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Abstract. We consider interaction energies Ef [L] between a point O ∈ R
d,

d ≥ 2, and a lattice L containing O, where the interaction potential f is
assumed to be radially symmetric and decaying sufficiently fast at infinity.
We investigate the conservation of optimality results for Ef when integer
sublattices kL are removed (periodic arrays of vacancies) or substitut-
ed (periodic arrays of substitutional defects). We consider separately the
non-shifted (O ∈ kL) and shifted (O �∈ kL) cases and we derive several
general conditions ensuring the (non-)optimality of a universal optimizer
among lattices for the new energy including defects. Furthermore, in the
case of inverse power laws and Lennard-Jones-type potentials, we give
necessary and sufficient conditions on non-shifted periodic vacancies or
substitutional defects for the conservation of minimality results at fixed
density. Different examples of applications are presented, including opti-
mality results for the Kagome lattice and energy comparisons of certain
ionic-like structures.
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1. Introduction, Setting and Goal of the Paper

1.1. Lattice Energy Minimization, Summary of Our Results and Setting

Mathematical results for identifying the lattice ground states of interacting
systems have recently attracted a lot of attention. This problem is also called
‘Crystal Problem’ in [43] and asks whether the following ‘Crystallization Con-
jecture’ [16] is true: For relevant interactions, ground states, seen as energy
minimizers, of interacting particles systems at low temperature are always
periodic. This is mainly motivated by the periodic solid state of matter and
the rich spectrum of structures existing in nature, from the Polonium’s sim-
ple cubic one only built from one type of atoms to the Sodalite composed by
four different species. It is also well known that matter can have complicated
almost periodic structures as quasicrystals. Therefore, one can ask how the
shape of the interaction potentials yields both to periodic (or almost period-
ic) minimizers and to certain types of lattice ground states. Looking at the
number of parameters involved in this problem, it is obviously a very difficult
mathematical question.

Even though the Crystal Problem is still open in full generality, many
interesting results have been derived in various settings for showing the global
minimality of certain periodic structures including the uniform chain Z, the
triangular lattice A2, the square lattice Z

2, the face-centered cubic lattice D3

(see Fig. 1), as well as the other best packings E8 and the Leech lattice Λ24

(see [12,24] and references therein). Moreover, the same kind of investigation
has been made for multi-component systems (e.g., in [10,30,31,36,37]) where
the presence of charged particles yield to rich energetically optimal structures.
These problems of optimal point configurations are known to be at the interface
of mathematical physics, chemistry, cryptography, geometry, signal processing,
approximation, arithmetic, etc. The point of view adopted in this work is the
one of material science where the points are thought as particles or atoms.

In this paper, our general goal is to show mathematically how the p-
resence of periodic arrays of charges (called here ‘defects’ in contrast to the
initial crystal ‘atoms’) in a perfect crystal affects the minimizers of interaction
energies when the interaction between species is radially symmetric. Since the
structure of crystals is often given by the same kind of lattices, it is an im-
portant question to know the conditions on the added periodic distribution
of defects and on the interaction energy in order to have conservation of the
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Figure 1. In dimension d = 2, representation of the tri-
angular and square lattices, respectively, defined by A2 =
λ1

[
Z(1, 0) ⊕ Z(1/2,

√
3/2)

]
and Z

2. In dimension d = 3,
representation of the simple cubic and the face-centered
cubic lattices, respectively, defined by Z

3 and D3 :=
λ2 [Z(1, 0, 1) ⊕ Z(0, 1, 1) ⊕ Z(1, 1, 0)]. The constants λ1, λ2 are
such that the lattices have unit density

initial ground state structure. Only very few rigorous results are available on
minimization of charged structures among lattices. Our motivation takes it
source in our recent works [9,10] where the rock-salt structure (i.e., the sim-
ple cubic lattice with an alternation of charges ±1) has been shown to be
the good candidate for the Crystal Problem with different types of charges,
whereas the usual optimizers are A2,D3,E8,Λ24 as explained above. Therefore,
investigating the effects of charges in such crystal systems appears to be very
interesting.

More precisely, we are considering building blocks of the total interaction
energy of a multi-component lattice crystal, i.e., the interaction energy between
one particle placed at the origin of Rd and the others species located on the
sites of a simple lattice (see Sect. 1.2). This choice is motivated by the high
difficulty to minimize sums of lattice energies with competing behaviors (see,
for instance, Remark 2.7 as well as [10]), since the total energy per point of the
system is in general the averaged sum of different lattice energies (see Sect. 1.2).
The ‘trick’ to get different species on lattices is to remove a certain number
of times certain sublattices from the original one. The ‘charges’ or ‘weights’
located on these sublattices sites change altogether and yield to a new ionic
crystal structure, possibly with vacancies (see, e.g., Figs. 2 and 3). We then ask
the following question: Does the minimizer among lattices of the interaction
energy between the origin and the new charged lattice change with respect
to the identical particle case (i.e., without changing any sublattice)? One can
ask this question for any type of periodic of almost periodic structure, but the
aim of this paper is to investigate this problem for simple lattice structures for
which many minimality results are available (see below).

We now give a very short description of our results. In the Gaussian case,
if the charges decrease on the chosen sublattices, then the minimizer changes
with respect to the Gaussian parameter, whereas it is conserved when the
charges increase (see Theorem 2.2). We therefore derive conditions on charges
and sublattices such that optimality results are conserved (see Theorems 2.4
and 2.9 as well as Corollary 2.13) or not (see Theorem 2.11) after the addition
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of infinite periodic arrays of defects. In particular, inverse power laws and
Lennard-Jones-type potentials are studied (see Theorems 2.15 and 2.17). These
results are pushing a step forward the understanding of ground states for
interaction energies with radially symmetric potentials. Furthermore, our main
concrete applications include new optimality properties for the Kagome lattice
and other ionic compounds with charges ±1 as the rock-salt structure. The
reader looking for such concrete examples is invited to read Sect. 3.

Let us now describe our setting more precisely. We assume the periodicity
of our systems, and once we restrict this kind of problem to the class of (simple)
lattices and radially symmetric interaction potentials, an interesting non-trivial
problem is to find the minimizers of a given energy per point among these
simple periodic sets of points, with or without a fixed density. In this paper,
we keep the same kind of notations we have used in our previous works (see,
e.g., [8,10,14]). More precisely, for any d ≥ 2 we called Ld the class of d-
dimensional lattices, i.e., discrete co-compact subgroups or R

d,

Ld :=

{

L =
d⊕

i=1

Zui : {u1, . . . , ud} is a basis ofRd

}

,

and, for any V > 0, Ld(V ) ⊂ Ld denotes the set of lattices with volume
|det(u1, . . . , ud)| = V , i.e., such that its unit cell QL defined by

QL :=

{

x =
d∑

i=1

λiui : ∀i ∈ {1, . . . , d}, λi ∈ [0, 1)

}

, (1.1)

has volume |QL| = V . We will also say that L ∈ Ld(V ) has density V −1. The
class Fd of radially symmetric functions we consider is, calling Md the space
of signed Radon measures on R+,

Fd :=
{

f : R+ → R : f(r) =
∫ ∞

0

e−rtdμf (t), μf ∈ Md, |f(r)|

= O(r−pf ) as r → ∞, pf > d/2
}

.

When μf is non-negative, f is a completely monotone function, which is equiv-
alent by Hausdorff–Bernstein–Widder Theorem [3] with the property that for
all r > 0 and all k ∈ N, (−1)kf (k)(r) ≥ 0. We will write this class of completely
monotone functions as

Fcm
d := {f ∈ Fd : μf ≥ 0} .

As explained by Schoenberg in [47], it has been shown, using Bochner’s The-
orem [17], that f ∈ Fcm

d if and only if r 
→ f(r2) is the Fourier transform of a
non-negative finite Borel measure on R. Therefore, since we are going to sum
these potentials f on the square of the lattice distances, this particular class of
functions Fcm

d is related to the one used by Ruelle [45, Prop. 1.2] in the context
of superstable interaction potentials (i.e., potentials Φ where Φ ∈ Fcm

d ). Fur-
thermore, the same kind of interactions with non-negative Fourier transform
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have been used by Sütő in [48,49] in the context of high-density crystalliza-
tion, but where their Fourier transform is zero outside a ball, leading to highly
oscillating potentials.

In particular, the class Fcm
d includes any inverse power law f(r) =

r−s where s > d/2 corresponding to a repulsive interaction between positive
charges (with Coulomb systems in mind). Moreover, the class Fd is meant to
be linear combinations of functions belonging to Fcm

d including in particular
Lennard-Jones-type potentials f(r) = c2r

−x2 − c1r
−x1 where (c1, c2) ∈ (0,∞)

and x2 > x1 > d/2.
For any f ∈ Fd, we thus defined the f -energy Ef [L] of a lattice L, which

is actually the interaction energy between the origin O of Rd and all the other
points of L, by

Ef [L] :=
∑

p∈L\{0}
f(|p|2). (1.2)

Notice that this sum is absolutely convergent as a simple consequence of the
definition of Fd. We could also define Ef without such decay assumption by
renormalizing the sum using, for instance, a uniform background of opposite
charges (see, e.g., [35]) or an analytic continuation in case of parametrized
potential such as r−s (see [18]). The fact that the origin is excluded from the
above sum is motivated by two reasons: 0 is a fixed point of L when L varies in
Ld and f is not necessarily defined for r = 0 (e.g., when f is an inverse power
laws or a Lennard-Jones-type potentials). We also notice that the linearity of
f 
→ Ef [L] on Fd will be widely used for writing energies in terms of completely
monotone potentials, as well as a mathematical ‘trick’ for identifying defect
and no-defect cases.

One can interpret the problem of minimizing Ef in Ld (or in Ld(V ) for
fixed V > 0) as a geometry optimization problem for solid crystals where the
potential energy landscape of a system with an infinite number of particles is
studied in the restricted class of lattice structures. Even though the interactions
in a solid crystal are very complex (quantum effects, angle-dependent energies,
etc.), it is known that the Born–Oppenheimer adiabatic approximation used to
describe the interaction between atoms or ions in a solid by a sum of pairwise
contributions (see, e.g., [41, p. 33 and p. 945] and [52]) is a good model for
‘classical crystals’ (compared to ‘quantum crystals’ [19]), i.e., where the atoms
are sufficiently heavy. Moreover, since all the optimality properties we are
deriving in this paper are invariant under rotations, all the results will be
tacitly considered up to rotations.

Furthermore, studying such interacting systems with this periodicity con-
straint is a good method to keep or exclude possible candidates for a crystal-
lization problem (i.e., with free particles). We are in particular interested in a
type of lattice Ld that is the unique minimizer of Ef in Ld(V ) for any fixed
V > 0 and any completely monotone potential f ∈ Fcm

d . Following Cohn and
Kumar [22] notion (originally defined among all periodic configurations), we
call this property the universal optimality among lattices of Ld (or universal
optimality in Ld(1)), see Definition 2.1.
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In this paper, we also study f -energies of shifted versions of lattices L,
i.e., energies of type

L 
→ Ef [L + x] :=
∑

p∈L
p+x�=0

f(|p + x|2), L ∈ Ld, x ∈ R
d.

First, it is clear that x 
→ Ef [L + x] is periodic with respect to L. Therefore,
we will write that x = x′ modulo L if and only if x − x′ ∈ L, and in particular
Ef [L + x] = Ef [L + x′].

Only few methods are available to carry out the minimization of Ef .
Historically, the first one consists to parametrize all the lattices of Ld(1) in
an Euclidean fundamental domain Dd ⊂ R

d(d+1)
2 −1 (see, e.g., [50, Sect. 1.4])

and to study the variations of the energy in Dd. It has been done in dimension
2 for showing the optimality of the triangular lattice A2 at fixed density for
the Epstein zeta function [20,28,29,44] and the lattice theta function [39],
respectively, defined for s > d and α > 0 by

ζL(s) :=
∑

p∈L\{0}

1
|p|s , and θL(α) :=

∑

p∈L

e−πα|p|2 . (1.3)

In particular, a simple consequence of Montgomery’s result [39] for the lattice
theta function is the universal optimality among lattices of A2 (see, e.g., [4,
Prop. 3.1]). Other consequences of the universal optimality of A2 among lattices
have been derived for other potentials (including the Lennard-Jones one) [4,
7,14,15] as well as masses interactions [11]. Furthermore, new interesting and
general consequences of universal optimality will be derived in this paper,
including a sufficient condition for the minimality of a universal minimizer at
fixed density (see Theorem 2.9).

This variational method is also the one we have recently chosen in [9] for
showing the maximality of A2 in L2(1)—and conjectured the same results in
dimensions d ∈ {8, 24} for the lattices E8 and Λ24—for the alternating and
centered lattice theta function, respectively, defined, for all α > 0, by

θ±
L (α) :=

∑

p∈L

ϕ±(p)e−πα|p|2 , and θc
L(α) :=

∑

p∈L

e−πα|p+cL|2 , (1.4)

where L =
⊕d

i=1 Zui, {ui}i being a Minkowski (reduced) basis of L (see, e.g.,
[50, Sect. 1.4.2]), ϕ±(p) :=

∑d
i=1 mi for p =

∑d
i=1 miui, mi ∈ Z for all i,

and cL = 1
2

∑
i ui is the center of its unit cell QL. In particular, the alternate

lattice theta function θ±
L (α) can be viewed as the Gaussian interaction energy

of a lattice L with an alternating distribution of charges ±1, which can be
itself seen as the energy once we have removed 2 times the union of sublattices
∪d

i=1(L + ui) from the original lattice L. This result shows another example
of universal optimality—we will call it universal maximality—among lattices,
i.e., the maximality of A2 in L2(1) for the energies E±

f and Ec
f defined by

E±
f [L] :=

∑

p∈L\{0}
ϕ±(p)f(|p|2), or Ec

f [L] :=
∑

p∈L

f(|p + cL|2), (1.5)
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where f ∈ Fcm
d . This kind of problem was actually our first motivation for

investigating the effects of periodic arrays of defects on lattice energy mini-
mizers, since removing two times the sublattices 2L + u1 and 2L + u2 totally
inverses the type of optimality among lattices. Furthermore, this maximali-
ty result will also be used in Theorem 2.4, applied—in the general case of a
universal maximizer L±

d for E±
f in any dimension where this property could

be shown—for other potentials Fd\Fcm
d in Theorem 2.11 and compared with

other optimality results in Sect. 3.2.
The second method for showing such optimality result is based on the

Cohn–Elkies linear programming bound that was successfully used for showing
the best packing results in dimensions 8 and 24 for E8 and Λ24 in [23,53], as
well as their universal optimality among all periodic configurations in [24]. As
in the two-dimensional case, many consequences of these optimality results
have been shown for other potentials [14,40] and masses interactions [8].

1.2. Problem Studied in This Paper and Connection to Material Science

The goal of this work is to investigate the effect on the minimizers of Ef

when we change, given a lattice L ⊂ Ld and K ⊂ N\{1}, a certain real
number ak �= 0 of integer sublattices kL, k ∈ K, in the original lattice, and
where the lattices kL might be shifted by a finite number of lattice points
Lk := {pi,k}i∈Ik

⊂ L for some finite set Ik. Writing

κ := {K,AK , PK}, K ⊂ N\{1}, AK = {ak}k∈K ⊂ R
∗,

PK =
⋃

k∈K

Lk, Lk = {pi,k}i∈Ik
⊂ L, (1.6)

the new energy Eκ
f we consider, defined for f ∈ Fd and κ as in (1.6) and such

that the following sum on K is absolutely convergent, is given by

Eκ
f [L] := Ef [L] −

∑

k∈K

∑

i∈Ik

akEf [pi,k + kL]. (1.7)

It is clear that we will never have 0 ∈ pi,k + kL; otherwise, the shifted case
would be a non-shifted one. We also choose the following convention: Ik = ∅
implies that the sum over Ik in (1.7) does not appear for this particular k ∈ K.
In particular, in the non-shifted case, i.e., PK = ∅, then

Eκ
f [L] = Efκ

[L], where fκ(r) := f(r) −
∑

k∈K

akf(k2r). (1.8)

It is very important to notice that, once a sublattice is changed from
the original lattice L, then the energy Eκ

f we study in this paper is no longer
the total energy per point of the system but only the interaction energy be-
tween the origin and the charged lattice structure. That is why we called Eκ

f

a ‘building block’ of the total energy that must consist in a finite sum of such
lattice energies taking into account the interaction energy of each point with
the rest of the structure. We already know that minimizing this kind of sum
is very delicate (see, e.g., [10]) excepted in very special cases. Our goal can be
considered as modest but at least a complete picture of the effect of periodic
arrays of defects can be found in several cases and interesting properties can
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Figure 2. Mathematical examples of periodic array of de-
fects performed on a patch of the square lattice Z

2 (left and
right) and the triangular lattice A2 (middle). The cross blue
times represents the origin O of R

2. The points marked by
blue point are the original points of the lattice, whereas the
points marked by orange plus and red point are substitution-
al defects of charge 1 − ak for some ak ∈ R

∗\{1} and some
k ∈ K: = {2, 3, 4, 5}. The missing lattice points are the va-
cancy defects. The patch on the right contains two shifted
periodic arrays of defects (color figure online)

be derived for important specific potentials as power laws and Lennard-Jones
potentials.

Since we are interested in the effects of defects on lattice energy ground
states, we therefore want to derive conditions on κ and f such that Ef and
Eκ

f have the same minimizers in Ld or Ld(V ) for fixed V > 0. In particular,
we also want to know whether the universal minimality among lattices of
a lattice Ld is conserved while removing or substituting integer sublattices.
This a natural step for investigating the robustness of the optimality results
stated in the previous section of this paper when the interaction potential is
completely monotone or, for instance, of Lennard-Jones type. Furthermore, it
is also the opportunity to derive new applications and generalizations of the
methods recently developed in [4,9,14] for more ‘exotic’ ionic-like structures.

Replacing integer sublattices as described above can be interpreted and
classified in two relevant cases in material science:

1. If ak = 1, then removing only once the sublattice kL from L creates
a periodic array of vacancies (also called periodic Schottky defects [51,
Sect. 3.4.3]);

2. If ak �= 1, then ‘removing’ ak times the sublattice kL from L creates a
periodic array of substitutional defects (also called impurities), where the
original lattice points (initially with charges +1) are replaced by points
with ‘charges’ (or ‘weights’) 1 − ak �= 0.
In Fig. 2, we have constructed three examples of two-dimensional lattices

with periodic arrays of defects which certainly do not exist in the real world.
In contrast, Fig. 3 shows two important examples of crystal structures arising
in nature: the Kagome lattice and the rock-salt structure. These examples are
discussed further in Sect. 3.
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Figure 3. Two examples of 2d lattices patches with a peri-
odic array of defect arising in nature. The left-hand structure
is the Kagome lattice obtained by removing from the trian-
gular lattice A2 the sublattice 2A2 + (1, 0) + (1/2,

√
3/2). It

appears to be a layer of the jarosite. The right-hand structure
is the 2d rock-salt structure obtained by removing from the
square lattice Z

2 two times the sublattices 2Z2 + (1, 0) and
2Z2 + (0, 1) in such a way that particles of opposites signs
±1 alternate (blue point and red point correspond, respec-
tively, to charges of signs 1 and −1). It is itself a layer of the
three-dimensional rock-salt structure NaCl (color figure on-
line)

While the substitutional defects case has different interpretations and
applications in terms of optimal multi-component (ionic) crystals (see, e.g.,
Sect. 3.2), the vacancy case is also of interest when we look for accelerating
the computational time for checking numerically the minimality of a structure.
Indeed, if the minimizer does not change once several periodic arrays of points
are removed from all lattices, then a computer will be faster to check this min-
imality. This is of practical relevance in particular in low dimensions since the
computational time of such lattice energies, which grows exponentially with
the dimension, are extremely long in dimension d ≥ 8—even with the pres-
ence of periodic arrays of vacancies—and shows how important are rigorous
minimality results in these cases.

Furthermore, from a physics point of view, it is well known (see, e.g., [51])
that point defects play an important role in crystal properties. As explained
in [1]: ‘Crystals are like people, it is the defects in them which tend to make
them interesting.’ For instance, they reduce the electric and thermal conduc-
tivity in metals and modify the colors of solids and their mechanical strength.
We also notice that substitutional defects control the electronic conductivity
in semi-conductors, whereas the vacancies control the diffusion and the ionic
conductivity in a solid. In particular, there is no perfect crystal in nature and
it is then interesting and physically relevant to study optimality results for
periodic systems with defects, in particular for models at positive tempera-
ture where the number of vacancies per unit volume increases exponentially
with the temperature (see, e.g., [51, Sect. 3.4.3]). Notice that the raise of tem-
perature also creates another kind of defects called self-interstitial—i.e., the
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presence of extra atoms out of lattice sites—but they are known to be negli-
gible (at least if they are of the same type than the solid’s atoms) compared
to the vacancies when disorder appears, excepted for Silicon.

Plan of the Paper Our main results are presented in Sect. 2, whereas their
proofs are postponed to Sect. 4. Many applications of our results are discussed
in Sect. 3, including explicit examples of minimality results for the Kagome
lattice and other ionic structures.

2. Statement of the Main Results

2.1. On the Minimality of a Universal Optimizer

We start by recalling the notion of universal optimality among lattices as
defined by Cohn and Kumar [22].

Definition 2.1 (Universal optimality among lattices). Let d ≥ 2. We say that
Ld is universally optimal in Ld(1) if Ld is a minimizer of Ef defined by (1.2)
in Ld(1) for any f ∈ Fcm

d .

Remark 2.1 (Universally optimal lattices). We recall again that the only known
universally optimal lattices in dimension d ≥ 2 are A2 (see [39]), E8 and the
Leech lattice Λ24 (see [24]) in dimensions d ∈ {2, 8, 24}. It is also shown in [46,
p. 117] that there is no such universally optimal lattice in dimension d = 3.
There are also clear indications (see [14, Sect. 6.1]) that the space of functions
for which the minimality at all the scales of Ld holds is much larger than Fcm

d .

Before stating our results, notice that all of them are stated in terms of
global optimality, but could be rephrased for showing local optimality prop-
erties. This is important, in particular, in dimensions d = 3 where only local
minimality results are available for Ef (see, e.g., [6]) and can be generalized for
energies of type Eκ

f , ensuring the local stability of certain crystal structures.
We now show that the universal optimalities among lattices in dimension

d ∈ {2, 8, 24} proved in [24,39] are not conserved in the non-shifted case once
we only removed a single integer sublattice a positive number ak > 0 of times,
whereas they are conserved when ak < 0.

Theorem 2.2 (Conservation of universal optimalities—non-shifted case). Let
f be defined by f(r) = e−παr, α > 0. For all d ∈ {2, 8, 24}, all k ∈ N\{1}, all
ak > 0 and κ = {{k}, {ak}, ∅}, there exists αd such that for all α ∈ (0, αd),
A2, E8 and the Leech lattice Λ24 are not minimizers of Eκ

f in Ld(1).
Furthermore, for any d ∈ {2, 8, 24}, for any K ⊂ N\{1}, any AK =

{ak}k∈K ⊂ R− and κ = {K,AK , ∅}, A2, E8 and the Leech lattice Λ24 are the
unique minimizers of Eκ

f in Ld(1) for all α > 0.

Remark 2.3 (Generalization to 4 designs). The non-optimality result in Theo-
rem 2.2 is obtained by using the Taylor expansion of the theta function found
by Coulangeon and Schürmann [26, Eq. (21)]. Therefore, the result is actually
generalizable to any universal optimal lattice Ld such that all its layers (or
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shells) are 4 designs, i.e., such that for all r > 0 with {∂Br ∩ Ld} �= ∅, Br

being the ball centered at the origin and with radius r, and all polynomial P
of degree up to 4 we have

1
|∂Br|

∫

∂Br

P (x)dx =
1

	{∂Br ∩ Ld}
∑

x∈∂Br∩Ld

P (x).

We now present a sufficient condition on PK such that the triangular
lattice is universally optimal in L2(1) for Eκ

f . This result is based on our
recent work [9] where we have proved the maximality of A2 in L2(1) for the
centered lattice theta functions, i.e., L 
→ θL+cL

(α), where cL is the center of
the unit cell QL (see also Remark 2.12).

Theorem 2.4 (Conservation of universal optimality—2d shifted case). Let d =
2 and κ = {K,AK , PK} be as in (1.6) where AK ⊂ R+, and be such that

∀k ∈ K,∀i ∈ Ik,
pi,k

k
= cL moduloL, L = Zu1 ⊕ Zu2, cL :=

u1 + u2

2
,

(2.1)

where QL is the unit cell of L defined by (1.1) with a Minkowski basis {u1, u2}
and its center cL. Then, for all f ∈ Fcm

2 , A2 is the unique minimizer of Eκ
f

in L2(1).

Example 2.5. Theorem 2.4 holds in a particularly simple case, when k = 2 and
pi,2 = u1 + u2 ∈ L.

Remark 2.6 (Conjecture in dimensions d ∈ {8, 24}.) Theorem 2.4 is based on
the fact that A2 has been shown to be the unique maximizer of Ec

f defined in
(1.5) in Ld(1) for any f ∈ Fcm

d (see also Remark 2.12). As discussed in [9], we
believe that this result still holds in dimensions 8 and 24 for E8 and the Leech
lattice Λ24, as well as Theorem 2.4.

Remark 2.7 (Phase transition for the minimizer in the Gaussian case—numerical
observation). In the non-universally optimal case of Theorem 2.2 and the shift-
ed case satisfying (2.1), numerical investigations suggest that the minimizer of
Eκ

f exhibits a phase transition as the density decreases.

Non-shifted case Let us consider the example f(r) = e−παr given in Theo-
rem 2.2 (i.e., f(r2) is a Gaussian function) and fκ(r) = e−παr − 0.1e−2παr

(defined by (1.8)), κ := {{2}, {0.1}, ∅}, corresponding to removing a2 = 0.1
times the sublattice 2L (k = 2) from the original lattice L. In dimension d = 2,
we numerically observe an interesting phase transition of type ‘triangular–
rhombic–square–rectangular’ for the minimizer of Eκ

f in L2(1) as α (which
plays the role of the inverse density here) increases.

Shifted case with ak < 0 Let us assume that K = {2}, AK := {a2 < 0},
I2 = {1} and p1,2 = u1 +u2 in such a way that (2.1) is satisfied. If we consider
f(r) = e−παr, then for all the negative parameters a2 we have chosen, the
minimizer of Eκ

f [L] := θL(α) + |a2|θL+cL
(α) in L2(1) numerically shows the
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same phase transition of type ‘triangular–rhombic–square–rectangular’ as α
increases.

This type of phase transition seems to have a certain universality in
dimension 2 since it was also observed for Lennard-Jones energy [5], Morse
energy [7], Madelung-like energies [10] and proved for 3-block copolymers [36]
and two-component Bose–Einstein condensates [37] by Wei et al..

Remark 2.8 (Optimality of Z
d in the orthorhombic case). Another type of

universal optimality is known in the set of orthorhombic lattices, i.e., the lattice
L which can be represented by an orthogonal basis. As proved by Montgomery
in [39, Thm. 2], the cubic lattice Zd is universally minimal among orthorhombic
lattices of unit density in any dimension (see also [10, Rmk. 3.1]). The proof
of Theorem 2.2 can be easily adapted to show the same optimality result
for Z

d among orthorhombic lattices of unit density. Furthermore, it has also
been shown (see, e.g., [13, Prop. 1.4]) that Z

d is the unique maximum of
L 
→ Ef [L + cL] among orthorhombic lattices of fixed density for any f ∈
Fcm

d . Therefore, the proof of Theorem 2.4 can be also easily adapted in this
orthorhombic case in order to show the universal optimality of Z

d in this
particular shifted case. Moreover, all the next results involving any universally
optimal lattice can be rephrased for Z

d in the space of orthorhombic lattices.
Examples of applications of such result will be discussed in Sect. 3.2.

We now give a general criterion that ensures the conservation of an uni-
versal optimizer’s minimality for Eκ

f .

Theorem 2.9 (General criterion for minimality conservation—non-shifted case).
Let d ≥ 2, κ = {K,AK , ∅} be as in (1.6) (possibly empty) where AK ⊂ R+,
and Ld be universally optimal in Ld(1). Furthermore, let f ∈ Fd be such that
dμf (t) = ρf (t)dt and fκ be defined by (1.8). Then:

1. For any κ, we have fκ(r) =
∫ ∞

0

e−rtdμfκ
(t) where

dμfκ
(t) = ρfκ

(t)dt, ρfκ
(t) = ρf (t) −

∑

k∈K

ak

k2
ρf

(
t

k2

)
.

2. The following equivalence holds: fκ ∈ Fcm
d if and only if

∀t > 0, ρf (t) ≥
∑

k∈K

ak

k2
ρf

(
t

k2

)
; (2.2)

3. If (2.2) holds, then Ld is the unique minimizer of Eκ
f in Ld(1).

4. If there exists V > 0 such that for a.e. y ≥ 1 there holds

gV (y) := ρfκ

(
πy

V
2
d

)
+ y

d
2 −2ρfκ

(
π

V
2
d y

)
≥ 0, (2.3)

then V
1
d Ld is the unique minimizer of Eκ

f in Ld(V ).

The fourth point on Theorem 2.9 generalizes our two-dimensional result
[4, Thm. 1.1] to any dimension and with possible periodic arrays of defects. It
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is an important result since only few minimality results for Ef are available
for non-completely monotone potentials f ∈ Fd\Fcm

d , and this is also the first
result of this kind for charged lattices (i.e., when the particles are not of the
same kind). Condition (2.3) has been used in dimension d = 2 in [4,7] for
proving the optimality of a triangular lattice at fixed density for non-convex
sums of inverse power laws, differences of Yukawa potentials, Lennard-Jones
potentials and Morse potentials and we expect the same property to hold in
higher dimension. In Theorem 2.17, we will give an example of such application
in any dimension d by applying the fourth point of Theorem 2.9 to Lennard-
Jones-type potentials. We now add a very important remark concerning the
adaptation of the fourth point of Theorem 2.9 in the general periodic case,
i.e., for crystallographic point packings (see [2, Def. 2.5]).

Remark 2.10 (Crystallization at fixed density as a consequence of Cohn–Kumar
Conjecture). When κ = ∅, i.e., all the particles are present and of the same
kind, the proof of point 4. of Theorem 2.9 admits a straightforward adapta-
tion in the periodic case, i.e., among all configurations C =

⋃N
i=1 (Λ + vk) ∈ S

being Λ-periodic of unit density, where Λ ∈ Ld, i.e., such that |Λ| = N , and
with a f -energy defined for V > 0 by

Ef [V
1
d C] :=

1
N

N∑

j,k=1

∑

x∈Λ\{vk−vj}
f

(
V

2
d |x + vk − vj |2

)
.

Using again the representation of f as a superposition of Gaussians combined
with the Jacobi transformation formula (see the proof of Theorem 2.9), the
same condition (2.3) ensures the crystallization on Ld at fixed density once
we know its universal optimality in the set of all periodic configurations with
fixed density V −1. This result is in the same spirit as the one derived by
Petrache and Serfaty in [40] for Coulomb and Riesz interactions. In dimensions
d ∈ {8, 24}, (2.3) implies the crystallization on E8 and Λ24 at fixed density
V −1 as a consequence of [24], whereas in dimension d = 2 it is conjectured by
Cohn and Kumar in [22] that the same holds on the triangular lattice. It is
in particular true for the Lennard-Jones potential at high density as a simple
application of our Theorem 2.17.

Using exactly the same arguments as the fourth point of Theorem 2.9, we
show the following result which gives a sufficient condition on an interaction
potential f for a universal maximizer L±

d of θ±
L (α) to be optimal for E±

f , where

θ±
L (α) :=

∑

p∈L

ϕ±(p)e−πα|p|2 , and E±
f [L] :=

∑

p∈L\{0}
ϕ±(p)f(|p|2), (2.4)

with L =
⊕d

i=1 Zui, {u1, . . . , ud} being its Minkowski basis, and ϕ±(p) =
∑d

i=1 mi for p =
∑d

i=1 miui, mi ∈ Z for all i. Remark that E±
f = Eκ

f when

κ = {{2}, {2}, {u1, . . . , ud}}, L =
⊕d

i=1 Zui. In particular, it holds for the
triangular lattice A2 as a simple application of our main result in [9].
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Theorem 2.11 (Maximality of a universal maximizer for θ±
L —Shifted case).

Let d ≥ 2, V > 0, κ = {{2}, {2}, {u1, . . . , ud}}, where a generic lattice is
written L =

⊕d
i=1 Zui, {u1, . . . , ud} being its Minkowski basis, and L±

d be the
unique maximizer of θ±

L (α), defined by (2.4), in Ld(1) and for all α > 0. If
f ∈ Fd satisfies (2.3), then V

1
d L±

d is the unique maximizer of Eκ
f (equivalently

of E±
f defined by (2.4)) in Ld(V ).

Remark 2.12 (Adaptation to shifted f -energy). We believe that Theorem 2.11
also holds for E8 and Λ24 (see [9, Conj. 1.3] and Remark 2.6). Furthermore, the
same kind of optimality result could be easily derived for any energy shifted
energy of type L 
→ Ef [L+c] where c ∈ QL is fixed as a function of the vectors
in the Minkowski basis {ui} and when one knows a universal minimizer or
maximizer for L 
→ Ef [L + c], f ∈ Fcm

d . However, no other result concerning
any optimality of a lattice for such kind of energy is currently available when
c �∈ {L, cL}.

The rest of our results are all given in the non-shifted case PK = ∅. It is
indeed a rather difficult task to minimize the sum of shifted and/or non-shifted
energies of type Ef . Very few results are available and the recent work by Luo
and Wei [37] has shown the extreme difficulty to obtain any general result for
completely monotone function f . Shifting the lattices by a non-lattice point
which is not the center cL appears to be deeply more tricky in terms of energy
optimization.

We remark that, since Fcm
d is not stable by difference, it is not totally

surprising that Theorem 2.2 holds. Furthermore, identifying the largest space
of all functions f such that Ef is uniquely minimized by Ld in Ld(1) seems to
be very challenging (see [14]). Therefore, a natural question in order to identify
a large class of potentials f such that the minimality of an universal optimizer
Ld holds for Eκ

f is the following: What are the completely monotone potentials
f ∈ Fcm

d satisfying (2.2), i.e., such that fκ ∈ Fcm
d ? The following corollary of

Theorem 2.9 gives an example of such potentials, where we define, for s > 0
and any AK = {ak}k∈K , K ⊂ N\{1},

L(AK , s) :=
∑

k∈K

ak

ks
. (2.5)

Notice that the notation of (2.5) is inspired by the one of Dirichlet L-series
that are generalizing the Riemann zeta function (see, e.g., [21, Chap. 10]). For
us, the arithmetic function appearing in a Dirichlet series is simply replaced
by AK and can be finite.

Corollary 2.13 (Minimality conservation for special f—non-shifted case). Let
d ≥ 2 and f ∈ Fcm

d be such that dμf (t) = ρf (t)dt and ρf be an increasing
function on R+. Let κ = {K,AK , ∅} be as in (1.6) where AK = {ak}k∈K ⊂ R+

and be such that L(AK , s) defined by (2.5) satisfies L(AK , 2) ≤ 1. If Ld is
universally optimal in Ld(1), then Ld is the unique minimizer of Eκ

f in Ld(1).

Example 2.14 (Potentials satisfying the assumptions of Corollary 2.13). There
are many examples of potentials f such that Corollary 2.13 holds. For instance,
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this is the case for the parametrized potential f = fσ,s defined for all r > 0
by fσ,s(r) = e−σr

rs , σ > 0, s > 1, since dμfσ,s
(t) = (t−σ)s−1

Γ(s) 1[σ,∞)(t)dt and

t 
→ (t−σ)s−1

Γ(s) 1[σ,∞)(t) are increasing functions on R+. Notice that the inverse
power law f(r) = r−s with exponent s > d/2 ≥ 1 (if σ = 0) and the Yukawa
potential f(r) = e−σrr−1 with parameter σ > 0 (if s = 1) are special cases of
fσ,s.

2.2. The Inverse Power Law and Lennard-Jones Cases

In this subsection, we restrict our study to combinations of inverse power
laws, since they are the building blocks of many interaction potentials used in
molecular simulations (see, e.g., [34]). Their homogeneity simplifies a lot the
energy computations and allows us to give a complete picture of the periodic
arrays of defects effects with respect to the values of L defined by (2.5).

In the following result, we show that the values of L(AK , 2s) plays a
fundamental role in the minimization of Eκ

f when f is an inverse power law.

Theorem 2.15 (The inverse power law case—non-shifted case). Let d ≥ 2 and
f(r) = r−s where s > d/2. Let κ = {K,AK , ∅} be as in (1.6) and be such that
L(AK , 2s) defined by (2.5) is absolutely convergent. We have:

1. If L(AK , 2s) < 1, then L0 is a minimizer of L 
→ ζL(2s) in Ld(1) if and
only if L0 is a minimizer of Eκ

f in Ld(1).
2. If L(AK , 2s) > 1, then L0 is a minimizer of L 
→ ζL(2s) in Ld(1) if and

only if L0 is a maximizer of Eκ
f in Ld(1).

In particular, for any K ⊂ N\{1}, if ak = 1 for all k ∈ K, then L 
→ ζL(2s)
and Eκ

f have the same minimizers in Ld(1).

Example 2.16 (Minimizers of the Epstein zeta function). In dimensions d ∈
{2, 8, 24}, the minimizer L0 of L 
→ ζL(2s) in Ld(1) is, respectively, A2, E8 and
Λ24 as consequences of [24,39]. In dimension d = 3, Sarnak and Strömbergsson
have conjectured in [46, Eq. (44)] that the face-centered cubic lattice D3 (see
Fig. 1) is the unique minimizer of L 
→ ζL(2s) in L3(1) if s > 3/2.

Many applications of point 4. of Theorem 2.9 can then be shown for
non-convex sums of inverse power laws, differences of Yukawa potentials or
Morse potentials by following the lines of [4]. In this paper, we have chosen to
focus on Lennard-Jones-type potentials since it is possible to have a complete
description of the effect of non-shifted periodic arrays of vacancies using the
homogeneity of the Epstein zeta functions. It is also known that Lennard-
Jones-type potentials play an important role in molecular simulation (see, e.g.,
[4, Sect. 6.3] and [34, Sect. 5.1.2]).

In our last results, we define the Lennard-Jones-type potential by

f(r) =
c2

rx2
− c1

rx1
where (c1, c2) ∈ (0,∞), x2 > x1 > d/2, (2.6)

which is a prototypical example of function where μf is not non-negative ev-
erywhere, and a difference of completely monotone functions. We discuss the
optimality of a universally optimal lattice Ld for Eκ

f with respect to the values
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of L(AK , 2xi), i ∈ {1, 2} as well as the shape of the global minimizer of Eκ
f ,

i.e., its equivalence class in Ld modulo rotation and dilation (as previously
defined in [14]).

Theorem 2.17 (The Lennard-Jones case—non-shifted case). Let d ≥ 2, f be
defined by (2.6) and κ = {K,AK , ∅} be as in (1.6) (possibly empty) and be
such that L(AK , 2xi), i ∈ {1, 2} defined by (2.5) are absolutely convergent. Let
Ld be universally optimal in Ld(1). Then:

1. If L(AK , 2x2) < L(AK , 2x1) < 1, then for all V > 0 such that

V ≤ Vκ := π
d
2

(
c2(1 − L(AK , 2x2))Γ(x1)
c1(1 − L(AK , 2x1))Γ(x2)

) d
2(x2−x1)

,

the lattice V
1
d Ld is the unique minimizer of Eκ

f in Ld(V ) and there exists
V1 > 0 such that it is not a minimizer of Eκ

f for V > V1. Furthermore,
the shape of the minimizer of Ef and Eκ

f are the same in Ld.
2. If L(AK , 2x1) > L(AK , 2x2) > 1, then Eκ

f does not have any minimizer
in Ld and for all V < Vκ, V

1
d Ld is the unique maximizer of Eκ

f in Ld(V ).
3. If L(AK , 2x1) > 1 > L(AK , 2x2), then Eκ

f does not have any minimizer
in Ld but V

1
d Ld is the unique minimizer of Eκ

f in Ld(V ) for all V > 0.

Remark 2.18 (Increasing of the threshold value Vκ.) The fact that 1 − L(AK ,
2x2) > 1−L(AK , 2x1) implies that the threshold value Vκ is larger in the κ �= ∅
case than in the case without defect κ = ∅. The same is expected to be true for
any non-convex sum of inverse power law with a positive main term as r → 0
(see [4, Prop. 6.4] for a two-dimensional example in the no-defect case κ = ∅).
It is also totally straightforward to show that Vκ → V∅ as min K tend to +∞.

Remark 2.19 (Global minimality of A2 among lattices for Lennard-Jones-type
potentials). In dimension d = 2, the triangular lattice L2 = A2 has been shown
in [4, Thm. 1.2.2] to be the shape of the global minimizer of Ef in L2 when
π−x2Γ(x2)x2 < π−x1Γ(x1)x1. Point 1. of Theorem 2.17 implies that the same
holds when L(AK , 2x2) < L(AK , 2x1) < 1.

2.3. Conclusion

From all our results, we conclude that it is possible to remove or substitute
several infinite periodic sets of points from all the lattices (i.e., an integer
sublattices) and to conserve the already existing minimality properties, but
only in a certain class of potentials or sublattices. Physically, it means that
adding point defects to a crystal can be without any effect on its ground state
if we assume the interaction between atoms to be well approximated by a
pairwise potential (Born model [52]) and the sublattices to satisfy some simple
properties. We give several examples in Sect. 3 and our result are the first
known general results giving global optimality of ionic crystals. In particular,
the Kagome lattice (see Fig. 3) is shown to be the global minimizer for the
interaction energies discussed in this paper in the class of (potentially shifted)
lattices L\2L where L ∈ L2(1). This is, as far as we know, the first results of
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this kind for the Kagome lattice. We also believe that the results and techniques
derived in this paper can be applied to other ionic crystals and other general
periodic systems.

Furthermore, this paper also shows the possibility to check the optimal-
ity of a structure while ‘forgetting’ many points which, in a certain sense,
do not play any role (vacancy case). This allow to simplify both numerical
investigations—leading to a shorter computational time—and mathematical
estimates for these energies. We voluntarily did not explore further this fact
since it is only relevant in low dimensions because the computational time of
such lattice sums is exponentially growing and gives unreachable durations
in dimension d ≥ 4 for computing many values of the energies, especially in
dimensions d ∈ {8, 24} where our global optimality results are applicable.

In dimension d = 3, i.e., where the everyday life real crystals exist, our
results only apply—combined with the one from [6]—to the conservation of
local minimality in the cubic lattices cases (Z3, D3 and D∗

3) for the Epstein zeta
function, the lattice theta function and the Lennard-Jones-type energies. We
believe that our result will find other very interesting applications in dimension
3 once global optimality properties will be shown for the lattice theta functions
and the Epstein zeta functions (Sarnak–Strömbergsson conjectures [46]).

Even though the inverse power laws and Lennard-Jones cases have been
completely solved here, we still ignore what is the optimal result that holds
for ensuring the robustness of the universal optimality among lattices. An
interesting problem would be to find a necessary condition for this robustness.
Furthermore, we can also ask the following question: is it enough to study
this kind of minimization problem in a (small) ball centered at the origin? In
other words: can we remove all the points that are far enough from O and
conserving the minimality results? Numerical investigations and Fig. 5 tend to
confirm this fact, and a rigorous proof of such property would deeply simplify
the analysis of such lattice energies.

3. Applications: The Kagome Lattice and Other Ionic
Structures

We now give several examples of applications of our results. In particular, we
identify interesting structures that are minimizers of Ef in classes of sparse
and charged lattices.

3.1. The Kagome Lattice

Being the vertices of a trihexagonal tiling, this structure—which is actually
not a lattice as we defined it in this paper—that we will write K := A2\2A2

is the difference of two triangular lattices of scale ratio 2 (see Fig. 4). Some
minerals—which display novel physical properties connected with geometri-
cally frustrated magnetism—like jarosites and herbertsmithite contain layers
having this structure (see [38] and references therein). We can therefore apply
our results of Sect. 2 with κ = {{2}, {1}, ∅} or κ = {{2}, {1}, {u1 + u2}}. The
following optimality results for Ef in the class of lattices of the form L\2L
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Figure 4. Two patches of the Kagome lattice. On the left,
the origin O does not belong to K and is the center of one
of the hexagons. On the right, O belongs to a shifted version
K + (1/2,−√

3/2)

(or L\(2L + u1 + u2) in the shifted case) are simple consequences of our re-
sults combined with the universal optimality of A2 among lattices proved by
Montgomery in [39]:

1. Universal optimality of K. Applying Theorem 2.4 to κ = {{2}, {1}, {u1 +
u2}}, it follows that for all f ∈ Fcm

2 , the shifted Kagome lattice K +
(1/2,−√

3/2) (see Fig. 4) is the unique minimizer of Ef among lattices
of the form L\(2L + u1 + u2), where L = Zu1 ⊕ Zu2 ∈ L2(1).

2. Minimality of K at all densities for certain completely monotone poten-
tials. A direct consequence of Theorem 2.9 is the following. For any com-
pletely monotone function f ∈ Fcm

2 such that dμf (t) = ρf (t)dt and ρf is
an increasing function, the Kagome lattice K is the unique minimizer of
Ef among all the two-dimensional sparse lattices L\2L where L ∈ L2(1).
This is the case, for instance, for f = fσ,s defined in Example 2.14, in-
cluding the inverse power laws and the Yukawa potential.

3. Optimality at high density for Lennard-Jones interactions. Applying The-
orem 2.17, we obtain its optimality at high density: if f(r) = c2r

−x2 −
c1r

−x1 , x2 > x1 > 1 is a Lennard-Jones potential, then the unique mini-
mizer of Ef at high density among all the two-dimensional sparse lattices
L\2L, where L has fixed density, has the shape of K.

4. Global optimality for Lennard-Jones interactions with small exponents.
Furthermore, using Theorem 2.17 and [4, Thm. 1.2.2] (see also Remark 2.19),
we obtain the following interesting result in the Lennard-Jones potential
case: if π−x2Γ(x2)x2 < π−x1Γ(x1)x1, then the unique global minimizer
of Ef among all the possible sparse lattices L\2L has the shape of K.
These are the first minimality results for K in a class of periodic con-

figurations. We recall that a non-optimality result has also been derived by
Grivopoulos [32] for Lennard-Jones potential in the case of free particles, and
different attempts have been made for obtaining numerically or experimentally
a Kagome structure as an energy ground state (see, e.g., [27,33,42]).

Remark 3.1. (The honeycomb lattice) We notice that the honeycomb lattice
H := A2\

√
3A2, also constructed from the triangular lattice, does not belong
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to the set of sparse lattices L\kL, k ∈ N. That is why no optimality result for
H is included in this paper.

3.2. Rock-Salt Versus Other Ionic Structures

We recall that, in [9], we have shown with Faulhuber the universal optimality
of the triangular lattice among lattices with alternating charges, i.e., the fact
that A2 uniquely maximizes

L 
→ θ±
L (α) :=

∑

p∈L

ϕ±(p)e−πα|p|2 and ζ±
L (s) :=

∑

p∈L\{0}

ϕ±(p)
|p|s ,

L = Zu1 ⊕ Zu2, (3.1)

in L2(1), where, for all p = mu1 + nu2, ϕ±(p) := m + n. Notice that the
maximality result at all scales for the alternating lattice theta function is
equivalent with the fact that A2 maximizes

L 
→ Eκ
f [L] := Ef [L] − 2Ef [2L + u1] − 2Ef [2L + u2],

where κ := {{2}, {2}, {u1, u2}}
in L2(1) for any f ∈ Fcm

2 . It has been also proved in [13, Thm. 1.4] that Z
d

is the unique maximizer of the d-dimensional generalization of the two lattice
energies θ±

L (α) and ζ±
L (s) among d-dimensional orthorhombic (rectangular)

lattices of fixed unit density, whereas it is a minimizer of the lattice theta
functions and the Epstein zeta functions defined in (1.3). Furthermore, apply-
ing Theorem 2.9 in dimension d = 2 (resp. any d), we see that A2 (resp. Zd)
minimizes in L2(1) (resp. among the orthorhombic lattices of unit density) the
energy

Eκ
f [L] := ζL(s) − 2ζkL(s), f(r) = r−s, K = {k}, ak = 2, (3.2)

for all s > d/2. We remark that Zd, d ∈ {2, 3} is also a saddle point (see [6,39])
of Eκ

f in Ld(1). It is then interesting to see how the array of substitutional
defects with charges −1 plays a totally different role for this energy (see also
Figs. 5 and 6). This seems to confirm that the role of the nearest neighbors of
the origin is fundamental, since they are actually the main terms of the energy
when the potential is decreasing fast at infinity.

4. Proofs of the Main Results

We first show Theorem 2.2, i.e., the non-robustness of universal optimality
results under non-shifted periodic arrays of defects.

Proof of Theorem 2.2. Let Λ ∈ {A2,E8,Λ24}. We consider the potential f(r) :=
e−παr where α > 0. For all k ∈ N\{1}, all ak > 0 and all L ∈ Ld(1), we have,
using the fact that θkL(α) = θL(k2α),

Eκ
f [L] = θL(α) − akθ(k2α).
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Figure 5. Three periodic arrays of defects on Z
2. Blue points

are points with charges +1 and red points are with charges
−1. For the inverse power laws energies, the left-hand config-
uration is the unique maximizer among rectangular lattices of
fixed density with alternation of charges, whereas the centered
configuration is its unique minimizer with this distribution of
charges among rectangular lattices. However, the configura-
tion on the right is a saddle point of any energy on the form
Ef , f ∈ Fcm

2 in this class of charged configurations. For the t-
wo structures on the left, the same is true in higher dimension
while generalizing the ionic-like distribution on orthorhombic
lattices (color figure online)

Figure 6. Three periodic arrays of defects on a patch of A2.
Blue points are points with charges +1 and red points are
with charges −1. On the left, the triangular alternate con-
figuration maximizes ζ±

L (s) in L2(1) with this alternation of
charges, while the configuration in the middle minimizes the
inverse power law energy in this class of charged lattices. The
configuration on the right minimizes any energy on the for-
m Ef , f ∈ Fcm

2 in this class of charged configurations (color
figure online)

Let us show that there exists αd such that for all 0 < α < αd, Λ does not
minimize Eκ

f in Ld(1). Indeed, we have the following equivalence: for all L ∈
Ld(1)\{Λ}, Eκ

f [L] > Eκ
f [Λ] if and only if

inf
L∈Ld(1)

L�=Λ

θL(α) − θΛ(α)
θL(k2α) − θΛ(k2α)

> ak. (4.1)
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Let us show that (4.1) does not hold for small α, and in particular that the
left term tends to 0 as α → 0. We use Coulangeon and Schürmann’s work [26,
Eq. (21)], in the lattice case, who derived the Taylor expansion of the theta
function as L → Λ in Ld(1). We then obtain

lim
L→Λ
L�=Λ

θL(α) − θΛ(α)
θL(k2α) − θΛ(k2α)

=

∑
p∈Λ\{0} πα|p|2 (

πα|p|2 − 2
)
e−πα|p|2

∑
p∈Λ\{0} παk2|p|2 (παk2|p|2 − 2) e−παk2|p|2

= k−2

∑
p∈Λ\{0} πα|p|4e−πα|p|2 − 2

∑
p∈Λ\{0} |p|2e−πα|p|2

∑
p∈Λ\{0} παk2|p|4e−παk2|p|2 − 2

∑
p∈Λ\{0} |p|2e−παk2|p|2 .

By absolute convergence, the first term of both numerator and denominator
are vanishing as α → 0. We therefore obtain that

lim
α→0

lim
L→Λ
L�=Λ

θL(α) − θΛ(α)
θL(k2α) − θΛ(k2α)

= lim
α→0

k−2

∑
p∈Λ\{0} |p|2e−πα|p|2

∑
p∈Λ\{0} |p|2e−παk2|p|2 = 0,

by comparing the convergence rate of these two exponential sums that are
going to +∞ as α → 0. It follows that (4.1) does not hold for α < αd where
αd depends on d, k and ak, and the proof of the first part of the theorem is
completed.

The second part of the theorem is a simple consequence of the fact that
fκ defined by (1.8) belongs to Fcm

d if f ∈ Fcm
d and ak < 0 for all k ∈ K. �

The proof of our second result, namely Theorem 2.4, is a direct and simple
consequence of our work [9].

Proof of Theorem 2.4. If pi,k/k = cL modulo L for all k ∈ K and all i ∈ Ik,
we obtain

Eκ
f [L] = Ef [L] −

∑

k∈K

ak

∑

i∈Ik

∑

p∈L

f

(
k2

∣
∣
∣
pi,k

k
+ p

∣
∣
∣
2
)

= Ef [L] −
∑

k∈K

ak	LkEf(k2·)[L + cL].

As proved in [9], for any f ∈ Fcm
2 , A2 is the unique maximizer of L 
→ Ef [L +

cL] in L2(1). It follows that A2, which uniquely minimizes Ef in L2(1) is the
unique minimizer of Eκ

f in L2(1) since ak > 0 for all k ∈ K. �

We now show Theorem 2.9 which gives a simple criterion for the conser-
vation of the minimality of a universal optimizer.

Proof of Theorem 2.9. In order to show the three first points, it is sufficient
to show the first point of our theorem, i.e., the fact that dμfκ

(t) =
(
ρf (t) −∑

k∈K akk−2ρf

(
t

k2

) )
dt. We remark that ρf is the inverse Laplace transform

of f , i.e., ρf (t) = L−1[f ](t). By linearity, it follows that

dμfκ
(t) = ρfκ

(t)dt, where ρfκ
(t) = ρf (t) −

∑

k∈K

akL−1[f(k2·)](t).
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By the basic properties of the inverse Laplace transform, we obtain that, for
all t > 0,

L−1[f(k2·)](t) = k−2L−1[f ](k−2t) = k−2ρf (k−2t),

and our result follows by the universal optimality of Ld in Ld(1) and the
definition of completely monotone function.

To show the last point of our theorem, we adapt [4, Thm. 1.1]. Let L ∈
Ld(1) and V > 0, then we have

Eκ
f [V

1
d L] =

∑

p∈L\{0}
fκ

(
V

2
d |p|2

)
=

∫ ∞

0

[

θL

(
V

2
d t

π

)

− 1

]

ρfκ(t)dt

=
π

V
2
d

∫ ∞

0

[θL(y) − 1] ρfκ

(
πy

V
2
d

)
dy

=
π

V
2
d

∫ 1

0

[θL(y) − 1] ρfκ

(
πy

V
2
d

)
dy +

π

V
2
d

∫ ∞

1

[θL(y) − 1] ρfκ

(
πy

V
2
d

)
dy

=
π

V
2
d

∫ ∞

1

[
θL

(
1

y

)
− 1

]
ρfκ

(
π

yV
2
d

)

y−2dy

+
π

V
2
d

∫ ∞

1

[θL(y) − 1] ρfκ

(
πy

V
2
d

)
dy. (4.2)

A simple consequence of the Poisson summation formula is the well-known
identity (see, e.g., [25, Eq. (43)])

∀y > 0, θL

(
1
y

)
= y

d
2 θL∗(y). (4.3)

From (4.3), we see that if Ld is the unique minimizer of L 
→ θL(α) for all
α > 0, L ∈ Ld(1) then L∗

d = Ld. From (4.2) and (4.3), for all V > 0, L ∈ Ld(1),
we have

Eκ
f [V

1
d L] =

π

V
2
d

∫ ∞

1

[
y

d
2 θL∗ (y) − 1

]
ρfκ

(
π

yV
2
d

)
y−2dy

+
π

V
2
d

∫ ∞

1

[θL(y) − 1] ρfκ

(
πy

V
2
d

)
dy. (4.4)

and

Eκ
f [V

1
d L] − Eκ

f [V
1
d Ld] =

π

V
2
d

∫ ∞

1

[θL∗ (y) − θLd
(y)] ρfκ

(
π

yV
2
d

)
y

d
2 −2dy

+
π

V
2
d

∫ ∞

1

[θL(y) − θLd
(y)] ρfκ

(
πy

V
2
d

)
dy. (4.5)

By (4.5) and the definition of gV , if V is such that gV (y) ≥ 0 for a.e. y ≥ 1
then

Eκ
f [V

1
d L] − Eκ

f [V
1
d Ld] + Eκ

f [V
1
d L∗] − Eκ

f [V
1
d Ld]

=
π

V
2
d

∫ ∞

1

[θL∗ (y) − θLd
(y)] gV (y)dy +

π

V
2
d

∫ ∞

1

[θL(y) − θLd
(y)] gV (y)dy

≥ π

V
2
d

∫ ∞

1

mL(y)gV (y)dy, (4.6)
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where

mL(y) := min{θL∗ (y) − θLd
(y), θL(y) − θLd

(y)}.

Since mL(y) ≥ 0 for all L ∈ Ld(1), y > 0 with equality if and only if L = Ld,
and gV (y) ≥ 0 for a.e. y ∈ [1,∞), we get from (4.6) that

Eκ
f [V

1
d L] + Eκ

f [V
1
d L∗] ≥ 2Eκ

f [V
1
d Ld], with equality if and only if L = Ld.

It follows that Ld is the unique minimizer of L 
→ Eκ
f [V

1
d L] on Ld(1), or

equivalently that V
1
d Ld is the unique minimizer of Eκ

f in Ld(V ), and the
result is proved. �

The previous proof contains the main ingredients for showing Theorem
2.11.

Proof of Theorem 2.11. Following exactly the same sequence of arguments as
in the proof of the fourth point of Theorem 2.9, we obtain the maximality
result of V

1
d L±

d at fixed density for E±
f . Indeed, (4.3) is replaced by

θ±
L (α) = y

d
2 θL∗+cL∗ (α),

and, by using the maximality of L±
d for L 
→ θ±

L (α) and L 
→ θL+cL
(α) for all

α > 0, we obtain

E±
f [V

1
d L] − E±

f [V
1
d Ld] + E±

f [V
1
d L∗] − E±

f [V
1
d Ld]

=
π

V
2
d

∫ ∞

1

[
θL∗+cL∗ (y) − θL±

d +c
L

±
d

(y)
]

gV (y)dy

+
π

V
2
d

∫ ∞

1

[
θ±

L (y) − θ±
L±

d

(y)
]
gV (y)dy

≤ π

V
2
d

∫ ∞

1

m±
L (y)gV (y)dy, (4.7)

where

m±
L (y) := max{θL∗+cL∗ (y) − θL±

d +c
L

±
d

(y), θ±
L (y) − θ±

L±
d

(y)}.

We again remark that m±
L (y) ≤ 0 for all L ∈ Ld(1), y > 0 with equality if

and only if L = L±
d . Therefore, the positivity of gV as well as the universal

maximality of L±
d implies in the same way that V

1
d L±

d is the unique maximizer
of E±

f in Ld(V ). �

The proof of Corollary 2.13 is a straightforward consequence of Theo-
rem 2.9.

Proof of Corollary 2.13. Let AK := {ak}k∈K ⊂ R+ be such that L(AK , 2) ≤ 1.
Since μf ≥ 0, it follows that ρf is positive, and furthermore ρf is increasing
by assumption. Therefore, we have, for all t > 0,

∑

k∈K

ak

k2
ρf

(
t

α2

)
≤

∑

k∈K

ak

k2
ρf (t) = L(AK , 2)ρf (t) ≤ ρf (t),
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where the first inequality is obtained from the monotonicity of ρf and the last
one from its positivity and the fact that L(AK , 2) ≤ 1. The proof is completed
by applying Theorem 2.9. �

We now show Theorem 2.15 which is a simple consequence of the ho-
mogeneity of the Epstein zeta function and a property of the Riemann zeta
function.

Proof of Theorem 2.15. Using the homogeneity of the Epstein zeta function,
we obtain

Eκ
f [L] =

∑

p∈L\{0}

1
|p|2s

−
∑

k∈K

∑

p∈L\{0}

ak

k2s|p|2s
= (1 − L(AK , 2s)) ζL(2s),

the exchange of sums being ensured by their absolute summability. If L(AK , 2s) <
1, then L 
→ ζL(2s) and Eκ

f have exactly the same minimizer. If L(AK , 2s) > 1,
then the optimality are reversed and the proof is complete.

Furthermore, if ak = 1 for all k ∈ K, then we have

L(AK , 2s) =
∑

k∈K

1
k2s

≤ ζ(2s) − 1,

where ζ(s) :=
∑

n∈N
n−s is the Riemann zeta function. Since ζ(x) < 2 on

(0,∞) if and only if x > x0 ≈ 1.73, it follows that ζ(2s) − 1 < 1 if and only
if s > x0/2 ≈ 0.865 which is true for all s > d/2 whenever d ≥ 2. We thus
have L(AK , 2s) < 1 and the proof is completed by application of point 1. of
the theorem. �

Before proving Theorem 2.17, we derive the following result, a general-
ization of our two-dimensional theorem [4, Prop. 6.11]. Its proof follows the
same main arguments as the two-dimensional version and it is a consequence
of point 4. of Theorem 2.9.

Proposition 4.1. (Optimality at high density for Lennard-Jones-type poten-
tials) Let f(r) = b2

rx2 − b1
rx1 where b1, b2 ∈ (0,∞) and x2 > x1 > d/2, and let

Ld be universally optimal in Ld(1). If

V ≤ π
d
2

(
b2Γ(x1)
b1Γ(x2)

) d
2(x2−x1)

,

then V
1
d Ld is the unique minimizer of Ef in Ld(V ).

Proof of Proposition 4.1. We follow the lines of [4, Prop. 6.10] and we apply
point 4. of Theorem 2.9. For i ∈ {1, 2}, let βi := bi

πxi−1

Γ(xi)
and α := V

2
d , then

gV (y) = y
d
2 −x2−1

αx1−1 g̃V (y) where gV is given by (2.3) and

g̃V (y) :=
β2

αx2−x1
y2x2− d

2 − β1y
x2+x1− d

2 − β1y
x2−x1 +

β2

αx2−x1
.

We therefore compute g̃′
V (y) = yx2−x1−1uV (y) where

uV (y) := β2

(
2x2 − d

2

)
yx2+x1− d

2

αx2−x1
− β1

(
x2 + x1 − d

2

)
y2x1− d

2 − β1(x2 − x1).
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Differentiating again, we obtain

u′
V (y) =

(
x2 + x1 − d

2

)
y2x1− d

2 −1

(
β2

(
2x2 − d

2

)
yx2−x1

αx2−x1
− β1

(
2x1 − d

2

))
,

and we have that u′
V (y) ≥ 0 if and only if y ≥

(
β1(2x1− d

2 )

β2(2x2− d
2 )

) 1
x2−x1

α. By as-
sumption, we know that

α ≤ π

(
a2Γ(x1)
a1Γ(x2)

) 1
x2−x1

=
(

β2

β1

) 1
x2−x1

<

(
β2(2x2 − d

2 )
β1(2x1 − d

2 )

) 1
x2−x1

,

which implies that u′
V (y) ≥ 0 for all y ≥ 1. We now remark that

uV (1) =
(

2x2 − d

2

) (
β2

αx2−x1
− β1

)
≥ 0,

by assumption, since p > d/2 > d/4 and

α ≤ π

(
b2Γ(x1)
b1Γ(x2)

) 1
x2−x1 ⇐⇒ β2

αx2−x1
− β1 ≥ 0. (4.8)

It follows that g′
V (y) ≥ 0 for all y ≥ 1. Since

gV (1) = 2
(

β2

αx2−1
− β1

αx1−1

)
≥ 0

again by (4.8), gV (y) ≥ 0 for all y ≥ 1 and the proof is complete. �

Proof of Theorem 2.17. Let AK = {ak}k∈K for some K ⊂ N\{1} and f(r) =
c2r

−x2 − c1r
−x1 , then we have, using the homogeneity of the Epstein zeta

function,

Eκ
f [L] = c2ζL(2x2) − c1ζL(2x1) −

∑

k∈K

ak (c2ζkL(2x2) − c1ζkL(2x1))

= c2 (1 − L(AK , 2x2)) ζL(2x2) − c1 (1 − L(AK , 2x1))) ζL(2x1).

We now assume that L(AK , 2x2) < L(AK , 2x1) < 1. Therefore, the first part
of point 1. is a simple consequence of Proposition 4.1 applied for the coef-
ficients bi = ci (1 − L(AK , 2xi)) > 0 where i ∈ {1, 2}. The fact that Eκ

f

is not minimized by Ld for V large enough is a direct application of [14,
Thm. 1.5(1)] since μf is negative on (0, r0) for some r0 depending on the
parameters c1, c2, x1, x2, AK . Furthermore, the fact that the shape of the min-
imizers are the same follows from [14, Thm. 1.11] where it is shown that the
minimizer of the Lennard-Jones-type lattice energies does not depend on the
coefficients b1, b2 but only on the exponents x1, x2, which are the same for f
and fκ.

If L(AK , 2x1) > L(AK , 2x2) > 1, then fκ(r) = −b2r
−x2 + b1r

−x1 where
bi := ci (L(AK , 2xi) − 1) > 0, i ∈ {1, 2}. If follows that fκ(r) tends to −∞ as
r → 0, which implies the same for Eκ

f [L] as L has its lengths going to 0 and
+∞, i.e., when L collapses. This means that Eκ

f does not have a minimizer
in Ld(V ) and in Ld. Furthermore, combining point 1. with the fact that the
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signs of the coefficients are switched, we obtain the maximality of V 1/dLd at
high density (i.e., low volume V < Vκ).

If L(AK , 2x1) > 1 > L(AK , 2x2), then fκ(r) = b2r
−x2 + b1r

−x1 where
b1 := c1 (L(AK , 2x1) − 1) > 0 and b2 := c2 (1 − L(AK , 2x2)) > 0. Therefore,
fκ ∈ Fcm

d , which implies the optimality of V 1/dLd in Ld(V ) for all fixed V > 0
and the fact that Eκ

f [L] tends to 0 as all the points are sent to infinity, i.e.,
Eκ

f does not have a minimizer in Ld. �
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