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Bose–Einstein Condensation Beyond the
Gross–Pitaevskii Regime

Arka Adhikari, Christian Brennecke and Benjamin Schlein

Abstract. We consider N bosons in a box with volume one, interacting
through a two-body potential with scattering length of the order N−1+κ,
for κ > 0. Assuming that κ ∈ (0; 1/43), we show that low-energy states
exhibit Bose–Einstein condensation and we provide bounds on the expec-
tation and on higher moments of the number of excitations.

1. Introduction

We consider systems of N ∈ N bosons trapped in the box Λ = [0; 1]3 with
periodic boundary conditions (the three-dimensional torus with volume one)
and interacting through a repulsive potential with scattering length of the
order N−1+κ, for κ ∈ (0; 1/43). We are interested in the limit of large N . The
Hamilton operator has the form

HN =
N∑

i=1

−Δxi
+

∑

1≤i<j≤N

N2−2κV (N1−κ(xi − xj)) (1.1)

and acts on a dense subspace of L2
s(Λ

N ), the Hilbert space consisting of func-
tions in L2(ΛN ) that are invariant with respect to permutations of the N ∈ N

particles. Here, we assume the interaction potential V ∈ L3(R3) to have com-
pact support and to be nonnegative, ie. V (x) ≥ 0 for almost all x ∈ R

3.
For κ = 0, the Hamilton operator (1.1) describes bosons in the so-called

Gross–Pitaevskii limit. This regime is frequently used to model trapped Bose
gases observed in recent experiments. Another important regime is the ther-
modynamic limit, where N bosons interacting through a fixed potential V
(independent of N) are trapped in the box ΛL = [0;L]3 and where the limits
N,L → ∞ are taken, keeping the density ρ = N/L3 fixed. After rescaling
lengths (introducing new coordinates x′ = x/L), the Hamilton operator of the
Bose gas in the thermodynamic limit is given (up to a multiplicative constant)
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by (1.1), with κ = 2/3. Choosing 0 < κ < 2/3, we are interpolating therefore
between the Gross–Pitaevskii and the thermodynamic limits.

The goal of this paper is to show that low-energy states of (1.1) exhibit
Bose–Einstein condensation in the zero-momentum mode ϕ0 ∈ L2(Λ) defined
by ϕ0(x) = 1 for all x ∈ Λ and to give bounds on the number of excitations of
the condensate. To achieve this goal, it is convenient to switch to an equivalent
representation of the bosonic system, removing the condensate and focusing
instead on its orthogonal excitations. To this end, we notice that every ψN ∈
L2

s(Λ
N ) can be uniquely decomposed as

ψN = α0ϕ
⊗N
0 + α1 ⊗s ϕ

⊗(N−1)
0 + α2 ⊗s ϕ

⊗(N−2)
0 + · · · + αN

where ⊗s denotes the symmetric tensor product and αj ∈ L2
⊥(Λ)⊗sj for all j =

0, . . . , N , with L2
⊥(Λ) the orthogonal complement in L2(Λ) of ϕ0. This observa-

tion allows us to define a unitary map UN : L2
s(Λ

N ) → F≤N
+ =

⊕N
j=0 L2

⊥(Λ)⊗sj

by setting
UNψN = {α0, α1, . . . , αN}. (1.2)

The truncated Fock space F≤N
+ =

⊕N
j=0 L2

⊥(Λ)⊗sj is used to describe orthog-
onal excitations of the condensate (some properties of the map UN will be
discussed in Sect. 2 below). On F≤N

+ , we introduce the number of particles
operator, defining (N+ξ)(n) = nξ(n) for every ξ = {ξ(0), . . . ξ(N)} ∈ F≤N

+ .
We are now ready to state our main theorem, which provides estimates

of the expectation and on higher moments of the number of orthogonal exci-
tations of the Bose–Einstein condensate for low-energy states of (1.1).

Theorem 1.1. Let V ∈ L3(R3) be pointwise nonnegative and spherically sym-
metric. Let a0 > 0 denote the scattering length of V . Let HN be defined as in
(1.1) with 0 < κ < 1/43. Then, for every ε > 0, there exists a constant C > 0
such that ∣∣EN − 4πa0N

1+κ
∣∣ ≤ CN43κ+ε. (1.3)

for all N ∈ N large enough.
Let ψN ∈ L2

s(Λ
N ) with ‖ψN‖ = 1 and

〈ψN , (HN − EN )2ψN 〉 ≤ ζ2, (1.4)

for a ζ > 0. Then, for every ε > 0 there exists a constant C > 0 such that

〈UNψN ,N+ UNψN 〉 ≤ C
[
ζ + ζ2N13κ+ε−1 + N43κ+4ε

]
(1.5)

for all N ∈ N large enough. If moreover ψN = χ(HN ≤ EN + ζ)ψN , then for
all k ∈ N and all ε > 0 there exists C > 0 such that

〈UNψN ,N k
+ UNψN 〉 ≤ C

[
N20κ+εζ2 + N44κ+2ε

]k
(1.6)

for all N ∈ N large enough.

The convergence EN/4πa0N
1+κ → 1, as N → ∞, has been first estab-

lished, for Bose gases trapped by an external potential, in [19] (the choice
κ > 0 corresponds, in the terminology of [19], to the Thomas–Fermi limit).

It follows from (1.5) that the one-particle density matrix γN = tr2,...,N
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|ψN 〉〈ψN | associated with a normalized ψN ∈ L2
s(Λ

N ) satisfying (1.4) is such
that

1 − 〈ϕ0, γNϕ0〉 =
1
N

[N − 〈ψN , a∗(ϕ0)a(ϕ0)ψN 〉]

=
1
N

〈UNψN ,N+ UNψN 〉
≤ C

[
ζN−1 + ζ2N13κ+ε−2 + N43κ+4ε−1

]
(1.7)

as N → ∞. Here, we used the formula UNa∗(ϕ0)a(ϕ0)UN = N − N+; see
(2.5). Equation (1.7) implies that low-energy states of (1.1) exhibit complete
Bose–Einstein condensation, if κ < 1/43.

We remark that the estimate (1.6) follows, in our analysis, from a stronger
bound controlling not only the number but also the energy of the excitations of
the condensate. As we will explain in Sect. 3, in order to estimate the energy of
excitations in low-energy states, we first need to remove (at least part of) their
correlations. If we choose, as we do in (1.6), ψN ∈ L2

s(Λ
N ) with ‖ψN‖ = 1 and

ψN = χ(HN ≤ EN + ζ)ψN , we can introduce the corresponding renormalized
excitation vector ξN = eBUNψN ∈ F≤N

+ , with the antisymmetric operator B

defined as in (3.21) (the unitary operator eB will be referred to as a generalized
Bogoliubov transformation). We will show in Sect. 6 that for every k ∈ N, there
exists C > 0 such that

〈ξN , (HN + 1)(N+ + 1)2kξN 〉 ≤ C
[
N20κ+εζ2 + N44κ+2ε

]2k+1
(1.8)

for all N large enough. Here HN = K + VN , where

K =
∑

p∈Λ∗
+

p2a∗
pap, and VN =

1
2N

∑

p,q∈Λ∗
+,r∈Λ∗:

r �=−p,−q

NκV̂ (r/N1−κ)a∗
p+ra

∗
qaq+rap

(1.9)
are the kinetic and potential energy operators, restricted to F≤N

+ . (Here, V̂ is
the Fourier transform of the potential V , defined as in (2.4).) Equation (1.6)
follows then from (1.8), because N+ commutes with HN , N+ ≤ K ≤ HN and
because conjugation with the generalized Bogoliubov transformation eB does
not change the number of particles substantially; see Lemma 3.2 (for k ∈ N

even, we also use simple interpolation).
In the Gross–Pitaevskii regime corresponding to κ = 0 the convergence

γN → |ϕ0〉〈ϕ0| has been first established in [16–18] and later, using a different
approach, in [21].1 In this case (ie. κ = 0), the bounds (1.3), (1.5) and (1.6)
with ε = 0 (which are optimal in their N -dependence) have been shown in [4].
Previously, they have been established in [2], under the additional assumption
of small potential. A simpler proof of the results of [2], extended also to systems
of bosons trapped by an external potential, has been recently given in [20].
The result of [4] was used in [3] to determine the second order corrections to
the ground state energy and the low-energy excitation spectrum of the Bose
gas in the Gross–Pitaevskii regime. Note that our approach in the present

1Going through the proof of [18, Theorem 5.1], one can observe that the authors actually

show that 1 − 〈ϕ0, γNϕ0〉 ≤ CN−2/17.
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paper could be easily extended to the case κ = 0, leading to the same bounds
obtained in [4]. We exclude the case κ = 0 because we would have to modify
certain definitions, making the notation more complicated (for example, the
sets PH in (3.14) and PL in (4.2) would have to be defined in terms of cutoffs
independent of N).

The methods of [16–18] can also be extended to show Bose–Einstein con-
densation for low-energy states of (1.1), for some κ > 0. In fact, following
the proof of [18, Theorem 5.1], it is possible to show that for a normalized
ψN ∈ L2

s(Λ
N ) with ‖ψN‖ = 1 and such that 〈ψN ,HNψN 〉 ≤ EN + ζ, the

expectation of the number of excitations is bounded by

〈UNψN ,N+UNψN 〉 ≤ C
[
N

15+20κ
17 + ζ

]
(1.10)

which implies complete Bose–Einstein condensation for low-energy states, for
all κ < 1/10. For sufficiently small κ > 0, Theorem 1.1 improves (1.10) because
it gives a better rate2 (if κ < 15/711) and because, through (1.6), it also
provides (under stronger conditions on ψN ) bounds for higher moments of the
number of excitations N+.

In [10], in a slightly different setting, the authors obtain a bound of
the form (1.6) for k = 1, for the choice κ = 1/(55 + 1/3) (for normalized
ψN ∈ L2

s(Λ
N ) that satisfy 〈ψN ,HNψN 〉 ≤ EN + ζ). They use this result to

show a lower bound on the ground state energy of the dilute Bose gas in the
thermodynamic limit matching the prediction of Lee–Yang and Lee–Huang–
Yang [13,14].

After completion of our work, two more papers have appeared whose re-
sults are related with Theorem 1.1. Based on localization arguments from [8,
10], a bound for the expectation of N+ in low-energy states has been shown
in [9], establishing Bose–Einstein condensation for all κ < 2/5 (as pointed out
there, using a refined analysis similar to that of [10], the range of κ can be
slightly improved). On the other hand, following an approach similar to [2], but
with substantial simplifications (partly due to the fact that the author works
in the grand canonical, rather than the canonical, ensemble), a new proof
of Bose–Einstein condensation was obtained in [11], in the Gross–Pitaevskii
regime, under the assumption of small potential. There is hope that the ap-
proach of [11] can be extended beyond the Gross–Pitaevskii regime, providing
a simplified proof of Theorem 1.1, potentially allowing for larger values of κ.

The derivation of the bounds (1.5), (1.6), (1.8) is crucial to resolve the
low-energy spectrum of the Hamiltonian (1.1). The extension of estimates on
the ground state energy and on the excitation spectrum obtained in [3] for the
Gross–Pitaevskii limit, to regimes with κ > 0 small enough will be addressed
in a separate paper [6], using the results of Theorem 1.1. With our techniques,
it does not seem possible to obtain such precise information on the spectrum
of (1.1) using only previously available bounds like (1.10).

2For κ > 0, the rate (1.6) is not expected to be optimal. Bogoliubov theory predicts that
the number of excitations of the Bose–Einstein condensate in a Bose gas with density ρ is
of the order Nρ1/2; see [5]. In our regime, this corresponds to N3κ/2 excitations.
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Let us now briefly explain the strategy we use to prove Theorem 1.1.
The first part of our analysis follows closely [4]. We start in Sect. 2 by intro-
ducing the excitation Hamiltonian LN = UNHNU∗

N , acting on the truncated
Fock space F≤N

+ ; the result is given in (2.6), (2.7). The vacuum expectation
〈Ω,LNΩ〉 = N1+κV̂ (0)/2 is still very far from the correct ground state energy
of LN (and thus of HN ); the difference is of order N1+κ. This is a consequence
of the definition (1.2) of the unitary map UN , whose action removes products
of the condensate wave function ϕ0, leaving however all correlations among
particles in the wave functions αj ∈ L2

⊥(Λ)⊗sj , j = 1, . . . , N .
To factor out correlations, we introduce in Sect. 3 a renormalized excita-

tion Hamiltonian GN = e−BLNeB , defined through unitary conjugation of LN

with a generalized Bogoliubov transformation eB . The antisymmetric opera-
tor B : F≤N

+ → F≤N
+ is quadratic in the modified creation and annihilation

operators bp, b
∗
p defined, for every momentum p ∈ Λ∗

+ = 2πZ3\{0}, in (2.8) (b∗
p

creates a particle with momentum p annihilating, at the same time, a particle
with momentum zero; in other words, b∗

p creates an excitation, moving a parti-
cle out of the condensate). The properties of GN are listed in Prop. 3.3. In par-
ticular, Proposition 3.3 implies that to leading order, 〈Ω,GNΩ〉 � 4πa0N

1+κ,
if κ is small enough.

Unfortunately, GN is not coercive enough to prove directly that low-
energy states exhibit condensation (in the sense that it is not clear how to
estimate the difference between GN and its vacuum expectation from below by
the number of particle operator N+). For this reason, in Sect. 4, we define yet
another renormalized excitation Hamiltonian JN = e−AGNeA, where now A is
the antisymmetric operator (4.1), cubic in (modified) creation and annihilation
operators (to be more precise, we only conjugate the main part of GN with
eA; see (4.3)). Important properties of JN are stated in Proposition 4.1. Up
to negligible errors, the conjugation with eA completes the renormalization
of quadratic and cubic terms; in (4.5), these terms have the same form they
would have for particles interacting through a mean-field potential with Fourier
transform 8πa0N

κ1(|p| < Nα), with a parameter α > 0 that will be chosen
small enough, depending on κ (in other words, the renormalization procedure
allows us to replace, in all quadratic and cubic terms, the original interaction
with Fourier transform N−1+κV̂ (p/N1−κ) decaying only for momenta |p| >
N1−κ, with a potential whose Fourier transform already decays on scales Nα �
N1−κ).

The main problem with JN is that its quartic terms (the restriction of the
initial potential energy on the orthogonal complement of the condensate wave
function) are still proportional to the local interaction with Fourier transform
N−1+κV̂ (p/N1−κ).

One possibility to solve this problem is to neglect the original quartic
terms (they are positive) and insert instead quartic terms proportional to the
renormalized mean-field potential 8πa0N

κ1(|p| < Nα), so that Bose–Einstein
condensation follows as it does for mean-field systems (see [22]). Since (with
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the notation χ̌ for the inverse Fourier transform of the characteristic function
on the ball of radius one)
8πa0N

κ

N

∑

|r|<Nα

a∗
p+ra

∗
qaq+rap = 8πa0N

3α+κ−1

∫
χ̌(Nα(x − y))ǎ∗

xǎ∗
yǎyǎx dxdy

≤ CN3α+κ−1N 2
+

and since we know from (1.10) that N+ � N
15+20κ

17 in low-energy states, the
insertion of the renormalized quartic terms produces an error that can be
controlled by localization in the number of particles, if

3α + κ − 1 +
15 + 20κ

17
= 3α +

37
17

κ − 2
17

< 0

This strategy was used in [4] to prove Bose–Einstein condensation with optimal
rate in the Gross–Pitaevskii regime κ = 0 (in this case, one can choose α = 0).

Here, we follow a different approach. We perform a last renormalization
step, conjugating JN through a unitary operator eD, with D quartic in creation
and annihilation operators. This leads to a new Hamiltonian MN = e−DJNeD

(in fact, it is more convenient to conjugate only the main part of JN , ignoring
small contributions that can be controlled by other means; see (5.5)), where the
original interaction N−1+κV̂ (p/N1−κ) is replaced by the mean-field potential
8πa0N

κ1(|p| < Nα) in all relevant terms.3 Condensation can then be shown
as it is done for mean-field systems, with no need for localization. This is the
main novelty of our analysis, compared with [4]. In Sect. 5, we define the final
Hamiltonian MN and in Proposition 5.1 we bound it from below. The proof of
Proposition 5.1, which is technically the main part of our paper, is deferred to
Sect. 7. In Sect. 6, we combine the results of the previous sections to conclude
the proof of Theorem 1.1.

The results we prove with our new technique are stronger than what
we would obtain using the approach of [4] in the sense that they allow for
larger values of κ and better rates. More importantly, we believe that the
approach we propose here is more natural and that it leaves more space for
extensions. In particular, with the final quartic renormalization step, we map
the original Hamilton operator (1.1), with an interaction varying on momenta
of order N1−κ, into a new Hamiltonian having the same form, but now with
an interaction restricted to momenta smaller than Nα. If α < 1 − κ, this
leads to an effective regularization of the potential and it suggests that further
improvements may be achieved by iteration; we plan to follow this strategy,
which bears some similarities to the renormalization group analysis developed
in [1], in future work.

In order to control errors arising from the quartic conjugation, it is im-
portant to use observables that were not employed in [4]. In particular, the
expectation of the number of excitations with large momenta

3Observe that the renormalized potential with Fourier transform 8πa0N−1+κ1(|p| < Nα)
that emerges in our rigorous analysis after a series of unitary transformations is reminiscent
of the interaction that appears through an ad hoc substitution in the pseudo-potential
method of [12,13].
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N≥Nγ =
∑

p∈Λ∗
+:|p|≥Nγ

a∗
pap

and of its powers N 2
≥Nγ ,N 3

≥Nγ , as well as the expectation of products of the
form KLN≥Nγ and KLN 2

≥Nγ , involving the kinetic energy operator restricted
to low momenta KL, will play a crucial role in our analysis. It will therefore be
important to establish bounds for the growth of these observables through all
steps of the renormalization procedure (Lemmas 4.2, 4.3, 7.1, 7.2). In Sect. 6,
an important step in the proof of Theorem 1.1 will consist in controlling the ex-
pectation of these observables on low-energy states of the renormalized Hamil-
tonian GN .

2. The Excitation Hamiltonian

We denote by F =
⊕

n≥0 L2(Λ)⊗sn the bosonic Fock space over the one-
particle space L2(Λ) and by Ω = {1, 0, . . .} the vacuum vector. We can define
the number of particles operator N by setting (Nψ)(n) = nψ(n) for all ψ =
{ψ(0), ψ(1), . . .} in a dense subspace of F . For every one-particle wave function
g ∈ L2(Λ), we define the creation operator a∗(g) and its hermitian conjugate,
the annihilation operator a(g), through

(a∗(g)Ψ)(n)(x1, . . . , xn) =
1√
n

n∑

j=1

g(xj)Ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(a(g)Ψ)(n)(x1, . . . , xn) =
√

n + 1
∫

Λ

ḡ(x)Ψ(n+1)(x, x1, . . . , xn) dx

Creation and annihilation operators are defined on the domain of N 1/2, where
they satisfy the bounds

‖a(f)ψ‖ ≤ ‖f‖‖N 1/2ψ‖, ‖a∗(f)ψ‖ ≤ ‖f‖‖(N+ + 1)1/2ψ‖
and the canonical commutation relations

[a(g), a∗(h)] = 〈g, h〉, [a(g), a(h)] = [a∗(g), a∗(h)] = 0 (2.1)

for all g, h ∈ L2(Λ) (〈., .〉 denotes here the inner product on L2(Λ)). For p ∈
Λ∗ = 2πZ3, we define the plane wave ϕp ∈ L2(Λ) through ϕp(x) = e−ip·x for all
x ∈ Λ, and the operators a∗

p = a(ϕp) and ap = a(ϕp) creating and, respectively,
annihilating a particle with momentum p. It is sometimes convenient to switch
to position space, introducing operator valued distributions ǎx, ǎ∗

x such that

a(f) =
∫

Λ

f̄(x) ǎx dx, a∗(f) =
∫

Λ

f(x) ǎ∗
x dx

In terms of creation and annihilation operators, the number of particles oper-
ator can be written as

N =
∑

p∈Λ∗
a∗

pap =
∫

a∗
xax dx



1170 A. Adhikari et al. Ann. Henri Poincaré

We will describe excitations of the Bose–Einstein condensate on the truncated
Fock space

F≤N
+ =

N⊕

j=0

L2
⊥(Λ)⊗sj

constructed over the orthogonal complement L2
⊥(Λ) of the condensate wave

function ϕ0. On F≤N
+ , we denote the number of particles operator by N+.

It is given by N+ =
∑

p∈Λ∗
+

a∗
pap, where Λ∗

+ = Λ∗\{0} = 2πZ3\{0} is the
momentum space for excitations. Given Θ ≥ 0, we also introduce the restricted
number of particles operators

N≥Θ =
∑

p∈Λ∗
+:|p|≥Θ

a∗
pap, (2.2)

measuring the number of excitations with momentum larger or equal to Θ,
and N<Θ = N+ − N≥Θ.

Consider the operator UN : L2
s(Λ

N ) → F≤N
+ defined in (1.2). Identifying

ψN ∈ L2
s(Λ

N ) with the Fock space vector {0, . . . , 0, ψN , 0, . . .}, we can also
express UN in terms of creation and annihilation operators; we obtain

UN =
N⊕

n=0

(1 − |ϕ0〉〈ϕ0|)⊗n a(ϕ0)N−n

√
(N − n)!

It is then easy to check that U∗
N : F≤N

+ → L2
s(Λ

N ) is given by

U∗
N {α(0), . . . , α(N)} =

N∑

n=0

a∗(ϕ0)N−n

√
(N − n)!

α(n)

and that U∗
NUN = 1, ie. UN is unitary.

Using UN , we can define the excitation Hamiltonian LN := UNHNU∗
N ,

acting on a dense subspace of F≤N
+ . To compute LN , we first write the Hamil-

tonian (1.1) in momentum space, in terms of creation and annihilation opera-
tors. We find

HN =
∑

p∈Λ∗
p2a∗

pap +
1

2N1−κ

∑

p,q,r∈Λ∗
V̂ (r/N1−κ)a∗

p+ra
∗
qapaq+r (2.3)

where

V̂ (k) =
∫

R3
V (x)e−ik·xdx (2.4)

is the Fourier transform of V , defined for all k ∈ R
3 (in fact, (1.1) is the

restriction of (2.3) to the N ∈ N-particle sector of the Fock space F). We
can now determine the excitation Hamiltonian LN using the following rules,
describing the action of the unitary operator UN on products of a creation
and an annihilation operator (products of the form a∗

paq can be thought of as
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operators mapping L2
s(Λ

N ) to itself). For any p, q ∈ Λ∗
+ = 2πZ3\{0}, we find

(see [15]):
UN a∗

0a0 U∗
N = N − N+

UN a∗
pa0 U∗

N = a∗
p

√
N − N+

UN a∗
0ap U∗

N =
√

N − N+ ap

UN a∗
paq U∗

N = a∗
paq

(2.5)

We conclude that
LN = L(0)

N + L(2)
N + L(3)

N + L(4)
N (2.6)

with

L(0)
N =

N − 1
2N

NκV̂ (0)(N − N+) +
NκV̂ (0)

2N
N+(N − N+)

L(2)
N =

∑

p∈Λ∗
+

p2a∗
pap +

∑

p∈Λ∗
+

NκV̂ (p/N1−κ)
[
b∗
pbp − 1

N
a∗

pap

]

+
1
2

∑

p∈Λ∗
+

NκV̂ (p/N1−κ)
[
b∗
pb

∗
−p + bpb−p

]

L(3)
N =

1√
N

∑

p,q∈Λ∗
+:p+q �=0

NκV̂ (p/N1−κ)
[
b∗
p+qa

∗
−paq + a∗

qa−pbp+q

]

L(4)
N =

1
2N

∑

p,q∈Λ∗
+,r∈Λ∗:

r �=−p,−q

NκV̂ (r/N1−κ)a∗
p+ra

∗
qapaq+r

(2.7)

where we introduced generalized creation and annihilation operators

b∗
p = a∗

p

√
N − N+

N
, and bp =

√
N − N+

N
ap (2.8)

for all p ∈ Λ∗
+. Observe that by (2.5),

U∗
Nb∗

pUN = a∗
p

a0√
N

, U∗
NbpUN =

a∗
0√
N

ap

In other words, b∗
p creates a particle with momentum p ∈ Λ∗

+ but, at the same
time, it annihilates a particle from the condensate; it creates an excitation,
preserving the total number of particles in the system. On states exhibiting
complete Bose–Einstein condensation in the zero-momentum mode ϕ0, we have
a0, a

∗
0 � √

N and we can therefore expect that b∗
p � a∗

p and that bp � ap.
Modified creation and annihilation operators satisfy the commutation relations

[bp, b
∗
q ] =

(
1 − N+

N

)
δp,q − 1

N
a∗

qap

[bp, bq] = [b∗
p, b

∗
q ] = 0

(2.9)

Furthermore, we find

[bp, a
∗
qar] = δpqbr, [b∗

p, a
∗
qar] = −δprb

∗
q (2.10)
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for all p, q, r ∈ Λ∗
+; this implies in particular that [bp,N+] = bp, [b∗

p,N+] = −b∗
p.

It is also useful to notice that the operators b∗
p, bp, like the standard creation

and annihilation operators a∗
p, ap, can be bounded by the square root of the

number of particles operators; we find

‖bpξ‖ ≤
∥∥∥N 1/2

+

(N + 1 − N+

N

)1/2

ξ
∥∥∥ ≤ ‖N 1/2

+ ξ‖

‖b∗
pξ‖ ≤

∥∥∥(N+ + 1)1/2
(N − N+

N

)1/2

ξ
∥∥∥ ≤ ‖(N+ + 1)1/2ξ‖

for all ξ ∈ F≤N
+ . Since N+ ≤ N on F≤N

+ , the operators b∗
p, bp are bounded,

with ‖bp‖, ‖b∗
p‖ ≤ (N + 1)1/2.

We can also define modified operator valued distributions

b̌x =

√
N − N+

N
ǎx, and b̌∗

x = ǎ∗
x

√
N − N+

N

in position space, for x ∈ Λ. The commutation relations (2.9) take the form

[b̌x, b̌∗
y] =

(
1 − N+

N

)
δ(x − y) − 1

N
ǎ∗

yǎx

[b̌x, b̌y] = [b̌∗
x, b̌∗

y] = 0

Moreover, (2.10) translates to

[b̌x, ǎ∗
yǎz] = δ(x − y)b̌z, [b̌∗

x, ǎ∗
yǎz] = −δ(x − z)b̌∗

y

which also implies that [b̌x,N+] = b̌x, [b̌∗
x,N+] = −b̌∗

x.

3. Renormalized Excitation Hamiltonian

Conjugation with UN extracts, from the original quartic interaction in (2.3),
some constant and some quadratic contributions, collected in L(0)

N and L(2)
N in

(2.7). For bosons described by the Hamiltonian (1.1), this is not enough; there
are still large contributions to the energy that are hidden in L(3)

N and L(4)
N .

To extract the missing energy, we have to take into account correlations.
To this end, we consider the ground state solution f� of the Neumann problem

[
−Δ +

1
2
V

]
f� = λ�f� (3.1)

on the ball |x| ≤ N1−κ� (we omit the N ∈ N-dependence in the notation for f�

and for λ�; notice that λ� scales as N3κ−3), with the normalization f�(x) = 1
if |x| = N1−κ�. By scaling, we observe that f�(N1−κ.) satisfies the equation

[
−Δ +

1
2
N2−2κV (N1−κx)

]
f�(N1−κx) = N2−2κλ�f�(N1−κx)

on the ball |x| ≤ �. From now on, we fix some 0 < � < 1/2, so that the ball of
radius � is contained in the box Λ = [−1/2; 1/2]3. We then extend f�(N1−κ.)
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to Λ, by setting fN (x) = f�(N1−κx), if |x| ≤ � and fN (x) = 1 for x ∈ Λ, with
|x| > �. As a consequence,

[
−Δ +

1
2
N2−2κV (N1−κ.)

]
fN = N2−2κλ�fNχ�, (3.2)

where χ� denotes the characteristic function of the ball of radius �. The Fourier
coefficients of the function fN are given by

f̂N (p) =
∫

Λ

f�(N1−κx)e−ip·xdx (3.3)

for all p ∈ Λ∗. Next, we define w�(x) = 1−f�(x) for |x| ≤ N1−κ� and w�(x) = 0
for all |x| > N1−κ�. Its rescaled version wN : Λ → R is defined through
wN (x) = w�(N1−κx) if |x| ≤ � and wN (x) = 0 if x ∈ Λ with |x| > �. The
Fourier coefficients of wN are given by

ŵN (p) =
∫

Λ

w�(N1−κx)e−ip·xdx =
1

N3−3κ
ŵ�(p/N1−κ),

where

ŵ�(k) =
∫

R3
w�(x)e−ik·xdx

denotes the Fourier transform of the (compactly supported) function w�. We
find f̂N (p) = δp,0 − N3κ−3ŵ�(p/N1−κ). From (3.2), we obtain

− p2ŵ�(p/N1−κ) +
N2−2κ

2

∑

q∈Λ∗
V̂ ((p − q)/N1−κ)f̂N (q)

= N5−5κλ�

∑

q∈Λ∗
χ̂�(p − q)f̂N (q).

(3.4)

The next lemma summarizes important properties of the functions w� and
f�. Its proof can be found in [4, Appendix A] (replacing N ∈ N by N1−κ and
noting that still N1−κ� � 1 for N ∈ N sufficiently large and fixed � ∈ (0; 1/2)).

Lemma 3.1. Let V ∈ L3(R3) be nonnegative, compactly supported and spheri-
cally symmetric. Fix � > 0 and let f� denote the solution of (3.1). For N ∈ N

large enough, the following properties hold true.
(i) We have

λ� =
3a0

N3−3κ�3
(
1 + O(

a0/�N1−κ
))

. (3.5)

(ii) We have 0 ≤ f�, w� ≤ 1. Moreover there exists a constant C > 0 such
that ∣∣∣∣

∫
V (x)f�(x)dx − 8πa0

∣∣∣∣ ≤ Ca2
0

�N1−κ
. (3.6)

(iii) There exists a constant C > 0 such that

w�(x) ≤ C

|x| + 1
and |∇w�(x)| ≤ C

x2 + 1
. (3.7)

for all x ∈ R
3 and all N ∈ N large enough.
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(iv) There exists a constant C > 0 such that

|ŵN (p)| ≤ C

N1−κp2

for all p ∈ R
3 and all N ∈ N large enough (such that N1−κ ≥ �−1).

We define η : Λ∗ → R through

ηp = −NŵN (p) = − Nκ

N2−2κ
ω̂�(p/N1−κ). (3.8)

In position space, this means that for x ∈ Λ, we have

η̌(x) = −Nw�(N1−κx), (3.9)

so that we have in particular the L∞-bound

‖η̌‖∞ ≤ CN. (3.10)

Lemma 3.1 also implies

|ηp| ≤ CNκ

|p|2 (3.11)

for all p ∈ Λ∗
+ = 2πZ3\{0}, and for some constant C > 0 independent of

N ∈ N (for N ∈ N large enough). From (3.4), we find the relation

p2ηp +
1
2
Nκ(V̂ (./N1−κ) ∗ f̂N )(p) = N3−2κλ�(χ̂� ∗ f̂N )(p) (3.12)

or equivalently, expressing the r.h.s. through the coefficients ηp,

p2ηp +
1
2
NκV̂ (p/N1−κ) +

1
2N

∑

q∈Λ∗
NκV̂ ((p − q)/N1−κ)ηq

= N3−2κλ�χ̂�(p) + N2−2κλ�

∑

q∈Λ∗
χ̂�(p − q)ηq.

(3.13)

In our analysis, it is useful to restrict η to high momenta. To this end, let
α > 0 and

PH = {p ∈ Λ∗
+ : |p| ≥ Nα}. (3.14)

We define ηH ∈ �2(Λ∗
+) by

ηH(p) = ηp χ(p ∈ PH) = ηpχ(|p| ≥ Nα) . (3.15)

Equation (3.11) implies that

‖ηH‖ ≤ CNκ−α/2 (3.16)

and we assume from now on that α > 2κ such that in particular

lim
N→∞

‖ηH‖ = 0. (3.17)

Notice, on the other hand, that the H1-norm of η and ηH diverge, as N → ∞.
From (3.9) and Lemma 3.1, part iii), we find

∑

p∈PH

p2|ηp|2 ≤
∑

p∈Λ∗
+

p2|ηp|2 =
∫

|∇η̌(x)|2dx ≤ CN1+κ (3.18)
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for all N ∈ N large enough. We will mostly use the coefficients ηp with p �= 0.
Sometimes, however, it will be useful to have an estimate on η0 (because
Eq. (3.13) involves η0). From Lemma 3.1, part iii), we obtain

|η0| ≤ N3κ−2

∫

R3
w�(x)dx ≤ CNκ�2 (3.19)

It will also be useful to have bounds for the function η̌H : Λ → R, having
Fourier coefficients ηH(p) as defined in (3.15). Writing ηH(p) = ηp − ηpχ(|p| ≤
Nα), we obtain

η̌H(x) = η̌(x) −
∑

p∈Λ∗:
|p|≤Nα

ηpe
ip·x = −Nw�(N1−κx) −

∑

p∈Λ∗:
|p|≤Nα

ηpe
ip·x

so that

|η̌H(x)| ≤ CN + CNκ
∑

p∈Λ∗:
|p|≤Nα

|p|−2 ≤ C(N + Nα+κ) ≤ C(N + Nα+κ) (3.20)

for all x ∈ Λ, if N ∈ N is large enough.
With the coefficients (3.15), we define the antisymmetric operator

B =
1
2

∑

p∈PH

(
ηpb

∗
pb

∗
−p − η̄pb−pbp

)
(3.21)

and the generalized Bogoliubov transformation eB : F≤N
+ → F≤N

+ . A first
important observation is that conjugation with this unitary operator does not
change the number of particles by too much. The proof of the following Lemma
can be found in [7, Lemma 3.1] (a similar result has been previously established
in [22]).

Lemma 3.2. Assume B is defined as in (3.21), with the coefficients ηp as in
(3.8), satisfying (3.17). For every n ∈ N, there exists a constant C > 0 such
that

e−B(N+ + 1)neB ≤ C(N+ + 1)n (3.22)

as an operator inequality on F≤N
+ . (The constant depends only on ‖ηH‖ and

on n ∈ N.)

With the generalized Bogoliubov transformation eB , we can now define
the renormalized excitation Hamiltonian GN : F≤N

+ → F≤N
+ by setting

GN = e−BLNeB = e−BUNHNU∗
NeB . (3.23)

In the next propositions, we collect important properties of GN . Recall
the notation HN = K + VN , introduced in (1.9).

Proposition 3.3. Let V ∈ L3(R3) be compactly supported, pointwise nonnega-
tive and spherically symmetric. Let GN be defined as in (3.23). Assume that
the exponent α introduced in (3.14) is such that

α > 6κ, 2α + 3κ < 1 (3.24)
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Then,

GN = 4πa0N
1+κ + HN + θGN

(3.25)

and there exists C > 0 such that, for all δ > 0 and all N ∈ N large enough,
we have

± θGN
≤ δHN + Cδ−1Nα+2κN+ + CNα+2κ (3.26)

and the improved lower bound

θGN
≥ −δHN − Cδ−1NκN+ − CNα+2κ. (3.27)

Furthermore, for β > 0, denote by Geff
N the excitation Hamiltonian

Geff
N = 4πa0N

κ(N − N+) +
[
V̂ (0) − 4πa0

]
NκN+

(N − N+)
N

+ NκV̂ (0)
∑

p∈P c
H

a∗
pap(1 − N+/N) + 4πa0N

κ
∑

p∈P c
H

[
b∗
pb

∗
−p + bpb−p

]

+
1√
N

∑

p,q∈Λ∗
+:|q|≤Nβ ,

p+q �=0

NκV̂ (p/N1−κ)
[
b∗
p+qa

∗
−paq + h.c.

]
+ HN

(3.28)
Then, there exists C > 0 such that EGN

= GN − Geff
N is bounded by

± EGN
≤ C(N3κ−α/2 + Nα+3κ/2−1/2 + Nκ/2−β)HN + CNα+2κ (3.29)

for all N ∈ N sufficiently large.
Furthermore, there exists a constant C > 0 such that

±i[N≥cNγ ,GN ], ±i[N<cNγ ,GN ] ≤ C(Nκ+α/2−γ + Nκ+γ/2)(HN + 1)
(3.30)

for all α ≥ γ > 0, c > 0 fixed (independent of N ∈ N) and N ∈ N large
enough.

Finally, for every k ∈ N, there exists a constant C > 0 such that

± ad(k)
iN+

(GN ) = ±[
iN+, . . .

[
iN+,GN

]
. . .

] ≤ CNκ+α/6(HN + 1). (3.31)

The proof of Proposition 3.3 is similar to the proof of [4, Prop. 4.2]
and [3, Prop. 3.2], with the appropriate modifications dictated by the different
scaling of the interaction. The main novelty in Proposition 3.3 is the bound
(3.30) involving commutators of the restricted number of particles operator
N≥cNγ . This can be obtained similarly to the bounds for EGN

and for i[N+,GN ],
because we have a full expansion of the operator GN in a sum of terms whose
commutators with N+ and with N≥cNγ retains essentially the same form. In
the version of this paper that is posted on the arXiv, we give a complete proof of
Proposition 3.3 in “Appendix A”, adapting the arguments of [4, Prop. 4.2], [3,
Prop. 3.2].
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4. Cubic Renormalization

From Eq. (3.28), we observe that the cubic terms in Geff
N still depend on the

original interaction, which decays slowly in momentum (in contrast to the
quadratic terms in the second line of (3.28), where the sum is now restricted
to P c

H = {p ∈ Λ∗
+ : |p| < Nα}).

To renormalize the cubic terms in (3.28), we are going to conjugate Geff
N

with a unitary operator eA, where the antisymmetric operator A : F≤N
+ →

F≤N
+ is defined by

A = A1 − A∗
1, with A1 =

1√
N

∑

r∈PH ,p∈PL

ηrb
∗
r+pa

∗
−rap. (4.1)

The high-momentum set PH = {p ∈ Λ∗
+ : |p| ≥ Nα} is as in (3.14). The

low-momentum set PL is defined by

PL = {p ∈ Λ∗
+ : |p| ≤ Nβ} (4.2)

with exponent β > 0, that will be chosen as in (3.28).
Using the unitary operator eA, we define JN : F≤N

+ → F≤N
+ by

JN = e−AGeff
N eA. (4.3)

Observe here that we only conjugate the main part Geff
N of the renormalized

excitation Hamiltonian GN ; this makes the analysis a bit simpler (the difference
GN −Geff

N is small and can be estimated before applying the cubic conjugation).
The next proposition summarizes important properties of JN ; it can be

shown very similarly to [4, Prop. 5.2], of course with the appropriate changes
of the scaling of the interaction. In the version of this paper that is posted
on the arXiv, we give a complete proof of Proposition 4.1 in “Appendix B”,
adapting the arguments of [4, Prop. 5.2].

Proposition 4.1. Suppose the exponents α and β are such that

i) α > 3β+2κ, ii) 3α/2+2κ < 1, iii) α < 5β, iv) β > 3κ/2, v) β < 1/2
(4.4)

Let JN be defined as in (4.3), let

J eff
N = 4πa0N

1+κ − 4πa0N
κN 2

+/N + 8πa0N
κ

∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

+
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

[
b∗
p+qa

∗
−paq + h.c.

]
+ HN ,

(4.5)
and set μ = max(3α/2 + 2κ − 1, 3κ/2 − β) (μ < 0 follows from (4.4)). Then,
there exists a constant C > 0 such that the self-adjoint operator EJN

= JN −
J eff

N satisfies the operator inequality

±eAEJN e−A ≤ C(N−β/2 +Nμ)K+CNμVN +CNμ−κN+ +CNα+2κ(1+Nα+β/2−1)
(4.6)

in F≤N
+ for all N ∈ N sufficiently large.
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The bounds for JN given in Proposition 4.1 are still not enough to show
Theorem 1.1. As we will discuss in the next section, the main problem is the
quartic interaction term, contained in HN , which still depends on the singular
interaction potential (in all other terms on the r.h.s. of (4.5), the singular po-
tential has been replaced by the regular mean-field type potential, with Fourier
transform 8πa0N

κ1P c
H

(p), supported on momenta |p| < Nα). To renormalize
the quartic interaction, we will have to conjugate J eff

N with yet another uni-
tary operator, this time quartic in creation and annihilation operators. This
last conjugation (which will be performed in the next section) will produce
error terms. These errors will controlled in terms of the observables N+, K
and VN (as in (4.6)) but also, as we stressed at the end of Sect. 1, in terms
of observables having the form N≥Nγ (the number of excitations having mo-
mentum larger or equal to Nγ), N 2

≥Nγ , N 3
≥Nγ , K≤Nγ (the kinetic energy of

excitations with momentum below Nγ), KLN≥Nγ . For this reason, we need to
control the action of eA on all these observables.

First of all, we bound the action of the cubic phase on the restricted
number of particles operators N≥θ =

∑
p∈Λ∗

+:|p|≥θ a∗
pap. We will make use of

the pull-through formula apN≥θ = (N≥θ + 1[θ,∞)(p))ap, which in particular
implies that

‖(N≥θ + 1)1/2apξ‖ ≤ C‖ap(N≥θ + 1)1/2ξ‖,

‖(N≥θ + 1)−1/2apξ‖ ≤ C‖ap(N≥θ + 1)−1/2ξ‖ .
(4.7)

Lemma 4.2. Assume the exponents α, β satisfy (4.4) (in fact, here it is enough
to assume that α > 2κ). Let k ∈ N0, m = 0, 1, 2, 0 < γ ≤ α, c ≥ 0 (and
c < 1 if γ = α). Then, there exists a constant C > 0 such that the operator
inequalities

e−sA(N+ + 1)k(N≥cNγ + 1)mesA ≤ C(N+ + 1)k(N≥cNγ + 1)m (4.8)

for all s ∈ [−1; 1] and all N ∈ N.

Proof. The case m = 0 follows from m = 1. We start therefore with the case
m = 1. For ξ ∈ F≤N

+ , we define the function ϕξ : R → R by

ϕξ(s) = 〈ξ, e−sA(N+ + 1)k(N≥cNγ + 1)esAξ〉

which has derivative

∂sϕξ(s) = 2Re 〈esAξ, (N+ + 1)k
[N≥cNγ , A1

]
esAξ〉

+ 2Re 〈esAξ,
[
(N+ + 1)k, A1

]
(N≥cNγ + 1)esAξ〉, (4.9)

where A1 as in (4.1). By the assumptions on γ and c, we have Nα ≥ Nα−Nβ ≥
cNγ for N ∈ N large enough. This implies in particular that

[N≥cNγ , b∗
p+r] = b∗

p+r, [N≥cNγ , a∗
−r] = a∗

−r, [N≥cNγ , ap] = χ(|p| ≥ cNγ)ap
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for r ∈ PH and p ∈ PL, by (2.1) and (2.10). We then obtain
[N≥cNγ , A1

]
=

2√
N

∑

r∈PH ,p∈PL

ηrb
∗
r+pa

∗
−rap − 1√

N

∑

r∈PH ,p∈PL,
|p|≥cNγ

ηrb
∗
r+pa

∗
−rap

(4.10)
as well as

[
(N+ + 1)k, A1

]
=

k√
N

∑

r∈PH ,p∈PL

ηrb
∗
r+pa

∗
−rap(N+ + Θ(N+) + 1)k−1,

(4.11)
for some function Θ : N → (0; 1) by the mean value theorem. Using the pull-
through formula N+a∗

p = a∗
p(N+ + 1) and Cauchy–Schwarz, we estimate

∣∣∣∣
1√
N

∑

r∈PH ,p∈PL

ηr〈esAξ, (N+ + 1)kb∗
r+pa

∗
−rape

sAξ〉
∣∣∣∣

≤ 1√
N

( ∑

r∈PH ,p∈PL

‖(N≥cNγ + 1)−1/2ar+pa−r(N+ + 1)k/2esAξ‖2

)1/2

×
( ∑

r∈PH ,p∈PL

η2
r‖(N≥cNγ + 1)1/2ap(N+ + 1)k/2esAξ‖2

)1/2

With the operator inequality N≥cNγ ≥ N≥Nα and with (4.7), we find that
∣∣∣∣

1√
N

∑

r∈PH ,p∈PL

ηr〈esAξ, (N+ + 1)kb∗
r+pa∗

−rapesAξ〉
∣∣∣∣

≤ C√
N

( ∑

r∈PH ,p∈PL:|p+r|≥cNγ

‖ap+r(N≥cNγ + 1)−1/2a−r(N+ + 1)k/2esAξ‖2

)1/2

× ‖ηH‖
( ∑

p∈PL

‖ap(N≥cNγ + 1)1/2(N+ + 1)k/2esAξ‖2

)1/2

≤ CNκ−α/2

√
N

‖(N≥Nα + 1)1/2(N+ + 1)k/2esAξ‖‖(N≥cNγ + 1)1/2(N+ + 1)(k+1)/2esAξ‖

≤ CNκ−α/2‖(N≥cNγ + 1)1/2(N+ + 1)k/2esAξ‖2 = CNκ−α/2ϕξ(s).

(4.12)
The same arguments show that
∣∣∣∣

1√
N

∑

r∈PH ,p∈PL,
|p|≥cNγ

ηr〈esAξ, (N+ + 1)kb∗
r+pa∗

−rapesAξ〉
∣∣∣∣

≤ C√
N

( ∑

r∈PH ,p∈PL:|p+r|≥cNγ

‖ap+r(N≥cNγ + 1)−1/2a−r(N+ + 1)k/2esAξ‖2

)1/2

× ‖ηH‖
( ∑

p∈PL

‖ap(N≥cNγ + 1)1/2(N+ + 1)k/2esAξ‖2

)1/2

≤ CNκ−α/2ϕξ(s).

(4.13)
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Finally, we have that
∣∣∣∣

k√
N

∑

r∈PH ,p∈PL

ηr〈esAξ, b∗
r+pa

∗
−rap(N+ + Θ(N+) + 1)k−1(N≥cNγ + 1)esAξ〉

∣∣∣∣

≤ C√
N

( ∑

r∈PH ,p∈PL:|p+r|≥cNγ

‖ar+pa−r(N+ + 1)(k−1)/2esAξ‖2

)1/2

×
( ∑

r∈PH ,p∈PL

η2
r‖ap(N+ + 1)(k−1)/2(N≥cNγ + 1)esAξ‖2

)1/2

≤ CNκ−α/2‖(N≥cNγ + 1)1/2(N+ + 1)k/2esAξ‖2 = CNκ−α/2ϕξ(s).
(4.14)

Recalling (4.9), (4.10) and that α ≥ 2κ, the bounds (4.12) to (4.14) show that

∂sϕξ(s) ≤ CNκ−α/2ϕξ(s) ≤ Cϕξ(s).

Since the bounds are independent of ξ ∈ F≤N
+ and the same bounds hold true

replacing A by −A in the definition of ϕξ, the first inequality in (4.8) follows
by Gronwall’s Lemma.

To prove (4.8) with m = 2, we proceed similarly. Given ξ ∈ F≤N
+ , we

define the function ψξ : R → R by

ψξ(s) = 〈ξ, e−sA(N+ + 1)k(N≥cNγ + 1)2esAξ〉.

Its derivative is equal to

∂sψξ(s) = 2Re 〈esAξ, (N+ + 1)k
[
(N≥cNγ + 1)2, A1

]
esAξ〉

+ 2Re 〈esAξ,
[
(N+ + 1)k, A1

]
(N≥cNγ + 1)2esAξ〉

= 2Re 〈esAξ, (N+ + 1)k
[N≥cNγ ,

[N≥cNγ , A1

]]
esAξ〉

+ 4Re 〈esAξ, (N+ + 1)k
[N≥cNγ , A1

]
(N≥cNγ + 1)esAξ〉

+ 2Re 〈esAξ,
[
(N+ + 1)k, A1

]
(N≥cNγ + 1)2esAξ〉.

(4.15)

Comparing the contribution containing the double commutator in the last
line on the r.h.s. of the last equation with (4.10) and using once again that
Nα ≥ Nα − Nβ ≥ cNγ for N ∈ N large enough, we observe that

[N≥cNγ ,
[N≥cNγ , A1

]]
=

4√
N

∑

r∈PH ,p∈PL

ηrb∗
r+pa∗

−rap − 3√
N

∑

r∈PH ,p∈PL,
|p|≥cNγ

ηrb∗
r+pa∗

−rap.

(4.16)
Hence, the bounds (4.12) and (4.13) prove that

∣∣〈esAξ, (N+ + 1)k
[N≥cNγ ,

[N≥cNγ , A1

]]
esAξ〉∣∣ ≤ Cϕξ(s) ≤ Cψξ(s).



Vol. 22 (2021) Bose–Einstein Condensation Beyond 1181

To bound the second contribution on the r.h.s. in (4.15), we recall (4.10) and
we estimate

∣∣∣∣
1√
N

∑

r∈PH ,p∈PL

ηr〈esAξ, (N+ + 1)kb∗
r+pa

∗
−rap(N≥cNγ + 1)esAξ〉

∣∣∣∣

+
∣∣∣∣

1√
N

∑

r∈PH ,p∈PL,
|p|≥cNγ

ηr〈esAξ, (N+ + 1)kb∗
r+pa

∗
−rap(N≥cNγ + 1)esAξ〉

∣∣∣∣

≤ C√
N

( ∑

r∈PH ,p∈PL:|p+r|≥cNγ

‖ap+ra−r(N+ + 1)k/2esAξ‖2

)1/2

× ‖ηH‖
( ∑

p∈PL

‖ap(N+ + 1)k/2(N≥cNγ + 1)esAξ‖2

)1/2

≤ CNκ−α/2‖(N≥cNγ + 1)(N+ + 1)k/2esAξ‖2 = CNκ−α/2ψξ(s)

Finally, the last contribution in (4.15) can be bounded as in (4.14), using
(4.11). We have
∣∣∣∣

k√
N

∑

r∈PH ,p∈PL

ηr〈esAξ, b∗
r+pa

∗
−rap(N+ + Θ(N+) + 1)k−1(N≥cNγ + 1)2esAξ〉

∣∣∣∣

≤ C√
N

( ∑

r∈PH ,p∈PL:|p+r|≥cNγ

‖ar+pa−r(N+ + 1)k/2esAξ‖2

)1/2

×
( ∑

r∈PH ,p∈PL

η2
r‖ap(N+ + 1)(k−2)/2(N≥cNγ + 1)2esAξ‖2

)1/2

≤ CNκ−α/2‖(N≥cNγ + 1)(N+ + 1)k/2esAξ‖2 = CNκ−α/2ψξ(s),

where, in the last step, we used that N≥cNγ ≤ N+. In conclusion, we have
proved that

∂sψξ(s) ≤ CNκ−α/2ψξ(s) ≤ Cψξ(s).

Since the bounds are independent of ξ ∈ F≤N
+ and the same bounds hold true

replacing −A by A in the definition ψξ, Gronwall’s lemma implies the last
inequality in (4.8). �

We denote the kinetic energy restricted to low momenta by

K≤cNγ =
∑

p∈Λ∗
+:|p|≤cNγ

p2a∗
pap. (4.17)

We will need the following estimates for the growth of the restricted kinetic
energy.

Lemma 4.3. Assume the exponents α, β satisfy (4.4) (here we only need α ≥ 2κ
and α > β). Let 0 < γ1, γ2 ≤ α, and c1, c2 ≥ 0 (and also cj < 1, if γj = α,
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for j = 1, 2). Then, there exists a constant C > 0 such that the operator
inequalities

e−sAK≤c1Nγ1 esA ≤ K≤c1Nγ1 + N2β+2κ−α−1(N≥ 1
2 Nα + 1)2,

e−sAK≤c1Nγ1 (N≥c2Nγ2 + 1)esA ≤ K≤c1Nγ1 (N≥c2Nγ2 + 1)

+ N2β+2κ−α−1(N≥c2Nγ2 + 1)2(N≥ 1
2 Nα + 1)

(4.18)
for all s ∈ [−1; 1] and all N ∈ N sufficiently large.

Proof. Like the previous Lemma 4.2, this is an application of Gronwall’s lemma.
Let us start to prove the first inequality in (4.18). Fix ξ ∈ F≤N

+ and define
ϕξ : R → R by ϕξ(s) = 〈ξ, e−sAK≤c1Nγ1 esAξ〉 such that

∂sϕξ(s) = 2Re 〈ξ, e−sA[K≤c1Nγ1 , A1]esAξ〉.
We notice first that

[K≤c1Nγ1 , b∗
p+r

]
=

[K≤c1Nγ1 , a∗
−r

]
= 0

if r ∈ PH and p ∈ PL, because |r|, |p + r| ≥ Nα − Nβ > c1N
γ1 for all N ∈ N.

Using the commutation relations (2.1), we then compute

[K≤c1Nγ1 , A1] = − 1√
N

∑

r∈PH ,p∈PL:|p|≤c1Nγ1

p2ηrb
∗
r+pa

∗
−rap. (4.19)

With (4.19) and |p| ≤ Nβ for p ∈ PL, we then find that
∣∣〈ξ, e−sA[K≤c1Nγ1 , A1]esAξ〉∣∣

≤ CNβ

√
N

∑

r∈PH ,p∈PL:|p|≤c1Nγ1

|p||ηr|‖ar+pa−re
sAξ‖‖ape

sAξ‖

≤ CNβ+κ−α/2

√
N

‖(N≥ 1
2 Nα + 1)esAξ‖‖K1/2

≤c1Nγ1 esAξ‖.

(4.20)

Finally, using Lemma 4.2 (with c = 1
2 , γ = α and N ∈ N sufficiently large),

we conclude

∂sϕξ(s) ≤ CNβ+κ−α/2−1/2‖(N≥ 1
2 Nα + 1)esAξ‖‖K1/2

≤c1Nγ1 esAξ‖
≤ CN2β+2κ−α−1〈ξ, (N≥ 1

2 Nα + 1)2ξ〉 + Cϕξ(s).

This proves the first inequality in (4.18), by Gronwall’s lemma.
Next, let us prove the second inequality in (4.18). We define ψξ : R → R

by

ψξ(s) = 〈ξ, e−sAK≤c1Nγ1 (N≥c2Nγ2 + 1)esAξ〉,
and we compute

∂sψξ(s) = 2Re 〈ξ, e−sA
[K≤c1Nγ1 , A1

]
(N≥c2Nγ2 + 1)esAξ〉

+ 2Re 〈ξ, e−sAK≤c1Nγ1

[N≥c2Nγ2 , A1

]
esAξ〉.
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First, we proceed as in (4.20) and obtain with (4.7) that
∣∣〈ξ, e

−sA
[K≤c1Nγ1 , A1](N≥c2Nγ2 + 1)e

sA
ξ〉∣∣

≤ CNβ

√
N

∑

r∈PH ,p∈PL:
|p|≤c1Nγ1

|p||ηr|‖ar+p(N≥c2Nγ2 + 1)
1/2

a−re
sA

ξ‖‖ap(N≥c2Nγ2 + 1)
1/2

e
sA

ξ‖

≤ CNβ+κ−α/2

√
N

‖(N≥c2Nγ2 + 1)(N≥ 1
2

Nα + 1)
1/2

e
sD

ξ‖‖K1/2
≤c1Nγ1 (N≥c2Nγ2 + 1)

1/2
e

sA
ξ‖.

(4.21)
Equation (4.21) and Lemma 4.2 then imply

∣∣〈ξ, e−sA[K≤c1Nγ1 , A1](N≥c2Nγ2 + 1)esAξ〉∣∣
≤ CN2β+2κ−α−1〈ξ, (N≥c2Nγ2 + 1)2(N≥ 1

2 Nα + 1)ξ〉 + Cψξ(s).
(4.22)

Next, we recall the identity in (4.10) and that
[K≤c1Nγ1 , b∗

p+r

]
=

[K≤c1Nγ1 , a∗
−r

]
= 0

whenever r ∈ PH , p ∈ PL and N ∈ N, by assumption on c1 and γ1. We then
estimate

∣∣〈ξ, e−sAK≤c1Nγ1

[N≥c2Nγ2 , A1

]
esAξ〉∣∣

≤ C√
N

∑

r∈PH ,p∈PL,
v∈Λ∗

+:|v|≤c1Nγ1

|v|2|ηr|‖ar+p(N≥c2Nγ2 + 1)−1/2a−ravesDξ‖

× ‖ap(N≥c2Nγ2 + 1)1/2avesDξ‖
≤ CNκ−α/2〈esAξ,K≤c1Nγ1 (N≥c2Nγ2 + 1)esAξ〉 ≤ Cψξ(s).

(4.23)

Hence, putting (4.22) and (4.23) together, we have proved that

∂sψξ(s) ≤ CN2β+2κ−α−1〈ξ, (N≥c2Nγ2 + 1)2(N≥ 1
2 Nα + 1)ξ〉 + Cψξ(s).

This implies the second bound in (4.18), by Gronwall’s lemma. �

Next, we seek a bound for the growth of the potential energy operator.
To this end, we first compute the commutator of VN with the antisymmetric
operator A. We introduce here the shorthand notation for the low-momentum
part of the kinetic energy

KL =
∑

p∈Λ∗
+:|p|≤Nβ

p2a∗
pap =

∑

p∈PL

p2a∗
pap. (4.24)

Proposition 4.4. Assume the exponents α, β satisfy (4.4). There exists a con-
stant C > 0 such that

[VN , A] =
1√
N

∑

u∈Λ∗
+,p∈PL:

p+u �=0

Nκ(V̂ (./N1−κ) ∗ η/N)(u)
[
b∗
p+ua∗

−uap + h.c.
]
+ E[VN ,A]

(4.25)
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where the self-adjoint operator E[VN ,A] satisfies

±E[VN ,A] ≤ δVN + δ−1CNκ−2β−1KL(N≥ 1
2 Nα + 1) + δ−1CN2α+3κ−2N+

+ δ−1CNκ−1(N≥ 1
2 Nα + 1)2

(4.26)
for all δ > 0 and for all N ∈ N sufficiently large.

Proof. From (4.1), we have

[VN , A] = [VN , A1] + h.c.

Following [4, Prop. 8.1], we find

[VN , A1] + h.c. =
1√
N

∗∑

u∈Λ∗
+,v∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)b∗
u+va∗

−uav

+ Θ1 + Θ2 + Θ3 + Θ4 + h.c.,
(4.27)

where

Θ1 = − 1
N3/2

∗∑

u∈Λ∗,v∈PL,
r∈P c

H∪{0}

NκV̂ ((u − r)/N1−κ)ηrb
∗
u+va∗

−uav,

Θ2 =
1

N3/2

∗∑

u∈Λ∗,p∈Λ∗
+,

r∈PH ,v∈PL

NκV̂ (u/N1−κ)ηrb
∗
p+ua∗

v+r−ua∗
−rapav,

Θ3 =
1

N3/2

∗∑

u∈Λ∗,p∈Λ∗
+,

r∈PH ,v∈PL

NκV̂ (u/N1−κ)ηrb
∗
v+ra

∗
p+ua∗

−r−uapav,

Θ4 = − 1
N3/2

∗∑

u∈Λ∗,p∈Λ∗
+,

r∈PH ,v∈PL

NκV̂ (u/N1−κ)ηrb
∗
v+ra

∗
−ra

∗
p+uapav+u.

(4.28)

Here and in the following, the notation
∑∗ indicates that we only sum over

those momenta for which the arguments of the creation and annihilation op-
erators are nonzero. The first term on the r.h.s. of (4.27) appears explicitly in
(4.25), so let us estimate next the size of the operators Θ1 to Θ4, defined in
(4.28). The bounds can be obtained similarly as in the proof of [4, Prop. 8.1].

Consider first Θ1. For ξ ∈ F≤N
+ , we switch to position space and find

|〈ξ, Θ1ξ〉| ≤ 1

N1/2

∑

r∈P c
H

|ηr|
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖b̌xǎyξ‖2

)1/2

×
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∥∥∥
∑

v∈PL

eivxavξ
∥∥∥
2
)1/2
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≤ CNα+3κ/2−1‖V1/2
N ξ‖

( ∫

Λ

dx ei(v−v′)x
∑

v,v′∈PL

〈ξ, a∗
v′avξ〉

)1/2

≤ CNα+3κ/2−1‖V1/2
N ξ‖‖N 1/2

≤Nβ ξ‖. (4.29)

The term Θ2 on the r.h.s. of (4.28) can be controlled by

|〈ξ, Θ2ξ〉|

=

∣∣∣∣
1

N1/2

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH ,v∈PL

eivyeiryηr〈ξ, b̌∗
xǎ∗

ya∗
−rǎxavξ〉

∣∣∣∣

≤ ‖ηH‖
N1/2

[ ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

v∈PL

|v|−2‖b̌xǎyξ‖2

)1/2

×
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

v∈PL

|v|2‖(N≥ 1
2 Nα + 1)1/2ǎxavξ‖2

)1/2

≤ CNβ/2+3κ/2−α/2−1/2‖V1/2
N ξ‖‖K1/2

L (N≥ 1
2 Nα + 1)1/2ξ‖.

In the last step, we used (4.7) to estimate
∫

Λ

dx ‖(N≥ 1
2 Nα + 1)1/2ǎxξ‖2 =

∑

p∈Λ∗
+

‖(N≥ 1
2 Nα + 1)1/2apξ‖2

≤ C
∑

p∈Λ∗
+

‖ap(N≥ 1
2 Nα + 1)1/2ξ‖2

= C‖N 1/2
+ (N≥ 1

2 Nα + 1)1/2ξ‖2 (4.30)

for any ξ ∈ F≤N
+ . The contributions Θ3 and Θ4 can be bounded similarly. We

find

|〈ξ, Θ3ξ〉|

=

∣∣∣∣
1

N1/2

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH ,v∈PL

e−iryηr〈ξ, b∗
v+rǎ

∗
xǎ∗

yǎxavξ〉
∣∣∣∣

≤ C‖ηH‖
N1/2

( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

v∈PL

|v|−2‖ǎxǎyξ‖2

)1/2

×
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

v∈PL

|v|2‖(N≥ 1
2 Nα + 1)1/2ǎxavξ‖2

)1/2

≤ CNβ/2+3κ/2−α/2−1/2‖V1/2
N ξ‖‖K1/2

L (N≥ 1
2 Nα + 1)1/2ξ‖
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as well as

|〈ξ, Θ4ξ〉|

=

∣∣∣∣
1

N1/2

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH ,v∈PL

ηre
−ivy〈ξ, b∗

v+ra
∗
−rǎ

∗
xǎxǎyξ〉

∣∣∣∣

≤ C‖ηH‖
N1/2

[ ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

v∈PL

‖ǎxǎyξ‖2

)1/2

×
[ ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH ,v∈PL

‖ǎxav+ra−rξ‖2

)1/2

≤ CN3β/2+3κ/2−α/2−1/2‖V1/2
N ξ‖‖(N≥ 1

2 Nα + 1)ξ‖.

Summarizing (using α > 3β + 2κ) we proved that

±
4∑

i=1

(Θi + h.c.) ≤ δVN + δ−1CN2α+3κ−2N+ + δ−1CNκ−2β−1KL(N≥ 1
2 Nα + 1)

+ δ−1CNκ−1(N≥ 1
2 Nα + 1)2

(4.31)
for any δ > 0. Setting E[VN ,A] =

∑4
i=1(Θi + h.c.), this proves the claim. �

From Proposition 4.4, we immediately get a bound for the action of eA

on VN .

Corollary 4.5. Assume the exponents α, β satisfy (4.4). Then, there exists a
constant C > 0 such that

e−sAVNesA ≤ CVN + C(Nκ + N2α+3κ−2)(N+ + 1)

+ CNκ−2β−1KL(N≥ 1
2 Nα + 1) + CNκ−3β−2(N≥ 1

2 Nα + 1)3.
(4.32)

for all s ∈ [−1; 1] and N ∈ N large enough.

Proof. We apply Gronwall’s lemma. Given ξ ∈ F≤N
+ , we define ϕξ(s) =

〈ξ, e−sAVNesAξ〉 and compute its derivative s.t.

∂sϕξ(s) = 〈ξ, e−sA[VN , A]esAξ〉.
Hence, we can apply (4.25) and estimate

∣∣∣∣
1√
N

∑

u∈Λ∗
+,v∈PL:

v+u�=0

Nκ〈esAξ, (V̂ (./N1−κ) ∗ η/N)(u)b∗
v+ua∗

−uavesAξ〉
∣∣∣∣

≤ Nκ/2‖η̌‖∞
N

(∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖ǎxǎyesAξ‖2

)1/2

×
(∫

Λ2
dxdy N3−3κV (N1−κ(x − y))

∥∥∥
∑

v∈PL

eivxavesAξ‖2

)1/2

≤ CNκ/2‖V1/2
N esAξ‖‖N≤Nβ esAξ‖ ≤ CNκ〈ξ, e−sAN+esAξ〉 + Cϕξ(s).
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Here, we used (3.10), which shows that ‖η̌‖∞ ≤ CN . Using Lemma 4.2, this
simplifies to

∣∣∣∣
1√
N

∑

u∈Λ∗
+,v∈PL:

v+u�=0

Nκ〈esDξ, (V̂ (./N1−κ) ∗ η/N)(u)b∗
u+va∗

−uavesDξ〉
∣∣∣∣

≤ Cϕξ(s) + CNκ〈ξ, (N+ + 1)ξ〉.
(4.33)

Together with (4.25), the bound (4.26) (choosing δ = 1) and an application of
Lemma 4.2 as well as of Lemma 4.3, the claim follows from Gronwall’s lemma.

�

5. Quartic Renormalization

To explain why the bounds for JN obtained in Prop. 4.1 are not enough to
show Theorem 1.1, we introduce, for r ∈ Λ∗

+, the operators

c∗
r =

1√
N

∑

v∈Λ∗
+:v �=−r,

v∈PL,v+r∈P c
L

a∗
v+rav, e∗

r =
1

2
√

N

∑

v∈Λ∗
+:v �=−r,

v∈PL,v+r∈PL

a∗
v+rav. (5.1)

We denote the adjoints of c∗
r and e∗

r by cr and er, respectively. Notice in
particular that e∗

r = e−r for all r ∈ Λ∗
+. A straightforward computation shows

that
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

[
b∗
p+qa

∗
−paq + h.c.

]

= 8πa0N
κ

∑

p∈P c
H

[
b∗
−pe−p + e∗

−pb−p + b∗
−pe

∗
p + epb−p + b∗

−pc
∗
p + cpb−p

]
.

(5.2)
Together with (4.5), this suggests to bound the Hamiltonian JN from below by
completing the square in the operators g∗

r := b∗
r +c∗

r +e∗
r and gr := br +cr +er,

for r ∈ P c
H ⊂ Λ∗

+. A better look at (4.5) reveals, however, that several terms
that are needed to complete the square are still hidden in the energy HN . Since
these terms are not small, we need to extract them from HN by conjugation
with a unitary operator eD, with

D = D1 − D∗
1 , where D1 =

1
2N

∑

r∈PH ,p,q∈PL

ηra
∗
p+ra

∗
q−rapaq. (5.3)

Since [D,N+] = 0, we have the identity

e−sD(N+ + 1)kesD = (N+ + 1)k (5.4)

for all k ∈ N.
Using eD, we define the final excitation Hamiltonian

MN = e−DJ eff
N eD. (5.5)
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The next proposition provides an important lower bound for MN . Its proof is
given in Sect. 7.

Proposition 5.1. Suppose the exponents α (in the definition of the set PH in
(3.14)) and β (in the definition of the set PL in (4.2)) are such that

i) α > 3β+2κ, ii) 1 > α+β+2κ, iii) 5β > α, iv) β > 3κ, v) 1/2 > β,
(5.6)

Set γ = min(α, 1 − α − κ) (γ > 0 from (5.6)) and let m0 ∈ R be s.t. m0β = α.
Let V ∈ L3(R3) be compactly supported, pointwise nonnegative and spherically
symmetric. Then, MN , as defined as in (5.5), is bounded from below by

MN ≥ 4πa0N
1+κ +

1
4
K + EMN

(5.7)

for a self-adjoint operator EMN
satisfying

eAeDEMN
e−De−A

≥ − CN−βK − CN−β−κVN − CNβ+2κ−1KN≥Nβ

− CNα+β+2κ−1KN≥N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CN3α+κ

(5.8)

for all N ∈ N sufficiently large.

6. Proof of Theorem 1.1

For ε > 0 sufficiently small, we define

α = 14κ + 4ε, β = 4κ + ε . (6.1)

The choice κ < 1/43 guarantees, if ε > 0 is small enough, that all conditions
in (5.6) (and thus also in (3.24) and (4.4)) are satisfied.

From (3.25) and (3.26), we obtain the upper bound

EN ≤ 4πa0N
1+κ + CN16κ+4ε (6.2)

for the ground state energy of HN . From (3.25) and (3.27), on the other hand,
we obtain

HN ≤ 2(GN − 4πa0N
1+κ) + CNκN+ + CN16κ+4ε

With (6.2) and setting G′
N = GN − EN , we deduce that

HN ≤ 2G′
N + CNκN+ + CN16κ+4ε (6.3)

Next, we prove (1.5). From (3.29) and (6.3) we arrive at

GN = Geff
N + EGN

≥ Geff
N − CN−(7κ+2ε)/2G′

N − CN−(5κ+2ε)/2N+ − CN16κ+4ε
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Writing Geff = eAJNe−A and recalling that κ < 1/43 (and that ε > 0 is small
enough), Prop. 4.1 and (6.3) imply that

GN ≥ eAJ eff
N e−A + eAEJN e−A − CN−(7κ+2ε)/2G′

N − CN−(5κ+2ε)/2N+ − CN16κ+4ε

≥ eAJ eff
N e−A − CN−(5κ+2ε)/2G′

N − CN−(3κ+2ε)/2N+ − CN16κ+4ε

Inserting Jeff = eDMNe−D and applying Prop. 5.1, we obtain

GN ≥ 4πa0N
1+κ +

1
4
eAeDKe−De−A + eAeDEMN

e−De−A

− CN−(5κ+2ε)/2G′
N − CN−(3κ+2ε)/2N+ − CN16κ+4ε

(6.4)

With K ≥ (2π)2N+ and Lemma 4.2 (with m = 0 and k = 1) we have

eAeDKe−De−A ≥ (2π)2eAeDN+e−De−A = (2π)2eAN+e−A ≥ cN+ (6.5)

for a constant c > 0 small enough (but independent of N). If N is large enough,
we conclude (using also the upper bound (6.2)), that

N+ ≤ CG′
N − CeAeDEMN

e−De−A + CN16κ+4ε (6.6)

To bound the error term eAeDEMN
e−De−A, we need (according to (5.8)) to

control observables of the form N−1KN≥cNγ . To this end, we observe, first of
all, that, by Cauchy–Schwarz and by (6.3),

N−1KN≥cNγ ≤ δ−1Nκ−2γK + δN2γ−κ−2KN 2
≥cNγ

≤ δ−1Nκ−2γK+2δN2γ−κ−2N≥cNγ G′
NN≥cNγ +CδN−1KN≥cNγ .

(6.7)
Choosing δ > 0 sufficiently small, we thus have

N−1KN≥cNγ ≤ CNκ−2γK + CN2γ−κ−2N≥cNγ G′
NN≥cNγ . (6.8)

We write

N≥cNγ G′
NN≥cNγ = N 2

≥cNγ G′
N + N≥cNγ [G′

N ,N≥cNγ ]. (6.9)

Using (6.3) (similarly as we did in (6.7)) and N≥cNγ ≤ N , N≥cNγ ≤ CN−2γK,
we can bound the expectation of the first term on the r.h.s. of the last equation,
for an arbitrary ξ ∈ F≤N

+ , by

|〈ξ,N 2
≥cNγ G′

Nξ〉|
≤ 〈ξ,N 3

≥cNγ ξ〉1/2〈ξ,G′
NN≥cNγ G′

Nξ〉1/2

≤ CN1/2−γ〈ξ,KN 2
≥cNγ ξ〉1/2〈ξ,G′2

N ξ〉1/2

≤ CN1/2−γ〈ξ,G′2
N ξ〉1/2〈ξ,N≥cNγ G′

NN≥cNγ ξ〉1/2

+ CN1+κ/2−2γ〈ξ,G′2
N ξ〉1/2〈ξ,KN≥cNγ ξ〉1/2

≤ δ〈ξ,N≥cNγ G′
NN≥cNγ ξ〉 + Cδ−1N1−2γ〈ξ,G′2

N ξ〉
+ CδN1+κ−2γ〈ξ,KN≥cNγ ξ〉1/2.

(6.10)



1190 A. Adhikari et al. Ann. Henri Poincaré

On the other hand, to estimate the commutator term in Eq. (6.9), we notice
that A := (HN+1)−1/2i[G′

N ,N≥cNγ ](HN+1)−1/2 is a bounded, self-adjoint op-
erator with ‖A‖ ≤ CNκ+α/2−γ +CNκ+γ/2, by (3.30). Setting μ = max(α, 3γ),
this implies, with (6.3),

|〈ξ,N≥cNγ [G′
N ,N≥cNγ ]ξ〉|

≤ δ〈ξ,N≥cNγ (HN + 1)N≥cNγ ξ〉 + Cδ−1N2κ−2γ+μ〈ξ, (HN + 1)ξ〉
≤ 2δ〈ξ,N≥cNγ G′

NN≥cNγ ξ〉 + CδN1+κ−2γ〈ξ,KN≥cNγ ξ〉
+ Cδ−1N3κ−2γ+μ〈ξ,N+ξ〉 + Cδ−1N3κ+α−2γ+μ‖ξ‖2

(6.11)

for all ξ ∈ F≤N
+ . Plugging (6.10) and (6.11) into (6.9), we find that, for suffi-

ciently small δ > 0,

N≥cNγ G′
NN≥cNγ ≤ CδN1+κ−2γKN≥cNγ + Cδ−1N1−2γG′2

N

+ Cδ−1N3κ−2γ+μN+ + Cδ−1N3κ−2γ+μ+α
(6.12)

Inserting into (6.8) and choosing δ > 0 small enough, we obtain

N−1KN≥cNγ ≤ CNκ−2γK + CN−κ−1G′2
N + CN2κ+μ−2N+ + CN2κ+μ+α−2

(6.13)
Applying (6.13) to the r.h.s. of (5.8) we find, using also (6.3), (6.1), and the
choice κ < 1/43,

eAeDEMN e−De−A ≥ −CN−εN+ − CN−(κ+ε)G′
N − CN13κ+3ε−1G′2

N − CN43κ+12ε

(6.14)
Inserting the last equation into (6.6) and using (6.2), we conclude that for N
large enough,

N+ ≤ CG′
N + CN13κ+3ε−1G′2

N + CN43κ+12ε

For ψN ∈ L2
s(Λ

N ) with ‖ψN‖ = 1 and 〈ψN , (HN − EN )2ψN 〉 ≤ ζ2, the corre-
sponding excitation vector ξN = eBUNψN is such that 〈ξN ,G′2

N ξN 〉 ≤ ζ2 and
thus

〈ξN ,N+ξN 〉 ≤ C
[
ζ + ζ2N13κ+3ε−1 + N43κ+12ε

]

which proves (1.5), using Lemma 3.2. From (6.3), we obtain also

〈ξN ,HNξN 〉 ≤ C
[
ζNκ + ζ2N14κ+3ε−1 + N44κ+12ε

]
, (6.15)

an estimate that will be needed to arrive at (1.6).
Evaluating (6.14) on a normalized ground state ξN of GN and inserting

the result in (6.4) we also deduce that

EN ≥ 4πa0N
1+κ − CN43κ+12ε

Together with the upper bound (6.2), this concludes the proof of (1.3).
We still have to show (1.6) for k > 0. To this end, we will prove the

stronger bound (1.8); Eq. (1.6) follows then immediately from N+ ≤ HN and
by Lemma 3.2. We denote by Qζ the spectral subspace of GN associated with
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energies below EN + ζ. We use induction to show that for all k ∈ N, there
exists a constant C > 0 (depending on k) such that

sup
ξ∈Qζ

〈ξ, (HN + 1)(N+ + 1)2kξ〉
‖ξ‖2

≤ C
[
N44κ+12ε + ζ2N20κ+5ε

]2k+1
(6.16)

for all k ∈ N. This proves (1.8) and thus, with the bound N+ ≤ HN and with
Lemma 3.2, also (1.6). The case k = 0 follows from (6.15). From now on, we
assume (6.16) to hold true, and we prove the same bound, with k replaced by
(k + 1) (and with a new constant C). To this end, we start by observing that
combining (6.3) and (6.6),

HN + 1 ≤ CNκG′
N − CNκeAeDEMN

e−De−A + CN17κ+4ε

Hence,

(N+ + 1)2(k+1)(HN + 1) = (N+ + 1)k+1(HN + 1)(N+ + 1)k+1

≤ CNκ(N+ + 1)k+1G′
N (N+ + 1)k+1

− CNκ(N+ + 1)k+1eAeDEMN
e−De−A(N+ + 1)k+1

+ CN17κ+4ε(N+ + 1)2(k+1)

(6.17)
We estimate the first term on the r.h.s. by

Nκ(N+ + 1)k+1G′
N (N+ + 1)k+1

≤ Nκ(N+ + 1)2(k+1)G′
N + Nκ(N+ + 1)k+1[G′

N , (N+ + 1)k+1]

= Nκ(N+ + 1)2(k+1)G′
N

+ Nκ
k+1∑

j=1

(
k + 1

j

)
(N+ + 1)k+1ad(j)

N+
(GN )(N+ + 1)k+1−j

By Cauchy–Schwarz, we find

Nκ(N+ + 1)k+1G′
N (N+ + 1)k+1

≤ Nκ(N+ + 1)2(k+1) + NκG′
N (N+ + 1)2(k+1)G′

N

+ Nκ
k+1∑

j=1

(
k + 1

j

)
(N+ + 1)k+1ad(j)

N+
(GN )(N+ + 1)k+1−j

With (N+ + 1)2(k+1) ≤ (N+ + 1)2k+1(HN + 1) and with the estimate

‖(HN + 1)−1/2ad(j)
N+

(GN )(HN + 1)−1/2‖ ≤ CN7κ/3+2ε/3 (6.18)
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from (3.31) we obtain, using again Cauchy–Schwarz,

Nκ〈ξ, (N+ + 1)k+1G′
N (N+ + 1)k+1ξ〉

≤ C
[
Nκζ2 + N7κ/3+2ε/3

]
‖ξ‖2

×
[

sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

]1/2

[
sup
ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

]1/2

for every ξ ∈ Qζ . Hence, for any δ > 0, we have

Nκ 〈ξ, (N+ + 1)k+1G′
N (N+ + 1)k+1ξ〉

‖ξ‖2

≤ δ sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

+ Cδ−1
[
Nκζ2 + N7κ/3+2ε/3

]2

sup
ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

(6.19)

To bound the contribution proportional to eAeDEMN
e−De−A on the r.h.s. of

(6.17), we have to control, according to (6.8), terms of the form

(N+ + 1)k+1N≥cNγ G′
NN≥cNγ (N+ + 1)k+1

= ((N+ + 1)k+1N≥cNγ )2G′
N + (N+ + 1)k+1N≥cNγ

[G′
N , (N+ + 1)k+1N≥cNγ

]

=: A + B

For an arbitrary ξ ∈ Qζ , we can bound the expectation of A by Cauchy–
Schwarz as

〈ξ,Aξ〉
‖ξ‖2

≤ 〈ξ, ((N+ + 1)k+1N≥cNγ )2ξ〉
‖ξ‖2

+
〈G′

Nξ, ((N+ + 1)k+1N≥cNγ )2G′
Nξ〉

‖ξ‖2

≤ N2(1 + ζ2) sup
ξ∈Qζ

〈ξ, (N+ + 1)2kN 2
≥cNγ ξ〉

‖ξ‖2

≤ N2−2γ(1 + ζ2) sup
ξ∈Qζ

〈ξ, (N+ + 1)2k+1Kξ〉
‖ξ‖2

≤ N2−2γ(1 + ζ2)

[
sup
ξ∈Qζ

〈ξ, (N+ + 1)2kKξ〉
‖ξ‖2

]1/2

×
[

sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)Kξ〉
‖ξ‖2

]1/2

(6.20)



Vol. 22 (2021) Bose–Einstein Condensation Beyond 1193

As for the term B, we can write

B = (N+ + 1)k+1N 2
≥cNγ

[G′
N , (N+ + 1)k+1

]

+ (N+ + 1)k+1N≥cNγ [G′
N ,N≥cNγ ] (N+ + 1)k+1

=
k+1∑

j=1

(
k + 1

j

)
(N+ + 1)k+1N 2

≥cNγ ad(j)
N+

(G′
N )(N+ + 1)k+1−j

+ (N+ + 1)k+1N≥cNγ [G′
N ,N≥cNγ ] (N+ + 1)k+1

From (6.18) and using (3.30) to estimate

‖(HN + 1)−1/2[N≥cNγ ,GN ](HN + 1)−1/2‖ ≤ CN8κ+2ε−γ + CNκ+γ/2,

we obtain for every ξ ∈ Qζ that

|〈ξ, Bξ〉|
≤ CN7κ/3+2ε/3‖(HN + 1)1/2N 2

≥cNγ (N+ + 1)k+1ξ‖‖(HN + 1)1/2(N+ + 1)kξ‖
+ CN8κ+2ε−γ‖(HN + 1)1/2N≥cNγ (N+ + 1)k+1ξ‖‖(HN + 1)1/2(N+ + 1)k+1ξ‖
+ CNκ+γ/2‖(HN + 1)1/2N≥cNγ (N+ + 1)k+1ξ‖‖(HN + 1)1/2(N+ + 1)k+1ξ‖.

Applying the bounds N+ ≤ N , N≥cNγ ≤ CN−2γK and (6.3) yields on the one
hand

‖(HN + 1)1/2N≥cNγ (N+ + 1)k+1ξ‖‖(HN + 1)1/2(N+ + 1)k+1ξ‖
≤ C‖G′

NN≥cNγ (N+ + 1)k+1ξ‖‖(HN + 1)1/2(N+ + 1)k+1ξ‖
+ CN1+κ/2−γ‖(HN + 1)1/2(N+ + 1)k+1ξ‖2

≤ δ〈ξ, (N+ + 1)k+1N≥cNγ G′
NN≥cNγ (N+ + 1)k+1ξ〉

+ C(δ−1 + N1+κ/2−γ)‖(HN + 1)1/2(N+ + 1)k+1ξ‖2

for any δ > 0. Since 8κ+2ε−γ ≤ 1+κ/2−γ and κ+γ/2 ≤ 1+κ/2−γ for all
γ ≤ α if κ < 1/43, this implies with the choice δ = 1

4 (N8κ+2ε−γ + Nκ+γ/2)−1

that

|〈ξ, Bξ〉| ≤ CN7κ/3+2ε/3‖(HN + 1)1/2N 2
≥cNγ (N+ + 1)k+1ξ‖‖(HN + 1)1/2(N+ + 1)kξ‖

+ C(N1+17κ/2+2ε−γ + N1+3κ/2−γ/2)‖(HN + 1)1/2(N+ + 1)k+1ξ‖2

+
1

4
〈ξ, (N+ + 1)k+1N≥cNγ G′

NN≥cNγ (N+ + 1)k+1ξ〉.
(6.21)

On the other hand, we can estimate

‖(HN + 1)1/2N 2
≥cNγ (N+ + 1)k+1ξ‖

≤ N‖(K + 1)1/2N≥cNγ (N+ + 1)k+1ξ‖ + ‖V1/2
N N 2

≥cNγ (N+ + 1)k+1ξ‖.

(6.22)
Expressing VN in position space, we find, with φ = N≥cNγ (N+ + 1)k+1ξ,

‖V1/2
N N≥cNγ φ‖2 =

∫
dxdy N2−2κV (N1−κ(x − y))‖ǎxǎyN≥cNγ φ‖2 (6.23)
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We have

ǎxN≥cNγ = (N≥cNγ + 1)ǎx − a(χ̌x)

where

χ̌x(y) = χ̌(y − x) =
∑

p∈Λ∗
+:|p|≤cNγ

eip·(x−y)

is such that ‖χ̌x‖ = ‖χ‖ ≤ CN3γ/2. Hence, we find

‖ǎxǎyN≥cNγ φ‖ ≤ N‖ǎxǎyφ‖ + N1/2‖χ̌x‖‖ǎyφ‖ + N1/2‖χ̌y‖‖ǎxφ‖.

Inserting in (6.23), we find

‖V1/2
N N≥cNγ φ‖2 ≤ CN2‖V1/2

N φ‖2 + CN3γ+κ‖N 1/2
+ φ‖2.

From (6.22), we conclude that

‖(HN + 1)1/2N 2
≥cNγ N k+1

+ ξ‖ ≤ N‖(HN + 1)1/2N≥cNγ (N+ + 1)k+1ξ‖

for all γ ≤ α = 14κ + 4ε, if κ < 1/43. Using now similar arguments as before
(6.21), we conclude that together with (6.21), we have

|〈ξ,Bξ〉|
≤ 1

2
〈ξ, (N+ + 1)k+1N≥cNγ G′

NN≥cNγ (N+ + 1)k+1ξ〉
+ CN2+10κ/3+2ε/3−γ‖(HN +1)1/2(N+ + 1)k+1ξ‖‖(HN +1)1/2(N++1)kξ‖
+ CN2+14κ/3+4ε/3‖(HN + 1)1/2(N+ + 1)kξ‖2

+ C(N1+17κ/2+2ε−2γ + N1+3κ/2−γ/2)‖(HN + 1)1/2(N+ + 1)k+1ξ‖2

Combining this with (6.20), we arrive at

〈ξ, (N+ + 1)k+1N≥cNγ G′
NN≥cNγ (N+ + 1)k+1ξ〉

‖ξ‖2

≤
[
N2−2γζ2 + N2+10κ/3+2ε/3−γ

] [
sup

ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

]1/2

×
[

sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

]1/2

+ CN2+14κ/3+4ε/3

[
sup

ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

]

+ C(N1+17κ/2+2ε−2γ + N1+3κ/2−γ/2)

[
sup

ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

]
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for all ξ ∈ Qz. With (6.8), we obtain

N−1〈ξ, (N+ + 1)k+1KN≥cNγ (N+ + 1)k+1ξ〉
‖ξ‖2

≤ CNκ−2γ 〈ξ, (N+ + 1)k+1K(N+ + 1)k+1ξ〉
‖ξ‖2

+ C
[
N−κζ2 + Nγ+7κ/3+2ε/3

] [
sup
ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

]1/2

×
[

sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

]1/2

+ CN2γ+11κ/3+4ε/3

[
sup
ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

]

+ C(N15κ/2+2ε−1 + Nκ/2+3γ/2−1)

[
sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

]
.

Applying this bound to (5.8) and recalling that κ < 1/43, we conclude that

Nκ〈ξ, (N+ + 1)k+1eAeDEMN
e−De−A(N+ + 1)k+1ξ〉

‖ξ‖2

≥ −CN−ε

[
sup
ξ∈Qζ

〈ξ, (HN + 1)(N+ + 1)2(k+1)ξ〉
‖ξ‖2

]

− C
[
N20κ+5εζ2 + N44κ+12ε

]
[

sup
ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

]1/2

×
[

sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

]1/2

.

Therefore, for any δ > 0, we find (if N is large enough)

Nκ〈ξ, (N+ + 1)k+1eAeDEMN
e−De−A(N+ + 1)k+1ξ〉

‖ξ‖2

≥ −δ sup
ξ∈Qζ

〈ξ, (HN + 1)(N+ + 1)2(k+1)ξ〉
‖ξ‖2

− Cδ−1
[
N20κ+5εζ2 + N44κ+12ε

]2
sup
ξ∈Qζ

〈ξ, (HN + 1)(N+ + 1)2kξ〉
‖ξ‖2

.
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From the last bound, (6.19) and (6.17), we obtain

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

≤ δ sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

+ Cδ−1
[
N20κ+5εζ2 + N44κ+12ε

]2
sup
ξ∈Qζ

〈ξ., (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

for any ξ ∈ Qζ . Taking the supremum over all ξ ∈ Qζ , and choosing δ > 0
small enough, we arrive at

sup
ξ∈Qζ

〈ξ, (N+ + 1)2(k+1)(HN + 1)ξ〉
‖ξ‖2

≤ C
[
N20κ+5εζ2 + N44κ+12ε

]2
sup
ξ∈Qζ

〈ξ, (N+ + 1)2k(HN + 1)ξ〉
‖ξ‖2

≤ C
[
N20κ+5εζ2 + N44κ+12ε

]2k+1

by the induction assumption. �

7. Analysis of MN

This section is devoted to the proof of Proposition 5.1. In Sect. 7.1 we establish
bounds on the growth of the number of excitations and of their energy with
respect to the action of eD, with the quartic operator D = D1 − D∗

1 with

D1 =
1

2N

∑

r∈PH ,p,q∈PL

ηra
∗
p+ra

∗
q−rapaq (7.1)

as defined in (5.3). In Sect. 7.2, we compute the different parts of the excitation
Hamiltonian MN , introduced in (5.5). Finally, in Sect. 7.3, we conclude the
proof of Proposition 5.1.

7.1. Growth of Number and Energy of Excitations

The first lemma of this section controls the growth of the number of excitations
with high momentum.

Lemma 7.1. Assume the exponents α, β satisfy (5.6). Let k ∈ N0, m = 1, 2, 3,
0 < γ ≤ α and c > 0 (c < 1 if γ = α). Then, there exists a constant C > 0
such that

e−sD(N+ + 1)k(N≥cNγ + 1)mesD ≤ C(N+ + 1)k(N≥cNγ + 1)m, (7.2)

for all s ∈ [−1; 1] and all N ∈ N large enough.

Proof. Since [N+,N≥cNγ ] = 0 and [N+,D] = 0, it is enough to prove the
lemma for k = 0. We consider first m = 1. For ξ ∈ F≤N

+ , we define the
function ϕξ : R → R by

ϕξ(s) = 〈ξ, e−sD(N≥cNγ + 1)esDξ〉
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so that differentiating yields

∂sϕξ(s) = 2Re 〈esDξ,
[N≥cNγ ,D1

]
esDξ〉 (7.3)

with D1 as in (7.1). By assumption, Nα ≥ Nα − Nβ ≥ cNγ for sufficiently
large N ∈ N. This implies that

[N≥cNγ , a∗
p+r] = a∗

p+r, [N≥cNγ , a∗
q−r] = a∗

q−r

for r ∈ PH and p, q ∈ PL, by (2.1) and (2.10). We then compute
[N≥cNγ , D1

]
=

1

N

∑

r∈PH ,p,q∈PL

ηra∗
p+ra∗

q−rapaq − 1

N

∑

r∈PH ,p,q∈PL,
|p|≥cNγ

ηra∗
p+ra∗

q−rapaq.

(7.4)
and apply Cauchy–Schwarz to obtain

|∂sϕξ(s)| ≤ C

N

( ∑

r∈PH ,p,q∈PL,
|p+r|≥cNγ ,|q−r|≥cNγ

‖ap+r(N≥cNγ + 1)−1/2aq−re
sDξ‖2

)1/2

× ‖ηH‖
( ∑

p,q∈PL

‖ap(N≥cNγ + 1)1/2aqe
sDξ‖2

)1/2

≤ CNκ+3β/2−α/2ϕξ(s) ≤ Cϕξ(s).
(7.5)

Since the bound is independent of ξ ∈ F≤N
+ and it also holds true if we replace

D by −D in the definition of ϕξ, this proves (7.2), for m = 1.
For m = 3, we define

ψξ(s) = 〈ξ, e−sD(N≥cNγ + 1)3esDξ〉
with derivative

∂sψξ(s) = 2Re 〈esDξ, [(N≥cNγ + 1)3,D1]esDξ〉
We have

[(N≥cNγ + 1)3,D1] = 3(N≥cNγ + 1)[N≥cNγ ,D1](N≥cNγ + 1)

+ [N≥cNγ , [N≥cNγ , [N≥cNγ ,D1]]].
(7.6)

The contribution of the first term on the r.h.s. of (7.6) can be controlled as in
(7.5) (replacing esDξ with (N≥cNγ +1)esDξ). With (7.4) and using again that
Nα ≥ Nα − Nβ ≥ cNγ , we obtain that

[N≥cNγ , [N≥cNγ , [N≥cNγ ,D1]]]

=
4
N

∑

r∈PH ,p,q∈PL

ηra
∗
p+ra

∗
q−rapaq − 7

N

∑

r∈PH ,p,q∈PL,
|p|≥cNγ

ηra
∗
p+ra

∗
q−rapaq

+
3
N

∑

r∈PH ,p,q∈PL,
|p|,|q|≥cNγ

ηra
∗
p+ra

∗
q−rapaq.



1198 A. Adhikari et al. Ann. Henri Poincaré

All these contributions can be controlled like those in (7.4). We conclude that

|∂sψξ(s)| ≤ Cψξ(s)

This proves (7.2) with m = 3. The case m = 2 follows by operator monotonicity
of the function x �→ x2/3. �

Next, we prove bounds for the growth of the low-momentum part of the
kinetic energy, defined as in (4.17).

Lemma 7.2. Assume the exponents α, β satisfy (5.6). Let 0 < γ1, γ2 ≤ α,
c1, c2 ≥ 0 (and cj ≤ 1 if γj = α, for j = 1, 2). Then, there exists a constant
C > 0 such that

e−sDK≤c1Nγ1 esD ≤ K≤c1Nγ1 + N2β−1(N≥ 1
2 Nα + 1)2,

e−sDK≤c1Nγ1 (N≥c2Nγ2 + 1)esD ≤ K≤c1Nγ1 (N≥c2Nγ2 + 1)

+ N2β−1(N≥c2Nγ2 + 1)2(N≥ 1
2 Nα + 1)

(7.7)
for all s ∈ [−1; 1] and all N ∈ N sufficiently large.

Proof. Fix ξ ∈ F≤N
+ and define ϕξ : R → R by ϕξ(s) = 〈ξ, e−sDK≤c1Nγ1 esDξ〉

such that

∂sϕξ(s) = 2Re 〈ξ, e−sD[K≤c1Nγ1 ,D1]esDξ〉.
We notice that

[K≤c1Nγ1 , a∗
p+r

]
=

[K≤c1Nγ1 , a∗
q−r

]
= 0

if r ∈ PH and p, q ∈ PL, because |r|, |p + r|, |q − r| ≥ Nα − Nβ > c1N
γ1 for

N ∈ N large enough.
Using (2.1), we then compute

[K≤c1Nγ1 ,D1] = − 1
N

∑

r∈PH ,p,q∈PL:|p|≤c1Nγ1

p2ηra
∗
p+ra

∗
q−rapaq. (7.8)

and, using that |p| ≤ Nβ for p ∈ PL, we obtain with Cauchy–Schwarz
∣∣〈ξ, e−sD[K≤c1Nγ1 ,D1]esDξ〉∣∣

≤ CNβ

N

∑

r∈PH ,p,q∈PL:|p|≤c1Nγ1

|p||ηr|‖ar+paq−re
sDξ‖‖apaqe

sDξ‖

≤ CN5β/2+κ−α/2−1/2‖(N≥ 1
2 Nα + 1)esDξ‖‖K1/2

≤c1Nγ1 esDξ‖.

(7.9)

With Lemma 7.1 choosing c = 1
2 and γ = α, this implies for N ∈ N large

enough that

∂sϕξ(s) ≤ CN5β/2+κ−α/2−1/2‖(N≥ 1
2 Nα + 1)esDξ‖‖K1/2

≤c1Nγ1 esDξ‖
≤ CN2β−1〈ξ, (N≥ 1

2 Nα + 1)2ξ〉 + Cϕξ(s).

This proves the first inequality in (7.7), by Gronwall’s lemma and α > 3β +
2κ ≥ 0.
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Next, let us prove the second inequality in (7.7). We define ψξ : R → R

by

ψξ(s) = 〈ξ, e−sDK≤c1Nγ1 (N≥c2Nγ2 + 1)esDξ〉,
and we compute

∂sψξ(s) = 2Re 〈ξ, e−sD
[K≤c1Nγ1 ,D1

]
(N≥c2Nγ2 + 1)esDξ〉

+ 2Re 〈ξ, e−sDK≤c1Nγ1

[N≥c2Nγ2 ,D1

]
esDξ〉.

First, we proceed as in (7.9) and obtain with (4.7) that
∣∣〈ξ, e−sD[K≤c1Nγ1 ,D1](N≥c2Nγ2 + 1)esDξ〉∣∣

≤ CNβ

N

∑

r∈PH ,p,q∈PL:
|p|≤c1Nγ1

|p||ηr|‖ar+paq−r(N≥c2Nγ2 + 1)1/2esDξ‖

× ‖aqap(N≥c2Nγ2 + 1)1/2esDξ‖
≤ CN5β/2+κ−α/2−1/2‖(N≥c2Nγ2 + 1)(N≥ 1

2 Nα + 1)1/2esDξ‖
× ‖K1/2

≤c1Nγ1 (N≥c2Nγ2 + 1)1/2esDξ‖.

Here, we used in the last step that [aq−r,N≥c2Nγ2 ] = aq−r for r ∈ PH , q ∈ PL

and that Nc2Nγ2 ≥ NNα−Nβ for N ∈ N large enough. The last bound and
Lemma 7.1 imply that

∣∣〈ξ, e−sD[K≤c1Nγ1 ,D1](N≥c2Nγ2 + 1)esDξ〉∣∣
≤ CN2β−1〈ξ, (N≥c2Nγ2 + 1)2(N≥ 1

2 Nα + 1)ξ〉 + Cψξ(s).
(7.10)

Next, we recall the identity (7.4) and that
[K≤c1Nγ1 , a∗

p+r

]
=

[K≤c1Nγ1 , a∗
q−r

]
= 0

whenever r ∈ PH , p, q ∈ PL and N ∈ N is sufficiently large. We then obtain
∣∣〈ξ, e−sDK≤c1Nγ1

[N≥c2Nγ2 ,D1

]
esDξ〉∣∣

≤ C

N

∑

r∈PH ,p,q∈PL,
v∈Λ∗

+:|v|≤c1Nγ1

|v|2|ηr|‖ar+p(N≥c2Nγ2 + 1)−1/2aq−ravesDξ‖

× ‖apaq(N≥c2Nγ2 + 1)1/2avesDξ‖
≤ CN3β/2+κ−α/2〈esDξ,K≤c1Nγ1 (N≥c2Nγ2 + 1)esDξ〉 ≤ Cψξ(s).

(7.11)

Hence, putting (7.10) and (7.11) together, we have proved that

∂sψξ(s) ≤ CN2β−1〈ξ, (N≥c2Nγ2 + 1)2(N≥ 1
2 Nα + 1)ξ〉 + Cψξ(s),

which implies the second bound in (7.7), by Gronwall’s lemma. �

It will also be important to control the potential energy operator, re-
stricted to low momenta. We define

VN,L =
1

2N

∑

u∈Λ∗,p,q∈Λ∗
+:

p+u,q+u,p,q∈PL

NκV̂ (u/N1−κ)a∗
p+ua∗

qapaq+u. (7.12)
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Notice that VN,L = V∗
N,L by symmetry of the momentum restrictions. To

calculate eDVN,Le−D, we will use the next lemma, which will also be useful in
the next subsections.

Lemma 7.3. Assume the exponents α, β satisfy (5.6). Let F = (Fp)p∈Λ∗
+

∈
�∞(Λ∗

+) and define

Z =
1

2N

∑

u∈Λ∗,p,q∈Λ∗
+:

p+u,q+u,p,q∈PL

Fua∗
p+ua∗

qapaq+u (7.13)

Then, there exists a constant C > 0 such that

±(
e−sDZesD − Z

) ≤ C‖F‖∞Nβ−1KL(N≥ 1
2 Nα + 1) + C‖F‖∞N3β−2(N≥ 1

2 Nα + 1)3

(7.14)
for all s ∈ [−1; 1], and for all N ∈ N sufficiently large.

Proof. Given ξ ∈ F≤N
+ , we define ϕξ : R → R by

ϕξ(s) = 〈ξ, e−sDZesDξ〉,
which has derivative

∂sϕξ(s) = 2Re 〈ξ, e−sD[Z,D1]esDξ〉.
By assumption, we have α > 3β+2κ so that |r|, |v+r|, |w−r| ≥ Nα−Nβ > Nβ

if r ∈ PH and v, w ∈ PL, for sufficiently large N ∈ N. This implies in particular
that

[apaq+u, a∗
v+ra

∗
w−r] = 0

whenever q + u, p ∈ PL and r ∈ PH , v, w ∈ PL. As a consequence, we find

[Z,D1] = − 1
2N2

∑

u∈Λ∗,r∈PH ,v,w∈PL:
w−u,v+u∈PL

Fuηra
∗
v+ra

∗
w−raw−uav+u

− 1
N2

∑

u∈Λ∗,r∈PH ,v,w,p∈PL:
p+u,v+u∈PL

Fuηra
∗
v+ra

∗
w−ra

∗
p+uawav+uap.

(7.15)

With (4.7) and Nα − Nβ > 1
2Nα for N ∈ N large enough, we can bound

∣∣∣∣
1

N2

∑

u∈Λ∗,r∈PH ,v,w∈PL:
w−u,v+u∈PL

Fuηr〈esDξ, a∗
v+ra

∗
w−raw−uav+uesDξ〉

∣∣∣∣

≤ C‖F‖∞
N2

( ∑

u∈Λ∗,r∈PH ,v,w∈PL:
w−u,v+u∈PL

|v + u|−2‖av+r(N≥ 1
2 Nα + 1)−1/2aw−re

sDξ‖2

)1/2

×
( ∑

u∈Λ∗,r∈PH ,v,w∈PL:
w−u,v+u∈PL

η2
r |v + u|2‖aw−u(N≥ 1

2 Nα + 1)1/2av+uesDξ‖2

)1/2

≤ C‖F‖∞N7β/2+κ−α/2−3/2‖(N≥ 1
2 Nα + 1)1/2esDξ‖‖K1/2

L (N≥ 1
2 Nα + 1)1/2esDξ‖.
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and
∣∣∣∣

1
N2

∑

u∈Λ∗,r∈PH ,v,w,p∈PL:
p+u,v+u∈PL

Fuηr〈esDξ, a∗
v+ra

∗
w−ra

∗
p+uawav+uape

sDξ〉
∣∣∣∣

≤ C‖F‖∞
N2

( ∑

u∈Λ∗,r∈PH ,v,w,p∈PL:
p+u,v+u∈PL

|p + u|2|p|−2

× ‖av+r(N≥ 1
2 Nα + 1)−1/2aw−rap+uesDξ‖2

)1/2

×
( ∑

u∈Λ∗,r∈PH ,v,w,p∈PL:
p+u,v+u∈PL

η2
r |p|2|p + u|−2

× ‖aw(N≥ 1
2 Nα + 1)1/2av+uape

sDξ‖2

)1/2

≤ C‖F‖∞N5β/2+κ−α/2−1〈ξ, e−sDKL(N≥ 1
2 Nα + 1)esDξ〉.

Lemmas 7.1, 7.2 and the assumption α > 3β + 2κ ≥ 0 implies

±∂sϕs(ξ) ≤ C‖F‖∞Nβ−1〈ξ,KL(N≥ 1
2 Nα + 1)ξ〉

+ C‖F‖∞N3β−2〈ξ, (N≥ 1
2 Nα + 1)3ξ〉.

Hence, integrating the last equation from zero to s ∈ [−1; 1] proves the lemma.
�

With supp∈Λ∗ |NκV̂ (p/N1−κ)| ≤ CNκ, we obtain immediately the fol-
lowing result.

Corollary 7.4. Assume the exponents α, β satisfy (5.6). Then, there exists a
constant C > 0 such that

±(
e−sDVN,LesD − VN,L

) ≤ CNβ+κ−1KL(N≥ 1
2 Nα + 1)

+ CN3β+κ−2(N≥ 1
2 Nα + 1)3

for all s ∈ [−1; 1], and for all N ∈ N sufficiently large.

We also need rough bounds for the conjugation of the full potential energy
operator VN . To this end, we will make use of the following estimate for the
commutator of VN with D = D1 − D∗

1 , with D1 defined in (7.1).

Proposition 7.5. Assume the exponents α, β satisfy (5.6). Then,

[VN ,D] =
1

2N

∑

u∈Λ∗
+,p,q∈PL:

p+u,q−u�=0

Nκ(V̂ (./N1−κ) ∗ η/N)(u)
(
a∗

p+ua∗
q−uapaq + h.c.

)

+ E[VN ,D]

(7.16)
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and there exists a constant C > 0 such that

±E[VN ,D] ≤ δVN + CNα+κ−1VN + CNα+κ−1VN,L

+ δ−1CNβ+κ−1KL(N≥ 1
2 Nα + 1) + δ−1CN3β+κ−1(N≥ 1

2 Nα + 1)2

(7.17)
for all δ > 0 and for all N ∈ N sufficiently large.

Proof. We have

[VN ,D] = [VN ,D1] + h.c.

To compute the commutator [VN ,D1], we compute first of all that

[a∗
p+ua∗

qapaq+u, a∗
v+ra

∗
w−ravaw]

= a∗
p+ua∗

qaq+ua∗
w−ravawδp,v+r + a∗

p+ua∗
qapa

∗
w−ravawδq+u,v+r

+ a∗
p+ua∗

qa
∗
v+raq+uavawδp,w−r + a∗

p+ua∗
qa

∗
v+rapavawδq+u,w−r

− a∗
v+ra

∗
w−ra

∗
qawapaq+uδp+u,v − a∗

v+ra
∗
w−ra

∗
p+uawapaq+uδq,v

− a∗
v+ra

∗
w−rava∗

qapaq+uδp+u,w − a∗
v+ra

∗
w−rava∗

p+uapaq+uδq,w.

Putting the terms in the first and last line on the r.h.s. into normal order, we
obtain

[VN ,D1] + h.c. =
1

2N

∗∑

u∈Λ∗,v,w∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

+ Φ1 + Φ2 + Φ3 + Φ4 + h.c.,
(7.18)

where

Φ1 = − 1
2N2

∗∑

u∈Λ∗,v,w∈PL,
r∈P c

H∪{0}

NκV̂ ((u − r)/N1−κ)ηra
∗
v+ua∗

w−uavaw,

Φ2 = − 1
2N2

∗∑

u∈Λ∗,r∈PH ,
v,w∈PL

NκV̂ (u/N1−κ)ηra
∗
v+ra

∗
w−raw−uav+u,

Φ3 =
1

N2

∗∑

u∈Λ∗,q∈Λ∗
+,

r∈PH ,v,w∈PL

NκV̂ (u/N1−κ)ηra
∗
w−r+ua∗

v+ra
∗
qaq+uavaw,

Φ4 = − 1
N2

∗∑

u∈Λ∗,q∈Λ∗
+,

r∈PH ,v,w∈PL

NκV̂ (u/N1−κ)ηra
∗
v+ra

∗
w−ra

∗
qawav−uaq+u.

(7.19)

The first term on the r.h.s. in (7.18) appears explicitly in (7.16). Hence, let us
estimate the size of the operators Φ1 to Φ4, defined in (7.19).
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Starting with Φ1, we switch to position space and find

|〈ξ, Φ1ξ〉| ≤ 1

N

∑

r∈P c
H∪{0}

|ηr|
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖b̌xǎyξ‖2

)1/2

×
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∥∥∥
∑

w,v∈PL

eivx+iwyavawξ
∥∥∥
2
)1/2

≤ CNα+κ−1‖V1/2
N ξ‖‖V1/2

N,Lξ‖.

(7.20)
The term Φ2 on the r.h.s. of (7.19) can be controlled by

|〈ξ, Φ2ξ〉| =

∣∣∣∣
1

N

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

×
∗∑

r∈PH ,
v,w∈PL

e−iwxe−ivyηr〈ξ, a∗
v+ra∗

w−rǎxǎyξ〉
∣∣∣∣

≤ CN3β‖ηH‖
N

( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖ǎxǎyξ‖2

)1/2

×
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH ,v,w∈PL

‖av+raw−rξ‖2

)1/2

≤ CN9β/2+3κ/2−α/2−3/2‖V1/2
N ξ‖‖(N≥ 1

2 Nα + 1)ξ‖.

Finally, the contributions Φ3 and Φ4 can be bounded as follows. We obtain

|〈ξ, Φ3ξ〉| ≤ 1

N

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH ,
v,w∈PL

|ηr||〈ξ, a∗
v+rǎ

∗
xǎ∗

yǎyavawξ〉|

≤ CN3β/2‖ηH‖
N

( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

v∈PL

|v|−2‖ǎxǎyξ‖2

)1/2

×
(

Nκ−1

∫

Λ

dx
∑

v,w∈PL

|v|2‖(N≥ 1
2 Nα + 1)1/2ǎxawavξ‖2

)1/2

≤ CN2β+3κ/2−α/2−1/2‖V1/2
N ξ‖‖K1/2

L (N≥ 1
2 Nα + 1)1/2ξ‖

as well as

|〈ξ,Φ4ξ〉| ≤ 1
N

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

×
∑

r∈PH ,v,w∈PL

|ηr||〈ξ, a∗
v+ra

∗
w−rǎ

∗
yawǎxǎyξ〉|

≤ CN3β/2‖ηH‖
N

[ ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖ǎxǎyξ‖2

)1/2
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×
(

Nκ−1

∫

Λ

dy
∑

r∈PH ,
v,w∈PL

‖ǎyav+raw−r(N+ + 1)1/2ξ‖2

)1/2

≤ CN3β+3κ/2−α/2−1/2‖V1/2
N ξ‖‖(N≥ 1

2 Nα + 1)ξ‖.

In conclusion, the previous bounds imply with the assumption (5.6) (in par-
ticular, since α > 3β + 2κ and 3β − 2 < 0) that

± (Φ1 + Φ2 + Φ3 + Φ4 + h.c.)

≤ δVN + CNα+κ−1VN + CNα+κ−1VN,L + δ−1CNβ+κ−1KL(N≥ 1
2 Nα + 1)

+ δ−1CN3β+κ−1(N≥ 1
2 Nα + 1)2

(7.21)
holds true in F≤N

+ for any δ > 0. This concludes the proof. �

With Proposition 7.5, we obtain a bound for the growth of VN .

Corollary 7.6. Assume the exponents α, β satisfy (5.6). Then, there exists a
constant C > 0 such that the operator inequality

e−sDVNesD ≤ CVN + CVN,L + CNβ+κ−1KL(N≥ 1
2 Nα + 1)

+ CN3β+κ(N≥ 1
2 Nα + 1).

for all s ∈ [−1; 1] and for all N ∈ N sufficiently large.

Proof. We apply Gronwall’s lemma. Given a normalized vector ξ ∈ F≤N
+ , we

define ϕξ(s) = 〈ξ, e−sDVNesDξ〉 and compute its derivative s.t.

∂sϕξ(s) = 〈ξ, e−sD[VN ,D]esDξ〉.

Hence, we can apply (7.16) and estimate

∣∣∣∣
1

2N

∑

u∈Λ∗
+,v,w∈PL:

v+u,w−u�=0

Nκ(V̂ (./N1−κ) ∗ η/N)(u)〈esDξ, a∗
v+ua∗

w−uavawesDξ〉
∣∣∣∣

≤ ‖η̌‖∞
N

(∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖ǎxǎyesDξ‖2

)1/2

×
(∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∥∥∥
∑

v,w∈PL

eivx+iwyavawesDξ
∥∥∥

2
)1/2

≤ C‖V1/2
N esDξ‖‖V1/2

N,LesDξ‖ ≤ Cϕξ(s) + C〈ξ, e−sDVN,LesDξ〉.
(7.22)
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Here, we used (3.10), which shows that ‖η̌‖∞ ≤ CN . Using Corollary 7.4
(recalling that α > 3β + 2κ and 2β ≤ 1) and N≥ 1

2 Nα ≤ N in F≤N
+ , this

simplifies to

∣∣∣∣
1

2N

∑

u∈Λ∗
+,v,w∈PL:

v+u,w−u�=0

Nκ(V̂ (./N1−κ) ∗ η/N)(u)〈esDξ, a∗
v+ua∗

w−uavawesDξ〉
∣∣∣∣

≤ Cϕξ(s) + C〈ξ,VN,Lξ〉 + CNβ+κ−1〈ξ,KL(N≥ 1
2 Nα + 1)ξ〉

+ CN3β+κ〈ξ, (N≥ 1
2 Nα + 1)ξ〉.

Together with (7.16), the bound (7.17) (choosing δ = 1) and an application of
Lemma 7.1 and of Lemma 7.2, the claim follows now from Gronwall’s lemma.

�

Finally, we need control for the growth of the full kinetic energy operator
K. To this end, we need to estimate its commutator with D.

Proposition 7.7. Assume the exponents α, β satisfy (5.6). Let m0 ∈ R be such
that m0β = α (from (5.6) it follows that 3 < m0 < 5). Then,

[K,D] = − 1
2N

∑

u∈Λ∗,p,q∈PL:
p+u,q−u�=0

Nκ(V̂ (./N1−κ) ∗ f̂N )(u)
(
a∗

p+ua∗
q−uapaq + h.c.

)

+ E[K,D],

(7.23)
where the self-adjoint operator E[K,D] satisfies

±E[K,D] ≤ CN5β/4+κK≤2N3β/2 + δK

+ Cδ−1

2�m0�−1∑

j=3

N jβ/2+3β/2+2κ−1KL(N≥ 1
2 Njβ/2 + 1)

+ Cδ−1Nα+β+2κ−1KL(N≥ 1
2 N�m0�β + 1) + C

(7.24)

for all δ > 0 and for all N ∈ N sufficiently large.

Proof. Using that [K,D] = [K,D1] + h.c., a straight forward computation
shows that

[K,D1] + h.c. = − 1
2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

Nκ(V̂ (./N1−κ) ∗ f̂N )(r)a∗
v+ra

∗
w−ravaw

+ Σ1 + Σ2 + Σ3 + h.c.,
(7.25)
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where

Σ1 =
1

2N

∑

r∈P c
H∪{0},v,w∈PL:
v+r,w−r �=0

Nκ(V̂ (./N1−κ) ∗ f̂N )(r)a∗
v+ra

∗
w−ravaw,

Σ2 =
1

2N

∑

r∈PH ,v,w∈PL:
v+r,w−r �=0

N3−2κλ�(χ̂� ∗ f̂N )(r)a∗
v+ra

∗
w−ravaw,

Σ3 =
2
N

∑

r∈PH ,v,w∈PL:
v+r,w−r �=0

r · v ηra
∗
v+ra

∗
w−ravaw.

(7.26)

Let us estimate the size of the operators Σ1,Σ2 and Σ3. Using
∣∣(V̂ (./N1−κ) ∗

f̂N )(r)
∣∣ ≤ C, we control the operator Σ1 by

|〈ξ, Σ1ξ〉| =

∣∣∣∣
1

2N

∑

r∈P c
H∪{0},v,w∈PL:
v+r,w−r �=0

Nκ(V̂ (./N1−κ) ∗ f̂N )(r)〈ξ, b∗
v+ra∗

w−ravawξ〉
∣∣∣∣

≤ CNκ

N

∑

r∈Λ∗,v,w∈PL:|r|≤N3β/2,
v+r,w−r �=0

‖aw−rav+rξ‖‖avawξ‖

+
CNκ

N

2
m0�−1∑

j=3
∑

r∈P c
H∪{0},v,w∈PL:

Njβ/2≤|r|≤N(j+1)β/2,
v+r,w−r �=0

‖aw−r(N≥ 1
2 Njβ/2 + 1)−1/2av+rξ‖‖av(N≥ 1

2 Njβ/2 + 1)1/2awξ‖

+
CNκ

N ∑

r∈P c
H∪{0},v,w∈PL:

N�m0�β≤|r|≤Nα,
v+r,w−r �=0

‖aw−r(N≥ 1
2 N�m0�β + 1)−1/2av+rξ‖‖av(N≥ 1

2 N�m0�β + 1)1/2awξ‖.

(7.27)

By Cauchy–Schwarz, the first term on the r.h.s. of (7.27) can be controlled by

CNκ

N

∑

r∈Λ∗,v,w∈PL:|r|≤N3β/2,
v+r,w−r �=0

‖aw−rav+rξ‖‖avawξ‖ ≤ CN5β/4+κ〈ξ,K≤2N3β/2ξ〉.

The second contribution on the r.h.s. of (7.27) can be bounded by

CNκ

N

2
m0�−1∑

j=3

∑

r∈P c
H∪{0},v,w∈PL:

Njβ/2≤|r|≤N(j+1)β/2,
v+r,w−r �=0

‖aw−r(N≥ 1
2 Njβ/2 + 1)−1/2av+rξ‖‖aw(N≥ 1

2 Njβ/2 + 1)1/2avξ‖

≤ C

2
m0�−1∑

j=3

Njβ/4+3β/4+κ−1/2‖K1/2ξ‖‖K1/2
L (N≥ 1

2 Njβ/2 + 1)1/2ξ‖.

(7.28)
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Similarly, we find that

CNκ

N

∑

r∈P c
H∪{0},v,w∈PL:

N�m0�β≤|r|≤Nα,
v+r,w−r �=0

‖aw−r(N≥ 1
2 N�m0�β + 1)−1/2av+rξ‖‖aw(N≥ 1

2 N�m0�β + 1)1/2avξ‖

≤ CNα/2+β/2+κ−1/2‖K1/2ξ‖‖K1/2
L (N≥ 1

2 N�m0�β + 1)1/2ξ‖.

(7.29)
In summary, the previous three bounds imply that

±Σ1 ≤ CN5β/4+κK≤2N3β/2 + δK + Cδ−1Nα+β+2κ−1KL(N≥ 1
2 N�m0�β + 1)

+ Cδ−1

2�m0�−1∑

j=3

N jβ/2+3β/2+2κ−1KL(N≥ 1
2 Njβ/2 + 1)

(7.30)
for some constant C > 0 and all δ > 0.

Next, let us switch to Σ2 and Σ3, defined in (7.26). Since (χ̂� ∗ f̂N )(r) =
χ̂�(r) + N−1ηr, with

χ̂�(r) =
4π

|r|2
(

sin(�|r|)
|r| − � cos(�|r|)

)

we find

|(χ̂� ∗ f̂N )(r)| ≤ C|r|−2

This, together with Lemma 3.1(i), Cauchy–Schwarz and α > 3β + 2κ, implies
that

|〈ξ, Σ2ξ〉| ≤ CNκ

N

∑

r∈PH ,v,w∈PL:
v+r,w−r �=0

|r|−2‖av+r(N≥ 1
2 Nα + 1)−1/2aw−rξ‖

× ‖av(N≥ 1
2 Nα + 1)1/2awξ‖

≤ CN−β−1/2‖(N≥ 1
2 Nα + 1)1/2ξ‖‖K1/2

L (N≥ 1
2 Nα + 1)1/2ξ‖.

(7.31)

Similarly, we obtain

|〈ξ, Σ3ξ〉| ≤ C

N

∑

r∈PH ,v,w∈PL

|r||v||ηr|‖av+r(N≥ 1
2 Nα + 1)−1/2aw−rξ‖

× ‖avaw(N≥ 1
2 Nα + 1)1/2ξ‖

≤ CN−1/2‖K1/2ξ‖‖K1/2
L (N≥ 1

2 Nα + 1)1/2ξ‖,

(7.32)

where we used that |r|/|v+r| ≤ 2 for r ∈ PH , v ∈ PL and N ∈ N large enough.
Combining (7.30), (7.31) and (7.32) and defining E[K,D] =

∑3
i=1(Σi + h.c.)

proves the claim. �
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Corollary 7.8. Assume the exponents α, β satisfy (5.6). Let m0 ∈ R be such
that m0β = α (3 < m0 < 5 from (5.6)). Then, there exists a constant C > 0
such that

e−sDKesD

≤ CK + CVN + CVN,L + CN5β/4+κK≤N3β/2

+ C

2�m0�−1∑

j=3

N jβ/2+3β/2+2κ−1
[
KL + N2β(N≥ 1

2 Nα + 1)
]
(N≥ 1

2 Njβ/2 + 1)

+ CNα+β+2κ−1
[
KL + N2β(N≥ 1

2 Nα + 1)
]
(N≥ 1

2 N�m0�β + 1) + CN13β/4+κ

(7.33)
for all s ∈ [−1; 1] and for all N ∈ N sufficiently large.

Proof. Given ξ ∈ F≤N
+ , we define ϕξ(s) = 〈ξ, e−sDKesDξ〉. Differentiation

yields

∂sϕξ(s) = 〈ξ, e−sD[K,D]esDξ〉,

s.t., to bound the derivative of ϕξ, we can apply Proposition 7.7. Arguing
exactly as in (7.22), we obtain with supx∈Λ |fN (x)| ≤ 1 the operator inequality

± 1
2N

∑

u∈Λ∗
+,v,w∈PL:

v+u,w−u�=0

Nκ(V̂ (./N1−κ) ∗ f̂N )(u)a∗
v+ua∗

w−uavaw ≤ CVN + CVN,L.

Now, the claim follows from the bound (7.24) (choosing δ = 1), the
previous bound and an application of Corollaries 7.6, 7.4, Lemmas 7.1, 7.2
and the operator bound N≥ 1

2 Nα ≤ 4N−2αK, by Gronwall’s Lemma. �

7.2. Action of Quartic Renormalization on Excitation Hamiltonian

We compute now the main contributions to MN = e−DJ eff
N eD. From (4.5)

and recalling that [N+,D] = 0, we can decompose

MN = 4πa0N
1+κ − 4πa0N

κ−1N 2
+/N + M(2)

N + M(3)
N + M(4)

N (7.34)

where the operators M(i)
N , i = 2, 3, 4, are defined by

M(2)
N = 8πa0N

κ
∑

p∈P c
H

e−Db∗
pbpe

D + 4πa0N
κ

∑

p∈P c
H

e−D
[
b∗
pb

∗
−p + bpb−p

]
eD

M(3)
N =

8πa0N
κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

e−D
[
b∗
p+qa

∗
−paq + h.c.

]
eD,

M(4)
N = e−DHNeD = e−DKeD + e−DVNeD.

(7.35)
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7.2.1. Analysis of M(2)
N . In this section, we determine the main contributions

to M(2)
N , defined in (7.35) by

M(2)
N = 8πa0N

κ
∑

p∈P c
H

e−Db∗
pbpe

D + 4πa0N
κ

∑

p∈P c
H

e−D
[
b∗
pb

∗
−p + bpb−p

]
eD

(7.36)
The main result of this section is the following proposition.

Proposition 7.9. Assume the exponents α, β satisfy (5.6). Then

M(2)
N = 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]
+ E(2)

MN
(7.37)

and there exists a constant C > 0 such that

±eAeDE(2)
MN

e−De−A ≤ CN−β−2κK + CNκ (7.38)

for all N ∈ N sufficiently large.

Proof. We start with the identity

M(2)
N − 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

= 8πa0N
κ

∫ 1

0

dt
∑

p∈P c
H

e−tD
[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p,D1

]
etD + h.c.

(7.39)
and a straight-forward computation shows that

[
b∗
pbp +

1

2
b∗
pb∗

−p +
1

2
bpb−p, a∗

v+ra∗
w−rawav

]

= b∗
v+ra∗

w−ravbw
(
δp,v+r + δp,w−r − δp,v − δp,w

)

− 1

2
b∗
v+rb∗

w−r

(
δp,wδ−p,v + δ−p,wδp,v) +

1

2
bvbw(δp,w−rδ−p,v+r + δ−p,w−rδp,v+r

)

− 1

2
b∗
v+rb∗

w−r

(
a∗

−pawδp,v + a∗
pawδ−p,v + a∗

−pavδp,w + a∗
pavδ−p,w

)

+
1

2

(
a∗

w−ra−pδp,v+r + a∗
v+ra−pδp,w−r + a∗

w−rapδ−p,v+r + a∗
v+rapδ−p,w−r

)
bvbw.

As a consequence, we find that

M(2)
N − 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1

2
b∗
pb∗

−p +
1

2
bpb−p

]
=

∫ 1

0

dt e−tD
5∑

j=1

(
Vj + h.c.

)
etD,

(7.40)
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where

V1 = −8πa0N
κ

2N

∑

r∈PH ,v∈PL

ηrb
∗
v+rb

∗
−v−r,

V2 =
8πa0N

κ

2N

∑

r∈PH ,v∈PL:
v+r∈P c

H ,v+r �=0

ηrbvb−v,

V3 =
8πa0N

κ

2N

∑

r∈PH ,v,w∈PL:
v+r,w−r �=0

ηr

( − 2 + χ{r+v∈P c
H} + χ{w−r∈P c

H}
)
b∗
v+ra

∗
w−ravbw,

V4 = −8πa0N
κ

N

∑

r∈PH ,v,w∈PL:
v+r,w−r �=0

ηrb
∗
v+rb

∗
w−ra

∗
−vaw,

V5 =
8πa0N

κ

N

∑

r∈PH ,v,w∈PL:
r−w∈P c

H ,v+r,w−r �=0

ηra
∗
v+rar−wbvbw.

(7.41)
Here, χ{p∈S} denotes as usual the characteristic function for the set S ⊂
Λ∗

+, evaluated at p ∈ Λ∗
+. Let us briefly explain how to bound the different

contributions V1 to V5, defined in (7.41). Using Cauchy–Schwarz, the first two
contributions are bounded by

±(V1 + V2) ≤ CN2κ+3β−α/2−1(N≥ 1
2 Nα + 1) + CN2κ+3β/2−1(KL + 1)

where, for V2, we used that v + r ∈ P c
H implies that |r| ≤ Nα + Nβ and

furthermore that
∑

Nα≤|r|≤Nα+Nβ |ηr| ≤ Nκ+β . The contributions V3 to V5,
on the other hand, can be controlled by
|〈ξ, (V3 + V4 + V5)ξ〉|

≤ CNκ

N

∑

r∈PH,v,w∈PL:
v+r,w−r 	=0

|ηr|‖av+r(N≥ 1
2

Nα + 1)−1/2aw−rξ‖‖av(N≥ 1
2

Nα + 1)1/2awξ‖

+
CNκ

N

∑

r∈PH,v,w∈PL:
v+r,w−r 	=0

|ηr|‖av+r(N≥ 1
2

Nα + 1)−1/2aw−rawξ‖‖av(N≥ 1
2

Nα + 1)1/2ξ‖

+
CNκ

N

∑

r∈PH,v,w∈PL:
v+r,w−r 	=0

|ηr|‖av+rξ‖‖avawaw−rξ‖

≤ CN2κ+3β/2−α/2〈ξ, (N≥ 1
2

Nα + 1)ξ〉 ≤ CNκ〈ξ, (N≥ 1
2

Nα + 1)ξ〉

for any ξ ∈ F≤N
+ . In conclusion (since 2κ + 3β − α/2 − 1 < κ from (5.6)), we

have proved that

±
5∑

j=1

(
Vj + h.c.

) ≤ CN2κ+3β/2−1KL + CNκ(N≥ 1
2 Nα + 1).

Now, applying this bound together with (7.40), Lemmas 4.2, 4.3, 7.1, 7.2 and
the operator inequality N≥ 1

2 Nα ≤ 4N−2αK proves the claim. �
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7.2.2. Analysis of M(3)
N . In this section, we determine the main contributions

to M(3)
N , defined in (7.35) by

M(3)
N =

8πa0N
κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

e−D
(
b∗
p+qa

∗
−paq + h.c.

)
eD. (7.42)

Proposition 7.10. Assume the exponents α, β satisfy (5.6). Then, we have that

M(3)
N =

8πa0N
κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

(
b∗
p+qa

∗
−paq + h.c.

)
+ E(3)

MN
(7.43)

and there exists a constant C > 0 such that

± eAeDE(3)
MN

e−De−A

≤ CN−βK + CNα+β/2+2κ−1K(N≥ 1
2 Nα + 1) + CNα+β/2+2κ

(7.44)

for all N ∈ N sufficiently large.

Proof. Let us define the operator Y : F≤N
+ → F≤N

+ by

Y =
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

(
b∗
p+qa

∗
−paq + h.c.

)
, (7.45)

so that M(3)
N = e−DYeD. We recall the definition (7.1) and observe that

e−DYeD − Y =
∫ 1

0

ds e−sD[Y,D1]esD + h.c.. (7.46)

This implies that it is enough to control the commutator [Y,D1] after conju-
gation with etD, for any t ∈ [−1; 1]. Note that, if p ∈ P c

H , q ∈ PL, r ∈ PH and
v, w ∈ PL, we have |v+r| ≥ Nα−Nβ > 1

2Nα > Nβ s.t. [a∗
−paq, a

∗
v+ra

∗
w−r] = 0,

for N ∈ N large enough. Then, a lengthy but straightforward calculation shows
that

[b∗
p+qa

∗
−paq, a

∗
v+ra

∗
w−ravaw] = −b∗

v+ra
∗
w−raq(δ−p,wδp+q,v + δ−p,vδp+q,w)

− b∗
p+qa

∗
v+ra

∗
w−raq(awδ−p,v + avδ−p,w)

− b∗
−pa

∗
v+ra

∗
w−raq(awδp+q,v + avδp+q,w)

and

[a∗
qa−pbp+q , a∗

v+ra∗
w−ravaw] = a∗

qavbwδ−p,w−rδp+q,v+r + a∗
qavbwδ−p,v+rδp+q,w−r

+ a∗
qa∗

w−ravawbp+qδ−p,v+r + a∗
qa∗

v+ravawbp+qδ−p,w−r

− a∗
v+ra∗

w−rawa−pbp+qδq,v − a∗
v+ra∗

w−rava−pbp+qδq,w

+ a∗
qa∗

w−ra−pavbwδp+q,v+r + a∗
qa∗

v+ra−pavbwδp+q,w−r.

As a consequence, we conclude that

[Y,D1] + h.c. =
6∑

i=1

(Ψi + h.c.), (7.47)
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where

Ψ1 = −8πa0N
κ

N3/2

∗∑

r∈PH ,v,w∈PL:
v+w∈PL

ηrb
∗
v+ra

∗
w−rav+w,

Ψ2 =
8πa0N

κ

N3/2

∗∑

r∈PH ,v,w∈PL:
v+r,r−w∈P c

H ,v+w∈PL

ηra
∗
v+wavbw,

Ψ3 = −16πa0N
κ

N3/2

∗∑

r∈PH ,q,v,w∈PL

ηrb
∗
q−va

∗
v+ra

∗
w−raqaw,

Ψ4 =
8πa0N

κ

N3/2

∗∑

r∈PH ,q,v,w∈PL:
v+r∈P c

H

ηra
∗
qa

∗
w−ravawbq−v−r,

Ψ5 =
8πa0N

κ

N3/2

∗∑

r∈PH ,q,v,w∈PL:
v+r−q∈P c

H

ηra
∗
qa

∗
w−ravawbq−v−r,

Ψ6 = −8πa0N
κ

N3/2

∗∑

p∈P c
H ,r∈PH ,v,w∈PL

ηra
∗
v+ra

∗
w−rawa−pbp+v.

(7.48)

Let us explain how to control the operators Ψ1 to Ψ6, defined in (7.48). We
start with Ψ1. Given ξ ∈ F≤N

+ , we find that

|〈ξ, Ψ1ξ〉|

=

∣∣∣∣
8πa0Nκ

N3/2

∗∑

r∈PH,v,w∈PL

ηr〈ξ, b∗
v+ra∗

w−rav+wξ〉
∣∣∣∣

≤ CNκ

N3/2

∗∑

r∈PH,v,w∈PL

|ηr|‖(N≥ 1
2

Nα + 1)−1/2av+raw−rξ‖‖(N≥ 1
2

Nα + 1)1/2av+wξ‖

≤ CN3β+2κ−α/2−1〈ξ, (N≥ 1
2

Nα + 1)ξ〉 ≤ CN3β/2+κ−1〈ξ, (N≥ 1
2

Nα + 1)ξ〉.

The contribution Ψ2 can be bounded by

|〈ξ, Ψ2ξ〉| =

∣∣∣∣
8πa0Nκ

N3/2

∗∑

r∈PH,v,w∈PL:
v+r∈P c

H

ηr〈ξa∗
v+wavbwξ〉

∣∣∣∣

≤ CNβ/2+κ−1〈ξ, K≤2Nβ ξ〉
∑

Nα≤|r|≤Nα+Nβ

|ηr| ≤ CN3β/2+2κ−1〈ξ, K≤2Nβ ξ〉.

Notice here, that we used that |r| ≤ Nα +Nβ if r + v ∈ P c
H and v ∈ PL. Next,

we apply as usual Cauchy–Schwarz to estimate the terms Ψ3 to Ψ5 by

|〈ξ,Ψ3ξ〉 + 〈ξ,Ψ4ξ〉 + 〈ξ,Ψ5ξ〉|
≤ CN3β+2κ−α/2〈ξ, (N≥ 1

2 Nα + 1)ξ〉 ≤ CN3β/2+κ〈ξ, (N≥ 1
2 Nα + 1)ξ〉
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for all α > 3β + 2κ. Finally, the term Ψ6 can be controlled by

|〈ξ, Ψ6ξ〉| =

∣∣∣∣
8πa0Nκ

N3/2

∗∑

p∈P c
H

,r∈PH,v,w∈PL

ηr〈ξ, a∗
v+ra∗

w−rawa−pbp+vξ〉
∣∣∣∣

≤ CNκ−3/2
∗∑

p∈P c
H

,r∈PH,v,w∈PL

|w|−1‖(N≥Nα/2 + 1)−1/2av+raw−rξ‖

× |w||ηr|‖awa−pbp+v(N≥Nα/2 + 1)1/2ξ‖
≤ CNα+β/2+2κ−1〈ξ, KL(N≥ 1

2
Nα + 1)ξ〉 + CNα+β/2+2κ〈ξ, (N≥ 1

2
Nα + 1)ξ〉.

In conclusion, the previous estimates show that

±
[ 6∑

i=1

(Ψi + h.c.)
]

≤ CN3β/2+2κ−1K≤2Nβ + CNα+β/2+2κ−1KL(N≥ 1
2 Nα + 1)

+ CNα+β/2+2κ(N≥ 1
2 Nα + 1),

so that, together with (7.46) and (7.47), an application of the
Lemmas 4.2, 4.3, 7.1, 7.2 and the operator bound N≥ 1

2 Nα ≤ 4N−2αK proves
the claim. �

7.2.3. Analysis of M(4)
N . In this section, we determine the main contributions

to M(4)
N = e−DHNeD, defined in (7.35). To this end, we start with the obser-

vation that

M(4)
N = HN +

∫ 1

0

ds e−sD
(
[K,D1] + [VN ,D1]

)
esD + h.c., (7.49)

with D1 defined in (7.1). By Propositions 7.5 and 7.7, this implies that

M(4)
N = HN − Nκ

2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r 	=0

∫ 1

0
ds V̂ (r/N1−κ)e−sD

(
a∗

v+ra∗
w−ravaw + h.c.

)
esD

+

∫ 1

0
ds e−sD

(
E[K,D] + E[VN ,D]

)
esD,

(7.50)
where we used that V̂ (·/N1−κ)∗(f̂N −η/N)(r) = V̂ (·/N1−κ)(r) for all r ∈ Λ∗

+.
Moreover, the operators E[VN ,D] and E[K,D] are explicitly given by

E[VN ,D] =
4∑

i=1

(
Φi + h.c.

)
, E[K,D] =

3∑

j=1

(
Σj + h.c.

)
(7.51)

where we recall the definitions (7.19) and (7.26). Let us analyze the different
contributions in (7.50), separately. We start with the second term on the r.h.s.
of (7.50).
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Proposition 7.11. Assume the exponents α, β satisfy (5.6). Then, we have

1

2N

∑

u∈Λ∗,p,q∈PL:
p+u,q−u 	=0

NκV̂ (r/N1−κ)e−sD
(
a∗

p+ua∗
q−uapaq + h.c.

)
esD

=
1

2N

∑

u∈Λ∗,p,q∈PL:
p+u,q−u 	=0

NκV̂ (r/N1−κ)
(
a∗

p+ua∗
q−uapaq + h.c.

)

+
s

N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw + E1(s) + E2(s)

(7.52)
and there exists a constant C > 0 s.t. E1(s) and E2(s) satisfy

±E1(s) ≤ C(Nα+β+2κ−1 + N−3β−3κ)K + CN2β+κ,

±E2(s) ≤ CNβ+κ−1KL(N≥ 1
2

Nα + 1) + C(N−β−κ + CN3β/2+κ/2−1)

∫ s

0
dt e−tDVNetD

+ CN2β+2κ−1
∫ s

0
dt e−tDK≤2Nβ (N≥ 1

2
Nα + 1)etD,

(7.53)
for all δ > 0, s ∈ [−1; 1] and for all N ∈ N sufficiently large.

Proof. For definiteness, let us denote by W : F≤N
+ → F≤N

+ the operator

W =
1

2N

∑

u∈Λ∗,p,q∈PL:
p+u,q−u�=0

NκV̂ (u/N1−κ)
(
a∗

p+ua∗
q−uapaq + h.c.

)
(7.54)

and consider the identity

e−sDWesD − W

=

∫ s

0
dt e−tD[W, D1]etD + h.c.

=
1

2N

∫ s

0
dt

∑

u∈Λ∗,p,q∈PL:
p+u,q−u	=0

NκV̂ (r/N1−κ)e−tD
[(

a∗
p+ua∗

q−uapaq + h.c.
)
, D1

]
etD + h.c.

(7.55)
Now, observe that

[ap, a
∗
v+r] = [aq, a

∗
v+r] = [ap, a

∗
w−r] = [aq, a

∗
w−r] = 0

for all p, q ∈ PL and r ∈ PH , v, w ∈ PL and N ∈ N sufficiently large. Then,
proceeding as in the proof of Proposition 7.5, we obtain

[a∗
p+ua∗

q−uapaq, a
∗
v+ra

∗
w−ravaw]

= −a∗
v+ra

∗
w−ra

∗
q−uawapaqδp+u,v − a∗

v+ra
∗
w−ra

∗
p+uawapaqδq−u,v

− a∗
v+ra

∗
w−rava∗

q−uapaqδp+u,w − a∗
v+ra

∗
w−rava∗

p+uapaqδq−u,w.

(7.56)
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and
[a∗

pa
∗
qap−uaq+u, a∗

v+ra
∗
w−ravaw]

= a∗
pa

∗
qaq+ua∗

w−ravawδp−u,v+r + a∗
pa

∗
qap−ua∗

w−ravawδq+u,v+r

+ a∗
pa

∗
qa

∗
v+raq+uavawδp−u,w−r + a∗

pa
∗
qa

∗
v+rap−uavawδq+u,w−r

− a∗
v+ra

∗
w−ra

∗
qawap−uaq+uδp,v − a∗

v+ra
∗
w−ra

∗
pawap−uaq+uδq,v

− a∗
v+ra

∗
w−rava∗

qap−uaq+uδp,w − a∗
v+ra

∗
w−rava∗

pap−uaq+uδq,w.

(7.57)

Combining the last two identities and putting non-normally ordered contribu-
tions into normal order, we find that

[W,D1] + h.c. =
1
N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

+
6∑

j=1

(
ζj + h.c.

)
,

(7.58)
where

ζ1 = − 1
2N2

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL,

r∈P c
H∪{0}

NκV̂ ((u − r)/N1−κ)ηra
∗
v+ua∗

w−uavaw,

ζ2 = − 1
2N2

∗∑

u∈Λ∗,r∈PH ,
v,w∈PL:

w−u,v+u∈PL

NκV̂ (u/N1−κ)ηra
∗
v+ra

∗
w−raw−uav+u,

ζ3 = − 1
2N2

∗∑

u∈Λ∗,r∈PH ,
v,w∈PL

NκV̂ (u/N1−κ)ηra
∗
v+ra

∗
w−raw−uav+u,

ζ4 = − 1
N2

∗∑

u∈Λ∗,r∈PH ,
v,w,q∈PL:
v−u∈PL

NκV̂ (u/N1−κ)ηra
∗
v+ra

∗
w−ra

∗
q−uawav−uaq,

ζ5 =
1

N2

∗∑

u∈Λ∗,r∈PH ,
v,w,q∈PL:
v+r+u∈PL

NκV̂ (u/N1−κ)ηra
∗
v+r+ua∗

qa
∗
w−raq+uavaw,

ζ6 = − 1
N2

∗∑

u∈Λ∗,r∈PH ,
v,w,q∈PL

NκV̂ (u/N1−κ)ηra
∗
v+ra

∗
w−ra

∗
qawav−uaq+u.

(7.59)

Let us briefly explain how to control the operators ζ1 to ζ6, defined in
(7.2.3).
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Noting that v +u ∈ PL implies |u| ≤ 2Nβ whenever v ∈ PL, the first two
contributions ζ1 and ζ2 in (7.2.3) can be controlled by

|〈ξ, ζ1ξ〉| + |〈ξ, ζ2ξ〉|

≤ CNκ

2N2

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL,

r∈P c
H∪{0}

|ηr| |w − u|
|v| ‖av+uaw−uξ‖ |v|

|w − u| ‖avawξ‖

+
CNκ

2N2

∗∑

u∈Λ∗,r∈PH ,
v,w∈PL:

w−u,v+u∈PL

|ηr|‖av+r(N≥ 1
2 Nα + 1)−1/2aw−rξ‖

× ‖aw−u(N≥ 1
2 Nα + 1)1/2av+uξ‖

≤ CNα+β+2κ−1〈ξ,K≤2Nβ ξ〉 + N7β/2+2κ−α/2−1〈ξ, (N≥ 1
2 Nα + 1)ξ〉

+ N7β/2+2κ−α/2−2〈ξ,K≤2Nβ (N≥ 1
2 Nα + 1)ξ〉

≤ CNα+β+2κ−1〈ξ,K≤2Nβ ξ〉 + CN2β+κ−1〈ξ, (N≥ 1
2 Nα + 1)ξ〉.

(7.60)

By switching to position space, the term ζ3 can be bounded by
|〈ξ, ζ3ξ〉|

≤ CN3β/2+κ−α/2−1
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))‖ǎxǎyξ‖2

)1/2

×
( ∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

∑

r∈PH,w∈PL

∥∥∥
∑

v∈PL

eivxav+raw−rξ
∥∥∥
2
)1/2

≤ CN3β/2+κ−α/2−1‖V1/2
N ξ‖

(
Nκ−1

∫

Λ
dx

∑

r∈PH,w∈PL

∥∥∥
∑

v∈PL

eivxav+raw−rξ
∥∥∥
2
)1/2

≤ CN3β/2+κ/2−1〈ξ, VNξ〉 + CN3β/2+κ/2.

We proceed similarly as above for the terms ζ4 and ζ5 which yields

|〈ξ, ζ4ξ〉| + |〈ξ, ζ5ξ〉|

≤ CNκ

N2

∗∑

u∈Λ∗,r∈PH ,
v,w,q∈PL:v−u∈PL

|q|−1|q − u|‖av+r(N≥ 1
2 Nα + 1)−1/2aw−raq−uξ‖

× |ηr||q||q − u|−1‖aw(N≥ 1
2 Nα + 1)1/2av−uaqξ‖

+
CNκ

N2

∗∑

u∈Λ∗,r∈PH ,
v,w,q∈PL:
v+r+u∈PL

(
|q||v|−1‖av+r+uaqaw−rξ‖

)(
|ηr||q|−1|v|‖aq+uavawξ‖

)

≤ CN5β/2+2κ−α/2−1〈ξ, K≤3Nβ (N≥ 1
2 Nα + 1)ξ〉

≤ CNβ+κ−1〈ξ, K≤3Nβ (N≥ 1
2 Nα + 1)ξ〉,

(7.61)
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where, for ζ5, we used that v + r + u ∈ PL implies that |u| ≥ 3
4Nα, and thus

|q + u| ≥ 1
2Nα, whenever v, q ∈ PL, r ∈ PH and N ∈ N sufficiently large

(otherwise |v + r + u| ≥ 1
4Nα − Nβ > Nβ for large enough N ∈ N). Finally,

ζ6 can be controlled by

|〈ξ, ζ6ξ〉|

=

∣∣∣∣
1

N

∗∑

r∈PH ,
v,w,q∈PL

∫

Λ2
N2−2κV (N1−κ(x − y))e−ivx−iqyηr〈ξ, a∗

v+ra∗
w−ra∗

qawǎxǎyξ〉
∣∣∣∣

≤ CNβ/2+κ−α/2−1/2‖V1/2
N ξ‖

(
Nκ−1

∫

Λ
dx

∗∑

r∈PH ,
w,q∈PL

|q|
∥∥∥

∑

v∈PL

e−ivxav+raw−raqξ
∥∥∥
2
)1/2

≤ CNβ/2+κ/2−1/2‖V1/2
N ξ‖‖K1/2

L (N≥ 1
2 Nα + 1)1/2ξ‖

In summary, the previous estimates show that

±
6∑

j=1

(
ζj + h.c.

) ≤ δVN + CN3β/2+κ/2−1VN + CNα+β+2κ−1K≤2Nβ + CN2β+κ

+ C(1 + δ−1)Nβ+κ−1K≤3Nβ (N≥ 1
2 Nα + 1)

(7.62)
for all δ > 0. On the other hand, by Lemma 7.3, we also know that

±
[

1
N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)
∫ s

0

dt e−tDa∗
v+ua∗

w−uavawetD

− s

N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

]

≤ CN−3β−3κK + CN3β+κ−2 + CNβ+κ−1KL(N≥ 1
2 Nα + 1) .

(7.63)
Now, going back to (7.55), the bounds (7.62) and (7.63) imply that

e−sDWesD = W +
s

N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

+ E1(s) + E2(s, δ),
(7.64)

where the self-adjoint operators E1(s) and E2(s) are bounded by

±E1(s) ≤ C(Nα+β+2κ−1 + N−3β−3κ)K + CN2β+κ,

as well as

±E2(s, δ) ≤ CNβ+κ−1KL(N≥ 1
2 Nα + 1) + C(δ + CN3β/2+κ/2−1)

∫ s

0

dt e−tDVNetD

+ C(1 + δ−1)Nβ+κ−1

∫ s

0

dt e−tDK≤2Nβ (N≥ 1
2 Nα + 1)etD,
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for all δ > 0 and uniformly in s ∈ [−1; 1]. Defining E2(s) = E2(s,N−β−κ), this
concludes the proof. �

Equipped with Proposition 7.11, we go back to (7.50) and conclude that

M(4)
N ≥ HN − 1

2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

V̂ (r/N1−κ)
(
a∗

v+ra
∗
w−ravaw + h.c.

)

− 1
2N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

− 1
8
K − CN2β+κ +

∫ 1

0

ds E2(s) +
∫ 1

0

ds e−sD
(
E[VN ,D] + E[K,D]

)
esD,

(7.65)
for all α ≥ 3β + 2κ ≥ 0 with α + β + 2κ − 1 < 0, 0 ≤ κ < β and N ∈ N large
enough.

Next, let us analyse the error terms related to E2(s) and E[VN ,D] further.
The bounds (7.53) and (7.21) (with δ = cN−β−κ for a sufficiently small c >
0; this choice guarantees that we can extract the term VN,L in (7.66), with
an error that can be absorbed in K) imply, together with Lemmas 7.1, 7.2,
Corollaries 7.4 and 7.6 and with the assumption (5.6) on the exponents α, β,
that

∫ 1

0

ds
(
eDE2(s)e

−D + e(1−s)DE[VN ,D]e
−(1−s)D

)

≥ −CN2β+2κ−1KL(N≥ 1
2 Nα + 1) − C̃N−β−κ(VN + VN,L) − CN2β(N≥ 1

2 Nα + 1)

− CN4β+2κ−1(N≥ 1
2 Nα + 1)2

for all N ∈ N large enough and for an arbitrarily small constant C̃ > 0. With
Corollary 7.4 and (7.65), we conclude that

M(4)
N ≥ HN − 1

2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

V̂ (r/N1−κ)
(
a∗

v+ra
∗
w−ravaw + h.c.

)

− 1
2N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

− 1
4
K − CN2β+κ − C̃N−β−κVN,L +

∫ 1

0

ds e−sDE[K,D]e
sD + E(41)

MN
,

(7.66)
where the error E(41)

MN
is such that

eDE(41)
MN

e−D ≥ −CN2β+2κ−1KL(N≥ 1
2 Nα + 1) − CN−β−κVN

− CN2βN≥ 1
2 Nα − CN4β+2κ−1N 2

≥ 1
2 Nα
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Applying Lemmas 4.2, 4.3 and Corollary 4.5, we deduce with the operator
inequality N≥ 1

2 Nα ≤ 4N−2αK that

eAeDE(41)
MN

e−De−A ≥ −CN−βK − CN−β−κVN − CN2β+2κ−1

− CN2β+2κ−1KN≥ 1
2 Nα

(7.67)

for all N ∈ N large enough.
Now, we switch to the contribution containing the operator E[K,D] on the

r.h.s. of the lower bound (7.66). We recall once again that

∫ 1

0

ds e−sDE[K,D]e
sD =

∫ 1

0

ds

3∑

j=1

e−sD
(
Σj + h.c.

)
esD,

where the operators Σ1,Σ2 and Σ3 were defined in (7.26). It turns out that Σ2

and Σ3 are negligible errors while Σ1 still contains an important contribution
of leading order. We start with the analysis of the contribution related to Σ1.

Proposition 7.12. Assume the exponents α, β satisfy (5.6). Then, we have that

1

2N

∑

u∈P c
H∪{0},p,q∈PL:
p+u,q−u �=0

Nκ(
V̂ (/N1−κ) ∗ f̂N

)
(u)e−sD(

a∗
p+ua∗

q−uapaq + h.c.
)
esD

=
1

2N

∑

u∈P c
H∪{0},p,q∈PL:
p+u,q−u �=0

Nκ(
V̂ (/N1−κ) ∗ f̂N

)
(u)

(
a∗

p+ua∗
q−uapaq + h.c.

)
+ E3(s)

(7.68)
and there exists a constant C > 0 such that

± eAeDE3(s)e−De−A

≤ CNα+β+2κ−1K + CNα+β+2κ−1KN≥ 1
2 Nα + CN4β+2κ + CNα+3β+2κ−1

(7.69)
for all s ∈ [−1; 1] and for all N ∈ N sufficiently large.

Proof. We proceed as in Proposition 7.11 and recall Σ1 : F≤N
+ → F≤N

+ to be

Σ1 =
1

2N

∑

u∈P c
H∪{0},p,q∈PL:
p+u,q−u�=0

Nκ
(
V̂ (/N1−κ) ∗ f̂N

)
(u)

(
a∗

p+ua∗
q−uapaq + h.c.

)
.

We then have

e−sDΣ1e
sD − Σ1 =

∫ s

0

dt e−tD[Σ1,D1]etD + h.c. (7.70)

Similarly as in (7.58) and (7.2.3), we find that

[Σ1,D1] + h.c. =
8∑

i=1

(Γi + h.c.), (7.71)
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where

Γ1 =
1

N2

∗∑

u∈P c
H∪{0},r∈PH ,v,w∈PL:

v+u+r,w−u−r∈PL

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(u)ηra

∗
v+u+ra

∗
w−u−ravaw,

Γ2 = − 1
2N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w∈PL:

w−u,v+u∈PL

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(u)ηra

∗
v+ra

∗
w−raw−uav+u,

Γ3 = − 1
2N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w∈PL

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(u)ηra

∗
v+ra

∗
w−raw−uav+u,

Γ4 = − 1
N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w,q∈PL:
v−u∈PL

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(u)ηra

∗
v+ra

∗
w−ra

∗
q−uawav−uaq,

Γ5 =
1

N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w,q∈PL:
v+r+u∈PL

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(u)ηra

∗
v+r+ua∗

qa
∗
w−raq+uavaw,

Γ6 = − 1
N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w,q∈PL

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(u)ηra

∗
v+ra

∗
w−ra

∗
qawav−uaq+u.

The operators Γ1 to Γ6 can be bounded similarly as in the proof of Propo-
sition 7.11. Let us start with Γ1. Applying as usual Cauchy-Schwarz implies
that

|〈ξ,Γ1ξ〉|

≤ CNκ

N2

∗∑

u∈P c
H∪{0},r∈PH ,v,w∈PL:

v+u+r,w−u−r∈PL

(
|v|−1‖av+u+raw−u−rξ‖

)(
|ηr||v|‖avawξ‖

)

≤ CNα/2+5β/2+2κ−1/2‖ξ‖‖K1/2
L ξ‖ ≤ CNα+β+2κ−1〈ξ,KLξ〉 + CN4β+2κ‖ξ‖2

where we used that v+u+r ∈ PL implies |u| ≥ Nα−3Nβ and |r| ≤ Nα+3Nβ

whenever u ∈ P c
H , r ∈ PH and v ∈ PL (otherwise |u+ r + v| ≥ |r|− |u|−Nβ ≥

2Nβ > Nβ if either |u| ≤ Nα − 3Nβ or |r| ≥ Nα + 3Nβ , in contradiction
to u + r + v ∈ PL) for N ∈ N sufficiently large. Notice in addition that∑

Nα−3Nβ≤|u|≤Nα ≤ CN2α+β .

The term Γ2 can be estimated exactly as the term ζ2 in (7.60), that is

|〈ξ,Γ2ξ〉| ≤ CNα+β+2κ−1〈ξ,K≤2Nβ ξ〉 + CN2β+κ−1〈ξ, (N≥ 1
2 Nα + 1)ξ〉.
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The contribution Γ3 can be controlled by

|〈ξ,Γ3ξ〉| ≤ CNκ

2N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w∈PL

|ηr|‖av+r(N≥ 1
2 Nα + 1)−1/2aw−rξ‖

‖aw−u(N≥ 1
2 Nα + 1)1/2av+uξ‖

≤ CNα+3β+2κ−1〈ξ, (N≥ 1
2 Nα + 1)ξ〉.

The terms Γ4 and Γ5 can be bounded exactly as in (7.61). We find

|〈ξ,Γ4ξ〉| + |〈ξ,Γ5ξ〉| ≤ CNβ+κ−1〈ξ,K≤2Nβ (N≥ 1
2 Nα + 1)ξ〉,

Finally, the last contribution Γ6 is bounded by

|〈ξ,Γ6ξ〉| ≤ CNκ

N2

∗∑

u∈P c
H∪{0},r∈PH ,
v,w,q∈PL

(
|q||w|−1‖av+r(N≥ 1

2 Nα + 1)−1/2aw−raqξ‖
)

×
(
|ηr||w||q|−1‖av−u(N≥ 1

2 Nα + 1)1/2awaq+uξ‖
)

≤ CNα+β+2κ−1〈ξ,KL(N≥ 1
2 Nα + 1)ξ〉.

In conclusion, the above estimates imply that

±
6∑

i=1

(
Γi + h.c.

) ≤ CNα+β+2κ−1K≤2Nβ + CNα+β+2κ−1K≤2Nβ (N≥ 1
2 Nα + 1)

+ CNα+3β+2κ−1(N≥ 1
2 Nα + 1) + CN4β+2κ

for all α > 3β + 2κ ≥ 0 and for all N ∈ N sufficiently large. Combining this
estimate with the identites (7.70) and (7.71), and applying Lemmas 4.2, 4.3, 7.1
as well as Lemma 7.2 together with the operator inequality N≥ 1

2 Nα ≤ 4N−2αK
proves the proposition. �

Applying Proposition 7.12 to the lower bound (7.66) and defining E(42)
MN

=∫ 1

0
ds E3(s) with E(s) from Proposition 7.12, we conclude that

M(4)
N ≥ HN − 1

2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

V̂ (r/N1−κ)
(
a∗

v+ra∗
w−ravaw + h.c.

)

− 1

2N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

+
1

2N

∑

u∈P c
H∪{0},p,q∈PL:
p+u,q−u �=0

Nκ(
V̂ (/N1−κ) ∗ f̂N

)
(u)

(
a∗

p+ua∗
q−uapaq + h.c.

)

− 1

4
K − CN−β−κVN,L + E(41)

MN
+ E(42)

MN
+

∫ 1

0

ds e−sD(
Σ2 + Σ3 + h.c.

)
esD,

(7.72)
where E(41)

MN
satisfies the lower bound (7.67), E(42)

MN
satisfies the bound (7.69)

and where the operators Σ2 and Σ3 were defined in (7.26).
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Let us finally estimate the size of the error in the last line of (7.72),
involving the two operators Σ2 and Σ3. Using the estimate (7.31) together with
Lemmas 4.2, 4.3, 7.1 and 7.2, we find for E(43)

MN
=

∫ 1

0
ds e−sD

(
Σ2 + h.c.

)
esD

eAeDE(43)
MN

e−De−A ≥ −CN−β−1KN≥ 1
2 Nα − CN−5β−4κK − CNβ . (7.73)

Finally, consider the operator E(44)
MN

=
∫ 1

0
ds e−sD

(
Σ3 + h.c.

)
esD, with Σ3

defined in (7.26). Let m0 ∈ R be such that m0β = α (in particular, �m0� ≥ 3).
Here, we use the bound (7.32) to find first of all that

E(44)
MN

≥ −
∫ 1

0

ds ‖K1/2esDξ‖
(
N−1/2

∥∥K1/2
L (N≥ 1

2 Nα + 1)1/2ξ
∥∥

+ Nβ−1
∥∥(N≥ 1

2 Nα + 1)3/2ξ
∥∥
)

for any ξ ∈ F≤N
+ with ‖ξ‖ = 1. Notice that we applied once again Lemmas 7.1

and 7.2 in the second factor. With Corollary 7.8, the first factor is bounded
by

E(44)
MN

≥ −C

(
‖K1/2ξ‖ + ‖V1/2

N ξ‖ + ‖V1/2
N,Lξ‖ + N5β/8+κ/2‖K1/2

≤N3β/2ξ‖

+ N−1/2
∥∥K1/2

L (N≥ 1
2 Nα + 1)1/2ξ

∥∥ + N3β/2+κ/2

+
2�m0�−1∑

j=3

N jβ/4+3β/4+κ−1/2
[∥∥K1/2

L (N≥ 1
2 Njβ/2 + 1)1/2ξ

∥∥

+ Nβ
∥∥(N≥ 1

2 Nα + 1)1/2(N≥ 1
2 Njβ/2 + 1)1/2ξ

∥∥
]

+ Nα/2+β/2+κ−1/2
[∥∥K1/2

L (N≥ 1
2 N�m0�β + 1)1/2ξ

∥∥

+ Nβ
∥∥(N≥ 1

2 Nα + 1)1/2(N≥ 1
2 N�m0�β + 1)1/2ξ

∥∥
])

×
(

N−1/2
∥∥K1/2

L (N≥ 1
2 Nα + 1)1/2ξ

∥∥ + Nβ−1
∥∥(N≥ 1

2 Nα + 1)3/2ξ
∥∥
)

for all exponents α, β satisfying (5.6) and N ∈ N sufficiently large. It follows
that

E(44)
MN

≥ E(441)
MN

+ E(442)
MN

+ E(443)
MN

, (7.74)

where

E(441)
MN

= −1
8
K − C̃N−αVN,L − CN3β+κ, E(442)

MN
= N−αVN (7.75)

with an arbitrarily small constant C̃ > 0 and where after an additional ap-
plication of Lemmas 4.2, 4.3, 7.1 and 7.2 together with the operator bound
N≥Θ ≤ Θ−2K, the error E(443)

MN
is such that
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eAeDE(443)
MN

e−De−A

≥ −CNα+β+2κ−1K − CNα−1KN≥ 1
2 Nα − CNα+3β+2κ−1

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CNα+β+2κ−1KN≥ 1

2 N�m0�β

(7.76)
for all exponents α, β satisfying (5.6) and N ∈ N sufficiently large.

Choosing C̃ > 0 sufficiently large (but independently of N ∈ N) and
arguing as right before (7.66), we deduce that

eA
(
C̃N−αeDVN,Le−D + eDE(442)

MN
e−D

)
e−A

≥ −CN−αVN − CN−3β−κN+ − CN−2β−κ−1KN≥ 1
2 Nα

(7.77)

for all α, β satisfying (5.6) and N ∈ N sufficiently large. This follows through
another application of Corollaries 4.5, 7.4 and 7.6, together with
Lemmas 4.2, 4.3, 7.1 and 7.2. We summarize these bounds in the following
corollary.

Corollary 7.13. Let m0 ∈ R be such that m0β = α and let M(4)
N be defined as

in (7.35). For every C̃ > 0, there exists a constant C > 0 such that

M(4)
N ≥ 1

2
K + VN − 1

2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

V̂ (r/N1−κ)
(
a∗

v+ra
∗
w−ravaw + h.c.

)

− 1
2N

∗∑

u∈Λ∗,v,w∈PL:
v+u,w−u∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(u)a∗
v+ua∗

w−uavaw

+
1

2N

∑

u∈P c
H∪{0},p,q∈PL:
p+u,q−u�=0

Nκ
(
V̂ (/N1−κ) ∗ f̂N

)
(u)

(
a∗

p+ua∗
q−uapaq + h.c.

)

− C̃N−β−κVN,L + E(4)
MN

(7.78)
where

eAeDE(4)
MN

e−De−A

≥ −CN−βK − CN−β−κVN − CNα+β+2κ−1KN≥ 1
2 N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CN2β+κ

(7.79)

for all exponents α, β satisfying (5.6) and for all N ∈ N sufficiently large.

Proof. The proof follows from defining E(4)
MN

=
∑3

j=1 E(4j)
MN

+
∑3

j=1 E(44j)
MN

and
combining (7.67), (7.72), (7.69), (7.73), (7.74), (7.75), (7.77), (7.76) and the
operator bound N+ ≤ (2π)−2K in F≤N

+ . �
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7.3. Proof of Proposition 5.1

Recall from (7.34) the decomposition

MN = 4πa0N
1+κ − 4πa0N

κ−1N 2
+/N + M(2)

N + M(3)
N + M(4)

N

Collecting the results of Propositions 7.9, 7.10 and Corollary 7.13, we deduce
that

MN ≥ 4πa0N
1+κ − 4πa0N

κ−1N 2
+ + 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

+
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

[
b∗
−pa

∗
p+qaq + h.c.

]
+

1
2
K

+ VN − 1
2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

V̂ (r/N1−κ)
(
a∗

v+ra
∗
w−ravaw + h.c.

)

− 1
2N

∗∑

r∈Λ∗,v,w∈PL:
v+r,w−r∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(r)a∗
v+ra

∗
w−ravaw

+
1

2N

∑

r∈P c
H∪{0},v,w∈PL:
v+r,w−r �=0

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(r)

(
a∗

v+ra
∗
w−ravaw + h.c.

)

− C̃N−β−κVN,L + E ′
MN

, (7.80)

where E ′
MN

satisfies the lower bound

eAeDE ′
MN

e−De−A ≥ −CN−βK − CN−β−κVN − CNα+β+2κ−1KN≥ 1
2 N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CNα+β/2+2κ

(7.81)
for all N ∈ N sufficiently large.

We combine next the terms on the third, fourth and fifth lines in (7.3).
We first notice that

1
2N

∑

r∈Λ∗,v,w∈PL:
v+r,w−r �=0

V̂ (r/N1−κ)
(
a∗

v+ra
∗
w−ravaw + a∗

va∗
waw−rav+r

)

=
1

2N

∑

r∈Λ∗,v,w∈Λ∗
+:

v,w∈PL,
v+r,w−r �=0

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

+
1

2N

∑

r∈Λ∗,v,w∈Λ∗
+:

v+r,w−r∈PL

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw
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=
1

2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

+
1

2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w,v+r,w−r)∈P 4
L

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

(7.82)

Arguing in the same way for the contribution on the fifth line in (7.3), using
that (f̂N −η/N)(p) = δp,0 for all p ∈ Λ∗

+, and using that v ∈ PL and v+r ∈ PL

implies in particular that r ∈ P c
H , we therefore obtain that

VN − 1
2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

− 1
2N

∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w,v+r,w−r)∈P 4
L

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

− 1
2N

∗∑

r∈Λ∗,v,w∈PL:
v+r,w−r∈PL

Nκ(V̂ (./N1−κ) ∗ η/N)(r)a∗
v+ra

∗
w−ravaw

+
1

2N

∑

r∈P c
H∪{0},v,w∈PL:
v+r,w−r �=0

Nκ
(
V̂ (/N1−κ) ∗ f̂N

)
(r)

(
a∗

v+ra
∗
w−ravaw + h.c.

)

= VN − 1
2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

+
1

2N

∗∑

r∈P c
H∪{0},v,w∈PL:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

Nκ
(
V̂ (/N1−κ) ∗ f̂N

)
(r)a∗

v+ra
∗
w−ravaw.

(7.83)

Now, notice furthermore that

VN − 1
2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw

=
1

2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w)∈(P 2
L)c and

(v+r,w−r)∈(P 2
L)c

V̂ (r/N1−κ)a∗
v+ra

∗
w−ravaw,
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such that, after switching to position space, the pointwise positivity V ≥ 0
implies

VN − 1

2N

∗∑

r∈Λ∗,v,w∈Λ∗
+:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

V̂ (r/N1−κ)a∗
v+ra∗

w−ravaw

=

∫

Λ2
dxdy N2−2κV (N1−κ(x − y))

×
[
a∗(

(χ̌P c
L
)x

)
a∗(

(χ̌P c
L
)y

)
+ a∗(

(χ̌PL
)x

)
a∗(

(χ̌P c
L
)y

)
+ a∗(

(χ̌P c
L
)x

)
a∗(

(χ̌PL
)y

)]

×
[
a
(
(χ̌P c

L
)x

)
a
(
(χ̌P c

L
)y

)
+ a

(
(χ̌PL

)x

)
a
(
(χ̌P c

L
)y

)
+ a

(
(χ̌P c

L
)x

)
a
(
(χ̌PL

)y

)]

≥ 0.

(7.84)
Here, we used that Λ∗

+ = PL ∪P c
L and we denote by χ̌S the distribution which

has Fourier transform χS , the characteristic function of the set S ⊂ Λ∗
+.

Combining (7.3), (7.3), (7.3) and (7.84), it follows that

MN ≥ 4πa0N
1+κ − 4πa0N

κ−1N 2
+ + 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

+
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

[
b∗
−pa

∗
p+qaq + h.c.

]
+

1
2
K

+
1

2N

∗∑

r∈P c
H∪{0},v,w∈PL:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(r)a∗

v+ra
∗
w−ravaw

− C̃N−β−κVN,L + E ′
MN

(7.85)

Using Lemma 3.1, part ii), we have
(
V̂ (./N1−κ) ∗ f̂N

)
(0) = 8πa0 + O(Nκ−1).

This implies

MN ≥ 4πa0N
1+κ + 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

+
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

[
b∗
−pa

∗
p+qaq + h.c.

]
+

1
2
K

+
1

2N

∗∑

r∈P c
H ,v,w∈PL:

(v,w)∈P 2
L or (v+r,w−r)∈P 2

L

Nκ
(
V̂ (./N1−κ) ∗ f̂N

)
(r)a∗

v+ra
∗
w−ravaw

− C̃N−β−κVN,L + E ′′
MN

,

(7.86)
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where, by (7.81) and Lemmas 4.2 and 7.1,

eAeDE ′′
MN

e−De−A ≥ −CN−βK − CN−β−κVN − CNα+β+2κ−1KN≥ 1
2 N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CNα+β/2+2κ

(7.87)
Similarly, for r ∈ P c

H , we know that

∣∣(V̂ (./N1−κ) ∗ f̂N

)
(r) − 8πa0

∣∣ ≤ CNα+κ−1.

Therefore, proceeding exactly as between (7.27) and (7.30), with
(
V̂ (./N1−κ)∗

f̂N

)
(r) replaced by

∣∣(V̂ (/N1−κ) ∗ f̂N

)
(r) − 8πa0

∣∣, we deduce that

MN ≥ 4πa0N
1+κ +

1
2
K + 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

+
8πa0N

κ

√
N

∑

p∈P c
H ,q∈PL:

p+q �=0

[
b∗
−pa

∗
p+qaq + h.c.

]

+
4πa0N

κ

N

∗∑

r∈P c
H ,v,w∈PL:

(v,w)∈P 2
L

or (v+r,w−r)∈P 2
L

a∗
v+ra

∗
w−ravaw − C̃N−β−κVN,L + E ′′′

MN
,

(7.88)

with E ′′′
MN

satisfying the same bound (7.87) as E ′′
MN

. Here we used Lem-
mas 4.2, 4.3, 7.1 and 7.2, as well as the assumption (5.6).

Finally, recalling the definition (5.1) and the identity (5.2), we find

MN ≥ 4πa0N
1+κ +

1
2
K + 8πa0N

κ
∑

p∈P c
H

[
b∗
pbp +

1
2
b∗
pb

∗
−p +

1
2
bpb−p

]

+ 8πa0N
κ

∑

p∈P c
H

[
b∗
−pe−p + e∗

−pb−p + b∗
−pe

∗
p + epb−p + b∗

−pc
∗
p + cpb−p

]

+
4πa0N

κ

N

∗∑

r∈P c
H ,v,w∈PL:

(v,w)∈P 2
L

or (v+r,w−r)∈P 2
L

a∗
v+ra

∗
w−ravaw − C̃N−β−κVN,L + E ′′′

MN
.

(7.89)
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To express also the first term in the third line of (7.89) in terms of the modified
creation and annihilation fields defined in (5.1), we first observe that

4πa0Nκ

N

∗∑

r∈P c
H ,v,w∈PL:

(v,w)∈P 2
L

or (v+r,w−r)∈P 2
L

a∗
v+ra∗

w−ravaw

=
4πa0Nκ

N

∑

r∈P c
H

∗∑

v,w∈PL:
(v,w)∈P 2

L

or (v+r,w−r)∈P 2
L

a∗
v+rava∗

w−raw − 4πa0Nκ

N

∗∑

r∈P c
H ,v∈PL:

(v,v+r)∈P 2
L

a∗
v+rav+r

≥ 4πa0Nκ

N

∑

r∈P c
H

∗∑

v,w∈PL:
(v,w)∈P 2

L

or (v+r,w−r)∈P 2
L

a∗
v+rava∗

w−raw − CN3β+κ−1N+ − C.

Then, for a fixed r ∈ P c
H , we have that

{
(v, w) ∈ Λ∗

+ × Λ∗
+ : (v, w) ∈ P 2

L or (v + r, w − r) ∈ P 2
L

}
=

7⋃

j=1

Sj ,

where

S1 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ PL, w ∈ PL, v + r ∈ PL, w − r ∈ PL

}
,

S2 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ PL, w ∈ PL, v + r ∈ PL, w − r ∈ P c

L

}
,

S3 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ PL, w ∈ PL, v + r ∈ P c

L, w − r ∈ PL

}
,

S4 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ PL, w ∈ PL, v + r ∈ P c

L, w − r ∈ P c
L

}
,

S5 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ P c

L, w ∈ PL, v + r ∈ PL, w − r ∈ PL

}
,

S6 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ PL, w ∈ P c

L, v + r ∈ PL, w − r ∈ PL

}
,

S7 =
{
(v, w) ∈ Λ∗

+ × Λ∗
+ : v ∈ P c

L, w ∈ P c
L, v + r ∈ PL, w − r ∈ PL

}
.

In particular, the union
⋃7

j=1 Sj is a disjoint union. As a consequence, we find
that

4πa0N
κ

N

∑

r∈P c
H

∗∑

v,w∈PL:
(v,w)∈P 2

L

or (v+r,w−r)∈P 2
L

a∗
v+rava∗

w−raw

= 8πa0N
κ

∑

r∈P c
H

[
e∗
rc

∗
−r + c−rer +

1
2
d∗

re
∗
−r +

1
2
e−rer +

1
2
c∗
rc

∗
−r +

1
2
c−rcr

]

+ 8πa0N
κ

∑

r∈P c
H

[
e∗
rer + c∗

rer + e∗
rcr

]
.
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Inserting in (7.88), we obtain

MN ≥ 4πa0N
1+κ +

1
2
K + 8πa0N

κ
∑

r∈P c
H

(
b∗
r + c∗

r + e∗
r

)(
br + cr + er

)

+ 4πa0N
κ

∑

r∈P c
H

[(
b∗
r + c∗

r + e∗
r

)(
b∗
−r + c∗

−r + e∗
−r

)
+ h.c.

]

− 8πa0N
κ

∑

r∈P c
H

[c∗
rcr + b∗

rcr + c∗
rbr] − C̃N−β−κVN,L + E ′′′

MN

(7.90)

with

eAeDE ′′′
MN

e−De−A ≥ −CN−βK − CN−β−κVN − CNα+β+2κ−1KN≥ 1
2 N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CNα+β/2+2κ

Let us now estimate the remaining terms on the last line of (7.90). For ξ ∈
F≤N

+ , we have
∣∣∣∣ 8πa0N

κ
∑

r∈P c
H

〈ξ, c∗
rcrξ〉

∣∣∣∣

≤ CNκ

N

∗∑

r∈P c
H ,v,w∈PL:

v∈PL,r+v∈P c
L,

w∈PL,w+r∈P c
L

(
|w||v|−1‖ar+vawξ‖

)(
|v||w|−1‖avaw+rξ‖

)

≤ CNβ+κ−1〈ξ,KL(N≥Nβ + 1)ξ〉,

(7.91)

and
∣∣∣∣ 8πa0N

κ
∑

r∈P c
H

〈ξ, (b∗
rcr + c∗

rbr)ξ〉
∣∣∣∣ ≤ 1

4

∑

r∈P c
H

〈ξ, b∗
rbrξ〉 + CN2κ

∑

r∈P c
H

〈ξ, c∗
rcrξ〉

≤ 1
4
K + CNβ+2κ−1〈ξ,KL(N≥Nβ + 1)ξ〉,

(7.92)
Similarly, we can bound

N−β−κ〈ξ,VN,Lξ〉 ≤ CN−β−1
∑

u∈Λ∗,p,q∈Λ∗
+:

p+u,q+u,p,q∈PL

‖ap+uaqξ‖‖apaq+uξ‖

≤ CN−β−1
∑

u∈Λ∗,p,q∈Λ∗
+:

p+u,q+u,p,q∈PL

|q|2
|p|2 ‖ap+uaqξ‖2

≤ CN−1‖K1/2N 1/2
+ ξ‖2 ≤ C‖K1/2ξ‖2

Thus, choosing the constant C̃ > 0 small enough and applying Lemmas 7.2, 4.3
and 4.2 to the r.h.s. of (7.91) and to the second term on the r.h.s. of (7.92),
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we conclude that

MN ≥ 4πa0N
1+κ +

1
4
K + 8πa0N

κ
∑

r∈P c
H

(
b∗
r + c∗

r + e∗
r

)(
br + cr + er

)

+ 4πa0N
κ

∑

r∈P c
H

[(
b∗
r + c∗

r + e∗
r

)(
b∗
−r + c∗

−r + e∗
−r

)
+ h.c.

]
+ E ′′′′

MN

(7.93)
where E ′′′′

MN
is such that

eAeDE ′′′′
MN

e−Ae−D ≥ − CN−βK − CN−β−κVN

− CNβ+2κ−1KN≥Nβ − CNα+β+2κ−1KN≥ 1
2 N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CNα+β/2+2κ

(7.94)
We introduce the operators

g∗
r = b∗

r + c∗
r + e∗

r , gr = br + cr + er.

With the algebraic identity

∑

r∈P c
H

[
g∗

rgr +
1

2
g∗

rg∗
−r +

1

2
g−rgr

]
=

1

2

∑

r∈P c
H

(
g∗

r + g−r

)(
gr + g∗

−r

) − 1

2

∑

r∈P c
H

[gr, g∗
r ],

we conclude that

MN ≥ 4πa0N
1+κ +

1
4
K − 4πa0N

κ
∑

r∈P c
H

[gr, g
∗
r ] + E ′′′′

MN

Since

[br, c
∗
r ] = [br, e

∗
r ] = [cr, b

∗
r ] = [er, b

∗
r ] = [cr, e

∗
r ] = [er, c

∗
r ] = 0,

we obtain that

[gr, g
∗
r ] =

N − N+

N
− 1

N
a∗

rar +
1
N

∑

v∈Λ∗
+:v∈PL,

v+r∈P c
L

a∗
vav − 1

N

∑

v∈Λ∗
+:v∈PL,

v+r∈P c
L

a∗
v+rav+r

+
1

4N

∑

v∈Λ∗
+:v∈PL,

v+r∈PL

a∗
vav − 1

4N

∑

v∈Λ∗
+:v∈PL,

v+r∈PL

a∗
v+rav+r.

A straightforward computation then shows that

−4πa0N
κ

∑

p∈P c
H

[gr, g
∗
r ] ≥ −CN3α+κ(1 − N+/N) − CN3α+κN+/N ≥ −CN3α+κ.

Thus

MN ≥ 4πa0N
1+κ +

1
4
K + EMN
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where EMN
satisfies

eAeDEMN
e−Ae−D ≥ − CN−βK − CN−β−κVN

− CNβ+2κ−1KN≥Nβ − CNα+β+2κ−1KN≥ 1
2 N�m0�β

− C

2�m0�−1∑

j=3

N jβ/2+β/2+2κ−1KN≥ 1
2 Njβ/2 − CN3α+κ

This concludes the proof of Proposition 5.1. �
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