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Abstract. We investigate absolutely continuous spectrum of generalized
indefinite strings. By following an approach of Deift and Killip, we estab-
lish stability of the absolutely continuous spectra of two model examples
of generalized indefinite strings under rather wide perturbations. In par-
ticular, one of these results allows us to prove that the absolutely continu-
ous spectrum of the isospectral problem associated with the conservative
Camassa–Holm flow in the dispersive regime is essentially supported on
the interval [1/4, ∞).
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1. Introduction

It is well known that the study of spectral types of self-adjoint operators in
Hilbert spaces is crucial for understanding the corresponding quantum dynam-
ics. For this reason, even a huge amount of effort has been put in understand-
ing only one of the most basic models — one-body Schrödinger operators with
(in a certain sense) decaying potentials. The standard framework to investi-
gate such Schrödinger operators is perturbation theory, where one considers
a given operator as an additive (or maybe singular, that is, in the sense of
resolvents) perturbation of another operator (for example, the free Hamilton-
ian) whose spectral properties are rather well understood. According to the
Rosenblum–Kato and Birman–Krein theorems, the absolutely continuous spec-
trum is stable under trace class perturbations. These results are sharp since
by the Weyl–von Neumann–Kuroda theorem, absolutely continuous spectrum
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may be turned into pure point spectrum by a perturbation of any Schatten
class weaker than trace class.

On the other hand, by restricting to particular classes of perturbations
(for Schrödinger operators, the considered perturbations are usually multipli-
cation operators) one can hope for better results. For example, in their seminal
work [14], Deift and Killip proved that the absolutely continuous spectrum of
a one-dimensional Schrödinger operator

− d2

dx2
+ V (x) (1.1)

acting in L2(R) coincides with [0,∞) as long as V is a real-valued potential
in L2(R) (see also [31,33,37,40] for further results and references). A similar
statement for multi-dimensional operators is known as Simon’s conjecture [42,
Conjecture 20.2] and still open, although this area has seen significant progress
in the 1990s and 2000s. We are not attempting to give an overview of this topic
(which would be a rather difficult task) but only point to the review articles
[15] and [41,42], where further references can be found.

Our aim here is to investigate spectral types, or more precisely, the ab-
solutely continuous part of the spectrum of generalized indefinite strings, in-
troduced recently in [20]. We recall briefly (see Sect. 2 for further details) that
a generalized indefinite string is a triple (L, ω, υ) such that L ∈ (0,∞], ω is a
real distribution in H−1

loc [0, L) and υ is a non-negative Borel measure on [0, L).
Associated with such a triple is the ordinary differential equation of the form

−f ′′ = z ωf + z2υf (1.2)

on [0, L), where z is a complex spectral parameter. Spectral problems of this
type are of interest for at least two reasons. Firstly, they constitute a canoni-
cal model for operators with simple spectrum; see [20,22]. Secondly, they are
of relevance in connection with certain completely integrable nonlinear wave
equations (most prominently, the Camassa–Holm equation [9]), for which these
kinds of spectral problems arise as isospectral problems.

Results on spectral types, even for the special case of a Krein string

−f ′′ = z ωf, (1.3)

that is, when ω is a non-negative Borel measure and υ vanishes identically,
are rather scarce (however, let us mention the recent paper by Bessonov and
Denisov [5]). The main reason for this lies in the fact that the spectral pa-
rameter appears in the wrong place, which does not allow to view (1.3) as an
additive perturbation immediately. One of the standard approaches here is to
transform the differential equation (1.3) into Schrödinger form by means of
a Liouville transformation and then apply the well-developed spectral theory
for one-dimensional Schrödinger operators. However, this immediately requires
strictly positive and sufficiently smooth weights ω, assumptions which are too
restrictive for our applications. In this context, let us also mention that spec-
tral theory of indefinite strings, that is, when the coefficient ω in (1.3) is a
real-valued Borel measure, is significantly more intricate when compared to
the case of Krein strings (see [26,34] for example).
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Our approach to the absolutely continuous spectrum of generalized in-
definite strings follows the elegant ideas of Deift and Killip [14]. In order to
implement their approach, we need two main ingredients. The first ingredient
is a continuity property for the correspondence between generalized indefi-
nite strings and their associated Weyl–Titchmarsh functions (see Sect. 2 for
more details) obtained in [20, Proposition 6.2]. The relevance of the Weyl–
Titchmarsh function here stems from the fact that a measure μ in a certain
integral representation for this function is a spectral measure for (1.2). More
precisely, this means that the operator part of a self-adjoint linear relation asso-
ciated with (1.2) is unitarily equivalent to multiplication with the independent
variable in L2(R;μ). In particular, the absolutely continuous spectrum of (1.2)
can be identified with the topological support of the absolutely continuous
part of the measure μ.

The second ingredient is a so-called trace formula, which provides a rela-
tion between the spectral/scattering data and the coefficients in the differential
equation, and hence allows to control the spectral measure by means of the co-
efficients. For Schrödinger operators (1.1), such relations have been discovered
by Faddeev and Zakharov [25] (see also [7]) in connection with the Korteweg–
de Vries equation, where they give rise to conserved quantities. Generalized
indefinite strings on the other side are of the same importance for the conserva-
tive Camassa–Holm flow [10,13,17–19,30] as the one-dimensional Schrödinger
operator (1.1) for the Korteweg–de Vries equation. In particular, trace formu-
las for (1.2) are of special interest in this connection because they give rise
to conserved quantities of the flow. Under the rather restrictive assumptions
that υ vanishes identically and ω is a sufficiently smooth and positive function,
such relations have been established before (see, for example, [12]). Remov-
ing the positivity assumption, however, immediately creates an (in general)
infinite number of negative eigenvalues for (1.2) and drastically complicates
the situation. For this reason, the derivation of corresponding trace formulas
for generalized indefinite strings will require more efforts (see Lemma 5.2 and
Lemma 6.1).

In regard to the conservative Camassa–Holm flow, our results concern
the absolutely continuous spectrum of the corresponding isospectral problem

−g′′ +
1
4
g = z ω g + z2υ g, ω = u − u′′, (1.4)

on the real line. We will show in Sect. 7 that under the assumption that u is
a real-valued function on R such that u − 1 belongs to H1(R) and υ is a non-
negative finite Borel measure on R, the essential spectrum and the absolutely
continuous spectrum of a self-adjoint realization of (1.4) coincide with the
interval [1/4,∞). In the special case when ω − 1 is a measure with strong
enough decay and υ vanishes identically, this result has been established before
by Bennewitz, Brown and Weikard [3,4]. Under these additional restrictions,
the essential spectrum is in fact purely absolutely continuous, which will not
continue to hold for our set of coefficients. Our assumptions on the coefficients
cover a natural phase space for the conservative Camassa–Holm flow in the
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dispersive regime (see [8,27,29]), which comprises the Camassa–Holm equation
[11] as well as the two-component Camassa–Holm system [10,13,30]. Note
here that the additional coefficient υ is related to the energy measure μ from
[8,27,29] in a simple way, essentially via

μ(B) = υ(B) +
∫

B

(u(x) − 1)2 + u′(x)2dx (1.5)

for every Borel set B ⊆ R. The function ρ that appears in the formulation
of the two-component Camassa–Holm system is simply the square root of the
Radon–Nikodym derivative of the absolutely continuous part of υ.

In conclusion, let us sketch the content of the article. Section 2 is of pre-
liminary character and collects necessary notions and facts from the spectral
theory of generalized indefinite strings. Section 3 contains the statements of our
main results (Theorems 3.1 and 3.2) about the absolutely continuous spectrum
for certain classes of generalized indefinite strings, which are rather strong per-
turbations of explicitly solvable models (Example A and Example B). Although
we will not present the necessary details here, these perturbations can indeed
be interpreted in a certain way as additive perturbations, which are only of
Hilbert–Schmidt class in general however. Our main theorems seem to be new
even for the special case of Krein strings and will be proved in Sects. 5 and 6,
respectively, after deriving some useful auxiliary facts in Sect. 4. Even though
we will generally follow the simple method by Deift and Killip from [14], the
necessary ingredients are not as readily available for our spectral problem and
need to be established first. In Sect. 7, we will then show how corresponding
results for the spectral problem (1.4) can be derived readily from Theorem 3.2.
The final section provides another application of our results to one-dimensional
Hamiltonians with δ′-interactions.

Notation

We conclude the introduction by defining several spaces of functions and dis-
tributions. For every fixed L ∈ (0,∞], we denote with H1

loc[0, L), H1[0, L) and
H1

c [0, L) the usual Sobolev spaces. To be precise, this means

H1
loc[0, L) = {f ∈ ACloc[0, L) | f ′ ∈ L2

loc[0, L)}, (1.6)

H1[0, L) = {f ∈ H1
loc[0, L) | f, f ′ ∈ L2[0, L)}, (1.7)

H1
c [0, L) = {f ∈ H1[0, L) | supp(f) compact in [0, L)}. (1.8)

The space of distributions H−1
loc [0, L) is the topological dual of H1

c [0, L). One
notes that the mapping q �→ χ, defined by

χ(h) = −
∫ L

0

q(x)h′(x)dx, h ∈ H1
c [0, L), (1.9)

establishes a one-to-one correspondence between L2
loc[0, L) and H−1

loc [0, L). The
unique function q ∈ L2

loc[0, L) corresponding to some distribution χ ∈ H−1
loc [0, L)

in this way will be referred to as the normalized anti-derivative of χ. We say
that a distribution in H−1

loc [0, L) is real if its normalized anti-derivative is real-
valued almost everywhere on [0, L).
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A particular kind of distribution in H−1
loc [0, L) arises from Borel measures

on the interval [0, L). In fact, if χ is a complex-valued Borel measure on [0, L),
then we will identify it with the distribution in H−1

loc [0, L) given by

h �→
∫

[0,L)

h dχ. (1.10)

The normalized anti-derivative q of such a χ is simply given by the left-
continuous distribution function

q(x) =
∫

[0,x)

dχ (1.11)

for almost all x ∈ [0, L), as an integration by parts (use, for example, [6,
Exercise 5.8.112], [28, Theorem 21.67]) shows.

In order to obtain a self-adjoint realization of the differential equation (1.2)
in a suitable Hilbert space later, we also introduce the function space

Ḣ1[0, L) =

⎧⎨
⎩

{f ∈ H1
loc[0, L) | f ′ ∈ L2[0, L), limx→L f(x) = 0}, L < ∞,

{f ∈ H1
loc[0, L) | f ′ ∈ L2[0, L)}, L = ∞,

(1.12)

as well as the linear subspace

Ḣ1
0 [0, L) = {f ∈ Ḣ1[0, L) | f(0) = 0}, (1.13)

which turns into a Hilbert space when endowed with the scalar product

〈f, g〉Ḣ1
0 [0,L) =

∫ L

0

f ′(x)g′(x)∗dx, f, g ∈ Ḣ1
0 [0, L). (1.14)

Here and henceforth, we will use a star to denote complex conjugation. The
space Ḣ1

0 [0, L) can be viewed as a completion with respect to the norm induced
by (1.14) of the space of all smooth functions which have compact support in
(0, L). In particular, the space Ḣ1

0 [0, L) coincides algebraically and topologi-
cally with the usual Sobolev space H1

0 [0, L) when L is finite.

2. Generalized Indefinite Strings

A generalized indefinite string is a triple (L, ω, υ) such that L ∈ (0,∞], ω
is a real distribution in H−1

loc [0, L) and υ is a non-negative Borel measure on
the interval [0, L). Associated with such a generalized indefinite string is the
inhomogeneous differential equation

−f ′′ = z ωf + z2υf + χ, (2.1)

where χ is a distribution in H−1
loc [0, L) and z is a complex spectral parameter.

Of course, this differential equation has to be understood in a weak sense: A
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solution of (2.1) is a function f ∈ H1
loc[0, L) such that

Δfh(0) +
∫ L

0

f ′(x)h′(x)dx = z ω(fh) + z2υ(fh) + χ(h), h ∈ H1
c [0, L),

(2.2)

for some constant Δf ∈ C. In this case, the constant Δf is uniquely deter-
mined and will always be denoted with f ′(0−) for apparent reasons. With
this notion of solution, common basic existence and uniqueness results for the
inhomogeneous differential equation (2.1) are available; see [20, Section 3].

The differential equation (2.1) gives rise to a self-adjoint linear relation
in a suitable Hilbert space. In order to introduce this object, we consider the
space

H = Ḣ1
0 [0, L) × L2([0, L); υ), (2.3)

which turns into a Hilbert space when endowed with the scalar product

〈f, g〉H =
∫ L

0

f ′
1(x)g′

1(x)∗dx +
∫

[0,L)

f2(x)g2(x)∗dυ(x), f, g ∈ H. (2.4)

The respective components of some vector f ∈ H are hereby always denoted
by adding subscripts, that is, with f1 and f2. Now the linear relation T in the
Hilbert space H is defined by saying that some pair (f, g) ∈ H × H belongs to
T if and only if the two equations

−f ′′
1 = ωg1 + υg2, υf2 = υg1, (2.5)

hold. In order to be precise, the right-hand side of the first equation in (2.5)
has to be understood as the H−1

loc [0, L) distribution given by

h �→ ω(g1h) +
∫

[0,L)

g2h dυ. (2.6)

Moreover, the second equation in (2.5) holds if and only if f2 is equal to g1

almost everywhere on [0, L) with respect to the measure υ. The maximally
defined linear relation T is self-adjoint in the Hilbert space H according to [20,
Theorem 4.1] and indeed closely related to the differential equation (2.1) since
for each z ∈ C, a pair (f, g) ∈ H × H belongs to T − z if and only if the two
equations

−f ′′
1 = z ωf1 + z2υf1 + ωg1 + z υg1 + υg2, υf2 = z υf1 + υg1, (2.7)

hold. This shows that some f ∈ H belongs to ker(T − z) if and only if f1 is a
solution of the homogeneous differential equation

−f ′′ = z ωf + z2υf (2.8)

and υf2 = z υf1. In other words, some z ∈ C is an eigenvalue of T if and only if
there is a non-trivial solution φ of the homogeneous differential equation (2.8)
such that φ lies in Ḣ1

0 [0, L) and zφ lies in L2([0, L); υ).



Vol. 22 (2021) Absolutely continuous spectrum 3535

A central object in the spectral theory for the linear relation T is the
associated Weyl–Titchmarsh function m. This function can be defined on C\R
by

m(z) =
ψ′(z, 0−)
zψ(z, 0)

, z ∈ C\R, (2.9)

where ψ(z, · ) is the unique (up to constant multiples) non-trivial solution of the
homogeneous differential equation (2.8) which lies in Ḣ1[0, L) and L2([0, L); υ),
guaranteed to exist by [20, Lemma 4.2]. It has been shown in [20, Lemma 5.1]
that the Weyl–Titchmarsh function m is a Herglotz–Nevanlinna function, that
is, it is analytic, maps the upper complex half-plane C+ into the closure of the
upper complex half-plane and satisfies the symmetry relation

m(z)∗ = m(z∗), z ∈ C\R. (2.10)

For this reason, the Weyl–Titchmarsh function m admits an integral represen-
tation, which takes the form

m(z) = c1z + c2 − 1
Lz

+
∫
R

1
λ − z

− λ

1 + λ2
dμ(λ), z ∈ C\R, (2.11)

for some constants c1, c2 ∈ R with c1 ≥ 0 and a non-negative Borel measure
μ on R with μ({0}) = 0 for which the integral∫

R

dμ(λ)
1 + λ2

(2.12)

is finite. Here we employ the convention that whenever an L appears in a
denominator, the corresponding fraction has to be interpreted as zero if L is
infinite.

The measure μ turns out to be a spectral measure for the linear relation T
in the sense that the operator part of T is unitarily equivalent to multiplication
with the independent variable in L2(R;μ); see [20, Theorem 5.8]. Of course,
this establishes an immediate connection between the spectral properties of the
linear relation T and the measure μ. For example, the spectrum of T coincides
with the topological support of μ and thus can be read off the singularities of
m (more precisely, the function m admits an analytic continuation away from
the spectrum of T).

For the sake of simplicity, we shall always mean the spectrum of the
corresponding linear relation when we speak of the spectrum of a generalized
indefinite string in the following. The same convention applies to the various
spectral types.

3. Absolutely Continuous Spectrum

In general, any kind of (simple) spectrum can arise from a generalized indefinite
string; see [20, Theorem 6.1]. Here, we are interested in the absolutely contin-
uous spectrum of a particular class of generalized indefinite strings, which are
suitable perturbations of the following explicitly solvable case.
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Example A. Let S0 be the generalized indefinite string (L0, ω0, υ0) such that
L0 is infinite, the distribution ω0 is given via its normalized anti-derivative w0

by

w0(x) = x, x ∈ [0,∞), (3.1)

and the measure υ0 vanishes identically. We note that under these assumptions,
the corresponding differential equation (2.8) simply reduces to

−f ′′ = zf. (3.2)

For every z ∈ C\[0,∞), the function ψ0(z, · ) given by1

ψ0(z, x) = ei
√

zx, x ∈ [0,∞), (3.3)

is a solution of this differential equation which lies in Ḣ1[0,∞). Consequently,
the corresponding Weyl–Titchmarsh function m0 is given explicitly by

m0(z) =
ψ′

0(z, 0−)
zψ0(z, 0)

=
i√
z
, z ∈ C\R. (3.4)

This guarantees that the spectrum of S0 is purely absolutely continuous and
coincides with the interval [0,∞).

In particular, the essential spectrum of S0 coincides with the interval
[0,∞) and the absolutely continuous spectrum of S0 is essentially supported
on [0,∞). The latter means that every subset of [0,∞) with positive Lebesgue
measure has positive measure with respect to the corresponding spectral mea-
sure μ0. It turns out that these two properties continue to hold under a rather
wide class of perturbations.

Theorem 3.1. Let S be a generalized indefinite string (L, ω, υ) such that L is
infinite and ∫ ∞

0

|w(x) − c − ηx|2 dx +
∫

[0,∞)

dυ < ∞ (3.5)

for a real constant c and a positive constant η, where w is the normalized anti-
derivative of ω. Then the essential spectrum of S coincides with the interval
[0,∞) and the absolutely continuous spectrum of S is essentially supported on
[0,∞).

A proof for this result will be given in Sect. 5. In view of the applications
we have in mind (see Sect. 7), we are furthermore interested in perturbations
of another explicitly solvable case involving a positive parameter α.

Example B. Let Sα be the generalized indefinite string (Lα, ωα, υα) such that
Lα is infinite, the distribution ωα is given via its normalized anti-derivative
wα by

wα(x) =
x

1 + 2
√

αx
, x ∈ [0,∞), (3.6)

1In the following, we will always take the branch of the square root
√· with cut along the

positive semi-axis [0, ∞) defined by
√

z =
√|z|ei arg(z)/2 with arg(z) ∈ [0, 2π).
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and the measure υα vanishes identically. We note that under these assump-
tions, the corresponding differential equation (2.8) simply reduces to

−f ′′(x) =
z

(1 + 2
√

αx)2
f(x), x ∈ [0,∞). (3.7)

For every z ∈ C\[α,∞), the function ψα(z, · ) given by

ψα(z, x) = (1 + 2
√

αx)i
√

z−α
2

√
α

+ 1
2 , x ∈ [0,∞), (3.8)

is a solution of this differential equation which lies in Ḣ1[0,∞). Consequently,
the corresponding Weyl–Titchmarsh function mα is given explicitly by

mα(z) =
ψ′

α(z, 0−)
zψα(z, 0)

=
i√

z − α + i
√

α
, z ∈ C\R. (3.9)

This guarantees that the spectrum of Sα is purely absolutely continuous and
coincides with the interval [α,∞).

In particular, the essential spectrum of Sα coincides with the interval
[α,∞) and the absolutely continuous spectrum of Sα is essentially supported
on [α,∞). These two properties are again preserved under a rather wide class
of perturbations.

Theorem 3.2. Let S be a generalized indefinite string (L, ω, υ) such that L is
infinite and

∫ ∞

0

∣∣∣w(x) − c − ηx

1 + 2
√

αx

∣∣∣2x dx +
∫

[0,∞)

x dυ(x) < ∞ (3.10)

for a real constant c and positive constants α and η, where w is the normal-
ized anti-derivative of ω. Then the essential spectrum of S coincides with the
interval [α/η,∞) and the absolutely continuous spectrum of S is essentially
supported on [α/η,∞).

Although the proof of this result is quite similar to the one for Theo-
rem 3.1 in principle, it will be carried out separately in Sect. 6 due to differences
in details.

Remark 3.3. When the constant η in the assumptions of Theorem 3.1 and
Theorem 3.2 is negative, then the resulting spectral picture is simply reflected
across the imaginary axis. In this case, the essential spectrum of S coincides
with the interval (−∞, 0] and (−∞, α/η], respectively, and the absolutely con-
tinuous spectrum of S is essentially supported on (−∞, 0] and (−∞, α/η],
respectively.

As a conclusion to this section, let us mention that although we restricted
to generalized indefinite strings on infinite intervals here, one can also consider
perturbations of similar explicitly solvable cases on finite intervals.
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4. Auxiliary Facts About Fundamental Systems

Let the triple (L, ω, υ) be an arbitrary generalized indefinite string and denote
with w the normalized anti-derivative of ω. For every z ∈ C, we introduce the
fundamental system of solutions θ(z, · ), φ(z, · ) of the differential equation (2.8)
satisfying the initial conditions

θ(z, 0) = φ′(z, 0−) = 1, θ′(z, 0−) = φ(z, 0) = 0. (4.1)

As the derivatives of these functions are only locally square integrable in gen-
eral, we introduce the left-continuous quasi-derivatives θ[1](z, · ), φ[1](z, · ) on
[0, L) by

θ[1](z, x) = θ′(z, 0−) + z

∫ x

0

w(t)θ′(z, t)dt − z2

∫
[0,x)

θ(z, t)dυ(t), (4.2)

φ[1](z, x) = φ′(z, 0−) + z

∫ x

0

w(t)φ′(z, t)dt − z2

∫
[0,x)

φ(z, t)dυ(t), (4.3)

for x ∈ [0, L), such that

θ[1](z, x) = θ′(z, x) + zw(x)θ(z, x), φ[1](z, x) = φ′(z, x) + zw(x)φ(z, x),
(4.4)

for almost all x ∈ [0, L); see [20, Equation (4.12)]. It follows from [20, Corol-
lary 3.5] that the functions

z �→ θ(z, x), z �→ θ[1](z, x), z �→ φ(z, x), z �→ φ[1](z, x), (4.5)

are real entire for every fixed x ∈ [0, L). At the origin, when z is zero, one
readily infers that our fundamental system is given explicitly by

θ(0, x) = 1, θ[1](0, x) = 0, φ(0, x) = x, φ[1](0, x) = 1, (4.6)

for all x ∈ [0, L). We now seek to determine the derivatives of these functions
with respect to the spectral parameter at the origin. In order to state the
following result, let us note that differentiation with respect to the spectral
parameter will be denoted with a dot and is always meant to be done after
taking quasi-derivatives.

Proposition 4.1. For every x ∈ [0, L), we have

θ̇(0, x) = −
∫ x

0

w(t)dt, θ̇[1](0, x) = 0, (4.7)

φ̇(0, x) =
∫ x

0

∫ t

0

w(s)ds dt −
∫ x

0

w(t)t dt, φ̇[1](0, x) =
∫ x

0

w(t)dt, (4.8)
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as well as

θ̈(0, x) =
(∫ x

0

w(t)dt

)2

− 2
∫ x

0

∫ t

0

w(s)2ds dt − 2
∫ x

0

∫
[0,t)

dυ dt, (4.9)

θ̈[1](0, x) = −2
∫ x

0

w(t)2dt − 2
∫

[0,x)

dυ, (4.10)

φ̈[1](0, x) =
(∫ x

0

w(t)dt

)2

− 2
∫ x

0

w(t)2t dt − 2
∫

[0,x)

t dυ(t). (4.11)

Proof. We first note that the second equality in (4.7) follows from (4.2) since
the first integral there is zero when z is equal to zero. Now consider the matrix
function

Y (z, x) =
(

θ(z, x) −zφ(z, x)
−z−1θ[1](z, x) φ[1](z, x)

)
, z ∈ C, x ∈ [0, L),

which is well-defined since the function θ[1]( · , x) has a root at zero. It is an
immediate consequence of (4.2), (4.3) and (4.4) that Y satisfies the integral
equation

Y (z, x) =
(

1 0
0 1

)
+ z

∫ x

0

(−w(t) −1
w(t)2 w(t)

)
Y (z, t)dt

+ z

∫
[0,x)

(
0 0
1 0

)
Y (z, t)dυ(t), x ∈ [0, L), z ∈ C.

For fixed x ∈ [0, L), differentiating with respect to z gives

Ẏ (z, x) =

∫ x

0

(−w(t) −1
w(t)2 w(t)

)
Y (z, t)dt + z

∫ x

0

(−w(t) −1
w(t)2 w(t)

)
Ẏ (z, t)dt

+

∫
[0,x)

(
0 0
1 0

)
Y (z, t)dυ(t) + z

∫
[0,x)

(
0 0
1 0

)
Ẏ (z, t)dυ(t), z ∈ C.

(4.12)

Evaluating at zero, we end up with

Ẏ (0, x) =
∫ x

0

(−w(t) −1
w(t)2 w(t)

)
dt +

∫
[0,x)

(
0 0
1 0

)
dυ(t),

which yields the first equality in (4.7), the second equality in (4.8) as well
as (4.10). Differentiating (4.12) once more and evaluating at zero, we obtain

Ÿ (0, x) = 2
∫ x

0

(−w(t) −1
w(t)2 w(t)

)
Ẏ (0, t)dt + 2

∫
[0,x)

(
0 0
1 0

)
Ẏ (0, t)dυ(t),

which yields the first equality in (4.8), (4.9) as well as (4.11) after performing
some integrations by parts. �

Although one could also compute the second derivative of φ( · , x) at zero,
we omitted to include it because the expression is somewhat lengthy and will
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not be needed in what follows. In fact, to this end one just needs to note that

φ̈(z, x) =
∫ x

0

φ̈[1](z, t)dt − 2
∫ x

0

w(t)φ̇(z, t)dt − z

∫ x

0

w(t)φ̈(z, t)dt, z ∈ C,

(4.13)

and plug in the expressions from Proposition 4.1 upon evaluating at zero.

5. Proof of Theorem 3.1

To begin with, let us consider a particular class of generalized indefinite strings.
We assume that (L, ω, υ) is a generalized indefinite string such that L is infinite
and there is an R > 0 such that the normalized anti-derivative w of ω satisfies

w(x) = x (5.1)

for almost all x in [R,∞) and the measure υ vanishes on [R,∞). In addition,
let us also suppose that w is equal to a piecewise constant function almost
everywhere on the interval [0, R] and that the support of the measure υ is a
finite set. The set of generalized indefinite strings with these properties will
be denoted by F0. Under these assumptions, for every k in the upper complex
half-plane C+, there is a Jost solution f(k, · ) of the differential equation (2.8)
with z = k2 ∈ C\[0,∞) such that

f(k, x) = eikx, x ∈ [R,∞). (5.2)

We note that since the function f(k, · ) clearly lies in Ḣ1[0,∞) and L2([0,∞); υ),
the corresponding Weyl–Titchmarsh function m is given by

m(k2) =
f ′(k, 0−)
k2f(k, 0)

(5.3)

as long as k2 ∈ C\R. Furthermore, we define the function a on C+ via

a(k) =
ikf(k, 0) + f ′(k, 0−)

2ik
, k ∈ C+, (5.4)

which can be viewed as the reciprocal transmission coefficient when the differ-
ential equation is suitably extended to the full line.

Lemma 5.1. If the generalized indefinite string (L, ω, υ) belongs to F0, then the
function a has a unique continuation (denoted with a as well for simplicity) to
an entire function.

Proof. If θ, φ denotes the fundamental system of solutions of the differential
equation (2.8) as in Sect. 4, then we may write

f(k, x) = f(k, 0)θ(k2, x) + f ′(k, 0−)φ(k2, x), x ∈ [0,∞), k ∈ C+.

Upon evaluating this function and its derivative at the point R, we get

eikR = f(k, 0)θ(k2, R) + f ′(k, 0−)φ(k2, R),

ikeikR + k2ReikR = f(k, 0)θ[1](k2, R) + f ′(k, 0−)φ[1](k2, R),
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which we can solve for f(k, 0) and f ′(k, 0−) to obtain

f(k, 0) = eikRφ[1](k2, R) − (ik + k2R)eikRφ(k2, R), (5.5)

f ′(k, 0−) = −eikRθ[1](k2, R) + (ik + k2R)eikRθ(k2, R). (5.6)

Plugging this into the definition of a shows that

e−ikRa(k) =
1 − ikR

2
θ(k2, R) − 1

2ik
θ[1](k2, R)

− ik + k2R

2
φ(k2, R) +

1
2
φ[1](k2, R), k ∈ C+.

(5.7)

In view of the second equality in (4.6), this identity guarantees that the func-
tion a has a unique continuation to an entire function. �

Even more, the right-hand side of (5.7) is actually a polynomial in k due
to our assumptions on the supports of ω and υ on [0, R]. This entails that the
function a has only a finite number of zeros, none of which lie on the real axis.
In fact, in order to verify this, we first define the function b on C+ via

b(k) =
ikf(k, 0) − f ′(k, 0−)

2ik
, k ∈ C+. (5.8)

Similarly as before, we see that b can be continued to an entire function because
of the identity

e−ikRb(k) = −1 − ikR

2
θ(k2, R) +

1
2ik

θ[1](k2, R)

− ik + k2R

2
φ(k2, R) +

1
2
φ[1](k2, R), k ∈ C+.

(5.9)

Now it is a straightforward computation to verify that for real k, we have

a(k)∗ = a(−k), b(k)∗ = b(−k), (5.10)

as well as

|a(k)|2 = |b(k)|2 + 1, (5.11)

which guarantees that a has no zeros on the real axis. Furthermore, all zeros
in the upper complex half-plane C+ necessarily have to lie on the imaginary
axis. In fact, if k was a zero of a in C+ that does not lie on the imaginary axis,
then k2 ∈ C\R and (5.4) would imply

f ′(k, 0−) = −ikf(k, 0). (5.12)

By using (5.3), this would allow us to compute the imaginary part

Im m(k2) = Im
f ′(k, 0−)
k2f(k, 0)

= Im
1
ik

= −Re k

|k|2 = − Im k2

2|k|2Im k
, (5.13)

which is a contradiction to the fact that m is a Herglotz–Nevanlinna function.
As this proves that all zeros in C+ indeed lie on the imaginary axis, we may
enumerate them, repeated according to multiplicity (it can be shown that they
are simple but we do not need this here), by iκ1, . . . , iκN for some positive
constants κ1, . . . , κN . With this notation, let us state the following result.
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Lemma 5.2. If the generalized indefinite string (L, ω, υ) belongs to F0, then we
have the identity

4
3

N∑
n=1

1
κ3

n

+
2
π

∫
R

1
k4

log |a(k)|dk =
∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ. (5.14)

Proof. From the representation (5.7) for a, together with the formulas in
Proposition 4.1 for the fundamental system θ, φ, we see that

a(0) = 1, a′(0) = 0, a′′(0) = 0,

and after a cumbersome but straightforward computation furthermore that

a′′′(0) = −3i
(∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ

)
. (5.15)

In particular, this yields the Taylor expansion

a(k) = 1 − k3 i
2

(∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ

)
+ O(k4), k → 0,

around zero, which entails that

log |a(k)| = O(k4) (5.16)

as k → 0 on the real line.
Since the function a is of bounded type in the upper complex half-plane,

it admits a Nevanlinna factorization [38, Theorem 6.13] of the form

a(k) = C
N∏

n=1

iκn − k

iκn + k
exp

{
−iβk +

1

πi

∫
R

(
1

t − k
− t

1 + t2

)
log |a(t)|dt

}
, k ∈ C+,

for some real constant β ∈ R (in fact, it is not difficult to show that β = −R)
and a complex constant C ∈ C with modulus one. Upon differentiating this,
we obtain

a′(k)
a(k)

= −iβ +
1
πi

∫
R

1
(t − k)2

log |a(t)|dt +
N∑

n=1

2iκn

κ2
n + k2

for all k ∈ C+ close enough to zero (so that a(k) is non-zero). After differen-
tiating two more times, we get

a′′′(k)
a(k)

− 3
a′(k)a′′(k)

a(k)2
+ 2

a′(k)3

a(k)3

=
6
πi

∫
R

1
(t − k)4

log |a(t)|dt − 4i
N∑

n=1

κn(κ2
n − k2)2 − 4κnk4

(κ2
n + k2)4

,

again, as long as k ∈ C+ is close enough to zero. Now we obtain identity (5.14)
upon letting k tend to zero, employing (5.15) and noting that the limit of the
integral on the right-hand side exists because of the asymptotics (5.16). �
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Note that both terms on the left-hand side of the identity (5.14) are
non-negative in view of (5.11). In particular, this observation will allow us to
obtain an estimate on the negative eigenvalues of the corresponding self-adjoint
realization. To this end, we first point out that there are only finitely many such
eigenvalues. More precisely, we see from (5.5) and (5.6) that the right-hand
side of (5.3) is a rational function. This implies that the Weyl–Titchmarsh
function m has a continuation to a meromorphic function on C\[0,∞) with
only finitely many poles. As a consequence, the negative spectrum of (L, ω, υ)
consists only of finitely many eigenvalues. Upon enumerating these eigenvalues
by λ1, . . . , λK with increasing modulus, we obtain the following Lieb–Thirring-
type bound.

Corollary 5.3. If the generalized indefinite string (L, ω, υ) belongs to F0, then
we have the estimate

4
3

K∑
i=1

1
|λi|3/2

≤
∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ. (5.17)

Proof. We may assume that there are negative eigenvalues. Since the function
m is a Herglotz–Nevanlinna function, we see from (5.3) that the function

κ �→ −f ′(iκ, 0−)
κ2f(iκ, 0)

is real-valued, continuous and strictly decreasing for positive κ away from the
poles

√−λ1, . . . ,
√−λK . Because of this, we can find a positive κ <

√−λ1

such that

−f ′(iκ, 0−)
κ2f(iκ, 0)

= − 1
κ

. (5.18)

Since this means that iκ is a zero of a, there is an index n(1) ∈ {1, . . . , N}
such that κ = κn(1) and thus κn(1) <

√−λ1. If K > 1 and λi−1, λi are two
consecutive eigenvalues for some i ∈ {2, . . . , K}, then we can find a positive
κ between

√−λi−1 and
√−λi such that (5.18) holds true. As before, we see

that iκ is a zero of a so that there is an index n(i) ∈ {1, . . . , N} such that
κ = κn(i) and thus also κn(i) <

√−λi. In conclusion, this shows that

4
3

K∑
i=1

1
|λi|3/2

≤ 4
3

K∑
i=1

1
κ3

n(i)

≤ 4
3

N∑
n=1

1
κ3

n

,

which yields the claim upon invoking Lemma 5.2. �

The next ingredient for our proof will be an estimate on the absolutely
continuous spectrum of (L, ω, υ). To this end, we first note that we have

ik m(k2) =
b(k) − a(k)
b(k) + a(k)

(5.19)

for all k ∈ C+ with k2 ∈ C\R. Since the functions a and b are entire and
satisfy the properties (5.10) and (5.11) on the real line, one can conclude that
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the spectrum of (L, ω, υ) on the interval [0,∞) is purely absolutely continuous
with the corresponding spectral measure μ given by

μ(B) =
∫

B

�(λ)dλ (5.20)

for every Borel set B ⊆ [0,∞), where � is defined by

�(λ) = lim
ε→0

1
π

Im m(λ + iε) =
1

π
√

λ|b(√λ) + a(
√

λ)|2 , λ ∈ (0,∞). (5.21)

We note that the function � is continuous and positive on (0,∞).

Corollary 5.4. If the generalized indefinite string (L, ω, υ) belongs to F0, then
for every compact subset Ω of (0,∞) we have the estimate

− 1
π

∫
Ω

log
(

�(λ)
CΩλ3

√
λ

)√
λ

λ3
dλ ≤

∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ, (5.22)

where CΩ = 4π(min Ω)−2 is a positive constant.

Proof. For every positive k, we first compute that∣∣∣∣1 − b(k) − a(k)
b(k) + a(k)

∣∣∣∣
2

=
4|a(k)|2

|b(k) + a(k)|2 = 4πk|a(k)|2�(k2)

and on the other side that∣∣∣∣1 − b(k) − a(k)
b(k) + a(k)

∣∣∣∣ ≥ Re
(

1 − b(k) − a(k)
b(k) + a(k)

)
= 1 +

1
|b(k) + a(k)|2 ≥ 1.

In combination, this gives the bound
1

|a(
√

λ)|2 ≤ 4π
√

λ�(λ) ≤ CΩλ5/2�(λ)

as long as λ ∈ Ω, which allows us to estimate the integral

− 1
π

∫
Ω

log
(

�(λ)
CΩλ3

√
λ

)√
λ

λ3
dλ ≤ 1

π

∫
Ω

log |a(
√

λ)|2
√

λ

λ3
dλ.

Upon employing a substitution, we can further bound this by

2
π

∫ √
max Ω

√
min Ω

log |a(k)|2 1
k4

dk ≤ 4
π

∫ ∞

0

log |a(k)| 1
k4

dk =
2
π

∫
R

log |a(k)| 1
k4

dk,

which yields the claim in view of Lemma 5.2. �

With these auxiliary facts, we are now in position to prove our first
theorem.

Proof of Theorem 3.1. Let us assume for now that S is a generalized indefinite
string (L, ω, υ) such that L is infinite and∫ ∞

0

|w(x) − x|2 dx +
∫

[0,∞)

dυ < ∞,

where w is the normalized anti-derivative of ω. We are first going to construct
a suitable approximating sequence of generalized indefinite strings (Ln, ωn, υn)
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from the set F0. For every n ∈ N, let Ln be infinite and choose Rn > n such
that ∫ ∞

Rn

|w(x) − x|2dx <
1
n

.

We can then find a real-valued function wn on [0,∞) which is piecewise con-
stant on the interval [0, Rn] with

∫ Rn

0

|wn(x) − w(x)|2dx <
1
n

and satisfies wn(x) = x for all x > Rn. The distribution ωn is now defined in
such a way that the corresponding normalized anti-derivative coincides with
wn almost everywhere. Apart from this, we are able to find a non-negative
Borel measure υn which is supported on a finite set contained in [0, Rn) with∫

[0,∞)

dυn =
∫

[0,∞)

dυ

and such that ∫
[0,x)

dυn →
∫

[0,x)

dυ, n → ∞,

for almost every x ∈ [0,∞).
Note that by construction, we then have∫ ∞

0

|wn(x) − x|2dx +
∫

[0,∞)

dυn →
∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ (5.23)

as n → ∞. Furthermore, it follows readily from [20, Proposition 6.2] that the
corresponding Weyl–Titchmarsh functions mn converge locally uniformly to
m. Thus the associated spectral measures μn certainly satisfy∫

R

g(λ)dμn(λ) →
∫
R

g(λ)dμ(λ), n → ∞, (5.24)

for every continuous function g on R with compact support.
In order to prove that the essential spectrum of S is restricted to [0,∞),

let I be a compact interval in (−∞, 0). Because of the estimate in Corollary 5.3
and the convergence in (5.23), we see that there is an integer KI such that
(Ln, ωn, υn) has at most KI eigenvalues in the interval I for every n ∈ N. It
now follows from the convergence of the measures μn in (5.24) that the limit
measure μ is supported on a finite set on I, which implies that S has at most
finitely many eigenvalues in I. Since the interval I was arbitrary, we conclude
that the essential spectrum of S is necessarily contained in [0,∞).

Now take a compact set Ω ⊂ (0,∞) of positive Lebesgue measure. Due to
the convergence of the measures μn in (5.24), we have (see [2, Theorem 30.2])

μ(Ω) ≥ lim sup
n→∞

μn(Ω) = lim sup
n→∞

∫
Ω

�n(λ)dλ,
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where the functions �n are given as in (5.21). An application of Jensen’s in-
equality [39, Theorem 3.3] then furthermore yields

μ(Ω) ≥ lim sup
n→∞

DΩ exp
{

1
CΩDΩ

∫
Ω

log
(

�n(λ)
CΩλ3

√
λ

)√
λ

λ3
dλ

}
,

where CΩ, DΩ are positive constants defined as in Corollary 5.4 and by

DΩ =
1

CΩ

∫
Ω

√
λ

λ3
dλ.

In view of the estimate in Corollary 5.4 and the convergence in (5.23), we can
conclude that μ(Ω) is indeed positive with

μ(Ω) ≥ DΩ exp
{ −π

CΩDΩ

(∫ ∞

0

|w(x) − x|2dx +
∫

[0,∞)

dυ

)}
.

Since all Borel measures on R are regular, this readily implies that μ(Ω) is
positive for every Borel set Ω ⊆ [0,∞) of positive Lebesgue measure. With this
fact, we have finally verified that the essential spectrum of S coincides with
the interval [0,∞) and the absolutely continuous spectrum of S is essentially
supported on [0,∞).

In order to finish the proof of Theorem 3.1, let us suppose that S is a
generalized indefinite string (L, ω, υ) such that L is infinite and (3.5) holds
for a real constant c and a positive constant η. We consider the generalized
indefinite string (L, ω̃, υ̃), where ω̃ is defined via its normalized anti-derivative
w̃ by

w̃ =
w − c

η
(5.25)

and υ̃ = η−2υ. Since (L, ω̃, υ̃) satisfies the assumptions imposed before, we infer
that the essential spectrum of (L, ω̃, υ̃) coincides with the interval [0,∞) and
its absolutely continuous spectrum is essentially supported on [0,∞). However,
as the corresponding Weyl–Titchmarsh functions m and m̃ are related via

m(z) = η m̃(ηz) + c, z ∈ C\R, (5.26)

the same is true for S. �

Remark 5.5. It is natural to ask whether Theorem 3.1 can be deduced from the
results of Deift–Killip [14] (or analogous results for one-dimensional Schrödinger
operators as in [40]) or Bessonov–Denisov [5], or vice versa. The answer seems
to be negative as the distinct forms of the corresponding trace formulas in-
dicate. More precisely, comparing the left-hand side in (5.14) with the cor-
responding trace formula for one-dimensional Schrödinger operators and the
Szegő condition for canonical systems, one can notice that (5.14) requires a
rather strong degeneration of the function a near zero, but allows for a weaker
decay at infinity.
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6. Proof of Theorem 3.2

In order to prepare for the proof of our second main result, let us fix a positive
constant α. We assume that (L, ω, υ) is a generalized indefinite string such that
L is infinite and there is an R > 0 such that the normalized anti-derivative w
of ω satisfies

w(x) =
x

1 + 2
√

αx
(6.1)

for almost all x in [R,∞) and the measure υ vanishes on [R,∞). In addition,
let us also suppose that w is equal to a piecewise constant function almost
everywhere on the interval [0, R] and that the support of the measure υ is
a finite set. For easy reference later on, we will denote the set of generalized
indefinite strings defined in this way by Fα. Under these assumptions, for every
k ∈ C+, there is a Jost solution f(k, · ) of the differential equation (2.8) with
z = k2 + α ∈ C\[α,∞) such that

f(k, x) = (1 + 2
√

αx)
ik

2
√

α
+ 1

2 , x ∈ [R,∞). (6.2)

We note that since the function f(k, · ) clearly lies in Ḣ1[0,∞) and L2([0,∞); υ),
the corresponding Weyl–Titchmarsh function m is given by

m(k2 + α) =
f ′(k, 0−)

(k2 + α)f(k, 0)
(6.3)

as long as k2 + α ∈ C\R. Furthermore, we define the function a on C+ via

a(k) =
(ik − √

α)f(k, 0) + f ′(k, 0−)
2ik

, k ∈ C+. (6.4)

If we denote with θ, φ the fundamental system of solutions of the differential
equation (2.8) as in Sect. 4, then we readily compute that

f(k, 0) = (1 + 2
√

αR)
ik

2
√

α
+ 1

2 φ[1](k2 + α,R)

− (ik +
√

α)(1 − (ik − √
α)R)(1 + 2

√
αR)

ik
2

√
α

− 1
2 φ(k2 + α,R),

(6.5)

f ′(k, 0−) = −(1 + 2
√

αR)
ik

2
√

α
+ 1

2 θ[1](k2 + α,R)

+ (ik +
√

α)(1 − (ik − √
α)R)(1 + 2

√
αR)

ik
2

√
α

− 1
2 θ(k2 + α,R),

(6.6)

which yields, upon plugging these expressions into the definition of a, that
2ik

(1 + 2
√

αR)
ik

2
√

α
+1

2

a(k) =
(ik +

√
α)(1 − (ik − √

α)R)

1 + 2
√

αR
θ(k2 + α, R) − θ[1](k2 + α, R)

+
1 − (ik − √

α)R

1 + 2
√

αR
(k2 + α)φ(k2 + α, R) + (ik − √

α)φ[1](k2 + α, R)

(6.7)

for all k ∈ C+. Due to our assumptions on the supports of ω and υ on [0, R],
the right-hand side of this equation turns out to be a polynomial in k. This
guarantees that the function a admits an analytic continuation (denoted with
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a as well for simplicity) to all of C except for zero, where a has at most a
simple pole. It furthermore entails that a has only finitely many zeros, none
of which lie on the real axis. In order to prove this, we introduce the function
b on C+ next via

b(k) =
(ik +

√
α)f(k, 0) − f ′(k, 0−)

2ik
, k ∈ C+. (6.8)

One infers from the expressions in (6.5) and (6.6) that b also admits an an-
alytic continuation to all of C except for zero. Now after a straightforward
computation, we see that for all non-zero real k, we have

a(k)∗ = a(−k), b(k)∗ = b(−k), (6.9)

as well as

|a(k)|2 = |b(k)|2 + 1, (6.10)

which guarantees that a has no zeros on the real axis. Moreover, all zeros in
C+ necessarily have to lie on the imaginary axis. In fact, if k was a zero of a
in C+ that does not lie on the imaginary axis, then k2 + α ∈ C\R and (6.4)
would imply

f ′(k, 0−) = −(ik − √
α)f(k, 0). (6.11)

By using (6.3), this would allow us to compute the imaginary part

Im m(k2 + α) = Im
f ′(k, 0−)

(k2 + α)f(k, 0)
= Im

1
ik +

√
α

= − Re k

|ik +
√

α|2

= − Im (k2 + α)
2Im k |ik +

√
α|2 ,

(6.12)

which is a contradiction to the fact that m is a Herglotz–Nevanlinna function.
As this proves that all zeros in C+ indeed lie on the imaginary axis, we may
enumerate them, repeated according to multiplicity, by iκ1, . . . , iκN for some
positive constants κ1, . . . , κN . The next result collects two trace formulas which
are going to play a key role in the proof of Theorem 3.2.

Lemma 6.1. If the generalized indefinite string (L, ω, υ) belongs to Fα, then
we have the identities

1√
α

N∑
n=1

κn

κ2
n − α

+
1
2α

N∑
n=1

log
∣∣∣∣κn − √

α

κn +
√

α

∣∣∣∣ +
√

α

π

∫
R

1
(k2 + α)2

log |a(k)|dk

=
∫ ∞

0

w(x) − x

1 + 2
√

αx
dx

(6.13)
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and

1
2α

N∑
n=1

κ3
n + ακn

(κ2
n − α)2

+
1

4α3/2

N∑
n=1

log
∣∣∣∣κn − √

α

κn +
√

α

∣∣∣∣ +
2
π

∫
R

k2

(k2 + α)3
log |a(k)|dk

=
∫ ∞

0

∣∣∣w(x) − x

1 + 2
√

αx

∣∣∣2(1 + 2
√

αx)dx +
∫

[0,∞)

(1 + 2
√

αx)dυ(x).

(6.14)

Proof. It follows readily from (6.7) and (4.6) that

a(i
√

α) = 1.

By differentiating both sides in (6.7), evaluating at i
√

α and using the expres-
sions from Proposition 4.1, we also see that

a′(i
√

α) = 2i
√

α

∫ ∞

0

w(x) − wα(x) dx,

where the function wα is simply given by

wα(x) =
x

1 + 2
√

αx
, x ∈ [0,∞),

as in Example B. After similar but longer computations, we furthermore get

a′′(i
√

α) = 4
√

α

∫ ∞

0

(w(x) − wα(x))2(1 + 2
√

αx)dx

+ 4
√

α

∫
[0,∞)

(1 + 2
√

αx)dυ(x)

− 4α

(∫ ∞

0

w(x) − wα(x) dx

)2

− 2
∫ ∞

0

w(x) − wα(x) dx.

Since the function a is of bounded type in the upper complex half-plane,
it admits a Nevanlinna factorization [38, Theorem 6.13] of the form

a(k) = C
N∏

n=1

iκn − k

iκn + k
exp

{
−iβk +

iγ
k

+
1
πi

∫
R

(
1

t − k
− t

1 + t2

)
log |a(t)|dt

}

(6.15)

for all k ∈ C+, where β and γ are real constants and C is a complex constant
with modulus one. However, as zero is at most a simple pole of a, we infer that
the constant γ has to be equal to zero.

After differentiating (6.15), we obtain

a′(k)
a(k)

=
N∑

n=1

2iκn

κ2
n + k2

− iβ +
1
πi

∫
R

1
(t − k)2

log |a(t)|dt (6.16)

for all k ∈ C+ close enough to i
√

α (so that a(k) is non-zero). Upon differen-
tiating one more time, we also get

a′′(k)
a(k)

− a′(k)2

a(k)2
=

N∑
n=1

−4iκnk

(κ2
n + k2)2

+
2
πi

∫
R

1
(t − k)3

log |a(t)|dt, (6.17)
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again, as long as k ∈ C+ is close enough to i
√

α.
Now we evaluate both sides of (6.15) at i

√
α and take absolute values to

obtain

1 =
N∏

n=1

∣∣∣∣κn − √
α

κn +
√

α

∣∣∣∣ exp
{

β
√

α +
√

α

π

∫
R

1
t2 + α

log |a(t)|dt

}
.

This gives the following expression for β in terms of the scattering data:

β =
1√
α

N∑
n=1

log
∣∣∣∣κn +

√
α

κn − √
α

∣∣∣∣ − 1
π

∫
R

1
t2 + α

log |a(t)|dt.

By evaluating equality (6.16) at i
√

α, we next get

2i
√

α

∫ ∞

0

w(x) − wα(x) dx =
N∑

n=1

2iκn

κ2
n − α

− iβ +
1
πi

∫
R

1
(t − i

√
α)2

log |a(t)|dt.

Taking imaginary parts and using the expression for β yields (6.13). In a
similar manner, the real part of the right-hand side of (6.17) evaluated at i

√
α

becomes

N∑
n=1

4
√

ακn

(κ2
n − α)2

+
2
π

∫
R

3t2
√

α − α3/2

(t2 + α)3
log |a(t)|dt

and the left-hand side

4
√

α

∫ ∞

0

(w(x) − wα(x))2(1 + 2
√

αx)dx + 4
√

α

∫
[0,∞)

(1 + 2
√

αx)dυ(x)

− 2√
α

N∑
n=1

κn

κ2
n − α

− 1
α

N∑
n=1

log
∣∣∣∣κn − √

α

κn +
√

α

∣∣∣∣ − 2
√

α

π

∫
R

1
(t2 + α)2

log |a(t)|dt,

where we also made use of equality (6.13). After equating these two expressions,
we readily end up with (6.14). �

We note that the integral term on the left-hand side of the identity (6.14)
is non-negative in view of (6.10). In particular, this observation will allow us to
obtain a Lieb–Thirring-type estimate on the eigenvalues of the corresponding
self-adjoint realization below α. To this end, we first point out that there are
only finitely many such eigenvalues. More precisely, we see from (6.5) and (6.6)
that the right-hand side of (6.3) is a rational function. This implies that the
Weyl–Titchmarsh function m has a continuation to a meromorphic function
on C\[α,∞) with only finitely many poles, none of which is located at zero.
Hence, we may enumerate all eigenvalues below α in the following way:

λ−
K− < · · · < λ−

1 < 0 < λ+
1 < · · · < λ+

K+
< α. (6.18)
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Corollary 6.2. If the generalized indefinite string (L, ω, υ) belongs to Fα, then
we have the estimate

4
3α3/2

K−∑
i=1

(
1 − λ−

i

α

)−3/2

+
4

3α3/2

K+∑
i=1

(
1 − λ+

i

α

)3/2

≤
∫ ∞

0

∣∣∣w(x) − x

1 + 2
√

αx

∣∣∣2(1 + 2
√

αx)dx +
∫

[0,∞)

(1 + 2
√

αx)dυ(x).

(6.19)

Proof. Since the function m is a Herglotz–Nevanlinna function, we see from (6.3)
that the function

κ �→ f ′(iκ, 0−)
(−κ2 + α)f(iκ, 0)

is real-valued, continuous and strictly decreasing for positive κ away from the
poles √

α − λ+
K+

, . . . ,

√
α − λ+

1 ,

√
α − λ−

1 , . . . ,
√

α − λ−
K− .

Because of this, we can find a positive κ such that
f ′(iκ, 0−)

(−κ2 + α)f(iκ, 0)
=

1√
α − κ

between each pair of consecutive points in the sequence√
α − λ+

K+
, . . . ,

√
α − λ+

1 ,
√

α,

√
α − λ−

1 , . . . ,
√

α − λ−
K− .

As iκ is a zero of the function a for each such κ, we conclude that√
α − λ+

K+
< κn+(K+) <

√
α − λ+

K+−1 < · · · <

√
α − λ+

1 < κn+(1) <
√

α

as well as
√

α < κn−(1) <

√
α − λ−

1 < · · · <
√

α − λ−
K−−1 < κn−(K−) <

√
α − λ−

K−

for some indices n+(K+), . . . , n+(1), n−(1), . . . , n−(K−) ∈ {1, . . . , N}.
Now let us consider the function F defined by

F (s) = 2
s3 + s

(s2 − 1)2
+ log

∣∣∣∣s − 1
s + 1

∣∣∣∣ , s ∈ (0, 1) ∪ (1,∞), (6.20)

and first notice that

F (1/s) = F (s), s ∈ (0, 1) ∪ (1,∞).

It is also straightforward to see that F is strictly increasing on (0, 1) and
strictly decreasing on (1,∞) since we may compute

F ′(s) = − 16s2

(s2 − 1)3
, s ∈ (0, 1) ∪ (1,∞).

Moreover, the function F satisfies the bound

F (s) =
∫ ∞

s

16r2

(r2 − 1)3
dr ≥

∫ ∞

s

16
r4

dr =
16
3s3

> 0, s ∈ (1,∞).
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By combining all these facts, we can estimate(
1 − λ±

i

α

)±3/2

<

(
κn±(i)√

α

)±3

≤ 3
16

F

(
κn±(i)√

α

)

for all i ∈ {1, . . . ,K±}. This allows us to bound the left-hand side of (6.19) by

1
4α3/2

K−∑
i=1

F

(
κn−(i)√

α

)
+

1
4α3/2

K+∑
i=1

F

(
κn+(i)√

α

)
≤ 1

4α3/2

N∑
n=1

F

(
κn√
α

)
.

It is readily seen that this sum coincides with the first two terms in (6.14),
which yields the claim as the integral term on the left-hand side there is non-
negative. �

We are now going to use the identity (6.14) to estimate the absolutely
continuous spectrum of (L, ω, υ). To this end, we first note that we have

(k2 + α)m(k2 + α) =
√

α − ik
b(k) − a(k)
b(k) + a(k)

(6.21)

for all k ∈ C+ with k2 + α ∈ C\R. Since the functions a and b are analytic on
all of C except for zero and satisfy the properties (6.9) and (6.10) on the real
line, one can conclude that the spectrum of (L, ω, υ) on the interval (α,∞) is
purely absolutely continuous with the corresponding spectral measure μ given
by

μ(B) =
∫

B

�(λ)dλ (6.22)

for every Borel set B ⊆ (α,∞), where � is defined by

�(λ) = lim
ε→0

1
π

Im m(λ + iε) =
√

λ − α

πλ|b(√λ − α) + a(
√

λ − α)|2 , λ ∈ (α,∞).

(6.23)

We note that the function � is continuous and positive on (α,∞).

Corollary 6.3. If the generalized indefinite string (L, ω, υ) belongs to Fα, then
for every compact subset Ω of (α,∞) we have the estimate

− 1
π

∫
Ω

log
(

�(λ)
4πλ3

α2
√

λ − α

)√
λ − α

λ3
dλ

≤
∫ ∞

0

∣∣∣w(x) − x

1 + 2
√

αx

∣∣∣2(1 + 2
√

αx)dx +
∫

[0,∞)

(1 + 2
√

αx)dυ(x).

(6.24)

Proof. For every positive k, we first compute that∣∣∣∣1 − b(k) − a(k)
b(k) + a(k)

∣∣∣∣
2

=
4|a(k)|2

|b(k) + a(k)|2 = 4π
k2 + α

k
�(k2 + α)|a(k)|2

and on the other side that∣∣∣∣1 − b(k) − a(k)
b(k) + a(k)

∣∣∣∣ ≥ Re
(

1 − b(k) − a(k)
b(k) + a(k)

)
= 1 +

1
|b(k) + a(k)|2 ≥ 1.
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In combination, this gives the bound

1
|a(

√
λ − α)|2 ≤ 4πλ√

λ − α
�(λ) ≤ 4πλ3

α2
√

λ − α
�(λ)

as long as λ ∈ Ω, which allows us to estimate the integral

− 1
π

∫
Ω

log
(

�(λ)
4πλ3

α2
√

λ − α

)√
λ − α

λ3
dλ ≤ 1

π

∫
Ω

log |a(
√

λ − α)|2
√

λ − α

λ3
dλ.

Upon employing a substitution, we can further bound this by

2
π

∫ √
max Ω−α

√
min Ω−α

log |a(k)|2 k2

(k2 + α)3
dk ≤ 2

π

∫
R

log |a(k)| k2

(k2 + α)3
dk.

Now it remains to notice that the sum of the first two terms in (6.14) is non-
negative since the function F defined in (6.20) takes positive values. �

We are now ready to prove our second main result.

Proof of Theorem 3.2. Let us assume for now that S is a generalized indefinite
string (L, ω, υ) such that L is infinite and∫ ∞

0

∣∣∣w(x) − x

1 + 2
√

αx

∣∣∣2x dx +
∫

[0,∞)

x dυ(x) < ∞,

where w is the normalized anti-derivative of ω. We are first going to construct
a suitable approximating sequence of generalized indefinite strings (Ln, ωn, υn)
from the set Fα. For every n ∈ N, let Ln be infinite and choose Rn > n such
that ∫ ∞

Rn

∣∣∣w(x) − x

1 + 2
√

αx

∣∣∣2x dx <
1
n

.

We can then find a real-valued function wn on [0,∞) which is piecewise con-
stant on the interval [0, Rn] with∫ Rn

0

|wn(x) − w(x)|2dx <
1

nRn

and which is given explicitly by

wn(x) =
x

1 + 2
√

αx

for all x > Rn. The distribution ωn is now defined in such a way that the
corresponding normalized anti-derivative coincides with wn almost everywhere.
Apart from this, we are able to find a non-negative Borel measure υn which is
supported on a finite set contained in [0, Rn) with∫

[0,∞)

dυn =
∫

[0,∞)

dυ,

∫
[0,∞)

x dυn(x) ≤
∫

[0,∞)

x dυ(x),

and such that for almost every x ∈ [0,∞) we have∫
[0,x)

dυn →
∫

[0,x)

dυ, n → ∞.
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Note that by construction, there is a positive constant M such that∫ ∞

0

∣∣∣wn(x) − x

1 + 2
√

αx

∣∣∣2(1 + 2
√

αx)dx +
∫

[0,∞)

(1 + 2
√

αx)dυn(x) ≤ M

(6.25)

for all n ∈ N. Furthermore, it follows readily from [20, Proposition 6.2] that
the corresponding Weyl–Titchmarsh functions mn converge locally uniformly
to m. Thus the associated spectral measures μn certainly satisfy∫

R

g(λ)dμn(λ) →
∫
R

g(λ)dμ(λ), n → ∞, (6.26)

for every continuous function g on R with compact support.
In order to prove that the essential spectrum of S is restricted to [α,∞),

let I be a compact interval in (−∞, α). Because of the estimate in Corol-
lary 6.2 and the bound in (6.25), we see that there is an integer KI such that
(Ln, ωn, υn) has at most KI eigenvalues in the interval I for every n ∈ N. It
now follows from the convergence of the measures μn in (6.26) that the limit
measure μ is supported on a finite set on I, which implies that S has at most
finitely many eigenvalues in I. Since the interval I was arbitrary, we conclude
that the essential spectrum of S is necessarily contained in [α,∞).

Now take a compact set Ω ⊂ (α,∞) of positive Lebesgue measure. Due to
the convergence of the measures μn in (6.26), we have (see [2, Theorem 30.2])

μ(Ω) ≥ lim sup
n→∞

μn(Ω) = lim sup
n→∞

∫
Ω

�n(λ)dλ,

where the functions �n are given as in (6.23). An application of Jensen’s in-
equality [39, Theorem 3.3] then furthermore yields

μ(Ω) ≥ lim sup
n→∞

DΩ exp
{

α2

4πDΩ

∫
Ω

log
(

�n(λ)
4πλ3

α2
√

λ − α

)√
λ − α

λ3
dλ

}
,

where DΩ is a positive constant defined by

DΩ =
∫

Ω

α2
√

λ − α

4πλ3
dλ.

In view of the estimate in Corollary 6.3 and the bound in (6.25), we conclude
that

μ(Ω) ≥ DΩe
−α2M
4DΩ > 0.

Since all Borel measures on R are regular, this readily implies that μ(Ω) is
positive for every Borel set Ω ⊆ [α,∞) of positive Lebesgue measure. Thus, we
have finally verified that the essential spectrum of S coincides with the interval
[α,∞) and the absolutely continuous spectrum of S is essentially supported
on [α,∞).

In order to finish the proof of Theorem 3.2, let us suppose that S is a
generalized indefinite string (L, ω, υ) such that L is infinite and (3.10) holds
for a real constant c and a positive constant η. We consider the generalized
indefinite string (L, ω̃, υ̃), where ω̃ is defined via its normalized anti-derivative
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w̃ by (5.25) and υ̃ = η−2υ. Since (L, ω̃, υ̃) satisfies the assumptions imposed
before, we infer that the essential spectrum of (L, ω̃, υ̃) coincides with the
interval [α,∞) and its absolutely continuous spectrum is essentially supported
on [α,∞). However, as the corresponding Weyl–Titchmarsh functions m and
m̃ are related via (5.26), we see that the essential spectrum of S coincides
with the interval [α/η,∞) and its absolutely continuous spectrum is essentially
supported on [α/η,∞). �

7. The Conservative Camassa–Holm Flow

In this section, we are going to demonstrate how our results apply to the
isospectral problem of the conservative Camassa–Holm flow. To this end, let u
be a real-valued function in H1

loc[0,∞) and υ be a non-negative Borel measure
on [0,∞). We define the distribution ω in H−1

loc [0,∞) by

ω(h) =
∫ ∞

0

u(x)h(x)dx +
∫ ∞

0

u′(x)h′(x)dx, h ∈ H1
c [0,∞), (7.1)

so that ω = u−u′′ in a distributional sense. Now the isospectral problem of the
conservative Camassa–Holm flow is associated with the differential equation

−g′′ +
1
4
g = z ω g + z2υ g, (7.2)

where z is a spectral parameter. Just like for generalized indefinite strings,
this differential equation has to be understood in a weak sense in general: A
solution of (7.2) is a function g ∈ H1

loc[0,∞) such that

Δgh(0) +
∫ ∞

0

g′(x)h′(x)dx +
1
4

∫ ∞

0

g(x)h(x)dx = z ω(gh) + z2υ(gh) (7.3)

for some constant Δg ∈ C and every function h ∈ H1
c [0,∞). For such a solution

g, the constant Δg is uniquely determined and will be denoted with g′(0−).
We are first going to show that it is always possible to transform the

differential equation (7.2) into the differential equation

−f ′′ = z ωsf + z2υsf (7.4)

for some corresponding generalized indefinite string (∞, ωs, υs). To this end,
let us introduce the diffeomorphism s: [0,∞) → [0,∞) by

s(t) = log(1 + t), t ∈ [0,∞), (7.5)

and note that the inverse of s is simply given by

t = s−1(x) = ex − 1, x ∈ [0,∞). (7.6)

Next we define a real-valued measurable function ws on [0,∞) such that

ws(t) = u(0) − u′(s(t)) + u(s(t))
1 + t

(7.7)

for almost all t ∈ [0,∞), where we note that the right-hand side is well-defined
almost everywhere. It follows readily that the function ws is locally square
integrable, so that we can find a real distribution ωs in H−1

loc [0,∞) which has ws
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as its normalized anti-derivative. Furthermore, the non-negative Borel measure
υs on [0,∞) is given by setting

υs(B) =
∫

B

1
1 + t

dυ ◦ s(t) =
∫

s(B)

e−xdυ(x) (7.8)

for every Borel set B ⊆ [0,∞). This defines a generalized indefinite string
(∞, ωs, υs) whose relation to the differential equation (7.2) we are going to
describe now.

Lemma 7.1. A function g is a solution of the differential equation (7.2) if and
only if the function f defined by

f(t) = g(s(t))
√

1 + t, t ∈ [0,∞), (7.9)

is a solution of the differential equation (7.4).

Proof. Let us suppose that two functions f and g on [0,∞) are related via (7.9).
We first note that f belongs to H1

loc[0,∞) if and only if so does g. In this case,
for a given function hs in H1

c [0,∞), a substitution yields∫ ∞

0

f ′(t)h′
s(t)dt =

∫ ∞

0

(
g′(s(t)) +

g(s(t))
2

)(
h′(s(t)) +

h(s(t))
2

)
s′(t)dt

=
∫ ∞

0

g′(x)h′(x)dx +
1
4

∫ ∞

0

g(x)h(x)dx − 1
2
g(0)h(0),

where the functions h and hs in H1
c [0,∞) are related by

h(x) = hs(s−1(x))e− x
2 , x ∈ [0,∞), hs(t) = h(s(t))

√
1 + t, t ∈ [0,∞).

Furthermore, one computes that∫ ∞

0

ws(t)(fhs)′(t)dt = −
∫ ∞

0

u(x)g(x)h(x)dx −
∫ ∞

0

u′(x)(gh)′(x)dx

as well as∫
[0,∞)

fhs dυs =
∫

[0,∞)

g(s(t))h(s(t))dυ ◦ s(t) =
∫

[0,∞)

gh dυ.

With the help of these identities, the claim follows readily from the very defi-
nition of the respective solutions. �

In conjunction with [20, Lemma 4.2] and a simple substitution, this re-
lation readily provides the following result.

Corollary 7.2. If z belongs to C\R, then there is an (up to scalar multiples)
unique non-trivial solution ψ of the differential equation (7.2) such that ψ lies
in H1[0,∞) and L2([0,∞); υ).

Proof. Let us suppose that two functions f and g in H1
loc[0,∞) are related

via (7.9). Then the function f lies in Ḣ1[0,∞) if and only if the function g lies
in H1[0,∞). In fact, if f lies in Ḣ1[0,∞), then a substitution shows that∫ ∞

0

|f ′(t)|2dt =
∫ ∞

0

∣∣∣g′(x) +
1
2
g(x)

∣∣∣2dx < ∞.
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Now upon noting that for R > 0 we have
∫ R

0

∣∣∣g′(x) +
1
2
g(x)

∣∣∣2dx =
∫ R

0

|g′(x)|2dx +
1
4

∫ R

0

|g(x)|2dx +
|g(R)|2 − |g(0)|2

2
,

we see that g lies in H1[0,∞) since it is bounded, which follows because f
grows at most like a square root. The converse implication is straightforward.
Moreover, we easily see that the function f lies in L2([0,∞); υs) if and only
if the function g lies in L2([0,∞); υ). Now the claim follows readily from [20,
Lemma 4.2]. �

This result allows us to define the Weyl–Titchmarsh function m associ-
ated with the spectral problem (7.2) by

m(z) =
ψ′(z, 0−)
zψ(z, 0)

, z ∈ C\R, (7.10)

where ψ(z, · ) is a non-trivial solution of the differential equation (7.2) which
lies in H1[0,∞) and L2([0,∞); υ). In view of Lemma 7.1, we readily compute
that

m(z) = ms(z) − 1
2z

, z ∈ C\R, (7.11)

where ms is the Weyl–Titchmarsh function of the corresponding generalized in-
definite string (∞, ωs, υs). In particular, we see that m is a Herglotz–Nevanlinna
function and the Borel measure μ in the corresponding integral representation
differs from the one for the generalized indefinite string only by a point mass
at zero. The measure μ is a spectral measure for a self-adjoint realization T0

of the spectral problem (7.2) in the Hilbert space

H0 = H1[0,∞) × L2([0,∞); υ) (7.12)

equipped with the scalar product

〈f, g〉H0 =
∫ ∞

0

f ′
1(x)g′

1(x)∗dx +
1
4

∫ ∞

0

f1(x)g1(x)∗dx

+
∫

[0,∞)

f2(x)g2(x)∗dυ(x), f, g ∈ H0,

(7.13)

defined by saying that a pair (f, g) ∈ H0 × H0 belongs to T0 if and only if

−f ′′
1 +

1
4
f1 = ωg1 + υg2, υf2 = υg1, (7.14)

and g1 satisfies the Dirichlet boundary condition g1(0) = 0 at zero; compare
[3,16] and [21, Subsection 4.1] in particular. Since this establishes an imme-
diate connection between the spectral properties of T0 and the corresponding
generalized indefinite string (∞, ωs, υs), we may now invoke Theorem 3.2.

Theorem 7.3. If the function u−1 belongs to H1[0,∞) and the measure υ is fi-
nite, then the essential spectrum of T0 coincides with the interval [1/4,∞) and
the absolutely continuous spectrum of T0 is essentially supported on [1/4,∞).
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Proof. Under these assumptions, we readily see that the coefficients of the
corresponding generalized indefinite string (∞, ωs, υs) satisfy∫ ∞

0

∣∣∣ws(t) + 1 − u(0) − t

1 + t

∣∣∣2t dt ≤
∫ ∞

0

|u′(s(t)) + u(s(t)) − 1|2 1
1 + t

dt

=
∫ ∞

0

|u′(x) + u(x) − 1|2dx < ∞,

upon performing a substitution, as well as∫
[0,∞)

t dυs(t) ≤
∫

[0,∞)

dυ ◦ s =
∫

[0,∞)

dυ < ∞.

Now the claim follows from Theorem 3.2 with c = u(0)−1, α = 1/4 and η = 1.
�

Of course, it is also desirable to consider the spectral problem for (7.2)
on the whole real line. In this case, a linear relation T in the Hilbert space

H = H1(R) × L2(R; υ) (7.15)

equipped with the scalar product

〈f, g〉H =
∫
R

f ′
1(x)g′

1(x)∗dx +
1
4

∫
R

f1(x)g1(x)∗dx

+
∫
R

f2(x)g2(x)∗dυ(x), f, g ∈ H,

(7.16)

is given by defining that a pair (f, g) ∈ H × H belongs to T if and only if

−f ′′
1 +

1
4
f1 = ωg1 + υg2, υf2 = υg1. (7.17)

This maximally defined linear relation T is self-adjoint and, as shown in the
proof of [21, Lemma 5.2], it is a finite rank perturbation of two half-line prob-
lems, which allows us to use the Weyl and Rosenblum–Kato theorems about
stability of the essential and absolutely continuous spectra (see [32, Chapter 10
§4] for example) to obtain the following result.

Theorem 7.4. Let u be a real-valued function on R such that u − 1 belongs
to H1(R) and let υ be a non-negative finite Borel measure on R. Then the
essential spectrum of T coincides with [1/4,∞) and the absolutely continuous
spectrum of T is of multiplicity two and coincides with [1/4,∞).

8. Schrödinger Operators with δ′-Interactions

Our main theorems also apply to Schrödinger operators with δ′-interactions.
To this end, let ν be a real-valued Borel measure on [0,∞) which is singular
with respect to the Lebesgue measure. For the sake of simplicity, we shall also
assume that ν does not have a point mass at zero. The Borel measure ω on
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[0,∞) is then defined as the sum of the measure ν and the Lebesgue measure,
that is,

ω(B) = ν(B) +
∫

B

dx (8.1)

for every Borel set B ⊆ [0,∞). We consider the operator Hν in the Hilbert
space L2[0,∞) associated with the differential expression

τν = − d

dx

d

dω(x)
(8.2)

and subject to a Neumann boundary condition at zero. The operator Hν can
be viewed as a Hamiltonian with δ′-interactions. Namely, if ν is a discrete
measure such that

ν =
∑
s∈X

β(s)δs, (8.3)

where X is a discrete subset of [0,∞), β is a real-valued function on X and δs

is the unit Dirac measure centred at s, then the differential expression τν can
be formally written as (see [23, Example 2.2])

− d2

dx2
+

∑
s∈X

β(s)〈 · , δ′
s〉δ′

s, (8.4)

which is the Hamiltonian with δ′-interactions on X of strength β (see [1,35,
36]). It is known (see [23] and [24]) that under the above assumption on ν,
the operator Hν is self-adjoint in L2[0,∞). The spectral properties of Hν

turn out to be closely connected with those of the generalized indefinite string
Sν = (∞, ω, 0).

Lemma 8.1. The operator Hν is unitarily equivalent to Sν .

Proof. Since τν is in the limit point case at ∞ (see [23]), for every z ∈ C\R
there is an (up to scalar multiples) unique non-trivial solution ψν(z, · ) to
τνy = zy such that ψν(z, · ) lies in L2[0,∞). Recall that the Weyl–Titchmarsh
function mν of Hν is then given by

mν(z) = − ψν(z, 0)

ψ
[1]
ν (z, 0)

, z ∈ C\R,

where the function in the denominator is the quasi-derivative

ψ[1]
ν (z, · ) =

dψν(z, · )
dω

.

It is known that mν is a Herglotz–Nevanlinna function and the Borel mea-
sure in the corresponding integral representation is a spectral measure for the
operator Hν . Now for every function h ∈ H1

c [0,∞) we compute∫ ∞

0

ψ[1]′
ν (z, x)h′(x)dx = −z

∫ ∞

0

ψν(z, x)h′(x)dx

= zψν(z, 0)h(0) + z

∫ ∞

0

ψ[1]
ν (z, x)h(x)dω(x),
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where we used the fact that ψ
[1]′
ν = −zψν almost everywhere as well as an inte-

gration by parts (use [6, Exercise 5.8.112] or [28, Theorem 21.67] for example).
This shows that the quasi-derivative is a solution of the differential equation

−f ′′ = z ωf

with ψ
[1]′
ν (z, 0−) = −zψν(z, 0). Since it furthermore lies in Ḣ1[0,∞), the Weyl–

Titchmarsh function m of the generalized indefinite string Sν is given by

m(z) =
ψ

[1]′
ν (z, 0−)

zψ
[1]
ν (z, 0)

=
−zψν(z, 0)

zψ
[1]
ν (z, 0)

= mν(z), z ∈ C\R.

Thus, the corresponding spectral measures coincide and hence the claim fol-
lows. �

Recall that the normalized anti-derivative v of the measure ν is given by

v(x) =
∫

[0,x)

dν (8.5)

for almost all x ∈ [0,∞). The connection established in Lemma 8.1 now allows
us to apply Theorem 3.1.

Theorem 8.2. Suppose that∫ ∞

0

|v(x) − c|2dx < ∞ (8.6)

for a real constant c, where v is the normalized anti-derivative of ν. Then the
essential spectrum of the Hamiltonian Hν coincides with the interval [0,∞) and
the absolutely continuous spectrum of Hν is essentially supported on [0,∞).

Proof. This is a simple consequence of Lemma 8.1 and Theorem 3.1. �
Remark 8.3. In conclusion, let us mention that one can say more about spec-
tral properties of the Hamiltonian Hν and about its negative spectrum in
particular. Namely, it is possible to show that the negative spectrum consists
of simple eigenvalues which may only accumulating at −∞. More specifically,
they satisfy the following Lieb–Thirring-type bound

∑
λ∈σ(Hν)∩(−∞,0)

1
|λ|3/2

≤ 3
4

∫ ∞

0

|v(x) − v0|2dx. (8.7)

However, we postpone the discussion of Lieb–Thirring-type inequalities to a
forthcoming publication.
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