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Mean Field Derivation of DNLS from the
Bose–Hubbard Model

E. Picari, A. Ponno and L. Zanelli

Abstract. We prove that the flow of the discrete nonlinear Schrödinger
equation (DNLS) is the mean field limit of the quantum dynamics of
the Bose–Hubbard model for N interacting particles. In particular, we
show that the Wick symbol of the annihilation operators evolved in the
Heisenberg picture converges, as N becomes large, to the solution of the
DNLS. A quantitative Lp-estimate, for any p ≥ 1, is obtained with a
linear dependence on time due to a Gaussian measure on initial data
coherent states.

1. Introduction

The DNLS equation considered in the present paper is the following

i
d

dt
uk(t) = Euk(t) + J(uk+1(t) + uk−1(t)) + U |uk(t)|2uk(t) , (1)

with initial data uk(0) := ωk ∈ C, 1 ≤ k ≤ L and boundary conditions u1(t) =
uL+1(t), ωL+1 = ω1 (see [2]); we denote its flow by u(t, ω) := (u1, . . . uL)(t, ω).
The Hamilton operator of the Bose–Hubbard model, which describes cold
atoms in a deep one-dimensional optical lattice (see [12,19,40]), is

̂H :=
∑

1≤j≤L

[

Eb̂†
j b̂j + J(b̂†

j+1b̂j + b̂†
j b̂j+1) +

U

2N
b̂†
j b̂

†
j b̂j b̂j

]

, (2)

depending on the usual bosonic operators satisfying [b̂k, b̂†
μ] = δkμId, [b̂k, b̂μ] =

0 and defined on the Fock–Bargmann space FB(CL), see [15,23] and Sect. 3.1.
In (2), E, J and U are real parameters, whereas N is the expected number of
bosons in the lattice.

The aim of the present paper is to show that the quantum expectation
of b̂k/

√
N is close to uk(t, ω) in a suitable Lp-measure sense when N is large,

which is precisely what we mean by the mean field limit of (2). This is achieved
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thanks to an explicit estimate in terms of the parameters of the model, global
in time.

The literature on the mean field derivation of the nonlinear Schrödinger
equation (NLS), the Hartree equation, and more in general about the study
of many-body quantum-mechanical systems, is quite rich (see Sect. 2). How-
ever, it seems that a direct mean field derivation of the DNLS (1) together
with quantitative, explicit estimates is missing. In some works (see for exam-
ple [1,33,37] and references therein) the DNLS is obtained directly from the
NLS equation, in the framework of the tight-binding approximation. However,
combining these two kinds of results, a growth exponential in time of the mean
field estimate for DNLS follows (essentially due to the Grönwall lemma). In the
present paper, a growth linear in time of the mean field estimate is provided.
Our first step to deal with the mean field asymptotics is to consider the rescaled
operators

âk :=
b̂k√
N

, â†
k :=

b̂†
k√
N

, [âk, â†
μ] =

δkμ

N
Id, (3)

and the Heisenberg equation i d
dt âk(t) = [ ̂H, âk(t)] that reads

i
d

dt
âk(t) = Eâk(t) + J(âk+1(t) + âk−1(t)) + Uâ†

k(t)âk(t)âk(t), (4)

where âk(0) := âk and 1 ≤ k ≤ L. Notice that Eq. (4) is clearly the operator
counterpart of (1). We now rewrite Eq. (4) in terms of the Wick symbols
(see Sect. 3.1) of the operators âk(t) and ̂H. Let φω(z̄) := eω·z̄− 1

2 |ω|2 be the
normalized coherent states in FB(CL) and recall that âkφ√

Nω = ωkφ√
Nω.

Define the symbols

ρk(t, ω̄, ω) := 〈φ√
Nω, âk(t)φ√

Nω〉; (5)

HN (ω̄, ω) := 〈φ√
Nω, ̂Hφ√

Nω〉 = N H(ω̄, ω) (6)

= N
∑

1≤j≤L

[

Ej |ωj |2 + J(ω̄j+1 ωj + ω̄j , ωj+1) +
U

2
|ωj |4

]

. (7)

Then, by the Wick bracket (see [9,15]) we get the equation

i

N

d

dt
ρk = {ρk,H}Wick, (8)

with initial data ρk(0, ω, ω̄) = ωk. We recall that, as an asymptotic series,

{ρk,H}Wick := ρk �Wick H − H �Wick ρk

�
∞
∑

r=1

1
r!

( 1
N

)r(∂rρk

∂ωr

∂rH
∂ω̄r

− ∂rH
∂ωr

∂rρk

∂ω̄r

)

, (9)

where �Wick denotes the usual Wick-star product; see “Appendix” for details.
In view of (8)–(9), we recognize the role of 1/N as a semiclassical parameter.
Since H is a second-order polynomial of complex variables (ω, ω̄), it follows
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that here the Wick bracket is a finite sum { ·,H }Wick = L1 + L2 where

L1 :=
1
N

(∂H
∂ω̄

∂

∂ω
− ∂H

∂ω

∂

∂ω̄

)

, L2 :=
1

2N2

(∂2H
∂ω̄2

∂2

∂ω2
− ∂2H

∂ω2

∂2

∂ω̄2

)

. (10)

Notice that L1 is the Poisson bracket in the variables (ω̄, ω). Thus, it is easily
seen that the DNLS (1) exactly reads

i

N

d

dt
u = L1(u). (11)

By denoting Δ := {(ω̄, ω) | ω ∈ C
L} ⊂ C

2L, and (Φ̄t, Φt) : Δ ⊂ C
2L → C

2L

the flow of γ̇ = i(∂ωH(γ),−∂ω̄H(γ)), it follows that

u(t, ω) = Φt(ω̄, ω). (12)

The equality (12), together with Eq. (8), tells us that ρk − uk is a kind of
semiclassical perturbation term, and thus we expect ρk −uk → 0 as N → +∞.
Indeed, we will prove such a result with respect to an Lp(μN )-norm, where
p ≥ 1 and μN is a suitable Gaussian measure, invariant under the DNLS flow.
With respect to this target, recall that the total number operator defined as
̂N :=

∑L
k=1 b̂†

k b̂k = N
∑L

k=1 â†
kâk fulfills [ ̂H, ̂N ] = 0 and hence

〈φ√
Nω, ̂Nφ√

Nω〉 = N |ω|2 (13)

is conserved by the quantum flow, i.e.,

{H, |ω|2}Wick = 0. (14)

Moreover, the well-known �2-conservation law for the DNLS can be rewritten
as

L1(|ω|2) = 0. (15)

Both these two important properties will be used in the proof of Theorem 1,
and for this reason we define the invariant Gaussian probability measure

dμN (ω̄, ω) := cN,L e−N |ω|2dω ∧ dω̄, (16)

where ω = x + iy, dω ∧ dω̄ := π−Ldxdy and cN,L := NL is the normalization
constant. This measure is linked (see Proposition 1) to a weighted trace formula
involving Wick operators that will be an important tool to our approach.

We are now ready to state the main result of the paper.

Theorem 1. Let u(t, ω) be the flow of the DNLS Eq. (1) and let ρk(t, ω) be the
solution of (8) for 1 ≤ k ≤ L. Then, ∀ p ≥ 1 we have uk, ρk ∈ Lp(μN ) and

‖ρk(t) − uk(t)‖Lp(μN ) ≤ Ap
L

N

U t√
N

, ∀t ≥ 0, (17)

with the constant Ap = B2p , Bτ := (C1,τ · C2,τ )
1
τ , where

C1,τ :=

(

∑

α1+α2+α3=4τ

(

4τ

α1 α2 α3

)

3α122α2+
1
2α3Γ

(

2α1 +
3
2
α2 + α3 + 1

)

) 1
4

;

(18)
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C2,τ :=

⎛

⎝

2τ
∑

α=1

(

2τ

α

) α
∑

β=1

S(α, β)β!

⎞

⎠

1
4

. (19)

Here, Γ and S(α, β) denote the Gamma function and the Stirling numbers of
second kind, respectively.

We notice that (17) can be written with the condition L/N → 0 as
N → +∞, this means that the number of particles can be supposed to be
large with respect to the number of L “sites” of the Bose–Hubbard model,
which is the regime considered in some experiments, see for example [40].
We also stress that the Lp-norm used above allows to discuss, in the measure
sense, the pointwise estimate for |ρk−uk|(t, ω̄, ω). Indeed, we have the following

Corollary 1. Fix a parameter 0 < ε < 1
2 and define the set

Ωk :=
{

(ω̄, ω) | |ρk − uk|(t, ω̄, ω) > Ap
L

N

U t

N ε
, ∀t ≥ 0

}

. (20)

Then, for any 1 ≤ k ≤ L

μN (Ωk) ≤ N−p·( 1
2−ε), ∀p ≥ 1 ∀N ≥ 1. (21)

Notice that p �→ Ap is an increasing function, whence inequality (21)
provides, when N is fixed and p is large, a measure of the region where |ρk−uk|
is large.

On the other hand, in the case of a fixed p ≥ 1 and large values of
N we have a vanishing measure of the region where |ρk − uk| is super-linear
in time. We underline an important consequence of this observation. Indeed
this means that, from the viewpoint of the Gaussian measure, if this super-
linear (in time) mean field estimate is sharp then it is associated with a set
of coherent states which is negligible as N → +∞ with the rate shown in
(21). Of course, any exponential (in time) upper bound gives rise to the same
conclusion. An interesting open problem is to show that the same feature holds
for more general quantum dynamics than the one associated with our many-
body operator (2).
Our paper deals with the Bose–Hubbard model, a simpler setting with respect
to that of quantum field theory. However, the explicit estimate in terms of the
parameters of the model and its linear dependence on time in (17) seem to be
a novel and promising result with respect to other kind of mean field estimates
on the NLS equation.

Furthermore, we stress that Theorem 1 can be seen as an Egorov-type
result, written to the first order and with respect to the Lp-norm, for Wick
symbols. With respect to this observation, we recall Proposition 5.1 in [16]
where it is proved the convergence, as � → 0, of the Wick symbol of an evolved
quantum observable toward the Weyl symbol composed with the Hamiltonian
flow. In this result, the well-known bound of the Ehrenfest time |t| < T� is
shown. We also recall Proposition 5.10 and Theorem 5.6 in [5] where, in the
framework of evolved Wick operators on the Fock space and with a quantum
dynamics much more general than our, it is proved the convergence toward the
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solution of the Hartree equation as 1
N → 0, but the estimate on the remainder

in Theorem 5.6 is again local in time. In our main result, we avoid locality in
time by making use of the Lp(μN )-norm (the meaning and the properties of
the measure μN are clarified in Proposition 1 and 2).

In Sect. 7.2 of [26], the authors discuss, thanks to the Wick quantization
for a class of symbols, how the many-body quantum mechanics of bosons can
be viewed as a deformation quantization of the Hartree theory. We stress that
our paper also makes use of Wick operators, but deals with a different class
of quantum dynamics and another way to get the derivation of the mean field
dynamics, which is here a discrete NLS.

To conclude, we stress the absence in (17) of the parameters E and J

involved in the quadratic part of the operator ̂H in (2), in agreement with
a well-known elementary result: any quantum expectation of the Heisenberg
equations of a linear system (quadratic Hamiltonian) yields the classical equa-
tions of motion. Thus, the distance between the Wick symbol ρk solving Eq. (8)
and the k-th component uk of the flow for Eq. (11) is ruled only by nonlin-
earity, namely by the parameter U . As a consequence, Theorem 1 holds for
Hamilton operators ̂H with a completely general quadratic part. This is not
the primary target of the present work, but we observe here that a more gen-
eral setting of ̂H ensures a larger set of invariant measures for the DNLS flow
and whence an interesting open problem is to study the link between this kind
of mean field estimates and the possible various invariant measures.

We also remark that the equation in (1) with general quadratic part, that
usually describes particles in one-dimensional periodic lattice, can be used also
to modelize two- and three-dimensional lattices with different topologies (see
for example [22] and references therein).

The paper is organized as follows. In Sect. 2, we shortly comment on the
most influential results in the literature on the subject, to finally stress the
main innovations characterizing our work. Sect. 3 is devoted to the proofs of
Theorem 1 and Corollary 1 stated in the Introduction; the proof is divided into
various technical steps. Sect. 3.1 is “Appendix” consisting of three subsections.

2. Synopsis of the Literature and Motivations of the Work

We here provide a commented list of some papers involving NLS, Hartree
equation, and more in general the study of many-body quantum-mechanical
systems in mean field and semiclassical limit, relevant and somehow connected
to our work.

A first reference work in the field, is the review [39], where the author
discusses a variety of classical as well as quantum models for which kinetic
equations can be derived rigorously, and where the probabilistic nature of the
problem is emphasized.

A second reference paper, of particular interest to our work for its use of
coherent states, is [29], where Hepp shows that in the many-body framework
the classical limit of the expectation values of products of Weyl operators,
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translated in time by the quantum dynamics and taken on coherent states
centered in x-space and p-space are shown to become the exponentials of co-
ordinate functions of the classical orbit in phase space. The Hepp results have
been extended in [27]. For a recent review and discussion of Hepp’s method,
we also address the reader to Sect. 10.4.2 of [21].

The convergence of the N -particle Schrödinger dynamics of bosons to-
ward the Hartree dynamics is proved in the mean field limit in [24]. The au-
thors work in the Heisenberg picture (as in our paper) with a class of bounded
operators, whereas we consider annihilation operators, that are unbounded,
and another type of convergence.

A rigorous derivation of the cubic NLS in dimension one is shown in [4].
An approach for deriving higher-order corrections to the mean field limit for
the quantum systems is provided in [11], a simple and effective method is given
in [35].

A reference role in the literature is played by those recent works dealing
with the rigorous version of the Bogoliubov theory of superfluids; see, e.g., the
review [38]. The Gross–Pitaevskii equation is rigorously deduced, for example,
in [14], whereas the fluctuations around it are studied in [13,17]. The con-
vergence to a limiting Hartree dynamics is instead studied in [6,36], whereas
in [7,10] and the Hartree–Fock–Bogoliubov and the Bogoliubov–de Gennes
equations are derived by the method of the quasi-free reduction.

Further results are, for example, a derivation of the 1D focusing cubic
NLS obtained in [20], where the difficulties due to the attractive interaction
are discussed and new energy estimates are shown, and a mean field derivation
of the defocusing 2D cubic NLS is provided in [28]; the mean field dynamics
of a mixture of bosons is treated in [32].

The literature on the subject is actually huge, and the above description
represents just a short summary of it. However, with the respect to the existing
framework of methods and results, our contribution here is characterized by a
certain number of aspects deserving a short discussion.

1. We consider the Bose–Hubbard lattice model (2). This is certainly a
context much simpler than the quantum field theory of a boson gas gen-
erally considered in the literature quoted above. However, its interest is
motivated by the modern experiments on many-body effects in optical
lattices, where the lattice models are the basic tool for the theoretical
interpretation of the results [12,19].

2. The privileged physical quantity considered here is the coherent expec-
tation of the local annihilation operator, which is shown to satisfy the
DNLS equation within a certain approximation limit. As specified below,
we would be able to do the same with any observable, say any polynomial
of the Dirac operators. The choice of the annihilation operator, besides
its simplicity, is quite natural if, along an Ehrenfest-like line of thought,
one wants to compare the quantum expectation of the Heisenberg equa-
tion of a certain operator with the “classical” scalar equation obtained by
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replacing the operator with its quantum expectation in the Heisenberg
equation itself, as heuristically done in physics.

3. A clear innovation of our approach consists in distributing the initial
data (i.e., coherent states) according to an invariant probability mea-
sure, which then calls naturally for the use of the L2 norm (which is then
generalized to Lp), as typical and meaningful in statistical mechanics,
the right framework for this kind of problems; for the experimental rel-
evance of coherent states see [12,19]. However, in certain applications,
e.g., quantum computing, special initial conditions, and thus point-wise
estimates, may play the relevant role. Indeed, we refer for example to the
quantum walks in the Bose–Hubbard model, that are unitary processes
describing the evolution of initially localized wave functions on a lattice
potential, see [30].

Concerning the choice of the measure, we take the Gaussian one,
inherited by the quantum trace measure with density e−λ̂N , λ being a
suitable parameter. Of course, in a statistical mechanical framework, one
would like to work with the Gibbs–Von Neumann density, namely e−β̂H ,
β being the inverse temperature. The latter point makes part of a work
in progress. Here, we only stress that the Hamiltonian (2) reads ̂H =
E ̂N + · · · , the dots denoting the other two terms, ̂N commuting with
both of them. As will be further discussed below, and expected from
the tight-binding assumptions made to deduce the Bose–Hubbard model,
the first term E ̂N is the leading one with respect to the other two. In a
sense, we are thus considering an invariant measure that is approximately
connected to the Gibbs one.

4. The joint use of an invariant measure on the initial coherent states and
of the Wick formalism allows us to bound distance between the symbol
of an observable at time t and the classical evolution of its initial symbol
by a constant growing linearly with t. The linear dependence on time is
not a particular feature of the Gaussian measure, the latter being instead
quite convenient in order to get an explicit estimate of the overall constant
multiplying time. Within the framework of results in measure on coherent
states, the linear growth in time of our bound represents an interesting
news, since most of time dependencies obtained in the literature up to
now are typically exponential, which is an unavoidable consequence of
the Grönwall lemma.

3. Results

In this section, we provide the proof of the main theorem we have stated in
the Introduction. To such a purpose, we will need some preliminary lemmas
and propositions. Among them, Lemmas 1 and 2 are just quoted and used,
their statements and proofs being reported at the end of the section.

The following result provides a weighted trace formula for Wick operators,
involving the positive definite operator e−λ̂N with λ > 0. In order to make a
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link with the Gaussian measure μN given in (16), we have to write a bijective
relation between the parameters λ and N . This result will be useful for the
subsequent result on expectation values of Wick operators under quantum
dynamics.

Proposition 1. Let μN be as in (16). Let OpW(g) be a Wick operator on
FB(CL),

OpW(g)(ψ)(z̄) :=
∫

g(z̄, ω)ψ(ω̄) e−|ω|2+ω·z̄ dω ∧ dω̄, ψ ∈ FB(CL), (22)

such that g ∈ L1(μN ). Let ̂N :=
∑L

k=1 b̂†
k b̂k. Then,

Tr
(e−λ̂N

γλ
OpW(g)

)

=
∫

g dμN (23)

where γλ := Tr(e−λ̂N ) and eλ = N + 1.

Proof. We begin by the equality

Tr
(e−λ̂N

γλ
OpW(g)

)

=
∫

σ
(e−λ̂N

γλ
OpW(g)

)

(ω̄, ω) dω ∧ dω̄ (24)

and notice that the Wick symbol of e−λ̂N reads

σ
(

e−λ̂N
)

(ω̄, ω) = e−μ|ω|2 , μ := 1 − e−λ. (25)

Equality (25) allows to write the constant

γλ = Tr(e−λ̂N ) =
∫

σ
(

e−λ̂N
)

(ω̄, ω) dω ∧ dω̄ =
( 1

μ

)L

. (26)

Thanks to the Wick-� product, (24) can be rewritten as
1
γλ

∫

e−μ|ω|2 �Wick g(ω̄, ω) dω ∧ dω̄. (27)

We also remind formula (2.38) in [15] that provides a link between Wick and
anti-Wick symbols

e−μ|ω|2 = eΔω̄ωσAW(e−λ̂N ) =
∫

e−(z−ω)(z̄−ω̄) σAW(z, z̄) dz ∧ dz̄, (28)

where Δω̄ω :=
∑L

k=1
∂2

∂ω̄k∂ωk
, and recall that Wick and anti-Wick symbols of

e−λ̂N are unique. Now write explicitly the Wick-� product and integrate by
parts the integral in (27). This gives (formally)

1
γλ

∫

(

e−Δω̄ωe−μ|ω|2
)

g(ω̄, ω) dω ∧ dω̄. (29)

Recall that

dμN (ω̄, ω) := cN,L e−N |ω|2dω ∧ dω̄ (30)

where cN,L := NL. Our target is thus to prove the well-defined equation

γ−1
λ e−μ|ω|2 = cN,L eΔω̄ωe−N |ω|2 , (31)
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namely

e−μ|ω|2 = γλ cN,L

∫

e−(z−ω)(z̄−ω̄) e−N |z|2 dz ∧ dz̄ (32)

= μ−LNLe− N
N+1 |ω|2

∫

e−(N+1)|z|2 dz ∧ dz̄ (33)

= μ−L
( N

N + 1

)L

e− N
N+1 |ω|2 (34)

which is solved by μ = N/(N + 1), and since μ = 1 − e−λ we recover

eλ = N + 1. (35)

�

Remark 1. We now recall that b̂†
k b̂μ = OpW(g) when g = ω̄kωμ, (see Sect. 3.1).

For these Wick operators, Proposition 1 reads

Tr
(e−λ̂N

γλ
b̂†
k b̂μ

)

=
∫

ω̄kωμ dμN . (36)

Since { z̄α√
α!

, α ∈ Z
n
+} is an orthonormal set in the Fock–Bargmann space (see

[15]), an easy computation shows that

Tr
(e−λ̂N

γλ
b̂†
k b̂μ

)

=
δkμ

N
=

δkμ

eλ − 1
. (37)

Thus, equality (37) can be considered as the version, in the Fock–Bargmann
space, of the Quantum Wick Theorem showed in [25] that works in the Fock
space and with the related bosonic creation and annihilation operators of quan-
tum field theory.

In the next, we provide a kind of quantum mean value formula for the time
evolved ̂G(s) := U†(s) ̂GU(s) where U(s) = e−îHs with ̂H as in (2) and ̂G =
OpW(g) are Wick operators (see Sect. 3.1). This result will be applied within
the proof of Theorem 1 for operators of type ̂G = (â†

kâk + 1
N )p with creation

and annihilation operators as in (3). This tool allows to avoid, in our setting
and for our estimates, the well-known problem of Ehrenfest time, as well as to
avoid the application of Grönwall Lemma (and thus exponential in time upper
bounds) used in many papers on mean field estimates for NLS equations.

Proposition 2. Let ̂G = OpW(g) be a Wick operator on FB(CL) such that
g ∈ L1(μN ). Let ̂G(s) := U†(s) ̂GU(s) where U(s) = e−îHs with ̂H as in (2).
Define g(s, ω̄, ω) := 〈φω, ̂G(s)φω〉. Then, ∀s ≥ 0

∫

g(s, ω̄, ω) dμN (ω̄, ω) =
∫

g(ω̄, ω) dμN (ω̄, ω). (38)

Proof. We apply Proposition 1
∫

g(ω̄, ω) dμN (ω̄, ω) = Tr
(e−λ̂N

γλ
OpW(g)

)

, λ > 0, (39)
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and recall that the trace is invariant by unitary conjugations of operators, so
that

Tr
(e−λ̂N

γλ
OpW(g)

)

= Tr
(

U†(s)
e−λ̂N

γλ
OpW(g)U(s)

)

. (40)

Now we recall that [ ̂N, ̂H] = 0 and whence [ ̂N,U
(s)] = 0, which gives

Tr
(

U†(s)
e−λ̂N

γλ
OpW(g)U(s)

)

= Tr
(e−λ̂N

γλ
U†(s)OpW(g)U(s)

)

(41)

and applying again Proposition 1 for ̂G(s) := U†(s)OpW(g)U(s) and, in view
of Remark 2, we conclude

Tr
(e−λ̂N

γλ

̂G(s)
)

=
∫

g(s, ω̄, ω) dμN (ω̄, ω). (42)

�

Remark 2. The Bose–Hubbard operator ̂H in (2) is self-adjoint on the Hilbert
space FB(CL) and thus, by the Stone Theorem, the U(s) := e−îHs is a one
parameter group of unitary operators. Hence, U(s) is bounded on FB(CL)
and this implies it is a Wick operator itself (see Sect. 3.1). It follows that
̂G(s) := U†(s)OpW(g)U(s) equals a composition of Wick operators. Since the
set of Wick operators is closed under composition, we deduce that ̂G(s) is still
a Wick operator, and whence we denote its symbol by g(s, ω̄, ω).

Remark 3. The Proposition 2 works also with g(s, aω̄, aω) and g(aω̄, aω) for
any fixed a > 0. Indeed, for ˜N := N/a2 we have

∫

g(s, aω̄, aω) dμN (ω̄, ω) =
∫

g(s, v̄, v) dμ
˜N

(v̄, v) =
∫

g(v̄, v) dμ
˜N

(v̄, v)

=
∫

g(aω̄, aω) dμN (ω̄, ω). (43)

This observation will be useful in the application of this equality with a =
√

N .

We provide two technical lemma used in the next.

Lemma 1. Let P(ω̄, ω) be as in (68), then for any 1 ≤ p < ∞ there exists a
positive constant C1,p such that

(

∫

P(ω̄, ω)4p dμN

) 1
4 ≤ C1,p

( L

N

)p

. (44)

Moreover,
(

∫

〈φ√
Nω,

(

â†
k(0)âk(0) +

1
N

)2p

φ√
Nω〉 dμN

) 1
4

= C2,p

( 1√
N

)p

(45)

for a positive constant C2,p.
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Proof. . We first notice that for any fixed ω ∈ C
L, P(ω̄, ω) is a sum of real

nonnegative numbers

P(ω̄, ω) =
L
∑

j=1

f(ω̄j , ωj) (46)

where f(ω̄j , ωj) := 3N |ωj |4+4
√

N |ωj |3+
√

2|ωj |2, so by using Hölder inequality
we get

P (ω̄, ω)4p ≤ L4p−1
∑

j

f(ω̄j , ωj)4p. (47)

Since for any v ∈ C, f(v̄/
√

N, v/
√

N) = N−1g(v̄, v) for g(v̄, v) = 3|v|4 +
4|v|3 +

√
2|v|2, integrating with respect to Gaussian measure and performing

the change of variables ω′
j =

√
Nωj we have

∫

CL

P (ω̄, ω)4pdμN ≤ L4p−1
∑

j

cN,L

∫

CL

f(ω̄j , ωj)4pe−N |ω|2dω̄ ∧ dω

=
L4p−1

N4p

∑

j

cN,L

NL

∫

CL

(

3|ω′
j |4 + 4|ω′

j |3 +
√

2|ω′
j |2

)4p

e−|ω′|2dω̄′ ∧ dω′.

(48)

For each j = 1, . . . , L, we factorize the integrals not containing ωj , so intro-
ducing the variable v ∈ C and its corresponding measure dv̄ ∧ dv we have

=
L4p−1

N4p

∑

j

(∫

C

e−|v|2dv̄ ∧ dv

)L−1

×
(∫

C

(

3|v|4 + 4|v|3 +
√

2|v|2
)4p

e−|v|2dv̄ ∧ dv

)

=
L4p

N4p

∫

C

(

3|v|4 + 4|v|3 +
√

2|v|2
)4p

e−|v|2dv̄ ∧ dv

=
L4p

N4p

∑

α1+α2+α3=4p

(

4p

α1 α2 α3

)

3α122α2+α3/2

×
∫

C

|v|4α1+3α2+2α3e−|v|2dv̄ ∧ dv

=
L4p

N4p

∑

α1+α2+α3=4p

(

4p

α1 α2 α3

)

3α122α2+α3/2Γ
(

2α1 +
3
2
α2 + α3 + 1

)

=
L4p

N4p

∑

α1+α2+α3=4p

(

4p

α1 α2 α3

)

3α122α2+α3/2Γ
(

2α1 +
3
2
α2 + α3 + 1

)

(49)

where the Euler Gamma function has been introduced. Notice that in the first
line we exploited the definition of cN,L = NL, while in the second line we used
the fact that we have exactly L equal integrals. Taking the fourth of root in
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the last expression, we get inequality (44) with

C1,p :=

(

∑

α1+α2+α3=4p

(

4p

α1 α2 α3

)

3α122α2+α3/2Γ
(

2α1 +
3
2
α2 + α3 + 1

)

) 1
4

.

(50)

To get (45), we need to compute the mean value 〈ϕ√
Nω, n̂α

k ϕ√
Nω〉 =:

〈n̂α
k 〉 for any positive integer α, where n̂k = â†

k(0)âk(0). We find that from the
definition of Wick-∗ product there exists a recurrence relation between these
quantities

〈n̂α
k 〉 =

(

|ωk|2 +
1
N

ω̄k
∂

∂ω̄k

)

〈n̂α−1
k 〉 =

(

|ωk|2 +
1
N

ω̄k
∂

∂ω̄k

)α

1 (51)

where 1 is the constant function 1(ω̄, ω) ≡ 1, so that in general

〈n̂α
k 〉 =

α
∑

β=1

S(α, β)
|ωk|2β

Nα−β
(52)

where S(α, β) is the Stirling number of the second kind with integer parameters
α and β (see computations below). Since n̂k and N−1 commute as operators
we can expand (n̂k + N−1)2p using the binomial theorem

∫

CL

〈ϕ√
Nω,

(

n̂k +
1
N

)2p

ϕ√
Nω〉dμN

=
2p
∑

α=1

(

2p

α

)

N−2p+αcN,L

∫

CL

〈ϕ√
Nω, n̂α

k ϕ√
Nω〉e−N |ω|2dω̄ ∧ dω

=
2p
∑

α=1

(

2p

α

) α
∑

β=1

S(α, β)N−2p+βcN,L

∫

CL

|ωk|2βe−N |ω|2dω̄ ∧ dω

= N−2p

2p
∑

α=1

(

2p

α

) α
∑

β=1

S(α, β)β! . (53)

Taking again the fourth root, we get (45) with constant

C2,p :=

⎛

⎝

2p
∑

α=1

(

2p

α

) α
∑

β=1

S(α, β)β!

⎞

⎠

1
4

. (54)

We now complete the proof of this lemma, showing that the coefficients of the
polynomial in (52) are the Stirling number of the second kind (see [3], Par.
24.1.4 for their definition and properties). By the recurrence relation (51), we
have



Vol. 23 (2022) Mean Field Derivation of DNLS 1537

〈n̂α+1
k 〉 =

(

|ωk|2 +
1
N

ω̄k
∂

∂ω̄k

)

〈n̂α
k 〉

=
(

|ωk|2 +
1
N

ω̄k
∂

∂ω̄k

) α
∑

β=1

S(α, β)
|ωk|2β

Nα−β

=
α
∑

β=1

S(α, β)
|ωk|2β+2

Nα−β
+

α
∑

β=1

βS(α, β)
|ωk|2β

Nα−β+1

=
α+1
∑

β=2

S(α, β − 1)
|ωk|2β

Nα−β+1
+

α
∑

β=1

βS(α, β)
|ωk|2β

Nα−β+1

=
α+1
∑

β=1

(S(α, β − 1) + βS(α, β))
|ωk|2β

Nα−β+1
,

(55)

where we used the fact that S(α, α) = S(α, 1) = 1, as is easy verified using
(51). Comparing the last expression with the general expansion of 〈n̂α+1

k 〉 as
in (52) with exponent α + 1, we see that

S(α + 1, β) = S(α, β − 1) + βS(α, β)

which is precisely the recurrence relation defining Stirling numbers. �
Lemma 2. Let OpW (g) be a Wick operator, ρ(v̄, v) := 〈φ√

Nv,OpW (g)φ√
Nv〉.

Then,

∂ρ

∂vj
=

〈(

∂φ
√
Nv

∂vj

)


,OpW (g)φ√
Nv

〉

+
〈

φ√
Nv,OpW (g)

(

∂φ√
Nv

∂vj

)〉

. (56)

Proof. We begin by
∂ρ

∂vj
=

∂

∂vj

∫

φ
√
Nv

(z̄)OpW (g)φ√
Nv(z̄) e−|z|2dz ∧ dz̄ (57)

=
∫

∂

∂vj
φ
√

Nv
(z̄) · OpW (g)φ√

Nv(z̄) e−|z|2dz ∧ dz̄ (58)

+
∫

φ
√
Nv

(z̄) · ∂

∂vj
OpW (g)φ√

Nv(z̄) e−|z|2dz ∧ dz̄. (59)

In particular, the second term can be rewritten
∫

φ
√
Nv

(z̄) · ∂

∂vj
OpW (g)φ√

Nv(z̄) e−|z|2dz ∧ dz̄ (60)

=
(

∫

φ
√
Nv

(z̄) · ∂

∂wj
OpW (g)φ√

Nw(z̄) e−|z|2dz ∧ dz̄
)∣

∣

∣

w=v
(61)

=
( ∂

∂wj

∫

φ
√
Nv

(z̄) · OpW (g)φ√
Nw(z̄) e−|z|2dz ∧ dz̄

)∣

∣

∣

w=v
(62)

=
( ∂

∂wj

∫

(

OpW (g)†φ√
Nv

)


(z̄) · φ√
Nw(z̄) e−|z|2dz ∧ dz̄

)∣

∣

∣

w=v
(63)

=
(

∫

(

OpW (g)†φ√
Nv

)


(z̄) · ∂

∂wj
φ√

Nw(z̄) e−|z|2dz ∧ dz̄
)∣

∣

∣

w=v
(64)
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=
∫

(

OpW (g)†φ√
Nv

)


(z̄) · ∂

∂vj
φ√

Nv(z̄) e−|z|2dz ∧ dz̄, (65)

and this last form equals 〈φ√
Nv,OpW (g)

(

∂φ√
Nv

∂vj

)

〉. �

In what follows, we get an estimate for |ρk(t, ω̄, ω) − uk(t, ω)| for any fixed
ω ∈ C

L. This will be used, in the proof of Theorem 1, to have the Lp(μN )
estimate.

Proposition 3. Let Δ := {(ω̄, ω) | ω ∈ C
L} ⊂ C

2L, (Φ̄t, Φt) : Δ ⊂ C
2L →

C
2L the flow of γ̇ = i(∂ωH(γ),−∂ω̄H(γ)) with H as in (6). Let u(t, ω) :=

(u1, . . . uL)(t, ω) be the solution of (1), and

ρk(t, ω̄, ω) := 〈φ√
Nω, âk(t)φ√

Nω〉 (66)

nk(t, ω̄, ω) := 〈φ√
Nω, â†

k(t)âk(t)φ√
Nω〉. (67)

P(v̄, v) :=
∑

1≤j≤L

[

3N |vj |4 + 4
√

N |vj |3 +
√

2|vj |2
]

. (68)

Then,

|ρk(t, ω̄, ω) − uk(t, ω)| ≤ U

∫ t

0

P(v̄, v)
(

nk(s, v̄, v) +
1
N

) 1
2
∣

∣

∣

(v̄,v)=Φt−s(ω̄,ω)
ds.

(69)

Proof. The semigroup identity

e−iN(L1+L2)t = e−iNL1t +
∫ t

0

e−iNL1(t−s)(−iN)L2 e−iN(L1+L2)s ds (70)

applied to our case gives

ρk(t, ω̄, ω) − uk(t, ω) =
∫ t

0

(−iN)L2ρk(s, v̄, v)
∣

∣

∣

(v̄,v)=Φt−s(ω̄,ω)
ds, (71)

where the operator L2 reads

L2ρ =
1
2

1
N2

L
∑

j=1

(∂2ρ

∂v2
j

∂2H
∂v̄2

j

− ∂H
∂v2

j

∂2ρ

∂v̄2
j

)

(72)

and thus

(−iN)L2ρ = (−i)
U

2N

L
∑

j=1

(

v2
j

∂2ρ

∂v2
j

− v̄2
j

∂2ρ

∂v̄2
j

)

. (73)

We now recall the definition

ρk(s, v̄, v) := 〈φ√
Nv, âk(s)φ√

Nv〉 (74)

where φ√
Nv(z̄) = e

√
Nvz̄− 1

2N |v|2 and notice that

∂φ√
Nv

∂vj
=

(√
Nz̄j − N

2
v̄j

)

φ√
Nv(z̄), (75)

∂φ
√
Nv

∂vj
= −N

2
v̄jφ


√
Nv

(z̄). (76)
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where φ
√
Nv

denotes the complex conjugated coherent state. Thanks to Lemma 2,

∂ρk

∂vj
=

〈

(∂φ
√
Nv

∂vj

)


, âk(s)φ√
Nv

〉

+

〈

φ√
Nv, âk(s)

(∂φ√
Nv

∂vj

)

〉

(77)

we have

∂ρk

∂vj
=

〈

−N

2
vjφ√

Nv, âk(s)φ√
Nv

〉

+
〈

φ√
Nv, âk(s)

(√
Nz̄j − N

2
v̄j

)

φ√
Nv

〉

(78)

= −Nv̄j

〈

φ√
Nv, âk(s)φ√

Nv

〉

+
√

N

〈

φ√
Nv, âk(s)z̄jφ√

Nv

〉

. (79)

Notice that z̄jφ√
Nv(z̄) =

√
Nâ†

j(0)φ√
Nv(z̄) and thus

∂ρk

∂vj
= −Nv̄j〈φ√

Nv, âk(s)φ√
Nv〉 + N〈φ√

Nv, âk(s)â†
j(0)φ√

Nv〉. (80)

Applying twice this formula, we get

∂2ρk

∂v2
j

= N2v̄2
j 〈φ√

Nv, âk(s)φ√
Nv〉 − N2v̄j〈φ√

Nv, âk(s)â†
j(0)φ√

Nv〉

−N2v̄j〈φ√
Nv, âk(s)â†

j(0)φ√
Nv〉 + N2〈φ√

Nv, âk(s)â†
j(0)â†

j(0)φ√
Nv〉

= N2v̄2
j 〈φ√

Nv, âk(s)φ√
Nv〉 − 2N2v̄j〈φ√

Nv, âk(s)â†
j(0)φ√

Nv〉
+N2〈φ√

Nv, âk(s)â†
j(0)â†

j(0)φ√
Nv〉. (81)

Applying the same computations for the derivatives on v̄j , we get

∂2ρk

∂v̄2
j

= N2v2
j 〈φ√

Nv, âk(s)φ√
Nv〉 − 2N2vj〈â†

j(0)φ√
Nv, âk(s)φ√

Nv〉

+N2〈â†
j(0)â†

j(0)φ√
Nv, âk(s)φ√

Nv〉. (82)

The sum in (73) can now be rewritten as

L
∑

j=1

(

v2
j

∂2ρk

∂v2
j

− v̄2
j

∂2ρk

∂v̄2
j

)

(83)

=
L
∑

j=1

N2|vj |4〈φ√
Nv, âk(s)φ√

Nv〉 − 2N2vj |vj |2〈φ√
Nv, âk(s)â†

j(0)φ√
Nv〉

+ N2v2
j 〈φ√

Nv, âk(s)â†
j(0)â†

j(0)φ√
Nv〉 (84)

−
L
∑

j=1

N2|vj |4〈φ√
Nv, âk(s)φ√

Nv〉 − 2N2v̄j |vj |2〈â†
j(0)φ√

Nv, âk(s)φ√
Nv〉

+ N2v̄2
j 〈â†

j(0)â†
j(0)φ√

Nv, âk(s)φ√
Nv〉, (85)
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which simplifies to
L
∑

j=1

(

v2
j

∂2ρk

∂v2
j

− v̄2
j

∂2ρk

∂v̄2
j

)

=
L
∑

j=1

−2N2vj |vj |2〈φ√
Nv, âk(s)â†

j(0)φ√
Nv〉

+N2v2
j 〈φ√

Nv, âk(s)â†
j(0)â†

j(0)φ√
Nv〉

+
L
∑

j=1

2N2v̄j |vj |2〈â†
j(0)φ√

Nv, âk(s)φ√
Nv〉

−N2v̄2
j 〈â†

j(0)â†
j(0)φ√

Nv, âk(s)φ√
Nv〉. (86)

The sum exhibits the following upper bound
∣

∣

∣

L
∑

j=1

(

v2
j

∂2ρk

∂v2
j

− v̄2
j

∂2ρk

∂v̄2
j

)∣

∣

∣

≤
L
∑

j=1

2N2|vj |3‖â†
k(s)φ√

Nv‖‖â†
j(0)φ√

Nv‖

+N2|vj |2‖â†
k(s)φ√

Nv‖‖â†
j(0)â†

j(0)φ√
Nv‖

+
L
∑

j=1

2N2|vj |3‖â†
j(0)φ√

Nv‖‖âk(s)φ√
Nv‖

+N2|vj |2‖â†
j(0)â†

j(0)φ√
Nv‖‖âk(s)φ√

Nv‖, (87)

namely

≤
L
∑

j=1

(

2N2|vj |3 ‖â†
j(0)φ√

Nv‖ + N2|vj |2 ‖â†
j(0)â†

j(0)φ√
Nv‖

)

‖â†
k(s)φ√

Nv‖

+
L
∑

j=1

(

2N2|vj |3‖â†
j(0)φ√

Nv‖ + N2|vj |2‖â†
j(0)â†

j(0)φ√
Nv‖

)

‖âk(s)φ√
Nv‖.

We need to get an estimate for ‖â†
j(0)φ√

Nv‖ and ‖â†
j(0)â†

j(0)φ√
Nv‖.

‖â†
j(0)φ√

Nv‖2 =
〈

φ√
Nv, âk(0)â†

j(0)φ√
Nv

〉

=
〈

φ√
Nv,

(

â†
j(0)âj(0) +

1
N

)

φ√
Nv

〉

=
〈

φ√
Nv, â†

j(0)âj(0)φ√
Nv

〉

+
1
N

. (88)

Since âj(0)φ√
Nv = vjφ√

Nv and recalling that φ√
Nv are normalized, it follows

‖â†
j(0)φ√

Nv‖2 =
〈

φ√
Nv, âj(0)â†

j(0)φ√
Nv

〉

=
〈

φ√
Nv,

(

â†
j(0)âj(0) +

1
N

)

φ√
Nv

〉

=
〈

φ√
Nv, â†

j(0)âj(0)φ√
Nv

〉

+
1
N

= |vj |2 +
1
N

, (89)
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and thus

‖â†
j(0)φ√

Nv‖ =
(

|vj |2 +
1
N

) 1
2 ≤ |vj | +

1√
N

. (90)

We now look at

‖â†
j(0)â†

j(0)φ√
Nv‖2 =

〈

φ√
Nv, âj(0)âj(0)â†

j(0)â†
j(0)φ√

Nv

〉

=
〈

φ√
Nv, âj(0)

(

â†
j(0)âj(0) +

1
N

)

â†
j(0)φ√

Nv

〉

=
〈

φ√
Nv, âj(0)â†

j(0)âj(0)â†
j(0)φ√

Nv

〉

+
1
N

‖â†
j(0)φ√

Nv‖2

=
〈

φ√
Nv,

(

â†
j(0)âj(0) +

1
N

)(

â†
j(0)âj(0) +

1
N

)

φ√
Nv

〉

+
1
N

‖â†
j(0)φ√

Nv‖2

= ‖â†
j(0)âj(0)φ√

Nv‖2 +
2
N

〈φ√
Nv, â†

j(0)âj(0)φ√
Nv〉

+
1

N2
+

1
N

‖â†
j(0)φ√

Nv‖2. (91)

By using again âj(0)φ√
Nv = vjφ√

Nv and (89), we have

‖â†
j(0)â†

j(0)φ√
Nv‖2

= |vj |2
(

|vj |2 +
1
N

)

+
2
N

|vj |2 +
1

N2
+

1
N

(

|vj |2 +
1
N

)

= |vj |4 +
4
N

|vj |2 +
2

N2
, (92)

and hence

‖â†
j(0)â†

j(0)φ√
Nv‖ ≤ |vj |2 +

2√
N

|vj | +
√

2
N

. (93)

Inserting (90)–(93) into (88), we get
∣

∣

∣

L
∑

j=1

(

v2
j

∂2ρk

∂v2
j

− v̄2
j

∂2ρk

∂v̄2
j

)∣

∣

∣ ≤
L
∑

j=1

(

2N2|vj |3
(

|vj | +
1√
N

)

+N2|vj |2
(

|vj |2 +
2√
N

|vj | +
√

2
N

))

‖â†
k(s)φ√

Nv‖

+
L
∑

j=1

(

2N2|vj |3
(

|vj | +
1√
N

)

+N2|vj |2
(

|vj |2 +
2√
N

|vj | +
√

2
N

))

‖âk(s)φ√
Nv‖. (94)

Thus,
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∣

∣

∣

L
∑

j=1

(

v2
j

∂2ρk

∂v2
j

− v̄2
j

∂2ρk

∂v̄2
j

)∣

∣

∣

≤ N2
L
∑

j=1

(

3|vj |4 +
4√
N

|vj |3 +
√

2
N

|vj |2
)

(‖â†
k(s)φ√

Nv‖ + ‖âk(s)φ√
Nv‖).

(95)

We observe that

‖âk(s)φ√
Nv‖ = (〈φ√

Nv, â†
k(s)âk(s)φ√

Nv〉) 1
2

≤
(

〈φ√
Nv, â†

k(s)âk(s)φ√
Nv〉 +

1
N

) 1
2
, (96)

and

‖â†
k(s)φ√

Nv‖ = (〈φ√
Nv, âk(s)â†

k(s)φ√
Nv〉) 1

2

=
(

〈φ√
Nv, â†

k(s)âk(s)φ√
Nv〉 +

1
N

) 1
2
. (97)

As a consequence,
∣

∣

∣

L
∑

j=1

(

v2
j

∂2ρk

∂v2
j

− v̄2
j

∂2ρk

∂v̄2
j

)∣

∣

∣

≤ 2N2
L
∑

j=1

(

3|vj |4 +
4√
N

|vj |3 +
√

2
N

|vj |2
)(

nk(s, v̄, v) +
1
N

) 1
2
. (98)

Now define P(v̄, v) :=
∑

1≤j≤L(3N |vj |4 + 4
√

N |vj |3 +
√

2|vj |2) and recall
equalities (71)–(73) which imply the statement (69). �
In view of previous propositions, we can now provide the proof of the main
result of the paper.

Proof of Theorem 1. Recalling (69), we define the positive function

ψ(s) := UP(v̄, v)
(

nk(s, v̄, v) +
1
N

) 1
2
∣

∣

∣

(v̄,v)=Φt−s(ω̄,ω)
, (99)

and for the sake of simplicity we avoid to write the dependence on (ω̄, ω).
Thus, |ρk − uk|(t) ≤ ∫ t

0
ψ(s) ds and

‖ρk(t) − uk(t)‖Lp(μN ) ≤
∥

∥

∥

∫ t

0

ψ(s) ds
∥

∥

∥

Lp(μN )
. (100)

More in details,
∥

∥

∥

∫ t

0

ψ(s) ds
∥

∥

∥

p

Lp(μN )
=

∫

(

∫ t

0

ψ(s) ds
)p

dμN . (101)

The Hölder inequality ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq with 1/q + 1/p = 1, allows
∫ t

0

ψ(s) ds ≤
(

∫ t

0

ψp(s) ds
) 1

p

t1− 1
p , (102)
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and hence
(

∫ t

0

ψ(s) ds
)p

≤
∫ t

0

ψp(s) ds tp−1. (103)

This gives
∫

(

∫ t

0

ψ(s) ds
)p

dμN ≤ tp−1

∫ t

0

(

∫

ψp(s) dμN

)

ds. (104)

We now focus our attention to
∫

ψp(s) dμN =
∫

(

UP(v̄, v)
(

nk(s, v̄, v) +
1
N

) 1
2
∣

∣

∣

(v̄,v)=Φt−s(ω̄,ω)

)p

dμN .

(105)

The invariance of μN under the flow Φt−s implies
∫

ψp(s) dμN =
∫

(

UP(ω̄, ω)
(

nk(s, ω̄, ω) +
1
N

) 1
2
)p

dμN (106)

=
∫

(

U2P(ω̄, ω)2
(

nk(s, ω̄, ω) +
1
N

))
p
2

dμN (107)

=
∫

(

〈φ√
Nω, Bk(s)φ√

Nω〉
)

p
2

dμN (108)

where we have just defined the positive definite operator

Bk(s) := U2P(ω̄, ω)2
(

â†
k(s)âk(s) +

1
N

)

. (109)

Now assume that p = 2m with m ∈ N so that
(

〈φ√
Nω, Bk(s)φ√

Nω〉
)

p
2 ≤ 〈φ√

Nω, Bp
k(s)φ√

Nω〉 1
2 . (110)

We get, thanks to the normalization of μN ,
∫

ψp(s) dμN ≤
∫

〈φ√
Nω, Bp

k(s)φ√
Nω〉 1

2 dμN

≤
(

∫

〈φ√
Nω, Bp

k(s)φ√
Nω〉 dμN

) 1
2
, (111)

and recalling (109),
∫

ψp(s) dμN ≤
(

∫

U2pP(ω̄, ω)2p〈φ√
Nω,

(

â†
k(s)âk(s) +

1
N

)p

φ√
Nω〉 dμN

) 1
2
.

(112)

The Cauchy–Schwarz inequality gives

≤
(

∫

U4pP(ω̄, ω)4p dμN

) 1
4
(

∫

〈φ√
Nω,

(

â†
k(s)âk(s) +

1
N

)p

φ√
Nω〉2 dμN

) 1
4
.

(113)

Since â†
k(s)âk(s) + 1

N is positive definite, we have the upper bound
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≤
(

∫

U4pP(ω̄, ω)4p dμN

) 1
4
(

∫

〈φ√
Nω,

(

â†
k(s)âk(s) +

1
N

)2p

φ√
Nω〉 dμN

) 1
4
.

(114)

Observe that, since U
(s)U(s) = Id,
(

â†
k(s)âk(s) +

1
N

)2p

= U
(s)
(

â†
kâk +

1
N

)2p

U(s). (115)

Now apply Proposition 2 and Remark 3 in order to rewrite (114) as

=
(

∫

U4pP(ω̄, ω)4p dμN

) 1
4
(

∫

〈φ√
Nω,

(

â†
k(0)âk(0) +

1
N

)2p

φ√
Nω〉 dμN

) 1
4
.

(116)

Integrating these terms, see Lemma 1, we have two constants C1,p and C2,p > 0
such that

(

∫

P(ω̄, ω)4p dμN

) 1
4 ≤ C1,p

( L

N

)p

, (117)

and
(

∫

〈φ√
Nω,

(

â†
k(0)âk(0) +

1
N

)2p

φ√
Nω〉 dμN

) 1
4

= C2,p

( 1√
N

)p

. (118)

Thus,
∫

ψp(s) dμN ≤ Up C1,p

( L

N

)p

C2,p

( 1√
N

)p

. (119)

We are now in the position to conclude

‖ρk(t) − uk(t)‖p
Lp(μN ) ≤ tp−1

∫ t

0

Up C1,p C2,p

( 1√
N

)p

ds (120)

= tp Up C1,p

( L

N

)p

C2,p

( 1√
N

)p

, (121)

so that by defining

Bp := (C1,p C2,p)
1
p , (122)

we have, in the case p = 2m with m ∈ N,

‖ρk(t) − uk(t)‖Lp(μN ) ≤ t U Bp
L

N

1√
N

. (123)

Now observe that, thanks to normalization of μN and a simple application of
Hölder inequality, we have ‖ρk(t) − uk(t)‖Lp(μN ) ≤ ‖ρk(t) − uk(t)‖Lα(μN ) for
any α ≥ p. Thus, fix α := 2p so that

Ap := B2p , (124)

ensures now for all p ≥ 1 the inequality

‖ρk(t) − uk(t)‖Lp(μN ) ≤ t U Ap
L

N

1√
N

. (125)
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It remains to prove that ρk, uk ∈ Lp(μN ). Recall that uk(t, ω) = Φ
(k)
t (ω̄, ω)

and that μN is invariant under Φt. Hence,
∫

|uk(t, ω)|pdμN (ω̄, ω) =
∫

|Φ(k)
t (ω̄, ω)|pdμN (ω̄, ω) (126)

=
∫

|ωk|p (Φt)
dμN (ω̄, ω) =
∫

|ωk|pdμN (ω̄, ω) < +∞. (127)

where the last inequality is guaranteed since μN is a Gaussian type measure
and |ωk|p is a polynomial term. Inequality (125) gives ‖ρk(t)−uk(t)‖Lp(μN ) <
+∞ and thus ‖ρk‖Lp(μN ) < +∞.

�

An immediate consequence of Theorem 1 is the next corollary.

Proof of Corollary 1. Let 0 < ε < 1
2 and define the set

Ωk :=
{

(ω, ω̄) | |ρk − uk|(t, ω, ω̄) > Ap
L

N

U t

N ε
, ∀t ≥ 0

}

. (128)

Then,

μN (Ωk)
(

Ap
L

N

U t

N ε

)p

<

∫

Ωk

|ρk − uk|p(t, ω, ω̄) dμN (ω̄, ω)

≤
∫

|ρk − uk|p(t, ω, ω̄) dμN (ω̄, ω). (129)

Recalling inequality (125), we get

μN (Ωk)
(

Ap
L

N

U t

N ε

)p

≤
(

Ap
L

N

U t√
N

)p

, (130)

hence

μN (Ωk) ≤ N−p·( 1
2−ε), ∀p ≥ 1 ∀N ≥ 1. (131)

�
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4 Appendix

4.1 Remarks on Scaling, Model and Relevant Quantities

Here, we provide some remarks on the N -scaling in the many-body operator
(2) and its modifications. One can also define, in place of (2),

̂H :=
∑

1≤j≤L

[

Eb̂†
j b̂j + J(b̂†

j+1b̂j + b̂†
j b̂j+1) +

U

2Nα
b̂†
j b̂

†
j b̂j b̂j

]

where the coefficient 1/Nα with 0 < α ≤ 1 (in place of 1/N) multiplies the
quartic term of the operator. Notice that the parameter α > 0 can be arbi-
trarily small, and thus the operator of the quartic part has a “weight” which
is close to have the same order of the quadratic part. In this setting, we can
choose the rescaling of the bosonic operators âk := b̂k/

√
Nα and commutation

rules becomes [âk, â†
μ] = δkμId/Nα. The related Heisenberg Eq. (4) for âk is

not modified, and thus the DNLS Eq. (1) is not changed and reads

i
d

dt
uk(t) = Euk(t) + J(uk+1(t) + uk−1(t)) + U |uk(t)|2uk(t)

where we underline that here the cubic part has the same order of the lin-
ear part and does not depend on N or the exponent α. The Lp-estimate in
Theorem 1 thus becomes

‖ρα,k(t) − uk(t)‖Lp(μα,N ) ≤ Ap
L

Nα

U t

Nα/2

for ρα,k(t, ω̄, ω) := 〈φ√
Nαω, âk(t)φ√

Nαω〉 and μα,N := μNα . When α = 1
this estimate recovers the one of Theorem 1 within the original setting of the
many-body operator (2).

Concerning possible extensions of the model, we can also consider the
more general operator

̂H :=
∑

1≤k,j≤L

[

τkj b̂†
k b̂j +

1
2N

∑

1≤r,s≤L

Urs
kj b̂†

k b̂†
r b̂j b̂s

]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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under for example the assumption that |Urs
kj | ≤ Ū . Indeed, in this more general

case the dependence from the parameter L into the Lp-estimate of Theorem 1
will be L4/N in place of L/N , namely

‖ρk(t) − uk(t)‖Lp(μN ) ≤ Ap
L4

N

Ū t√
N

,

where the constant Ap will be changed by a more general formula.
In the current paper, we have considered the most simple setting involving
the quantum dynamics driven by ̂H as in (2) in order to make more clear
and direct the exposition of our approach of mean field estimates for Wick
operators on Bargmann space.

Moreover, concerning our focussing on the dynamics of 〈ak〉 as the main
physical quantity, we stress that along the same lines, we can treat the dy-
namics of polynomials in ak and a†

k. For example, the quantity

ρ̃jk(t, ω̄, ω) := 〈φ√
Nω, â†

j(t) âk(t)φ√
Nω〉

could be considered in the same way, and the asymptotics as N → +∞ recov-
ers, in Lp(μN )-norm, the quantity

Φ
(j)

t Φ
(k)
t ,

related to the components j and k of the DNLS flow at time t.
Finally, for what concerns the problem of reduced density matrices (see

for example [35,36]), we recall the setting of the operator ΓΨ : L2 → L2 (see
Sects. 10.2.1 and 10.2.2 of [21])

ΓΨϕ :=
1
N

∑

j,k≥0

〈Ψ, b∗(uj)b(uk)Ψ〉〈uj , ϕ〉uk, ϕ ∈ L2(R; C),

where Ψ = Ψ (N) is fixed in the N -particle sector F (N) � L2
s(R

N ; C) of the Fock
space, and where b∗(uj) and b(uk) are the bosonic creation and annihilation
operators on the Fock space, and associated with a fixed orthonormal set
{uj}j∈N of L2(R; C). A preliminary treatment of the link between ΓΨ with the
contents of our paper is reported in the PhD Thesis of one of the authors [34].

3.1. Fock–Bargmann Space and Wick Quantization

In this subsection, we provide an overview of Fock–Bargmann space and the
Wick quantization, recalling the basic notions we need in the framework of this
paper. Here, we mainly follow the notations of Sect. 5.2 in [15], but we also
address the reader to Sects. 1.6–2.7 of [23] and Sect. 2.6 in [21]. Let Ā(Cn) be
the set of the anti-analytic functions f : C

n → C. The Fock–Bargmann space
is defined as

FB(Cn) :=
{

f ∈ Ā(Cn) |
∫

|f(z̄)|2 e−|z|2dz ∧ dz̄ < +∞
}

(132)

with a scalar product

〈f, g〉 :=
∫

f
(z̄)g(z̄) e−|z|2dz ∧ dz̄
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=
1
πn

∫

R2n

f
(x − iy)g(x + iy) e−(|x|2+|y|2)dxdy, (133)

here z := x+ iy and dz ∧dz̄ := π−ndxdy, thus the integral can be written over
R

2n. In this paper, we consider n = L where L is a parameter of the Bose–
Hubbard model. The creation and annihilation operators are defined as:

b̂k(f)(z̄) :=
∂f(z̄)
∂z̄k

; b̂†
k(f)(z̄) := z̄kf(z̄). (134)

Notice that b̂†
k, b̂k are well defined on FB(Cn) and [b̂k, b̂†

μ] = δkμId. Coherent
states are represented, with its normalization e− 1

2 |ω|2 , as

φω(z̄) := eω·z̄− 1
2ω·ω̄. (135)

For a given operator ̂A : FB(Cn) → FB(Cn), its Wick symbol is defined by

σ( ̂A)(ω̄, ω) := 〈φω, ̂Aφω〉 (136)

whereas outside the diagonal (ω̄, ω) the Wick symbol reads

σ( ̂A)(z̄, ω) :=
〈φz, ̂Aφω〉
〈φz, φω〉 . (137)

The Wick quantization of an entire function σ : C
n × C

n → C is given as

OpW(σ)(f)(z̄) :=
∫

σ(z̄, ω) f(ω̄) e−|ω|2+ω·z̄ dω ∧ dω̄, f ∈ FB(Cn).

(138)

In view of these settings, we have ̂A = OpW(σ( ̂A)), and we call this a Wick
operator.

To be more precise about the set of these operators, suppose that ̂A

(possibly unbounded) is defined on FB(Cn) together with its adjoint ̂A†, and
assume that for all ω ∈ C

L, φω belongs to the domains of ̂A and ̂A†. Then,
ω �→ σ( ̂A)(ω̄, ω) is a smooth function on C

n and moreover σ( ̂A)(ω̄, ω) is the
restriction on the diagonal of σ( ̂A)(z̄, ω) as in (137), which is furthermore an
entire function (see [23]—pg. 139). As shown in Proposition 1.69 of [23], any
entire function K(z̄, ω) is uniquely determined by its restriction to {z̄ = ω̄}.

Thanks to these observations, ̂A = OpW(σ) is uniquely related to the
symbol on the diagonal, and for this reason frequently in the literature one
refers to ̂A as the Wick quantization of (136).

We also stress that if the starting point is the definition (138) one must
prove, for a given entire function σ, that OpW(σ) is well defined on FB(Cn) is
the sense we have just described.

A simple computation shows that

σ(b̂k) = ωk, σ(b̂†
k) = ω̄k, σ((b̂†

k)α (b̂μ)β) = ω̄α
k ωβ

μ . (139)
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These equalities directly allow to write the Wick symbol of the Bose–Hubbard
operator ̂H in (2)

〈φω, ̂Hφω〉 =
∑

1≤j≤n

[

E |ωj |2 + J(ω̄j+1 ωj + ω̄j ωj+1) +
U

2N
|ωj |4

]

(140)

and the rescaled Wick symbol

〈φ√
Nω, ̂Hφ√

Nω〉 = N
∑

1≤j≤n

[

E |ωj |2 + J(ω̄j+1 ωj + ω̄j ωj+1) +
U

2
|ωj |4

]

.

(141)

We also recall that any bounded operator on FB(Cn) is a well-defined Wick
operator. Furthermore, a large class of Weyl operators (see Sect. 2.1 in [23])
can be rewritten as a Wick operator by the following link of symbols σWick =
eΔ/2σWeyl, namely (for � = 1)

σWick(ω̄, ω) = 2n

∫

e−2(z−ω)(z̄−ω̄) σWeyl

(z + z̄√
2

,
z − z̄√

2

)

dz ∧ dz̄, (142)

see also Proposition 2.97 in [23] for the link with standard quantization, and
more detailed setting for the allowed symbols.

The set of Wick operators is closed under composition, and the Wick-�
product is defined as the symbol of the composition of two operators,

(σ1 �Wick σ2)(ω̄, ω) := 〈φω,OpW(σ1) ◦ OpW(σ2)φω〉. (143)

It can be shown (see [15]) the following asymptotics (in multi-index notation)

σ1 �Wick σ2 �
∞
∑

r=0

1
r!

∂rσ1

∂ωr

∂rσ2

∂ω̄r
,

�
∞
∑

r=0

1
r!

n
∑

i1,i2,...ir=1

∂rσ1

∂ωi1∂ωi2 . . . ∂ωir

∂rσ2

∂ω̄i1∂ω̄i2 . . . ∂ω̄ir

,

(144)

where ∂ωr := ∂ωi1∂ωi2 . . . ∂ωir
.

About the convergence of the right-hand side, we address the reader to
[9]. We stress that in the asymptotics (144) the semiclassical parameter is
� = 1 and the absence of the factor 2r used in [9] is a consequence of the
setting of the scalar product in (133).

In the case of the rescaled symbols σ(
√

Nω̄,
√

Nω), the Wick-star product
reads

σ1 �Wick σ2 �
∞
∑

r=0

�
r

r!
∂rσ1

∂ωr

∂rσ2

∂ω̄r
, � =

1
N

. (145)

One can also introduce the �-Wick quantization

Op�

W(σ)(f)(z̄) := �
−n

∫

σ(z̄, ω) f(ω̄) e− 1
�
(|ω|2−ω·z̄) dω ∧ dω̄ (146)
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for which we have the Wick-� product of symbols in (145), defined on the Fock–
Bargmann space with the scalar product 〈ψ,ϕ〉 := �

−n
∫

ψ
(z̄)ϕ(z̄) e− 1
�

|z|2dz∧
dz̄.
The Wick bracket is defined as the symbol of the commutator

{σ1, σ2}Wick := σ1 �Wick σ2 − σ2 �Wick σ1 . (147)

For trace class Wick operators, a very useful formula gives

Tr (OpW(σ)) =
∫

σ(ω̄, ω) dω ∧ dω̄. (148)

Remark 4. Let U(t) := e−îHt and b̂k(t) := U†(t)b̂kU(t). Recalling Remark 2,
we have that b̂k(t) is a Wick operator for any t ≥ 0. We denote now its symbol
by σk(t, ω̄, ω). Moreover, it is easy to see that ρk(t, ω̄, ω) := 〈φ√

Nω, âk(t)φ√
Nω〉

fulfills

ρk(t, ω̄, ω) =
1√
N

σk(t,
√

N ω̄,
√

N ω) (149)

hence the operator OpW(ρk) is well defined in the Wick quantization.

3.2. Remarks on Phase Space Analysis

Let Ψ(t) be the solution of the quantum dynamics for some fixed initial
data Ψ(0) ∈ FB(CL), for example a normalized function in the N -sector of
FB(CL) whence representing N -particle states (see [23], pg. 48) and ̂ΠΨ(t)

the related projection operator. Let us consider the related Wick symbol
σ0(ω̄, ω) := σW ( ̂ΠΨ(0))(ω̄, ω) = |〈φω, Ψ(0)〉|2. A way to study the semiclas-
sical localization of the operator

̂B(t) := ̂ΠΨ(t) − OpW(σ0 ◦ Φt) (150)

as the parameter h = 1/N → 0 is to describe the essential support (see The-
orem 8.16 in [41]). In order to do this, one has to study the semiclassical
Wave Front set, also called Frequency Set (see for example [31], or [18] for the
periodic setting which is the one of the current paper)

WFs( ̂B(t)ψα) (151)

where ψα belongs to an orthonormal set, given for example by eigenfunctions
labeled by the multi-index α ∈ N

L of the number operator ̂N :=
∑

k
̂b†
̂bk. The

phase space localization of this set can be described by the use of the coherent
states φ√

Nω and study of the FBI transform 〈φ√
Nω, ̂B(t)ψα〉 (see Sect. 3.6—

point 3 of [31]) which reads (thanks to coherent states decomposition)

〈φ√
Nω, ̂B(t)ψα〉 =

∫

〈φs, ψα〉 〈φ√
Nω, ̂B(t)φs〉 ds ∧ ds̄

=
∫

e− 1
2 |s|2 sα

√
α!

〈φ√
Nω, ̂B(t)φs〉 ds ∧ ds̄

=
∫

NLe− 1
2N |v|2 (

√
Nv)α

√
α!

〈φ√
Nω, ̂B(t)φ√

Nv〉 dv ∧ dv̄.
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Whence,

|〈φ√
Nω, ̂B(t)ψα〉| ≤

∫

NLe− 1
2N |v|2 (

√
N |v|)|α|
√

α!
|〈φ√

Nω, ̂B(t)φ√
Nv〉| dv ∧ dv̄.

(152)

Notice that these are Gaussian-type integrals. Our estimate in Proposition 3
can be obtained in the same way for |〈φ√

Nω, ̂B(t)φ√
Nv〉| (i.e., also outside

the diagonal ω = v), where instead of the evolved annihilation operator âk(t)
we have ̂ΠΨ(t). Thus, our L2-estimates in Theorem 1 with respect to Gauss-
ian measures can be easily adapted to get a semiclassical estimate for the
integral (152) with a more general invariant measure. To conclude, we stress
that higher-order corrections of (150) implies better localization estimates for
the function ω �→ 〈φ√

Nω, ̂B(t)ψα〉 in (152). This can be done in the spirit of
Egorov Theorem (see [8,16]) by iterating the semigroup identity (70) working
on the time evolved Wick symbols governed by Eq. (8).
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