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Bose—Einstein Condensation Beyond the
Gross—Pitaevskii Regime

Arka Adhikari, Christian Brennecke and Benjamin Schlein

Abstract. We consider N bosons in a box with volume one, interacting
through a two-body potential with scattering length of the order N =1,
for k > 0. Assuming that x € (0;1/43), we show that low-energy states
exhibit Bose-Einstein condensation and we provide bounds on the expec-
tation and on higher moments of the number of excitations.

1. Introduction

We consider systems of N € N bosons trapped in the box A = [0; 1] with
periodic boundary conditions (the three-dimensional torus with volume one)
and interacting through a repulsive potential with scattering length of the
order N~ for k € (0;1/43). We are interested in the limit of large V. The
Hamilton operator has the form

N
Hy=3 -Bet ¥ NV S@om) 0

i=1 1<i<j<N

and acts on a dense subspace of L?(A%), the Hilbert space consisting of func-
tions in L2(A") that are invariant with respect to permutations of the N € N
particles. Here, we assume the interaction potential V € L3(R?) to have com-
pact support and to be nonnegative, ie. V(z) > 0 for almost all z € R3.

For k = 0, the Hamilton operator (1.1) describes bosons in the so-called
Gross—Pitaevskii limit. This regime is frequently used to model trapped Bose
gases observed in recent experiments. Another important regime is the ther-
modynamic limit, where N bosons interacting through a fixed potential V'
(independent of N) are trapped in the box Ay = [0; L]® and where the limits
N,L — oo are taken, keeping the density p = N/L? fixed. After rescaling
lengths (introducing new coordinates ' = x/L), the Hamilton operator of the
Bose gas in the thermodynamic limit is given (up to a multiplicative constant)
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by (1.1), with k = 2/3. Choosing 0 < k < 2/3, we are interpolating therefore
between the Gross—Pitaevskii and the thermodynamic limits.

The goal of this paper is to show that low-energy states of (1.1) exhibit
Bose-Einstein condensation in the zero-momentum mode g € L?(A) defined
by po(x) = 1 for all x € A and to give bounds on the number of excitations of
the condensate. To achieve this goal, it is convenient to switch to an equivalent
representation of the bosonic system, removing the condensate and focusing
instead on its orthogonal excitations. To this end, we notice that every ¢ €
L2(AYN) can be uniquely decomposed as

N— N—
U}N:CIOSD?N+O£1®SQD?( 1)+a2®sg08§( 2)+"'+01N

where ®; denotes the symmetric tensor product and «; € L2 (A)®sJ for all j =
0,..., N, with L% (A) the orthogonal complement in L*(A) of ¢q. This observa-
tion allows us to define a unitary map Uy : L2(AY) — ]-"EN = @;V:o L% (N)®sd
by setting
Untn ={ao,on,...,ant. (1.2)

The truncated Fock space 5 = @;V:o L2 (A)®+J is used to describe orthog-
onal excitations of the condensate (some properties of the map Uy will be
discussed in Sect. 2 below). On ffN, we introduce the number of particles
operator, defining (N;.€)(™ = n&™ for every € = {€©), .. ¢} e FEN,

We are now ready to state our main theorem, which provides estimates
of the expectation and on higher moments of the number of orthogonal exci-
tations of the Bose—Einstein condensate for low-energy states of (1.1).

Theorem 1.1. Let V € L3(R3) be pointwise nonnegative and spherically sym-
metric. Let ag > 0 denote the scattering length of V. Let Hy be defined as in
(1.1) with 0 < k < 1/43. Then, for every e > 0, there exists a constant C > 0
such that
|En — AmagN'T7| < CN*3te, (1.3)
for all N € N large enough.
Let v € L2(AN) with ||[¢n] =1 and

(¥n, (Hy — En)*¥n) < ¢, (1.4)
for a ¢ > 0. Then, for every e > 0 there exists a constant C > 0 such that
(Unn, NpUnpy) < C [¢ 4 (PNIrterl 4 Nidntae] (1.5)

for all N € N large enough. If moreover vn = x(Hy < Enx + ()N, then for
all k € N and all € > 0 there exists C > 0 such that

(UNibN,Nf Untoy) < C [N205+54-2 + N44H+2e}k (1.6)
for all N € N large enough.

The convergence Ey /4ragN't* — 1, as N — oo, has been first estab-
lished, for Bose gases trapped by an external potential, in [19] (the choice
k > 0 corresponds, in the terminology of [19], to the Thomas-Fermi limit).

It follows from (1.5) that the one-particle density matrix vy = tra . n
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| ) (YN associated with a normalized 1n € L2(AYN) satisfying (1.4) is such
that

1 — (w0, YNwo) = % [N — (¥~ a"(po)a(po)Pn)]
= %<UN¢N,N+ Untn) (1.7)

< C [<N71 + <2N13I€+872 + N43K+4€71]

as N — oo. Here, we used the formula Una*(po)a(po)Uny = N — Ny; see
(2.5). Equation (1.7) implies that low-energy states of (1.1) exhibit complete
Bose-Einstein condensation, if x < 1/43.

We remark that the estimate (1.6) follows, in our analysis, from a stronger
bound controlling not only the number but also the energy of the excitations of
the condensate. As we will explain in Sect. 3, in order to estimate the energy of
excitations in low-energy states, we first need to remove (at least part of) their
correlations. If we choose, as we do in (1.6), ¥y € L2(AYN) with ||| = 1 and
Yy = x(Hy < En + ()N, we can introduce the corresponding renormalized
excitation vector {y = ePUnYN € ]—'EN, with the antisymmetric operator B
defined as in (3.21) (the unitary operator e? will be referred to as a generalized
Bogoliubov transformation). We will show in Sect. 6 that for every k € N, there
exists C' > 0 such that

(En, (Hn + 1) (Vg + 1)%Rey) < O [N20mte2 4 Nadnt2e
for all N large enough. Here Hy = K + Vy, where

1 ~

— 2 x _ K 1—r\  * *

K= E p ayap, and Vy = T E NV (r/N""")ay  azaq1rayp
pEAL P.gEAY TEA™:

r#=p,—q

]2k+1 (1.8)

(1.9)
are the kinetic and potential energy operators, restricted to fEN. (Here, V is
the Fourier transform of the potential V', defined as in (2.4).) Equation (1.6)
follows then from (1.8), because N} commutes with Hy, Vo < K < Hpy and
because conjugation with the generalized Bogoliubov transformation e” does
not change the number of particles substantially; see Lemma 3.2 (for k € N
even, we also use simple interpolation).

In the Gross—Pitaevskii regime corresponding to x = 0 the convergence
YN = |po){po| has been first established in [16-18] and later, using a different
approach, in [21].} In this case (ie. K = 0), the bounds (1.3), (1.5) and (1.6)
with e = 0 (which are optimal in their N-dependence) have been shown in [4].
Previously, they have been established in [2], under the additional assumption
of small potential. A simpler proof of the results of [2], extended also to systems
of bosons trapped by an external potential, has been recently given in [20].
The result of [4] was used in [3] to determine the second order corrections to
the ground state energy and the low-energy excitation spectrum of the Bose
gas in the Gross—Pitaevskii regime. Note that our approach in the present

LGoing through the proof of [18, Theorem 5.1], one can observe that the authors actually
show that 1 — (o, YNo) < CN—2/17,
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paper could be easily extended to the case k = 0, leading to the same bounds
obtained in [4]. We exclude the case k = 0 because we would have to modify
certain definitions, making the notation more complicated (for example, the
sets Py in (3.14) and Py, in (4.2) would have to be defined in terms of cutoffs
independent of N).

The methods of [16-18] can also be extended to show Bose-Einstein con-
densation for low-energy states of (1.1), for some £ > 0. In fact, following
the proof of [18, Theorem 5.1], it is possible to show that for a normalized
Yy € L2(AN) with |[¢n] = 1 and such that (¥n, Hyton) < En + C, the
expectation of the number of excitations is bounded by

(Unn, NyUnyn) < C [leﬁw + C} (1.10)

which implies complete Bose—Einstein condensation for low-energy states, for
all K < 1/10. For sufficiently small x > 0, Theorem 1.1 improves (1.10) because
it gives a better rate? (if k < 15/711) and because, through (1.6), it also
provides (under stronger conditions on ) bounds for higher moments of the
number of excitations N .

In [10], in a slightly different setting, the authors obtain a bound of
the form (1.6) for k = 1, for the choice k = 1/(55 + 1/3) (for normalized
¥y € L2(AYN) that satisfy (Y, Hyin) < Ex + ¢). They use this result to
show a lower bound on the ground state energy of the dilute Bose gas in the
thermodynamic limit matching the prediction of Lee—Yang and Lee-Huang—
Yang [13,14].

After completion of our work, two more papers have appeared whose re-
sults are related with Theorem 1.1. Based on localization arguments from [8,
10], a bound for the expectation of N1 in low-energy states has been shown
in [9], establishing Bose-Einstein condensation for all k < 2/5 (as pointed out
there, using a refined analysis similar to that of [10], the range of k can be
slightly improved). On the other hand, following an approach similar to [2], but
with substantial simplifications (partly due to the fact that the author works
in the grand canonical, rather than the canonical, ensemble), a new proof
of Bose-Einstein condensation was obtained in [11], in the Gross-Pitaevskii
regime, under the assumption of small potential. There is hope that the ap-
proach of [11] can be extended beyond the Gross—Pitaevskii regime, providing
a simplified proof of Theorem 1.1, potentially allowing for larger values of k.

The derivation of the bounds (1.5), (1.6), (1.8) is crucial to resolve the
low-energy spectrum of the Hamiltonian (1.1). The extension of estimates on
the ground state energy and on the excitation spectrum obtained in [3] for the
Gross—Pitaevskii limit, to regimes with x > 0 small enough will be addressed
in a separate paper [6], using the results of Theorem 1.1. With our techniques,
it does not seem possible to obtain such precise information on the spectrum
of (1.1) using only previously available bounds like (1.10).

2For k > 0, the rate (1.6) is not expected to be optimal. Bogoliubov theory predicts that
the number of excitations of the Bose-Einstein condensate in a Bose gas with density p is
of the order Np1/2; see [5]. In our regime, this corresponds to N3r/2 excitations.



Vol. 22 (2021) Bose-Einstein Condensation Beyond 1167

Let us now briefly explain the strategy we use to prove Theorem 1.1.
The first part of our analysis follows closely [4]. We start in Sect. 2 by intro-
ducing the excitation Hamiltonian £ = Uy HyUj;, acting on the truncated
Fock space ]—'EN; the result is given in (2.6), (2.7). The vacuum expectation

(Q, LN = N1+“IA/(O)/2 is still very far from the correct ground state energy
of Ly (and thus of Hy); the difference is of order N1™*. This is a consequence
of the definition (1.2) of the unitary map Uy, whose action removes products
of the condensate wave function g, leaving however all correlations among
particles in the wave functions «; € L3 (A)®<7, j=1,...,N.

To factor out correlations, we introduce in Sect. 3 a renormalized excita-
tion Hamiltonian Gy = e~ B L e, defined through unitary conjugation of £
with a generalized Bogoliubov transformation e®. The antisymmetric opera-
tor B : }"EN — ffN is quadratic in the modified creation and annihilation
operators by, b5 defined, for every momentum p € A% = 27Z*\{0}, in (2.8) (b}
creates a particle with momentum p annihilating, at the same time, a particle
with momentum zero; in other words, b, creates an excitation, moving a parti-
cle out of the condensate). The properties of Gy are listed in Prop. 3.3. In par-
ticular, Proposition 3.3 implies that to leading order, (Q, Gy Q) ~ 4rag N1,
if k is small enough.

Unfortunately, Gy is not coercive enough to prove directly that low-
energy states exhibit condensation (in the sense that it is not clear how to
estimate the difference between Gy and its vacuum expectation from below by
the number of particle operator A} ). For this reason, in Sect. 4, we define yet
another renormalized excitation Hamiltonian Jy = e~ 4G NeA, where now A is
the antisymmetric operator (4.1), cubic in (modified) creation and annihilation
operators (to be more precise, we only conjugate the main part of Gy with
e?l; see (4.3)). Important properties of Jy are stated in Proposition 4.1. Up
to negligible errors, the conjugation with e” completes the renormalization
of quadratic and cubic terms; in (4.5), these terms have the same form they
would have for particles interacting through a mean-field potential with Fourier
transform 8magN*1(|p| < N%), with a parameter o > 0 that will be chosen
small enough, depending on x (in other words, the renormalization procedure
allows us to replace, in all quadratic and cubic terms, the original interaction
with Fourier transform N~V (p/N'~*) decaying only for momenta |p| >
N'—* with a potential whose Fourier transform already decays on scales N® <
Nl—n)_

The main problem with Jy is that its quartic terms (the restriction of the
initial potential energy on the orthogonal complement of the condensate wave
function) are still proportional to the local interaction with Fourier transform
N71+n‘7(p/N17;<;)'

One possibility to solve this problem is to neglect the original quartic
terms (they are positive) and insert instead quartic terms proportional to the
renormalized mean-field potential 8ragN"1(|p| < N¢), so that Bose—Einstein
condensation follows as it does for mean-field systems (see [22]). Since (with
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the notation x for the inverse Fourier transform of the characteristic function
on the ball of radius one)

8magN"
% E Uy Qg Qg O = 8ragN3otr—1 /)Z(Na(a: —Y))ayay,aya, drdy
[r|<N«
Batr—1 p/2
< ON°TINE

and since we know from (1.10) that A < N in low-energy states, the

insertion of the renormalized quartic terms produces an error that can be
controlled by localization in the number of particles, if

15 + 20k 37 2
3a+k—1+ 17 —3a+17n 17<0
This strategy was used in [4] to prove Bose-Einstein condensation with optimal
rate in the Gross—Pitaevskii regime x = 0 (in this case, one can choose o = 0).

Here, we follow a different approach. We perform a last renormalization
step, conjugating Jx through a unitary operator e”, with D quartic in creation
and annihilation operators. This leads to a new Hamiltonian My = e~ Jye®
(in fact, it is more convenient to conjugate only the main part of Jy, ignoring
small contributions that can be controlled by other means; see (5.5)), where the
original interaction NV ’H"V(p/N 1=%) is replaced by the mean-field potential
8ragN*1(|p| < N?) in all relevant terms.> Condensation can then be shown
as it is done for mean-field systems, with no need for localization. This is the
main novelty of our analysis, compared with [4]. In Sect. 5, we define the final
Hamiltonian My and in Proposition 5.1 we bound it from below. The proof of
Proposition 5.1, which is technically the main part of our paper, is deferred to
Sect. 7. In Sect. 6, we combine the results of the previous sections to conclude
the proof of Theorem 1.1.

The results we prove with our new technique are stronger than what
we would obtain using the approach of [4] in the sense that they allow for
larger values of k and better rates. More importantly, we believe that the
approach we propose here is more natural and that it leaves more space for
extensions. In particular, with the final quartic renormalization step, we map
the original Hamilton operator (1.1), with an interaction varying on momenta
of order N'=* into a new Hamiltonian having the same form, but now with
an interaction restricted to momenta smaller than N®. If a < 1 — k, this
leads to an effective regularization of the potential and it suggests that further
improvements may be achieved by iteration; we plan to follow this strategy,
which bears some similarities to the renormalization group analysis developed
in [1], in future work.

In order to control errors arising from the quartic conjugation, it is im-
portant to use observables that were not employed in [4]. In particular, the
expectation of the number of excitations with large momenta

3Observe that the renormalized potential with Fourier transform 8magN~11#1(|p| < N¥)
that emerges in our rigorous analysis after a series of unitary transformations is reminiscent
of the interaction that appears through an ad hoc substitution in the pseudo-potential
method of [12,13].
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_ *
NZN‘Y - Z apap

PEAL:|p|> N7

and of its powers N2 5., N3 ., as well as the expectation of products of the
form K N>y~ and K N2y, involving the kinetic energy operator restricted
to low momenta K, will play a crucial role in our analysis. It will therefore be
important to establish bounds for the growth of these observables through all
steps of the renormalization procedure (Lemmas 4.2, 4.3, 7.1, 7.2). In Sect. 6,
an important step in the proof of Theorem 1.1 will consist in controlling the ex-
pectation of these observables on low-energy states of the renormalized Hamil-
tonian Gy.

2. The Excitation Hamiltonian

We denote by F = @,,~o L*(A)®" the bosonic Fock space over the one-
particle space L2(A) and by Q = {1,0,...} the vacuum vector. We can define
the number of particles operator A by setting (N)("™) = nyp(™) for all ¢ =
{w(o), P .} in a dense subspace of F. For every one-particle wave function
g € L*(A), we define the creation operator a*(g) and its hermitian conjugate,
the annihilation operator a(g), through

g(l’j)\p(nil)(l‘h v ,xj_1,$j+1, e 73371)

Sl-
-

I
—

(a*(9)®) ™ (21,...,2,) =

(@@ (a1, ) = VAFT [ gV o, ) do
A

Creation and annihilation operators are defined on the domain of N'*/2, where
they satisfy the bounds

la(£)wll < [IFIIIN 2], la*(Hel < [N + 1)1 2|
and the canonical commutation relations
la(g),a”(h)] = (g,h), la(g),a(h)] = [a"(g),a"(h)] =0 (2.1)

for all g,h € L*(A) ({.,.) denotes here the inner product on L?*(A)). For p €
A* = 2773, we define the plane wave ¢, € L*(A) through ¢, (z) = e=7'% for all
x € A, and the operators a;, = a(p,) and a, = a(p,) creating and, respectively,
annihilating a particle with momentum p. It is sometimes convenient to switch
to position space, introducing operator valued distributions ., a} such that

olf) = [ f@arde. ()= [ @) do

In terms of creation and annihilation operators, the number of particles oper-

ator can be written as
. * . *
N = E apa, = /azaz dx

pEA*
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We will describe excitations of the Bose—Einstein condensate on the truncated
Fock space

N
F =P riw
j=0

constructed over the orthogonal complement L2 (A) of the condensate wave
function ¢g. On }"EN, we denote the number of particles operator by N..
It is given by N} = ZpEAj_ arap, where A% = A*\{0} = 27Z*\{0} is the
momentum space for excitations. Given © > 0, we also introduce the restricted
number of particles operators

Neo= > ana, (2.2)

pEAL:|p|>O

measuring the number of excitations with momentum larger or equal to ©,
and Neo = Ny — Nse.

Consider the operator Uy : L2(AY) — ffN defined in (1.2). Identifying
Yy € L2(AN) with the Fock space vector {0,...,0,9x,0,...}, we can also
express Uy in terms of creation and annihilation operators; we obtain

N

U = D~ o) o) TR

N-—n

It is then easy to check that Uy, : .7-"<N — L2(AY) is given by

Ui {a@, ... o™} = o™

Z %_ =
and that UyUy =1, ie. Uy is unitary.

Using Uy, we can define the excitation Hamiltonian Ly := UnHNUJ,
acting on a dense subspace of ffN. To compute Ly, we first write the Hamil-

tonian (1.1) in momentum space, in terms of creation and annihilation opera-
tors. We find

]. - —K * *
Zpaap SNI=F Z V(r/N* )4 Qo QpGg sy (2.3)

pEA* p,q,TEA*

where

Vk)= [ V(z)e ™ dx (2.4)
R3

is the Fourier transform of V, defined for all & € R? (in fact, (1.1) is the

restriction of (2.3) to the N € N-particle sector of the Fock space F). We

can now determine the excitation Hamiltonian £y using the following rules,

describing the action of the unitary operator Uy on products of a creation

and an annihilation operator (products of the form apaq can be thought of as
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operators mapping L2(A") to itself). For any p,q € A% = 27Z3\{0}, we find
(see [15]):
UnajaoUx = N — N4

Un apao Uy = ay, N —-N,

(2.5)
Un aga, Un = /N — N, a,
Un apaq Uy = azaq
We conclude that
with
Nol_ .- N=V(0
O = 5 N VO =Ny + ¢N+(N - Ny)
* KY) —k * 1 *
£ = 3 pasa,+ > NV(p/N'TR) [bpbp - Napap}
pEA pENT
1 > —K * 7k
o LS N B, )
S (2.7)
1 > — *
Eg\?) ~ N Z NV (p/N'") [bp+q aZyaq + aga- pp+a]

P,qENY :p+q#0

4 1
£y = > NV /N'TMar, aapae,
p,qGA_j_,rGA*.
r#—p,—q

where we introduced generalized creation and annihilation operators

1/ and b, =4/ N_TM_ ap (2.8)

for all p € A%. Observe that by (2.5),

=

a*
\F Unb,Un = \/—Oﬁap
In other words, bj, creates a particle with momentum p € A% but, at the same
time, it annihilates a particle from the condensate; it creates an excitation,
preserving the total number of particles in the system. On states exhibiting
complete Bose—Einstein condensation in the zero-momentum mode g, we have
ag,afy ~ /N and we can therefore expect that b% ~ a and that b, ~ a,.

P
Modified creation and annihilation operators satisfy the commutation relations

UxbiUy = a,

N 1,
[bp, bq] ( ]\;) Op,g — Naqap (2.9)

Furthermore, we find

[bp, azar] = Opgbr, (b, agar] = —0prby (2.10)

P’q
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for all p, ¢, € A% ; this implies in particular that [b,, N} | = by, [b5, Ny ] = —bj.
It is also useful to notice that the operators by, by, like the standard creation
and annihilation operators ay,a,, can be bounded by the square root of the
number of particles operators; we find

NN < v

NN
N

for all £ € ffN. Since N < N on ffN, the operators by, b, are bounded,
with [[by]], [[5]] < (N +1)2.
We can also define modified operator valued distributions
B N _N+ - 1% * N _N“F
r N

o=ty and bi=a
in position space, for © € A. The commutation relations (2.9) take the form

N
B N- 1
oty = (1= ) ot ) - e

sl < 372

el < v+ 02 (220 e < v +

N
[E:cj’y} = [5;,5;] =0
Moreover, (2.10) translates to
by, d%iz] = 6(x — y)b-, by, a%a.] = —0(x — 2)b;

which also implies that [b,, Ny] = b, [b5,Ny] = —bZ.

3. Renormalized Excitation Hamiltonian

Conjugation with Uy extracts, from the original quartic interaction in (2.3),
some constant and some quadratic contributions, collected in Eg\?) and EE\Q,) in
(2.7). For bosons described by the Hamiltonian (1.1), this is not enough; there
are still large contributions to the energy that are hidden in 553) and Egé).
To extract the missing energy, we have to take into account correlations.
To this end, we consider the ground state solution f; of the Neumann problem

[—A + ;V} fe=Acfe (3.1)

on the ball |z| < N'=%¢ (we omit the N € N-dependence in the notation for f;
and for \g; notice that A, scales as N3*~3), with the normalization fy(z) =1
if |z| = N1=%¢. By scaling, we observe that f,(N!~*.) satisfies the equation

1
-A+ 2N22"V(N1“x)} Jo(NT=Fz) = N2725 0 fo(NT~ ")

on the ball |z| < ¢. From now on, we fix some 0 < ¢ < 1/2, so that the ball of
radius £ is contained in the box A = [~1/2;1/2]3. We then extend f,(N*~*.)
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to A, by setting fy(z) = fo(N'"<z), if |x| < £ and fy(z) =1 for x € A, with
|z| > €. As a consequence,

1
{A + 2N22"”"V(N1'i-)] v = N2 N fnxe, (3.2)

where x, denotes the characteristic function of the ball of radius £. The Fourier
coefficients of the function fy are given by

Fnlp) = /Afé(1\717%)67”"””dJC (3.3)

for all p € A*. Next, we define wy(x) = 1— fy(2) for |z| < N'=*¢ and wy(x) = 0
for all |z| > N'7%(. Its rescaled version wy : A — R is defined through
wy(r) = we(NYFz) if |[2] < £ and wy(z) = 0 if x € A with || > £. The
Fourier coefficients of wy are given by

wy(p) = / we (N z)e P dy = Wy (p/N'"),
A

1
N373n

where
’U/}g(k‘) = / wz(x)efik'wdm
R3

denotes the Fourier transform of the (compactly supported) function w,. We
find fn(p) = dp0 — N3 3w, (p/N'="). From (3.2), we obtain

PN + N Y V(- /N )
e (3.4)
= NN Y Xelp — a) (@)

qEA*
The next lemma summarizes important properties of the functions w, and
fe. Tts proof can be found in [4, Appendix A] (replacing N € N by N'=* and
noting that still N1=*¢ > 1 for N € N sufficiently large and fixed ¢ € (0;1/2)).

Lemma 3.1. Let V € L3(R3) be nonnegative, compactly supported and spheri-
cally symmetric. Fiz £ > 0 and let fo denote the solution of (3.1). For N € N
large enough, the following properties hold true.

(i) We have
3(1() —k
M= S (14 O(ag/tN'"7)). (3.5)
(ii) We have 0 < fr,we < 1. Moreover there exists a constant C > 0 such
that )
Ca
/ V() fola)dz — Smao| < 500 (3.6)
(iii) There exists a constant C' > 0 such that
C C
< d < —. 3.7
wile) € g and (Vo) € g (37)

for all z € R? and all N € N large enough.
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(iv) There ezists a constant C > 0 such that
N C
|wn (p)| < m
for all p € R? and all N € N large enough (such that N'=% > ¢=1),

We define 7 : A* — R through

g De(p /N ). (33)

In position space, this means that for z € A, we have

np = —Nwn(p) =

7i(x) = —Nwe(N'""2), (3.9
so that we have in particular the L°°-bound
[i7llos < CN. (3.10)
Lemma 3.1 also implies
[7p| < CpJT;K (3.11)

for all p € A% = 27Z3\{0}, and for some constant C' > 0 independent of
N €N (for N € N large enough). From (3.4), we find the relation

NSNS % Fr)o) = N0 (s o)) (3:12)

or equivalently, expressing the r.h.s. through the coefficients n,,

p%"‘

PPy + QN"{V(I?/N1 )t o 2N NV ((p—q)/N""")ng
[ e (3.13)
= N*72*XRe(p) + N> 7200 Y Relp — @)y
qeEN*

In our analysis, it is useful to restrict  to high momenta. To this end, let
a >0 and
Py ={pe Al :|p| >N} (3.14)
We define ny € (2(A%) by
i (p) = 1p X(p € Pr) = mpx(|pl = N). (3.15)
Equation (3.11) implies that
|| < CN==o/2 (3.16)
and we assume from now on that a > 2k such that in particular
[l = 0. (317)

Notice, on the other hand, that the H'-norm of  and 7z diverge, as N — oo.
From (3.9) and Lemma 3.1, part iii), we find

> Pk < Y sl = [IVi@Pd<ontt (@)

pEPy pEA*
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for all N € N large enough. We will mostly use the coefficients 7, with p # 0.
Sometimes, however, it will be useful to have an estimate on 7y (because
Eq. (3.13) involves 19). From Lemma 3.1, part iii), we obtain

Ino| < N3:—2 /R ) wy(x)dr < CN (3.19)

It will also be useful to have bounds for the function 7y : A — R, having
Fourier coefficients g (p) as defined in (3.15). Writing ng (p) = n, — npx(|p| <
N®), we obtain

ﬁH($) = ﬁ(x) - Z npeipvm = *wa N'=rg Z np
pEANT: pEA™:
[p| <N lp| <N
so that
()] < CN +CN* Y~ [p| ™2 < C(N + N*T%) < C(N + N***) (3.20)
pEAN*:
|p| <N

for all z € A, if N € N is large enough.
With the coefficients (3.15), we define the antisymmetric operator

1
B= 9 Z (npbpb™,, — Tpb—pbp) (3.21)
pPEPH

and the generalized Bogoliubov transformation e? : ffN — ffN. A first
important observation is that conjugation with this unitary operator does not
change the number of particles by too much. The proof of the following Lemma

can be found in [7, Lemma 3.1] (a similar result has been previously established
in [22]).

Lemma 3.2. Assume B is defined as in (3.21), with the coefficients n, as in
(3.8), satisfying (3.17). For every n € N, there exists a constant C' > 0 such
that

BINL+1)"eP <O, + 1) (3.22)
as an operator inequality on ffN. (The constant depends only on ||nm|| and

onné€N.)

With the generalized Bogoliubov transformation e”, we can now define
the renormalized excitation Hamiltonian Gy : ffN — fEN by setting

QN = €_B£N€B = G_BUNHNU;'\}eB. (323)

In the next propositions, we collect important properties of Gy. Recall
the notation Hy = K 4 Vy, introduced in (1.9).

Proposition 3.3. Let V € L3(R3) be compactly supported, pointwise nonnega-
tive and spherically symmetric. Let Gy be defined as in (3.23). Assume that
the exponent « introduced in (3.14) is such that

o > 6k, 2a+3k <1 (3.24)
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Then,
QN :47TC10N1+K+HN+0QN (325)

and there exists C' > 0 such that, for all 6 > 0 and all N € N large enough,
we have

+ 0, < Hy + CoS IN“T2EN | 4 CNOT2F (3.26)
and the improved lower bound
Ogy > —0Hy — CS NN, — ONOT2%, (3.27)

Furthermore, for 8 > 0, denote by gf\,ﬁ' the excitation Hamiltonian

- N - N
G = amagN™(N = Ny) + [V(0) — 4ma)] NHN+%

+NV(0) Y apay(1— N /N)+4magN™ Y [b5b", + byb_,]

pEPE, pePy
1 ~
+— Z N"V(p/N*=%)[b5, ,a* aq +hc] + Hy
Pp,a€A’:|q|<N?,

p+q#0

(3.28)
Then, there exists C' > 0 such that Eg, = Gn — gf\[ﬁ s bounded by

+ Egy < O(N3R=/2 4 NoF3R/221/2 4 NR2=BYp G 4 ONOT2F (3.29)

for all N € N sufficiently large.
Furthermore, there exists a constant C > 0 such that

:I:i[NZch,gN], ii[./\/@Nw,gN} < O(Nkﬁa/zi'y + NHJF’Y/Q)(HN + 1)
(3.30)
for all« > v > 0, ¢ > 0 fized (independent of N € N) and N € N large
enough.
Finally, for every k € N, there exists a constant C > 0 such that

+adll) (Gn) = £[iNe, .. [iN, O] ...] S ON™H/S(Hy +1). (3.31)

The proof of Proposition 3.3 is similar to the proof of [4, Prop. 4.2]
and [3, Prop. 3.2], with the appropriate modifications dictated by the different
scaling of the interaction. The main novelty in Proposition 3.3 is the bound
(3.30) involving commutators of the restricted number of particles operator
N> cn~. This can be obtained similarly to the bounds for £g,, and for i[N5, Gn],
because we have a full expansion of the operator Gy in a sum of terms whose
commutators with N and with N>,y retains essentially the same form. In
the version of this paper that is posted on the arXiv, we give a complete proof of
Proposition 3.3 in “Appendix A”, adapting the arguments of [4, Prop. 4.2], [3,
Prop. 3.2].
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4. Cubic Renormalization

From Eq. (3.28), we observe that the cubic terms in G§ still depend on the
original interaction, which decays slowly in momentum (in contrast to the
quadratic terms in the second line of (3.28), where the sum is now restricted
to P = {p € A7 : [p| < N}),

To renormalize the cubic terms in (3.28), we are going to conjugate G§f
with a unitary operator e”, where the antisymmetric operator A : ffN —
ffN is defined by

A=A, - A7, with A4 = \ﬁ Z Ny i pa” ap. (4.1)
rePy,pePL,
The high-momentum set Py = {p € A% : |p| > N} is as in (3.14). The
low-momentum set Py, is defined by

Py ={pe A :|p| <N} (4.2)

with exponent § > 0, that will be chosen as in (3.28).

Using the unitary operator e?, we define Jy : ]:EN — ]:EN by

Iy = e Glet. (4.3)

Observe here that we only conjugate the main part G§f of the renormalized
excitation Hamiltonian Gy ; this makes the analysis a bit simpler (the difference
Gn —GS8 is small and can be estimated before applying the cubic conjugation).

The next proposition summarizes important properties of Jy; it can be
shown very similarly to [4, Prop. 5.2], of course with the appropriate changes
of the scaling of the interaction. In the version of this paper that is posted
on the arXiv, we give a complete proof of Proposition 4.1 in “Appendix B”,
adapting the arguments of [4, Prop. 5.2].

Proposition 4.1. Suppose the exponents o and B are such that

i) > 3042k, i) 3a/242k <1, i) a<5bB, w)B>3k/2, v)p<1/2
(4.4)

Let Jn be defined as in (4.3), let

e K K K * 1 * 7% 1
T = dmagN'H* — dragN“N3 /N + 8raoN"™ 3 [bib, + S, + 5bpb,p}
pEPH

87‘1’Cl0]\f"€ %
TN Y. [Bhegatya+he] + My,
pEPE,,qEPL:
p+q#0
(4.5)
and set p = max(3a/2 + 2k — 1,3k/2 — 8) (1 < 0 follows from (4.4)). Then,
there exists a constant C' > 0 such that the self-adjoint operator E7, = JIN —

jN satisfies the operator inequality

+etsye P <COINTPPLNK+CN* Yy +CNP "Ny +CNOT25 (14 N> HA/271
(4.6)
n }"EN for all N € N sufficiently large.
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The bounds for Jn given in Proposition 4.1 are still not enough to show
Theorem 1.1. As we will discuss in the next section, the main problem is the
quartic interaction term, contained in H, which still depends on the singular
interaction potential (in all other terms on the r.h.s. of (4.5), the singular po-
tential has been replaced by the regular mean-field type potential, with Fourier
transform 8magN"1pe (p), supported on momenta [p| < N¢). To renormalize
the quartic interaction, we will have to conjugate J5i! with yet another uni-
tary operator, this time quartic in creation and annihilation operators. This
last conjugation (which will be performed in the next section) will produce
error terms. These errors will controlled in terms of the observables Ny, K
and Vy (as in (4.6)) but also, as we stressed at the end of Sect. 1, in terms
of observables having the form N>y~ (the number of excitations having mo-
mentum larger or equal to N7), N2, N2, , K<n» (the kinetic energy of
excitations with momentum below N "), K LNZ ~~. For this reason, we need to
control the action of e on all these observables.

First of all, we bound the action of the cubic phase on the restricted
number of particles operators N>y = ZpeAj_:IpIZ@ ayap. We will make use of
the pull-through formula a,N>o = (N> + 1[9,00)(P))ap, which in particular
implies that

I(N>0 + 1) 2apé|l < Cllay(Nz +1)2¢],

4.7
1(N>0 + 1) 2apé]| < Cllap(Nzo +1)712¢]. e

Lemma 4.2. Assume the exponents a, 3 satisfy (4.4) (in fact, here it is enough
to assume that o > 2k). Let k € Ng, m = 0,1,2, 0 < v < «, ¢ > 0 (and
¢ < 1ifvy=a). Then, there exists a constant C > 0 such that the operator
inequalities

e AN + DEWseny + 1D)™e*d < Oy + 1) (Noen- +1)™ (4.8)
for all s € [-1;1] and all N € N.

Proof. The case m = 0 follows from m = 1. We start therefore with the case
m=1. For £ € ffN, we define the function ¢¢ : R — R by

Qe(s) = (€ e A NG + DM (Noeny + 1)e*€)
which has derivative

Dsipe(s) = 2Re (e™¢, (N4 + 1)k [NZCNw,Al]eSAQ

4.9
+ 2Re (e*4€, (V4 + Dk, A1l (Nsen + 1e*A¢), (+9)

where A; as in (4.1). By the assumptions on y and ¢, we have N® > N® - N8 >
c¢N7 for N € N large enough. This implies in particular that

[NZCvab;H»r} = b;Jrrv [NZCN“fvair] = aira [NZCNVaap} = X(‘p| > CN’Y)ap
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for r € Py and p € Pr, by (2.1) and (2.10). We then obtain

2 1
[Nchm Al] = \/7N Z Urb:-i-pa*—rap - ﬁ Z nrb:+pa*_7%

r€ Py ,peEPr, re Py ,pePy,,
|p|>eN”
(4.10)
as well as
& k " « k-1
[(N+ + 1) 7A1} = = Z 77Tbr+pa—rap('/\[+ + @(N-l‘) + 1) 5
N
r& P ,pEPL

(4.11)

for some function © : N — (0;1) by the mean value theorem. Using the pull-
through formula NV, a; = aj(Ny + 1) and Cauchy-Schwarz, we estimate

71 A k% * sA
S ne(e G Wy + DRt age g>‘
‘ \/N r€ Py ,peEPr,

1/2
1 ,
< ﬁ( § |(Nsen + 1) 2a, 0 (N, + 1)’f/2eéAg||2>
N epP
r€ Py ,pEPL

1/2
X ( Z UEH(Nch” + 1)1/2ap(N+ + 1)k/2€SA£||2>

r& Py ,peEPL
With the operator inequality N> n+ > N>ne and with (4.7), we find that

71 A kg * * A
Do (et Wy + D)Fb et ape’ g)’
'\/NTEPH,PEPL P
70 1/2 k/2 sAg)2 1/2
= m( > lap+rNzeny + 1) 2amr (Vg + DR 2e4g| )

r€P,pEPL:|p+r|>cN”Y

1/2
X ||77H||< Z lapN>cny + YNy + 1)k/265A§H2>

pPEPL
CN*H—/2 ,
<y IWene + Y24 + DR 2| (Nsenny + 1D)Y2 (N 4 1) FFD2esdg)
S ON2||(Nseny + DV2WG + DF2es4¢)2 = ONRT20¢(s).
(4.12)
The same arguments show that
1 sA k% * sA
e 3 W+ D e )
‘\/N rePy,peEPr,,
[p|=eNT
c M 1/2
(0T a7 a0+ )

r€Py ,pEPL:|p+r|>cNY

1/2
x Han( S flapWaen + D3N + 1)’“%“‘5”2)
pEPL
< ON"" ().
(4.13)
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Finally, we have that

k
‘\/N Z (e, 054 0t ap Ny + OWL) + 1P (Vo + 1)65‘4§>‘

r€Py,pEPL

1/2
<= ¥ Jarspa—o (NG + /24 )

r€ Py ,pEPL:|p+r|>cN”

1/2
x ( > llapWy + DED NG oy + 1)65A§||2)

r€Pu,peEPL

< CON"2||(Noen + D)2V + DF 242 = ONF 20 ().
(4.14)
Recalling (4.9), (4.10) and that oo > 2k, the bounds (4.12) to (4.14) show that

Ospe(s) < CON"=2p¢(s) < Cipe(s).

Since the bounds are independent of £ € ffN and the same bounds hold true
replacing A by —A in the definition of ¢g, the first inequality in (4.8) follows
by Gronwall’s Lemma.

To prove (4.8) with m = 2, we proceed similarly. Given £ € ffN, we
define the function ¢¢ : R — R by

Ve(s) = (& e ANy + DF(NVoeny + 1)%es4¢).
Its derivative is equal to

Osve(s) = 2Re (e*AE, (Ny + D)F [(Wseno +1)2, A1) e4E)
+2Re ("¢, [(NV4 + 1)F, A1] (Nsens +1)%e4E)
= 2Re (e*¢, (N, + 1)k [/V'ZCNW, [NZCNW,Al]]€SA€> (4.15)
+ 4Re (e, (N + 1)F [Nsenv, A1 (Noeny + 1)e*4E)
+2Re (€€, [(NVe + 1)F, A1 ] (Wseny + 1)%e ).
Comparing the contribution containing the double commutator in the last

line on the r.h.s. of the last equation with (4.10) and using once again that
N*> N*_ NP >¢N7 for NeN large enough, we observe that

4 3
Nsenvs [Nsenw, Ar]] = Vi E by 0l ap — N E Nrbrypa” . ap.
€Py,peEP, €Py,pEPL,
s H>P L T |p‘I-IZ€N‘YL

(4.16)
Hence, the bounds (4.12) and (4.13) prove that

|(eSAf7 (N + 1)k I:NZCN"/, [NZCNW7A1HGSA5>| < Cpe(s) < Crhe(s).
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To bound the second contribution on the r.h.s. in (4.15), we recall (4.10) and
we estimate

‘\F ne(e* ¢, (N + 1)k by pa” ap(N>ens +1)68A§>‘

re€Py,pePL
+ ‘\/» Z n (e (N + 1)k i p0” pap(N>eny + 1e SAf)’
rePy,pePr,
Ip|>cN?
o ) 1/2
Si a raer +1k263A 2)
DS lapsra_s (N +1)4/2es4¢]

r€Pp ,pEPL:|p+r|>cN”

1/2
x ||nH||< S ap Wy + P2 (Noens + 1)68A£||2>

pEPL

< ON™2[(Nzens + DG + D242 = ON" 2y (s)

Finally, the last contribution in (4.15) can be bounded as in (4.14), using
(4.11). We have

re€Pu,pePr,

o 1/2
(T e s e

r€Py ,pEPL:|p+r|>cN”

1/2
x ( > BllayWy + DE (N one + 1)265A€||2>

T’EPH7p€PL
< ON"2[[(Nzenv + DN + )2 A2 = CN" 2 (s),

where, in the last step, we used that N>.y» < N.. In conclusion, we have
proved that

Dstbe(s) < CON"=/2pe(s) < Cpe(s).

Since the bounds are independent of £ € ffN and the same bounds hold true
replacing —A by A in the definition ¢, Gronwall’s lemma implies the last
inequality in (4.8). O

We denote the kinetic energy restricted to low momenta by

_ 2k
Ke<eny = Z payayp. (4.17)
pEAT :[p|<eNY

We will need the following estimates for the growth of the restricted kinetic
energy.

Lemma 4.3. Assume the exponents a, 3 satisfy (4.4) (here we only need o > 2k
and o > [3). Let 0 < 1,72 < «, and c1,¢2 > 0 (and also ¢; < 1, if v; = «,
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for j = 1,2). Then, there exists a constant C > 0 such that the operator
imequalities
e A o N et < Keoynn + N26+2”7°‘71(N2%Na +1)%,
e A <oy v (Nseanme + 1) < Koy nn Nseynme + 1)
+ NIRRT NS e + 1) (N1 ye +1)

(4.18)
for all s € [-1;1] and all N € N sufficiently large.

Proof. Like the previous Lemma 4.2, this is an application of Gronwall’s lemma.
Let us start to prove the first inequality in (4.18). Fix £ € ffN and define
e 1 R — R by pe(s) = (£, e 5 K<e, N €54E) such that
Dspe(s) = 2Re (€, e [K<ey N, Ar]e*AE).
We notice first that
[’CSCIN’H ) b;+r] = [’CSCIN’H ’ CL*,T] =0
if r € Py and p € Pr, because ||, |p+ 7| > N® — N# > ¢; N7 for all N € N.
Using the commutation relations (2.1), we then compute

1 * *
[’Cgclz\m ) Al] = _T Z anTerrpafraP' (4.19)
r€Py,pEPr:|p|<ci N1

With (4.19) and |p| < N” for p € P, we then find that
| <£, e*SA [ICSC1N'YI ) Al]eSA§> |

< Wid > plInrlllar+pa—re® &l ||ape® €|
r€Pp,pEPL:|p|<ci N1

CNLH»Kfa/Q
< _
- VN

Finally, using Lemma 4.2 (with ¢ = %, v =« and N € N sufficiently large),
we conclude

Dsipe(s) < ONPTl2712 | (NS 1 o + De e[S v e
< ONPPR2=mHE (Not o +1)%€) + Cipe(s).

(4.20)

s 1/2 s
IV 1y + DA€Y o e

This proves the first inequality in (4.18), by Gronwall’s lemma.
Next, let us prove the second inequality in (4.18). We define ¢ : R — R
by

Pe(s) = (€, e A Koy v Noeunm + 1)e4E),
and we compute
D5t (s) = 2Re (€,e7*4 [K<ein, Al (Nseyne + 1)es4¢)
+2Re (€, e 4K <o, [Noeynre, Ar]e4E).
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First, we proceed as in (4.20) and obtain with (4.7) that
(€, e A K <oy v s A1) (Nseynme + 1)e™8)]

CNP s s
<—— Y IplmellarsyNsenme + DY 2are ¢l lap(Wseyne + 1) el

a \/N r€Py,pEPy:
[p|<e N1
CNB+N7Q/2
S I Waews + DNz v + D)V PENIR LS o (Waeavn + 1) e .
(4.21)
Equation (4.21) and Lemma 4.2 then imply
<§76_SA[’C<C N7 ,Aﬂ(N>C Nv2 + 1)68A€>
| S men | (4.22)

< ONPR2mm e (Nsynme + 1)P(NS 1 va + 1)E) + Cile(s).
Next, we recall the identity in (4.10) and that
[’CSCIN’YI ) b;+r] = [ICSQN“’I ; (L*,r] =0

whenever r € Py,p € Pp, and N € N, by assumption on ¢; and v;. We then
estimate

’ <£’ e_SA’CSCIN’Yl [NzczN'Y? ; Al] eSA§> ‘

c i g
= ﬁ Z |U|2|77¢H|ar+p(./\/'2021\mz +1) 1/2a_rave‘D§H

rePy,pePr,
vEAT :[v[<er N1 (423)

X [lapNse, vz + 1) %a,eP¢||
< ONF= Y25 Koy v (Nseynme + 1)esAE) < Ote(s).
Hence, putting (4.22) and (4.23) together, we have proved that
Dsthe(s) < ONPPF2EmOmHe (N iy e + 12 (Vo1 v + 1)E) + Ctle(s).
This implies the second bound in (4.18), by Gronwall’s lemma. O

Next, we seek a bound for the growth of the potential energy operator.
To this end, we first compute the commutator of Vy with the antisymmetric
operator A. We introduce here the shorthand notation for the low-momentum
part of the kinetic energy

Kr= Z pza;ap = Z pza;‘,ap. (4.24)

PEAL :[p|<NF pEPY,

Proposition 4.4. Assume the exponents «, 3 satisfy (4.4). There exists a con-
stant C' > 0 such that

1 K /<> —K * *
niAl= o= ST NAVCNT) w/N) @) [b w0t + he] + g
u€A’ ,pEPL:
p+u#0
(4.25)
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where the self-adjoint operator €y, ) satisfies
ig[VN,A] <oVn + (S_ICNK_Zﬁ_lK:L(NZ%NQ + 1) + 6—1CN20¢+3K—2N+
+ 6_1CN’{/_1(./\/'2%N(1 + 1)2

(4.26)
for all 5 > 0 and for all N € N sufficiently large.
Proof. From (4.1), we have
[VN, A] = [VN, A1] + h.c.
Following [4, Prop. 8.1], we find
1 - k(1) 1—-k * *
vl he = 37 NN /N )b
uGAi,vGPL
+ 01+ 035+ 63+ 604+ h.c.,
(4.27)
where
1 - K17 —K * *
01 =~ <37 > NV((w—r)/N" )bl a0t a0,
ueAN* wePL,
rePSU{0)
1 - K17 —K * * *
Oy = a7 > NV (u/N' )by a0 apa.,
ueAN* peA’
Py wEP
re H;Ue L (4.28)
1 K7 —K * * *
O3 = Nz Z N*V (u/N* ) N W R
ueAN* peA’
rePy,vEP],
1 - PES: —K * * *
0, = Nz Z N*V (u/N* D N S S
u€A™,peEAT,
rePy,veEPL

Here and in the following, the notation >_" indicates that we only sum over
those momenta for which the arguments of the creation and annihilation op-
erators are nonzero. The first term on the r.h.s. of (4.27) appears explicitly in
(4.25), so let us estimate next the size of the operators ©1 to Oy, defined in
(4.28). The bounds can be obtained similarly as in the proof of [4, Prop. 8.1].
Consider first ©4. For £ € ffN, we switch to position space and find

1 3 1/2
(€081 < i 3 hnol( [ dedy NV - )l

rePg
o 1/2
X (/ dxdy N272“V(N17“(x—y))H Z eimavf) )
A? vEPL
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1/2
soNa+3'€/2*1||v}v/2£H( / R (3 v/am)

v, v’ €PL
< ONHSRR21 Y2 IV DL€l (4.29)

The term O5 on the r.h.s. of (4.28) can be controlled by

1€, ©28)]
1 —2K —K vy _ir I* <k ok«
- ‘W/Az dxdy N?2 V(N1 (z—y)) Z eYe ym(f,bmaya,razavﬂ‘
rePy,vePy,
< H"7H|| d d NQ—QKV(NI—K( _ )) Z ‘ |—2HB ~ §||2 1/2
< Niz | dwdy T—y v Gy
A vePy,
1/2
X (/ dedy N> 72" V(N (z —y)) Y [PI(Vs2 Ly + 1) 2a,a.€) )
A2 vEPL

CNP/ERREm RV W g e + 1)

IN

In the last step, we used (4.7) to estimate
/Adx ||(N2%Na + 1)1/2%5”2 = Z ”(NZ%NQ + 1)1/2apf||2
pEAi

<C Z ||%(N2%Na +1)12¢|?

peAj

= CINY2(Ns1ya + 1)) (4.30)

for any ¢ € ffN. The contributions ©3 and ©4 can be bounded similarly. We
find

|<§a63§>‘
= ]%/2 / dady N* V(N (z —y)) > e‘”yms,bz+ra:a:axava>‘
N A2 r€P vEP,
< Sl ([ oy N2 - ) K bl el
= TN1/2 \2 (z = v Gy
v L

1/2
X (/ drdy N7 V(N (z —y)) > ol [(Nsgne + 1) %dsaud]| >
A2

veEPL,

ON,@/2+3~/270¢/271/2HV1/2§””]Cl/z >1N°‘+1)1/2£H

IN
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as well as
|<§764£>‘
- ‘%/2/ dedy N*7*"V(N'""(z —y Z nre " §bu+ra,,ﬂamazay£>'
N A2 rEPH vePL
Clinall 22y (1 vz
< N1/2 d dy N V(N " (x—y GZP |Gy €]
v L

1/2
X U dedy N*" V(N (z—y)) > ||azaU+Ta7r£H2)
A2

r€ P, wEPY,

< ONWPEREme B Y LZE | (N g e + DEL
Summarizing (using o > 38 4 2k) we proved that

4
+Y (@i +hec) VN +8 TON* NG 4 6T ONTT IR L (Wo s e +1)
i=1
+ 6—1CNR—1(NZ§NQ + 1)2
(4.31)
for any ¢ > 0. Setting vy 4] = Z?:l((_)i + h.c.), this proves the claim. O

From Proposition 4.4, we immediately get a bound for the action of e
on VN.

Corollary 4.5. Assume the exponents o, 3 satisfy (4.4). Then, there exists a
constant C' > 0 such that
e AYnet < CVy 4 C(N® + N2H3R=2) (N 4 1)
+ON L (NS 1 ye + 1)+ ON 2 (N1 v +1)%,
(4.32)
for all s € [-1;1] and N € N large enough.

Proof. We apply Gronwall’s lemma. Given £ € fEN, we define @¢(s) =
(€, eV eA¢) and compute its derivative s.t.

85805(8) = <£a e_SA[VNv A]ESA£>'
Hence, we can apply (4.25) and estimate

e X N TN N SA5>\
uEA* wEPL:

v+u7é0
N
- N

1/2
x( dady N335V (N5 ( H S e eSA€||2>
A2

ve Py,
< ON*2 V2 Ae|| | NawoeAE| < ONF(E, e AN e5AE) + Cope(s).

1/2
([ oy 522 vv=n(a = ) asa, el
A2
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Here, we used (3.10), which shows that ||[7)]|cc < CN. Using Lemma 4.2, this
simplifies to

1 ~
— N Pe, (V( /N5« n/N)(u)b:  a* ,a,eP
e X NUEPE TN s, 3

ueAjr,vePL: (433)
v4+u#0

< Cipe(s) + CN™(§, Ny +1)8).

Together with (4.25), the bound (4.26) (choosing 6 = 1) and an application of
Lemma 4.2 as well as of Lemma 4.3, the claim follows from Gronwall’s lemma.
O

5. Quartic Renormalization

To explain why the bounds for Jy obtained in Prop. 4.1 are not enough to
show Theorem 1.1, we introduce, for r € A%, the operators

1 1
* * * *
R S T T
N vEAL wFE—T, 2VN vEAL wFE—T,
vEPL, v+rePf vePr,v+rePr
We denote the adjoints of ¢ and e} by ¢, and e,, respectively. Notice in
particular that e = e_, for all r € A% . A straightforward computation shows
that

8’/TC10.]\/Wi %
VN E : [b;+qa—paq +h.c]
pGPPCI,qEPL:
p+q#0

= 8maoN"™ 3 [ e+ et by + ) epboy + B+ by,
PEPE

(5.2)
Together with (4.5), this suggests to bound the Hamiltonian Jx from below by
completing the square in the operators g := b} +c; +e) and g, := b+, + e,
for r € Pf; C A%. A better look at (4.5) reveals, however, that several terms
that are needed to complete the square are still hidden in the energy Hy. Since
these terms are not small, we need to extract them from Hy by conjugation
with a unitary operator e”, with

* 1 * *
D =D; - D7, where D; = N Z MrlpirQq—rOpQq-  (5.3)
r€Pu,p,qePL

Since [D,N4] = 0, we have the identity
e PNy +1)ke’? = (W + 1)k (5.4)

for all k£ € N.
Using e?, we define the final excitation Hamiltonian

My =e PTfiel, (5.5)
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The next proposition provides an important lower bound for M . Its proof is
given in Sect. 7.

Proposition 5.1. Suppose the exponents « (in the definition of the set Py in
(3.14)) and B (in the definition of the set Py, in (4.2)) are such that

1) a > 3842k, i) 1> a+B+2k, 1) 58 > «, w) B> 3k, v) 1/2 >,
(5.6)
Set v = min(a, 1 —a— k) (v >0 from (5.6)) and let mg € R be s.t. mpf = .
Let V € L3(R3) be compactly supported, pointwise nonnegative and spherically
symmetric. Then, My, as defined as in (5.5), is bounded from below by

1
My > dragNTHe 4+ 1K+ Em (5.7)

for a self-adjoint operator Enq, satisfying
etePEp e Pe
> —CNPK - ON"P="Yy — CNPT2ELCNS o
— ONFIPTCN Nimo s (5.8)

QLmoJ—l
_C Z Njﬂ/2+ﬁ/2+2n—1KNZ%NW2 _ ON3otk
j=3

for all N € N sufficiently large.

6. Proof of Theorem 1.1
For ¢ > 0 sufficiently small, we define
o = 14k + 4e, O=4rk+e¢. (6.1)

The choice k < 1/43 guarantees, if € > 0 is small enough, that all conditions
in (5.6) (and thus also in (3.24) and (4.4)) are satisfied.
From (3.25) and (3.26), we obtain the upper bound

En < dmagN'tF 4 O N1ortae (6.2)

for the ground state energy of Hy. From (3.25) and (3.27), on the other hand,
we obtain

Hy < 2(Gy — dmagN'TF) + CNFN, + CN1O-te
With (6.2) and setting Gy = Gy — En, we deduce that
Hy < 2GN + ONEN, + CN1O~+ae (6.3)
Next, we prove (1.5). From (3.29) and (6.3) we arrive at
Oy = G 4 &5, > G — ON-(T5+29)/2g _ ON—(r420)/2)\1 (g 1on+de
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Writing Geg = e Jnve # and recalling that x < 1/43 (and that € > 0 is small

enough), Prop. 4.1 and (6.3) imply that

Gn > eAjflffefA + eAng €7A _ CN7(7N+25)/ZQ§V _ CN7(5K+2E)/2N+ _ CN16n+4s
> eAjflffefA _ CN7(5N+25)/2Q§\] _ CN7(3N+2E)/2N+ o CN16H+48

Inserting Jog = e Mye P and applying Prop. 5.1, we obtain

1
Gy > dmagN1He 4 zeAeDlCe_De_A +etelEp e Pe 4 6.4
— CN_(5K+26)/2Q§V _ CN_(35+2€)/2N+ _ O N16R+ae '

With K > (27)2N,; and Lemma 4.2 (with m = 0 and k = 1) we have
etePKe Pemd > (2n) 2PN e Pe ™ = 2n)2e N e ™ >N, (6.5)

for a constant ¢ > 0 small enough (but independent of N). If N is large enough,
we conclude (using also the upper bound (6.2)), that

Ny <CGyn — CeleP ey e PeA 4 CNOrtie (6.6)
To bound the error term e4e”Epq e Pe 4, we need (according to (5.8)) to
control observables of the form N™'KA>.n~. To this end, we observe, first of
all, that, by Cauchy—Schwarz and by (6.3),

N KNsen+ < §TINST2TK + GNP 2KN2 xs
< 6‘1N"“_27K—|—26N27_"_2N20N7Q}VJ\/'ZCNw +05N_1ICN20N7.

Choosing § > 0 sufficiently small, we thus have (00
N7 N5 eny S ONFT2YE + ON?T 52N vy G NS ene - (6.8)

We write
Nsen1GyNsens = N2y G + Noen[Gh, Noena]. (6.9)

Using (6.3) (similarly as we did in (6.7)) and Nscnv < N, Nsoyr < CNTHL,
we can bound the expectation of the first term on the r.h.s. of the last equation,
for an arbitrary £ € .FEN7 by

(&, N2 n-GNE)
< {ENE ) HE G NN G2
< ONYPTV(E N2 oy )16, G6) 2
< ONY21(E, GV (E, Noon Gy No ey )2 (6.10)
+ ONY/221(e GREVV2(¢ KNson-€) /2
< 606, Noens Gy Noen€) + COTIN2(€, G2¢)
+ CONTF=2Y(E KN s en-€)Y/2,
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On the other hand, to estimate the commutator term in Eq. (6.9), we notice
that A := (HN—l-l)_l/Qi[ng,./\/'ZCNw](HN+1)_1/2 is a bounded, self-adjoint op-
erator with || A|| < CN*T/2=7 L O N**t7/2 by (3.30). Setting = max(a, 37),
this implies, with (6.3),
(&, Noena (O, Noenn]6)|
< 5<£,NZCN’Y (Hn + 1)./\/.261\/7@ + 0571N2'€727+‘L<§, (Hn +1)&)
< 2686, Noonr On N en€) + CONTT27(E KNz on+ )
£ OOTINTEE A N )+ GO N g2

(6.11)

for all £ € .FEN. Plugging (6.10) and (6.11) into (6.9), we find that, for suffi-
ciently small § > 0,

NZCNvg;VNZch < C5N1+K72'YICNZCN~/ + 06’1N1*2‘Yg;3

+ 05—1N3N—27+MN+ + C5— 1 N3—2y+uto (6'12)

Inserting into (6.8) and choosing § > 0 small enough, we obtain

N_IICNZCN’Y S CNN—2'YIC =+ CN—H—lg;\% 4 CN2H+,LL—2N+ 4 CN2ﬁ+p+oz—2

(6.13)
Applying (6.13) to the r.h.s. of (5.8) we find, using also (6.3), (6.1), and the
choice xk < 1/43,

eAeDSMNefDefA > _ON°N; — CN7<'(”+E)QEV . CN13N+3571Q;3 _ O N3r+12e

(6.14)
Inserting the last equation into (6.6) and using (6.2), we conclude that for N
large enough,

N+ S ngv + CN13n+3871g;\% + ON43n+125

For ¢ € L2(AN) with ||¢n| = 1 and (¢, (Hy — Ex)*¥n) < (2, the corre-
sponding excitation vector £x = ePUpnvn is such that («EN,Q;\%N) < (2 and
thus

<§N,N+£N> S C [C + C2N13/{+3571 T N431<;+125]
which proves (1.5), using Lemma 3.2. From (6.3), we obtain also
<€N7HN§N> < C [(Nn + C2Nl4n+35—1 4 N445+125] , (615)

an estimate that will be needed to arrive at (1.6).
Evaluating (6.14) on a normalized ground state £y of Gy and inserting
the result in (6.4) we also deduce that

EN 2 47Ta0N1+li _ CN43I€+126

Together with the upper bound (6.2), this concludes the proof of (1.3).

We still have to show (1.6) for & > 0. To this end, we will prove the
stronger bound (1.8); Eq. (1.6) follows then immediately from Ny < Hy and
by Lemma 3.2. We denote by Q¢ the spectral subspace of Gy associated with
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energies below Fxn + (. We use induction to show that for all £ € N, there
exists a constant C' > 0 (depending on k) such that

sup (&, (Hn + 1)(NVy +1)%F¢)

P <C [N44n+125 + C2N20K+58]2k+1 (6.16)
£eQe

for all k € N. This proves (1.8) and thus, with the bound Ny < Hy and with
Lemma 3.2, also (1.6). The case k = 0 follows from (6.15). From now on, we
assume (6.16) to hold true, and we prove the same bound, with k replaced by
(k+1) (and with a new constant C'). To this end, we start by observing that
combining (6.3) and (6.6),

Hy +1 < ON®GN — ON"etePEp e Pe ™ 4 ONITRHe
Hence,

Ny 4+ 1D)2ED (M 1) = (N} + DFFL (R + 1)V + 1)FH
< ON"(NG + DMIGL (W + D
— ON®(Ny 4+ 1) teteP ey e Pe AW, + 1)k H

+ CN17H+4E(N+ + 1)2(k+1)
(6.17)
We estimate the first term on the r.h.s. by

NE Ny + DMGN VG + 1)
< NSV + 120G+ NSV + DM G, (W + 1R
= N"(Ny + 120Gy

YRR k1, 4(7) ket 1—j
+N"Y i Ny + D" adgy, (Gy) (N4 +1)

j=1
By Cauchy—Schwarz, we find

NE(NE + PG (N + 1)F
< NE(WNG + 120D 4 Nogh (N + 1)2R D gn

L _ '
+NEY ( ; )(M + 1) ad) (Gn) (N + 1)FF17

=1
With (N, + 1)2k+0) < (N, + 1)2F1(Hy + 1) and with the estimate

I(Hy +1)7"/2ad§) (Gw) (Hy + 1) 712 < ONTR/3+2¢/3 (6.18)



1192 A. Adhikari et al. Ann. Henri Poincaré

from (3.31) we obtain, using again Cauchy—Schwarz,

N™(E (N + DMFIGL (VL + 1))
< O [N"E2 4 NTH/D] g2

1/2

sup

y (&, (Ny + 1)2ED(Hy + 1)€)
€€Qc €112

1/2

sup

(&, (N +1)*(Hy + 1)€)
£€Qc €11

for every £ € QQ¢. Hence, for any § > 0, we have

& (N + DFHGN (VG + 1)FTEE)
€112

< 5 sup (&, (W4 + 12D (Hy +1)€)

€€Qe €11*

o

(6.19)

k
+05_1 N){CZ + N7I€/3+26/3 2 sup <£a (N-l- + 1)2 2(HN + 1)£>
£€Qc €]

To bound the contribution proportional to eAeDé’MNe_De_A on the r.h.s. of
(6.17), we have to control, according to (6.8), terms of the form

(Ny + 1)k+1Nch~g§szch (N, + 1)k+1
= (Ve + MM v )2 G + Vo + DN o [Gvs Vo + 1) NS x|
=:A+B

For an arbitrary £ € (¢, we can bound the expectation of A by Cauchy—
Schwarz as

(&, Ag)
€112

(6 (W4 D A )26) | (GRE (N + 1 A o )2048)
GE HE
(6 (N + N2, 6)
< N2 1 2 ~ZC
<N +¢) sup HE
< N2—2’y(1 + CQ) sup <§a (N+ + 1)2k+1K§>
: =P HE

1/2
sup <£’ (N+ + 1)2k]C£>
£€Qc [1€1]2

X [ <§7 (N+ —+ 1)2(k+1),€€> 1/2

<

<N+

sup
£€Qc €117

(6.20)
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As for the term B, we can write
= WV + DMIANZ s [Gh, Wy 4+ 1)
(N + 1 kA1 N>CNW [QN,N>ch] (N+ -+ 1)k+1

k+1

-3 (’““) Ny + DM ad ) (GR) + 141

+ (N + DM NS v (G, Noenn] (Vg 4+ 1R
From (6.18) and using (3.30) to estimate
I(Hn + 1) 72 [Nsenr, Gn](Hy + 1) 72| < ONBFH2E77 4 ONFH/2)
we obtain for every £ € Q¢ that

(€. Be)|
< ONTEPER|(Hy + 1)V N ons (Wa + DFFEI (M + D2 (W5 + 1))
+ ON™F2E (M + )Nz (Wo + Dy + D)2V + 1) e
+ ON"2 (M + 1) 2N ons (Ve + DFFEI (M + 1) 2V + 1) g,

Applying the bounds Ny < N, Ns.n+ < CN~?K and (6.3) yields on the one
hand

(o + DY\ oy (Vs + D] (P + D2 + 1)541g]
< OGN Nsen- Ny + DFFLEN[(Ha + DYWL + 1)F |
+ ONYFR27Y)(Hy + Y2, + 1)F g2
S(E (N 4+ DFFINS v G Nsen (N + 1)FFLe)
+C(0 4+ N2 |(Hy + DY2 (NG + D)FFe)?

for any 0 > 0. Since 8k +2c —v < 14+k/2—~v and k+7/2 < 1+ k/2— for all

v < avif k < 1/43, this implies with the choice § = X (N8#+2e=7 4 N#+7/2)-1

that

(€, BE) < ONTPH23 (Hy + 1)V 2NZ oy W + DRI (R + 1) 2N + DR
+ C(N1+17m/2+257'y +Nl+3m/27'y/2)”(HN + 1)1/2(/\/+ + 1)k+1£”2

1
+ 1@’ (N + 1)k+1Nchw GnN>eny (Ny + DFte).

(6.21)
On the other hand, we can estimate

I(Hy + 1) 2N (W + 1|

< NJ(K + D)2 Noons (N + DFFE] + [V N2 o (Vo + DR,
(6.22)
Expressing Vy in position space, we find, with ¢ = N>y~ (N, + 1)FFLE

VN0l = [ dody N*V (N0 = ) st Moo 0l (6.23)
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We have
dwNchV = (Nch’Y =+ 1)[le - a(f(a:)
where

ay) =Xy-—z)= Y Pt
pEAY :[p|<eNY

is such that || X.| = ||x|| £ CN37/2. Hence, we find
laoayNen ¢l < Nlasdydll + N2 (X layd ] + N2 (1% llas]-
Inserting in (6.23), we find
IVNNoen-9l> < ON? V%6 + CNO =N 26
From (6.22), we conclude that
I(Hx + DVENZ e NEHE < N (R + )Y 2Nz ons (Vo + 1P

for all v < a = 14k + 4e, if k < 1/43. Using now similar arguments as before
(6.21), we conclude that together with (6.21), we have

(€, B)|
< 506 W+ )P N oo G N o (N + 1))
+ ONPHOVSELS (g 4 1)V, + 1] (M + 1) 2V +1)5
+ CN2+14H/3+45/3”(HN + 1)1/2(j\[+ + 1)k£”2

+ C(N1+17m/2+25—2'y + N1+3n/2—'y/2)”(HN + 1)1/2(N+ + 1)k+1§”2
Combining this with (6.20), we arrive at

(€& Ny + DTN o Gy NS en (Mg 4+ 1)FHEE)
1€11?

< [N272WC2 +N2+10ﬁ/3+2€/37’y:|

X 1/2
up (6 OV + Dy +1)0)

£€Qc l?
1/2

sup

" (€&, Wy + 12D (Hy +1)8)
£eQ. ll€1]2

4 ONZHR/3HE/E | (&, Wy + 1)%2(7'(1\7 +1)¢)
£€Q; 131

+ C(N1+17K/2+2572’y + N1+35/277/2) [Sup &, N+ + 1)2(k+l)('HN +1)¢)
£€Qe €112
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for all £ € Q.. With (6.8), we obtain

N7HE (NG + DFPEENs vy (Vg 4+ 1)FFLE)
1€112
(& (Vg + DFFIC(NVG 4 1)FFLe)
1€11%

S CNN—2'Y
1/2

+C |:N_“C2 + N7+7K/3+26/3:| sup <£’ (N+ + 1)2k2(HN + 1))
€€Qe €]
1/2

(k+1)
sup (&, (VG + 12D (1 +1)€)

X
£€Qe 1€11?

4 ONHR/3AE/S | g (€, (V5 + 1)2k2(HN +1)§)
€€Qe €1

(€, Wi +1)**HD (Hy +1)¢)

1195

+ C(N15n/2+25—1 +N/</2+3'y/2—1) sup

£€Qe €112

Applying this bound to (5.8) and recalling that x < 1/43, we conclude that

NoE, Ny + DM leteP ey e Pe AN + D))
€11

> —CN~¢ | sup (&, (Hn + 1)(_/\[2 + 1)2(k+1)g)
feQ €]l

_C [N20/§+55C2 n N44”’+125] sup (&, (N + D2 (Hy +1)€)
€eQc €117
1/2

(k+1)
up (e + P03+ 1))

X
£€Qc 1€11?

Therefore, for any § > 0, we find (if N is large enough)

Nﬁ<£a (N+ + 1)k+1eAeDgMNe_De_A(N+ + 1)k+1§>

111>
o s e & (HN 4 DN + 120 g
§€Qc 1€112

£ (Mo + DIV, + 1))

_os ! [N20R+55<2 +N44n+128]2 sup ( ,
£€Qc €]

1/2



1196 A. Adhikari et al. Ann. Henri Poincaré

From the last bound, (6.19) and (6.17), we obtain
(€ WV + 12D (Hy +1)€)
€11
< 5 oup (& OV + DXy 4 1)
£€Q¢ €11

o5t [Nzowsecz 4 N44"+125]2 sup (€., (Ny + |1|)£2”Z(HN +1)§)
£EQc

for any ¢ € Q. Taking the supremum over all £ € Q¢, and choosing § > 0
small enough, we arrive at

(&, Wy + 12D (Hy +1)€)
€€Qe €112

<c [N20n+56C2 i N44n+12s]2 sup (€, (N} + 1)2k2(HN +1)¢€)
€eQe €]l

<C [N20n+55<2 + N44x+12s]2k+1

by the induction assumption. O

7. Analysis of My

This section is devoted to the proof of Proposition 5.1. In Sect. 7.1 we establish
bounds on the growth of the number of excitations and of their energy with
respect to the action of e with the quartic operator D = D; — D} with

1 * *
D, = N Z Nl 1Oy Gplg (7.1)
r€PH,p,qEPL

as defined in (5.3). In Sect. 7.2, we compute the different parts of the excitation
Hamiltonian My, introduced in (5.5). Finally, in Sect. 7.3, we conclude the
proof of Proposition 5.1.
7.1. Growth of Number and Energy of Excitations
The first lemma of this section controls the growth of the number of excitations
with high momentum.

Lemma 7.1. Assume the exponents «, 8 satisfy (5.6). Let k € Ng, m = 1,2,3,
O<vy<aandc>0 (c<1ify=a«a) Then, there exists a constant C > 0
such that

eisD(N+ + 1)k(NZCNw + 1)m68D < C(N+ + ].)k(NZCN’Y + 1)m’ (72)
for all s € [-1;1] and all N € N large enough.
Proof. Since N4, Nscn+] = 0 and [Ny, D] = 0, it is enough to prove the

lemma for £k = 0. We consider first m = 1. For £ € ffN, we define the
function ¢ : R — R by

Pe(s) = (€, e P (Noeny +1)eP¢)
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so that differentiating yields
aggog (s) = 2Re <€SD§, [NZCN“/ y Dl] €SD§> (7.3)

with D; as in (7.1). By assumption, N® > N* — N > ¢N7 for sufficiently
large N € N. This implies that

[NZCNW ’ a:ﬂrr] = a;+r’ [NZCNW ’ a’zfr} = a’Zfr

for r € Py and p,q € Pr, by (2.1) and (2.10). We then compute

1 % 1 *
[NZCN"’aDl} = N z nra;+raq—rapaq - N Z nra;;—‘rraq—rapafr

r€Pp,p,qePL re€Ppg,p,q€Pr,
|p|>eNY
(7.4)
and apply Cauchy—Schwarz to obtain
C 1/2
T D S T e
rePy,p,qePyL,
[p+r|>eN7,[g—r|>cN7
1/2
X ||77H||( Z ||ap(NZCN7 + 1)1/2aqesD§2)
P,q€PL
< CN”+35/2_°‘/2905(3) < Cpe(s).
(7.5)

Since the bound is independent of £ € ffN and it also holds true if we replace
D by —D in the definition of ¢, this proves (7.2), for m = 1.
For m = 3, we define

Pe(s) = (€, 7P (Naeny +1)%°P¢)
with derivative
D5t (s) = 2Re (P&, [(Nsen~ + 1)3, DyleP¢)
We have
[(Nseny +1)%, D] = 3(Nsens + 1)[INsenn, D1](Nseny + 1)
+ Nsenr, INsenv, IN>env, Dill.

The contribution of the first term on the r.h.s. of (7.6) can be controlled as in
(7.5) (replacing e*P¢ with (N> ey~ +1)e*P€). With (7.4) and using again that
N® > No _ NB > cN7, we obtain that

[NZCN’Y7 [NZCN’Y; [NZCN“HDlH]

(7.6)

— i * * o 1 * *
=¥ NyQpppGg_rOplq N NrQpyrOg_rpOplq
r€Pu,p,qePL r€Py,p,qEPL,
|p|>eN”Y
3
* *
+ N Ny Qg Qg QpQq-

r€Pu,p,q€Pr,
|p|"q|2‘3]\]’Y
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All these contributions can be controlled like those in (7.4). We conclude that
|0spe (5)] < Crbe(s)

This proves (7.2) with m = 3. The case m = 2 follows by operator monotonicity

of the function z — x2/3. O

Next, we prove bounds for the growth of the low-momentum part of the
kinetic energy, defined as in (4.17).

Lemma 7.2. Assume the exponents «, [ satisfy (5.6). Let 0 < 1,72 < a,
c1,60 >0 (and ¢; < 1ifv; = «, for j = 1,2). Then, there exists a constant
C' > 0 such that

e PReeinn e < Keoynn + NP7 (Ns i ye +1)2,
e P Keeynn Noeunn + 1) < Keoy v (Noepnm +1)

+ NP Ny nme + 1)2(-/\[2%1\1& +1)
(7.7)
for all s € [-1;1] and all N € N sufficiently large.

Proof. Fix &£ € F=V and define g¢ : R — R by ¢g(s) = (€, P K,y D)
such that
Ospe(s) = 2Re (€, P K<y nn, Di]ePE).
We notice that
[K<ernmsapyy] = [Keonnag_,] =0

if r € Py and p,q € Pr, because |r|,|p +7|,|g — 7| > N® — N? > ¢; N for
N € N large enough.
Using (2.1), we then compute

1 * *
[Kseinm, Di] = = > PHas G apay. (7.8)
r€PH,p,q€PL:|p|<c1 N1
and, using that |p| < N” for p € Pp, we obtain with Cauchy-Schwarz
(€, e P [K<e,vn, D1]e*PE)|
CN” . .
< > bl larp0a—rePellapaesl (7.9)

r€Py,p,qePp:|p|<ci N1
- - 1/2
< ONPB/2Hr—a/2 1/2H(N2%Na +1)6SD€||“ICS/ClN—YleSDgH'

With Lemma 7.1 choosing ¢ = % and v = «, this implies for N € N large
enough that

Dupe(s) < ONOO/ZHR=al212 (N 4 1)esPeICY2 oy 2P|
< ONPPHE (Mo 1 ya +1)%€) + Cope(s).

This proves the first inequality in (7.7), by Gronwall’s lemma and o > 35 +
2k > 0.



Vol. 22 (2021) Bose-Einstein Condensation Beyond 1199

Next, let us prove the second inequality in (7.7). We define ¢ : R — R
by

Pe(s) = (€, e PRee,nm (Noeynm + 1)e?PE),
and we compute
Osve(s) = 2Re (¢, e s [/CSCan ) D1] (N>cone + 1)e*Pg)
+2Re (€, e P K<oynm [Noeynme, Dr]ePE).
First, we proceed as in (7.9) and obtain with (4.7) that
(¢, e P K<, vy D1](Nseynmz + l)eSD§>}
< CTNﬁ S IplmlllaripagorWNsene +1)2eP¢]

r€Py,p,qePr:
[p|<ci N7

X ||aqap(N262N72 + 1)1/268[)5”
< ONSB/2HR=0/2=1/2| | (Afy o no + 1)(/\/2%1\,& +1)1/2e5D¢||
2 s
X Y2 oy Wocsn +1)1/2eDg].

Here, we used in the last step that [ag—r, N>c,N2] = aq—p for r € Py, g € Py,
and that Ne,nv > Mya_ys for N € N large enough. The last bound and
Lemma 7.1 imply that

|<§, e PlK<eynm, DiJ(Nseynre + 1)€SD§>|
< ONPUE (Noganra + 1PN g o + 1)E) + O ().
Next, we recall the identity (7.4) and that

(7.10)

[’CﬁclN”?a;-&-r] = UCSClN“’a;—T} =0
whenever 7 € Py,p,q € P, and N € N is sufficiently large. We then obtain
|<£a eisD’CﬁclN’Yl [NZC2N‘Y2 3 Dl] 68D6> |

c _ .
= N Z |U‘2‘77r|||ar+p(N202N72 +1) 1/2%—7“‘1116 Pe||

r€Pu,p,q€PL,
veEAT :|v|<er NTL (711)

X flapaqN>c, N + 1)1/2%68135”
< ONPP/ZER=a/2(e3De K (Nsepne + 1)e*P€) < Cibe(s).
Hence, putting (7.10) and (7.11) together, we have proved that
Dsthe(s) < CN*PHE (Noeyne + 1) (Vo1 ya + 1)) + Cile(s),
which implies the second bound in (7.7), by Gronwall’s lemma. O

It will also be important to control the potential energy operator, re-
stricted to low momenta. We define

1 s
Vne=gn o 2L NV@/NTe, 00000 (7.12)

u€A",p,gEAT:

p+u,q+u,p,qEPL
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Notice that Vi, = V§ , by symmetry of the momentum restrictions. To

D

calculate e Vn,pe~ ", we will use the next lemma, which will also be useful in

the next subsections.

Lemma 7.3. Assume the exponents «,( satisfy (5.6). Let F' = (Fp)pers €
(>°(A%) and define

1
7 = N Z Fuay 050,004 (7.13)
uGA*,p,qGAi:
p+u,q+u,p,qEPL

Then, there exists a constant C > 0 such that

(e P2 - Z) < C|[FlooN" T K (Wo y o +1) + ClIFllao N (N 4 o +1)7
(7.14)
for all s € [=1;1], and for all N € N sufficiently large.

Proof. Given £ € }"_EN, we define ¢¢ : R — R by
pe(s) = (€, e7*PLe*Pg),

which has derivative
dspe(s) = 2Re (€, P [Z, D1]e*PE).

By assumption, we have a > 3342k so that |r|, [v+7|, jw—r| > N*~N8 > NF
if r € Py and v, w € Py, for sufficiently large N € N. This implies in particular
that

[apanrU? a'errarufr] =0

whenever ¢ +u,p € Pr, and r € Py, v,w € Pr. As a consequence, we find

1
* *
[Za Dl] = _W E FunT'av+raw—raw—uav+u
uw€AN",r€Py,v,wePr:
w—u,v+u€Pr,
7.15)
. (
* * *
- m § FunTaerrawfra’eruawa’UJrua’P‘
uwEAN* 7€ Py ,v,w,pEPr:
ptu,v+u€ePr,

With (4.7) and N — N? > LN“ for N € N large enough, we can bound

1 s * * s
‘m Z Fu77r<€ D§7 Ayt r Gy — g Qw—u Ao+ € DE)

wEAN* , rEPp v, wEPL:
w—u,v+u€ Pp,

C|IF |l —2 —1/2 sD 4112 1z
< N Z \v—|—u| ‘|aU+T(NZ%NQ +1) Ayw—r€ 6“
weEAN* , rEPY v, wEPL:
w—u,v+u€Pr,
1/2
(X e Voo + ) e

wEAN* , r€EPy ,v,wEP:
w—u,v+u€ P,

< CIIF oo N2 2 (WL g o+ 1) 2P K (W g e + )%

=32
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and

1
sD * * * sD
’ N2 E FunT<e é-a a’errawfraeruawa’U*Fuape §>
ueAN* ,r€Py,v,w,pEPL:
pt+u,v+u€Pr,

ClIF _
< Nz Z p + ul?[p| 72

uEAN*,r€ Py ,v,w,pEPL:
pFu,v+ucPr

1/2
X ||CLU+T(./V.Z%NQ + 1)1/2aw—rap+u68D£”2>

x ( > 2 1p|p + u| 72

uw€A* ,r€ Py ,v,w,pEPL:
pt+u,v+u€ePr,

1/2
X Jlaw (N 1 e + 1) 2aypuapePE ||2>

< C||F||o NO2Hm0/2 g e PR L (NS 1 o + 1)e"PE).
Lemmas 7.1, 7.2 and the assumption o > 33 4+ 2k > 0 implies
£0505(€) < Ol Floc NP 7HE KL(NS 1 e + 1)E)
+ Ol Flloe NP2, (N5 1 nve +1)%).

Hence, integrating the last equation from zero to s € [—1; 1] proves the lemma.
O

NV (p/N'=%)| < CN*, we obtain immediately the fol-

With sup,cn-
lowing result.

Corollary 7.4. Assume the exponents «, 8 satisfy (5.6). Then, there exists a
constant C' > 0 such that

:Iz(e_SDVN’L(:’SD - VN,L) < CNB+K_1K:L(NZ

+ ON3PFR=2(N

for all s € [=1;1], and for all N € N sufficiently large.

No+1)
No F1)3

[N

Nl

We also need rough bounds for the conjugation of the full potential energy
operator Vy. To this end, we will make use of the following estimate for the
commutator of Vy with D = Dy — Df, with D defined in (7.1).

Proposition 7.5. Assume the exponents a, 5 satisfy (5.6). Then,

1 k(17 —K * *
Vv, D] = 53 > NE(V(/N'%)sn/N)(u)(aj, a5 ,apa, + hc.)
u€A’ ,p,qEPL:

ptu,q—u#0
+ S[VN,D] ( )
7.16
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and there exists a constant C > 0 such that

ig[VN,D] < 5VN + CNaJrN*lVN + CNa+N71VN’L

+ 5_1CNB+H_1KL(NZ%NO< +1)+ §—ICN3B+H—1(NZ%NQ + 1)2
(7.17)
for all 6 > 0 and for all N € N sufficiently large.

Proof. We have
[VN, D] = [VN, Dﬂ + h.c.
To compute the commutator [V, D1], we compute first of all that

* * * *
[0, O Op Oty Ay Oy — Oy ]
ok * * * * *
= aeruaqaq-i-uaw—ravaw(Spm-‘rr + ap+uaqapaw—ravaw6q+u,v+r

* * ok * * *

+ aeruaqavHaﬁuavawép’w,r + ap+uaqav+rapavaw§q+u’w,,«
* * * * * *

- a7)+7’aw—7’aqawaPaQ"rU(sP'Fu,U - a1)+7’aw—rap+uawapaq+u5q,v
k

* * * * *
- a’v+raw—ravaqapa<I+u5P+u,w - a’v-l—raw—ravap—i-uapa‘ﬂruéq,w'
Putting the terms in the first and last line on the r.h.s. into normal order, we
obtain

*

1 -
[V, D1] + hec. = N Z NV (/N5 s n/N)(u)ak, ,ah_ 0oty

uEN* v, wE Py,
—|—<I>1+‘I)2+<I)3—|—<I>4—|—h.c.,

(7.18)
where
1 - e 11—k * *
=g > NV(w—r)/N el aua,
uEAN* v, wePL,
repgU{0}
1 - K7 —K * *
o=z O NV@/N'T)a),a) 0,
uEA*,TEPPH,
v, we
ek (7.19)

1 ~
— K 11—k * * *
(b3 - ﬁ E : N V(U/N )nTaw7r+ua’v+raqaq+uava’w7
uEA™,qEATL,
r€ Py, v,wePL

*

1 ~
— K 11—k * * *
by =—— E NV (u/N"" )05 4 0y 0 Gy Qg -
u€A",gEAT,

re€Py,v,weP,

The first term on the r.h.s. in (7.18) appears explicitly in (7.16). Hence, let us
estimate the size of the operators ®; to @4, defined in (7.19).
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Starting with ®;, we switch to position space and find

1 o . o 1/2
[SULIES DY |nr|(/A2 dady N*7>"V/(N'! (x—y))||bzay§||2)

rePgjU{0}

o o\ 1/2
X < dxdy N2_2“V(N1_“(:Jc—y))H Z ewm“wyavawa )
A2 w,vE Pp,
< ONTHH eIV 26l
(7.20)
The term ®; on the r.h.s. of (7.19) can be controlled by

(&, @2€)| = '% /A dady N*7"V(N'" (z - y))

x> e’““e*“ynr@,a:+7~a;4amay£>‘
r€Py,
v, we Py,

38 1/2
CN ]VHWH” (AQ d(Edy NQ—QHV(Nl—K(I _y))|‘dzdy§‘|2>

IN

1/2
><</ dedy N*7**V(N'™ (z—y)) Y |\av+raw7r£||2)
A2

r€Py,v,wEPy,
< ONOPHIREZ 232 2| (Ns 1 e + DE]

Finally, the contributions ®3 and ®4 can be bounded as follows. We obtain

1 —2k —K * <ok ok
(€, @38)| < N/m dady N*7"V(N'™(x —y)) Y |nell{€ atsraia,aya0au8)]

rePy,

v,w€E Pp,
se 1/2
< Ol ([ gaay 2N ) T ol gl
N A2
vePy,
1/2
« (Nn—l/dx Z |’U|2||(NZ%N°‘ +1)1/2dxawav£||2)
JA

v, w€E Py,

< ONPFREme B2y e IR 2 (No 1 e + 1)

as well as

[(&, ®yE) ! /A drdy N>~V (N5 (z —y))

| < —
N
X Z |m||<§7a$+ra*w_rd*awdxdy§>|
r€ Py, v,wePy,
38/2
_ ON*2|ny]

1/2
< U dady N?>72°V (N5 (z — y))lamdyﬂl?)
N A2
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1/2
(N /A ay 3 |ayav+Taw_Tw++1>1/25||2)

re€Py,
v,we Py,

< ON3PH38/220/22102) V26| || (N 1 e + 1]

In conclusion, the previous bounds imply with the assumption (5.6) (in par-
ticular, since o > 308 + 2k and 35 — 2 < 0) that

+ (@1 + (I)Q + (I)g + @4 + hC)
< OVN + ONF Wy + ONOT Wy + 6 ONPF IR L (N 1y + 1)

+ 6710N3B+n71(N2%NQ + 1)2
(7.21)
holds true in ffN for any § > 0. This concludes the proof. O

With Proposition 7.5, we obtain a bound for the growth of Vy.

Corollary 7.6. Assume the exponents «, 8 satisfy (5.6). Then, there exists a
constant C' > 0 such that the operator inequality

e *PVne’? < CVy + CVn,p + CNPF KL (NS 1y + 1)

for all s € [=1;1] and for all N € N sufficiently large.

Proof. We apply Gronwall’s lemma. Given a normalized vector £ € ]-"EN, we
define p¢(s) = (£, e *PVye*PE) and compute its derivative s.t.

Dspe(s) = (£, e *P [V, D]e*P¢).

Hence, we can apply (7.16) and estimate

1 ~
oy X VTN NS a e S
uGAi,v,wGPL:
v+u,w—uF0
il v
< W (w2 (4o = g, ePel?
A2

] ) 2 1/2
~ ( dxdy NQ—QKV(Nl—n(x_y))H Z ezvm—i—zu;yavawengH >
A2 v,w€E Py,
<O V1/2 sD Vl/Q sD <C C _SDV sD
< CVy e eV, Le® el < Cpels) + C(€, e VN Le”7¢).
(7.22)
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Here, we used (3.10), which shows that ||7||cc < CN. Using Corollary 7.4
(recalling that o > 38 + 2k and 28 < 1) and Ns1ye < N in .FEN, this
simplifies to

1

S NSVONT) N )P a0 g E)
u€AY v, wEPL:

v+u,w—u#0
< Cpe(s) + O(€, Vi,LE) + ONPFHE KL (N 1 v + 1)E)

+ON¥R (e, (N e + D).

Together with (7.16), the bound (7.17) (choosing 6 = 1) and an application of
Lemma 7.1 and of Lemma 7.2, the claim follows now from Gronwall’s lemma.

O

Finally, we need control for the growth of the full kinetic energy operator
KC. To this end, we need to estimate its commutator with D.

Proposition 7.7. Assume the exponents «, B8 satisfy (5.6). Let mg € R be such
that mof3 = « (from (5.6) it follows that 3 < mg < 5). Then,

1 K (17 —K N * *
[K,D] = ~3N Z NE(V (/N5 % fa)(u) (ayua; ,apaq +hec.)
u€N* ,p,qePL:
ptu,q—u#0
+ &k, ps
(7.23)

where the self-adjoint operator Ejx p satisfies

4+ p) < ONP/YHEK g nanse + 0K
2Lm0J71 )
+ ot Z ]\fjﬂ/2+3/3/2+2m—1ICL(/\/E%N_,.ﬁ/2 +1) (7.24)
j=3
+ COTINAHIFRTCL (N g yimoss +1) + C

for all § > 0 and for all N € N sufficiently large.

Proof. Using that [KC,D] = [K, D] + h.c., a straight forward computation
shows that

1 k(17 —K N * *
[, D1] + hec. = N Z NV (N5 s ) (r)ad . ak, ayag
reAN* v, wEPL:
v+r,w—r#0

—|— 21 —|— 22 + 23 —|— h.C.,
(7.25)
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where
1 U —K f * *
Simsx Y NAUCNT ) )al,dl a0,
reP;U{0},v,wEPL:
v+r,w—r#0
1 3—2k % 2 * *
Yo = W Z N AE(XE * fN)(T)a’v+ra’w7Tava’w7 (726)
r€Pp,v,wePr:
v+r,w—r#0

2
* *
dg = N E T VN 4y Oy Oy Gy -

rePy,v,wePL:
v+r,w—r#0

Let us estimate the size of the operators 31, Y5 and 3. Using |(1A/(./N1*’”") *
fN)(r)| < C, we control the operator ¥; by

1 > - N >k *
(eml=|py X NN R e )|
rePgU{0},v,wEPr:
v4r,w—r#0
CN*F
< > o€l avane]
reA* wwePy:|r|<N3B/2
v+r,w—r#0
2|lmg|—1
CN"
N2
Jj=3

Z ”aw*T(Nz%Nﬂi‘ﬂ + 1)71/2av+r§”||av(Nz%NjB/2 + 1)1/2‘1111{”
rePgU{0},v,wePr,:
NIB/2<|p|<NGHDB/2,
vFrw—r#£0
CN*"
N
> ||aw7r(NZ%NLmoJB + 1)_1/2au+r§||||av(NZ%NLmom + 1) 2aug].
re P U{0},v,wePr:
NLmolB<r| <N,

+

v4r,w—r#0
(7.27)
By Cauchy—Schwarz, the first term on the r.h.s. of (7.27) can be controlled by
CN*
N Z |aw—raviré|llavawg]l < CNSﬁ/4+K<§aK§2N35/2f>-

reA* w,wePr:|r|<N3P/2,
v+r,w—r7#0

The second contribution on the r.h.s. of (7.27) can be bounded by

2|mg|—1
Z Z ||aw—T(NZ%Nj;3/2 + 1)71/2av+r§H||aw(NZ%NJ'5/2 + 1)1 2aug]|
Jj=3 rePfuU{0},v,wePL:
]\rjﬁ/2<‘T|<]\](j+1)/3/2Y
vFraw—r#£0
2|mgp|—1
SO Y, NIPAESBIERTR 21K AN g sese + D)€L

" (7.28)

CN*
N
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Similarly, we find that

CN"

> llaw—r(N>1nmoss + 1)71/2av+T§H”aw<Nz%Nlm0JB + 1) 20,
reP;U{0},v,wEPL:
NEmolf<|p|<Ne,
v+r,w—r#0
< ONOPHBIZERT2 2102 (N 1 yimass +1)Y2€]).
(7.29)
In summary, the previous three bounds imply that

+3; < CN55/4+RIC§2N33/2 + 0K + 05_1Na+ﬂ+2ﬁ_1’CL(NZ%NLmOJB +1)
2[m0j71 ]
+ O N NIRRT (NS s e + 1)
j=3
(7.30)
for some constant C' > 0 and all § > 0.
Next, let us switch to X5 and X3, defined in (7.26). Since (X, * fn)(r) =
Xe(r) + N_lﬁm with

0l = o (Y~ reoster))

INCERNE
we find
|(Re * f) ()] < CJr| 72

This, together with Lemma 3.1(i), Cauchy—Schwarz and « > 3/ + 2k, implies
that

CN* _ _
€201 S Y P lausr Wy ya + D72 gl
r€ P, v,wePr:
v4r,w—r#0

7.31
X flavW 3 yo + D aug] (v31)

< ONTPTV2|[(No g ya + DV2EIKL 2 WS 1 e + 1))

Similarly, we obtain

C _
|(§7E35>‘ < N Z |7’HUH77T|H‘171+T(N2%N01 +1) UZ@UJ*T&”
r€ Py, v,wePp,

X avaw (N> 1 va + 1)V (7.32)
< ONTHRIRYZEICY W g e + D)€l
where we used that |r|/|v+7r| < 2forr € Py, v € P, and N € N large enough.

Combining (7.30), (7.31) and (7.32) and defining &k p) = Zg’:l(Ei + h.c)
proves the claim. O
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Corollary 7.8. Assume the exponents o, 3 satisfy (5.6). Let mg € R be such
that mofl = a (3 < mg < 5 from (5.6)). Then, there exists a constant C' > 0
such that

€7SDIC€SD

< CK + CVy + CVn, + CNPATEK s
QLmoJ—l )
Loy NPzt [ICL + NP (N g e + 1)} (N1 yisrz +1)
j=3
+ ONOFI I 4 NP (N g o + 1) (Vo gayimoss + 1) + CN1/4+

(7.33)
for all s € [=1;1] and for all N € N sufficiently large.

Proof. Given & € ffN, we define p¢(s) = (£, e *PKe*P¢). Differentiation
yields

85905(8) = <§a eisD[]C» D]eSDO’

s.t., to bound the derivative of ¢¢, we can apply Proposition 7.7. Arguing
exactly as in (7.22), we obtain with sup, ¢, | fn(z)| < 1 the operator inequality

1 ~ —~
+ oN Z NV (/N5 s ) (w)al 0ty y vy < CVN + CVn 1.

uEAi ,wEPL:
v+u,w—uF0

Now, the claim follows from the bound (7.24) (choosing § = 1), the
previous bound and an application of Corollaries 7.6, 7.4, Lemmas 7.1, 7.2
and the operator bound N1 ya < 4N 22K, by Gronwall’s Lemma. O

7.2. Action of Quartic Renormalization on Excitation Hamiltonian

We compute now the main contributions to My = e P J5fel. From (4.5)
and recalling that [NV, D] = 0, we can decompose

My = dmagN'"% — dragN* N2 /N + MP + MY + MY (7.34)
where the operators /\/lg\i,),i = 2,3,4, are defined by

MS\?) = 8magN" Z e*Db;bpeD + 4magN"™ Z e P [b;btp + be*P] e”

pEPf pEP
3 8ragN* _D D
MSV) = I E e by, 0t yaq +hoc]e”,
pEPE,qEPL:
p+q7#0

M%‘) =e PHye? = e PKeP + e PyneP.
(7.35)
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7.2.1. Analysis of M](\?). In this section, we determine the main contributions
to /\/ls\?), defined in (7.35) by

MY =87agN™ 3" e Puib,el + dmagN*® S e P [, + byb_p]e”

pEPE pEPE
(7.36)
The main result of this section is the following proposition.
Proposition 7.9. Assume the exponents «, 8 satisfy (5.6). Then
(2) _ K * . (2)
My =8magN"™ Y [bib, + bpb_p + b by | + Exi (7.37)
pEPF
and there exists a constant C' > 0 such that
+etePER) emPemA < ON~P-2K + ON* (7.38)

for all N € N sufficiently large.

Proof. We start with the identity

MY —8ragN* Y [b*b + b*b* +%bpb_p]

p-—p
pEPE

1

1

= 8mapN* /O dt Y e Plbrb, + Qb;‘,bip+ Spb—p: DiJe!? +hec.
pEPE

(7.39)
and a straight-forward computation shows that

1
[b5bp + b;b’ip + ibpbfp, oy Gy
= b2+r Ay Aubuw (5p,v+r + dp,w—r — Op,v — 5p,w)
1 1
- Eb";+'rb'z*ﬂfr (5p,w5—p,v +6—p,wlpw) + ibvbw(‘sp,w—r5—p,v+r + 5—p,w—r5p,v+r)

- §b$+rbil r(a* P awlp,v + a;aw‘s—p,v + aipavfsp,w + a;av‘s—p,w)

+ 3 (a7 r@—pOp,vtr + a3 4 a—pOpw—r + a3 1 apd—pvtr + a3 1 1 apS_pw—r)bubu.
As a consequence, we find that
2 K * * 7 %k 1 —
M —smaoN" > [bib, + bpb_p + Sboby| = / dt etP Z J+he)

pEPR

(7.40)
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where
87ru0N“ £ s
Vi = “oN Z bv+rb—v r
rePp,vePL
8magN"
Vo = T Z nrbvbfva
rePp,vePrL:

v+r€ Py, v+1#0

8magN® .k
Vs = — Z 777"( -2+ X{r+vePg} + X{wfrePf{})bv-&-raw—ran’w’

2N
r€ Py, v,wEPy,:
v4r,w—r#0
K
V o 871'CLON b* b* %
4 = N w41 Ow—r@—yQuw;
rePy,v,wePr:
v+r,w—r#0
87TC10.ZVN
*
V5 = T E mawrar,wbvbw.

r€Py,v,wePr:
r—wé€Pg v+r,w—r#0

(7.41)
Here, x{pes) denotes as usual the characteristic function for the set S C
A%, evaluated at p € A%. Let us briefly explain how to bound the different
contrlbutions V1 to Vs, defined in (7.41). Using Cauchy—Schwarz, the first two
contributions are bounded by

(Vi + Vo) S CN2H3070 RNy o 1) + CN2H39270 (0, 4 1)

where, for V,, we used that v +r € P§ implies that |[r| < N® + N” and
furthermore that 3 o< yaqns 1] < N**+8. The contributions V3 to Vs,
on the other hand, can be controlled by

€, (Vs + Va + V5)&)|

CN* _
Y ellavse Ve e + D7 0w Elllan W s e + DY 2aug]
2 2

rePy,v,wePyp:
v+r,w—r7#0

CN* _
+ > ellavtrWVs 1 e + 17 200 rawélllas (Vs 1y +1)12¢]
rePy,v,wePr:
v+r,w—r#0

CN*
5 Y Inellavregllavauan €]

rePy,v,wePp:
v+r,w—r#0

< ONZRHSE2=al2 (g (N 1y + 1)) < ON™(E, (N5 1 na + 1)E)

for any € € ffN. In conclusion (since 2k + 308 — a/2 — 1 < k from (5.6)), we
have proved that

5
£ (Vj+he) SON*FRTUC, 4 ONF(N 1 ya +1).
j=1

Now, applying this bound together with (7.40), Lemmas 4.2, 4.3, 7.1, 7.2 and
the operator inequality NZ 1Na < AN~22K proves the claim. ]
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7.2.2. Analysis of M](\:,"). In this section, we determine the main contributions
to /\/ls\?;), defined in (7.35) by

3 8mragN"” N
./\/lgv) = N Z e (bp+q a’ ,aq +h.c. )eP (7.42)
pEPf,qEPL:
p+q#0

Proposition 7.10. Assume the exponents «, (8 satisfy (5.6). Then, we have that

3 8mragN"” N 3
MS\/‘) = N Z (b 40" paq +hoc) + S/(\A)N (7.43)
pEPf,qEPL:
p+q#0
and there exists a constant C' > 0 such that
4 eAePgB) ~Dg—A
M (7.44)

< ONTPK 4+ ONOHIPRTUC(NG 4 o + 1) + CNOHA/2 2
for all N € N sufficiently large.

Proof. Let us define the operator Y : ffN — ffN by

8magN"
Y:% S (b0t paq +hc), (7.45)
PEPL,qEPL:
p+q#0

so that Mg\?;) = e PYeP. We recall the definition (7.1) and observe that

1
e Pyel - Y = / ds e *P[Y, D1]e*? + h.c.. (7.46)
0

This implies that it is enough to control the commutator [Y, D;] after conju-
gation with e'P, for any ¢ € [~1;1]. Note that, if p € P&, q € Pp,r € Py and
v,w € Pp, we have [v4r| > N*=NP > IN* > NP st [a* jaq,a} 0}, ] =0,
for N € N large enough. Then, a lengthy but straightforward calculation shows
that

[bp+q plq, @ v+r Uy Oy Q] = b2+r Ay g (0—p wOptq0 + O—p vOptqw)

* * *
bp+q U+raw raq(aw(sfpﬂ) + avé,p,w)
* * *
- b—p vtrQw—rQq (aw5p+q7v + a’U(SP‘HLw)

and

[aga—pbptq: @34 r00— 00 aw] = 0GaubwO—p,w—rOptg,vtr + Agavbwd—pvtroptgw—r
+ a:;a:ufravawbp+q57p,v+r + a;‘l;Jrr‘lvawbvaq‘Lp,w*T
- a2+rafu—rawa—pbp+q5q,v - a:+raru—rava—pbp+q5q,w
+ gy - paubuwlptqutr + gy 0—pavbuwlptquw—r-
As a consequence, we conclude that

6
[Y, Dy] +hee. =) (¥ +he), (7.47)

i=1
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where
*

. _ _STaoN” T

1= N3/2 NrOy 4 Qo Qv+
r€ Py, v,wePy,:
v+wePr,
*

8ragN* .

\IJQ = W E nraerwavbwa

r€Pg,v,wePr:
v+r,r—wePf ,v+wePy,

*

16 N
\113:—& Z T /N N S P O

N3/2 q—vv+rrw—r
r€Py,q,v,wePL
o . (7.48)
W, — 8mag - b
4= W NrQgQay— 3y GAwOg—v—r,
r€Py,q,v,wEPy,:
v+rePy
*
87TU,0N'€
k k
Uy = NI E Mg gy Oy Ay bg—y 1
r€Py,q,v,wePy:
v+r—qEPg
K *
U, — 87TCl0N « " b
6= " N3Z MGy 41Oy G Q—pOpto -

pE P, r€Py,v,wePL

Let us explain how to control the operators ¥y to W, defined in (7.48). We
start with ¥;. Given & € ]:_EN, we find that

[(€, ¥18)]
8magN" * . X
- T NB/2 Z nr<§’bv+raw—rav+w§>
r€Py,v,wePy
el * —1/2 1/2
<Svam X ImllWeine + )7 a0sran o€l (Va1 ne + DY a0 ]

r€Py,v,wePy

< CN3B+2N_Q/2_1<6,(N2%NU( + 1)£> < Cv]\/‘l’>[3/2+ﬁ—1<£7 (NzéN" + 1)§>

The contribution W5 can be bounded by

8magN"* * .
(€, ¥26)| = N3z Z Ur(ﬁ%-s-mavbw@’
r€Py,v,wEPr:
v+rEPl‘;
S ONP/HE=HE Koanab) > | < CN3P/2H2571 (e Koy nab).

Ne<|r|<N°+NP

Notice here, that we used that |r| < N®+ NP if r+v € P§ and v € Pr. Next,
we apply as usual Cauchy—Schwarz to estimate the terms V3 to U5 by

(€, U3€) + (&, Wa) + (€, U58)|
< CN3#F2R—el2(g, (Noiye +1)€) < CN30/2r (¢, (N> 1ya +1)8)



Vol. 22 (2021) Bose-Einstein Condensation Beyond 1213

for all @ > 35 + 2k. Finally, the term Wg can be controlled by

*

8magN* . N
1€, Te&)| = TN3/2 Z (€, a3 4102y — 0w @ pbp )
;DGP;I,TEPH,'U,M)EPL

*

S ON<73/2 > ] "M (N5 wa sz + 1) 7 a0 raw— €]
pGPIEI,TEPH,v,wGPL

X [w][nr][|awa—pbptv (N> na 2 + 1)1/
S ONSFI/ERETHE KL (N s e +1)€) + ONTTIZE2R e, (N1 e + 1)8).

In conclusion, the previous estimates show that

6
+ [Z(\yi + h.c.)} < ONBBF2R=1K s + CN“+5/2+2”_11CL(NZ%NQ +1)
i=1
+ ONOTIEE N v + 1),

so that, together with (7.46) and (7.47), an application of the
Lemmas 4.2, 4.3, 7.1, 7.2 and the operator bound NZ%NO‘ < 4N72°K proves
the claim. O

7.2.3. Analysis of Mz(é). In this section, we determine the main contributions

to M%) = e PHyel, defined in (7.35). To this end, we start with the obser-
vation that

1
M® =+ / ds P ([, Di] + [V, Da) )P + e, (7.49)
0

with D; defined in (7.1). By Propositions 7.5 and 7.7, this implies that

N*
MY =HN = o > / ds V(r/N'*"")e™*P(a}, a%_,avaw +hc)eP
2 reAN v, weP:
'u+rw r#0

r1
+ / ds e 5P (8[KZ,D] + g[vNyD]>65D,
0
(7.50)
where we used that V(-/N'=%)x(fx —n/N)(r) = V(-/N*=%)(r) for all r € A%.
Moreover, the operators £y p) and i, py are explicitly given by

4 3
g[VN,D] = Z (cbz + h.C.), S[K D] Z E +h. C (751)
j=1

i=1

where we recall the definitions (7.19) and (7.26). Let us analyze the different
contributions in (7.50), separately. We start with the second term on the r.h.s.
of (7.50).
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Proposition 7.11. Assume the exponents «, 5 satisfy (5.6). Then, we have

1 K7 —K\,—S * * s
N Z N~V (r/N'=")e D(ap_,_uaq_uapaq—i-h.c.)e D

uEAN",p,qEPp:
ptu,q—uF0

1 ~

=N Z N*V(r/N'=")(ay, ,a}_,apaq +h.c.)
u€EAN",p,qEP:

p+u,q—u#0

oY NSVNT) /Nl avan + E1(s) + Ea(s)

ueEN v, wEP:
vtu,w—u€ Py,

(7.52)
and there exists a constant C > 0 s.t. £1(s) and E2(s) satisfy

:I:cfl(s) S C(NaJr,BJerfl + N73B73N)]C + CNZ’BJFH,

+E(s) < CNPFTRTICL (Nt jya +1) + C(NTFP~F 4 N3P/ 2HR/2-1 / dt e tPyyetP
>1 s

+ CN2B+2K71 /

dt eitD’CSQNH (NE%NO( + l)etD7
0

(7.53)
for all§ >0, s € [—1;1] and for all N € N sufficiently large.

Proof. For definiteness, let us denote by W : ]:_EN — ]:_EN the operator

W= N Z NNV(u/Nl—”)(a;+ua27uapaq +h.c.) (7.54)
uE€A",p,qEPL:
p+u,g—u#0

and consider the identity

e sPwesP —wW

/ dt e *P[W, D1]e*? + h.c.
0
1 s ~
= 7]\7/0 dt Z N~V (r/N1=r)e—tP [(a;+ua;7uapaq +h.c.), Dl]etD +h.c.

uwEA",p,qEPy:
ptu,g—u#0

(7.55)
Now, observe that

[alﬂaz—i-r] = [G’Q’ a;i-‘rr] = [al)?a;—r} = [aq7a’z}—r] = O
for all p,q € Py, and r € Py, v,w € Py and N € N sufficiently large. Then,
proceeding as in the proof of Proposition 7.5, we obtain
[a;+ua27uapaqv a’ZJrra’:(ufraan]
* *

_ * * * *
- 7av+raw—raq—ua’wapa’q(;p"ruvv - av+raw—rap+uawapaq§q—“av (756)

* * * * * *
- av—&-ra’w—rava’q—uapa’qép‘i‘u,w - a’v-l—raw—ravap—i-uapa’qéq—u,w'
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and
* % * *
[ Qg Op—u Oty Uy g - Oy — Oy Q)]
* % * * % *
= 0y Qgtuyy— Oy QuwOp—uvtr + AplgQp—u by QpQuwOgtu,vtr

k kK * kK

+ apaqav+raq+uava’w6pfu;wfr + apaqaerraP*Uaan(SQ*F%w*T (757)
* * * *

= Qo Oy — g Oy Op— Qg Op vy — Qg Qs Oy Gy —1u GguOg, v
* * * * * *

- av-{—raw—ravaqap—uaq-i'u(;p,w - av—&-raw—ravapap—uaq-i'ua%w'
Combining the last two identities and putting non-normally ordered contribu-
tions into normal order, we find that

)
1 *
_ k({7 11—k * *
[W, D]+ h.c. = i g NE(V(./N")xn/N)(u)ay, ,ay,_ 00y

ueN* v, wEPL:
v+u,w—u€ Py,

+ 26: (CJ + h.c.),

Jj=1
(7.58)
where
1 *
_ % 1—-k * *
Cl - = N2 § N V((U - T)/N )nra'quua’wfua”Ua’UH
ueEAN* v, wePL:
v+u,w—u€Pr,
rePgjU{0}
1 *
— k{7 1—k * *
CQ - 7W § N V(U/N )nrav—&-ra’w—ra’w—uav-‘-ua
uEN*,r€Py,
v,wEPr:
w—u,v+u€Pr,
1 *
— K1/ 11—k * *
(3= ToN2 § NV (u/N""")neay 4@y Gw—ulotu,
ueEN* , rEPy,
v,wWE P,
1 *
— KTy 11—k * * *
(1= N2 E NV (u/N""") g 4 Gy @y Gy Gy Gy,
uwEA* ,r€Py,
v,w,qEPr,:
v—u€ Py,
1 *
_ E K/ 1-k * * ok
<5 - N2 N V(U/N )nrav—&-r-l—uaqaw—raq-‘ruavaw7
u€N* , rePy,
v,w,qEPr:
v4+r+uePr,
1 *
— K17 11—k * * *
(6 = N2 E NV (u/N"" )05 4 Oy 0 Gy Qg -
ueAN* rePy,
v,w,qEPL
(7.59)

Let us briefly explain how to control the operators (; to (g, defined in
(7.2.3).
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Noting that v +u € Py, implies |u| < 2N? whenever v € Py, the first two
contributions ¢; and (s in (7.2.3) can be controlled by

*

CN* |w — ul |v]
< 2 E = = o=
= 9N2 ) |77r| |U| ||av+ua’w u€|| |’U) — u| ||ava’w£||
uEN* v, wEPL:
v4u,w—uEePr,,

re P U{0}

*

CN* _
tor 2 Inellave Wy e + )7 2a, 0]

R (7.60)

w—u,v+u€Pr,
X |aw-u(N>1 e + DY 2a,4&
< ONOHORRUE Kgo€) + NTPREmal2He (N g e + 1)6)
+ N7B/HH2m—a/2=2 K<ans (NE%ND‘ +1)¢)

< ONOFPEEU e K oona) + ONPHHE (NS 1y + 1)E).

By switching to position space, the term (3 can be bounded by
1€, C38)|

1/2
< ONPP/2hema/imt ( drdy N*~2"V(N'~"(z — y))llamdyﬁuz)

JA2

/
X (/ dxdy N?72°V(N'="(z — y)) Z H Z €% 4yt Gy — & ‘2>1 ’
A2 vE P,

r€Py,wePp

. 2 1/2
SCN3ﬁ/2+Iifa/271”V11V/2£”(Nmfl/dw Z H Z ezvmavﬂ»y‘awirg )
A rePyweP, veP,

< CN36/2+N/2—1<§’VN§> +CN3ﬁ/2+n/2.

We proceed similarly as above for the terms (4 and (5 which yields

N*© - _ _
<& Sl M= ulllaw e Vo v + 1) 0w rag-i]

N2
ueEAN* 7€ Py,
v,w,q€Pr:v—uePr,

x nellalla = ul ™ flawWs 1 e + 1) ?au—wagg]

CN* - - -
= 2 (ol vt suagaw—rgl ) (Inellal ™ olllaguasawg]l)

ueEAN* ,rePy,
v, w,q€PL:
v+r+uePr,

< CN5B/2+2N70‘/271<£,ICS:;NB(NZ%NO‘ +1)¢)

< ONPPHE Kagns (N1 ne +1)6),
(7.61)
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where, for (5, we used that v 4+ r + u € P, implies that |u| > %N‘l, and thus
lg + u| > %Noﬂ whenever v,q € P, 7 € Py and N € N sufficiently large
(otherwise |v + 7 +u| > LN® — NB > NP for large enough N € N). Finally,
(s can be controlled by

(€ C68)
1 * ) )
|y XNt e ol a0 awae, )|
r€EPH, A?
v,w,q€ P,
* ) 2\ 1/2
SCN’B/2+N_O‘/2_1/2HV]1\,/2£”<NK_1/ dx Z ‘q‘H Z e_lvw(l'U#»r(lwfr(lng >
A rE Py, veP
w,q€ P,

< CNPPRERPA2 YLK 4 va + D)V

In summary, the previous estimates show that
6
£ (¢ +he) <6V + CNIPERLRTYy L ONOHIFRTIL_y s + CNOHF
j=1
+ O(l + 571)Nﬁ+’i71/€§3]\]ﬁ (NZ%N”‘ + 1)
(7.62)
for all § > 0. On the other hand, by Lemma 7.3, we also know that

1 - ool C D s
+ {N E N*(V(./N* “)*n/N)(u)/ dt e "Par, ai,_avamet”
u€EN* v, weEPL: 0
v+u,w—u€Pr,

*

S k(17 —K * *

cx X NN /N )t
u€EAN* v, wEPL:
v4u,w—u€ Py,

< ONTTC 4 ONPH=2 4 ONPEUCL (NS 1 e + 1)
(7.63)
Now, going back to (7.55), the bounds (7.62) and (7.63) imply that

—s s S KTy —K * *
e PwesP =W + N Z NV (/N5 s /N (u)ah, ,ak 0oty

uEAN* v, wEPL:
vtu,w—u€ Py,

+ &1(s) + &2(s,0),
(7.64)
where the self-adjoint operators &£ (s) and &(s) are bounded by
igl(s) < C(Na+ﬁ+2n—1 + N—BB—SH)IC + CNQB—&%’

as well as

+E5(5,0) < CNPUCL(Na 1 ya + 1) + C(6 + CN3B/2HR/271) / dt e "Pyyet?
>1 :

+C(1+5—1)Nﬁ+“—1/ dt e—tDICSQNﬁ(NZ%NQ + e,
0
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for all 6 > 0 and uniformly in s € [~1;1]. Defining E(s) = Ea(s, N7P~%), this
concludes the proof. O

Equipped with Proposition 7.11, we go back to (7.50) and conclude that

1
MY > Hy ~ 5% > V(r/N'")(ahy 0k aua, + b
reA* v,wePr:
v4r,w—r#0

*

1 T *
_ﬁ Z NR(V( /Nl K)*n/N)< ) 'U+ua’w w v Qw
ueEAN* v, weEPL:
v+u,w—u€Pr,

1 1

— %]C - C‘]\ﬂﬁ-‘rN +/ ds 52(8) +/ ds 6_5D (E[VN,D] + E[Kyp])eSD,

" " (7.65)

foralla >30+2k>0witha+8+2k—1<0,0<k < fand N € N large
enough.

Next, let us analyse the error terms related to £>(s) and &y, p) further.

The bounds (7.53) and (7.21) (with § = ¢cN~#~* for a sufficiently small ¢ >

0; this choice guarantees that we can extract the term Vy r in (7.66), with

an error that can be absorbed in K) imply, together with Lemmas 7.1, 7.2,

Corollaries 7.4 and 7.6 and with the assumption (5.6) on the exponents «a, 3,

that

1
/ ds (eDSQ(s)efD + e(lfs)DS[vN,D]efufs)D)
0
> —CNPP L (NS 1 yve +1) = ON P75 (Un + V1) = ON?P (Ns iy +1)

_ CN4ﬁ+2H—1(N2%Na + 1)2

for all N € N large enough and for an arbitrarily small constant C > 0. With
Corollary 7.4 and (7.65), we conclude that

1 *
./\/l( >HN_W E V(r/N'= “Va} pah_ apa, +h.c.)
reN* v, wePr:
v+r,w—r#0

*

1 k({7 K *
_ﬁ Z N (V(/Nl )*n/N)( ) v—i—uaw ua’va’w
uEAN* v, weEPL:
v+u,w—u€Pr,

1 ~ 1
- K- CN?Pt% — ON“F="Yy 1 + / ds e P&y pjeP + €Y,
0
(7.66)
where the error 5/(311]3 is such that
PEG)e™P > —ON?HF L (Ny e +1) = CN PRy
~ ON®PNy o — CNWPZETING,
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Applying Lemmas 4.2, 4.3 and Corollary 4.5, we deduce with the operator
inequality NZ%NQ < 4N~2°K that
eAePe) e Ped > ~CNTPK — ON“P=ryy — ON2H2e-1

7.67
. CN2B+2N71KNZ%NQ ( )

for all N € N large enough.
Now, we switch to the contribution containing the operator & pj on the
r.h.s. of the lower bound (7.66). We recall once again that

1 1 3
/ ds e_SDE[,C,D]eSD = / ds Z e—sP (Zj + h.c.)eSD,
0 0 j=1

where the operators X1, 3o and X3 were defined in (7.26). It turns out that Yo
and Y3 are negligible errors while X7 still contains an important contribution
of leading order. We start with the analysis of the contribution related to ;.

Proposition 7.12. Assume the exponents «, 8 satisfy (5.6). Then, we have that

1 K ({7 11—k N —sD x* * sD
N Z NE(V(/N""")x fn)(w)e (aptuag—wapaq +h.c.)e
u€PfU{0},p,qEPr:
ptu,q—u#0
1 K (Y7 1—k N * *
=N Z N (V(/N'™") = fn) (u) (apsuag—vwapag + h.c.) + Es(s)
u€PfU{0},p,qEPL:
ptu,q—u#0

(7.68)
and there exists a constant C > 0 such that

+ el Es(s)e Pe 4
< ONOHIRTIC 4 ONOTPPRTUCNS 1 o + CNAPE20 QN80 2et
- =2

(7.69)
for all s € [=1;1] and for all N € N sufficiently large.

Proof. We proceed as in Proposition 7.11 and recall ¥ : .FEN — ffN to be

1 j : K (Tr —K N * *
E1 = ﬁ N (V(/Nl ) * fN) (u) (ap+uaqfuapaq + hC)
u€PFU{0},p,q€PL:
ptu,g—u7#0

We then have
e Py -3 = / dt e7*P (21, D1]etP + hec. (7.70)
0
Similarly as in (7.58) and (7.2.3), we find that

8
[£1,D1] + he. =Y (T + hee), (7.71)

i=1
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where

*

1 5 1— )
Fl m Z NH (V(/N N) * fN)(u)nra:—i-u—i-ra:;—u—ravaw’
u€PpU{0},r€Py,v,wePy:
vtutr,w—u—rePr,

*

1 =5 —k N * *
Iy = “oNZ? Z N* (V(-/Nl ) * fN)(U)Wrau+7-aw—raw—uav+ua
u€ P U{0},r€Py,

v,wePr,:
w—u,v+u€Pr,

*

1 ~ -~
I3 = Y Z N* (V(-/Nl_n) * fN)(U)nra:-f-raju—raw—uav-&-ua
uw€PjU{0},r€Py,
v,we Py,

*

1 S
r,= Nz Z NE(V(/N5) s fn) (w)neal paty ol Gy —udq,
uweP;U{0},r€Py,
v,w,qEPr,:
v—u€ Py,

s = ﬁ Z N* (V('/Nlil{) * fN)(u)nTa:J,-r—&-ua;a;ku—raq+uavawa
u€PjU{0},r€Py,

v,w,q€Pr:
v4+r+u€Pr,

*

1 K (Tr —K N * * *
I'g = ~3 Z N (V(./N1 ) * fN)(u)nrav+raw7raqawav,uaq+u.
u€PfU{0},r€ Py,
v,w,q€ Py,

The operators I'; to I's can be bounded similarly as in the proof of Propo-
sition 7.11. Let us start with I';. Applying as usual Cauchy-Schwarz implies
that

|<§7 F1§>|

CN* _
<<y 5> (R m—) | AT

uwePjU{0},r€ Py ,v,wePyr:
vtutr,w—u—rePr,

< ONO/HB/2426-172 || 1|01 2¢ | < ONOFPH2R—1(e (0L €) + CNAO+25 g2

where we used that v+u+r € Py, implies |u| > N*—3N” and |r| < N®+3N#8
whenever u € Pg,r € Py and v € Py, (otherwise |u+r+v| > |r| —|u| — N# >
2NB > NP if either |u| < N® —3NP or |r| > N® + 3N”, in contradiction
tou+r+wv € Pp) for N € N sufficiently large. Notice in addition that
Y Ne_aNA<luj<na S CN2HD,

The term T's can be estimated exactly as the term ¢y in (7.60), that is

(6, To€)| < ONOHIH2TE K oynsl) + CN?PHHE (Mo g e + 1)8).
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The contribution I's can be controlled by

*

CN*~ _
(€, T38| < INZ Z |nr‘||av+r(NzéNQ +1) 1/2aw—r§H

u€PjU{0},r€ Py,
v, we Py,

llaw—uWN>1na + 12, g
< ONoHIEERl(e, (N> 1na +1)E).
The terms I'y and I's can be bounded exactly as in (7.61). We find
(€, Ta€)| + (€. Ts)| < ONPF*HE Kaons (N g e + 1)E),

2

Finally, the last contribution I'g is bounded by

*

CN*
et <= > (lallwl ™ lavsr Wy ve + 17 a0 ag€])

u€PrU{0},r€ Py,
v,w,g€P

% (Inellwllal ™ llaw—u (Vo g ve + 1) 2auag10€]])
< CNO‘+§+2N71<§7’CL(N2%N& +1)¢).

In conclusion, the above estimates imply that

:I:Z i + h. c < C No+i+2n— 1’C<2N[3 + ONOHA+2R= 1’C<2Nﬁ(N>1Na +1)

+ CN“+35+2'<—1(/\/2% no + 1)+ CONAH2R

for all @« > 33 4 2k > 0 and for all N € N sufficiently large. Combining this
estimate with the identites (7.70) and (7.71), and applying Lemmas 4.2, 4.3, 7.1
as well as Lemma 7.2 together with the operator inequality N 1Na < AN
proves the proposition. O

Applying Proposition 7.12 to the lower bound (7.66) and defining 5/(31213 =
fol ds E3(s) with £(s) from Proposition 7.12, we conclude that

1 > —K * *
M%) >Hn — N E V(r/N* )(ay4rap—ravaw + h.c.)
reAN* v, wEPL:
v4r,w—r#0
1 *

K ({7 11—k * *
~ 3N g N*(V(/NT5) s n/N)(w)aya gty — oG
wEAN* v, we Py :
v+u,w—u€ Py,

1 K (Y7 1—k N * *
+on E NE(V(/N"7") % fn) () (aptuag—wapaq + h.c.)
uGP@U{O},p,qGPL:
p+u,g—u#0

1 P L s
- k-oN? VN,L+5}‘;1]3+5§‘;23+/ ds e *P (Lo + T3 + hc.)e’?

0

(7.72)
where 5/(3111\)’ satisfies the lower bound (7.67), £ (42]3 satisfies the bound (7.69)
and where the operators Xo and X3 were defined in (7.26).
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Let us finally estimate the size of the error in the last line of (7.72),
involving the two operators ¥4 and ¥3. Using the estimate (7.31) together with

Lemmas 4.2, 4.3, 7.1 and 7.2, we find for 5/(&3]3 = fol ds e *P (35 + h.c.)e’P
eAePE) P > —ONTPTIKNL s yo — CN 774K — CNP. - (7.73)
Finally, consider the operator 8&2 = fol ds e7*P (33 + h.c.)e’P, with 3

defined in (7.26). Let mg € R be such that mo = « (in particular, |mg| > 3).
Here, we use the bound (7.32) to find first of all that

1
i > — / ds 2P| (N2 (M g o+ 1)12¢]|
+ NOY| (W1 e + 1)3/25\\)
for any £ € ffN with ||€|| = 1. Notice that we applied once again Lemmas 7.1
and 7.2 in the second factor. With Corollary 7.8, the first factor is bounded
by
(44)
Etn
1/2 1/2 " 1/2
> —C</C1/2€|| + Vel + VY TEN + No#Renr2 e e

JFN*I/QHICIIJ/Q(NE%NQ Jr1)1/2€H 4 N3B/2+K/2

2Lmoj71
+ Z Njﬁ/4+3ﬂ/4+“_1/2[HIC}:/Q(./\/’Z%NM&+1)1/25H
=3

4 NN e + DY g + 1]

+Na/2+5/2+ﬁ_1/2[H’Ci/Q(NZ%NLmOJB T 1)1/2£H
NN e 41 i+ 1]
X <N‘1/2||IC1L/2(N>;NQ +1)V2%¢|| + Nﬁ‘lH(NZ%NQ + 1)3/25\])

for all exponents «, § satisfying (5.6) and N € N sufficiently large. It follows
that

gD > gD | g(2) | g(13) (7.74)
where
1 - . B
Eiy = —gK — ON~ V. — ON*r, WP = N—vy  (7.75)

with an arbitrarily small constant C > 0 and where after an additional ap-
plication of Lemmas 4.2, 4.3, 7.1 and 7.2 together with the operator bound
Nse < O72K, the error 85&45) is such that
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A, D(443) —D —A
e’ e Ve

> _CONotB2e—le C’N“_IICNZ%NQ — CNot36+2r—1
2lmo |—1
—C Y NIOPHBREATUCNG  niars — ONOFIFETLUCNG 1 g1
= (7.76)
for all exponents a, 0 satisfying (5.6) and N € N sufficiently large.

Choosing C' > 0 sufficiently large (but independently of N € N) and

arguing as right before (7.66), we deduce that
e? <5N_O‘eDVN,Le + eD5(442 - )e_A
(7.77)
> —CN~*Vy = CN"¥7"N, — CN 727 NS 1 e

for all «, 8 satisfying (5.6) and N € N sufficiently large. This follows through
another application of Corollaries 4.5, 7.4 and 7.6, together with
Lemmas 4.2, 4.3, 7.1 and 7.2. We summarize these bounds in the following
corollary.

Corollary 7.13. Let mg € R be such that mo8 = o and let Mgé) be defined as
n (7. 35) For every C' > 0, there exists a constant C > 0 such that

1
M(4) > IC + VN — N E V(r/N'= Vah ray_ apay, + h.c.)
TGA*,'u,wG?IZé,.
v+raw—r

1 - . .

_ﬁ Z N (V( /ZV1 )*U/N)( ) v+ua'w uavaw
ueN" v, wEPL:
vtu,w—u€ P,

1 ~
+ 5N ST NF(VUNYR) s ) (u) (ahyal_,apaq + hec)
uePI(EIU{O}apaQGPL:
ptu,g—u#0

—ONP "y +EQ.

(7.78)
where
ABDE/(&)N(D(A
> —CNPK = CN=P= "y — CNHP2E NS 1 g
2lmo -1 (7.79)
—-C Z Nj5/2+5/2+2n—1]CN’2%NjB/2 _ O N2B+r
=3

for all exponents «, B satisfying (5.6) and for all N € N suﬁiciently large.

Proof. The proof follows from defining Ej(\i)N = Z -|— Z & 44] and
combining (7.67), (7.72), (7.69), (7.73), (7.74), (7. 75) (7 ™, (7. 76) and the
operator bound N} < (27) 72K in ffN. O
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7.3. Proof of Proposition 5.1
Recall from (7.34) the decomposition

My = dragN'T" — dragN* ' NZ/N + MS\Q,) + Mﬁ) + M%‘)

Collecting the results of Propositions 7.9, 7.10 and Corollary 7.13, we deduce
that

1 |
My > dmagN'+% — dragN"IN2 4 8ragN® Y {b;bp L

P —p
pEPE
87'1'Clo]\f’i * * 1
+ W Z [b_pap+qaq —+ hC] =+ §]C
PEP,qEPL:
p+q7#0
1 ~
+ VN — N Z V(r/N'"%)(a},al_,apa, + hc.)
reAN* v, wePL:
v+r,w—r#0
]- - k(17 —K * *
—5x 2 NUVNT /Nl a e,
reA* v, wePyL:
v4+rw—rePr
1 =5 K N * *
+ N Z NE(V(/NY5) % fy) (r) (abyah,_ravay + hee.)
rePrU{0},v,wePr:
v+r,w—r#0
— ON"7""Vn 1+ Epys (7.80)

where 5}\/11\, satisfies the lower bound

el e e > —ONTPK - CN=I" Yy — ONOHPEONL 1 i1
2|_m0j71 ]
- C Z Njﬁ/2+ﬁ/2+2K71’CN2%NjB/2 — ONoHB/2H2m
j=3
(7.81)
for all N € N sufficiently large.
We combine next the terms on the third, fourth and fifth lines in (7.3).
We first notice that

1 ~
11—k * * * ok
N E V(r/N'Y5) (a0t Gy + aal,ay—raygr)
reAN* v, wePr:
v+r,w—r#0

1 ~
1— * *
= — E V(r/N""%)ay 0y Gy
2N
TEA*,U,wEAi:
v,wePr,
v+r,w—r7#0

1 17 1— * *
+ﬁ Z V(r/N "")ay 0y

reEAT v, wEAT
v+rw—rePr
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*

1 S _
2N Z V(T/Nl D LR e
rGA*,v,wEAi:
(v,w)EP} or (v+rw—r)EP}
L y T
ton Z V(r/N'Y""ak, ak_ aya.,

TEA*,'UﬂUEA*Jr:
(v,w,v+rw—1)EP}

(7.82)

Arguing in the same way for the contribution on the fifth line in (7.3), using
that (fx —n/N)(p) = 0p,o for all p € A%, and using that v € Pp and v+r € Pp
implies in particular that r € Pf;, we therefore obtain that

*

1 ~
1— *
VN — 5N E V(r/N""")ay, a0y
TEA*,U,MGAj_:
(v,w)EP} or (v+rw—r)EP}

1 ~
1—k\  * *
- ﬁ E V(T/N )av+raw—ravaw
rGA*,v,wEA::
(v,w,v+rw—r)EP}

*

LS NA PN N ()0 0

2N
reA* v, wePyL:
v+rw—rePr
1 I
+ N Z NE(V(/N"5) = fn) (r) (@) paly_pavayw + hec.)
rePpU{0},v,wePr:
v+r,w—r#0
1 . i — * *
=VnN — N Z V(r/N'"%)al, .ak_ aya,

reA*,v,wEAi:
(v,w)EP} or (v+rw—r)EP}

*

1 k(1) —K N * *
+ o > NEV (N s ) (1)a%y %y 1y,
r€PrU{0},v,wePL:
(v,w)EP} or (v+rw—r)EP}

(7.83)

Now, notice furthermore that

*

1 ~
1—kK\  * *
VN — N g V(r/N*"")ay 0 Gy
reA*,v,wEAi:
(v,w)EP} or (v+rw—r)EP}

*

=Y DN,
rGA*,v,wGA::
(v,w)E(P?)° and
(v+rw—r)E(PE)°
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such that, after switching to position space, the pointwise positivity V' > 0
implies

%

1 —~
VN — — Z V(r/N'"%)a}, ak_ avaw

2N
TGA*,v,weAjr:
(v,w)EP} or (v+r,w—r)EP?

= / dxdy N272°V (N1="(z —3))
A2

X {a*((f(Pﬁ)z)a*((S{Pg)y) +a* ((Xp,)e)a™ ((Xpg)y) + a*((f(Pﬁ)z)a*((chL)y)}

X {a((XPg)w)a((XPf)y) +a((xp)z)a((Xp)y) + a((XPg)m)a((XPL)y)}
> 0.
(7.84)
Here, we used that A% = Py, UPf and we denote by s the distribution which
has Fourier transform xg, the characteristic function of the set S C A7.

Combining (7.3), (7.3), (7.3) and (7.84), it follows that

1 1
My > dragN' 4" = dragN" N2 + 8magN™ S~ [bjb, + Sbib*, + 5bpb_p}

97p"-p
pEPE
87TC[0NK N N 1
+ W Z [b—pap+qaq + h~C-] + §’C
pEPR,qEPL:
p+q#0
L - k(1) —K N * *
+ o > NSV (N5 5 Fe) ()l o
r€PzU{0},v,wEPL:
(v,w)EP} or (v+rw—r)EP}
—CONTF YN+ Ey (7.85)

Using Lemma 3.1, part ii), we have (IA/(./le"”") * fN) (0) = 8rag + O(N=1).
This implies

1 1
My = dragN 4= 4+ 8ragN™ 3 [brby, + Sbibt, + 5bpb_p}

p —p
pEPE
871'(10]\/”i % * 1
+ W Z [bipapﬂaq + h.c.] + ilC
pE P ,qEPL:
p+q7#0
1 - K (17 —K N * *
+ W Z N (V(/Nl ) * fN) (T)a1)+raw—rava’w

rePg,v,wePr:
(v,w)EP} or (v+rw—r)EP?
A N—B— "
—CN—P KVN7L +€MN’

(7.86)
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where, by (7.81) and Lemmas 4.2 and 7.1,

eAeP e e Ped > —CNTPK - CNTI7 Yy — CNOFPP2 NS 1y img 1
2|mo|—1
_C Z Nj3/2+5/2+2m—1KNZ%Nm/2 — ONotB/2+2
= (7.87)
Similarly, for r € Pf;, we know that

|(V(./NY"%) % f) (r) — 8mag| < ONOF<L,

Therefore, proceeding exactly as between (7.27) and (7.30), with (17(./]\/'1_"‘) *

fN)(r) replaced by }(?(/Nl‘“) % ) (r) — 8map|, we deduce that

My = dmagN' 4 S+ 8magN™ 3 [b5by + 5657, + Shpboy ]

pEPS
8magN* L
’ VN Z (0% pap g0 +hec]
pEPE ,qEPL:
p+q#0
dragN*® * B
* % Z aiwajlfr%aw - CN_ﬂ_’iVNyL + g.//(//le

rePg v, wePL:
(v,w)EP}
or (v+r,w—r)EP}

(7.88)

with €Y = satisfying the same bound (7.87) as &£}, . Here we used Lem-
mas 4.2, 4.3, 7.1 and 7.2, as well as the assumption (5.6).

Finally, recalling the definition (5.1) and the identity (5.2), we find

1 R T
My = dmagN' % 4 2K + 8magN™ (B30 + S, + 5b,,b,,,}

p-—p
pEPS
+8magN® Y [bipe,p et b+ by b7+ cpb,p}
pEPE
47Ta0NK - * * ~AANT—B—kK
+ —~ Z Wy Gy — CN B Vn,L+Ey -

rePg v, wePL:
(v,w)EP}
or (vdrw—r)EP}

(7.89)
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To express also the first term in the third line of (7.89) in terms of the modified
creation and annihilation fields defined in (5.1), we first observe that

dragN*® - . .
N E Coypp Oy — - Qv Ay

rePf,v,wEPL:
(v,w)EPZ
or (v+'r,w77')€P[21

*

4 N*
SNy oy

re€ P v,wEPr:
(v,w)EPﬁ

*

K
* ¥ 47l'a()N ¥
Ay Qv Ay o Q. — T Aoy Qo7
rePf ,vePL:
(v,v+'r)€P§

or (v+r,w—r)EP}

*

47ra0N"
S P IS

rc P v,wEPy:
(v,w)EP}

@@y aw — CN*PTR=INL — C.

or (vtr,w—r)EP}

Then, for a fixed r € Pf;, we have that

7
{(v,w) e AL x ALt (vw) € PRor (v+rw—r)ePEt =],
j=1

where
Sy ={(v,w) € AL x A}
Sy ={(v,w) € A% x A%,
Sz ={(v,w) € A% x A%,
Sy ={(v,w) € A% x A%,
S5 = {(v,w) € Af x A%,
Se = {(v,w) € AY x A%,
Sy ={(v,w) € A} x A%,

tv€Pp,wePLv+re€PLw—r€eP},
tv€Pp,wePLv+re€Pw—rePf},
tv€Pp,wePLv+rePi,w—reP},
tv€Pp,wePLv+rePi,w—rePf},
:vEPf,wEPL,U—&—TEPL,w—rEPL}7
:vEPL,wEPE,U—&—rEPL,w—TEPL},
:vEPE,wEPE,v—&—rEPL,w—TEPL}.

In particular, the union =1 S; is a disjoint union. As a consequence, we find

that
4mragN* -
> X
rePg v,wePr,:
(v,w)EP?

or (vtrw—r)EP?

* *
Ay Oy .G

w—rw

1 1 1 1
= 8magN" Z [eicir +e per+=diet + e e+ —crict + fc,rcr}

rePg

27‘—7" 2 2’)”—’)” 2

+ 8magN" Z [e;ﬁer +cler + e:cr}.

rePg
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Inserting in (7.88), we obtain

My > dmagN' T+ %IC +8magN™ Y (b + e +ef) (br + o+ er)

rePg

+ 4magN"® Z [(b: +oerter) (b, Het,) + h.c.} (7.90)

rePg

— 8magN" Z [cier 4+ bie, + cib] — CNTP= Yy 1+ EXY

rePg
with
etePe e Ped > —ONTPK — CNT/7"Vy — ONOHIF N 1 g s
2|mo] -1
—C Y NIIPEOREITUCN 4 s — ON OO/

Jj=3

Let us now estimate the remaining terms on the last line of (7.90). For ¢ €
ffN, we have

8magN" Z <§7C:C’I‘§>‘
rePg
CN* -
<O Sl sl (Iolol esanenl)  (700)

N :
r€Pg,v,wePL:
vePp,r+veEPL,
wePr ,w+rePy

< CNﬂ+K_1<£,ICL(NZNB + 1)§>7

and
K * * 1 * 2k *
SragN" 3 (&, (brcr+crbr)£>‘ <72 (&b +ON Y (€ cret)
rePg rePg rePg
1
<K+ CNPH2=1(e KCp(Ns s + 1)€),

(7.92)
Similarly, we can bound

NP5 VN <CNTAL 3" lapuaglllapagrud
uEA",p,qEA]:
p+u,q+u,p,q€PrL,

< CON—A1 la* 2
= Z 7] lap+uaqdl
uGA*,p,qGAj_: p

ptu,q+u,p,qePr,

< CNTY KN 2¢|? < C|lk %) 1?

Thus, choosing the constant C > 0 small enough and applying Lemmas 7.2, 4.3
and 4.2 to the r.h.s. of (7.91) and to the second term on the r.h.s. of (7.92),
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we conclude that
1
My > 4magN'*" + 2K + 8ragN" S it t+er)(brteter)
rePg

+4magN® > {(b;’i teider) (b, et et,) + h.c.] + &
rePg

N

(7.93)
where £ is such that
€A€D(€X/II/N€7A€7D Z o CNfﬁIC o CNfﬁfﬁVN
- CNBJr?"*l/CNzNﬂ — CNQ+B+2H?1KN2%NLmOJﬁ
2ngj71
—-C Z Njﬁ/2+5/2+25—1;CNZ%NjW2 — ONOt+8/2+2%
j=3
(7.94)
We introduce the operators
gr=br+c +er, gr =b. + ¢, + e
With the algebraic identity
1 1 1 1
> [g:gr + 59795 + ngrgr] =5 2 (e +g-r)lor+92) =5 X lom ),

rePg 2 rePg rePg

we conclude that
14k 1 K * 1"
My > dmagN' 4 2K — dmagN > lom gl +EX,
rePg
Since
[br, cr] = [br, e7] = [cr, b7] = [er, 7] = [cr, 7] = [er, 7] = 0,

we obtain that

CON-N 1,1 L1 ,
[g’ragr} = T - Narar + ﬁ Z Ay Gy — N Z Ay r Qv

’UGA:;_:’UGPL, ’UGA:_Z’UGPL,
v+rEPL v+rePL
1 * 1 *
+ IN Z yly = 755 Z Ay Q-
veAi:vePL, ’UEAiZUEPL,
v+repPy, v+repPy,

A straightforward computation then shows that

—4magN" > [gr, g7] = —~CN®*T5(1 = N} /N) = CN3FFN /N > —CN3r,

pEPE

Thus

1
Mpy > 47TC10NI+H + Z’C+EMN
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where €y, satisfies
etePEmye e =~ ONTK —CN"P vy
_ CNB+2K71’CNZN§ _ CNa+,6’+2m—1ICN2%NLm0m
2Lm0J71 ]
-C Z N35/2+5/2+2”_1/C/\/‘2%Nm/2 — CN3atr
j=3

This concludes the proof of Proposition 5.1. O
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