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An Explicit Large Deviation Analysis of the
Spatial Cycle Huang–Yang–Luttinger Model

Stefan Adams and Matthew Dickson

Abstract. We introduce a family of ‘spatial’ random cycle Huang–Yang–
Luttinger (HYL)-type models in which the counter-term only affects
cycles longer than some cut-off that diverges in the thermodynamic limit.
Here, spatial refers to the Poisson reference process of random cycle
weights. We derive large deviation principles and explicit pressure expres-
sions for these models, and use the zeroes of the rate functions to study
Bose–Einstein condensation. The main focus is a large deviation analysis
for the diverging counter term where we identify three different regimes
depending on the scale of divergence with respect to the main large devi-
ation scale. Our analysis derives explicit bounds in critical regimes using
the Poisson nature of the random cycle distributions.
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1. Introduction

Since London’s proposal [19] that the super-fluid phase-transition in He4 is
an example of Bose–Einstein condensation (BEC), it has been of interest to
know how, in theory, interaction potentials affect the condensation of bosons.
London himself conjectured that the momentum-space condensation of bosons
is enhanced by spatial repulsion between particles. To address this question,
Huang, Yang and Luttinger [17] introduced a model (HYL) of a bosons with a
hard-sphere repulsion which displays enhanced condensation. The Hamilton-
ian for that model is given in terms of the energy occupation counts (number
of particles occupying an eigenstate), and this version has been studied by
the Dublin group in the early 1990s [23,24]. In particular, they show that
the density of zero-momentum condensation (ground state energy) in momen-
tum space is a function of the interaction parameters, that is, the mean field
parameter and the parameter of the negative counter term in the Hamiltonian.
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In this paper, we study a corresponding model of spatial cycles with HYL-
type interaction, and we analyse the condensation of parts of the system into
‘infinitely long cycles’. The model is given by so-called bosonic cycle counts
λΛ = (λk)k∈N where |Λ|λk denotes the number of cycles of length k in finite
volume Λ � R

d. Each cycle of length k is a closed continuous path with time
horizon [0, kβ] and describes k bosons. The bosonic cycle counts are random
numbers, and their probability weights are obtained from a spatial marked
Poisson point process, see [1,5]. For the spatial cycle version of the HYL model,
one needs only the cycle counts, and the detailed geometric structures of the
cycles do not enter the equation. The Hamiltonian of the spatial cycle HYL
model in Λ � R

d with interaction parameter a > b ≥ 0 and chemical potential
μ ∈ R is defined as

HΛ(λΛ) = |Λ|
⎛
⎝−(μ − α)

∑
k∈N

kλk +
a

2

(∑
k∈N

kλk

)2

− b

2

∑
k≥mΛ

k2λ2
k

⎞
⎠ ,(1.1)

where (mΛ)Λ�Rd is a sequence with mΛ → ∞ and mΛ
|Λ| → κ ∈ [0,∞] as

Λ ↑ R
d and where λΛ is a sequence of positive numbers ensuring the expression

on the right-hand side is finite, e.g. terminating sequences or sequences with
finite particle density

∑∞
k=1 kλk. Here, α < 0 is the chemical potential of the

reference process which gives the bosonic cycle count weights for the ideal Bose
gas (no interaction), see Sect. 1.1. The Hamiltonian enhances the probability
that the particle density,

∑
k∈N

kλk, is concentrated on fewer cycle types.
The sequence mΛ pushes the counter terms to infinitely long cycles and the
parameter κ governs how these infinitely long cycles are approached. The most
interesting case is when the mΛ is of order of the thermodynamic scale, the
volume Λ. Our results below are different for the three possible regimes where
either κ = 0, κ ∈ (0,∞), or κ = ∞. The case κ = 0 is special, see results
in Sect. 2 below. If one takes all possible counter terms in the Hamiltonian
(1.1), that is, if mΛ = 1 for all Λ � R

d, then for a ≡ b the ground state of the
Hamiltonian is degenerate as all particles would accumulate in cycles of a given
but arbitrary length. The analysis of this degeneracy is currently investigated
in [2] where all counter terms are considered. Choosing κ = 0 excludes this
degeneracy and allows cycles to emerge whose length grows slower than the
thermodynamic scale, see Sect. 2 for the regime when there are two minimisers
manifesting a first-order transition into condensation of ’infinitely long cycles’.

Our main results is a representation of the thermodynamic limit of the
pressure via a large deviation principle for the pair empirical particle den-
sity MΛ = (

∑mΛ−1
k=1 kλk,

∑
k≥mΛ

kλk), see Theorem 2.2. Both the rate func-
tion and the pressure depend on the parameter κ ∈ [0,∞] characterising the
scale on which the counter term cycle lengths grow to infinity. The pressure
is given as a variational problem (2.3) over R

2, equal to the representation
given in [23,24], where now the second entry refers to the density of particles
in ‘infinitely long cycles’. We obtain all the zeroes for the rate functions for
all parameter regimes and identify critical parameter with two distinct zeroes,
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see Theorem 2.5. We emphasise here that in statistical mechanics of interact-
ing particles BEC and particles in infinite cycles are independent notions, and
their conjectured equivalence is subject to a proof which until today exists
only for the ideal Bose gas and various mean-field models. We hope in future
work to address this equivalency.

This analysis provides the pressure representation along with the phase
transition (BEC) as well as the density of ‘infinitely long cycles’ in the phase
transition regime as a function of the chemical potential and the interaction
parameter a > b. The relevant parameters are the chemical potential μ in the
Hamiltonian (1.1) and the net chemical potential is μ + α, and we have some
control on the temperature (β) dependence in Theorem 2.7 leading to phase
diagrams in the (μ − β)—plane, see Fig. 1. Finally, we compare the density of
‘infinitely long cycle’ given by the zeroes of the rate functions in Corollary 2.10
with density order parameter defined as the double limit, thermodynamic limit
for the density in cycles of length above a lower followed by taking the lower
bound to infinity, see Theorem 2.11. We find that the densities are equal as
long as κ ∈ [0,∞), whereas for κ = ∞, the counter terms diverge too quickly
to infinity to lead to any non-vanishing density of ‘infinitely long cycles’, see
Remark 2.12.

In previous study of the momentum-space model, the relevant occupation
number is the lowest index opposite to our spatial cycle model; For example, in
[23], the authors need a technical constraint for the counter term up to an index
growing to infinity slower than the volume. This technical gap has been closed
in [24] where all the counter term indices are incorporated. However, in those
cases for the momentum-space model, the higher indices are not relevant for the
zero-momentum condensation, whereas for our model, the precise asymptotic
of counter terms towards ’infinitely long cycles’ plays a crucial role. A similar
model has been studied successfully in [12]. The interpretation of ‘infinitely
long cycles’ as the Bose–Einstein condensate goes back to Feynman [13] and
has been proved for mean-field models in [21]. The work of Feynman [13]
also leads to various work on random permutations, e.g. see [14,22]. More
recently, the work [6] shows that the ‘infinitely long cycles’ are distributed as a
random interlacement process, and we hope to apply our results and techniques
in this manuscript to show that the counter terms lead to an interlacement
distribution.

We define the probability weights for the bosonic cycle counts in Sect. 1.1,
and show in Sect. 1.2 and Appendix A how these weights are obtained from a
marked Poisson point process description of the ideal Bose gas with free and
Dirichlet boundary conditions. Both sections can be skipped by the reader at
first reading. In Sect. 2, we present all our results along with Fig.1 of the phase
diagram, and in Sect. 3, we present all our proofs.

1.1. Probability Weights

The ideal Bose gas at thermodynamic equilibrium with inverse temperature
β > 0 and chemical potential α < 0 defines the probability weights for the
bosonic cycle counts when there is no interaction. The cycle counts themselves
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are actually random functions of marked point configurations ω ∈ Ω as we
describe in more detail in Sect. 1.2, that is, λΛ = λΛ(ω). For x = (xk)k∈N ∈
�1(R+) with |Λ|xk ∈ N0, we denote by Q the probability distribution of the
reference process, that is, the probability that the bosonic cycle counts are
equal to x is given by

Q (λΛ = (xk)k∈N) = e−|Λ|q(α) ∏
k∈N

(|Λ|qkeβαk
)|Λ|xk

(|Λ|xk)!
, (1.2)

where

q(α) =
∑
k∈N

qkeβαk, with qk =
1

(4πβ)d/2k1+d/2
, k ∈ N. (1.3)

As shown in [1], the thermodynamic pressure of the ideal Bose gas is
given as

p0(β, α) =
1

β(4πβ)d/2

∞∑
k=1

eβαk

k1+d/2
=

1
β

q(α). (1.4)

The spatial cycle HYL model is given by the Gibbs distribution PΛ in Λ defined
via its Radon–Nikodym density with respect to the reference process QΛ in
Λ,

dPΛ

dQΛ
=

e−βHΛ

E [e−βHΛ ]
.

A vital ingredient in our result is the free energy of the ideal Bose gas given
as the Legendre–Fenchel transform of the pressure,

f0(β, x) = sup
α∈R

{αx − p0(β, α)},

and, as the pressure p0(β, α) is differentiable for α < 0 and diverges for α > 0,
we obtain the version of the free energy derived in [3].

1.2. Reference Process

We define the underlying marked Poisson point reference process in the follow-
ing as background information, since our results depend solely on the measure
PΛ defined above.

The reference process is a marked Poisson point process, see [1,5]. The
space of marks is defined as

E =
⋃
k∈N

Ck,Λ ,

where for k ∈ N, we denote by Ck,Λ the set of continuous functions f : [0, kβ] →
R

d satisfying f(0) = f(kβ) ∈ Λ, equipped with the topology of uniform con-
vergence. We call the marks cycles. By � : E → N, we denote the canonical map
defined by �(f) = k if f ∈ Ck,Λ. We call �(f) the length of f ∈ E. We consider
spatial configurations that consist of a locally finite set ξ ⊂ R

d of particles,
and to each particle x ∈ ξ, we attach a mark fx ∈ E satisfying fx(0) = x.
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Hence, a configuration is described by the counting measure ω =
∑

x∈ξ δ(x,fx)

on R
d × E.
Consider on Ck,Λ the canonical Brownian bridge measure

μ(kβ)
x,y (A) =

Px(B ∈ A;Bkβ ∈ dy)
dy

, A ⊂ Ck,Λ measurable.

Here, B = (Bt)t∈[0,kβ] is a Brownian motion in R
d with generator Δ, starting

from x under Px. Then, μ(kβ)
x,y is a regular Borel measure on Ck,Λ with total

mass equal to the Gaussian density,

μ(kβ)
x,y (Ck,Λ) = gkβ(x, y) =

Px(Bkβ ∈ dy)
dy

= (4πkβ)−d/2e− 1
4kβ |x−y|2 .

Let ωP =
∑

x∈ξP
δ(x,Bx) be a Poisson point process on R

d × E with intensity
measure equal to ν, whose projection onto R

d × Ck,Λ is equal to

νk(dx,df) =
1
k

Leb(dx) ⊗ eβαkμ(kβ)
x,x (df), k ∈ N, α < 0.

Alternatively, we can conceive ωP as a marked Poisson point process on R
d,

based on some Poisson point process ξP on R
d, and a family (Bx)x∈ξP of

i.i.d. marks, given ξP. The intensity of ξP is q(α) (1.3). Q denotes the dis-
tribution of ωP and E denotes the corresponding expectation. Note that our
reference process is a countable superposition of Poisson point processes and,
as long as q(α) < ∞ is finite, this reference process is a Poisson point process
as well. The bosonic cycle counts are averages of the random number of points
in Λ with mark length equal to k, i.e.

Nk(ω) = # {x ∈ ξ ∩ Λ: �(fx) = k} , k ∈ N,

and λk(ω) = Nk(ω)/|Λ|.
1.3. Notations

Throughout the whole text when we write Λ ↑ R
d, we mean the limit for a

sequence of centred finite-volume boxes with unbounded volume. Furthermore,
we write f(λ) ∼ g(λ) whenever limλ→∞

f(λ)
g(λ) = 1.

2. Results

Our main results concern a complete large deviation analysis and pressure rep-
resentation of the spatial cycle HYL model. Recall that the partition function
ZΛ(β, α) for any Hamiltonian, HΛ, of marked point configurations can be writ-
ten as an expectation with respect to the reference process. This follows using
the Feynman–Kac formula for traces with symmetrised initial and terminal
conditions (see [4,8]).

Proposition 2.1 [1,5]. Let β ∈ (0,∞), α < 0 and Λ � R
d. Assume that

HΛ : Ω → R is measurable and bounded from below. Then,

ZΛ(β, α) = e|Λ|q(α)
E
[
e−βHΛ(ω)

]
,
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where the expectation is with respect to the reference Poisson process.

The Hamiltonian of the spatial cycle HYL model is given in (1.1) as a
function of the bosonic cycle counts λ(ω) ∈ �1(R+).

The thermodynamic pressure for the spatial cycle HYL model is

p(κ)(β, α, μ) = lim
Λ↑Rd

1
β|Λ| log ZΛ(β, α) = p0(β, α) + lim

Λ↑Rd

1
β|Λ| log E

[
e−βHΛ

]
,

(2.1)

and the ideal Bose gas pressure, p0 (β, α), is given by (1.4), see [1]. The limit
on the right-hand side of (2.1) is obtained via a large deviation analysis for
the pair empirical particle density MΛ : Ω → R

2,

MΛ(ω) :=
(
M (1)

Λ ,M (2)

Λ

)
with M (1)

Λ =
∑

k≤mΛ−1

kλk and M (2)

Λ =
∑

k≥mΛ

kλk,

distributed under the measure μ(2)

Λ := PΛ◦M−1
Λ with PΛ being the distribution

of the Gibbsian point process of the spatial cycle HYL model in Λ, i.e. dPΛ
dQΛ

=
e−βHΛ/E

[
e−βHΛ

]
.

Theorem 2.2 (Large deviation principles and pressure representation). Let β >
0, α < 0, μ ∈ R, and a > b > 0. Let (mΛ)Λ�Rd be a sequence with mΛ → ∞
and mΛ

|Λ| → κ ∈ [0,∞] as Λ ↑ R
d, and define K(κ) := R+×({0} ∪ [κ,∞)) ⊂ R

2
+.

Then, the sequence of measures (μ(2)

Λ )Λ�Rd satisfies the large deviation
principle on R

2
+ with rate β|Λ| and good rate function

I(κ)(x, y) =

⎧⎪⎨
⎪⎩

f0(β, x) − μ(x + y) + a
2 (x + y)2

− b
2y2 + p(κ)(β, α, μ) for (x, y) ∈ K(κ),

+∞ otherwise,
(2.2)

where

p(κ)(β, α, μ) = sup
(x,y)∈K(κ)

{
μ(x + y) − a

2
(x + y)2 +

b

2
y2 − f0(β, x)

}
. (2.3)

Remark 2.3. (a) Since R
2
+ = K(0) ⊃ K(κ), we know p(κ)(β, α, μ) ≤

p(0)(β, α, μ). This is due to the sequence of counter terms forcing the den-
sity in the second component of the pair empirical density to be either
zero or greater or equal to κ.

(b) The case κ = ∞ (i.e. mΛ � |Λ|) is different because this condition
essentially removes the counter terms in the spatial cycle HYL model.
For finite volumes |Λ|, the two smallest permitted values of the random
variable M (2)

Λ are 0 and mΛ
|Λ| . This case then forces all nonzero permitted

values of the cycle counts to diverge to infinity, and thus they are naturally
unlikely, and the ‘greater than mΛ’ states are not allowed to support any
particle mass. Therefore, the spatial cycle HYL model in this case is
essentially equal to the particle mean field model studied for example in
[1,7].
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(c) The empirical cycle counts (λΛ)Λ�Rd under the reference process satisfy,
for any d ≥ 1 and α < 0, a large deviation principle with rate β|Λ| and
rate function

I0 (x) =

⎧⎨
⎩
∑∞

k=1 xk

(
log xk

q
(α)
k

− 1
)

+ p0(β, α), for x ∈ �1 (R+) ,

+∞, otherwise.

see [1]. This large deviation analysis require to deal with the lack of
continuity of the particle density D(x) =

∑
k∈N

kxk for x ∈ �1(R), see
similar problems in [5]. The splitting into the pair empirical density allows
to obtain the upper and lower bounds in our large deviation principles
separately with continuous Hamiltonian functions. The large deviation
principles in Theorem 2.2 provide more explicit representations of the
pressure allowing a more precise phase transition analysis in Theorem 2.5.

�

The pressure representations on the right-hand side of (2.3) and their
analysis are the key step in revealing the phase transition phenomenon also
known as Bose–Einstein condensation.

Corollary 2.4. The right-hand side of (2.3) can, for κ = 0, be written as

p(0)(β, α, μ) = sup
x≥0

{
μx − a

2
x2 +

(μ − ax)2+
2(a − b)

− f0(β, x)
}

= inf
λ∈�1(R+)

{
I0(λ) − μD(λ) +

a

2
D(λ)2 − (μ − aD(λ))2+

2(a − b)

}
,

where I0 is the rate function for the ideal Bose gas and D(λ) =
∑

k∈N
kλk is

the density, see [1].

Proof. The first equality follows from optimising over y ≥ 0, whereas the
second can be proved by conditioning on the value of D(λ). �

The analysis of the pressure is related to finding the zeroes of the rate
functions. In the following theorem, we identify thus a critical parameter
regime for the pressure in terms of the so-called chemical potential μ ∈ R.
This analysis is followed by showing that the critical parameter is the phase
transition point when positive particle density is carried by so-called ‘infinitely’
long cycles, see Theorem 2.11. Recall the critical density of the ideal Bose gas,
see [1,3],

�c(d) =
∞∑

k=1

kqk =

{
1

(4πβ)d/2 ζ
(

d
2

)
for d ≥ 3,

+∞ for d = 1, 2 ,

where ζ is the Riemann zeta function, ζ
(

d
2

)
=

∑∞
k=1 k− d

2 . For the following
results, we define the function sβ : (0,∞) → R by

sβ(x) :=

{
0 for x ≥ �c(d),
unique solution to p′

0(β, s) = x for 0 < x ≤ �c(d).
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Here and thereafter, we let p′
0(β, s) and f ′

0(β, x) denote the s and x partial
derivatives, respectively. Note that f0(β, x) = sβ(x)x−p0(β, sβ(x)), f ′

0(β, x) =
sβ(x), and that sβ is concave everywhere and strictly concave for x ≤ �c(d).
Define

μt (β) := inf
s<0

{
ap′

0(β, s) − (a − b)
b

s

}
> 0, (2.4)

along with

x̃1 : R → R+, x̃1(μ) unique solution to sβ(x) = μ − ax,

x̃2 : [μt,∞) → R+, x̃2(μ) minimal solution to sβ(x) = − b

a − b
(μ − ax),

and finally the chemical potential for κ ∈ (0,∞),

μr (β, κ) := inf
{

s ≥ μt : x̃2(s) ≤ 1
a
(s − κ(a − b))

}
and x̃3(μ) = x̃1(μ − aκ).

Denote

M(κ)(μ) := { zeroes of I(κ)} for κ ∈ [0,∞], μ ∈ R.

Theorem 2.5 (Zeroes of the rate functions). Let β > 0, α < 0, μ ∈ R, a > b >
0, and μc := a�c(d). Under the same assumptions on the sequence (mΛ)Λ�Zd

as in Theorem 2.2, the following holds for κ = 0, κ ∈ (0,∞), and κ = ∞,
respectively.
(i) κ = 0: There exists a transition chemical potential μ∗ ≡ μ∗

0 ∈ [μt, μc]
such that

M(0)(μ) =

⎧⎪⎨
⎪⎩

{(x̃1, 0)} for μ < μ∗,
{(x̃1, 0), (x̃2,

μ−ax̃2
a−b )} for μ = μ∗,

{(x̃2,
μ−ax̃2

a−b )} for μ > μ∗ .

If μ∗ = μc, there is always a unique zero, namely (x̃1, 0) for μ ≤ μc with
x̃1(μ∗) = x̃2(μ∗) and (x̃2,

μ−x̃2
a−b ) for μ > μc.

(ii) κ ∈ (0,∞): There exists a transition chemical potential μ∗
κ, namely μ∗

κ =
μ∗ for μr ≤ μ∗ with μ∗ ∈ [μt, μc], see (i), and μ∗

κ ∈ (μ∗, μr) when μr > μ∗,
such that

M(κ)(μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(x̃1, 0)} for μ < μ∗
κ,

{(x̃1, 0), (x̃3, κ)} for μ = μ∗
κ

{(x̃3, κ)} for μ ∈ (μ∗
κ, μr],

{(x̃2,
μ−ax̃2

a−b )} for μ ≥ μr .

(iii) κ = ∞: Then M(∞)(μ) = {(x̃1, 0)} for all μ ∈ R.

The zeroes in the previous theorem lead immediately to the following
pressure representations We define the sub-critical and the super-critical pres-
sure respectively as

p(sub)(β, μ) = inf
s<0

{
(μ − s)2

2a
+ p0(β, s)

}
,
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p(sup)(β, μ) = sup
s<0

{
(μ − a)2

2a
− s2

2b
+ p0(β, μ)

}
.

Corollary 2.6 (Pressure representation). For κ = 0 we have

p(0)(β, μ, α) =

{
p(sub)(β, μ) for μ ≤ μ∗,
p(sup)(β, μ) for μ ≥ μ∗ ,

and for κ ∈ (0,∞),

p(0)(β, μ, α) =

⎧⎪⎨
⎪⎩

p(sub)(β, μ) for μ ≤ μ∗
κ,

p(sub)(β, μ) + μk − (a−b)
2 κ2 for μ ∈ [μ∗

κ, μr],
p(sup)(β, μ) for μ ≥ max{μr, μ

∗} ,

and for κ = ∞, p(∞)(β, α, μ) = p(sub)(β, μ) for all μ ∈ R.

We have some control over the transition potentials μ∗
κ, κ ∈ [0,∞), in

the following theorem. Denote

βt(a, b, d) :=
( a

(4π)d/2

b

a − b
ζ
(d

2
− 1

)) 2
d−2

for d ≥ 5

and Cd :=
(4π)d/2

a

a − b

b
for d ≥ 1.

Theorem 2.7 For d = 2 and all β > 0,

μt (β) =
a

4π
((1 + C2) log (1 + C2) − C2 log C2)

1
β

.

Otherwise, we describe the high- and low-temperature behaviours.
Low temperature:

d ≥ 5 =⇒ μt (β) = μc (β) for β ≥ βt, and, as β → ∞,

μt (β) ∼

⎧⎪⎪⎨
⎪⎪⎩

μc(β)
(
1 − 1

ζ(2)e
(−C4β)

)
for d = 4,

μc(β)
(
1 − π

C3ζ( 3
2 )

1

β
1
2

)
for d = 3,

1
2

a−b
b

1
β log β for d = 1 .

High temperature:

d ≥ 3 =⇒ μt ∼
(
1 − d

2

)a − b

b

1
β

log β as β → 0,

d = 1 =⇒ μt ∼ a − b

b

( √
π

2C1

) 1
3 1
β

2
3
as β → 0.

Furthermore, for κ ∈ (0,+∞), we have

μr (β, κ) = (a − b) κ + ap′ (β,−bκ) .

A second conclusion from our results above is the asymptotic limit for
the pair empirical particle density.
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β

μ

βt

B

A

μc (β)

μt (β)

(a) d ≥ 5

β

μ

B

A

μc (β)

μt (β)

(b) d = 3, 4

Figure 1. Plots of the β-μ phase space for d ≥ 3. Conden-
sation occurs in region B, and does not in region A. The
transition chemical potential resides in the shaded area, and
the transition is discontinuous here. For d ≥ 5 and β ≥ βt,
the transition is continuous at the boundary. For d = 1, 2, we
have a lower bound for the transition like the one appearing
in d = 3, 4, but no non-trivial upper bound. Like noted by
[18], there is a transition at finite μ for all d ≥ 1
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Corollary 2.8 (Thermodynamic limit of the pair particle density). For every
δ > 0,

lim
Λ↑Rd

Q (MΛ ∈ Bδ(x, y)) = 1,

for each unique minimiser (x, y) in Theorem 2.5, that is, when either μ �= μ∗

in case κ = 0, μ �= μ∗
κ for κ ∈ (0,∞), and for all μ ∈ R when κ = ∞.

Remark 2.9 (a) For the mean field model, i.e. for b ≡ 0, the paper [7] derived
similar results for a specific choice of the sequence mΛ, namely mΛ ≤ L2

when |Λ| = Ld. This corresponds to κ = 0 in our general setting if we
have d ≥ 3.

(b) Our analysis above shows that at the critical values of the chemical
potential, μ = μ∗ for κ = 0 and μ = μ∗

κ when κ ∈ (0,∞), we do not
have a unique zero. Our large deviation analysis shows that for every
δ-neighbourhood Uδ of M(0)(μ∗) for κ = 0 of M(κ)(μ∗

κ) when κ ∈ (0,∞),
respectively,

lim
Λ↑Rd

Q (MΛ /∈ Uc
δ ) = 0.

Denoting (x(i)
c , y(i)

c ), i = 1, 2, the zeroes at these critical points, the con-
centration of measure problem ask whether there are λi ∈ [0, 1], i = 1, 2,
such that λ1 + λ2 = 1 and

lim
Λ↑Rd

Q (MΛ ∈ Bδ(x(i)
c , y(i)

c )) = λi, i = 1, 2.

This requires finer asymptotic analysis going beyond the large deviation
analysis studied here. We devote future work to analyse the fluctuation
behaviour of our model, e.g. similar to the analysis in [9] for the ideal
Bose gas, as well as the concentration of measure problem at criticality.

�

A third observation from our results above is that the expected density
of particles in unbounded cycles is related to the expected density of M (2)

Λ

denoted

�(κ)(μ) := lim
Λ↑Rd

E
[
M (2)

Λ

]
.

Corollary 2.10 (Density in ‘infinitely long cycles’).

(i) κ = 0,

�(0)(μ) =

{
0 for μ < μ∗,
μ−ax̃2(μ)

a−b for μ > μ∗ ,

and �(0)(μ) is not continuous at μ = μ∗ whenever μ∗ < μc, whereas �(0)(μ)
is continuous at μ = μ∗ with x̃1(μ∗) = x̃2(μ∗) whenever μ∗ = μc which
is equivalent to p

′′
0(β, 0) ≤ a−b

ab .
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(ii) κ ∈ (0,∞),

�(κ)(μ) =

⎧⎪⎨
⎪⎩

0 for μ < μ∗
κ,

κ for μ ∈ (μ∗
κ, μr],

μ−ax̃2(μ)
a−b for μ ≥ μr ,

and �(κ)(μ) is continuous at μ = μr and discontinuous at μ = μ∗
κ.

(iii) κ = ∞, then �(∞)(μ) = 0 for μ ∈ R.

The reader may be tempted to identify the expect density �(κ)(μ) as the
density of particle in unbounded (‘infinitely long cycles’) cycles which may
corresponds to the density of the Bose–Einstein condensate. To answer this
conjecture, we first define the condensate density, a definition which goes back
to [15], and which is frequently used, e.g. in [18,23,24].

For any K ∈ N define DK as the random particle density of cycles with
length greater than K,

DK(ω) :=
∑
k>K

kλk (ω) .

Then, the particle density in infinitely long cycles is defined as

Δ(κ)(μ) := lim
K→∞

lim
Λ↑Rd

E [DK ] .

Theorem 2.11 (Condensate Density).

(a) Let β > 0, α < 0, μ ∈ R, and a > b > 0. For κ = 0 and κ = ∞,

Δ(0)(μ) = �(0)(μ), Δ(∞) (μ) =
(μ

a
− �c

)
+
.

For κ ∈ (0,∞), there exists μ̂∗
κ ∈ [μ∗

κ, μr], such that

Δ(κ) (μ) =

{(
μ
a − �c

)
+

for μ < μ̂∗
κ

�(κ) (μ) for μ > μ̂∗
κ.

(b) Let b ↑ a with fixed β > 0, μ ∈ R, a > 0, and κ ∈ [0,∞), then Δ(κ)(μ) ∼(
μ

a−b

)
+
.

(c) Let μ → ∞, with fixed β > 0, μ ∈ R, a > b > 0, and κ ∈ [0,∞), then
Δ(κ)(μ) ∼ μ

a−b .

Remark 2.12 Since mΛ > K eventually, it follows that Δ(κ) (μ) ≥ �(κ) (μ).
However, if κ > 0, we have parameter ranges in which this inequality is strict.
This indicates that a positive condensate density is held on cycles whose
lengths diverge slower than mΛ, and therefore not directly affected by the
counter-term. In the κ = ∞ case, mΛ diverges too quickly to affect any posi-
tive density, see Remark 2.3, and we approach the mean field model. The case
κ = ∞ is special in the sense that the density of ‘infinitely long cycles’ as
the zero of the rate function vanishes but the above order parameter does not
vanish when μ ≥ a�c. �
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3. Proofs

The proof of the main large deviation theorem is in Sect. 3.1, and all remaining
proofs about the zeroes of the rate function and the condensate density are in
Sect. 3.2.

3.1. Proof of the Large Deviation Principles, Theorem 2.2

To prove the large deviation principle in Theorem 2.2, we adapt and extend the
ideas in [23]. Our model is on spatial cycle structures, and thus our method is
different as the so-called condensate resides in cycles of unbounded length. For
the negative counter-term in the Hamiltonian, the long cycles are the relevant
ones, whereas in [23], the energy indices with low values are relevant. Though
technically slightly more challenging, our method allows us to investigate the
different ways the counter-term scales with the volume—in this way providing
insight how the cycle condensate is scaled with the volume. The standard
Varadhan Lemma approach for our model does not work directly as, due to
the counter term, lower semi-continuity is missing. The general idea is to find
lower and upper bounds for the Hamiltonian, and then prove large deviation
principles for the two bounds individually. The final step is then to identify
the two bounds. The proof for the upper bound is in Sect. 3.1.1 and the one
for the lower bound in Sect. 3.1.2.

3.1.1. Large Deviation Upper Bound. We split the proof in two parts. In the
first one, we derive the large deviation principle for pair empirical particle
density under the reference measure, i.e. with no interaction. In the second
step, we will apply Varadhan’s lemma to a lower bound of the Hamiltonian.

Step1: Define the reference measure ν(2)

Λ := Q ◦ M−1
Λ .

Lemma 3.1 For any κ ∈ [0,∞] the limiting logarithmic moment generating
function for (ν(2)

Λ )Λ�Rd is given by

Λ(s, t) =

{
p0(β, α + s) for s ≤ −α and t ≤ −α,

+∞ for s < −α or t > −α.

The Legendre–Fenchel transform is

Λ∗(x, y) = sup
s≤0

{sx − p0(β, s)} − α(x + y) + p0(β, α) , (x, y) ∈ R
2
+ .

Proof

Λ(s, t) = lim
Λ↑Rd

1
β|Λ| log ν(2)

Λ

(
e|Λ|(sM

(1)
Λ +tM

(2)
Λ )

)

= lim
Λ↑Rd

⎛
⎝ ∑

k≤mΛ

qkeβ(s+α)k +
∑

k>mΛ

qkeβ(t+α)k

⎞
⎠ − p0(β, α).

Given the properties of the weights qk, we immediately see convergence of the
first term on the right-hand side for any value of κ ∈ [0,∞] towards p0(β, α+s)
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for (s, t) ∈ (−∞,−α] × (−∞,−α]. Furthermore, for any v > 0,

lim
Λ↑Rd

∑
k≥mΛ

qkevk ≥ lim
Λ↑Rd

qmΛevmΛ = +∞.

This gives divergence for s > −α or t > −α. The Legendre–Fenchel transform
is then

Λ∗(x, y) = sup
(s,t)∈R2

{sx + ty − Λ(s, t)} = sup
s≤−α

{sx − p0(β, s + α)}

+ sup
t≤−α

{ty} + p0(β, α)

= sup
s≤0

{sx − p0(β, s)} − α(x + y) + p0(β, α).

Λ∗ has been defined for (x, y) ∈ R
2
+ as for negative values of the arguments

the function value is infinity. �
Now, we define

Jκ(x, y) :=

{
Λ∗(x, y) for (x, y) ∈ K(κ),
+∞ otherwise.

(3.1)

and can easily obtain the large deviation upper bound.

Lemma 3.2 For any closed set C ⊂ R
2,

lim sup
Λ↑Rd

1
|Λ| log ν(2)

Λ (C) ≤ − inf
(x,y)∈C

Jκ(x, y).

Proof The upper bound for closed sets C ⊂ R
2,

lim sup
Λ↑Rd

1
|Λ| log ν(2)

Λ (C) ≤ − inf
(x,y)∈C

Λ∗(x, y)

follows for example with the Gärtner-Ellis theorem [10, Theorem 2.3.6]. Fur-
thermore, for any C ⊂ (

R
2
+

)c, we have ν(2)

Λ (C) = 0. We improve this bound for
(x, y) �∈ K (κ) by noting that the image of M (2)

Λ is
{
0, mΛ

|Λ| ,
mΛ+1

|Λ| , mΛ+2
|Λ| , . . .

}
.

So if E ⊂ (0, κ), then ν(2)

Λ

(
M (2)

Λ ∈ E
)

= 0 for all Λ sufficiently large. �
Step 2:

The crucial step is to bound the Hamiltonian in (1.1) from below. We
have HΛ(ω) ≥ |Λ|H ◦ M (2)

Λ (ω), where

H : R2 → R, (x, y) �→ H(x, y) = −(μ − α)(x + y) +
a

2
(x + y)2 − b

2
y2.

(3.2)

Lemma 3.3 Let C ⊂ R
2 be closed, then

lim sup
Λ↑Rd

1
β|Λ| log

∫

M −1
Λ (C)

e−βHΛ(ω) Q(dω) ≤ − inf
(x,y)∈C

{Jκ(x, y) + H(x, y)} ,

and

p(κ)(β, α, μ) ≤ sup
(x,y)∈K(κ)

{
μ(x + y) − a

2
(x + y)2 +

b

2
y2 − f0(β, x)

}
.
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Proof ∫

M −1
Λ (C)

e−βHΛ(ω) Q(dω) ≤
∫

C

e−|Λ|H(x,y) ν(2)

Λ (dx,dy).

The function H in (3.2) is continuous and bounded below; thus, the statement
is simply a matter of applying Varadhan’s Lemma. Taking C = R

2 gives
the bound on the thermodynamic pressure by using the Legendre–Fenchel
transform for the pressure. �

In Sect. 3.1.2, we obtain the corresponding lower bound on the thermo-
dynamic pressure, i.e. confirming (2.3). Then, Lemma 3.3, in conjunction with
the pressure representation in (2.3), gives the large deviation upper bound

lim sup
Λ↑Rd

1
β|Λ| log μ(2)

Λ (C) ≤ − inf
(x,y)∈C

{I(κ)(x, y)} , C ⊂ R
2 closed.

3.1.2. Large Deviation Lower Bound. The large deviation lower bound is more
delicate as we shall find an upper bound on the energy, that is, the counter
term cannot be replaced by the square of the sum of the single terms. In the
following steps, we derive a more detailed splitting of the empirical particle
density which is the novel step in this type of large deviation proofs. Our
splitting is based on properties derived for the pair empirical particle density
splitting in Sect. 3.1.1. The rate function Jκ, defined in (3.1), is a good rate
function which follows from the fact that the origin is in the interior of the
domain where the limiting logarithmic moment generating function is finite,
see [10, Lemma 2.2.20]. We combine this with the local nature of the large
deviation lower bound, that is, we will show that for any (x, y) ∈ R

2,

lim
δ↓0

lim inf
Λ↑Rd

1
β|Λ| log μ(2)

Λ (Bδ((x, y)) ≥ −Jκ(x, y) − H(x, y) , (3.3)

where Bδ((x, y)) is the open ball of radius δ > 0 around (x, y). In the first
step, we define the detailed splitting which is local as it depends on (x, y). In
the second step, we prove a large deviation lower bound under the reference
measure for the new splitting of the empirical particle into a quadruple, and,
using the derived upper bound on the energy, the lower bound for the quadru-
ple splitting follows with Varadhan’s Lemma. In a final step, we employ the
contraction principle to derive the lower bound in (3.3).

Step 1: Splitting. Since Jκ+H has compact level sets, there exists (x̃, x̃) ∈ K(κ)
such that

inf
(x,y)∈R2

{Jκ(x, y) + H(x, y)} = Jκ(x̃, ỹ) + H(x̃, ỹ).

Pick now (x, y) ∈ K(κ), that is, y ∈ {0} ∪ [κ,∞) (for (x, y) /∈ K(κ) we obtain
a trivial lower bound). The splitting depends on both (x, y) and (x̃, ỹ). Define
rΛ := |Λ|ỹ ∨ mΛ, and then

sΛ :=

{
(|Λ|y ∨ mΛ) + 1 if rΛ = |Λ|y ∨ mΛ,

|Λ|y ∨ mΛ if rΛ �= |Λ| ∨ mΛ.
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Define the map

π : Ω → R
4
+, ω �→ π(ω) = (π1(ω), . . . ,π4(ω)),

where

π1(ω) =
mΛ−1∑
k=1

kλk(ω), π2(ω) = rΛλrΛ(ω), π3(ω) = sΛλsΛ(ω),

π4(ω) =
∑

k≥mΛ,k �=rΛ,sΛ

kλk(ω),

the reference measure ν(4)

Λ := Q ◦ π−1, and the rate function

J (4)
κ (x, y1, y2, z) =

{
f0(β, x) − α(x + y1 + y2 + z) + p0(β, α) for (x, y1, y2, z) ∈ K,

+∞ otherwise,

where K := R × ỹN0 × yN0 × ({0} ∪ [κ,∞)).

Step 2: LDP lower bound for the quadruple splitting under the reference
measure.

Lemma 3.4 For any open set O ⊂ R
4,

lim inf
Λ↑Rd

1
β|Λ| log ν(4)

Λ (O) ≥ − inf
(x,y1,y2,z)∈O

{J (4)
κ (x, y1, y2, z)} .

Proof Pick (x, y1, y2, z) ∈ K (the other case gives trivial lower bound). The
four particle densities πi, i = 1, . . . , 4, are independent, and we derive the
lower bound separately for each individual entry. Denote ν(4)

Λ,i, i = 1, . . . , 4, the
marginals of ν(4)

Λ , and let Λi be the limiting logarithmic moment generating
functions for ν(4)

Λ,i whose domains are strictly bounded by −α and thus each
contain a neighbourhood of the origin. The corresponding Legendre–Fenchel
transforms are

Λ∗
1(x) = f0(β, x) − αx + p0(β, α), Λ∗

2(y1) = −αy1, Λ∗
3(y2) = −αy2,

Λ∗
4(z) = −αz.

We now derive for each marginal individual lower bounds.
Marginal ν(4)

Λ,1: The function Λ∗
1 is strictly convex on [0, �c). For x ∈

[0, �c), we can proceed by standard Gärtner-Ellis-type arguments by tilting
the measure. Let η < 0 be the unique solution to ηx − p0(β, η) = sups<0{sx −
p0(β, s)}, and define the tilted measure by

dν(4)

Λ,η,1

dν(4)

Λ,1

(x) = exp (β|Λ| ((η − α)x − pΛ(η) + pΛ(α))) ,

where pΛ(s) := 1
β

∑
k<mΛ

qkeβsk. Taking the limits, we obtain

lim
δ↓0

lim inf
Λ↑Rd

1
β|Λ| log ν(4)

Λ,1(Bδ(x))

≥ −f0(β, x) + αx − p0(β, α) + lim
δ↓0

lim inf
Λ↑Rd

1
β|Λ| log ν(4)

Λ,η,1(Bδ(x)). (3.4)
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Now, using the strict convexity and the Gärtner-Ellis upper bound (see [10,
Theorem 2.3.6]), the last term on the right-hand side of (3.1.2) vanishes as
ν(4)

Λ,η,1(Bδ(x)) → 1 as Λ ↑ R
d, and

lim
δ↓0

lim inf
Λ↑Rd

1
β|Λ| log ν(4)

Λ,1(Bδ(x))

≥ −f0(β, x) + αx − p0(β, α) , for x ∈ [0, �c). (3.5)

For x > �c, the function Λ∗
1 is no longer strictly convex, and thus the standard

argument fails to show that the last term on the right-hand side of (3.1.2)
vanishes. Our new method here is to directly use the Poisson nature of the
distribution of the bosonic cycle counts to obtain individual estimates leading
to the lower bound (3.5). Let x > �c. As we cannot exploit the strict convexity
of Λ∗

1, we need to estimate the last term on the right-hand side of (3.1.2)
directly: pick r ∈ N, then eventually mΛ > r. Denote �α

c :=
∑

k∈N
kqkeβαk,

�α
c,r :=

∑
k<r kqkeβαk, and recall that Q is the distribution of the reference

Poisson process which is a superposition of independent Poisson processes
with parameter |Λ|qkeαβk, k ∈ N. Then for x > �α

c,r,

ν(4)

Λ,1(Bδ(x)) ≥ Q

(
r−1∑
k=1

kλk ∈ Bδ/2(�α
c )

)

Q
(|Λ|λr =

⌊|Λ|/r
(
x − �α

c,r

)⌋)
Q

(
mΛ−1∑
k=r+1

λk = 0

)
.

Now, the mean and variance of |Λ|∑r−1
k=1 kλk are equal to |Λ|�α

c,r, so Cheby-
shev’s inequality implies that

lim
Λ↑Rd

Q

(
r−1∑
k=1

kλk ∈ Bδ/2(�α
c )

)
≥ 1 − lim

Λ↑Rd

4�α
c,r

|Λ|δ2
= 1.

Independence of the Poisson variables implies that

lim
Λ↑Rd

1
β|Λ| logQ

(
mΛ−1∑
k=r+1

λk = 0

)
= − lim

Λ↑Rd

mΛ−1∑
k=r+1

qkeβαk = −
∑
k>r

qkeβαk.

For the remaining factor, we use Stirling’s formula to get
1

β|Λ| logQ
(|Λ|λr =

⌊|Λ|/r
(
x − �α

c,r

)⌋)
= − (x − �α

c,r)

rβ

(
log

(x − �α
c,r)

r
− log qr − 1

)

+ α(x − �α
c,r) − 1

β
qre

βαr + o(1).

Combing the individual estimates and taking r → ∞ gives

lim inf
Λ↑Rd

1
β|Λ| log ν(4)

Λ,1(Bδ(x)) ≥ α(x − �α
c ) ≥ α(x − �c) .

Note that for x > ρc we have, using 1 − eβαk ≤ −αkβ,

−f0(β, x) − p0(β, α) =
1

β(4πβ)d/2

( ∞∑
k=1

1 − eβαk

kd/2+1

)
≤ −αρc ,



1552 S. Adams, M. Dickson Ann. Henri Poincaré

and thus we obtain (3.5) for all x ≥ 0.
Marginal ν(4)

Λ,i , i = 2, 3: If ỹ = 0, then

1
β|Λ| log ν(4)

Λ,2(Bδ(0)) ≥ 1
|Λ| logQ(|Λ|λrΛ = 0) = −qrΛeβαrΛ = o(1).

If ỹ ≥ κ, then rΛ
|Λ| → ỹ. Choose n ∈ N0 such that y2 = nỹ. Then,

1
β|Λ| log ν(4)

Λ,2(Bδ(nỹ)) ≥ 1
β|Λ| logQ(|Λ|λrΛ = n) = αn

rΛ

β|Λ|
+ O

(
1

β|Λ| log|Λ|
)

+ O

(
1

β|Λ| log qrΛ

)

+ O(qrΛ) = αnỹ + o(1).

Precisely, the same argument applies for the case i = 3.
Marginal ν(4)

Λ,4: If z = 0, let pΛ := min{k ∈ N : k ≥ mΛ, k �= rΛ, sΛ}.
Then,

1
β|Λ| log ν(4)

Λ,4(Bδ(0)) ≥ 1
β|Λ| logQ(|Λ|λpΛ = 0) = o(1).

If z ≥ κ, then let pΛ := min{k ∈ N : k ≥ z|Λ|, k ≥ mΛ, k �= sΛ, rΛ}. In
particular, pΛ/|Λ| → z. Then

1
β|Λ| log ν(4)

Λ,4(Bδ(z)) ≥ 1
β|Λ| logQ(|Λ|λpΛ = 1) = αz + o(1).

We finally obtain for (x, y1, y2, z) ∈ K,

lim
δ↓0

lim inf
Λ↑Rd

1
β|Λ| log ν(4)

Λ (Bδ(x, y1, y2, z)) ≥ −J (4)
κ (x, y1, y2, z).

by combining our marginal estimates above. �

Step 3: Upper bound for the energy and LDP lower bound for the quadruple
splitting. Define

K(x, y1, y2, z) = −(μ − α)(x + y1 + y2 + z) +
a

2
(x + y1 + y2 + z)2 − b

2
(y2

1 + y2
2).

Then,

HΛ(ω) ≤ K ◦ π(ω). (3.6)

Lemma 3.5 Let O ⊂ R
4 be open, then

lim inf
Λ↑Rd

1
β|Λ| log

∫

π−1(O)

e−βHΛ(ω) Q(dω)

≥ − inf
(x,y1,y2,z)∈O

{J (4)
κ (x, y1, y2, z) + K(x, y1, y2, z)} ,

and

p(κ)(β, α, μ) ≥ p0(β, α) + sup
(x,y1,y2,z)∈K(κ)

{−J (4)
κ (x, y1, y2, z) − K(x, y1, y2, z)} .
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Proof Using (3.6),
∫

π−1(O)

e−βHΛ(ω) Q(dω) ≥
∫

O

e−β|Λ|K(x,y1,y2,z) ν(4)

Λ (dx,dy1,dy2,dz).

Then, noting that K is continuous, the statement is simply a matter of applying
Varadhan’s Lemma. �

Step 4: Contraction.

Lemma 3.6 For any open set O ⊂ R
2,

lim inf
Λ↑Rd

1
β|Λ| log

∫

M −1
Λ (O)

e−βHΛ(ω) Q(dω) ≥ − inf
(x,y)∈O

{Jκ(x, y) + H(x, y)} ,

and

p(κ)(β, α, μ) ≥ p0(β, α) − inf
(x,y)∈R2

{Jκ(x, y) + H(x, y)} .

Proof Define π̂ : R4 → R
2, (x, y1, y2, z) �→ (x, y1 + y2 + z), and note that π̂ is

continuous and MΛ = π̂ ◦ π. Then,

inf
x=X,y1+y2+z=Y

{(J (4)
κ + K) (x, y1, y2, z)} ≥ f0(β,X) − μ(X + Y ) +

a

2
(X + Y )2

− b

2
Y 2 + p0(β, α)

= Jκ(X,Y ) + H(X,Y ),

and, infR4 {J (4)
κ + K} ≥ infR2 {Jκ + H} = (Jκ + H)(x̃, ỹ). Using

Jκ(x̃, ỹ) + H(x̃, ỹ) = J (4)
κ (x̃, ỹ, 0, 0) ≥ inf

R4
{J (4)

κ + K} ,

we derive the lower bound for the pressure in Lemma 3.6, and, with the cor-
responding upper bound in Lemma 3.3, we obtain (2.3) in Theorem 2.2. To
obtain the large deviation lower bound, denoted the rate function per Con-
traction principle Jκ(x, y) = inf π̂−1(x,y){J (4)

κ + K}. Then, for every open set
O ⊂ R

2, using the lower in Lemma 3.5,

lim inf
Λ↑Rd

1

β|Λ| log

∫

π −1◦π̂ −1(O)

e−βHΛ(ω) Q(dω) ≥ − inf
π̂ −1(O)

{J (4)
κ + K} = − inf

O
{Jκ},

and, finally we derive (3.3),

lim
δ↓0

lim inf
Λ↑Rd

1
β|Λ| log μ(2)

Λ (Bδ(x, y))

≥ −Jκ(x, y) ≥ −(J (4)
κ + K)(x, 0, y, 0) = −Jκ(x, y) − H(x, y),

where we use the particular quadruple splitting in the last step. �
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3.2. Variational Analysis

Proof of Theorem 2.5 In [23], a related variational principle has been studied.
We built on that and extend it to the whole range of the parameter κ ∈ [0,∞]
to obtain an improvement on the results in [23]. To obtain the zeroes of the
rate function functions I(κ), it suffices to minimise

Fμ(x, y) =

{
f0(β, x) − μ(x + y) + a

2 (x + y)2 − b
2y2 for (x, y) ∈ K(κ),

+∞ otherwise.

For κ = +∞, we have restricted the y-component to y = 0. Therefore,
we want to optimise F (x, 0). We search for stationary points, and find that
they satisfy the equation sβ (x) = μ − ax. Since sβ is non-decreasing and
sβ (x) → −∞ as x ↓ 0, and μ−ax is decreasing, there exists a unique stationary
point—a minima—given by x̃1.

For κ = 0, we first fix x ≥ 0 and find an optimal choice of y ∈ R+, denoted
ỹ (x). This gives ỹ (x) = 1

a−b (μ − ax)+, and the derivative of Fμ (x, ỹ (x)) is
zero precisely when

sβ(x) = t0(x) :=

{
μ − ax for x ≥ μ

a ,

− b
a−b (μ − ax) for 0 ≤ x ≤ μ

a .

Now, x = x̃1 (μ) is always a solution and gives a local minima for μ ≤ μc,
whilst x = x̃2 (μ) is a solution for μ ≥ μt and gives a local minima for μ > μt.
These are the only local minima.

Since x̃1 (μ) ≥ μ
a and x̃2 (μ) < μ

a , and x̃1 (μ) is the unique local minimiser
for μ = μt and x̃1 (μ) is the unique local minimiser for μ = μc,

Fμ (x̃1 (μt) , 0) < Fμ (x̃2 (μt) , ỹ (x̃2 (μt))) ,

Fμ (x̃1 (μc) , 0) > Fμ (x̃2 (μc) , ỹ (x̃2 (μc))) ,

and
d
dμ

(Fμ (x̃1 (μ) , 0) − Fμ (x̃2 (μ) , ỹ (x̃2 (μ)))) =
1
a

(sβ (x̃1 (μ)) − sβ (x̃2 (μ))) > 0.

In taking the full μ-derivative, we used the fact that x̃1 (μ) and x̃2 (μ) are
stationary points. The inequality comes from sβ being strictly increasing on
x ≤ �c. This tells us that there exists a μ∗ ∈ [μt, μc] such that x̃1 (μ) is the
minima for μ ≤ μ∗ and x̃2 (μ) is the minima for μ ≥ μ∗—with simultaneous
minima at μ = μ∗.

Now, suppose κ ∈ (0,+∞). If μ ≥ μr or μ ≤ μ∗, then at least one global
R

2
+ minimiser exists in K and we are done. For μ ∈ (μ∗, μr), the quadratic form

of F in y tells us that the K minimiser resides on y = 0 or y = κ. Furthermore,
by rearranging terms, we find Fμ (x, κ) = Fμ−aκ (x, 0)−κμ+ a−b

2 κ2. Therefore,
Fμ (x, κ) is minimised at x = x̃1 (μ − aκ) = x̃3 (μ). Now because (x̃1 (μ∗) , 0)
is a global R2

+ minimiser at μ = μ∗ and (x̃3 (μr) , κ) = (x̃2 (μr) , κ) is a global
R

2
+ minimiser at μ = μr,

F (x̃1 (μ∗) , 0) < F (x̃3 (μ∗) , κ) , F (x̃1 (μr) , 0) > F (x̃3 (μr) , κ) .



Vol. 22 (2021) An Explicit Large Deviation Analysis 1555

Furthermore,

d
dμ

(F (x̃1 (μ) , 0) − F (x̃3 (μ) , κ)) =
1
a

(sβ (x̃1 (μ)) − sβ (x̃1 (μ − aκ))) ≥ 0,

since sβ and x̃1 are non-decreasing. Therefore, there exists μ∗
κ ∈ (μ∗, μr) such

that (x̃1 (μ) , 0) is a minimiser over K (κ) for μ ≤ μ∗
κ and (x̃3 (μ) , κ) is a

minimiser over K (κ) for μ ∈ [μ∗
κ, μr]. �

Proof of Corollary 2.6 These representations of the pressure follow from sub-
stituting the minimisers from Theorem 2.5 into the pressure expression (2.3)
in Theorem 2.2. �

Proof of Theorem 2.7 We shall use the notation g (u, s) =
∑∞

k=1 k−seuk, see
(B.1). First note that μt = μc if and only if the infimum (2.4) is attained at
s = 0, which happens precisely when ap′′

0 (β, 0) ≤ a−b
b . This condition happens

if and only if d ≥ 5 and β ≥ βt. In all other cases, there exists ᾱ < 0 such
that

μt = ap′
0 (β, ᾱ) − a − b

b
ᾱ =

a

(4πβ)
d
2
g
(
βᾱ,

d

2

)
− a − b

b
ᾱ.

Since ᾱ is a stationary point, it is given as the unique solution to

g
(
βᾱ,

d

2
− 1

)
=

(4π)
d
2

a

a − b

b
β

d
2 −1 = Cdβ

d
2 −1. (3.7)

To deal with d = 2, note that from the infinite sum expression for g (u, s)
that for u < 0, we have g (u, 0) = eu

1−eu , and g (u, 1) = − log (1 − eu). We use
these to solve for ᾱ and then μt. For the remaining dimensions, we use (3.7)
to determine whether βᾱ → 0 or βᾱ → −∞. Using g (u, s) ∼ eu as u → −∞
for all real s, and the u ↑ 0 asymptotic behaviour of g (u, s) from Appendix B,
we get the asymptotic behaviour of μt (β).

For μr (β, κ), note that when restricted to (0, �c), the function sβ :
(0, �c) → (−∞, 0) is a strictly increasing continuous bijection. Furthermore,
we can rewrite

μr = inf

{
σ ≥ μt : sβ

(σ

a
− κ

a
(a − b)

)
≥ − b

a − b

[
σ − a

(σ

a
− κ

a
(a − b)

)]
= −bκ

}

From the definition of sβ(x) for x ∈ (0, �c], we have

sβ

(σ

a
− κ

a
(a − b)

)
≥ −bκ ⇐⇒ σ

a
− κ

a
(a − b ≥ p′

0(β,−bκ) ⇐⇒ σ

≥ (a − b)κ + ap′
0(β,−bκ).

�

Proof of Corollary 2.8 If (x, y) is the unique minimiser of the large deviation
rate function I(κ), then for δ > 0, we have inf

{
I(κ) (u, v) : (u, v) �∈ Bδ (x, y)

}
>

0. Since the complement of the open ball Bδ (x, y) is closed, the large deviation
principle tells us that Q

(
MΛ �∈ Bδ(x, y)

)
decays exponentially. Hence, the

required limit holds. �
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Proof of Corollary 2.10 This follows from applying Corollary 2.8 with the
unique minimisers found in Theorem 2.5. �

Proof of Theorem 2.11 Our strategy here is to use the large deviation tech-
niques described previously to find limΛ↑Rd E [DK ], and then use analytic tech-
niques to take the K-limit.

We begin by introducing the triple empirical particle density MΛ,K : Ω →
R

3, MΛ,K(ω) :=
(
M (1)

Λ,K ,M (2)

Λ,K ,M (3)

Λ,K

)
where M (1)

Λ,K =
∑K

k=1 kλk, M (2)

Λ,K =∑mΛ
k=K+1 kλk and M (3)

Λ,K =
∑

k>mΛ
kλk, distributed under the measure

μ(3)

Λ,K := PΛ ◦ M−1
Λ,K . By repeating the arguments of Theorem 2.2, we can

show that
(
μ(3)

Λ,K

)
Λ�Rd

satisfies the large deviation principle on R
3
+ with rate

β|Λ| and good rate function

I(κ)

K (x, y, z) =

⎧⎪⎨
⎪⎩

f (1)

K (x) + f (2)

K (y) − μ(x + y + z)
+a

2 (x + y + z)2 − b
2z2 + pκ,K(β, α, μ) if z �∈ (0, κ) ,

+∞ if z ∈ (0, κ) ,

where pκ,K(β, α, μ) is the appropriate normalisation, f (1)

K (x) =

sups∈R

{
sx − 1

β

∑
j≤K qjeβsj

}
and f (2)

K (y) = supt≤0

{
ty − 1

β

∑
j>K qjeβtj

}
.

Note that f (1)

K (x) is convex, strictly increasing on x ≥ �c (and decreas-
ing slower than linearly for d = 1, 2), and converges pointwise to f0 (β, x).
Also, f (2)

K (y) is convex, constant on y ≥ ∑
k>K kqk and converges point-

wise to 0 (converges uniformly for d ≥ 3). From these properties, and since
(x, y, z) �→ −μ(x + y + z) + a

2 (x + y + z)2 − b
2z2 is a constant plus a positive

definite quadratic form, we know that there are only finitely many global min-
imisers and that these are contained in some K-independent compact set. The
pointwise convergence translates into uniform convergence on this compact
set.

Suppose κ = ∞. Then I(κ)

K is finite only if z = 0, and therefore, the
question reduces to a mean field one. For d = 1, 2, the minima are eventually
in a neighbourhood of the {y = z = 0} set, and so the condensate vanishes.
For d ≥ 3, the pointwise limit has a single global minimiser, (x̃1, 0, 0), for
μ ≤ μc and uncountably many for μ > μc. These minimisers are the convex
combinations of

(
μ
a , 0, 0

)
and

(
�c,

μ
a − �c, 0

)
. However, because we know that

f (1)

K (x) is strictly increasing on x ≥ �c for all K, we know that the minimisers
are eventually in any neighbourhood of

(
�c,

μ
a − �c, 0

)
.

For finite κ, we contract the y and z components to compare with
I(κ) (x, y). After contracting (x, y, z) �→ (x, y + z), we get the rate function

J (κ)

K (x, y) = f (1)

K (x) − μ (x + y) +
a

2
(x + y)2 + inf

Y +Z=y,Z �∈(0,κ)

{
f (2)

K (Y ) − b

2
Z2

}
.

This has the pointwise limit

J (κ)
∞ (x, y) = f0 (β, x) − μ (x + y) +

a

2
(x + y)2 − b

2
y21{y≥κ}.
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Note I(κ) (x, y) ≥ J (κ)
∞ (x, y) ≥ I(0) (x, y), with equality precisely on K (κ).

Therefore if I(0) has a global minimiser in K (κ), then this is a global minimiser
of J (κ)

∞ . This proves the κ = 0 case, and the κ ∈ (0,∞) case for μ ≤ μ∗ or
μ ≥ μr.

By fixing x and taking the y-partial derivatives of J (κ)
∞ , we find that the

optimal choice of y is μ
a − x or κ if μ−ax

a−b < κ, and μ−ax
a−b otherwise. If μ ≥ μr,

then y = μ−ax
a−b produces the global minimiser. For μ ∈ (μ∗, μr) we need to

compare minimisers along y = μ
a − x and y = κ. This is a similar process to

the comparison of y = 0 and y = κ we performed in the proof of Theorem 2.5.
Furthermore, because J (κ)

∞
(
x, μ

a − x
)

< J (κ)
∞ (x, 0), we know that the transition

occurs at a higher value of μ.
The asymptotics follow from inspecting the behaviour of �(κ) (μ) in the

respective limits. In particular, note that μr < μc eventually as b ↑ a. �
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Appendix

A. Reference Process for Dirichlet Boundary Conditions

For Dirichlet boundary condition, one restricts the Brownian bridges to not
leaving the set Λ, that is, one replaces Ck,Λ by the space C(Dir)

k,Λ of continuous
functions in Λ with time horizon [0, kβ]. Consider the measure

μ(Dir,kβ)
x,y (A) =

Px(B ∈ A;Bkβ ∈ dy)
dy

, A ⊂ C(Dir)

k,Λ measurable,

which has total mass g(Dir)

kβ (x, y) = μ(Dir,kβ)
x,y (C(Dir)

k,Λ ). For Dirichlet boundary con-
ditions, (1.3) is replaced by

q(Dir) =
∑
k∈N

q(Dir)

k , with q(Dir)

k =
1

k|Λ|
∫

Λ

dx g(Dir)

kβ (x, x).

Note that these weight depends on Λ, see [11]. We introduce the Poisson point
process ωP =

∑
x∈ξP

δ(x,Bx) on Λ × E(Dir) with intensity measure ν(Dir) whose
projections on Λ×C(Dir)

k,Λ with k ≤ �Λ� are equal to ν(Dir)

k (dx,df) = 1
kLebΛ(dx)⊗

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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μ(Dir,kβ)
x,x (df) and are zero on this set for k > N . We do not label ωP nor ξP

with the boundary condition nor with N ; ξP is a Poisson process on Λ with
intensity measure q(Dir) times the restriction LebΛ of the Lebesgue measure to
Λ. By Q(Dir) and E(Dir) we denote probability and expectation with respect to
this process. Conditionally on ξP, the lengths of the cycles Bx with x ∈ ξP

are independent and have distribution (q(Dir)

k /q(Dir))k∈{1,...,�Λ}; this process has
only marks with lengths ≤ �Λ�. A cycle Bx of length k is distributed according
to

P
(bc,kβ)
x,x (df) =

μ(bc,kβ)
x,x (df)
g(bc)

kβ (x, x)
.

The above representations allows us to prove the our large deviation
principles as well as the variational analysis for Dirchlet boundary conditions.
For details, we refer to [5] where these arguments are presented in detail. The
independence of the thermodynamic limit of pressure in Theorem 2.2 follows
using either the arguments in [5] or in [8,20].

B. Bose Function

The Bose functions are poly-logarithmic functions defined by

g(n, α) := Li n(e−α) =
1

Γ(n)

∫ ∞

0

tn−1

et+α − 1
dt

=
∞∑

k=1

k−ne−αk for all n and α > 0, (B.1)

and also for α = 0 and n > 1. In the latter case,

g(n, 0) =
∞∑

k=1

k−n = ζ(n), (B.2)

which is Riemann zeta function. The behaviour of the Bose functions about
α = 0 is given by

g(n, α) =

⎧⎪⎨
⎪⎩

Γ(1 − n)αn−1 +
∑∞

k=0 ζ(n − k) (−α)k

k! for n �= 1, 2, 3, . . . ,

(−α)n−1

(n−1)!

[
− log α +

∑n−1
m=1

1
m

]
+

∑
k=0

k �=n−1
ζ(n − k) (−α)k

k! for n ∈ N.

(B.3)

At α = 0, g(n, α) diverges for n ≤ 1, indeed for all n, there is some kind
of singularity at α = 0, such as a branch point. For further details, see [16].
The expansions (B.3) are in terms of ζ(n), which for n ≤ 1 must be found
by analytically continuing (B.2). With the asymptotic properties of the zeta
function, it can be shown that the k series in (B.3) are convergent for |α| < 2π.
Consequently (B.3) also represents an analytic continuation of g(n, α) for α <
0. When α � 1 the series (B.1) itself is rapidly convergent, and as α → ∞,
g(n, α) ∼ e−α for all n.
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