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Inhomogeneous Conformal Field Theory
Out of Equilibrium

Per Moosavi

Abstract. We study the non-equilibrium dynamics of conformal field the-
ory (CFT) in 1+1 dimensions with a smooth position-dependent veloc-
ity v(x) explicitly breaking translation invariance. Such inhomogeneous
CFT is argued to effectively describe 1+1-dimensional quantum many-
body systems with certain inhomogeneities varying on mesoscopic scales.
Both heat and charge transport are studied, where, for concreteness,
we suppose that our CFT has a conserved U(1) current. Based on pro-
jective unitary representations of diffeomorphisms and smooth maps in
Minkowskian CFT, we obtain a recipe for computing the exact non-
equilibrium dynamics in inhomogeneous CFT when evolving from ini-
tial states defined by smooth inverse-temperature and chemical-potential
profiles β(x) and μ(x). Using this recipe, the following exact analytical
results are obtained: (i) the full time evolution of densities and currents
for heat and charge transport, (ii) correlation functions for components
of the energy–momentum tensor and the U(1) current as well as for any
primary field, and (iii) the thermal and electrical conductivities. The lat-
ter are computed by direct dynamical considerations and alternatively
using a Green–Kubo formula. Both give the same explicit expressions
for the conductivities, which reveal how inhomogeneous dynamics opens
up the possibility for diffusion as well as implies a generalization of the
Wiedemann–Franz law to finite times within CFT.

1. Introduction

Conformal field theory (CFT) is routinely used to effectively describe univer-
sal properties of quantum many-body systems in equilibrium [1]. Well-known
examples include spin chains in the gapless regime at low temperatures and
edge currents associated with quantum Hall systems. The tools of CFT are
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particularly useful in 1+1 dimensions owing to that the conformal group is in-
finite dimensional [2]. Still, it is only recently that this has been used to study
collective non-equilibrium properties of 1+1-dimensional quantum many-body
systems.

A convenient procedure to theoretically study quantum systems out of
equilibrium is to consider the dynamics after a quantum quench. One such ex-
ample is the partitioning protocol, where the time evolution is studied starting
from an initial state produced by glueing together two semi-infinite systems
independently in equilibrium with different thermodynamic variables, such as
different temperatures and/or chemical potentials. This was studied within
CFT in, e.g., [3–8] among others. Another example is the smooth-profile pro-
tocol used in [9–13], where the time evolution is studied starting from initial
states defined by smooth inhomogeneous profiles generalizing the usual con-
stant thermodynamic variables. Recently, there is active interest in extending
these kinds of non-equilibrium studies to systems where also the time evolution
is inhomogeneous [14–24].

In this paper, we define a family of inhomogeneous models that we refer to
as inhomogeneous CFT and study their non-equilibrium properties. By this, we
mean a two-dimensional Minkowskian CFT with spatial translation invariance
explicitly broken by replacing the usual constant propagation velocity v by a
smooth function v(x) that depends on position x. The Hamiltonian for such a
system of finite length L (with periodic boundary conditions) is

H =
∫ L/2

−L/2

dx v(x)[T+(x) + T−(x)], (1.1)

where T±(x) = T±(x + L) are the right- and left-moving components of the
energy–momentum tensor in light-cone coordinates (see Sect. 2 for details)
and v(x) = v(x + L) > 0. [Standard CFT is recovered by setting v(x) = v.]
Such models have been proposed to effectively describe, for instance, quantum
spin chains with certain inhomogeneities varying on mesoscopic length scales,
quantum gases in harmonic traps, arctic-circle phenomena, and quantum gen-
eralized hydrodynamics [16–18,21,22,25]. The first is illustrated in Fig. 1 for
a quantum XXZ spin chain (in the gapless regime and close to half filling1)
with uniformly varying couplings. Indeed, one can (heuristically) show that
this spin chain is effectively described by an inhomogeneous version of the
Luttinger model [26–28] with local (point-like) interactions, see, e.g., [29]. The
latter will serve as our main example of an inhomogeneous CFT.

To study both heat and charge transport, for concreteness, we suppose
that our CFT has a conserved U(1) current. The associated total conserved
charge is denoted Q =

∫ L/2

−L/2
dx [J+(x) + J−(x)] where J±(x) = J±(x + L)

are the right- and left-moving components of the U(1) current in light-cone
coordinates (see Sect. 2 for details). This is further motivated by that the
inhomogeneous local Luttinger model mentioned above is an example of such
a CFT.

1But not exactly at half filling (cf. Footnote 4).
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Figure 1. Illustration of an inhomogeneous CFT with a fixed
position-dependent velocity v(x) effectively describing a quan-
tum XXZ spin chain with couplings Jx

j = Jy
j = Jj and

Jz
j = JjΔ (for constant Δ) between spins on adjacent sites

at xj and xj+1 uniformly varying on mesoscopic length scales
much larger than the lattice spacing but much smaller than
the system size. The spatial dependence of v(x) is directly re-
lated to that of the couplings Jj (see Section 5.2 in [29]), and
the color and size of the dots indicate the magnitude of the
latter

One purpose of this paper is to lay the mathematical foundations for
[22], where we studied inhomogeneous CFT with v(x) given by a Gaussian
random function. For such a random CFT, we showed in [22] that there are
both normal and anomalous diffusive contributions to heat transport on top
of the usual ballistic one that is the sole contribution in standard CFT. We
mention that the diffusive effect due to the type of randomness in [22] was re-
cently demonstrated numerically for random quantum spin chains in [30] using
generalized hydrodynamics [31,32]. This makes clear that the generalization to
the inhomogeneous dynamics given by H in (1.1) is important as it opens up
a mechanism for diffusion within CFT. Importantly, by generalizing to trans-
port of both heat and charge, we also show that inhomogeneous CFT features
a generalization of the Wiedemann–Franz law for finite times. We mention
also that inhomogeneous CFT has close connections to recent works on entan-
glement Hamiltonians [33], stochastic CFT [34,35], holographic dualities and
BTZ black holes [36,37], and Floquet systems [38–42].

As a final remark, we emphasize that most papers use Euclidean CFT.
One supplementary purpose of this paper is to demonstrate the simplicity
and beauty of the Minkowskian theory, which are particularly true when one
studies non-equilibrium properties.

1.1. Projective Unitary Representations and a Non-Equilibrium Recipe

As mentioned, we consider CFT in two-dimensional Minkowski space, with the
spatial dimension compactified to a circle. The conformal transformations in
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this case consist of orientation-preserving diffeomorphisms of the circle. Recall
that the latter form an infinite-dimensional Lie group and that the central ex-
tension of the corresponding Lie algebra is the famous Virasoro algebra. This
is important since our use of the full Virasoro algebra makes clear that inho-
mogeneous CFT contains the recently introduced sine-square-deformed (SSD)
CFT as a special case, see, e.g., [14,15], since that only requires the finite-
dimensional subalgebra sl(2). For later reference, we introduce this special
case as the regularized deformation

v(x) = v{1 + g[2 cos2(πx/L) − 1]}, v ∈ R
+, g ∈ [0, 1), (1.2)

from which SSD CFT is obtained in the limit g → 1− (see Remark 3.3 for
further details).2 Lastly, we note that our theory is also assumed to have a
u(1)-current algebra, appearing as the central extension of the Lie algebra
corresponding to the conserved U(1) current.

The tools we will present are based on projective unitary representations
of the above-mentioned diffeomorphism group and the group of real-valued
smooth maps on the circle. Such methods were used in [11] to study the ho-
mogeneous time evolution in standard CFT starting from inhomogeneous ini-
tial states defined by inverse-temperature and chemical-potential profiles. The
physical setup in [11] can be interpreted as a quantum quench from an inhomo-
geneous system to a homogeneous one. Here we consider the more general case
where both the initial state and the Hamiltonian driving the time evolution
are inhomogeneous.

To be more specific, given a smooth inverse-temperature profile β(x) =
β(x + L) > 0 and a smooth chemical-potential profile μ(x) = μ(x + L), let

G =
∫ L/2

−L/2

dx β(x)
{

v(x)
[
T+(x) + T−(x)

]
− μ(x)

[
J+(x) + J−(x)

]}
(1.3)

be an operator defining a non-equilibrium initial state in the sense that it
replaces the combination β(H−μQ) with a constant inverse temperature β and
chemical potential μ in the usual Gibbs measure [10,11]. (We set � = kB = 1
for simplicity.) We are interested in expectations of the form

〈O1(t1) . . . On(tn)〉neq =
Tr
[
e−GO1(t1) . . . On(tn)

]
Tr
[
e−G
] (1.4)

for local operators Oj(tj) = eiHtj Oje−iHtj (j = 1, . . . , n) evolving under the
inhomogeneous dynamics given by H in (1.1). Here, locality means that each
operator can be expressed as an integral of an operator with finite support
(other notions in the literature include quasi- and pseudo-locality), see, e.g.,
[43]. In principle, these operators can otherwise be arbitrary, but, for simplic-
ity, we will restrict ourselves to the “algebra of operators” generated by the
components of the energy–momentum tensor and the U(1) current together
with so-called primary fields with products restricted to non-coincident points
in space.

2The reason for the name becomes apparent by changing coordinate from x to x − L/2.
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The main proposition (Proposition 3.1) in this paper is a recipe that
allows one to compute non-equilibrium expectations of the form in (1.4) by
mapping them to equilibrium ones:

〈O1(t1) . . . On(tn)〉neq =
Tr
[
e−β0(H0−μ0Q0)Õ1(t1) . . . Õn(tn)

]
Tr
[
e−β0(H0−μ0Q0)

] (1.5)

with H0 =
∫ L/2

−L/2
dx v0[T+(x) + T−(x)] and Q0 = Q for constants v0 > 0,

β0 > 0, and μ0 ∈ R and transformed operators Õj(tj) evolving in a non-trivial
way due to the inhomogeneous dynamics. More precisely, v0, β0, μ0, and Õj

are given by explicit formulas involving v(x), β(x), μ(x), and Oj with the non-
trivial time evolution encoded in a natural generalization of the usual light-
cone coordinates. The key to this is to flatten out the profiles and the velocity
using diffeomorphisms and smooth maps represented on the Hilbert space of
the theory, in generalization of [11] for homogeneous dynamics. This recipe is
powerful since, using known results for standard CFT in the literature, one
can compute the r.h.s. of (1.5) in many cases by exact analytical means, not
only in the thermodynamic limit L → ∞ but also for L < ∞. In particular, as
L → ∞, which will be our focus, the constants v0, β0, and μ0 will not directly
appear in any results. This agrees with the physical intuition that infinite-
volume results for local operators should only depend locally on v(x), β(x),
and μ(x) (see Remark 4.1 for more details). Note also that (1.5) becomes
a recipe for computing equilibrium expectations in inhomogeneous CFT by
setting β(x) = β and μ(x) = μ.

1.2. Summary of Results and Wiedemann–Franz Law for Finite Times

As applications of our non-equilibrium recipe, we derive the following exact
analytical results:

(i) The full time evolution of expectations of the form in (1.4) for the den-
sities and currents associated with heat and charge transport.

(ii) Correlation functions of the form in (1.4) for components of the energy–
momentum tensor and the U(1) current as well as for any primary fields.
In particular, fully explicit expressions for current–current correlation
functions for any inhomogeneous CFT and two-point fermion correlation
functions for the inhomogeneous local Luttinger model.

(iii) The thermal and electrical conductivities κth(ω) and σel(ω) as functions
of frequency ω.
The conductivities in (iii) are defined as linear-response functions [44] and

computed in two ways. First, dynamically using the explicit expressions for the
non-equilibrium expectations for the currents in (i) in the case of kink-like pro-
files β(x) and μ(x). Second, using a Green–Kubo formula for inhomogeneous
systems, where the ingredients are the equilibrium current–current correlation
functions obtained as special cases of the results in (ii). The latter was alluded
to but far from properly explained in [22], where the explicit expression for
κth(ω) constituted one of two approaches used to show that heat transport
acquires diffusive contributions in random CFT. Using general arguments (see



P. Moosavi Ann. Henri Poincaré

Appendix A), the dynamical and the Green–Kubo approaches must give the
same results. However, the dynamical one turns out to be more direct and
makes clear the remarkable role of a quantum anomaly for the final expression
for κth(ω). This anomaly corresponds to a Schwarzian-derivative term that
appears ubiquitously in CFT, but this origin would not be evident from the
Green–Kubo approach.

To understand the physical significance of the quantum anomaly (in re-
gard to the conductivities), note that, on general grounds, see, e.g., [11,45],

Re κth(ω) = Dthπδ(ω) + Re κreg
th (ω), (1.6a)

Re σel(ω) = Delπδ(ω) + Re σreg
el (ω), (1.6b)

where Dth and Del are the thermal and electrical Drude weights and Reκreg
th (ω)

and Reσreg
el (ω) are the remaining real regular parts. The explicit expressions

that we derive (see Sect. 4.3.3) imply that3

κ

c

Dth

Del
=

π2

3β
,

κ

c

Re κreg
th (ω)

Re σreg
el (ω)

=
π2

3β

[
1 +
(

ωβ

2π

)2
]
, (1.7)

where c is the central charge appearing in the Virasoro algebra and κ is the
corresponding parameter in the u(1)-current algebra. The first formula is es-
sentially the Wiedemann–Franz law, while the second only gives that result
in the limit ω → 0. Indeed, for ω �= 0, there is a correction due to the factor
1 + (ωβ/2π)2, which comes precisely from a Schwarzian derivative involving
v(x) and β(x), and (1.7) can be viewed as generalizing the Wiedemann–Franz
law within inhomogeneous CFT to finite times.

Likewise, our non-equilibrium recipe allows one to exactly compute alter-
native conductivities κth(p, ω;x′) and σel(p, ω;x′) as functions of momentum p
and ω describing the response to perturbations at position x′ (see Sect. 4.3.4).
For p = 0, these satisfy the analogous relations to (1.7), while p �= 0 enters the
quantum anomaly, with the effect that the latter appears also in the ratio of
the Drude weights and makes the ratio of the real regular parts more involved.

1.3. Organization of the Paper

In Sect. 2, we review well-known facts about Minkowskian CFT that we will
need and give examples of such theories. In Sect. 3, we state our main propo-
sition, which gives the recipe behind (1.5). This recipe is applied in Sect. 4 to
derive the exact analytical results mentioned in (i)–(iii) above, including (1.7)
for κth(ω) and σel(ω) as well as the corresponding results for κth(p, ω;x′) and
σel(p, ω;x′). Our tools are presented in Sect. 5 and used to prove the main
proposition. Concluding remarks are given in Sect. 6.

Certain topics are deferred to appendices. A review of linear-response
theory is given in Appendix A, including derivations of a dynamical formula
and a Green–Kubo formula for the conductivities. Appendix B contains com-
putational details for the results in Sect. 4.

3The second formula assumes that v(x) is not constant since otherwise Re κreg
th (ω) and

Re σreg
el (ω) would be identically zero.
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2. Prerequisites

As stressed in Sect. 1, we work in two-dimensional Minkowski space. Specif-
ically, we let spacetime be the cylinder R × S1, where the spatial dimension
is the circle S1 of length L parametrized by the coordinate x ∈ [−L/2, L/2]
and time is parameterized by t ∈ R. For later reference, we recall that the
conformal group in this case is isomorphic to Diff+(S1) × Diff+(S1), where
Diff+(S1) is the group of orientation-preserving diffeomorphisms of the circle
[46]. We also introduce its universal covering group D̃iff+(S1), which consists
of all diffeomorphisms R � x 	→ f(x) ∈ R such that f(x + L) = f(x) + L and
f ′(x) > 0. In addition, for later reference in regard to gauge transformations,
let Map(S1, R) denote the group of real-valued smooth maps on the circle,
which can be thought of as all smooth functions R � x 	→ h(x) ∈ R such that
h(x + L) = h(x).

2.1. Conformal Transformations

For all our intents and purposes, by a CFT we mean a unitary 1+1-dimensional
quantum field theory that is invariant under conformal transformations. The
main objects of such a theory are the L-periodic operators T±(x) in (1.1).
These are the right- and left-moving components of the energy–momentum
tensor in the usual light-cone coordinates x± = x ± vt and satisfy the equal-
time commutation relations
[
T±(x), T±(x′)

]
= ∓2iδ′(x − x′)T±(x′) ± iδ(x − x′)T ′

±(x′) ± c

24π
iδ′′′(x − x′),

(2.1a)[
T±(x), T∓(x′)

]
= 0, (2.1b)

where c is the central charge and δ(x) is the L-periodic delta function. We
recall that T+ = T−−, T− = T++, and T+− = 0 = T−+ in more conventional
notation, where pairs of signs refer to the light-cone coordinates, and that
T± = T±(x∓) only depends on one of these coordinates.

In Fourier space, the commutation relations in (2.1) correspond to those
of two commuting copies of the Virasoro algebra (see Sect. 5). For complete-
ness, we recall that the Hilbert space H of our theory is a (possibly infinite)
direct sum of unitary highest-weight representations of two commuting copies
of the Virasoro algebra such that H = H+ ⊗H− with H+(−) corresponding to
right- (left-) moving excitations.

Another important class of operators are Virasoro primary fields. Recall
that a field Φ is said to be Virasoro primary with conformal weights (Δ+

Φ ,Δ−
Φ)

if it obeys

Φ(x−, x+) → U(f+, f−)Φ(x−, x+)U(f+, f−)−1

= f ′
+(x−)Δ

+
Φf ′

−(x+)Δ
−
Φ Φ(f+(x−), f−(x+)) (2.2)

under conformal transformations given by f± ∈ D̃iff+(S1) unitarily imple-
mented by U(f+, f−) = U+(f+)U−(f−) with U±(f±) acting non-trivially only
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on H±. Recall also that the T±-operators are not Virasoro primary since

T±(x∓) → U(f+, f−)T±(x∓)U(f+, f−)−1

= f ′
±(x∓)2T±(f±(x∓)) − c

24π
{f±(x∓), x∓} (2.3)

under conformal transformations, where

{f(x), x} =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

(2.4)

is the Schwarzian derivative of f(x), see, e.g., [47]. The latter is an anomaly
coming from the Schwinger term (the third term) in (2.1), and it is the rea-
son why the T±-operators fail to be Virasoro primary with conformal weights
(Δ+

T+
,Δ−

T+
) = (2, 0) and (Δ+

T− ,Δ−
T−) = (0, 2).

Lastly, we recall that T±(x∓) and Φ(x−, x+) are actually operator-valued
distributions.

2.2. Gauge Transformations

We suppose that our CFT has a conserved U(1) current and let J±(x) denote
the right- and left-moving components of this current in light-cone coordinates.
Then, in addition to (2.1),
[
J±(x), J±(x′)

]
= ∓ κ

2π
iδ′(x − x′),

[
J±(x), J∓(x′)

]
= 0,

(2.5a)[
T±(x), J±(x′)

]
= ∓iδ′(x − x′)J±(x′) ± iδ(x − x′)J ′

±(x′),
[
T±(x), J∓(x′)

]
= 0,

(2.5b)

where κ plays a similar role as c in (2.1). As for T±, we recall that J± = J±(x∓)
only depends on one of the light-cone coordinates, while, different from (2.3),

J±(x) → U(f+, f−)J±(x)U(f+, f−)−1 = f ′
±(x)J±(f±(x)) (2.6)

under conformal transformations. Clearly, the J±-operators are Virasoro pri-
mary with conformal weights (Δ+

J+
,Δ−

J+
) = (1, 0) and (Δ+

J− ,Δ−
J−) = (0, 1).

In Fourier space, the commutation relations in (2.5a) correspond to those
of two commuting copies of the u(1)-current algebra. The above can be gener-
alized to more complicated current algebras, see, e.g., [48], but for simplicity
we consider only the Abelian case. (Note that the examples we have in mind
are such CFTs, see Sect. 2.3.)

Gauge transformations can be divided into large and small. We only
consider small U(1) gauge transformations, which are of the form eih with
h ∈ Map(S1, R). Under such transformations,

T±(x∓) → V (h+, h−)T±(x∓)V (h+, h−)−1

= T±(x∓) + h′
±(x∓)J±(x∓) +

κ

4π
h′

±(x∓)2, (2.7a)

J±(x∓) → V (h+, h−)J±(x∓)V (h+, h−)−1

= J±(x∓) +
κ

2π
h′

±(x∓) (2.7b)
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for h± ∈ Map(S1, R) unitarily implemented by V (h+, h−) = V+(h+)V−(h−)
with V±(h±) acting non-trivially only on H±. Similar to (2.2), a field Φ that
obeys

Φ(x−, x+) → V (h+, h−)Φ(x−, x+)V (h+, h−)−1

= e−i[h+(x−)τ+
Φ −h−(x+)τ−

Φ ]Φ(x−, x+) (2.8)

is said to be U(1) primary with associated weights (τ+
Φ , τ−

Φ ).
We say that a field Φ is primary if it obeys both (2.2) and (2.8) under

conformal and gauge transformations with weights (Δ+
Φ ,Δ−

Φ) and (τ+
Φ , τ−

Φ ).
It follows from (2.7) that both the T±- and the J±-operators fail to be U(1)
primary.

Lastly, we recall that also J±(x∓) are actually operator-valued distribu-
tions.

2.3. Examples

Below we present three examples of CFTs and recall what the T±- and J±-
operators and the primary fields are in each case.

Example 2.1 (Free massless fermions on the circle). Let ψ−
r (x) and ψ+

r (x) =
ψ−

r (x)† for r = ± be fermionic fields satisfying the usual anti-commutation
relations {

ψ−
r (x), ψ+

r′(x′)
}

= δr,r′δ(x − x′),
{
ψ±

r (x), ψ±
r′(x′)

}
= 0 (2.9)

and anti-periodic boundary conditions ψ±
r (x + L) = −ψ±

r (x). The index r =
+(−) denotes right- (left-) moving fermions. This defines a CFT with c = 1
given by the Hamiltonian

HF =
∑
r=±

∫ L/2

−L/2

dx
1
2
[
:ψ+

r (x) (−irvF ∂x) ψ−
r (x): + h.c.

]
− πvF

6L
, (2.10)

where vF > 0 is the Fermi velocity and :· · ·: indicates (fermion) Wick or-
dering with respect to the vacuum (i.e., the filled Dirac sea). Here, T±(x) =
[:ψ+

±(x)(∓i∂x)ψ−
±(x):+h.c.]/2−π/12L2. In addition, there is a conserved U(1)

current with κ = 1 and J±(x) = :ψ+
±(x)ψ−

±(x): . The primary fields consist of
the fermionic fields, for which Δ±

ψ+
r

= Δ±
ψ−

r
= δr,±/2 and τ±

ψ+
r

= −τ±
ψ−

r
= δr,±.

Example 2.2 (Free massless bosons on the circle). Let ρr(x) = ρr(x)† for r = ±
be right- and left-moving bosonic fields satisfying the commutation relations[

ρr(x), ρr′(x′)
]

=
r

2πi
δr,r′δ′(x − x′) (2.11)

and periodic boundary conditions ρr(x + L) = ρr(x). This also defines a CFT
with c = 1 given by the Hamiltonian

HB =
∑
r=±

∫ L/2

−L/2

dx πvB :ρ±(x)2 : − πvB

6L
, (2.12)

where vB > 0 and (by abuse of notation) :· · ·: indicates (boson) Wick ordering.
Here, T±(x) = π :ρ±(x)2 : − π/12L2, and there is a conserved U(1) current
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with κ = 1 and J±(x) = ρ±(x). The primary fields consist of vertex operators
involving the latter, see, e.g., [47].

Remark 2.3. There is a well-known equivalence between the models in Exam-
ples 2.1 and 2.2, commonly referred to as bosonization. The densities ρ±(x) =
:ψ+

±(x)ψ−
±(x): can be shown to satisfy the bosonic properties in (2.11), and,

setting vB = vF , one can establish an operator identity between the Hamil-
tonians in (2.10) and (2.12) known as Kronig’s identity. This can be used to
express the fermionic model in Example 2.1 as the bosonic one in Example 2.2.
Similarly, there is an operator identity relating the fermionic fields to vertex
operators involving the bosons. For details and precise statements, see, e.g.,
[49] and references therein.

Example 2.4 (Local Luttinger model). This is a CFT with c = 1 describing
interacting massless fermions formally given by the Hamiltonian [50,51]

H = HF +
∑

r,r′=±

∫ L/2

−L/2

dx
[
δr,−r′

g2πvF

2
+ δr,r′

g4πvF

2

]

× :ψ+
r (x)ψ−

r (x)::ψ+
r′(x)ψ−

r′(x): − LE0 (2.13)

with HF in (2.10) for ψ±
r (x) satisfying (2.9) and dimensionless coupling con-

stants g2 and g4 satisfying |g2| < 2 + g4. In the above, E0 is a (diverging)
constant subtracting the ground-state energy density up to the contribution
−π(v − vF )/6L2, where v = vF

√
(1 + g4/2)2 − (g2/2)2. The model also pos-

sesses a conserved U(1) current with κ = K =
√

(2 + g4 − g2)/(2 + g4 + g2).
In the local limit, ultraviolet divergencies are generated, which require addi-
tive and multiplicative renormalizations of the Hamiltonian [the term −LE0

in (2.13)] and the fermionic fields, respectively. In bosonized form (see Re-
mark 2.3), the Hamiltonian is H =

∫ L/2

−L/2
dx v
[
T+(x) + T−(x)

]
with T±(x) =

(π/K) :J±(x)2 :−π/12L2 and J±(x) = (1+K)ρ±(x)/2+(1−K)ρ∓(x)/2, where
:· · ·: indicates Wick ordering with respect to the interacting ground state. The
renormalized fermionic fields are primary with Δ±

ψ+
r

= Δ±
ψ−

r
= (1 ± rK)2/8K

and τ±
ψ+

r
= −τ±

ψ−
r

= (1 ± rK)/2.

We recall that the CFT in Example 2.4 gives an effective description of
the quantum XXZ spin chain (close to but not exactly at half filling) with the
so-called Luttinger parameter K corresponding to the anisotropy Δ.4 Similarly,
one application of the CFT in Example 2.1 is as the effective description of
the quantum XX spin chain (Δ = 0).

Other CFTs to which our considerations apply include so-called minimal
models and k-level Wess–Zumino–Witten models, cf., e.g., [47,48].

4 If kF denotes the Fermi momentum and a denotes the lattice spacing, then K =

1/
√

1 + 4Δ sin(akF )/π for akF close but not exactly equal to π/2, since at half filling there
is an umklapp interaction term (with coupling constant proportional to Δ) in the effective
description that spoils exact solvability.
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3. Non-Equilibrium Recipe

We recall that by inhomogeneous CFT we mean a unitary 1+1-dimensional
CFT with Hamiltonian

H =
∫ L/2

−L/2

dx E(x), E(x) = v(x)
[
T+(x) + T−(x)

]
, (3.1)

where v(x) = v(x + L) > 0 is a smooth function and T±(x) satisfy (2.1). As
usual, H is the charge associated with energy conservation and E(x) denotes
the energy density. Supposing (as we do) that our CFT has a conserved U(1)
current, the associated total conserved charge is

Q =
∫ L/2

−L/2

dx ρ(x), ρ(x) = J+(x) + J−(x), (3.2)

where J±(x) satisfy (2.5) and ρ(x) denotes the particle density.
As explained in Sect. 1, given smooth functions β(x) = β(x+L) > 0 and

μ(x) = μ(x + L), we are interested in expectations of the form

〈· · · 〉neq =
Tr
[
e−G(· · · )

]
Tr
[
e−G
] , G =

∫ L/2

−L/2

dx β(x)
[
E(x) − μ(x)ρ(x)

]
(3.3)

for operators evolving under the dynamics given by H in (3.1). For later ref-
erence, define

f(x) =
∫ x

0

dx′ v0

v(x′)
,

1
v0

=
1
L

∫ L/2

−L/2

dx′ 1
v(x′)

, (3.4a)

g(x) =
∫ x

0

dx′ v0β0

v(x′)β(x′)
,

1
v0β0

=
1
L

∫ L/2

−L/2

dx′ 1
v(x′)β(x′)

, (3.4b)

h(x) =
∫ x

0

dx′ μ(x′)β(x′) − μ0β0

v(x′)β(x′)
,

μ0

v0
=

1
L

∫ L/2

−L/2

dx′ μ(x′)
v(x′)

. (3.4c)

In Sect. 5.3, we prove the following recipe for computing all such non-equilibrium
expectations:

Proposition 3.1. Define H, Q, and G as in (3.1)–(3.3) as well as f(x), g(x),
h(x), v0, β0, and μ0 as in (3.4). Let 5

O(x; t) = eiHtO(x)e−iHt (3.5)

denote the inhomogeneous time evolution for any local operator O(x) and let

〈· · · 〉0 =
Tr
[
e−β0(H0−μ0Q0)(· · · )]

Tr
[
e−β0(H0−μ0Q0)

] , H0 =

∫ L/2

−L/2

dx v0

[
T+(x) + T−(x)

]
, Q0 = Q

(3.6)
denote the translation-invariant expectation corresponding to 〈· · · 〉neq in (3.3).
Moreover, define

x̃± = f−1(f(x) ± v0t) (3.7)

5This is to avoid any confusion of notation, reserving O(·, ·) to the dependence on the right-
and left-moving coordinates, cf. the primary fields in Sects. 2.1 and 2.2.
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and introduce the following:
• For the components of the energy–momentum tensor,

T̃±(x; t) =
(

v0β0

v(x)β(x̃∓)

)2

T±(g(x̃∓)) +
v0β0[μ(x̃∓)β(x̃∓) − μ0β0]

[v(x)β(x̃∓)]2
J±(g(x̃∓))

+
κ

4π

(
μ(x̃∓)β(x̃∓) − μ0β0

v(x)β(x̃∓)

)2

− T (x̃∓) + S(x)
2v(x)2

(3.8)

with

S(x) = −cv(x)2

12π

[
v′′(x)
v(x)

− 1
2

(
v′(x)
v(x)

)2
]
, (3.9a)

T (x) = −cv(x)2

12π

[
β′′(x)
β(x)

− 1
2

(
β′(x)
β(x)

)2

+
v′(x)
v(x)

β′(x)
β(x)

]
. (3.9b)

• For the components of the U(1) current,

J̃±(x; t) =
v0β0

v(x)β(x̃∓)
J±(g(x̃∓)) +

κ

2π

μ(x̃∓)β(x̃∓) − μ0β0

v(x)β(x̃∓)
. (3.10)

• For any primary field Φ [satisfying (2.2) and (2.8)] with weights (Δ+
Φ ,Δ−

Φ)
and (τ+

Φ , τ−
Φ ),

Φ̃(x; t) = e−i[h(x̃−)τ+
Φ −h(x̃+)τ−

Φ ]

(
v0β0

v(x)β(x̃−)

)Δ+
Φ
(

v0β0

v(x)β(x̃+)

)Δ−
Φ

Φ(g(x̃−), g(x̃+)).

(3.11)
Then

〈O1(t1) . . . On(tn)〉neq = 〈Õ1(t1) . . . Õn(tn)〉0 (3.12)

with Oj(tj) = eiHtj Oje−iHtj and Õj(tj) given by (3.8)–(3.11) for all Oj in the
algebra of operator-valued distributions generated by the components T± and
J± together with all primary fields with products restricted to non-coincident
points in space.

For clarity, one can write (3.7) as x̃± = x̃±
t (x) with x̃±

t (x) = f−1(f(x) ±
v0t). Proposition 3.1 makes manifest that the time evolution is entirely encoded
in x̃±

t (x). Moreover, it is straightforward to show that the latter satisfy the
group property x̃±

t1+t2(x) = x̃±
t1(x̃

±
t2(x)) = x̃±

t2(x̃
±
t1(x)) for t1, t2 ∈ R and the

equations of motion

∂tx̃
±
t (x) = ±v(x)∂xx̃±

t (x), x̃±
0 (x) = x. (3.13)

This and the above justify defining x̃± = x̃±
t (x) as coordinates generalizing

the usual light-cone coordinates x± to the inhomogeneous dynamics given by
H in (3.1).

Remark 3.2. By extending the algebra of operator-valued distributions in
Proposition 3.1 to coincident points and properly normal ordering the prod-
ucts, the statement can in principle be generalized to include also all descen-
dent fields corresponding to each primary field.
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Remark 3.3. As an example, consider the “regularized” SSD CFT given by
v(x) in (1.2). Then

v0 = v
√

1 − g2, f(x) =
L

π
arctan

[√
1 − g

1 + g
tan
(πx

L

)]
(3.14)

and

x̃± =
L

π
arctan

[√
1 + g

1 − g
tan
(

arctan
[√

1 − g

1 + g
tan
(πx

L

)]
±
√

1 − g2
πvt

L

)]
.

(3.15)
Since v0 → 0 as g → 1−, f(x) is not well defined in this limit, thus not an
element of D̃iff+(S1), cf. Sect. 5. However, the limit can be taken for x̃±,

lim
g→1−

x̃± =
L

π
arctan

[
tan
(πx

L

)
± 2πvt

L

]
, (3.16)

implying that the points x = ±L/2 do not evolve for SSD CFT, consistent
with v(±L/2) = (1 − g)v. Lastly, for |x| finite, x̃± → x ± (1 + g)vt as L → ∞,
i.e., this example then only amounts to a velocity renormalization, consistent
with limL→∞ v(x) = (1 + g)v away from x = ±L/2.

4. Applications

In this section, we present a number of exact analytical results obtained using
Proposition 3.1. For later reference, a superscript ∞ will be used to indicate
expectations in the limit L → ∞, e.g., 〈O(x; t)〉∞

neq = limL→∞〈O(x; t)〉neq, and
a superscript c to denote the connected part, e.g., 〈O1(x1; t1)O2(x2; t2)〉c

neq

= 〈O1(x1; t1)O2(x2; t2)〉neq − 〈O1(x1; t1)〉neq〈O2(x2; t2)〉neq.

Remark 4.1. It is important to note that v0, β0, and μ0 in (3.4) are defined in
the finite volume and will not directly appear in any infinite-volume results:
They can be shown to cancel in every such computation, leaving only the
dependence on v(x), β(x), and μ(x) at or between spacetime points where
local operators are evaluated, as intuitively expected and mentioned already
in Sect. 1. Alternatively, if needed, the finite-volume constants can be replaced
by new v > 0, β > 0, and μ ∈ R in the infinite volume that can differ from
the former up to O(L−1) contributions, as discussed in [11,12]. Moreover, in
what follows, the generalized light-cone coordinates x̃± in (3.7) can be assumed
given by an f(x) with v0 replaced by such a v in the infinite volume: In fact,
the value of v does not matter for x̃± = x̃±

t (x) in the limit L → ∞ since
these coordinates can then simply be viewed as defined by (3.13) and thus
only depend directly on v(x).

4.1. Densities and Currents

The energy density operator E(x) is given in (3.1), and the corresponding heat
current operator

J (x) = v(x)2
[
T+(x) − T−(x)

]
(4.1)
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can be identified from that the pair must satisfy a continuity equation. (This
determines both up to trivial c-number contributions.) It follows using (3.13)
[and (5.18a)] that

∂tE(x) + ∂xJ (x) = 0, (4.2a)
∂tJ (x) + v(x)∂x

[
v(x)E(x) + S(x)

]
= 0 (4.2b)

with S(x) in (3.9a). Here, (4.2a) is the usual continuity equation associated
with energy conservation. However, (4.2b) is not the same as in standard
CFT, see Remark 4.2. In particular, the latter implies that the total current∫ L/2

−L/2
dxJ (x; t) is not conserved if v(x) �= v.

Again, supposing (as we do) that our CFT has a conserved U(1) current,
the particle density operator ρ(x) is given in (3.2), and the corresponding
charge current operator

j(x) = v(x)
[
J+(x) − J−(x)

]
(4.3)

can be identified by the same argument as above: Using (3.13) [and (5.18b)],
we obtain

∂tρ(x) + ∂xj(x) = 0, (4.4a)
∂tj(x) + v(x)∂x

[
v(x)ρ(x)

]
= 0. (4.4b)

Similar to above, (4.4a) is the continuity equation associated with particle
number conservation, while (4.4b) implies that the total charge current is not
conserved, see Remark 4.2.

In Appendix B.1, we derive the following results:

〈E(x; t)〉∞
neq =

F (x̃−) + F (x̃+)
2v(x)

− S(x)
v(x)

, 〈J (x; t)〉∞
neq =

F (x̃−) − F (x̃+)
2

,

(4.5a)

〈ρ(x; t)〉∞
neq =

G(x̃−) + G(x̃+)
2v(x)

, 〈j(x; t)〉∞
neq =

G(x̃−) − G(x̃+)
2

,

(4.5b)

where x̃± = x̃±
t (x) are given by (3.13) (cf. Remark 4.1) and

F (x) =
πc

6β(x)2
+

κμ(x)2

2π
− T (x), G(x) =

κμ(x)
π

(4.6)

with S(x) and T (x) in (3.9). Note that these results generalize the ones in [11]
to inhomogeneous dynamics.6

Remark 4.2 (Interpretations of (4.2b) and (4.4b)). As usual, the Hamiltonian
H in (3.1) is the generator of time translations and the (usual) total momen-
tum operator P =

∫ L/2

−L/2
dx [T+(x) − T−(x)] is the generator of spatial ones.

These do not commute for non-constant v(x). Indeed, it is straightforward
to show that ∂tP = i[H,P ] = −

∫ L/2

−L/2
dx [v′(x)/v(x)]E(x). This implies that

(usual) momentum is not conserved in inhomogeneous CFT. However, one can

6Our conventions for F (x) and G(x) differ from those in [11] by a velocity factor.
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define a new operator
∫ L/2

−L/2
dx [v(x)/v0][T+(x) − T−(x)] generating position-

dependent spatial translations given by x → x′ = x + εv(x)/v0 + o(ε) for
infinitesimally small ε. This operator is conserved with the corresponding con-
tinuity equation given by (4.2b). Similarly, (4.4b) corresponds to the continuity
equation associated with the axial current with ρA(x) = [J+(x)−J−(x)]/κ and
jA(x) = v(x)[J+(x) + J−(x)]/κ.

4.2. Correlation Functions

In Appendix B.2, we derive the following results for the connected current–
current correlation functions in the thermodynamic limit:

〈J (x1; t1)J (x2; t2)〉c,∞
neq =

∑
r=±

[
π2c

8β(x̃−r
1 )2β(x̃−r

2 )2 sinh4
(
π
∫ x̃−r

1

x̃−r
2

dx′ v(x′)−1β(x′)−1
)

+
−κμ(x̃−r

1 )μ(x̃−r
2 )

4β(x̃−r
1 )β(x̃−r

2 ) sinh2
(
π
∫ x̃−r

1

x̃−r
2

dx′ v(x′)−1β(x′)−1
)
]
,

(4.7a)

〈j(x1; t1)j(x2; t2)〉c,∞
neq =

∑
r=±

−κ

4β(x̃−r
1 )β(x̃−r

2 ) sinh2
(
π
∫ x̃−r

1

x̃−r
2

dx′ v(x′)−1β(x′)−1
) ,

(4.7b)

〈J (x1; t1)j(x2; t2)〉c,∞
neq =

∑
r=±

−κμ(x̃−r
1 )

4β(x̃−r
1 )β(x̃−r

2 ) sinh2
(
π
∫ x̃−r

1

x̃−r
2

dx′ v(x′)−1β(x′)−1
) ,

(4.7c)

〈j(x1; t1)J (x2; t2)〉c,∞
neq =

∑
r=±

−κμ(x̃−r
2 )

4β(x̃−r
1 )β(x̃−r

2 ) sinh2
(
π
∫ x̃−r

1

x̃−r
2

dx′ v(x′)−1β(x′)−1
) ,

(4.7d)

where x̃±
j = x̃±

tj
(xj) are given by (3.13) (cf. Remark 4.1). These infinite-volume

results hold for any inhomogeneous CFT; the last three assuming there is a
conserved U(1) current. Note that all n-point current correlation functions can
in principle be computed, if known in the homogeneous case.

Given primary fields Φj (j = 1, . . . , n) [satisfying (2.2) and (2.8)] with
weights (Δ+

Φj
,Δ−

Φj
) and (τ+

Φj
, τ−

Φj
), it follows from Proposition 3.1 that their

correlation functions are given by〈 n∏
j=1

Φj(xj ; tj)
〉

neq

= exp
(

−i
n∑

j=1

[
h(x̃−

j )τ+
Φj

− h(x̃+
j )τ−

Φj

])

×
[ n∏

j=1

(
v0β0

v(xj)β(x̃−
j )

)Δ+
Φj
(

v0β0

v(xj)β(x̃+
j )

)Δ−
Φj
]〈 n∏

j=1

Φj(g(x̃−
j ), g(x̃+

j ))
〉

0

.

(4.8)

Important applications of correlation functions of primary fields include
to study the propagation of excitations [3] or compute the entanglement en-
tropy [8,52]. For instance, studying two-point correlation functions of primary
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fields, one finds that excitations propagate along curved light-cones given by
v(x) following a quantum quench [18], while for Floquet systems described
by inhomogeneous CFT, excitations can be shown to accumulate at unstable
fixed points of the corresponding trajectories if the system is heating, see, e.g.,
[39,42].

As examples of primary fields, we consider the fermionic fields ψ±
r in the

inhomogeneous local Luttinger model, cf. Example 2.4. Supposing that these
are properly renormalized, we show in Appendix B.2 that the explicit fermion
two-point correlation functions are

〈ψ+
r (x1; t1)ψ−

r′(x2; t2)〉∞
neq

= δr,r′
1
2π

exp
(

iτ+

ψ−
r

∫ x̃−
1

x̃−
2

dx′ μ(x′)
v(x′)

− iτ−
ψ−

r

∫ x̃+
1

x̃+
2

dx′ μ(x′)
v(x′)

)

×

⎛
⎜⎝ iπ√

v(x1)v(x2)β(x̃−
1 )β(x̃−

2 ) sinh
(
π
∫ x̃−

1

x̃−
2

dx′ v(x′)−1β(x′)−1
)
⎞
⎟⎠

2Δ+

ψ
−
r

×

⎛
⎜⎝ −iπ√

v(x1)v(x2)β(x̃+
1 )β(x̃+

2 ) sinh
(
π
∫ x̃+

1

x̃+
2

dx′ v(x′)−1β(x′)−1
)
⎞
⎟⎠

2Δ−
ψ

−
r

,

(4.9)

where x̃±
j = x̃±

tj
(xj) are given by (3.13) (cf. Remark 4.1) and (Δ+

ψ±
r

,Δ−
ψ±

r
) and

(τ+

ψ±
r

, τ−
ψ±

r
) are given in Example 2.4.

4.3. Conductivities

To compute conductivities in a unified way, we rearrange the thermodynamic
variables into μ1 = βμ and μ2 = −β and label the densities and currents
as ρ1 = ρ, ρ2 = E , j1 = j, and j2 = J , respectively.7 Let κmn(ω) denote
conductivities as functions of frequency ω. Following [44], we define them as
linear-response functions measuring the change in the total current

∫
dx jm

due to a unit-pulse perturbation in μn, which we recall is the thermodynamic
conjugate to ρn, see Appendix A. In our case, μn(x) = μn +δμnW (x) with the
spatial dependence of the perturbations δμnW (x) given by a function W (x)
describing an overall kink-like profile such that limx→∓∞ W (x) = ±1/2 in the
infinite volume.8 As in (1.6), we recall that, on general grounds,

Re κmn(ω) = Dmnπδ(ω) + Re κreg
mn(ω) (4.10)

with Drude weights Dmn and real regular parts Reκreg
mn(ω). These are im-

portant quantities characterizing the transport properties: A non-zero Dmn

7The order by which we label quantities for electrical and heat transport is different from
that in [11]. Our list can also be generalized to higher conserved charges if such exist, i.e.,
to Qn =

∫
dx ρn with density ρn and current jn satisfying ∂tρn + ∂xjn = 0 for n ≥ 3.

8See [11] (and also Appendix A.3) for a discussion of how this is compatible with our periodic
boundary conditions in the finite volume.
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corresponds to a non-zero ballistic contribution, while a non-zero Reκreg
mn(ω)

for ω = 0 (�= 0) corresponds to a non-zero normal (anomalous) diffusive con-
tribution.

We give two different approaches by which Dmn and Reκreg
mn(ω) in (4.10)

can be computed. The first is based on direct dynamical considerations and
the second on a Green–Kubo formula, see Sects. 4.3.1 and 4.3.2, respectively.
As mentioned in Sect. 1, on general grounds, both approaches must yield the
same results, see Appendix A. For inhomogeneous CFT, they are(

D11 D12

D21 D22

)
=

(
vκ
πβ

vκμ
πβ

vκμ
πβ

πvc
3β3 + vκμ2

πβ

)
(4.11a)

and
(

Re κreg
11 (ω) Re κreg

12 (ω)
Re κreg

21 (ω) Re κreg
22 (ω)

)
=

⎛
⎝

κ
2πβ

κμ
2πβ

κμ
2πβ

πc
6β3

[
1 +
(

ωβ
2π

)2
]

+ κμ2

2πβ

⎞
⎠ I(ω)

(4.11b)
with

I(ω) =
∫ ∞

−∞
dx

∫ ∞

−∞
dx′
(

1 − v

v(x)

)
∂x′
[
−W (x′)

]
cos
(

ω

∫ x

x′

dx′′

v(x′′)

)
, (4.12)

where v > 0 is given by the condition that it must subtract a constant con-
tribution from v(x) in the infinite volume so that 1 − v/v(x) ∈ L1(R), see
Appendix B.5.9 This condition fixes the values of the Drude weights in (4.11a).

4.3.1. Dynamical Approach. Consider our initial state in (3.3) defined by kink-
like profiles μ1(x) = β(x)μ(x) and μ2(x) = −β(x) with heights δμ1 and δμ2,
respectively: μn(x) = μn + δμnW (x) with W (x) above. Then

κmn(ω) =
∂

∂(δμn)

∫ ∞

0

dt eiωt

∫ ∞

−∞
dx ∂t〈jm(x; t)〉∞

neq

∣∣∣
δμ1=δμ2=0

. (4.13)

A proof is given in Appendix A.3.
In Appendix B.3, we derive (4.11) using (4.13), for which the only ingre-

dients are the results for the currents in (4.5) in the infinite volume.

4.3.2. Green–Kubo Approach. The conductivities can equivalently be com-
puted using the following Green–Kubo formula:

κmn(ω) =
1

β

∫ β

0

dτ

∫ ∞

0

dt eiωt

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ ∂x′ [−W (x′)]〈jm(x; t)jn(x′; iτ)〉c,∞

0

(4.14)
with β0 and μ0 replaced by β > 0 and μ ∈ R, respectively. A proof is given in
Appendix A.3.

In Appendix B.4, we derive (4.11) using (4.14). Here, besides W (x) above,
the only ingredients are the equilibrium current–current correlation functions
in the infinite volume. For inhomogeneous CFT, the latter are obtained from
(4.7) by setting β(x) = β and μ(x) = μ.

9This is consistent with that v and v0 can differ up to O(L−1) contributions (cf. Remark 4.1).
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4.3.3. Thermal and Electrical Conductivities. The thermal conductivity κth(ω)
in (1.6a) and the electrical conductivity σel(ω) in (1.6b) are computed as the
responses to changes in temperature β−1 and chemical potential μ, respec-
tively. Thus, it follows from (4.11) that10

Dth =
πvc

3β
, Re κreg

th (ω) =
πc

6β

[
1 +
(

ωβ

2π

)2]
I(ω), (4.15a)

Del =
vκ

π
, Re σreg

el (ω) =
κ

2π
I(ω) (4.15b)

with I(ω) in (4.12). Taking their ratios implies the relations in (1.7).

4.3.4. Alternative Conductivities. In addition to the conductivities used above,
one can also define an alternative set of conductivities κmn(x, t;x′) measuring
the change in the current jm(x) at time t following a unit-pulse perturbation
in the profile μn(x′), see Appendix A.4. Fourier transforming in space and
time, these can, for instance, be computed using the following Green–Kubo
formula:11

κmn(p, ω; x′) =
1

β

∫ β

0

dτ

∫ ∞

0

dt eiωt

∫ ∞

−∞
dx e−ip[f(x)−f(x′)]〈jm(x; t)jn(x′; iτ)〉c,∞

0

(4.16)
with β0 and μ0 replaced by β > 0 and μ ∈ R, respectively.

In analogy with (4.10),

Re κmn(p, ω;x′) = Dmn(p)π
δ(ω − vp) + δ(ω + vp)

2
+Re κreg

mn(p, ω;x′). (4.17)

By similar computations as for Reκmn(ω), starting from (4.16) and repeating
the same steps but generalized in obvious ways, the results for inhomogeneous
CFT can be shown to be

(
D11(p) D12(p)
D21(p) D22(p)

)
=

⎛
⎝

vκ
πβ

vκμ
πβ

vκμ
πβ

πvc
3β3

[
1 +
(

vβp
2π

)2
]

+ vκμ2

πβ

⎞
⎠ (4.18a)

and (
Re κreg

11 (p, ω;x′) Re κreg
12 (p, ω;x′)

Re κreg
21 (p, ω;x′) Re κreg

22 (p, ω;x′)

)

=
∫ ∞

−∞
dx

⎛
⎝

κ
2πβ

κμ
2πβ

κμ
2πβ

πc
6β3

[
1 +
(

[ω−vp sgn(x−x′)]β
2π

)2
]

+ κμ2

2πβ

⎞
⎠

×I(p, ω;x, x′) (4.18b)

with

I(p, ω;x, x′) =
(

1 − v

v(x)

)
cos
(

[ω − vp sgn(x − x′)]
∫ x

x′

dx′′

v(x′′)

)
, (4.19)

10By a change of variables from μ1 and μ2 to β−1 and μ, noting that ∂/∂(β−1) =
−μβ2∂/∂μ1 + β2∂/∂μ2 and ∂/∂μ = β∂/∂μ1.
11Note that the spatial Fourier transform involves f(x)−f(x′) =

∫ x
x′ dx′′ v/v(x′′), cf. (4.12).

This is natural since the system is inhomogeneous.
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where v is given by the condition that 1− v/v(x) ∈ L1(R) [as explained below
(4.12)].

As in Sect. 4.3.3, one can compute the corresponding thermal and elec-
trical conductivities κth(p, ω;x′) and σel(p, ω;x′). Taking the ratios of their
Drude weights and real regular parts when p = 0 imply that these alterna-
tive conductivities also satisfy the relations in (1.7). For general p, the ratios
instead become

κ

c

Dth(p)

Del(p)
=

π2

3β

[
1 +

(
vβp

2π

)2
]

,

κ

c

Re κreg
th (p, ω; x′)

Re σreg
el (p, ω; x′)

=
π2

3β

[
1 +

∫∞
−∞ dx [ω − vp sgn(x − x′)]2I(p, ω; x, x′)∫∞

−∞ dx I(p, ω; x, x′)

(
β

2π

)2
]
.

(4.20)
In this case, one observes that the quantum anomaly also appears for the
Drude weights.

5. Main Tools

In this section, we show that projective unitary representations of D̃iff+(S1)
and Map(S1, R) on our Hilbert space can be used to flatten out v(x) in (3.1) as
well as v(x)β(x) and β(x)μ(x) in (3.3). This is used to prove Proposition 3.1.

To make the presentation somewhat self-consistent, we first recall some
well-known facts for representations of D̃iff+(S1) and Map(S1, R), see, e.g.,
[53–56].

5.1. Projective Unitary Representations of Diffeomorphisms

The Lie algebra associated with D̃iff+(S1) is the infinite-dimensional alge-
bra Vect(S1) of smooth vector fields on S1. Any element of Vect(S1) can
be written as ζ(x)∂x for some smooth function ζ(x) on S1 with the Lie
bracket [ζ1∂x, ζ2∂x] = (ζ ′

1ζ2 − ζ ′
2ζ1)∂x. A central extension of Vect(S1) by

R is a Lie algebra Vect(S1) ⊕ R with the Lie bracket [(ζ1∂x, u1), (ζ2∂x, u2)] =
([ζ1∂x, ζ2∂x], ω(ζ1∂x, ζ2∂x)) given by a 2-cocycle ω : Vect(S1) × Vect(S1)
→ R.12 A non-trivial example is the Gelfand–Fuchs cocycle

ω(ζ1∂x, ζ2∂x) =
∫

S1
ζ ′
1 dζ ′

2 =
∫ L/2

−L/2

dx ζ ′
1(x)ζ ′′

2 (x). (5.1)

All non-trivial central extensions of Vect(S1) by R are isomorphic, generated by
the Gelfand–Fuchs cocycle with the coefficient in front of ω(·, ·) conventionally
chosen as c/12. This central extension is the Virasoro algebra, denoted Vir.

12Recall that a 2-cocycle on a Lie algebra g is a continuous alternating bilinear function that
satisfies the cocycle identity, ω(X1, [X2, X3])+ω(X2, [X3, X1])+ω(X3, [X1, X2]) = 0 for all
X1, X2, X3 ∈ g. A 2-cocycle ω is trivial if there exists a continuous function ϕ : g → R such
that ω = δϕ defined by δϕ(X1, X2) = ϕ([X1, X2]).
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Consider two commuting copies of Vir. Their generators L±
n satisfy13

[
L±

n , L±
m

]
= (n − m)L±

n+m +
c

12
(n3 − n)δn+m,0,

[
L±

n , L∓
m

]
= 0. (5.2)

Defining their inverse Fourier transforms as

T±(x) =
2π

L2

∞∑
n=−∞

e± 2πinx
L

(
L±

n − c

24
δn,0

)
, (5.3)

one can show that the commutation relations in (5.2) are equivalent to (2.1).
Starting with two commuting highest-weight representations of Vir on the

Hilbert space of any unitary CFT, they integrate to two commuting projective
unitary representations of D̃iff+(S1) [55–57]. Denote these by U±(f) for f ∈
D̃iff+(S1). The generators of U±(f) are the components T±(x) of the energy–
momentum tensor:

U±(f) = I ∓ iε
∫ L/2

−L/2

dx ζ(x)T±(x) + o(ε) (5.4)

for an infinitesimal f(x) = x + εζ(x) with ζ(x + L) = ζ(x). The phases can be
chosen so that

U±(f1)U±(f2) = e±icB(f1,f2)/24πU±(f1 ◦ f2), (5.5)

where B : D̃iff+(S1) × D̃iff+(S1) → R is a non-trivial group 2-cocycle called
the Bott cocycle14

B(f1, f2) =
1
2

∫
S1

log(f1◦f2)′ d(log f ′
2) =

1
2

∫ L/2

−L/2

dx [log f ′
2(x)]′ log[f ′

1(f2(x))].

(5.6)
The central extension of D̃iff+(S1) corresponding to (5.6) is called the
Virasoro–Bott group, and one can show that B(·, ·) reduces to ω(·, ·) in (5.1)
for infinitesimal diffeomorphisms.

For our purposes, only the adjoint action (actually the coadjoint action)
of U±(f) is needed. One can show that

U±(f)T±(x)U±(f)−1 = f ′(x)2T±(f(x)) − c

24π
{f(x), x},

U±(f)T∓(x)U±(f)−1 = T∓(x) (5.7)

with {f(x), x} in (2.4). These can be shown to be consistent with (5.5). Note
also that (5.7) implies (2.3).

13In Fourier space, ω(·, ·) in (5.1) corresponds to n3δn+m,0 in (5.2), while the cocycle

nδn+m,0 is trivial since ϕ(�n) = δn,0/2 implies δϕ(�n, �m) = ϕ([�n, �m]) = nδn+m,0.
14For the second equality: log(f1 ◦ f2)′ = log(f ′

1 ◦ f2) + log f ′
2 and

∫
S1 d(log f ′

2) log f ′
2 = 0

since f ′
2 is periodic.
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5.2. Projective Unitary Representations of Smooth Maps

The group Map(S1, R) is an example of a loop group. We are interested in the
u(1)-current algebra obtained as the central extension by R of the correspond-
ing loop algebra. As for Vir, we have two commuting copies of the u(1)-current
algebra whose generators J±

n satisfy

[J±
n , J±

m] = κnδn+m,0, [J±
n , J∓

m] = 0, [L±
n , J±

m] = −mJ±
n+m, [L±

n , J∓
m] = 0.

(5.8)
Their inverse Fourier transforms are

J±(x) =
1
L

∞∑
n=−∞

e± 2πinx
L J±

n . (5.9)

As before, using (5.3) and (5.9), one can show that the commutation relations
in (5.2) and (5.8) are equivalent to (2.1) and (2.5).

For any unitary CFT with two commuting highest-weight representations
of the u(1)-current algebra, the latter integrate to two commuting projective
unitary representation V±(h) of h ∈ Map(S1, R) on the Hilbert space of the
theory [55,57]. The generators of these are the components J±(x) of the U(1)
current:

V±(h) = I ∓ iε
∫ L/2

−L/2

dx ξ(x)J±(x) + o(ε) (5.10)

for an infinitesimal h(x) = εξ(x) with ξ(x + L) = ξ(x).
To complete the picture, consider the semi-direct product Map(S1, R) �

D̃iff+(S1) with elements (h, f) and group operation (h1, f1)·(h2, f2) = (f∗
2 h1+

h2, f1 ◦ f2), where f∗h = h ◦ f is the pullback of h by f . Denote by U±(h, f)
two commuting projective unitary representations of (h, f) ∈ Map(S1, R) �

D̃iff+(S1). Since (h, f) = (0, f) · (h, Id),

U±(h, f) = U±(0, f)U±(h, Id) = U±(f)V±(h), (5.11)

using U±(0, f) = U±(f) and U±(h, Id) = V±(h). As before,

U±(h1, f1)U±(h2, f2) = e±iC((h1,f1),(h2,f2))U±((h1, f1) · (h2, f2)), (5.12)

where C((h1, f1), (h2, f2)) is a more general group 2-cocycle that includes both
the Bott cocycle and the corresponding 2-cocycle for Map(S1, R), see, e.g., [53–
56].

As before, we are only interested in the (co)adjoint action. One can show
that

U±(f)J±(x)U±(f)−1 = f ′(x)J±(f(x)), U±(f)J∓(x)U±(f)−1 = J∓(x)
(5.13)

and

V±(h)T±(x)V±(h)−1 = T±(x) + h′(x)J±(x) +
κ

4π
h′(x)2, V±(h)T∓(x)V±(h)−1 = T∓(x),

(5.14a)

V±(h)J±(x)V±(h)−1 = J±(x) +
κ

2π
h′(x), V±(h)J∓(x)V±(h)−1 = J∓(x).

(5.14b)
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The above imply (2.6) and (2.7) and can be shown to be consistent with (5.12).

Remark 5.1 (Sugawara construction). Given a u(1)-current algebra, it is pos-
sible to construct a corresponding Virasoro algebra as follows:

2κL±
n =

∑
m

:J±
n−mJ±

m : . (5.15)

This is the so-called Sugawara construction, cf., e.g., [48,58]. Note that Kro-
nig’s identity in Remark 2.3 follows as a special case. For a CFT with Virasoro
algebra given by the Sugawara construction, any primary field Φ [satisfying
(2.2) and (2.8)] must have weights that obey

2κΔ±
Φ = (τ±

Φ )2. (5.16)

(To see this, let |Φ〉 be the primary state associated with Φ, then L±
0 |Φ〉 =

Δ±
Φ |Φ〉 and J±

0 |Φ〉 = τ±
Φ |Φ〉, which together with (5.15) implies (5.16), cf., e.g.,

[59].) In addition, c = dim(u(1)) = 1 for such a CFT, cf. [48]. Note that these
properties apply to the examples in Sect. 2.3.

5.3. Proof of Proposition 3.1

The proof relies on three lemmas.

Lemma 5.2. Given v(x), β(x), and μ(x) in Proposition 3.1, then f in (3.4a)
and g in (3.4b) define elements in D̃iff+(S1) and h in (3.4c) defines an element
in Map(S1, R).

Proof. Since v(x) > 0, f is an orientation-preserving diffeomorphism (by the
inverse function theorem), and the choice of v0 then implies that f ∈ D̃iff+(S1).
Similarly, one can show that g ∈ D̃iff+(S1) and that h ∈ Map(S1, R). �

It follows from Lemma 5.2 and Sect. 5.1 that U(f) = U+(f)U−(f) and
U(g) = U+(g)U−(g) define projective unitary representations of f and g on
the Hilbert space of any unitary CFT. In addition, it follows from Sect. 5.2
that V (h) = V+(h)V−(h) defines a projective unitary representation of h on
the Hilbert space of any unitary CFT with a u(1)-current algebra. These rep-
resentations of f , g, and h given by (3.4) are used in what follows.

Lemma 5.3. Given H in (3.1) and f in (3.4a), then

U(f)HU(f)−1 = H0 −
∫ L/2

−L/2

dx
S(x)
v(x)

(5.17)

with H0 in (3.6) and S(x) in (3.9a). Moreover, given (3.5) and x̃± in (3.7),
then

T±(x; t) =
(

v(x̃∓)
v(x)

)2

T±(x̃∓) +
S(x̃∓) − S(x)

2v(x)2
, (5.18a)

J±(x; t) =
v(x̃∓)
v(x)

J±(x̃∓), (5.18b)

Φ(x; t) =
(

v(x̃−)
v(x)

)Δ+
Φ
(

v(x̃+)
v(x)

)Δ−
Φ

Φ(x̃−, x̃+), (5.18c)
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where the latter is for any Virasoro primary field Φ with conformal weights
(Δ+

Φ ,Δ−
Φ).

Proof. Setting y = f(x), it follows from (2.3) that

U(f)T±(x)U(f)−1 = T±(y)
(

dy

dx

)2

− c

24π
{y, x}, (5.19a)

U(f)−1T±(y)U(f) = T±(x)
(

dx

dy

)2

− c

24π
{x, y}, (5.19b)

where we used {y, x} = −(dy/dx)2{x, y} [47]. Since dx/dy = v(x)/v0, (5.19a)
implies

U(f)

(∫ L/2

−L/2

dx v(x)T±(x)

)
U(f)−1

=
∫ L/2

−L/2

dy v0T±(y) − c

24π

∫ L/2

−L/2

dx v(x){y, x}. (5.20)

Thus, conjugating H in (3.1) with U(f) yields (5.17) with the Schwarzian-
derivative contribution S(x) = cv(x)2{f(x), x}/12π, where the latter can
equivalently be written as in (3.9a) using f in (3.4a).

To prove (5.18a), note that (5.17) together with (5.19a) and (5.19b) im-
plies

T±(x; t) = U(f)−1eiH0tU(f)T±(x)U(f)−1e−iH0tU(f)

= f ′(x)2
[
T±(x̃∓)

[
(f−1)′(y ∓ v0t)

]2 − c

24π
{f−1(y ∓ v0t), y ∓ v0t}

]

− c

24π
{y, x}. (5.21)

Again, since dy/dx = v0/v(x), one can show that (f−1)′(y ∓ v0t) = v(x̃∓)/v0

as well as

c

24π
{y, x} =

S(x)
2v(x)2

,
c

24π
{f−1(y ∓ v0t), y ∓ v0t} = −S(x̃∓)

2v2
0

, (5.22)

where we used the formula for the Schwarzian derivative below (5.19b) in the
last equation. Combining this with (5.21) yields the desired result.

The proofs of (5.18b) and (5.18c) follow analogously by using the trans-
formations in (2.6) and (2.2) together with their inverses. �

Lemma 5.4. Given G in (3.3) and g and h in (3.4), then

U(g)V (h)e−GV (h)−1U(g)−1 = e−β0(H0−μ0Q0)+const (5.23)

with H0 and Q0 in (3.6).

Proof. The derivation is analogous to that of Lemma 5.3 using the transfor-
mation rules in (2.3), (2.6), and (2.7). �
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The results in Proposition 3.1 follow straightforwardly from the lemmas
above and by computing Õ(x; t) = U(g)V (h)O(x; t)V (h)−1U(g)−1 for O(x; t)
equal to T±(x; t) using (2.3) and (2.7a), J±(x; t) using (2.6) and (2.7b), and
Φ(x; t) using (2.2) and (2.8).

6. Concluding Remarks

In this paper, we defined inhomogeneous conformal field theory as a 1+1-
dimensional CFT with a smooth position-dependent velocity v(x) explicitly
breaking translation invariance. We showed how exact analytical results for
such models out of equilibrium can be obtained using projective unitary rep-
resentations of diffeomorphisms and smooth maps. In particular, we derived
explicit formulas for the inhomogeneous dynamics and for the thermal and elec-
trical conductivities, which generalize well-known results for standard CFT.

The conductivities were computed in two ways: The first based on a
dynamical approach and the second using a Green–Kubo formula that we de-
rived. We stress that the equivalence between these two is non-trivial. The
first is fully dynamical, here based on a quantum quench from initial states
with inverse-temperature and chemical-potential profiles given by a kink-like
function W (x), while the second is based on equilibrium current–current cor-
relation functions. On general grounds, they must be equivalent, cf. [60], but
verifying this is not straightforward; see, e.g., [61] for a discussion of such an
equivalence between dynamically computed Drude weights and Green–Kubo-
type formulas for one-dimensional lattice fermions and [62,63] for a review
and recent related results for gapped quantum systems. In particular, when
deriving (4.15a) using the dynamical approach, it becomes clear that the fac-
tor 1 + (ωβ/2π)2 is due to a quantum anomaly originating from a Schwinger
term [see (2.1)] which appears ubiquitously in CFT. This observation would
not be evident from the Green–Kubo approach, even if the final expressions
are the same. As discussed in Sect. 1, the physical significance of this quantum
anomaly includes a generalization of the Wiedemann–Franz law within inho-
mogeneous CFT to finite times. Moreover, we note that Dth in (4.15a) and Del

in (4.15b) are the same universal results as in standard CFT, see, e.g., [11],
while Re κreg

th (ω) and Reσreg
el (ω) are non-universal since they depend on the

details of the functions W (x) and v(x). Finally, we also computed conductiv-
ities κth(p, ω;x′) and σel(p, ω;x′) as the linear responses to perturbations at
position x′, which exhibit the same quantum anomaly but whose real regular
parts are independent of the details of the perturbations.

This paper both generalizes and lays the mathematical foundations for
[22], where we explicitly showed that a random v(x) leads to the emergence of
diffusive heat transport after averaging over the randomness. Two approaches
were given in [22]: The first based on random inhomogeneous dynamics and the
second using the explicit expression for κth(ω). Regarding the first approach,
we emphasize that the inhomogeneous dynamics is encoded in the generalized
light-cone coordinates x̃± = x̃±

t (x) satisfying (3.13) for fixed v(x). Even if
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our results depend on these coordinates in explicit ways, such as in (4.5),
extracting information remains complicated. In particular, it is difficult to
compute the average E[·] for a v(x) given by a random function. Inspired
by wave propagation in random media [64], this was investigated in [22] by
instead directly studying the random partial differential equations that the
expectations of the energy density and heat current operators satisfy. In the
second approach, we subtracted a Drude peak as in (1.6a) and (4.15a) with
v−1 = E[v(x)−1] from κth(ω), which after averaging gave an explicit expression
for E[Re κreg

th (ω)]. The limit ω → 0 could safely be taken in this expression
and yielded a non-zero value. One interpretation is that the normal diffusive
contribution in [22] is an emergent phenomenon in the sense that it reflects a
lack of knowledge about mesoscopic details, which manifests itself as diffusion
on larger scales after averaging. It would be interesting to better understand
this, including also for the anomalous diffusive contribution in [22], as well as
how to interpret the results for a fixed velocity v(x).

As a final remark, we note that emergent Euler-scale hydrodynamic re-
sults, see, e.g., [65], can be derived from the exact infinite-volume results in
Sect. 4. This scaling involves replacing v(·), β(·), μ(·), and (x, t) by v(·/λ),
β(·/λ), μ(·/λ), and (λx, λt), respectively, for some λ > 0 and taking the limit
λ → ∞; cf. [66] where this was studied for the non-local Luttinger model.
[Naturally, for our generalized light-cone coordinates, this scaling entails that
x̃± are replaced by λx̃±.] For the results in Sect. 4.1, the effects of sending
λ → ∞ are that S(x) and T (x) in (4.5) and (4.6) disappear, while the other
terms remain unaffected. It would be interesting to further explore connections
with Euler-scale hydrodynamics for inhomogeneous dynamics.
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Appendix A. Linear-Response Theory

In this appendix, we review linear-response theory for 1+1-dimensional sys-
tems in the case of an arbitrary number of conserved charges.15 In particular,
the formulas in (4.13) and (4.14) for the conductivities are derived and shown
to give the same result.16

A.1. Linear Response in Closed Quantum Systems

Let Hsys be the Hamiltonian [not necessarily the one in (3.1)] for some system
that, in general, can be inhomogeneous. We introduce the time-dependent
Hamiltonian Hsys(λ(s)) = Hsys −

∑
n≥1 λn(s)Vn, λ(s) = (λ1(s), λ2(s), . . .),

where λn(s) are functions of time s and Vn are perturbations (n = 1, 2, . . .).
Suppose that the system is in the equilibrium initial state ρ̂ =
e−βHsys/Tr[e−βHsys ] at times t < t0 and consider the time-evolved state ρ̂λ(·)(t)
under Hsys(λ(s)) for t > t0,

ρ̂(t,λ(·)) =
←−T exp

(
−i
∫ t

t0

ds Hsys(λ(s))
)

ρ̂
−→T exp

(
i
∫ t

t0

ds Hsys(λ(s))
)

(A.1)

with time ordering
−→T (

←−T ) such that time increases (decreases) from left to
right. For operators Om (m = 1, 2, . . .), define the response functions Rmn(t, s)
for s > t0 by [44]

Rmn(t, s) =
δ

δλn(s)

(
Tr
[
Omρ̂(t,λ(·))

])∣∣∣
λ(·)=0

. (A.2)

Without loss of generality, we can set t0 = −∞. Clearly, Rmn(t, s) = 0 for
s > t, while

Rmn(t, s) = Tr
[
Ome−i(t−s)Hsys [iVn, ρ̂]ei(t−s)Hsys

]
= Tr

[
Om(t − s)[iVn, ρ̂]

]
(A.3)

for s ≤ t, where Om(t) = eiHsystOme−iHsyst. Since
[
Hsys−λnVn, e−β(Hsys−λnVn)

]
= 0,

0 =
∂

∂λn

([
Hsys − λnVn, e−β(Hsys−λnVn)

])∣∣∣
λn=0

= −
[
Vn, e−βHsys

]
+
[
Hsys,

∂

∂λn

(
e−β(Hsys−λnVn)

)∣∣∣
λn=0

]
, (A.4)

15Cf. Footnote 7.
16The presentation here is an updated version of the corresponding appendix in [29], which
in turn was based on private correspondence with Krzysztof Gawedzki when working on
[11].
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where
∂

∂λn

(
e−β(Hsys−λnVn)

)∣∣∣
λn=0

=
∫ β

0

dτ e−τHsysVne(τ−β)Hsys =
∫ β

0

dτ Vn(iτ)e−βHsys , (A.5)

which means that
[
iVn, ρ̂

]
=
∫ β

0

dτ i
[
Hsys, Vn(iτ)

]
ρ̂ =
∫ β

0

dτ ∂iτVn(iτ)ρ̂. (A.6)

Inserting this into (A.3) yields

Rmn(t, s) =
∫ β

0

dτ Tr
[
Om(t − s)∂iτVn(iτ)ρ̂

]
= Rmn(t − s, 0). (A.7)

In conclusion, defining Rmn(t) = Rmn(t, 0), we have shown that

Rmn(t) =
∫ β

0

dτ
〈
Om(t)∂iτVn(iτ)

〉
β

(A.8)

with 〈· · · 〉β = Tr
[
(· · · )ρ̂

]
and ρ̂ defined above (A.1).

A.2. Linear Response from Quench Dynamics

Let ρ̂λ = e−β(Hsys−
∑

n≥1 λnVn)/Tr[e−β(Hsys−
∑

n≥1 λnVn)], λ = (λ1, λ2, . . .), de-
fine the initial state and consider〈

Om(t)
〉

λ
= Tr

[
Om(t)ρ̂λ

]
(A.9)

for operators Om(t) = eiHsystOme−iHsyst evolving under Hsys for t > 0. This is
a quantum quench changing the Hamiltonian from Hsys −

∑
n≥1 λnVn to Hsys

at t = 0. The aim is to show that the response functions for changes in λn

defined above can be expressed as

Rmn(t) = − ∂

∂λn

(
∂t

〈
Om(t)

〉
λ

)∣∣∣
λ=0

. (A.10)

Indeed, ∂t

〈
Om(t)

〉
λ

= Tr
[
i[Hsys, Om(t)]ρ̂λ

]
, and thus,

∂

∂λn

(
∂t〈Om(t)〉λ

)∣∣∣
λ=0

=
1

Tr e−βHsys
Tr
[
i[Hsys, Om(t)]

∂

∂λn

(
e−β(Hsys−λnVn)

)∣∣∣
λn=0

]

=
1

Tr e−βHsys
Tr
[
i[Hsys, Om(t)]

∫ β

0

dτ Vn(iτ)e−βHsys

]

= −
∫ β

0

dτ
〈
Om(t)∂iτVn(iτ)

〉
β

= −Rmn(t), (A.11)

where we used (A.5) in the second equality and (A.8) in the last.
We stress that (A.10) is a general result saying that the response func-

tions Rmn(t) obtained from the equilibrium correlation function in (A.8) can
equivalently be computed from the dynamics following a quantum quench.
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A.3. Conductivity Matrix

In what follows the above is specialized to kink-like profiles as in Sect. 4.3. Let
μ = (μ1, μ2, . . .), where we recall that μ1 = βμ and μ2 = −β. We identify Hsys

with Q2 −
∑

n�=2(μn/β)Qn using Q2 = H in (3.1) and Q1 = Q in (3.2), and

we pick Vn =
∫ L/2

−L/2
dx W (x)ρn(x) and Om =

∫ L/2

−L/2
dx jm(x). We recall that

the latter are precisely the total currents and that W (x) describes an overall
kink-like profile such that limx→∓∞ W (x) = ±1/2 in the infinite volume. A
specific example of such a function W (x) used in [11] is

W (x) = W0

(
L

2π
sin
(

2πx

L

))
, W0(x) = −1

2
tanh

(
x

δW

)
(A.12)

for δW > 0, which satisfies our periodic boundary conditions for finite L.
The sign convention for Rmn(t, s) in (A.2) is so that an overall positive

gradient [i.e., a negative λn since W (x) goes from 1/2 to −1/2 in the infinite
volume] corresponds to Rmn(t, s) positive. Since such a gradient induces a
negative current, we define the conductivities as

κmn(t) = lim
L→∞

− 1
β

Rmn(t) (A.13)

in the thermodynamic limit.

Proof of (4.13) and (4.14). To prove the first equation, if we identify δμn with
βλn, it follows from (A.10) and (A.13) that

κmn(t) = lim
L→∞

∂

∂(δμn)

(
∂t〈Om(t)〉λ

)∣∣∣
λ=0

= lim
L→∞

∂

∂(δμn)

∫ L/2

−L/2

dx
(
∂t〈jm(x; t)〉neq

)∣∣∣
δμ=0

(A.14)

using the definition of the expectation in (A.9). To prove the second, using
the expression for Vn above and the continuity equation ∂tρn + ∂xjn = 0, we
obtain

∂iτVn(iτ) = −
∫ L/2

−L/2

dx W (x)∂xjn(x, iτ). (A.15)

This together with (A.8) and (A.13) yields

κmn(t) =
1
β

∫ β

0

dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dx′〈jm(x; t)W (x′)∂x′jn(x′; iτ)

〉∞
β

=
1
β

∫ β

0

dτ

∫ ∞

−∞
dx′ ∂x′ [−W (x′)]

∫ ∞

−∞
dx
〈
jm(x; t)jn(x′; iτ)

〉c,∞
β

(A.16)

with 〈· · · 〉β defined below (A.8), where we used integration by parts, assumed
that the current–current correlation functions decay rapidly for large separa-
tions, and used that the connected part is the only non-zero contribution since
〈jm(x; t)〉∞

β = 0.
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The results in (4.13) and (4.14) follow from the above by passing to the
frequency domain using κmn(ω) =

∫∞
0

dt eiωtκmn(t), noting that κmn(t) = 0
for t < 0 (see Appendix A.1), and changing notation from

〈
· · ·
〉

β
to
〈
· · ·
〉
0

defined in (3.6). �

For the special case of a homogeneous system,
〈
jm(x; t)jn(x′; iτ)

〉c,∞
β

de-
pends only on x − x′ due to translation invariance. Thus, by a change of
variable, (A.16) becomes

κmn(t) =
1
β

∫ β

0

dτ

∫ ∞

−∞
dx
〈
jm(x; t)jn(0; iτ)

〉c,∞
β

, (A.17)

again with 〈· · · 〉β defined below (A.8), since
∫∞

−∞ dx′ ∂x′ [−W (x′)] = W (−∞)−
W (∞) = 1.

A.4. Alternative Linear-Response Functions

A property of the response functions defined in (A.2) is that they will depend
on the details of the perturbations if the system is inhomogeneous. One way
to circumvent this is to define alternative linear-response functions as follows.

In analogy with Appendix A.1, introduce Hsys(λ(·, s)) = Hsys

−
∑

n≥1

∫ L/2

−L/2
dx λn(x, s)ρn(x), λ(x, s) = (λ1(x, s), λ2(x, s), . . .), where λn(x, s)

are functions of position x and time s satisfying λn(x + L, s) = λn(x, s) and
ρn(x) are densities corresponding to the conserved quantities Qn =

∫
dx ρn(x)

(n = 1, 2, . . .). Instead of (A.1), consider the time-evolved state

ρ̂(t,λ(·, ·)) =
←−T exp

(
−i
∫ t

t0

ds Hsys(λ(·, s))
)

ρ̂
−→T exp

(
i
∫ t

t0

ds Hsys(λ(·, s))
)

.

(A.18)
For operators Om(x) (m = 1, 2, . . .), define the response functions

Rmn(x, t;x′, s) =
δ

δλn(x′, s)

(
Tr
[
Om(x)ρ̂(t,λ(·, ·))

])∣∣∣
λ(·,·)=0

(A.19)

for s > t0. Again, without loss of generality, set t0 = −∞. Repeating the steps
in Appendix A.1 yields Rmn(x, t;x′, s) = Rmn(x, t − s;x′, 0) and, defining
Rmn(x, t;x′) = Rmn(x, t;x′, 0), we get

Rmn(x, t;x′) =
∫ β

0

dτ
〈
Om(x; t)∂iτρn(x′; iτ)

〉
β

(A.20)

with Om(x; t) = eiHsystOm(x)e−iHsyst and 〈· · · 〉β defined below (A.8).
Similar to Appendix A.3, in this case picking Om(x) = jm(x), we can

define the conductivities κmn(x, t;x′) by

∂x′κmn(x, t;x′) = lim
L→∞

− 1
β

Rmn(x, t;x′) (A.21)

in the thermodynamic limit. Repeating the steps in the proof in Appendix A.3,
assuming that the current–current correlation functions decay rapidly for large
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separations, yields

κmn(x, t;x′) =
1
β

∫ β

0

dτ〈jm(x; t)jn(x′; iτ)〉c,∞
0 , (A.22)

from which (4.16) follows.
For the special case of a homogeneous system, we obtain κmn(x, t;x′) =

κmn(x − x′, t; 0), which yields the result in (A.17) if we define κmn(t) =∫∞
−∞ dx κmn(x, t; 0).

Appendix B. Computational Details

In this appendix, we give computational details for the results in Sect. 4.
For later reference, we collect formulas for equilibrium expectations in

the thermodynamic limit of the components of the energy–momentum tensor
and the U(1) current:

〈T±(x)〉∞
0 =

πc

12(v0β0)2
+

κμ2
0

4πv2
0

, (B.1a)

〈T±(x1)T±(x2)〉∞
0 =

(
πc

12(v0β0)2
+

κμ2
0

4πv2
0

)2

+
π2c

8(v0β0)4 sinh4
(
π[x1 − x2]/v0β0

)

+
−κμ2

0/v2
0

4(v0β0)2 sinh2
(
π[x1 − x2]/v0β0

) , (B.1b)

〈T±(x1)T∓(x2)〉∞
0 =

(
πc

12(v0β0)2
+

κμ2
0

4πv2
0

)2

(B.1c)

and

〈J±(x)〉∞
0 =

κμ0

2πv0
, (B.2a)

〈J±(x1)J±(x2)〉∞
0 =

(
κμ0

2πv0

)2

+
−κ

4(v0β0)2 sinh2
(
π[x1 − x2]/v0β0

) , (B.2b)

〈J±(x1)J∓(x2)〉∞
0 =

(
κμ0

2πv0

)2

(B.2c)

as well as

〈T±(x1)J±(x2)〉∞
0 = 〈J±(x1)T±(x2)〉∞

0

=
(

πc

12(v0β0)2
+

κμ2
0

4πv2
0

)
κμ0

2πv0

+
−κμ0/v0

4(v0β0)2 sinh2
(
π[x1 − x2]/v0β0

) , (B.3a)

〈T±(x1)J∓(x2)〉∞
0 = 〈J±(x1)T∓(x2)〉∞

0
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=
(

πc

12(v0β0)2
+

κμ2
0

4πv2
0

)
κμ0

2πv0
, (B.3b)

cf., e.g., Sections 3.3, 4.1, and 4.3 in [11]. We note that translation invariance
is manifest and that (B.1)–(B.3) only hold true in the thermodynamic limit.

Following [11], the formulas in (B.1)–(B.3) for μ0 = 0 can be obtained
in a simple way for any modular-invariant CFT. In this case, the reason why
these hold true only in the limit L → ∞ is that then the only contributions
are from the vacuum expectation in the dual representation on the circle with
circumference v0β0, which is universal since it depends only on the two vacuum
highest-weight representations of the Virasoro algebra. If we did not take L →
∞, there would be contributions from the other Verma modules that depend
on the representation content of the CFT, i.e., all eigenstates |h+, h−〉 of L±

0

where L±
0 |h+, h−〉 = h±|h+, h−〉 and not only the vacuum |0〉 corresponding

to h+ = h− = 0, see, e.g., [47]. Lastly, we mention that the formulas for μ0 �= 0
can be obtained by large gauge transformations.17

B.1. Proof of (4.5)

It follows from Proposition 3.1 that

〈T±(x; t)〉neq =
(

v0β0

v(x)β(x̃∓)

)2

〈T±(g(x̃∓))〉0

+
v0β0[μ(x̃∓)β(x̃∓) − μ0β0]

[v(x)β(x̃∓)]2
〈J±(g(x̃∓))〉0

+
κ

4π

(
μ(x̃∓)β(x̃∓) − μ0β0

v(x)β(x̃∓)

)2

− T (x̃∓) + S(x)
2v(x)2

, (B.4)

which, using (B.1a) and (B.2a), implies

〈T±(x; t)〉∞
neq =

πc

12[v(x)β(x̃∓)]2
+

κμ(x̃∓)2

4πv(x)2
− T (x̃∓) + S(x)

2v(x)2
(B.5)

in the thermodynamic limit. This together with (3.1) and (4.1) yields (4.5a)
with F (x) in (4.6). Similarly, it follows from Proposition 3.1 that

〈J±(x; t)〉neq =
v0β0

v(x)β(x̃∓)
〈J±(g(x̃∓))〉0 +

κ

2π

μ(x̃∓)β(x̃∓) − μ0β0

v(x)β(x̃∓)
, (B.6)

which, using (B.2a), implies

〈J±(x; t)〉∞
neq =

κμ(x̃∓)
2πv(x)

. (B.7)

This together with (3.2) and (4.3) yields (4.5b) with G(x) in (4.6).

17Strictly speaking, the possible values of μ0 are constrained by that Lμ0/2πv0 must be an
integer, but this is of no consequence in the infinite volume.
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B.2. Proofs of (4.7) and (4.9)

The results in (4.7) follow by straightforward but tedious computations us-
ing Proposition 3.1, (4.1), (4.3), and (B.1)–(B.3). Similarly, the result in (4.9)
also follows straightforwardly from Proposition 3.1 and the equilibrium expec-
tation for the renormalized fermionic fields in the usual (homogeneous) local
Luttinger model:

〈ψ+
r (x−

1 , x+
1 )ψ−

r′(x−
2 , x+

2 )〉∞
0 = δr,r′

1
2π�̃

e
iμ0[τ

+

ψ
−
r

(x−
1 −x−

2 )−τ−
ψ

−
r

(x+
1 −x+

2 )]/v0

×
(

iπ�̃

v0β0 sinh(π[x−
1 − x−

2 ]/v0β0)

)2Δ+
ψr

×
(

−iπ�̃

v0β0 sinh(π[x+
1 − x+

2 ]/v0β0)

)2Δ−
ψr

, (B.8)

where x±
1,2 = x1,2 ± v0t1,2 and �̃ is a length parameter introduced in the mul-

tiplicative renormalization of the fields, cf., e.g., [10,49]. As is commonplace,
we set �̃ = 1.

B.3. Proof of (4.11) Starting from (4.13)

It follows from (4.5) that 〈j1(x; t)〉∞
neq =

∑
r=± rG(x̃−r)/2 and 〈j2(x; t)〉∞

neq =∑
r=± rF (x̃−r)/2 with

G(x) = −κμ1(x)
πμ2(x)

,

F (x) =
π2c + 3κμ1(x)2

6πμ2(x)2
+

cv(x)2

12π

[
μ′′

2(x)
μ2(x)

− 1
2

(
μ′

2(x)
μ2(x)

)2

+
v′(x)
v(x)

μ′
2(x)

μ2(x)

]
.

(B.9)

Since
∂

∂(δμ1)
G(x)

∣∣∣∣
δμ=0

= − κ

πμ2
W (x), (B.10a)

∂

∂(δμ2)
G(x)

∣∣∣∣
δμ=0

=
∂

∂(δμ1)
F (x)

∣∣∣∣
δμ=0

=
κμ1

πμ2
2

W (x), (B.10b)

∂

∂(δμ2)
F (x)

∣∣∣∣
δμ=0

= −π2c + 3κμ2
1

3πμ3
2

W (x) +
c

12πμ2
v(x)∂x

[
v(x)∂xW (x)

]

(B.10c)

and since (3.13) implies ∂tu(x̃−r) = −rv(x)∂xu(x̃−r) = −rv(x̃−r)∂x̃−ru(x̃−r)
for any differentiable function u(x), we obtain

∂

∂(δμ1)
∂t〈j1(x; t)〉∞

neq

∣∣∣∣
δμ=0

=
κ

2πμ2

∑
r=±

v(x̃−r)∂x̃−rW (x̃−r), (B.11a)

∂

∂(δμ2)
∂t〈j1(x; t)〉∞

neq

∣∣∣∣
δμ=0

=
∂

∂(δμ1)
∂t〈j2(x; t)〉∞

neq

∣∣∣∣
δμ=0
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= − κμ1

2πμ2
2

∑
r=±

v(x̃−r)∂x̃−rW (x̃−r), (B.11b)

∂

∂(δμ2)
∂t〈j2(x; t)〉∞

neq

∣∣∣∣
δμ=0

=
κμ2

1

2πμ3
2

∑
r=±

v(x̃−r)∂x̃−rW (x̃−r)

+
πc

6μ3
2

∑
r=±

v(x̃−r)∂x̃−r

[
W (x̃−r) −

(μ2

2π

)2

v(x̃−r)∂x̃−r

[
v(x̃−r)∂x̃−rW (x̃−r)

]]
.

(B.11c)

Inserting these into (4.13) followed by a change of variable to y = f(x̃−r) with
v0 replaced by v and using μ1 = βμ and μ2 = −β yields

κ11(ω) =
κ

2πβ
I1(ω),

κ12(ω) = κ21(ω) =
κμ

2πβ
I1(ω),

κ22(ω) =
πc

6β3
I2(ω) +

κμ2

2πβ
I1(ω), (B.12)

where

I1(ω) =
∑

r=±

∫ ∞

0
dt eiωt

∫ ∞

−∞
dy v(f−1(y + rvt))∂y

[−W (f−1(y))
]
, (B.13a)

I2(ω) =
∑

r=±

∫ ∞

0
dt eiωt

∫ ∞

−∞
dy v(f−1(y + rvt))

[
1 −
(

vβ∂y

2π

)2]
∂y

[−W (f−1(y))
]
.

(B.13b)

One can show that the latter can be rewritten using

k(y) =
∫ ∞

−∞
dy′ v(f−1(y + y′))

v
∂y′
[
−W (f−1(y′))

]
, k̂(p) =

∫ ∞

−∞
dy k(y)e−ipy

(B.14)
as follows

I1(ω) =
∑
r=±

∫ ∞

−∞

dp

2π

ivk̂(p)
ω + rvp + i0+

,

I2(ω) =
∑
r=±

∫ ∞

−∞

dp

2π

[
1 +
(

vβp

2π

)2
]

ivk̂(p)
ω + rvp + i0+

. (B.15)

To see this, note that one can write k̂(p) = k̂1(p)k̂2(−p) with k̂1(p) and
k̂2(p) corresponding to k1(y) = v(f−1(y))/v and k2(y) = ∂y

[
−W (f−1(y))

]
,

respectively, which means that, e.g.,
∫

dy k1(y + rvt)[1 − (vβ∂y/2π)2]k2(y) =
(2π)−1

∫
dp k̂1(p)k̂2(−p)[1 + (vβp/2π)2]eirvpt, and use

∫ ∞

0

dt ei(ω+rvp)t =
i

ω + rvp + i0+
. (B.16)
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In Appendix B.5, we show that

Re I1(ω) = 2πvδ(ω) + I(ω), Re I2(ω) = 2πvδ(ω) +

[
1 +
(

ωβ

2π

)2
]

I(ω)

(B.17)
with I(ω) in (4.12), which together with (B.12) completes the proof.

B.4. Proof of (4.11) Starting from (4.14)

It suffices to derive (B.12) together with (B.15). To do so, we will need the
following integrals:

∫ ∞

−∞
dξ

eibξ

sinh4(ξ + ia)
=

π(b3 + 4b)
3

eb[a]π

ebπ − 1
, (B.18a)

∫ ∞

−∞
dξ

eibξ

sinh2(ξ + ia)
= −2πb

eb[a]π

ebπ − 1
(B.18b)

for all a, b ∈ R, where [a]π ∈ [0, π) is defined by a = n0π + [a]π for n0 ∈ Z.
(These can be proven using the residue theorem.) We will also need the equi-
librium current–current correlation functions. Setting β(x) = β and μ(x) = μ
in (4.7), we obtain

〈j2(x1; t1)j2(x2; t2)〉c,∞
0 =

∑
r=±

[
π2c

8β4 sinh4
(
π[f(x1) − f(x2) − rv(t1 − t2)]/vβ

)

+
−κμ2

4β2 sinh2
(
π[f(x1) − f(x2) − rv(t1 − t2)]/vβ

)
]
,

(B.19a)

〈j1(x1; t1)j1(x2; t2)〉c,∞
0 =

∑
r=±

−κ

4β2 sinh2
(
π[f(x1) − f(x2) − rv(t1 − t2)]/vβ

) ,
(B.19b)

〈j2(x1; t1)j1(x2; t2)〉c,∞
0 = 〈j1(x1; t1)j2(x2; t2)〉c,∞

0 = μ〈j(x1; t1)j(x2; t2)〉c,∞
0
(B.19c)

for f(x) with v0 replaced by v, where we used that f(x̃−r
j ) = f(xj) − rvtj .

Consider first κ22(ω). By inserting (B.19a) into (4.14), changing variables
to y = f(x) and y′ = f(x′), and shifting y to y + y′, we obtain

κ22(ω) =
π2c

8β5

∑
r=±

∫ β

0

dτ

∫ ∞

0

dt eiωt

∫ ∞

−∞
dy

k(y)

sinh4
(
π[y − rv(t − iτ)]/vβ

)

− κμ2

4β3

∑
r=±

∫ β

0

dτ

∫ ∞

0

dt eiωt

∫ ∞

−∞
dy

k(y)

sinh2
(
π[y − rv(t − iτ)]/vβ

)
(B.20)
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with k(y) in (B.14). Inserting k(y) = (2π)−1
∫∞

−∞ dp k̂(p)eipy into (B.20) fol-
lowed by a change of variable to ξ = π(y − rvt)/vβ gives

κ22(ω) =
πvc

8β4

∑
r=±

∫ ∞

−∞

dp

2π
k̂(p)

∫ β

0
dτ

∫ ∞

0
dt ei(ω+rvp)t

∫ ∞

−∞
dξ

eipvβξ/π

sinh4(ξ + irπτ/β)

− vκμ2

4πβ2

∑
r=±

∫ ∞

−∞

dp

2π
k̂(p)

∫ β

0
dτ

∫ ∞

0
dt ei(ω+rvp)t

∫ ∞

−∞
dξ

eipvβξ/π

sinh2(ξ + irπτ/β)
.

(B.21)

The ξ-integrals are of the form in (B.18). Using these formulas with a =
rπτ/β and b = vβp/π, computing the τ -integral by treating the cases r = ±
separately, and computing the t-integral using (B.16), it follows that (B.21)
yields κ22(ω) in (B.12) with I1(ω) and I2(ω) in (B.15). The corresponding
results for the remaining κmn(ω) follow analogously.

B.5. Proof of (B.17)

To prove (B.17), we first note that for v(x) = v, (B.14) implies k(y) =
W (−∞) − W (∞) = 1, meaning that k̂(p) = 2πδ(p). Thus, in this case, (B.15)
gives

I1(ω) = I2(ω) =
2iv

ω + i0+
= 2v

[
πδ(ω) + iP(1/ω)

]
, (B.22)

where P denotes the principal value. This corresponds to the Drude peaks
which are the sole contributions to the conductivities in standard CFT.

For inhomogeneous CFT, it thus remains to consider the remainders ob-
tained by subtracting the above from (B.15). I.e.,

ΔI1(ω) = I1(ω) − 2iv
ω + i0+

=
∑
r=±

∫ ∞

−∞

dp

2π

ivΔk̂(p)
ω + rvp + i0+

, (B.23a)

ΔI2(ω) = I2(ω) − 2iv
ω + i0+

=
∑
r=±

∫ ∞

−∞

dp

2π

[
1 +
(

vβp

2π

)2
]

ivΔk̂(p)
ω + rvp + i0+

,

(B.23b)

where

Δk̂(p) = k̂(p) − 2πδ(p) =
∫ ∞

−∞
dy

∫ ∞

−∞
dy′ K(y, y′)e−ip(y−y′) (B.24)

with K(y, y′) = [v(f−1(y))/v]∂y′
[
−W (f−1(y′))

]
− ∂y′

[
−W (y′)

]
for f(x) with

v0 replaced by v. Changing order of the integrals in (B.23) and (B.24), which
is possible by Fubini’s theorem if 1 − v/v(x) ∈ L1(R), and using

∑
r=±

∫ ∞

−∞

dp

2π

ir/v

p + r(ω + i0+)/v
e−ip(y−y′) =

1
v
eiω|y−y′|/v, (B.25a)

∑
r=±

∫ ∞

−∞

dp

2π

[
1 +
(

vβp

2π

)2
]

ir/v

p + r(ω + i0+)/v
e−ip(y−y′)
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=
1
v

[
1 +
(

ωβ

2π

)2
]

eiω|y−y′|/v, (B.25b)

which follow from the residue theorem by dividing into the cases y − y′ > 0
and < 0, we obtain

I1(ω) =
2iv

ω + i0+
+
∫ ∞

−∞
dy

∫ ∞

−∞
dy′ K(y, y′)eiω|y−y′|/v, (B.26a)

I2(ω) =
2iv

ω + i0+
+

[
1 +
(

ωβ

2π

)2
]∫ ∞

−∞
dy

∫ ∞

−∞
dy′ K(y, y′)eiω|y−y′|/v.

(B.26b)

From this, (B.17) follows if we show that

I(ω) = Re
∫ ∞

−∞
dy

∫ ∞

−∞
dy′ K(y, y′)eiω|y−y′|/v. (B.27)

To prove the latter, change variable from y to s = (y − y′)/v on the r.h.s.,
which gives∫ ∞

−∞
dy

∫ ∞

−∞
dy′ K(y, y′) cos

(
ω

v
(y − y′)

)
= v

∫ ∞

−∞
ds M(s) cos(ωs) (B.28)

with

M(s) =

∫ ∞

−∞
dy′ K(vs + y′, y′) =

∫ ∞

−∞
dx′
(

v(f−1(vs + f(x′)))
v

− 1

)
∂x′
[−W (x′)

]
,

(B.29)
where in the last step we changed variable to x′ = f−1(y′) in the first term
and relabeled y′ by x′ in the second. Inserting (B.29) into (B.28) and letting
x = f−1(vs + f(x′)) gives∫ ∞

−∞
dy

∫ ∞

−∞
dy′ K(y, y′) cos

(ω

v
(y − y′)

)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dx′
(

1− v

v(x)

)
∂x′
[
−W (x′)

]
cos
(ω

v
[f(x)−f(x′)]

)
, (B.30)

which inserted into the r.h.s. of (B.27) gives the l.h.s. since f(x) − f(x′) =∫ x

x′ dx′′ v/v(x′′).
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