× 〈λ0| V S
kj+1V . . . S

kn V |λ0〉
= (−1)

2 〈λ0| V S
km+1V . . . S

kj−1V |λ0〉 〈λ0| V S
k1V . . . S

km−1V |λ0〉
× 〈λ0| V S

kj+1V . . . S
kn V |λ0〉

= 〈λ0| V S
km+1V . . . S

kj−1V S
0
V S

k1V . . . S
km−1V S

0
V S

kj+1V . . . S
kn V |λ0〉 , (46)

i.e. (z1, . . . , zq) has the same operator content as (zM+1, . . . , zJ , z1, . . . , zM ,
zJ+1, . . . , zq). For example, by setting M = 1 we can permute the first string
z1 to the Jth position without changing the order of the other strings. From
this we can compose all permutations.
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For the eigenvector, the calculation works out analogously with the only
difference that here the operator content does not start with a 〈λ0|V , so we can
never permute z1. The rest of the diagram (z2, . . . , zq) has the same structure2

as a term in the energy expansion, so the same permutation rules apply. �
Part of the redundancy identified by Theorem 4 already appears when

we define the recurrence relations for c and e. For example, in the last term
of Eq. (12), we can switch the order to λm

〈
λ0

∣∣λn−m

〉
, which would change

Eq. (20) and would lead to a different recurrence relation for e and thus dif-
ferent values for c and e.

We could also compare to the Bloch style result for the energy, Eq. (17),
which is a sum over all convex diagrams, and note that in our language, a
convex diagram is described as N1, 0 with e = t(N1) > 0, but there are also
many non-convex diagrams for which e �= 0. So our result for the energy is
less efficient. But even when restricting to convex diagrams, Theorem 4 still
leads to a lot of redundancy. Salzman [7] addresses this for the (unnormalised)
eigenvector by separating terms into an operator part (what we would call z1)
and a coefficient containing the matrix elements. The number of different z1’s
in an order n convex diagram is 2n − n. (Salzman already gave this as a sum,
we just confirmed and evaluated it.) Unfortunately, the rules he gives to list
all diagrams are relatively complicated and equivalent coefficients are collected
manually. Silverstone and Holloway [8], again for unnormalised eigenvectors,
give a formally minimal result which still requires evaluating many derivatives.

To reduce the number of diagrams in our result down to a minimum, we
can sum up c and e for all diagrams that are equivalent by Theorem 4 and only
keep one representative diagram. For example, we can declare an ordering on
strings and choose as representative diagram the one where strings are ordered
descending.

Definition 5 (Ordering of strings). Let y = (k1, . . . , kn) �= z = (j1, . . . , jm) be
strings of positive integers. We say y > z

if D(y) > D(z),
else if L(y) > L(z),
else if k1 > j1,

else if k2 > j2,

... (47)

The canonical representative of a permutation group of strings has z1 ≥
z2 ≥ · · · ≥ zq.

Giving the sum over all c or e for an arbitrary representative dia-
gram is generally not an easy task. Of course, given a string representation
zm1
1 . . . zmk

k (k distinct strings zi with multiplicity mi), we can write down
all the (

∑k
i=1 mi)!/

∏k
i=1 mi! permutations, calculate their c and e and sum

2Though remember that unless z1 = 1, it is no longer equivalent to a Bloch sequence, so not
a diagram by itself, which does not impact the permutation of matrix elements of course.
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them up to get a ceff and eeff. The difficulty lies in automating this, i.e. list-
ing only the canonical diagrams and finding an explicit function on them that
gives ceff and eeff directly, preferably without having to invoke Eq. (35) for
the whole permutation group. This is less of a concern for the energy where
we can alternatively start from Eq. (17). Then the problem becomes counting
all the convex permutations, a nested sum for which can be written down but
perhaps cannot be evaluated explicitly without specifying a Bloch sequence
first.

4.1. Number of Terms

We take a look at how many diagrams are generated by our method and other
previous methods, and how many of them may correspond to distinct operator
expressions. This subsection is summarised in Table 1.

At order n, there are
(
2n−1

n

)
distinct Bloch sequences [5]. This can easily

be seen by considering that to construct all diagrams we have to list all distinct
arrangements of n unit vertical steps and n − 1 unit horizontal steps (the nth
horizontal step is always fixed at the end). This is the number of terms in our
perturbation expansion for |λn〉 and λn+1 (though e can be 0). If we apply
Theorem 4, it becomes an upper bound for the number of canonically ordered
diagrams, i.e. the minimum number of terms required to cover all distinct
operators. Asymptotically it scales as 4n/2

√
πn.

From Bloch [5] we know that convex diagrams are sufficient for the expan-
sion of the energy (or the unnormalised vector). The number of these dia-
grams for order n is simply the Catalan numbers Cn = (2n)!/n!(n + 1)! =

2
n+1

(
2n−1

n

)
[5];[15, p.76]. Asymptotically Cn ∼ 4n/

√
πn3 [15, p.7], i.e. the expo-

nential scaling is the same, only the algebraic pre-factor is improved.
A lower bound for the minimum number of diagrams is the number of par-

titions of n into positive integers, cf. [8]. There is no known explicit expression
for this partition function, but it has a generating function, recurrence rela-
tions, and an asymptotic expression exp(π

√
2n/3)/4

√
3n = 4π ln 4

√
2n/3/4

√
3n

[15, p.41].
As stated above, Salzman [7] grouped diagrams by z1 (the string of posi-

tive integers before the first 0 in the Bloch sequence) and counted 2n−n distinct
groups within convex diagrams of length n. We can view this as a lower bound
on the number of terms in the unnormalised eigenvector correction

∣∣λn

〉
, since

z1 cannot be permuted with the other strings without changing the operator
content. By adding the number of z1’s leading to a non-convex diagram, we
can generalise this to a lower bound for the number of terms in |λn〉: 2n − 1.
For the energy the situation is slightly more complicated as diagrams with a
distinct z1 can still be equivalent. For convex diagram this becomes relevant
at n ≥ 5, which is why it does not appear in Figs. 7 or 8, e.g. (3, 0, 2, 0, 0) is
equivalent to (2, 0, 3, 0, 0). Yet, any of the 2n − n z1’s that can start a convex
diagram can be the greatest string of a canonically ordered diagram, so this
lower bound also applies to λn+1 after all.
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Figure 3. Diagrammatic illustration of the recurrence rela-
tion for e, Eq. (23). The sum is over all horizontal intersections
with the upper diagonal, including (if applicable) the one at
height n, in which case the argument of e on the right-hand
side is ∅. Here and in the following we mark the intersections
we sum over and where we cut the diagrams with a dot

Clearly none of the bounds are tight for sufficiently large n, though the
latter set of lower bounds show that the minimal number of diagrams scales
as exp(cn) rather than exp(c

√
n).

All these considerations remain independent of the Hamiltonian. If we
include information about the Hamiltonian, further simplifications can be
made. For example, as noted above, if the Hamiltonian is real-symmetric the
operator content of a diagram is invariant under reversing the ordering within
strings (except for z1 in the eigenvector expansion). A more generally applica-
ble scenario is a completely off-diagonal (in the unperturbed eigenbasis) per-
turbation, since this can always be achieved by absorbing the diagonal part of
V into H0. In particular, this means that 〈λ0|V |λ0〉 vanishes, so any Bloch
sequence that ends (and/or starts) in zero and/or contains two zeroes in suc-
cession does not contribute to the eigenvector (energy) expansion. As already
noted by Salzman this greatly reduces the number of necessary diagrams [7].

5. Practical Demonstration of Diagrammatics

5.1. Diagrammatic Interpretation of Recurrence Relations

To facilitate a more thorough understanding of Corollary 2.1, here we recount
the recurrence relations diagrammatically.

Broadly speaking, the recurrence relations in Theorem 1 and Corollary 2.1
both define how to compute higher-order terms from lower-order terms. If we
consider them in terms of diagrams, there is a key difference though. Theorem 1
defines how to construct (the sum of) all order n diagrams by combining lower-
order diagrams. On the other hand, Corollary 2.1 gives the coefficients of a
single-order n diagram by deconstructing it into all possible compositions of
lower-order diagrams. Thus there is an implicit change of approach in going
from the proof of Theorem 1 to Corollary 2.1. In the following, the point
of view of Corollary 2.1 is illustrated more transparently. We show at which
points (marked with dots in Figs. 3, 4, 5 and 6) diagrams should be cut in two
and how.

For e, we take c of the same diagram, then for every horizontal intersection
with the upper diagonal we subtract a decomposition where we take c of a
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Figure 4. k1 = 0 rule of c recurrence, Eq. (24). At the inter-
section with the diagonal the diagram is cut in two. The first
part is rotated by π, i.e. read backwards. The pictorial expo-
nent is to be read as 1 if the diagram intersects the diagonal
horizontally, and 0 if the intersection is vertical

c

⎛

⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎠
= c

⎛

⎜⎜⎝

⎞

⎟⎟⎠

Figure 5. k1 = 1 rule of c recurrence, Eq. (24). Adding or
removing a k1 = 1 step in front of a diagram (or at any
position) does not change its c-value

diagram beginning with a 0-step followed by everything before the intersection,
multiplied by e of the part of the original diagram following the 0-step after
the intersection, see Fig. 3.

We split up the c recurrence relations, Eq. (24), into three parts again.
For k1 = 0, see Fig. 4, we sum over all intersections with the main diagonal.
There is at least one such intersection, since we start below the diagonal and
end above it. The part of the diagram before the intersection is read backwards
or equivalently is rotated by π. The part after the intersection is left as is. We
multiply c of both diagram parts and divide by 2. Horizontal intersections get
a minus sign. (The example in Fig. 4 shows a vertical intersection.)

The k1 = 1 rule remains the simplest. If a diagram starts with a 1-step,
remove it, see Fig. 5. This easily generalises to: remove all ki = 1-steps. Though
we should remember to stop at n = 1, alternatively one could define c(∅) = 1,
which would effectively make |λ0〉 the starting point instead of |λ1〉.

For k1 > 1, we have a sum over horizontal intersections with the upper
diagonal, see Fig. 6. The decomposition of the diagram has similarities with
the one in the e-recurrence (Fig. 3). The second part of the diagram is treated
the same but in the first part, instead of adding a 0-step the first step is lowered
by 1. Another difference is that here we are guaranteed to have at least one
summand since the diagram starts above the upper diagonal.
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c

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

horizontal
intersections

c

⎛

⎝

⎞

⎠ e

( )

Figure 6. k1 > 1 rule of c recurrence, Eq. (24). Similarly to
Fig. 3, a diagram is cut in two at every horizontal intersection
with the upper diagonal. The first upwards unit towards the
upper diagonal and the 0-step after the intersection is dis-
carded

n = 1 : n = 2 : n = 3 :

(1)
c, e = 1, 1

(2, 0)
c, e = 1, 12

(0, 2)
c, e = 1

2 ,
1
2

(1, 1)
c, e = 1, 1

(3, 0, 0)
c, e = 1, 12

(0, 3, 0)
c, e = 1

2 , 0
(0, 0, 3)
c, e = 1

2 ,
1
2

(2, 1, 0)
c, e = 1, 12

(0, 2, 1)
c, e = 1

2 ,
1
2

(2, 0, 1)
c, e = 1, 12

(1, 0, 2)
c, e = 1

2 ,
1
2

(1, 2, 0)
c, e = 1, 12

(0, 1, 2)
c, e = 1

2 ,
1
2

(1, 1, 1)
c, e = 1, 1

Figure 7. Bloch diagrams for orders 1 through 3, labelled
with their corresponding Bloch sequences and c and e values.
By Theorem 4, the horizontal square brackets group diagrams
that contribute the same operator content to the expansion
of the eigenenergy. Whenever there are double brackets, the
inner ones indicate diagrams that contribute the same oper-
ator content to the eigenvector expansion. We can now com-
pute effective coefficients ceff, eeff by summing the bracketed
c, e and assign them to the left-most diagram (the canonical
representative)

Again a decomposition based on horizontal intersections with the upper
diagonal results in one diagram where the upper diagonal becomes the main
diagonal and (up to) one diagram containing the remainder.
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Figure 8. Bloch diagrams for order 4, arranged analogously
to Fig. 7

As an example, consider

c(2, 0, 0, 2) k1>1= c(1)e(0, 2) e= c(1)c(0, 2) k1=0=
1
2
c(1)3 =

1
2
. (48)
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5.2. Diagrams up to Fourth Order

Figures 7 and 8 show all Bloch diagrams up to fourth order with their c and e
values. Diagrams producing equivalent operator content are grouped together.
One can easily verify that the results for the energy are consistent with Bloch’s,
Eq. (17), by summing up all the grouped e coefficients and getting the number
of convex diagrams in the group.

Fourth-order perturbation theory is not exactly an outlandish endeavour,
yet has sufficient complexity that even though the associated Talk page has
since 2010 noted that there are mistakes in the expressions listed on Wikipedia,
to date no one has corrected them [16]. There are 35 Bloch sequences for n = 4,
of which 14 are convex, 13 need to appear in the energy series (4 if V completely
off-diagonal), and 26 need to appear in the normalised eigenvector series (12
if V is completely off-diagonal).

6. Conclusion

We have shown how to explicitly solve the conventionally normalised Rayleigh–
Schrödinger perturbation series to arbitrary order. The structure of earlier
results for unnormalised vectors is readily adapted to this problem. The nor-
malisation necessarily increases the number of terms in the expansion. We
surveyed how the number of terms varies between different methods, and how
to identify equivalent diagrams. An efficient summation of these equivalent
diagrams remains an open problem, and there is likely no simple solution.

No matter how efficiently terms are summarised, their number grows
exponentially with the order of perturbation.

Counting and analysing Bloch diagrams and associated quantities offers
a rich trove of combinatorics problems, many of which may have already been
studied in the context of paths, random walks, and bridges.
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