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Long Time Behaviour of a Local
Perturbation in the Isotropic XY Chain
Under Periodic Forcing

Livia Corsi and Giuseppe Genovese

Abstract. We study the isotropic XY quantum spin chain with a time-
periodic transverse magnetic field acting on a single site. The asymptotic
dynamics is described by a highly resonant Floquet–Schrödinger equa-
tion, for which we show the existence of a periodic solution if the forcing
frequency is away from a discrete set of resonances. This in turn implies
the state of the quantum spin chain to be asymptotically a periodic func-
tion synchronised with the forcing, also at arbitrarily low non-resonant
frequencies. The behaviour at the resonances remains a challenging open
problem.
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1. Introduction

We investigate the isotropic XY quantum spin chain with a periodically time-
dependent transverse external field acting only on one site, namely the κ-th,
and free boundary conditions. The Hamiltonian reads

HN (t) = −g

N−1∑

j=1

(
σx

j σx
j+1 + σy

j σy
j+1

)
− hV (ωt)σz

κ , 1 < κ < N . (1.1)

For any t ∈ R and N ∈ N, the operator HN (t) is self-adjoint on HN :=
C

2⊗N , and the thermodynamic limit N → ∞ is done as customary in the Fock
space F :=

⊕
N HN . Here, σx, σy, σz denote the Pauli matrices, g, h, ω > 0

are parameters ruling, respectively, the spin–spin coupling, the magnitude of
the external field and its frequency. We assume that V (ωt) is a real periodic
analytic function with frequency ω
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V (ωt) =
∑

k∈Z

eikωtVk , |Vk| ≤ C0e
−σ|k| . (1.2)

The interaction of a small system (the impurity) with an environment
(the rest of the chain) while it is irradiated by a monochromatic forcing is a
question of primary interest in non-equilibrium statistical physics. Although
more complicated systems have been considered [4,8,9], quantum spin chains
are particularly appealing as they present a rich phenomenology along with a
limited amount of technical difficulties. Indeed the lack of ergodicity of such
systems has already been object of study since the ’70s [17–23].

Also, there has been a resurgence of interest in periodically driven sys-
tems from the mathematical and theoretical physics community. When the
external frequency is high enough compared to the natural frequencies of the
system at rest, one can approximate the Floquet Hamiltonian by an effec-
tive time-independent Hamiltonian, which governs the asymptotic dynamics
[10,12]. This idea has been exploited mathematically in [3], where the effective
Hamiltonian is computed by a KAM-type reduction inspired by [7]. Conse-
quences of this analysis for the behaviour of many-body interacting systems
have been examined in [1,2].

The choice of considering a simple system such as the isotropic XY chain
itself simplifies greatly the computations and allows us to perform a very de-
tailed analysis of the dynamics. The motion of an impurity was first analysed
in [6] with different forms of time-dependent external fields. In particular in
the case V (ωt) = cos ωt, the authors computed the transversal magnetisa-
tion of the perturbed spin at the first order in h, observing a divergence at
ω = 2g. The analysis of [11] shows that indeed all the values {2g/k}k∈N are
resonant (i.e. singular) in a sense that will be made clear below. Therefore
in this context, it appears natural to distinguish between resonant and non-
resonant frequencies more than between high and low ones (even though, since
the set of resonant frequencies is bounded, the first characterisation induces
the second one). Indeed, combining the results of the present and our previous
paper [11], one can conclude that no matter how small the frequency is, away
from resonances, the impurity asymptotically undergoes a periodic dynamics
synchronised with the forcing. This simple picture breaks down for resonant
frequencies, where some new phenomenon can occur.

It is well-known that the isotropic XY spin chain is equivalent to a system
of quasi-free fermions on Z and therefore the N -particle state is fully described
by a one-particle wave function (for more details about this derivation we refer
to [5,6] or more recently [11,15]). At fixed t, the forcing V (ωt) is just a number
which we can incorporate into h, and the spectrum is given by the standard
analysis of the rank-one perturbation of the Laplacian on Z (see [5]). Precisely,
as N → ∞, we have a band [−g, g] and an isolated eigenvalue given by

g sign(h)

√

1 +
h2

g2
. (1.3)
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The study of the dynamics however is not as simple, because when t varies
the eigenvalue moves and can touch the band, so creating resonances. More
precisely, the dynamics in the time interval [t0, t] is governed by the following
Floquet–Schrödinger equation on Z (again, the details on its derivation and
its relation with the many-body system can be found in [5,6,11,15])

i∂tψ(x, t) = ghΔψ(x, t) + hHF (t, t0)ψ(x, t) , ψ(x, t0) = δ(x) , x ∈ Z .
(1.4)

Here, δ(x) is the Kronecker delta centred in the origin, Δ is the Laplacian on
Z with spectrum given by {− cos q, q ∈ [−π, π]}, and

HF (t, t0)ψ(x, t) := V (ωt)ψ(x, t)+ig

∫ t

t0

dt′J1(g(t−t′))e−iΔ(t−t′)V (ωt′)ψ(x, t′) ,

(1.5)
where

Jk(t) :=
1
2π

∫ π

−π

dxeixk+it cos x , k ∈ Z .

The Floquet operator HF acts as a memory term, accounting for the
retarded effect of the rest of the chain on the site κ. This equation finds a
more compact form in the Duhamel representation in the momentum space.
We denote by ξ ∈ [−1, 1] the points of the spectrum of −Δ. Moreover with
a slight abuse of notation throughout the paper, we will systematically omit
the customary ·̂ to indicate either Fourier transforms (when transforming in
space) and Fourier coefficients (when transforming in time).

Let ψ(ξ, t), ξ ∈ [−1, 1], denote the Fourier transform of ψ(x, t), x ∈ Z.
The corresponding equation (1.4) for ψ(ξ, t) in its Duhamel form reads

(1 + ihWt0)ψ(ξ, t) = 1 , (1.6)

where {Wt0}t0∈R is a family of Volterra operators for any t > t0 and ξ ∈ [−1, 1],
defined via

Wt0f(ξ, t) :=
∫ t

t0

dt′J0(g(t − t′))eigξ(t−t′)V (ωt′)f(ξ, t′) . (1.7)

Let L2
ξC

ω
t ([−1, 1] × [t0, t]) denote the space of square integrable functions in

[−1, 1] and real analytic in the time interval [t0, t] (mind here the superscript
ω denoting analyticity as customary, not to be confused with the frequency).
Each Wt0 is a linear map from L2

ξC
ω
t ([−1, 1] × [t0, t]) into itself. For any t0,

finite Wt0 is a compact integral operator, which ensures the existence of a
unique solution for t − t0 < ∞ (see for instance [13]). We denote this one-
parameter family of functions with ψt0(ξ, t). As t0 → −∞, the limit of the
Wt0 is an unbounded operator, denoted by W∞, defined through

W∞f(ξ, t) :=
∫ t

−∞
dt′J0(g(t − t′))eigξ(t−t′)V (ωt′)f(ξ, t′) . (1.8)

One can therefore use W∞ to define an asymptotic version of equation (1.6)
as t0 → −∞

(1 + ihW∞)ψ(ξ, t) = 1 , (1.9)
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whose solutions are denoted by ψ∞(ξ, ωt): indeed it is easy to check that W∞
maps periodic functions of frequency ω into periodic functions of frequency ω,
thus it is somehow expected to find solutions of (1.9) in this class of functions.
Under the following assumption on the frequency, our analysis confirms this
idea.

Hypothesis 1.1. We assume that ω > 0 is such that 2g
ω /∈ N.

Remark 1.2. Note that if ω satisfies Hypothesis 1.1 above, there is k̄ ∈ N such
that

ε̄ := inf
k∈N

∣∣∣∣
2g

ω
− k

∣∣∣∣ =
∣∣∣∣
2g

ω
− k̄

∣∣∣∣ > 0 . (1.10)

Our main result reads as follows:

Theorem 1.3. Let ω > 0 satisfying Hypothesis 1.1 above, and let ε̄ as in (1.10).
There is γ0 = γ0( g

ω , ε̄, V ) small enough such that if h < γ0ω, then there exists
a periodic solution of (1.9) with frequency ω, ψ∞(x, ωt) ∈ �2xCω

t (Z × R). In
particular, γ0 is explicitly computable; see (3.24). Moreover, for all x ∈ Z, one
has

ψt0(x, t) = ψ∞(x, ωt) + O

(
1√

t − t0

)
.

Remark 1.4. To be more precise, we prove that the spatial Fourier transform
of ψ∞(x, ωt) is bounded. This implies that ψ∞ is square integrable for all t.

Remark 1.5. If V0 �= 0, we have in general γ0 �
√

ε̄. To fix the ideas, let us
assume the frequency small enough, that is, ω 	 C

3
2
0 g, then γ0 �

√
ε̄ω
g . If

V0 = 0, then our worst estimate of the radius of convergence is γ0 � C2
0 ε̄2 g

ω ,
but this bound improves a bit under a specific assumption on the forcing V .
A precise formula for the radius of convergence γ0 is given in (3.24) below.

The main relevance of this result lies in its validity for low frequencies.
To the best of our knowledge, a similar control of the convergence to the
synchronised periodic state for a periodically forced small quantum system
coupled with free fermion reservoirs has been achieved only in [4], for a different
class of models. In general, it is known that the low-frequency assumption
makes the dynamics harder to study.

On the other hand, the main limitation of the result is that we need
to avoid the resonances: the closer 2g

ω is to an integer, the smaller value of
perturbation parameter h is allowed. This in particular prevents us to say
anything on the behaviour of the system for resonant frequencies 2g

k , leaving
the problem open.

In [11], we proved the existence of periodic solutions of (1.9) with fre-
quency ω if V0 = O

(
1
h

)
and h small or if V0 = 0, ω > 2g (high frequencies)

and h/ω small. The meaning of these conditions is clear: if V0 is large and h is
small, then the eigenvalue does not touch the band; if ω > 2g, then the forcing
cannot move energy levels within the band. In particular, the high-frequency



Vol. 23 (2022) Local Perturbation in the Isotropic XY Chain 1559

assumption appears in other related works in mathematical and theoretical
physics [1–3,10,12,14].

Note that differently from [11], here we allow also V0 �= 0 provided that
Hypothesis 1.1 holds and h is small enough.

An important step of our analysis is [11, Proposition 3.1], in which we
proved that if a periodic solutions of (1.9) ψ∞ with non resonant frequency
ω exists, then ψt0(ξ, t) must approach ψ∞(ξ, ωt) as t0 → −∞ for all t ∈ R,
ξ ∈ [−1, 1].

Proposition 1.6. Let ψ∞(ξ, ωt) a periodic solution of (1.9) with frequency ω
satisfying Hypothesis 1.1. For any t ∈ R, ξ ∈ [−1, 1], one has

ψt0(ξ, t) = ψ∞(ξ, ωt) + O

(
1√

t − t0

)
. (1.11)

Therefore for non resonant frequencies, the control on the long time be-
haviour of the solution of (1.6) amounts to establish the existence of a periodic
solution of (1.9) for ω < 2g, a condition defining the low frequency regime.
This is a genuine PDE question, which is indeed the main focus of this paper.

More specifically, we are facing an unbounded time-dependent perturba-
tion of the continuous spectrum of the Laplacian on Z. Problems involving
periodic forcing are typically dealt via a KAM-approach, namely one tries to
reduce the perturbation to a constant operator by means of a sequence of
bounded maps. This is for instance the approach adopted in [3,12] in the con-
text of interacting many-body system, in which a generalisation of the classical
Magnus expansion is exploited via normal form methods. Indeed some salient
features of periodically driven systems, as for instance pre-thermalisation or
slow heating, from the mathematical point of view are essentially consequences
of the KAM reduction. A similar approach has been used in [14] for the Klein–
Gordon equation with a quasi-periodic forcing. All the aforementioned results
are valid if the frequency is large enough, as usual in Magnus expansion ap-
proaches.

We cope here with two main sources of difficulty. First, we deal with a
perturbation of operators with continuous spectrum. Secondly, the operator
in (1.9) is a perturbation of the identity, which makes trivial the homological
equation at each KAM step.

Thus, we have to use a different approach. As in [11], we explicitly con-
struct a solution of (1.9) by resumming the Neumann series. More precisely,
we formally write the solution to (1.9) as a power series in the small parameter
h/ω; see (2.20). Such expression is plagued by the presence of the terms jμp

(ξ),
which may be singular for finitely many values of ξ; see (2.6). The main prob-
lem then is that any divergent jμp

(ξ) appears raised to arbitrarily large powers,
and this makes the series expansion very singular. (It does not belong to any
Lp space.) For ω > 2g, the function j0(ξ) is the only one having a singularity,
while when ω ≤ 2g, also the function jμp

(ξ) can diverge for |μp| ≤ 2g/ω.
We cure these divergences by a suitable renormalisation of the Neumann

series, and one major advance of this work is that this is done regardless of the
size of the frequency ω, once small intervals about countably many resonant
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frequencies are excluded. To do so, we refine the method introduced in [11] in
the case of large ω, which was based on the normalisation of the second-order
term of the expansion, taking into account the subtle cancellations induced by
the operator at the r.h.s. of (2.2). We stress that thanks to the careful analysis
of subsequent Sects. 4 and 5, also in the low-frequency regime resumming
the resonances of second order is sufficient to construct a meaningful solution
and, from what we can see, no crucial advantages can come from higher-order
resummations.

The rest of the paper is organised as follows. In Sect. 2, the main objects
needed for the proof are introduced, while in Sect. 3, we prove the existence of
a periodic solution of (1.9) with frequency ω. In Sects. 4 and 5, we prove few
accessory results used in Sect. 3. Finally, we attach an “Appendix” in which
we sketch the proof of Proposition 1.6.

2. Set-up

It is convenient to define

ϕ := ωt , α :=
g

ω
, γ :=

h

ω
, (2.1)

so that we can rewrite (1.8) as

W ′
∞ψ(ξ, ϕ) :=

∫ ϕ

−∞
dϕ′J0 (α(ϕ − ϕ′)) eiαξ(ϕ−ϕ′)V (ϕ′)ψ(ξ, ϕ′) ,

and hence a periodic solution of (1.9) with frequency ω should satisfy

(1 + iγW ′
∞)ψ(ξ, ϕ) = 1 . (2.2)

Such a solution will be explicitly constructed.
Note that by Remark 1.2, the inf in (1.10) is indeed a min, and it is

attained either at k̄ = 
2α�, i.e. the integer part of 2α, or at k̄ = �2α
 :=

2α� + 1. Moreover, ε̄ < 1.

Recall the formula

j(τ) :=
∫ ∞

0

dtJ0(t)eiτt =
χ(|τ | ≤ 1) + i sign(τ)χ(|τ | > 1)√

|1 − τ2|
. (2.3)

The proof of (2.3) can be found for instance in [11, Lemma A.3]. Unfortu-
nately in [11, (A.11)], the sign(τ) in the imaginary part is mistakenly omitted,
whereas it is clear from the proof that it should appear; see also [11, (A.12)].

Set

jk(ξ) :=
1
α

j

(
ξ +

k

α

)
(2.4)

and let us define ξ0 := 1, ξ∗
0 := −1, and for k ∈ N,

ξk := sign k − k

α
, ξ∗

k := sign k +
k

α
. (2.5)
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Lemma 2.1. For all k �= 0, one has

jk(ξ) =
χ (sign(k)(ξ − ξk) ≤ 0) + i sign(k)χ(sign(k)(ξ − ξk) > 0)

α
√

|(ξ − ξk)(ξ + ξ∗
k)|

. (2.6)

Proof. Using (2.3) and (2.4), we have

jk(ξ) =
χ (|αξ + k| ≤ α) + i sign(αξ + k)χ(|αξ + k| > α)

α
√

|(ξ − ξk)(ξ + ξ∗
k)|

.

Let us write

χ(|αξ + k| ≤ α) = χ

(
ξ ≤ 1 − k

α

)
χ

(
ξ ≥ −1 − k

α

)

and

sign(αξ + k)χ(|αξ + k| > α) = χ(αξ + k > α) − χ(αξ + k < −α)

= χ

(
ξ > 1 − k

α

)
− χ

(
ξ < −1 − k

α

)
.

Now, we note that since ξ ∈ [−1, 1], if k ≥ 1, then χ(ξ < −1 − k
α ) = 0 and if

k ≤ −1 then χ(ξ > 1 − k
α ) = 0. This implies

χ

(
ξ ≤ 1 − k

α

)
χ

(
ξ ≥ −1 − k

α

)
= χ(sign(k)(ξ − ξk) ≤ 0) ,

and

χ

(
ξ > 1 − k

α

)
− χ

(
ξ < −1 − k

α

)
= sign(k)χ (sign(k)(ξ − ξk) > 0)

so that the assertion is proven. �

Note that by Lemma 2.1, jk(ξ) is either real or purely imaginary. On the
other hand j0(ξ) is always real, while jk(ξ) is purely imaginary for |k| > 2α.

We conveniently localise the functions jk about their singularities. Let
r > 0 and set

⎧
⎪⎨

⎪⎩

Lj0(ξ) := j0(ξ)(χ(ξ < −1 + r) + χ(ξ > 1 − r)) ,

Ljk(ξ) := jk(ξ)χ(|ξ − ξk| < r) ,

Rjk(ξ) := jk(ξ) − Ljk(ξ) , k ∈ Z \ {0}.

(2.7)

The following properties are proved by straightforward computations.

Lemma 2.2. (i) ξk = −ξ−k and ξ∗
k = −ξ∗

−k;
(ii) One has

min
|k|,|k′|≤�2α	

k 
=k′

|ξk − ξk′ | =
ε̄

α
;

(iii) ξk > 0 if and only if k < −α or 0 < k < α.
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(iv) One has

ξk > ξk′ ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k′ > k > 0
k < k′ < 0
k′ > 0, k < 0, k′ − k > 2α

k′ < 0, k > 0, k′ − k > −2α

(v) If |k| > 2α, then |ξk| > 1;
(vi) For k ≥ 1 and r ∈ (0, (4α)−1), one has

Ljk(ξ) =
χ(ξk − r < ξ ≤ ξk) + iχ(ξk < ξ < ξk + r)

α
√

|(ξ − ξk)(ξ + ξ∗
k)|

(2.8)

Rjk(ξ) =
χ(ξ ≤ ξk − r) + iχ(ξ ≥ ξk + r)

α
√

|(ξ − ξk)(ξ + ξ∗
k)|

(2.9)

and for k ≤ −1,

Ljk(ξ) =
χ(ξk < ξ < ξk + r) − iχ(ξk − r < ξ ≤ ξk)

α
√

|(ξ − ξk)(ξ + ξ∗
k)|

(2.10)

Rjk(ξ) =
χ(ξ ≥ ξk + r) − iχ(ξ ≤ ξk − r)

α
√

|(ξ − ξk)(ξ + ξ∗
k)|

. (2.11)

(vii) There exist c1, c2 > 0 such that for all k ∈ Z

inf
ξ∈[−1,1]

|Ljk(ξ)| ≥ c1

α
√

r
, sup

ξ∈[−1,1]

|Rjk(ξ)| ≤ c2

α
√

r
. (2.12)

(viii) For |k| > 2α and ε < ε̄, one has

|jk(ξ)| ≤ c0√
αε

, (2.13)

Fix ε < ε̄ (say ε = ε̄/2) and take r ∈ (0, r∗), with r∗ < ε
4α so that in

particular, property (vi) in Lemma 2.2 is satisfied, and moreover, one has

Ljk(ξ)Ljk′(ξ) = 0 for k �= k′ (2.14)

by property (ii) of Lemma 2.2.
Combining a (formal) expansion as a power series in γ and Fourier series

in ϕ (i.e. the so-called Lindstedt series), we can now obtain a formal series rep-
resentation for the solution of (2.2) which is the starting point of our analysis.
Precisely, we start by writing

ψ(ξ, ϕ) =
∑

n≥0

γnψn(ξ, ϕ) , (2.15)

so that inserting (2.15) into (2.2), we see that the coefficients ψn must satisfy

ψ0 = 1 , ψn = −iW ′
∞[ψn−1] . (2.16)

We now expand

ψn(ξ, ϕ) =
∑

k∈Z

ψn,k(ξ)eikϕ.
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Using that

(W∞ψn)k(ξ) = jk(ξ)
∑

μ∈Z

Vk−μψn,μ(ξ) , (2.17)

by a direct computation, we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(ξ, ϕ) =
∑

k1∈Z

jk1(ξ)Vk1e
ik1ϕ ,

ψ2(ξ, ϕ) =
∑

k1,k2∈Z

jk1+k2(ξ)Vk2jk1(ξ)Vk1e
i(k1+k2)ϕ

...

ψn(ξ, ϕ) =
∑

k1,...,kn∈Z

(
n∏

i=1

jμi
(ξ)Vki

)
eiμnϕ ,

(2.18)

where we denoted

μp = μ(k1, . . . , kp) :=
p∑

j=1

kj . (2.19)

Therefore, we arrive to write the formal series

ψ̃(ξ, ϕ; γ) : =
∑

μ∈Z

eiμϕψμ(ξ; γ) =
∑

μ∈Z

eiμϕ
∑

N≥0

(−iγ)NψN,μ(ξ)

=
∑

μ∈Z

eiμϕ
∑

N≥0

∑

k1,...,kN ∈Z
μN=μ

(−iγ)N

(
N∏

p=1

jμp
(ξ)Vkp

)
,

(2.20)

which solves(1.9) to all orders in γ. Note that for each N ∈ N the coefficient
of γN is a sum of singular terms. This makes it difficult (if not impossible) to
show the convergence of (2.20), and we will instead prove the convergence of
a resummed series which solves the equation.

3. Proof of the Theorem

To explain our construction of the series giving a solution of (1.9), it is useful
to introduce a slightly modified version of the graphical formalism of [11],
inspired by the one developed in the context of KAM theory (for a review see
for instance [16]).

Since our problem is linear, we shall deal with linear trees, or reeds.
Precisely, an oriented tree is a finite graph with no cycle, such that all the
lines are oriented towards a single point (the root) which has only one incident
line (called root line). All the points in a tree except the root are called nodes.
Note that in a tree, the orientation induces a natural total ordering (�) on
the set of the nodes N(ρ) and lines. If a vertex v is attached to a line �, we
say that � exits v if v � �; otherwise, we say that � enters v. Moreover, since a
line � may be identified by the node v which it exits, we have a natural total
ordering also on the set of lines L(ρ). We call end-node a node with no line
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entering it, and internal node any other node. We say that a node has degree
d if it has exactly d incident lines. Of course an end-node has degree one. We
call reed a labelled rooted tree in which each internal node has degree two.

Given a reed ρ, we associate labels with each node and line as follows.
We associate with each node v a mode label kv ∈ Z and with each line � a
momentum μ
 ∈ Z with the constraint

μ
 =
∑

v≺


kv . (3.1)

Note that (3.1) above is a reformulation of (2.19). We call order of a reed ρ
the number #N(ρ) and total momentum of a reed the momentum associated
with the root line.

ΘN,μ denotes the set of reeds of order N and total momentum μ. We say
that a line � is regular if |μ
| ≥ �2α
; otherwise, we say it is singular. With
every singular line �, we attach a further operator label O
 ∈ {L,R}; if � is
singular, we say that it is localised if O
 = L; otherwise, we say that it is
regularised .

We then associate with each node v a node factor

Fv = Vkv
(3.2)

and with each line � a propagator

G
(ξ) =

{
jμ�

(ξ) , � is regular

O
jμ�
(ξ) , � is singular,

(3.3)

so that we can associate with each reed ρ a value as

Val(ρ) =

⎛

⎝
∏

v∈N(ρ)

Fv

⎞

⎠

⎛

⎝
∏


∈L(ρ)

G
(ξ)

⎞

⎠ . (3.4)

In particular, one has formally

ψN,μ =
∑

ρ∈ΘN,μ

Val(ρ) . (3.5)

Remark 3.1. If in a reed ρ with Val(ρ) �= 0, there is a localised line �, i.e.
if O
 = L, then all the lines with momentum μ �= μ
 are either regular or
regularised. Indeed if � is localised, then by (2.7), we have that ξ is r-close to
ξμ�

, and hence it cannot be r-close to ξμ for μ �= μ
; see also (2.14).

Given a reed ρ, we say that a connected subset s of nodes and lines in
ρ is a closed-subgraph if � ∈ L(s) implies that v, w ∈ N(s) where v, w are the
nodes � exits and enters, respectively. We say that a closed-subgraph s has
degree d := |N(s)|. We say that a line � exits a closed-subgraph s if it exits a
node in N(s) and enters either the root (so that � is the root line) or a node
in N(ρ) \ N(s). Similarly, we say that a line enters s if it enters a node in
N(s) and exits a node in N(ρ) \ N(s). We say that a closed-subgraph s is a
resonance if it has an exiting line �s and an entering line �′

s, both �s and �′
s are

localised (so that in particular by Remark 3.1, the exiting and entering lines
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of a resonance must carry the same momentum), while all lines � ∈ L(s) have
momentum μ
 �= μ
s .

Note that by (3.1), one has
∑

v∈N(s)

kv = 0 , (3.6)

We denote by Td,μ the set of resonances with degree d and entering and
exiting lines with momentum μ. Note that if d = 1, then T1,μ is constituted
by a single node v with mode kv = 0.

Let us set
Md,μ(ξ) :=

∑

s∈Td,μ

Val(s) , (3.7)

where we define the value of a resonance s as in (3.4) but with the products
restricted to nodes and lines in s, namely

Val(s) :=

⎛

⎝
∏

v∈N(s)

Fv

⎞

⎠

⎛

⎝
∏


∈L(s)

Rjμ�
(ξ)

⎞

⎠ .

Next, we proceed with the proof, which we divide into several steps.

Proof. (Step 1: resummation.) The idea behind resummation can be roughly
described as follows. The divergence of the sum in (3.5) is due to the presence
of localised lines (and their possible accumulation). If a reed ρ0 ∈ ΘN,μ has
a localised line �, say exiting a node v, then we can consider another reed
ρ1 ∈ ΘN+1,μ obtained from ρ0 by inserting an extra node v1 with kv1 = 0
and an extra localised line �′ between � and v, i.e. ρ1 has an extra resonace of
degree one. Of course, while ρ0 is a contribution to ψN (ϕ), ρ1 is a contribution
to ψN+1(ϕ), so when (formally) considering the whole sum, the value of ρ1

will have an extra factor (−iγ). In other words, in the formal sum (2.20), there
will be a term of the form

Val(ρ0) + (−iγ)Val(ρ1) = (common factor)
(
Ljμ�

(ξ) + Ljμ�
(ξ)(−iγ)V0Ljμ�

(ξ)
)

= (common factor)Ljμ�
(ξ)

(
1 + (−iγ)V0Ljμ�

(ξ)
)

Of course, we can indeed insert any chain of resonances of degree one, say of
length p, so as to obtain a reed ρp ∈ ΘN+p,μ, and when summing their values
together we formally have

∑

p≥0

(−iγ)pVal(ρp) = (common factor)Ljμ�
(ξ)

(
1 + (−iγ)V0Ljμ�

(ξ)

+ (−iγ)V0Ljμ�
(ξ)(−iγ)V0Ljμ�

(ξ) + · · ·
)

= (common factor)Ljμ�
(ξ)

∑

p≥0

((−iγ)V0Ljμ�
(ξ))p

= (common factor)
Ljμ(x)

1 + iγV0Ljμ(ξ)
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In other words, we formally replace the sum over N of the sum of reeds in ΘN,μ

with the sum of reeds where no resonance of degree one appear, but with the
localised propagators replaced with

Ljμ(x)
1 + iγV0Ljμ(ξ)

.

Clearly in principle, we can perform this formal substitution considering
resonances of any degree. Here, it is enough to consider resummations only of
resonances of degree one and two. The advantage of such a formal procedure
is that the localised propagators do not appear anymore. However, since the
procedure is only formal, one has to prove not only that the new formally
defined object is indeed well-defined, but also that it solves (2.2).

Having this in mind, let ΘR
N,μ be the set of reeds in which no resonance

of deree 1 nor 2 appear, and define

Mμ(ξ) = Mμ(ξ, γ) := (−iγ)M0,μ(ξ) + (−iγ)2M1,μ(ξ)

= −iγV0 − γ2
∑

k∈Z

VkRjk+μ(ξ)V−k . (3.8)

�

In Sect. 4, we prove the following result.

Proposition 3.2. For all μ ∈ Z ∩ [−2α, 2α] and for

γ ∈

⎧
⎪⎨

⎪⎩

(0,+∞) V0 ≥ 0
(

0, c

√
ε

α

|V0|
‖V ‖2

L2

)
V0 < 0

(3.9)

where c is a suitable absolute constant, one has

inf
ξ∈[−1,1]

|1 − Mμ(ξ)Ljμ(ξ)| ≥ 1
2

. (3.10)

Proposition 3.2 allows us to set

LjR
μ (ξ) :=

Ljμ(ξ)
1 − Mμ(ξ, γ)Ljμ(ξ)

. (3.11)

For any ρ ∈ ΘR
N,μ, let us define the renormalised value of ρ as

ValR(ρ) :=

⎛

⎝
∏

v∈N(ρ)

Fv

⎞

⎠

⎛

⎝
∏


∈L(ρ)

GR



⎞

⎠ , (3.12)

where

GR

i

=

⎧
⎪⎨

⎪⎩

LjR
μ (ξ), |μ
i

| ≤ 
2α�, O
i
= L ,

Rjμ(ξ), |μ
i
| ≤ 
2α�, O
i

= R ,

jμ�i
(ξ), |μ
i

| ≥ �2α
 .

(3.13)
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In particular, if 
2α� = 0, we have to renormalise only j0, which is the
case in our previous paper [11]. Then, we define

ψR
μ (ξ; γ) :=

∑

N≥1

(−iγ)N
∑

ρ∈ΘR
N,μ

ValR(ρ) , (3.14)

so that
ψR(ϕ; ξ, γ) :=

∑

μ∈Z

eiμϕψR
μ (ξ; γ) , (3.15)

is the renormalised series we want to prove to be a regular solution of (2.2).

Proof. (Step 2: radius of convergence.) First of all, we prove that the function
(3.15) is well-defined.

We start by noting that the node factors are easily bounded by (1.2). The
propagators defined in (3.13) are bounded as follows. If |μ
| ≥ �2α
 formula
(2.13) yields

|jμ(ξ)| ≤ c0√
2�2α
ε

,

while for |μ| ≤ 
2α�, by (2.12), we have

|Rjμ(ξ)| ≤ c2

α
√

r
.

Regarding the resummed propagators, the bound is more delicate. We
start by denoting

V :=

{
0 if Vk = 0, ∀ k ≥ 1

maxk∈Z\{0} |Vk|2 otherwise ,
(3.16)

and

V ≤2α :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if Vk = 0, ∀ k = 1, . . . , �2α�

min
|k|≤�2α�

Vk �=0

|Vk| otherwise , V >2α :=

⎧
⎪⎨

⎪⎩

0 if Vk = 0, ∀ k ≥ �2α�
max

|k|>�2α�
Vk �=0

|Vk| otherwise ,

(3.17)
�

In Sect. 5, we prove the following result.

Proposition 3.3. There is a constant c > 0 such that

|LjR
μ (ξ)| ≤ T (V, ε, α; γ) = T (γ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
γ|V0| if V0 
= 0 and γ ≤ c

√
ε
α

|V0|
‖V ‖2

L2
;

c
√

α
ε

γ−2V −2
≤2α if V0 = 0, V ≤2α 
= 0 ;

c
√

αγ−2V
−2
>2α if V0 = 0, V ≤2α = 0 .

(3.18)
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Let us set now

B = B(r, α, ε) := max
(

1
α
√

r
,

1√
αε

)
=

1
α
√

r
, C1 := max(c0, c2/2) .

(3.19)
Note that if in a reed ρ ∈ ΘR

N,μ there are l localised lines, we have

|ValR(ρ)| =
( ∏

v∈N(ρ)

|Fv|
)( ∏


∈L(ρ)

|G
|
)

≤
(
C0e

−σ
∑

v∈N(ρ) |nv|
)
⎛

⎝
∏


∈L(ρ)

|G
|

⎞

⎠

≤ C0C
N
1 BNT (γ)le−σ|μ| ,

(3.20)

for some constant C0 > 0. By construction, in a renormalised reed, there
must be at least two lines between two localised lines, since we resummed the
resonances of degree one and two. This implies that a reed with N nodes can
have at most l = �N/3
 localised lines.

Then by (3.14), we obtain

|ψR
μ (ξ; γ)| ≤ C

∑

N≥1

γNBNT (γ)
N
3 e−σ|μ|/2 , (3.21)

so that the series above converge for

γ3T (γ)B3 < 1 . (3.22)

This entails

γ <

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
(

3
√

|V0|B−1, c
√

ε
α

|V0|
‖V ‖2

L2

)
V0 �= 0 ;

c−1B−3
√

ε
α V 2

≤2α V0 = 0 , V ≤2α > 0;

c−1B−3 1√
α
V

2

>2α V0 = 0 , V ≤2α = 0.

(3.23)

Therefore, under such smallness condition on γ, the function ψR(ϕ; ξ, γ)
(recall (3.15)) is analytic w.r.t. ϕ ∈ T, uniformly in ξ ∈ [−1, 1] and for γ small
enough

Choosing ε = ε/2 and r := ε
8α , we have by (3.19)

B(r, α, ε)−3 =

√
α3ε3

64
,

so that condition (3.23) implies that the series converges for γ ≤ γ0 := c1γ1

where

γ1 = γ1(α, ε̄, V ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
(

3
√

|V0|
(√

αε̄
4

)
,
√

ε̄
2α

|V0|
‖V ‖2

L2

)
V0 �= 0 ;

(√
αε̄
4

)3 √
ε̄
2α V 2

≤2α V0 = 0 , V ≤2α > 0;
(√

αε̄
4

)3
1√
α
V

2

>2α V0 = 0 , V ≤2α = 0.

(3.24)
and c1 := min{c, c−1}.
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Proof. (Step 3: ψR(ϕ; ξ, γ) solves (2.2).) Now, we want to prove that

(1 + iγW ′
∞)ψR(ϕ; ξ, γ) = 1 .

This is essentially a standard computation. Using (3.14) and (3.15), the last
equation can be rewritten as

iγW ′
∞ψR(ϕ; ξ, γ) = 1 − ψR(ϕ; ξ, γ) = −

∑

μ∈Z

eiμϕ
∑

N≥1

(−iγ)N
∑

ρ∈ΘR
N,μ

ValR(ρ) .

(3.25)
Moreover, thanks to (2.17), we can compute

iγW ′
∞ψR(ϕ; ξ, γ) = iγ

∑

μ∈Z

ψR(ξ; γ)(W ′
∞eiμϕ)

= iγ
∑

μ∈Z

eiμϕjμ(ξ)
∑

k∈Z

Vμ−kψR
k (ξ; γ)

= iγ
∑

μ∈Z

eiμϕ
∑

N≥0

(−iγ)N jμ(ξ)
∑

μ1+μ2=μ

Vμ1

∑

ρ∈ΘR
N,μ2

ValR(ρ) .

Thus, we can write (3.25) in terms of Fourier coefficients as
∑

N≥1

(−iγ)N jμ(ξ)
∑

μ1+μ2=μ

Vμ1

∑

ρ∈ΘR
N−1,μ2

ValR(ρ) =
∑

N≥1

(−iγ)N
∑

ρ∈ΘR
N,μ

ValR(ρ) .

(3.26)
Note that the root line � of a reed has to be renormalised only if it carries

momentum label |μ
| ≤ 
2α� and operator O
 = L; thus for |μ
| ≥ �2α
, or
|μ
| ≤ 
2α� and O
 = R, we see immediately that (3.26) holds.

Concerning the case μ
 = μ with |μ| ≤ 
2α� and O
 = L, we first note
that

jμ(ξ)
∑

μ1+μ2=μ

Vμ1

∑

ρ∈ΘR
N−1,μ2

ValR(ρ) =
∑

ρ∈Θ
R
N,μ

ValR(ρ)

where Θ
R
N,μ is the set of reeds such that the root line may exits a resonance of

degree ≤ 2, so that equation (3.26) reads

ψR
μ (ξ; γ) =

∑

N≥1

(−iγ)N
∑

ρ∈Θ
R
N,μ

ValR(ρ) , (3.27)

Let us split

Θ
R
N,μ = Θ̃R

N,μ ∪ Θ̂R
N,μ , (3.28)

where Θ̂R
N,μ are the reeds such that the root line indeed exits a resonance of

degree ≤ 2, while Θ̃R
N,μ is the set of all other renormalised reeds. Therefore,

we have
∑

N≥1

(−iγ)N
∑

ρ∈Θ̃R
N,μ

ValR(ρ) = LjR
μ (ξ)

∑

μ1+μ2=μ

(iγVμ1)ψ
R
μ2

(ξ; γ) (3.29)
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and
∑

N≥1

(−iγ)N
∑

ρ∈Θ̂R
N,μ

ValR(ρ)=LjR
μ (ξ)Mμ(ξ, γ)LjR

μ (ξ)
∑

μ1+μ2=μ

(iγVμ1)ψ
R
μ2

(ξ; γ) ,

(3.30)
so that summing together (3.29) and (3.30), we obtain ψR

μ (ξ; γ). �

This concludes the proof of the Theorem.

4. Proof of Proposition 3.2

In this section, we prove Proposition 3.2. We will consider explicitly the case
μ ∈ N, since negative μ are dealt with in a similar way.

Set for brevity

Dk(ξ) := α
√

|(ξ − ξk)(ξ + ξ∗
k)| , (4.1)

Aμ,k(ξ) := −D−1
μ+k(ξ) + D−1

μ−k(ξ) , (4.2)

Gμ,k(ξ) := (Rjμ+k(ξ) + Rjμ−k(ξ))Ljμ(ξ) , (4.3)

and note that we can write

Mμ(ξ)Ljμ(ξ) = −iγV0Ljμ(ξ) − γ2
∑

k≥1

|Vk|2Gμ,k(ξ) . (4.4)

The next two lemmas establish useful properties of the functions Gμ,k(ξ)
and Aμ,k(ξ).

Lemma 4.1. Let k ∈ N and r sufficiently small. One has

inf
ξ∈[ξμ−r,ξμ+r]

Aμ,k(ξ) > 0 (4.5)

Proof. By explicit calculation

Aμ,k(ξμ) =

⎧
⎨

⎩

2
√

k√
4α2−k2(

√
k(2α−k)+

√
k(k+2α))

> 0 k < 2α ,

4α√
k2−4α2(

√
k(k−2α)+

√
k(k+2α))

> 0 k > 2α
(4.6)

so we can conclude by continuity. �

Lemma 4.2. If ξ ∈ (ξμ, ξμ + r), one has

Re(Gμ,k(ξ)) =

⎧
⎪⎨

⎪⎩

−(Dμ(ξ)Dμ+k(ξ))−1 1 ≤ k ≤ μ

−(Dμ(ξ)Dμ+k(ξ))−1 μ + 1 ≤ k ≤ 
2α�
Aμ,k(ξ)
Dμ(ξ) k ≥ �2α
 .

(4.7)

Im(Gμ,k(ξ)) =

⎧
⎪⎨

⎪⎩

(Dμ(ξ)Dμ−k(ξ))−1 1 ≤ k ≤ μ

(Dμ(ξ)Dμ−k(ξ))−1 μ + 1 ≤ k ≤ 
2α�
0 k ≥ �2α
 .

(4.8)
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If ξ ∈ (ξμ − r, ξμ], one has

Re(Gμ,k(ξ)) =

⎧
⎪⎨

⎪⎩

(Dμ(ξ)Dμ−k(ξ))−1 1 ≤ k ≤ μ

(Dμ(ξ)Dμ−k(ξ))−1 μ ≤ k ≤ 
2α�
0 k ≥ �2α
 .

(4.9)

Im(Gμ,k(ξ)) =

⎧
⎪⎨

⎪⎩

(Dμ(ξ)Dμ+k(ξ))−1 1 ≤ k ≤ μ

(Dμ(ξ)Dμ+k(ξ))−1 μ + 1 ≤ k ≤ 
2α�
−Aμ,k(ξ)

Dμ(ξ) k ≥ �2α
 .

(4.10)

Proof. Since we are considering the case μ ≥ 1, Ljμ(ξ) is given by (2.10). Our
analysis of Gμ,k(ξ) splits in several cases.

i) 1 ≤ k ≤ μ
In this case, μ − k ≥ 0 and ξμ+k < ξμ < ξμ−k. By (2.11), we write

Rjμ+k(ξ) + Rjμ−k(ξ) = D−1
μ+k(ξ)χ(ξ < ξμ+k − r) + D−1

μ−k(ξ)χ(ξ < ξμ−k − r)

+iD−1
μ+k(ξ)χ(ξ > ξμ+k + r)+iD−1

μ−k(ξ)χ(ξ>ξμ−k+r) .

(4.11)

A direct computation gives

Dμ(ξ)Gk,μ(ξ) = D−1
μ−k(ξ)χ(ξμ − r < ξ ≤ ξμ) − D−1

μ+k(ξ)χ(ξμ < ξ < ξμ + r)

+i(D−1
μ+k(ξ)χ(ξμ − r<ξ ≤ ξμ)+D−1

μ−k(ξ)χ(ξμ < ξ<ξμ + r)) .

(4.12)

ii) μ + 1 ≤ k ≤ 
2α�
Now, μ − k < 0 and max(ξμ+k, ξμ−k) < ξμ. Therefore by (2.11), (2.11)

Rjμ+k(ξ) + Rjμ−k(ξ) = D−1
μ+k(ξ)χ(ξ < ξμ+k − r) + D−1

μ−k(ξ)χ(ξ > ξμ−k + r)

+iD−1
μ+k(ξ)χ(ξ > ξμ+k+r)−iD−1

μ−k(ξ)χ(ξ<ξμ−k − r) .

(4.13)

Moreover,

Dμ(ξ)Gk,μ(ξ) = D−1
μ−k(ξ)χ(ξμ − r < ξ ≤ ξμ) − D−1

μ+k(ξ)χ(ξμ < ξ < ξμ + r)

+i(D−1
μ+k(ξ)χ(ξμ−r<ξ ≤ ξμ)+D−1

μ−k(ξ)χ(ξμ < ξ<ξμ+r)) .

(4.14)

iii) k ≥ �2α
 We have μ − k < 0, ξμ+k < ξμ < ξμ−k and again

Rjμ+k(ξ) + Rjμ−k(ξ) = D−1
μ+k(ξ)χ(ξ < ξμ+k − r) + D−1

μ−k(ξ)χ(ξ > ξμ−k + r)

+ iD−1
μ+k(ξ)χ(ξ>ξμ+k+r)−iD−1

μ−k(ξ)χ(ξ<ξμ−k − r) .

(4.15)

Therefore,

Gk,μ(ξ) = −iAμ,k(ξ)Ljμ(ξ)=
Aμ,k(ξ)
Dμ(ξ)

(χ(ξμ <ξ<ξμ + r)− iχ(ξμ − r<ξ ≤ ξμ)) .

(4.16)
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Note that for ξ /∈ (ξμ − r, ξμ + r), all Gμ,k are identically zero, and by direct
inspection, we deduce (4.7), (4.8), (4.9) and (4.10). �

Let us introduce the notation

K1(ξ) :=
�2α	∑

k=1

|Vk|2(Dμ−k(ξ))−1

K2(ξ) :=
∑

k>2α

|Vk|2Aμ,k(ξ) , K̃2(ξ) :=
∑

k≥1

|Vk|2Aμ,k(ξ)
(4.17)

Note that K1(ξ) can vanish if and only if Vk = 0 for all |k| ≤ 
2α� (that is
V ≤2α = 0). Similarly, K2(ξ) can vanish if and only if Vk = 0 for all |k| > 
2α�
(i.e. V >2α = 0), while K̃2(ξ) can vanish if and only if the forcing is constant
in time, i.e. V (ωt) ≡ V0.

Recall the notations introduced in (3.16)–(3.17). We need the following
bounds on K1(ξ), K2(ξ) and K̃2(ξ).

Lemma 4.3. There is c > 0 such that for all μ ∈ Z and all ξ ∈ (ξμ − r, ξμ + r)
if K1(ξ) �= 0, then one has

c

√
ε

α
V 2

≤2α ≤ K1(ξ) ≤ c

√
α

ε
‖V ‖2

L2 . (4.18)

Proof. By the Lipschitz continuity of D−1
μ−k(ξ) in (ξμ−r, ξμ+r), there is c1 ≥ 0

such that for all ξ ∈ (ξμ − r, ξμ + r), we have

|D−1
μ−k(ξ) − D−1

μ−k(ξμ)| ≤ c1
r√
α

.

Furthermore, since r ∈ (0, ε
2α ) and

Dμ−k(ξμ) =
√

|2α − k|k ,

we have
�2α	∑

k=1

|Vk|2
Dμ−k(ξ)

≤ C1

⎛

⎝sup
k∈N

|Vk|2
�2α	∑

k=1

1√
k|k − 2α|

+
r‖V ‖2

L2√
α

⎞

⎠

≤ C2‖V ‖2
L2

(√
α

ε
+

ε

α
√

α

)

≤ C3

√
α

ε
‖V ‖2

L2 .

for some constants C1, C2, C3 > 0. Similarly,
�2α	∑

k=1

|Vk|2
Dμ−k(ξ)

≥ C1

⎛

⎝V 2
≤2α

�2α	∑

k=1

1√
k|k − 2α|

− r‖V ‖2
L2√

α

⎞

⎠

≥ C2

√
ε

α
V 2

≤2α ,

so the assertion follows. �
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Lemma 4.4. There is c > 0 such that for all μ ∈ Z and all ξ ∈ (ξμ − r, ξμ + r)
if K2(ξ) �= 0, then one has

c√
α

V
2

>2α ≤ K2(ξ) ≤ c

√
α

ε
‖V ‖2

L2 . (4.19)

Proof. We use again the Lipschitz continuity of D−1
μ±k(ξ) in (ξμ − r, ξμ + r) to

obtain that there is c ≥ 0 such that for all ξ ∈ (ξμ − r, ξμ + r), one has

|Aμ,k(ξ) − Aμ,k(ξμ)| ≤ c
r√
α

,

and hence for all ξ ∈ (ξμ − r, ξμ + r)

|
∑

k>2α

|Vk|2Aμ,k(ξ) −
∑

k>2α

|Vk|2Aμ,k(ξμ)| ≤ c‖V ‖L2
r√
α

. (4.20)

Now, we have by (4.6)
∑

k>2α

|Vk|2Aμ,k(ξμ) ≤ ‖V ‖2
L2

∑

k>2α

4α√
k2 − 4α2(

√
k(k − 2α) +

√
k(k + 2α))

≤ c1

√
α

ε
‖V ‖2

L2 ,

and similarly, if k̂ denotes the Fourier mode at which the max in (3.17) is
attained, we have

∑

k>2α

|Vk|2Aμ,k(ξμ) ≥ V
2

>2α

4α
√

k̂2 − 4α2(
√

k̂(k̂ − 2α) +
√

k̂(k̂ + 2α))

≥ c2√
α

V
2

>2α ,

so the assertion follows combining the latter two with (4.20). �

Remark 4.5. Note that if V�2α� �= 0, there is a further 1/
√

ε in the lower bound
in (4.21).

Lemma 4.6. There is c > 0 such that for all μ ∈ Z and all ξ ∈ (ξμ − r, ξμ + r)
if K̃2(ξ) �= 0, then one has

c√
α

V
2 ≤ K̃2(ξ) ≤ c

√
α

ε
‖V ‖2

L2 . (4.21)

Proof. The lower bound follows exactly as the lower bound in Lemma 4.4. As
for the upper bound, we simply add to the upper bound for K2(ξ) the quantity

�2α�∑

k=1

|Vk|2Aμ,k(ξ) ≤ c1‖V ‖2
L2

⎛

⎝ r√
α

+

�2α�∑

k=1

4α√
k2 − 4α2(

√
k(k − 2α) +

√
k(k + 2α))

⎞

⎠

≤ c2‖V ‖2
L2

8α2

√
ε�4α�(√ε�2α� + 2�α�) ≤ c3

√
α

ε
‖V ‖2

L2

(4.22)
so the assertion follows. �
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Now, we are in position to prove Proposition 3.2.

Proof of Proposition 3.2. The case μ = 0 is easier and can be studied sepa-
rately. Indeed by a direct computation, we see that

D0(ξ)G0,k(ξ) = D−1
−k(ξ)χ(ξ > 1 − r) + D−1

k (ξ)χ(ξ < −1 + r)

+ i
(
−D−1

−k(ξ)χ(ξ < −1 + r) + D−1
k (ξ)χ(ξ > 1 − r)

)
.

In particular, Re(G0,k(ξ)) > 0 for all k ∈ Z, so that by (4.4), we have

|1−M0(ξ)Lj0(ξ)| ≥ 1−Re (M0(ξ)Lj0(ξ)) = 1+ γ2
∑

k≥1

|Vk|2Re(G0,k(ξ)) > 1 .

Now, we study the case μ ≥ 1. If ξ ∈ (ξμ − r, ξμ] by Lemma 4.2, we see
that

|1 − Re(Mμ(ξ)Ljμ(ξ))| = 1 + γ2
∑

k≥1

|Vk|2Re(Gμ,k) > 1 , (4.23)

which entails
inf

ξ∈(ξμ,ξμ+r)
|1 − Mμ(ξ)Ljμ(ξ)| > 1 . (4.24)

For all ξ ∈ (ξμ, ξμ + r), we claim that

|1 − Mμ(ξ)Ljμ(ξ)| ≥ 1
2

, (4.25)

for γ small enough. To prove it, we use again Lemma 4.2.
We have

|1 − Mμ(ξ)Ljμ(ξ)|2 = |1 + γ2
∑

k≥1

|Vk|2Re(Gμ,k(ξ)) + i

(
−γ

V0

Dμ(ξ)

+γ2
∑

k≥1

|Vk|2Im(Gμ,k(ξ))

⎞

⎠

∣∣∣∣∣∣

2

=

∣∣∣∣∣1 + γ2 K̃2(ξ)
Dμ(ξ)

− γ2 K1(ξ)
Dμ(ξ)

+ i
(

γ
V0

Dμ(ξ)
+ γ2 K1(ξ)

Dμ(ξ)

)∣∣∣∣∣

2

=

(
1 − γ2 K1(ξ)

Dμ(ξ)
+γ2 K̃2(ξ)

Dμ(ξ)
)2+(γ

V0

Dμ(ξ)
+γ2 K1(ξ)

Dμ(ξ)

)2

.

(4.26)

Now if
∣∣∣∣1 − γ2

Dμ(ξ)
(K1(ξ) − K̃2(ξ))

∣∣∣∣ ≥ 1
2
,

we have

r.h.s of (4.26) ≥ 1
4

+
(

γ
V0

Dμ(ξ)
+ γ2 K1(ξ)

Dμ(ξ)

)2

≥ 1
4

, (4.27)
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while if ∣∣∣∣1 − γ2

Dμ(ξ)
(K1(ξ) − K̃2(ξ))

∣∣∣∣ ≤ 1
2
,

then
γ2

Dμ(ξ)
K1(ξ) ≥ 1

2
+

γ2

Dμ(ξ)
K̃2(ξ),

and moreover using Lemmata 4.3 and 4.6, we have also
√

ε

α

1
4‖V ‖2

L2

≤ γ2

Dμ(ξ)
≤ 3

√
α

2(−V 2
≤2α

√
ε + V

2
)
. (4.28)

But then

r.h.s of (4.26) ≥
(

γ

Dμ(ξ)
V0+

γ2

Dμ(ξ)
K1(ξ)

)2

≥
(

1

2
+

γ

Dμ(ξ)
V0+

γ2

Dμ(ξ)
K̃2(ξ)

)2

≥ 1

4
, (4.29)

which is obvious if V0 ≥ 0, while if V0 < 0, we need to impose

γ < c

√
ε

α

|V0|
‖V ‖2

L2

(4.30)

where c is the constant appearing in Lemma 4.6, in order to obtain

1
2

+
γ

Dμ(ξ)
V0 +

γ2

Dμ(ξ)
K̃2(ξ) < −1

2

Thus, the assertion follows. �

5. Proof of Proposition 3.3

Here, we prove Proposition 3.3.

Proof of Proposition 3.3. First of all we note that by (2.7) and (3.11), we have

sup
ξ∈(ξμ−r,ξμ+r)

|jR
μ (ξ)| = sup

ξ∈(ξμ−r,ξμ+r)

∣∣∣∣
jμ(ξ)

1 − Mμ(ξ)jμ(ξ)

∣∣∣∣

=
(

inf
ξ∈(ξμ−r,ξμ+r)

|Dμ(ξ) − Mμ(ξ)|
)−1

. (5.1)

Note that

Mμ(ξ) = −iγV0 − γ2Dμ(ξ)
∑

k≥1

|Vk|2Gk,μ(ξ) .

So thanks to Lemma 4.2 and using the notation in (4.17), we can write

Mμ(ξ) = −iγV0 + χ(ξμ < ξ < ξμ + r)
(
γ2(K1(ξ) − K̃2(ξ)) − iγ2K1(ξ)

)

−χ(ξμ − r < ξ < ξμ)
(
iγ2(K1(ξ) − K̃2(ξ)) + γ2K1(ξ)

)
. (5.2)
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Therefore,

|Dμ(ξ) − Mμ(ξ)| = χ(ξμ < ξ < ξμ + r)|Dμ(ξ) − γ2(K1(ξ) − K̃2(ξ))

−i(γV0 + γ2K1(ξ))|
+χ(ξμ − r < ξ < ξμ)|Dμ(ξ) + γ2K1(ξ)

−i(γV0 + γ2(K1(ξ) − K̃2(ξ)))| ,
whence

inf
ξ∈(ξμ−r,ξμ+r)

|Dμ(ξ) − Mμ(ξ)| ≥ min
(

inf
ξ∈(ξμ−r,ξμ+r)

d(ξ), inf
ξ∈(ξμ−r,ξμ+r)

s(ξ)
)

,

(5.3)
with

d(ξ) := |Dμ(ξ) − γ2(K1(ξ) − K̃2(ξ)) − i(γV0 + γ2K1(ξ))| (5.4)

s(ξ) := |Dμ(ξ) + γ2K1(ξ) − i(γV0 + γ2(K1(ξ) − K̃2(ξ)))| . (5.5)

To estimate d(ξ) and s(ξ), we treat separately the cases V0 = 0 and V0 �= 0.
Moreover for the first case, we consider two sub-cases, namely either V ≤2α �= 0
or V ≤2α = 0.

Case I.1: V0 = 0, V≤2α �= 0. By Lemma 4.3, there is a constant c > 0 such that

inf
ξ∈(ξμ−r,ξμ+r)

d(ξ) ≥ γ2 inf
ξ∈(ξμ−r,ξμ+r)

|K1(ξ)| ≥ cγ2

√
ε

α
V 2

≤2α (5.6)

inf
ξ∈(ξμ−r,ξμ+r)

s(ξ) ≥ inf
ξ∈(ξμ−r,ξμ+r)

|Dμ(ξ) + γ2K1(ξ)|

≥ γ2 inf
ξ∈(ξμ−r,ξμ+r)

|K1(ξ)| ≥ cγ2

√
ε

α
V 2

≤2α . (5.7)

Case I.2: V0 = 0, V≤2α = 0. In this case, K1(ξ) = 0. On the other hand by
Lemma 4.4, there is a constant c > 0 such that

inf
ξ∈(ξμ−r,ξμ+r)

d(ξ) ≥ inf
ξ∈(ξμ−r,ξμ+r)

|Dμ(ξ) + γ2K2(ξ)|

≥ γ2 inf
ξ∈(ξμ−r,ξμ+r)

|K2(ξ)| ≥ γ2 c√
α

V
2

>2α (5.8)

inf
ξ∈(ξμ−r,ξμ+r)

s(ξ) ≥ γ2 inf
ξ∈(ξμ−r,ξμ+r)

|K2(ξ)| ≥ γ2 c√
α

V
2

>2α . (5.9)

Combining (5.1), (5.3), (5.6), (5.7), (5.8), (5.9) gives the second line of
(3.18).

Case II: V0 �= 0. We have

inf
ξ∈(ξμ−r,ξμ+r)

d(ξ) ≥ γ inf
ξ∈(ξμ−r,ξμ+r)

|V0 + γK1(ξ)| ≥ γ
|V0|
2

(5.10)

inf
ξ∈(ξμ−r,ξμ+r)

s(ξ) ≥ γ inf
ξ∈(ξμ−r,ξμ+r)

|V0 + γK1(ξ) − γK2(ξ)|

≥ γ inf
ξ∈(ξμ−r,ξμ+r)

|V0 − γK2(ξ)| ≥ γ|V0|
2

. (5.11)
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The last inequality is always satisfied if V >2α = 0, while otherwise, we need
to require

γ ≤ 1
c

√
ε

α

|V0|
‖V ‖2

L2

(5.12)

by Lemma 4.4.
Combining (5.1), (5.3), (5.10), (5.11), and (5.12), the result follows. �
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Appendix A. Proof of Proposition 1.6

In this “Appendix”, we give a brief account on how to prove Proposition 1.6.
We just outline the strategy and for most of the details we refer to our previous
paper [11]. We consider only the case V0 = 0, which is the most difficult case.

For any function F = F (t, x1, x2, . . .), we write

F = O

(
1√
t

)
⇐⇒ C1√

t
≤ sup

x1,x2,...
F ≤ C2√

t

for some C1, C2 > 0.
Let us set for brevity

D = D(ξ, t, t0, ω) := ψ∞(ξ, ωt) − ψt0(ξ, t) . (A.1)

By (1.6) and (1.9), we readily obtain the following equation:

(1 + ihWt0)D = −q[0] , (A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where

q[0] = q[0](ξ, t, t0, ω) := ih(W∞ − Wt0)ψ∞

= ih
∫ t0

−∞
dτJ0(g(t − τ))eigξ(t−τ)V (τ)ψ∞(ξ, τ) .

(A.3)

Therefore, we have to prove that for any ω satisfying Hypothesis 1.1, there are
C1, C2 > 0 such that

D = O

(
1√

t − t0

)
.

We write (here ψ∞,μ denotes the μ-th Fourier coefficient of ψ∞)

q[0] = ih
∑

μ,k∈Z

ψ∞,μVkeiω(μ+k)t

∫ ∞

t−t0

dτJ0(gτ)ei(gξ−ω(μ+k))τ

=
∑

k∈Z

ih(ψ∞ ∗ V )keiωkt

∫ ∞

t−t0

dτJ0(gτ)ei(gξ−ωk)τ

=:
∑

k∈Z

eiωktq
[0]
k (t, t0, ξ, ω) , (A.4)

where the last line is understood as the definition of the coefficients
q
[0]
k (t, t0, ξ, ω) = q

[0]
k .

The first property to establish is the decay of q[0]. This is done first
singularly on each coefficient q

[0]
k , and then promoted to q[0] by analyticity.

Using [11, Lemma A.6], we compute
∫ ∞

t−t0

dτJ0(gτ)ei(gξ−ωk)τ =
c(g)√
t − t0

∑

σ=±1

σ
ei(g(ξ+σ)−ωk)(t−t0)

√
|g(ξ + σ) − ωk|

+O

(
1

(t − t0)
√

1 − τ2

)
, (A.5)

where c(g) > 0 is a constant. The divergences appearing in the above formula
get however cancelled. Indeed we observe by (1.9)

δk,0 = ψ∞,k + ih(ψ∞ ∗ V )k

∫ ∞

0

dτJ0(gτ)ei(gξ−ωk)τ ,

so the divergences of
∫ ∞

0

dτJ0(gτ)ei(ξ−ωk)τ

must coincide with the zeros of (ψ∞ ∗ V )k, and we can write

ih(ψ∞ ∗ V )k = −(ψ∞,k − δk,0)
(∫ ∞

0

dτJ0(gτ)ei(gξ−ωk)τ

)−1

whence

− q
[0]
k = (ψ∞,k − δk,0)

∫∞
t−t0

dτJ0(gτ)ei(gξ−ωk)τ

∫∞
0

dτJ0(gτ)ei(gξ−ωk)τ
(A.6)
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is bounded with the desired decay. (Notice that the denominator can be com-
puted as in (2.3).) We obtain

q
[0]
k (t, t0, ξ, ω)

= (ψ∞,k − δk,0ψ0)

[
∑

σ=±1

ei(gξ−ωk+gσ)(t−t0)r̃(t, t0, ξ, ω)√
t − t0

+ O

(
1

t − t0

)]
.

(A.7)

Next, we invert the compact operator 1 + ihWt0 in a standard way. It
suffices to prove that successive applications of Wt0 preserve the decay of q[0].
To this end, we define

q[1] := Wt0q
[0]

and represent (see [11, Lemma 3.4])

q[1] =
∑

k∈Z

eikωtq
[0]
k (ξ, t, t0, ω) , (A.8)

q
[1]
k (ξ, t, t0, ω) :=

∫ t−t0

0

dt′J0(gt′)ei(gξ−ωk)t′
(V ∗ q[0])k .

Combining (A.7) with the last definition, we get

q
[1]
k =

∑

μ∈Z ,σ=±1

Vk−μ(ψ∞,k − δn,0)ei(gξ−ωμ+σ)(t−t0)

∫ t−t0

0

dt′
J0(gt′)√
t − t0 − t′

ei(ω(k−μ)−σ)t′
. (A.9)

To evaluate the inner integral, we use [11, Lemma A.6] according to which
∫ t−t0

0

dt′
J0(gt′)√
t − t0 − t′

eı(ω(k−μ)−σ)t′
=

{
O (1) ω(k − μ) ∈ {−2g, 0, 2g}
O
(

1√
t−t0

)
otherwise

.

(A.10)
The first case never occurs, since |ω(k − μ)| = 2g is excluded by (1.10) and
ω(k − μ) = 0 since we are considering the case V0 = 0. Therefore,

q
[1]
k (t, t0, ξ, ω) = O

(
1√

t − t0

)
, (A.11)

and again one can promote the decay to the entire expansion (A.8) by analyt-
icity.
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