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Abstract. We investigate some foundational issues in the quantum theory
of spin transport, in the general case when the unperturbed Hamiltonian
operator H0 does not commute with the spin operator in view of Rashba
interactions, as in the typical models for the quantum spin Hall effect.
A gapped periodic one-particle Hamiltonian H0 is perturbed by adding
a constant electric field of intensity ε � 1 in the j-th direction, and the
linear response in terms of a S-current in the i-th direction is computed,
where S is a generalized spin operator. We derive a general formula for
the spin conductivity that covers both the choice of the conventional and
of the proper spin current operator. We investigate the independence of
the spin conductivity from the choice of the fundamental cell (unit cell
consistency), and we isolate a subclass of discrete periodic models where
the conventional and the proper S-conductivity agree, thus showing that
the controversy about the choice of the spin current operator is immaterial
as far as models in this class are concerned. As a consequence of the
general theory, we obtain that whenever the spin is (almost) conserved,
the spin conductivity is (approximately) equal to the spin-Chern number.
The method relies on the characterization of a non-equilibrium almost-
stationary state (NEASS), which well approximates the physical state
of the system (in the sense of space-adiabatic perturbation theory) and
allows moreover to compute the response of the adiabatic S-current as
the trace per unit volume of the S-current operator times the NEASS.
This technique can be applied in a general framework, which includes
both discrete and continuum models.

1. Introduction and Main Results

The aim of this paper is to shed some light on the theory of spin transport in
gapped (non-interacting) fermionic systems, a problem which is highly relevant
to the research on topological insulators (see the end of Sect. 1.2).
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The theory of spin transport, as compared to charge transport, is still in
a preliminary stage. First, despite two decades of scientific debate, no general
consensus has been reached yet about the correct form of the operator repre-
senting the spin current density. Denoting by H0 the unperturbed Hamiltonian
operator, by X = (X1, . . . , Xd) the position operator and by Sz the operator
representing the z-component of the spin, one may consider1

(i) the “conventional” spin current operator

JSz
conv :=

1
2
(
i[H0,X]Sz + iSz [H0,X]

)
(1.1)

which has been used e.g. in [58,60,64];
(ii) the “proper” spin current operator

JSz
prop := i[H0,XSz] (1.2)

proposed in [62,72].
Whenever [H0, Sz] = 0, the two above definitions agree and the theory of

spin transport reduces to the theory of charge transport. However, in general
[H0, Sz] �= 0 in topological insulators, as it happens e.g. in the model proposed
by Kane and Mele in view of the so-called Rashba term [26,33]. As we will
explain now (see the related discussion [43]), the lack of commutativity poses
technical and conceptual problems for the theory of spin transport, and the
main objective of our paper is to clarify some of these issues.

As a second issue, whenever [H0, Sz] = 0 the spin conductivity is given,
in analogy with charge transport, by a double commutator formula, namely

σSz
ij = i τ

(
Π0Sz

[
[Xi,Π0], [Xj ,Π0]

])
, (1.3)

where τ is the trace per unit volume and Π0 the Fermi projector of the gapped
system. Formula (1.3), equivalently rewritten in terms of Bloch orbitals, has
been considered as the starting point for further analysis of the robustness
of the spin conductivity [60,64], or for a mathematical comparison of spin
conductivity and spin conductance [43].

In this paper, we address two foundational questions in spin transport
theory:
(Q1) is it possible to derive from the first principles of quantum theory, in

the general case [H0, Sz] �= 0, a double commutator formula for the spin
conductivity similar to (1.3)?

(Q2) to which extent is such a formula affected by a different choice of the
spin current operator, namely JSz

conv versus JSz
prop?

Moreover, any formula for spin transport coefficients should satisfy the so-
called unit cell consistency (UCC), namely the requirement that any prediction
on macroscopic transport must be independent of the choice of the fundamental
cell [69].

1All over the paper we use Hartree units, so that the reduced Planck constant �, the mass

of the electron me and the charge of the positron e are equal to 1. With this choice, both

the unit of charge conductivity e2

h
and of spin conductivity e

2π
reduce to 1

2π
.
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In order to answer these questions, we reconsider the whole approach to
quantum transport theory.

1.1. Two Paradigms for Quantum Transport

The usual paradigm is based on the adiabatic switching-on of the perturbing
electric field. More specifically, one considers the time-dependent Hamiltonian
operator

Hswitch(t) := H0 − f(ηt) εXj , (1.4)

where f : R → [0, 1] is a smooth function such that f(s) = 0 for all s ≤ −1 and
f(s) = 1 for all s ≥ 0, i.e. the Hamiltonian describes the process where the
perturbation is switched on during the finite time interval [−1/η, 0], for η > 0.
As η → 0+, the process becomes adiabatic. One assumes that the system is
prepared, at some time t ≤ −1/η, in the equilibrium state Π0 and that the
switching occurs adiabatically. The state ρε,η(s) at macroscopic time s = ηt is
given by the solution to the time-dependent Schrödinger equation

{
i η d

dsρε,η(s) = [Hswitch(s), ρε,η(s)]
ρε,η(−1) = Π0.

(1.5)

The linear response coefficient σA of an extensive observable A is defined by
comparing the expectation value of A at time t∗ ≥ 0 (when the perturbation
is completely switched on) and in the far past (when the system is in the
unperturbed equilibrium state). By considering the adiabatic limit, one defines
σA by setting

lim
η→0+

Re τ(Aρε,η(t∗)) − Re τ(AΠ0) =: ε σA + o(ε) as ε → 0.

The real part appears in the formula since one does not know a priori whether
the conditional cyclicity of the trace per unit volume can be invoked.2 The
standard approach for obtaining a tractable formula for σA is to first approx-
imate ρε,η(0) by first-order time-dependent perturbation theory, and then to
formally exchange the small field limit and the adiabatic limit, see e.g. [1,28].
Choosing f(ηt) = eηtχ(−∞,0](t) + χ(0,+∞)(t), this results in Kubo’s formula
[39] for the linear response coefficients3

σKubo
A := −i lim

η→0+

0∫

−∞

dt eηt τ
(
e−iH0t [Xj ,Π0] eiH0tA

)
. (1.6)

In the case of charge transport, one considers the response of a charge current
in the i-th direction, i ∈ {1, . . . , d}, whose corresponding quantum mechanical

2A similar phenomenon appears in quaternionic quantum mechanics, where the Hilbert space
trace fails to be cyclic [49].
3Note that the specific choice f(ηt) = eηt for t ≤ 0 has the computational advantage that

the integral in (1.6) becomes the inverse Liouvillian, i.e. that the right hand side of (1.6) for
finite η > 0 equals, at least formally, τ((LH0 − iη)−1([Xj , Π0])A). However, in the adiabatic
limit any other integrable and smooth choice for the switching function f leads to the same
value for σKubo

A .
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operator is Jc
i := i[H0,Xi] , and from (1.6) one obtains the formula

σKubo
Jc

i
= i τ

(
Π0

[
[Xi,Π0], [Xj ,Π0]

])
. (1.7)

The importance of the double commutator formula (1.7) (sometimes dubbed
Kubo–Chern formula) cannot be overstated, as it implies e.g. quantization of
Hall conductivity in two-dimensional systems [5,10,22,37]. When considering
spin transport, we had to face the fact that even the algebra which leads
formally to (1.7) becomes cumbersome for spin currents, whenever [H0, Sz] �=
0. Moreover, the fact that the formula is intrinsic (i.e. does not depend on the
choice of the switching function appearing in (1.4) and on the choice of t∗ ≥ 0)
is not obvious as far as spin currents are concerned.

Thus, we propose an alternative way of computing linear response coef-
ficients based on the non-equilibrium almost-stationary states (NEASS) (see
Sect. 4), a concept related to the almost-invariant subspaces in space-adiabatic
perturbation theory [52,53,67]. Assuming, for the moment, that the state of
the system at times when the perturbation has been turned on is approxi-
mately given by the NEASS Πε, we find a simple prescription for computing
linear (and also higher order) response coefficients: Let Πε = Π0 + εΠ1 +o(ε),
then from

τ(AΠε) − τ(AΠ0) = ετ(AΠ1) + o(ε)

one concludes that

σA = Re τ(AΠ1) . (1.8)

In this paper, we will show how to compute formulas for the spin-conductivities
based on formula (1.8) for linear response coefficients, instead of (1.6). The
advantage of this method is that the operator Π1 is rather explicit, namely
Π1 = I

(
[Xj ,Π0]

)
, where the overline denotes the operator closure and I is the

inverse of the Liouvillian operator B �→ [H0, B], with integral representation
(4.2).

Of course one expects, and formally it is also easy to see, that the two
expressions (1.6) and (1.8) agree. However, in the present setting—where
expectations are obtained via a trace per unit volume which is only condi-
tionally cyclic—this is not straightforward to prove. Moreover, both formulas
are somewhat heuristic: For (1.6) we assumed applicability of time-dependent
perturbation theory also for long adiabatic time-scales, while for (1.8) we just
postulated that the perturbed system is in the state Πε.

In order to reconcile and justify both approaches, one needs to prove that
in the adiabatic regime the dynamical switching drives the initial equilibrium
state Π0 approximately into the NEASS Πε, i.e. that the state ρε,η(t) is close
to Πε. Indeed, it is shown in [41] that for times t ≥ 0 and any n,m ∈ N

∗

sup
η∈Im,ε

|τ(Aρε,η(t)) − τ(AΠε)| = O(εn) (for t ≥ 0) (1.9)

uniformly on bounded intervals in (macroscopic) time. Here Im,ε = [εm, ε1/m]
is an interval of admissible time-scales for the switching. Too slow switching
(η � εm for all m ∈ N

∗) must be excluded, because due to tunneling the
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NEASS decays on such long times-scales, while too fast switching (1 	 η 	
ε1/m for all m ∈ N

∗) would merely yield an error o(1) on the right hand
side of (1.9) (see also [28,68]). In other words, the initial equilibrium state
Π0 dynamically evolves into the NEASS independently of the shape of the
switching function up to lower order errors.

1.2. Main Results on Spin Transport and Conductivity

By using the NEASS paradigm, we will answer the questions (Q1) and (Q2)
stated before, at least in the periodic setting. Let us shortly summarize the
main results in the paper.

We consider a crystalline system of non-interacting fermions, whose one-
body Hamiltonian H0 is periodic. This operator acts on the Hilbert space
H = L2(X ) ⊗ C

N , where either X = R
d (continuum case) or X ⊂ R

d is a
discrete set (discrete case), and N is the number of internal degrees of freedom
of the particle, which may include spin; periodicity of H0 is understood with
respect to (magnetic) translations along vectors in a Bravais lattice Γ � Z

d. We
assume that the Hamiltonian H0 has a spectral gap and that the initial state
of the system is given by the spectral projection Π0 on the bands below this
gap (Fermi projector). The system is driven out of equilibrium by applying
a constant electric field of intensity ε � 1 pointing in the j-th direction,
j ∈ {1, . . . , d}. Hence, the stationary Hamiltonian of the perturbed system is
Hε = H0 − εXj , where Xj is the j-th component of the position operator.

We consider a generalized spin operator in the form S = 1L2(X )⊗s and—
denoting by JS

conv,i := 1
2

(
i[H0,Xi]S + iS [H0,Xi]

)
and JS

prop,i = i[H0,XiS]
the corresponding conventional and proper S-current operator—we define the
conventional and proper S-conductivity, respectively, as4

Re τ(JS
conv/prop,i Πε) − Re τ(JS

conv/prop,i Π0) =: ε σS
conv/prop,ij + o(ε). (1.10)

In view of the controversy on the choice of the spin current operator discussed
at the beginning of Introduction, we find convenient the decomposition

JS
prop,iΠ1 = i[H0,XiS]Π1 = i[H0,Xi]SΠ1 + Xi

(
i[H0, S]

)
Π1 = O + XiR

(1.11)

where we have defined the operators

O := i[H0,Xi]SΠ1 and R := i[H0, S]Π1. (1.12)

In this decomposition, the S-orbital term O contains the contribution associ-
ated with the conventional S-current operator, while the S-rotation term XiR
contains corrections related to the replacement of the latter with the proper
S-current operator. More precisely, we prove in Theorem 5.6 that splitting
(1.11) leads to

σS
prop,ij = σS

conv,ij + σS
rot,ij , (1.13)

4Notice that the j-dependence of σS
conv/prop,ij is hidden on the left-hand side of the following

definition in Π1, see its definition in Proposition 4.1.2.
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where

σS
conv,ij = Re τ

(
iΠ0

[
[Xi,Π0]S, [Xj ,Π0]

])

+ Re τ
(
i [H0,X

D
i ]SODΠ1 + iXOD

i [S,H0]Π1

)
,

(1.14)

with AD (resp. AOD) referring to the diagonal (resp. off-diagonal) part of the
operator A with respect to the orthogonal decomposition induced by Π0, and
the rotation S-conductivity is

σS
rot,ij = Re τ(XiR) = Re τ

(
iXi[H0, S]Π1

)
. (1.15)

Notice that the first line of (1.14) is in the form of a current-current correla-
tion at the equilibrium, involving the conventional S-current and the charge
current, while the second line involves Π1. Moreover, the trace per unit volume
in (1.14) and (1.15) can be replaced with the ordinary trace of the operator
restricted to the fundamental cell, up to a volume factor, as in the statement
of Theorem 5.6, even if the operator appearing in (1.15) is not periodic.

In order to analyze the S-rotation contribution σS
rot,ij , we preliminary

prove in Proposition 5.4.1 that for any bounded periodic observable B, satis-
fying suitable regularity properties, the expectation of the B-torque operator
i[H0, B] on Π1 is given by a double commutator formula, namely

τ
(
i[H0, B]Π1

)
= τ

(
iΠ0

[
[Π0, B], [Π0,Xj ]

]

︸ ︷︷ ︸
TB

)
,

where the operator TB may be dubbed B-torque response in agreement with
[43]. If, in addition, [B,Xj ] = 0 then τ

(
i[H0, B]Π1

)
= 0, as stated in Proposi-

tion 5.4.2. Physically, this result means that even if i[H0, B] �= 0, the fact that
B commutes with the perturbation −εXj implies the mesoscopic conservation
of the observable B, at least within first order approximation in the NEASS.
In particular, when B = Sz (or for any generalized spin operator S, see Corol-
lary 5.5), we have that the expectation of the spin-torque on Π1 equals the
expectation of the spin-torque response TSz

and that the latter vanishes, in
agreement with [43, Theorem 2.8]. Notice that the vanishing of the expecta-
tion of the spin-torque response is a condition singled out in [43] to obtain
the equality of spin conductivity and spin conductance in two-dimensional
systems.

As a further step, we consider the unit cell consistency (UCC) of both
the contributions to the proper S-conductivity appearing in (1.13). We prove
in Proposition 5.8 that σS

conv always satisfies UCC, while for the additional
contribution σS

rot we can prove UCC only if the model enjoys a discrete rota-
tional symmetry, in agreement with the claim in [62] that the use of JSz

prop is
“possible for systems where the spin generation in the bulk is absent due to
symmetry reasons”. In Proposition 5.9, we isolate a subclass of discrete mod-
els, enjoying a discrete rotational symmetry and a further property, such that
σS
conv = σS

prop. Remarkably, the paradigmatic model proposed by Kane and
Mele is in this class. A crucial consequence is that, for this class of models, the
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choice of the spin current operator (either JS
conv or JS

prop) is immaterial as far
as the S-conductivity is concerned.

While the paper is focused on transport theory, one of our long-term goals
is to clarify the relation between the spin transport coefficients and the topo-
logical invariants associated with quantum spin Hall (QSH) insulators. These
materials, theoretically predicted in [33,34] and soon experimentally realized
[38,65], display dissipationless edge spin currents, which are robust against
continuous deformations of the model and disorder [60]. A crucial issue, both
for fundamental understanding and for potential applications, is whether there
exists a bulk topological invariant “protecting” the QSH effect. Two candidates
have been extensively investigated in the literature. First, the Z2-valued index
proposed by Fu, Kane and Mele [21,34], whose definition and geometric prop-
erties rely on the fermionic time-reversal symmetry of the system [15,20,23].
Second, the (half-)integer-valued spin-Chern number, introduced in [61] via
spin dependent boundary conditions, and later intrinsically redefined by Pro-
dan as a bulk invariant [56], which relies instead on the almost-conservation
of spin, and is associated with robust spin edge currents [36,55,58,59].
Our analysis establishes a direct relation between the bulk spin conductivity
and the spin-Chern number, in agreement with the (recent) discovery that
QSH plateaux may persist under broken time-reversal symmetry [18]. Indeed,
whenever spin is conserved, our results yield that the (bulk) spin conductivity
equals the spin-Chern number (Remark 5.12). Moreover, the result is robust: If
spin is approximately conserved, with errors of order O(λ), then the mentioned
equality holds true up to a correction of order O(λ) (Proposition 5.13), in
analogy with the persistence of edge spin currents proved in [58].

In summary, our paper contributes to put spin transport theory on a
firm mathematical ground: We derive a new formula for the spin conductivity
which covers both the choice of the conventional and the proper spin current
operator; we isolate conditions under which UCC is satisfied and additional
conditions which guarantee that σS

conv = σS
prop; we make connection with the

spin-Chern number. We hope that our mathematical investigations will con-
tribute to clarify some of the controversies in the emerging and promising field
of spintronics, and will stimulate a fruitful exchange of ideas between math-
ematicians and solid state physicists. While, for technical reasons, this paper
focuses on the case of periodic non-interacting systems, we are confident that
our approach can be suitably generalized to random and interacting systems.

1.3. Further References to the Literature

Several different mathematical problems have been labeled “proving Kubo’s
formula” and a short review highlighting the differences appears elsewhere [28].
Here we only mention a few works without going into any detail: A similar
approach to the one we use was employed in [66], where Kubo’s formula for
the Hall conductivity of simple isolated bands is derived using semi-classical
methods. The rigorous derivation of Kubo’s formula for interacting fermionic
systems on the lattice has recently been done in [7,46,68], where [7,46] consider
only situations where the perturbation does not close the spectral gap. A
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similar result for non-interacting fermions in the continuum is in preparation
[42,43], generalizing a previous result [19] which also assumes a non-closing-
gap condition. In many other works, Kubo’s formula for the Hall conductivity
is taken as a starting point and the objective is to prove quantization of the
Hall plateaux also in presence of disorder, assuming the Fermi energy lies in a
mobility gap [1,10,12], or including interaction effects [6,24,27], with the aim
of proving universality of the Hall conductivity. Moreover, the linear response
to a quenched perturbation has been recently analyzed in [14]. Finally, in [13,
17] (and references therein) mathematical frameworks are developed, within
which the applicability of linear response theory in very general random resp.
interacting systems can be established. However, a rigorous justification of
Kubo’s formula for the quantum Hall conductivity in situations with mobility
gap is still a completely open problem, even in the case of non-interacting
systems on the lattice.

Linear response theory can also be considered in the case of heat or charge
fluxes induced by thermodynamical (i.e. non-mechanical) driving forces, such
as deviations of temperature or chemical potential from their equilibrium val-
ues. In this context, the validity of the Green–Kubo formula has been exten-
sively investigated in algebraic quantum statistical mechanics, by relating it
to the structure of non-equilibrium steady states [29–32].

The field of spintronics and of quantum transport of spin is relatively
new, but has already attracted a lot of attention both in the physics and
mathematics communities. Results concerning the quantization and robustness
of spin Hall currents in the presence of disorder [56,58] and of interactions [3,
44] also rely, to some extent, on a Kubo-like formula. We foresee the possibility
of adapting the techniques developed in [46,68] to derive such formulas from
first principles also in the context of interacting fermions on a lattice.

2. Periodic Operators and Trace Per Unit Volume

In condensed matter physics, it is customary to describe crystalline solids by
means of periodic Hamiltonian operators. The appropriate trace-like functional
used to compute thermodynamic expectations of periodic observables is given
by the trace per unit volume. This Section is devoted to recall some generalities
about this framework.

Let X denote the configuration space of a d-dimensional crystal. We will
treat both continuum models, in which X = R

d equipped with the Lebesgue
measure, and discrete models, in which X ⊂ R

d is a discrete set of points
arranged in a crystalline structure, equipped with the counting measure (in d =
2 think of the square lattice Z

2 or of the honeycomb structure, for example).
In general, “crystalline structure” means that we assume the existence of a
Bravais lattice

Γ = SpanZ {a1, . . . , ad} � Z
d (2.1)

that acts on X by translations, i.e. Tγx := x + γ for γ ∈ Γ defines a group
action T : Γ × X → X .
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We consider the one-particle Hilbert space

H = L2(X ) ⊗ C
N � L2(X ,CN )

for a particle moving on X and having N internal degrees of freedom (e.g.
spin). In the following we will write elements of H as C

N -valued functions on
X . We assume that there is a unitary representation T of Γ on H by (magnetic)
translation operators

(Tγψ)(x) := M(γ, x)ψ(x − γ), for all γ ∈ Γ and ψ ∈ H, (2.2)

where M : Γ × X → U(CN ) are unitaries satisfying the cocycle condition5

M(γ1 + γ2, x) = M(γ2, x)M(γ1, x − γ2) for all γ1, γ2 ∈ Γ and x ∈ X .

Position operators for j ∈ {1, . . . , d} are defined via

(Xjψ)(x) := xjψ(x), for all ψ ∈ D(Xj). (2.3)

An operator A on H is called periodic or, more specifically, Γ -periodic if
[A, Tγ ] = 0 for all γ ∈ Γ . The following simple observation, whose proof is
omitted, is very useful.

Lemma 2.1. For any periodic operator A, the operator [A,Xj ] is also periodic.

Notice that, in general, the operator [A,Xj ] might be non-densely defined or
even defined on the trivial subspace {0}, as pointed out in [35, III-§5.1]. This
pathology will not appear for the specific operators we will consider in the
following sections.

The analysis of periodic operators is best performed in the so-called (mag-
netic) Bloch–Floquet–Zak representation (see e.g. [40,45,50] and references
therein). The (magnetic) Bloch–Floquet–Zak transform is initially defined on
compactly supported functions ψ ∈ C0(X ,CN ) ⊂ L2(X ,CN ) as

(UBFψ)(k, y) := e−ik·y
∑

γ∈Γ

eik·γ(Tγψ)(y) k ∈ R
d, y ∈ X . (2.4)

By construction, for fixed k ∈ R
d, the function (UBFψ)(k, ·) is periodic with

respect to the magnetic translations (2.2); hence, it defines an element in the
Hilbert space

Hf := {ϕ ∈ L2
loc(X ,CN ) |Tγϕ = ϕ for all γ ∈ Γ} with

‖ϕ‖2Hf
:=
∫

C1

dy |ϕ(y)|2,

where the norm refers to a fundamental cell C1 for Γ (see (2.7)). As functions of
k, elements in the range of UBF are not periodic with respect to the reciprocal
lattice Γ ∗, but rather �-equivariant, namely

(UBFψ)(k + γ∗, y) = �(γ∗)(UBFψ)(k, y) for all γ∗ ∈ Γ ∗,

5The case of magnetic translations [71] is included in this framework, and thus, the Bloch–
Landau Hamiltonian can be considered in our setting, assuming a rationality condition on
the magnetic flux per unit cell.
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where6

� : Γ ∗ → U(Hf), (�(γ∗)ϕ)(y) := e−iγ∗·yϕ(y), (2.5)

defines a unitary representation of Γ ∗ on Hf . The map defined by (2.4) extends
to a unitary operator

UBF : H → H�,

where H� ≡ L2
�(R

d,Hf) is the space of locally-L2, Hf -valued, �-equivariant
functions on R

d. Denoting by B
d a fundamental domain for Γ ∗, the inverse

transformation U−1
BF : H� → H, sometimes dubbed Wannier transform, is

explicitly given by

(U−1
BFϕ)(x) =

1
|Bd|

∫

Bd

dk eik·xϕ(k, x).

At least formally, a periodic operator A on H becomes a covariant fibered
operator on H�. More precisely, taking into account the following inclusion
and natural isomorphism

L2
�(R

d,Hf) ⊂ L2(Rd,Hf) �
∫ ⊕

Rd

dk Hf , (2.6)

one has

UBF AU−1
BF =

∫ ⊕

Rd

dk A(k),

where each A(k) acts on Hf and satisfies the covariance property A(k + γ∗) =
�(γ∗)A(k) �(γ∗)−1 for all k ∈ R

d and γ∗ ∈ Γ ∗.
Most relevant extensive observables in crystalline systems are periodic

self-adjoint operators. However, in an infinite system neither these periodic
extensive observables nor translation invariant states are trace class. The
appropriate functional is instead given by the trace per unit volume τ , which
is well suited to take into account invariance or covariance by discrete lat-
tice translations in the setting of periodic or more generally ergodic operators
[2,9,12,54]. The trace per unit volume is defined as follows (compare [12,
Prop. 3.20]). Denote by χΩ the orthogonal projection on H which multiplies
by the characteristic function of Ω ⊂ X . For any L ∈ 2N + 1, we set

CL :=

⎧
⎨

⎩
x ∈ X : x =

d∑

j=1

αj aj with |αj | ≤ L/2 ∀ j ∈ {1, . . . , d}

⎫
⎬

⎭
(2.7)

and χL := χCL
. The set C1 is called a fundamental or primitive (unit) cell.

It is not unique since the choice of the spanning vectors {aj}1≤j≤d for Γ (see
(2.1)) is not unique. Notice that, restricting to odd integers L ∈ 2N + 1, one
has the convenient decomposition7

CL =
⊔

γ∈Γ∩CL

TγC1. (2.8)

6We denote by U(Hf) the group of the unitary operators on Hf .
7The symbol

⊔
denotes the disjoint union up to zero-measure sets.
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We call an operator A acting in H trace class on compact sets if χKAχK

is trace class for all compact sets K ⊂ X .8

Definition 2.2 (Trace per unit volume). Let A be an operator acting in H such
that A is trace class on compact sets. The trace per unit volume of A is defined
as

τ(A) := lim
L→∞

L∈2N+1

1
|CL| Tr(χLAχL), (2.9)

whenever the limit exists.

Let us denote

Bτ
∞ := {bounded periodic operators on H} ,

Bτ
1 :=

{
A ∈ Bτ

∞such that ‖A‖1,τ := τ(|A|) < ∞
}

.

We will refer to operators in Bτ
1 as the operators of trace-per-unit-volume class

or τ -class for simplicity. Moreover, in view of [12, Proposition 3.17] we have
Bτ

∞ · Bτ
1 ⊂ Bτ

1 and Bτ
1 · Bτ

∞ ⊂ Bτ
1 , and

‖AB‖1,τ ≤ ‖A‖1,τ ‖B‖ and ‖BA‖1,τ ≤ ‖A‖1,τ ‖B‖ ∀A ∈ Bτ
1 , B ∈ Bτ

∞ .

(2.10)

The following lemma recalls some useful properties of τ -class operators.

Lemma 2.3. Let A ∈ Bτ
1 . Then

Tr(|χ1Aχ1|) ≤ ‖A‖1,τ (2.11)

and

Tr(|χLAχL|) < ∞ ∀L ∈ 2N + 1. (2.12)

In particular, we have that A is trace class on compact sets.

Proof. Inequality (2.11) is proved in [12, Lemma 3.10] and the proof given
there easily generalizes to obtain also (2.12). �

The next result allows to compute the trace per unit volume of operators
which are periodic and trace class on compact sets.

Proposition 2.4. 1. Let A be periodic and trace class on compact sets9.
Then, τ(A) is well defined and

τ(A) =
1

|C1|
Tr(χ1Aχ1). (2.13)

8This condition is automatically satisfied in the discrete case for any operator A, since the

range of χK is finite-dimensional.
9 The condition that A is trace class on compact sets is satisfied whenever A is in Bτ

1 , as

proved in Lemma 2.3.
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2. Let A be a periodic and bounded operator acting on H. Denoting by

UBF AU−1
BF =

∫ ⊕

Rd

dk A(k)

its Bloch–Floquet–Zak decomposition, assume that A(k) is trace class and
that TrHf (|A(k)|) < C for all k ∈ B

d. Then

Tr(χ1Aχ1) =
1

|Bd|

∫

Bd

dk TrHf (A(k)). (2.14)

Proof. 1. In view of the decomposition (2.8) and the hypotheses on A, one has

Tr(χLAχL) =
∑

γ∈Γ∩CL

Tr(Tγχ1T
∗
γ ATγχ1T

∗
γ ) =

∑

γ∈Γ∩CL

Tr(χ1Aχ1).

Since |CL| = Ld |C1| = card(Γ ∩ CL) |C1| for every L ∈ 2N + 1, one obtains

lim
L→∞

L∈2N+1

1
|CL| Tr(χLAχL) =

1
|C1|

Tr(χ1Aχ1).

2. This is proved e.g. in [51, Lemma 3]. �

In the following result, we introduce a class of operators which are not
necessarily in Bτ

1 , but have finite trace per unit volume.

Proposition 2.5. Let A be periodic and trace class on compact sets(9). Then
1. the operator XjA for j ∈ {1, . . . , d} has finite trace per unit volume and

τ(XjA) =
1

|C1|
Tr (χ1XjAχ1) . (2.15)

2. If, in addition τ(A) = 0, then τ(XjA) does not depend on the exhaus-
tion10 CL ↗ X set in Definition 2.2 and on the choice of the origin, in
the sense that

τ((Xj + α)A) = τ(XjA) ∀α ∈ R.

Proof. 1. Since χLXjχL is bounded for every L ∈ 2N + 1 and A is trace class
on compact sets by hypothesis, we have that χLXjAχL = χLXjχLAχL is
trace class. Therefore, in view of the decomposition (2.8), one has that

Tr (χLXjAχL) =
∑

γ∈Γ∩CL

Tr
(
Tγχ1T

∗
γ XjATγχ1T

∗
γ

)
=

∑

γ∈Γ∩CL

Tr
(
χ1T

∗
γ XjATγχ1

)
.

Using that A is periodic, that [Tγ ,Xj ] = −γjTγ , and the result from Proposi-
tion 2.41, we obtain that

Tr
(
χ1T

∗
γ XjATγχ1

)
= Tr (χ1(Xj + γj)Aχ1) = Tr (χ1XjAχ1) + γj |C1| τ(A).

Consequently, we get that

1
Ld |C1|

Tr(χLXjAχL) =
1

|C1|
Tr(χ1XjAχ1) +

τ(A)
Ld

⎛

⎝
∑

γ∈Γ∩CL

γj

⎞

⎠ . (2.16)

10Notice that this particular choice of the exhaustion CL ↗ X is such that CL ∩ Γ is
symmetric with respect to the involution x �→ −x.
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Since both γ and −γ are in Γ ∩ CL for all L ∈ 2N+ 1, the sum in brackets on
the right-hand side of the above vanishes, and the thesis follows immediately.

2. The statement follows from (2.16) and the hypothesis τ(A) = 0. �
A property which will be fundamental for all the following analysis is the

conditional cyclicity of the trace per unit volume. We state it in the following
lemma, whose proof can be found in [12, Lemma 3.22].
Lemma 2.6 (Conditional cyclicity of the trace per unit volume). If A ∈ Bτ

1

and B ∈ Bτ
∞, then τ(AB) = τ(BA).

The trace per unit volume is defined in (2.9) through a specific choice
of the cell CL, which in turn depends via (2.7) on the choice of a particular
linear basis {a1, . . . , ad} for Γ . The term unit cell consistency refers to the
requirement that physically relevant quantities are independent of the latter
choice. Precisely, one considers a different linear basis {ã1, . . . , ãd} for Γ and
the corresponding cell, defined by

C̃L :=

⎧
⎨

⎩
x ∈ X : x =

d∑

j=1

αj ãj with |αj | ≤ L/2 ∀ j ∈ {1, . . . , d}

⎫
⎬

⎭
, (2.17)

and sets χ̃L := χC̃L
. Denoting by τ( · ) and τ̃( · ), respectively, the trace per

unit volume induced by the choice of the primitive cells C1 and C̃1, we prove
in Proposition A.2.1 that for any periodic operator A, which is trace class on
compact sets, one has that

τ(A) = τ̃(A).

When a contribution to the transport coefficient is in the form τ(XiA) for a
periodic operator A, as in formula (1.15), a more careful analysis is needed, as
discussed at the end of Sect. 5.1 and in Appendix A.

3. The Unperturbed Model

Our goal is to study the linear response of a crystalline system to the appli-
cation of an external electric field of small intensity. Before considering the
perturbed system, we state our assumptions on the unperturbed one.
Assumption 3.1. We assume the following:

(H1) the Hamiltonian H0 of the unperturbed system is a self-adjoint peri-
odic operator on H, bounded from below, such that in Bloch–Floquet–Zak
representation its fibration

H0 : Rd → L(Df ,Hf) , k �→ H0(k) ,

is a smooth equivariant map taking values in the self-adjoint operators
with dense domain Df ⊂ Hf , such that �(γ∗) : Df → Df for every γ∗ ∈
Γ ∗ (compare (2.5)). Here L(Df ,Hf) denotes the space of bounded linear
operators from Df , equipped with the graph norm of H0(0) denoted by
‖ · ‖Df

11 , to Hf � L2(C1) ⊗ C
N ;

11From now on, Df is understood to be equipped with the norm ‖ · ‖Df
.
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(H2) let μ ∈ R (Fermi energy) be in a spectral gap12 of H0. We denote
by Π0 = χ(−∞,μ)(H0) the corresponding spectral projector (Fermi pro-
jector). We assume that its fibration k �→ Π0(k) takes values in the
finite-rank projections on Hf .13

�
We shortly discuss sufficient conditions implying that Assumption (H1)

holds true. As far as discrete models are concerned, Hf is finite dimensional
and H0(k) are self-adjoint matrices. The smoothness of the map k �→ H0(k)
follows from the fact that the hopping amplitudes in the model {tγ}γ∈Γ decay
sufficiently fast as |γ| → ∞. In all the most popular discrete models of topolog-
ical insulators [25,33] the hopping amplitudes have finite range, namely tγ = 0
if |γ| > R for some R, hence assumption (H1) is automatically satisfied.

As for the continuum case X = R
d, we first consider a Bloch–Landau

operator in the form

H0 =
1
2

(
−i∇ − 1

c
A

)2

+ VΓ , (3.1)

acting in L2(Rd), where A and VΓ are the magnetic and electrostatic potentials,
respectively (the charge Q of the particle is reabsorbed in A and in V ). For
the sake of simplicity, we consider only d ≤ 3 and we ignore the “spin space”
C

N , but similar results holds true if, for example, VΓ is matrix-valued and
acts non-trivially on these degrees of freedom. With the help of Kato’s theory
[35], and arguing as in [45] on the basis [11], it is not difficult to prove that,
if A = AΓ is Γ -periodic, and C1 denotes the fundamental cell of the lattice,
then for the validity of (H1) it is sufficient to assume either of the following
two sets of hypotheses:
(A) A ∈ L∞(C1,R

2) when d = 2 or A ∈ L4(C1,R
3) when d = 3, and

div A, VΓ ∈ L2
loc(R

d) when d ∈ {2, 3};
(B) A ∈ Lr(C1,R

2) with r > 2 and VΓ ∈ Lp(C1) with p > 1 when d = 2, or
A ∈ L3(C1,R

3) and VΓ ∈ L3/2(C1) when d = 3.
If instead A = Ab is a linear potential inducing a constant uniform magnetic
field, it is enough to assume that VΓ is infinitesimally form bounded with
respect to −Δ on Hf , and that the magnetic flux per unit cell is a rational
multiple of the magnetic flux quantum. As a further example, we consider the
Hamiltonian

H0 =
1
2
p2 ⊗ 1C2 + (E1p2 − E2p1) ⊗ sz + E3(p1 ⊗ sy − p2 ⊗ sx),

acting on L2(R2) ⊗C
2. In the above, p ≡ (p1, p2) = −i∇ denotes the momen-

tum operator, E ≡ (E1, E2, E3) is a constant vector (which we interpret as a
constant electric field), and s ≡ (sx, sy, sz) denotes the vector of spin matrices

12In the following, when we refer to “the” spectral gap of H0, we will refer to this specific
gap.
13From the smoothness assumption (H1), it follows that Rank(Π0(k)) = m ∈ N ∪ {+∞}
is independent of k. Therefore, in view of the fact that Π0 is an orthogonal projection,
m < +∞ is equivalent to the assumption Π0 ∈ Bτ

1 .
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(half of the Pauli matrices). Thus, the first term in H0 represents the kinetic
energy, the second one a spin–orbit coupling, and the third one is a Rashba
term: This Hamiltonian represents a continuum analogue of the Kane–Mele
Hamiltonian proposed in [33]. One can argue that the above operator can be
fibered via Bloch–Floquet–Zak transform leading to a family of fiber Hamil-
tonians H0(k) as in Assumption (H1). Moreover, since

[H0, S] = [HR
0 , S] = E3 (p1 ⊗ [sy, sz] − p2 ⊗ [sx, sz]) = iE3 (p1 ⊗ sx + p2 ⊗ sy) ,

and since the momentum operator is relatively bounded with respect to the
Laplacian, one can see that [H0, S] is relatively bounded with respect to H0,
and hence the assumptions on S (compare Definition 5.1) are satisfied as well.

The following spaces of operators and functions turn out to be useful for
our analysis.

Definition 3.2. Let H1,H2 ∈ {Df , Hf}. We denote by L(H1,H2) the space
of bounded linear operators from H1 to H2 and by L(H1) := L(H1,H1). We
define

P(H1, H2) := {Γ − periodic A with smooth fibration R
d → L(H1, H2), k �→ A(k)}

equipped with the norm ‖A‖P(H1,H2)
:= maxk∈Bd ‖A(k)‖L(H1,H2)

. We also set
P(H1) := P(H1,H1).

Since the Fréchet derivative follows the usual rules of the differential
calculus, we have that P(H1,H2) is a linear space, P(Hf), P(Df) and P(Hf ,Df)
are normed algebras, and e.g. for A ∈ P(Hf ,Df) and B ∈ P(Hf) we have

AB ∈ P(Hf ,Df) with ‖AB‖P(Hf ,Df )
≤ ‖A‖P(Hf ,Df )

‖B‖P(Hf)
.

Definition 3.3. Let H1 ∈ {Df , Hf}. We set

C∞
� (Rd,H1) := {ϕ ∈ H� such that ϕ : Rd → H1 is smooth}.

Notice that C∞
� (Rd,Hf) ⊃ C∞

� (Rd,Df), C∞
� (Rd,Hf) is dense in H� with

respect to ‖ · ‖H�
, and C∞

� (Rd,Df) is dense in L2
�(R

d,Df) with respect to the
norm on H� induced by the graph norm ‖ · ‖Df

.
Since we are interested in computing [A,Xj ] where A is in one of the

above spaces of operators, the following proposition will be relevant. It states
their invariance under the derivation [ · ,Xj ], where the overline denotes the
operator closure.

Proposition 3.4. Let H1,H2 ∈ {Df , Hf}, and A ∈ P(H1,H2). Then, [A,Xj ]
is in P(H1,H2), and

[A,Xj ]
∣
∣
∣
U−1

BFC∞
� (Rd,H1)

(k) = −i∂kj
A(k) in L(H1,H2).

Proof. Notice that

UBFXjU−1
BF

∣
∣
∣
C∞

� (Rd,H1)
= i∂kj

∣
∣
∣
C∞

� (Rd,H1)
, (3.2)
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thus for every ϕ ∈ C∞
� (Rd,H1) one has that

UBF [A,Xj ]U−1
BFϕ =

[∫ ⊕

Rd

dk A(k), i∂kj

]
ϕ = −i

∫ ⊕

Rd

dk ∂kj
A(k)ϕ. (3.3)

Since UBF AU−1
BF C∞

� (Rd,H1) ⊂ C∞
� (Rd,H2) (see [35, III-§3.1, Problem (3.11)]),

the commutator appearing on the right-hand side of the first equality is densely
defined on C∞

� (Rd,H1) and so by unitary conjugation the commutator on the
left-hand side is densely defined as well. Thus, Lemma 2.1 implies that [A,Xj ]
acting on U−1

BFC∞
� (Rd,H1) is periodic.

Observe that
∥
∥∂kj

A(k)f(k, ·)
∥
∥

H2
≤
∥
∥∂kj

A
∥
∥

P(H1,H2)
‖f(k, ·)‖H1

(3.4)

for every f(k, ·) ∈ H1. By (3.3) and (3.4), one obtains

‖[A,Xj ](k)ϕ(k, ·)‖H2
≤
∥
∥∂kj

A
∥
∥

P(H1,H2)
‖ϕ(k, ·)‖H1

for all ϕ ∈ C∞
� (Rd,H1). Therefore, as H2 is a Banach space, the extension

principle implies the thesis. �

Lemma 3.5. Under Assumption 3.1 we have that (H0 − z1)−1 ∈ P(Hf ,Df) for
every z ∈ ρ(H0), and that Π0 ∈ P(Hf ,Df).

Proof. The first claim is evident because of (H0 −z1)−1(k) = (H0(k)−z1)−1.
Since Df is a Banach space, the second one follows from Riesz’s formula

Π0(k) =
i

2π

∮

C

(H0(k) − z1)−1 dz , (3.5)

where C is a positively-oriented complex contour intersecting the real axis at
the Fermi energy (so, in the gap) and below the bottom of the spectrum of
H0. �

Corollary 3.6. Under Assumption 3.1 we have that

1. [Π0,Xj ]
∣
∣
∣
U−1

BFC∞
� (Rd,Hf )

∈ P(Hf ,Df),

2.
[
[Π0,Xj ],Xi

]∣∣
∣
U−1

BFC∞
� (Rd,Hf )

∈ P(Hf ,Df),

3. [H0,Xj ]
∣
∣
∣
U−1

BFC∞
� (Rd,Df )

∈ P(Df ,Hf).

Proof. 1. By Lemma 3.5, one has that Π0 ∈ P(Hf ,Df). Proposition 3.4 implies
the statement.

2. In view of Lemma 3.5, one has that Π0 ∈ P(Hf ,Df). Using an argument
similar to the one presented in the proof of Proposition 3.4 one deduces the
thesis.

3. Since by hypothesis H0 ∈ P(Df ,Hf), Proposition 3.4 concludes the
proof. �
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For the sake of readability, we introduce the concise notation

[Π0,Xj ] := [Π0,Xj ]
∣
∣
∣
U−1

BFC∞
� (Rd,Hf)

,

[
[Π0,Xj ],Xi

]
:=
[
[Π0,Xj ],Xi

]∣∣
∣
U−1

BFC∞
� (Rd,Hf)

and [H0,Xj ] := [H0,Xj ]
∣
∣
∣
U−1

BFC∞
� (Rd,Df )

.

(3.6)

4. Non-equilibrium Almost-Stationary States

Now that we have established the model for the unperturbed system, we con-
sider the perturbed Hamiltonian

Hε := H0 − εXj , (4.1)

where ε ∈ [0, 1] is the strength of the external electric field pointing in the
j-direction.

As discussed in Introduction, we are interested in the linear response
of the system to such a perturbation when it starts initially in the zero-
temperature equilibrium state Π0. While it is clear that the perturbation given
by the linear electric potential has the effect of driving the system out of equi-
librium, the perturbation is slowly varying and thus acts locally merely as
a shift in energy. Hence it is expected that the initial equilibrium state Π0

changes continuously into a nearby non-equilibrium almost-stationary state
(NEASS). A detailed discussion and justification of the concepts of NEASS
can be found in [41,68].

For the following construction of the NEASS in the present setting we
only need to know that the operator Πε, representing the NEASS, is deter-
mined uniquely (up to terms of order O(εM+1)) by the following two proper-
ties:

(SA1) Πε = e−iεSε

Π0 eiεSε

for some bounded, periodic and self-adjoint
operator Sε;
(SA2) Πε almost-commutes with the Hamiltonian Hε, namely [Hε,Πε] =
O(εM+1).

Here O(εM+1) is understood in the sense of the operator norm.

Proposition 4.1. Consider the Hamiltonian Hε = H0 −εXj with H0 satisfying
Assumption 3.1.

1. Let S := i I
(
[[Xj ,Π0],Π0]

)
, where

I(A) :=
i

2π

∮

C

dz (H0 − z1)−1 [A,Π0] (H0 − z1)−1, (4.2)

with C a positively-oriented contour in the complex energy plane enclosing
the part of the spectrum of H0 below the gap. Then S is in P(Hf ,Df) and
is self-adjoint.
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2. Let Πε := e−iεS Π0 eiεS . Then, Πε = Π0 + εΠ1 + ε2Πε
r , where both

Π1 = I
(
[Xj ,Π0]

)
and Πε

r are in P(Hf ,Df), and the map [0, 1] � ε �→
Πε

r ∈ P(Hf ,Df) is bounded. Moreover, [Hε,Πε] = ε2Rε, where Rε is in
P(Hf) and the map [0, 1] � ε �→ Rε ∈ P(Hf) is bounded.

We postpone the proof of the above proposition to Sect. 6.3. It is already
clear from the statement that the map I( · ) plays a crucial role: Its properties
are summarized in Sect. 6.2, where we recall in particular the well-known fact
from perturbation theory that I(A) is the unique solution to the equation
[H0, I(A)] = A whenever A is off-diagonal in the orthogonal decomposition
induced by Π0.

5. Results on the S-conductivity

As stated in the previous sections, we want to investigate quantum S-currents
induced by the perturbation given by an external electric field and compute
their S-conductivities as linear response coefficients. To fix the ideas, the reader
can think of the case S = 1H (which corresponds physically to the charge
current, in appropriate units, e.g. in quantum Hall systems) or to S = 1L2(X )⊗
sz, where sz = σz/2 is half of the third Pauli matrix (which corresponds to
the spin current e.g. in quantum spin Hall systems).

Definition 5.1 (S-current and S-conductivity). Let S = 1L2(X ) ⊗ s be a self-
adjoint operator on H = L2(X )⊗C

N . Furthermore, assume that S is periodic14

and its fibration 1L2(C1) ⊗ s is in L(Df).
The conventional and the proper S-current operator are defined, respec-

tively, as

JS
conv,i :=

1
2
(
i [H0,Xi] S + iS [H0,Xi]

)

JS
prop,i := i [H0,Xi] S + iXi [H0, S]

where H0 satisfies Assumption 3.1. The conventional and proper S-conductivity
are defined, respectively, as

Re τ(JS
conv/prop,i Πε) − Re τ(JS

conv/prop,i Π0) =: ε σS
conv/prop,ij + o(ε). (5.1)

�

Since Πε = Π0 + εΠ1 + ε2Πε
r by Proposition 4.1.2, we have that

Re τ(JS
prop,i Πε) − Re τ(JS

prop,i Π0) = ε Re τ(JS
prop,i Π1) + ε2 Re τ(JS

prop,i Πε
r ).

(5.2)

In order to prove that Re τ(JS
prop,i Π1) = σS

prop,ij according to (5.1), it suffices
to show that all the traces per unit volume above are well defined and finite,

14Notice that this assumption is not automatically satisfied since the (magnetic) translation
operators (see (2.2)) may act non-trivially on the factor C

N . Obviously, for either the stan-
dard magnetic translations [71] or translation operators with a trivial action on the factor
C

N the periodicity of S is ensured.
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and that the term carrying a prefactor ε2 is uniformly bounded in ε. While
the control of the remainder term will be done in Sect. 6.4, we focus now on
the linear response coefficient, namely Re τ(JS

prop,i Π1).

5.1. The Linear Response Coefficient

In order to compute the linear response coefficient, we employ directly Defini-
tion 2.2 for τ(JS

prop,i Π1), and start by localizing this operator on the cell CL,
defined in (2.7), through the projection χL which multiplies by the character-
istic function of CL. It is convenient to notice at this point the following

Remark 5.2. The range of UBFχL is contained in C∞
� (Rd,Hf) (compare Defi-

nition 3.3) for every L > 0. Indeed, for all f ∈ H = L2(X )⊗C
N and all r ∈ N,

the function 〈X〉rχLf is still in H, where (〈X〉ψ)(x) := (1 + |x|2)1/2ψ(x)
for ψ ∈ D(〈X〉). By standard Bloch–Floquet theory [45, Appendix A], this is
equivalent to requiring that UBF(χLf) is in the space Hr

�(Rd,Hf) of �-covariant
maps ϕ : Rd → Hf with Sobolev regularity r: It is a classical result that the
intersection of all these Sobolev spaces is contained in C∞

� (Rd,Hf). �

Notice that, since Π1 ∈ P(Hf ,Df), it maps U−1
BFC∞

� (Rd,Hf) to U−1
BF

C∞
� (Rd,Df). Thus, we have that

JS
prop,i Π1χL = i[H0, SXi]Π1χL (5.3)

and this allows for the following simple manipulations. Using the Leibniz rule,
we obtain the following chain of equalities on Ran(χL):

i[H0, SXi]Π1 = i[H0,XiS]Π1 = i[H0,Xi]SΠ1 + iXi[H0, S]Π1 = O + XiR,

(5.4)

where the operators O and R have been defined in (1.12). We call O the S-
orbital part and XiR the S-rotation part of the operator related to linear
response of the proper S-current JS

prop,i. The latter terminology is due to the
fact that, when S is the spin operator and [H0, S] �= 0, the spin transport is
the result of two contributions, that is, the S-orbital part coming from the
center-of-mass drift and the S-rotation part due to the spin non-conservation.
Notice that both O and R are periodic, instead obviously XiR is not periodic
and thus a more careful analysis of its trace per unit volume is required.
We begin by handling the S-orbital part O. In view of the defining relation
Π1 = I([Xj ,Π0]) (compare Propositions 4.1 and 6.3), we obtain on Ran(χL):

O = i[H0,X
D
i ]SΠ1 + i[H0,X

OD
i ]SΠ1

= E1 + i[H0,X
OD
i SΠ1] − iXOD

i [H0, SΠ1]

= E1 + E2 − iXOD
i [H0, S]Π1 − iXOD

i S[Xj ,Π0]

=
3∑

	=1

E	 − i
[
[Xi,Π0],Π0S[Xj ,Π0]

]
+ iΠ0

[
[Xi,Π0], S[Xj ,Π0]

]

=
4∑

	=1

E	 + C, (5.5)
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where we have defined the operators

E1 := i[H0,X
D
i ]SΠ1, E2 := i[H0,X

OD
i SΠ1], E3 := iXOD

i [S,H0]Π1,

E4 := i
[
[Xi,Π0],Π0S[Π0,Xj ]

]
and C := iΠ0

[
[Xi,Π0], S[Xj ,Π0]

]
.

(5.6)

We call C the Chern-like term and E	 the �-th extra or beyond-Chern-like term
for � ∈ {1, . . . , 4}. This terminology is motivated by the fact that whenever
the spin is conserved, for d = 2, i = 1 and j = 2 in quantum (spin) Hall
systems the Chern-like term C corresponds to the (spin-)Chern number (see
Remark 5.12). In general, whenever [H0, S] = 0, all extra terms have trace per
unit volume zero (see Sect. 5.2) and obviously the S-rotation part vanishes.

In the following proposition, we analyze the trace per unit volume of the
operators resulting from the previous algebraic manipulations.

Proposition 5.3. Under Assumption 3.1 and hypotheses on S in Definition 5.1,
we have that the Chern-like term C, the extra terms E	 for any � ∈ {1, . . . , 4}
and XiR, defined in (1.12) and (5.6) have finite traces per unit volume. More-
over, one has

τ(A) =
1

|C1|
Tr (χ1Aχ1) , for A ∈

{
C,E	,XiR : � ∈ {1, . . . , 4}, i ∈ {1, . . . , d}

}
,

(5.7)

and

τ(C) = iτ(Π0

[
[Xi,Π0]S, [Xj ,Π0]

]
), (5.8)

τ(E1) = iτ([H0,X
D
i ]SODΠ1), τ(E3) = iτ(XOD

i [S,H0]Π1), (5.9)

τ(E2) = 0 = τ(E4), (5.10)

where the diagonal and off-diagonal parts of the above operators refer to the
orthogonal decomposition induced by the Fermi projection Π0.

The proof of the above proposition is postponed to Sect. 6.5.
We are going to prove that trace per unit volume of the operator XiR is

well defined and finite. In view of Proposition 2.5.2, it suffices to show that
τ(R) is zero. The latter result is an immediate consequence of the following

Proposition 5.4. If H0 satisfies Assumption 3.1, and B is in P(Hf) ∩ P(Df)
(in particular, B is a bounded periodic operator) the following holds:

1.

τ
(
i[H0, B]Π1

)
= τ

(
iΠ0

[
[B,Π0], [Xj ,Π0]

])
.

2. If, in addition, [B,Xj ] = 0 then

τ(i[H0, B]Π1) = 0.

The above proposition, whose proof is deferred to Sect. 6.5, immediately
implies the following
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Corollary 5.5. Under Assumption 3.1 and hypotheses on S in Definition 5.1,
we have that

τ(R) = τ(i[H0, S]Π1) = 0.

We are now in position to state one of our main results.

Theorem 5.6. (General formula for the S-conductivity) Let Hε = H0 − εXj

be acting in L2(X ) ⊗ C
N , with H0 and Π0 as in Assumption 3.1. Let Πε

be the NEASS defined in Sect. 4. Consider the conventional (resp. proper) S-
conductivity σconv,ij (resp. σprop,ij) as in Definition 5.1. Then

σS
prop,ij = σS

conv,ij + σS
rot,ij , (5.11)

where

σS
conv,ij =

1
|C1|

Re Tr
(
χ1 iΠ0

[
[Xi,Π0]S, [Xj ,Π0]

]
χ1

)

+
1

|C1|
Re Tr

(
χ1

(
i[H0,X

D
i ]SODΠ1 + iXOD

i [S,H0]Π1

)
χ1

) (5.12)

and the rotation contribution to the proper S-conductivity is defined as

σS
rot,ij = Re τ(iXi[H0, S]Π1) =

1
|C1|

Re Tr
(
χ1iXi[H0, S]Π1χ1

)
. (5.13)

Moreover, the trace per unit volume appearing in (5.13) does not depend on the
particular exhaustion(10) CL ↗ X chosen in Definition 2.2 and on the choice
of the origin, in the sense that τ(XiR) = τ((Xi + α)R) for every α ∈ R.

The proof of the above theorem is postponed to Sect. 6.

Remark 5.7. Some comments about the above result.
(i) Notice that one can rewrite the above formula for the proper S-

conductivity σS
prop,ij , summing the two contributions σS

conv,ij and σS
rot,ij

as follows:

σS
prop,ij =

1
|C1|

Re Tr
(
χ1

(
iΠ0

[
[Xi,Π0]S, [Xj ,Π0]

]
+ i[H0,X

D
i ]SODΠ1

)
χ1

)

(5.14)

+
1

|C1|
Re Tr

(
χ1iXD

i [H0, S]Π1χ1

)
. (5.15)

While (5.11) emphasizes the splitting between the drift contribution com-
ing from the center-of-mass momentum and the one resulting from the
spin rotation, the latter decomposition isolates the contribution coming
from a periodic operator, in (5.14), and the one deriving from a non-
periodic operator, in (5.15).

(ii) The real part is needed in both (5.12) and (5.13), even if on Ran(χ1) one
has that JS

prop,i Πε =
(
JS
prop,i

)∗
Πε. On the other hand, if [H0, S] = 0

then τ(JS
prop,i Πε) is automatically real. Moreover, for systems with a

fermionic time-reversal symmetry Θ such that ΘSΘ−1 = −S, the number
τ(JS

prop,i Π1) is real, so the real part is redundant.
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It is worth to investigate how the contributions to the proper S-
conductivity, appearing in (5.11), behave under a change of primitive cell.

Proposition 5.8 (Unit Cell Consistency of the S-conductivity). Under the
hypotheses of Theorem 5.6, we have that

1. σS
conv,ij satisfies UCC.

2. If, in addition, the model enjoys a discrete rotational symmetry satisfying
the hypotheses of Proposition A.3, then σS

rot,ij satisfies UCC.

Proof. 1. Since all operators involved in the trace per unit volume comput-
ing σS

conv,ij are periodic, Proposition A.2.1 implies the thesis. 2. By applying
Proposition A.3.1 along with Proposition A.2.2, the conclusion follows. �

The next proposition shows that in some discrete models with discrete
rotational symmetry, one has that σS

rot,ij = 0, and hence the choice between
JS
prop,i and JS

conv,i becomes immaterial. Remarkably, the Kane–Mele model is
in this class.

Proposition 5.9 (Equality of conventional and proper S-conductivity). Let H0

be a discrete Hamiltonian with finite range hopping amplitudes and S be as
in Definition 5.1. Assume that the model satisfies the hypotheses of Proposi-
tion A.3 and RankχPγ

= 1, where {Pγ}γ∈I ⊂ X is the family of subsets defined
in (A.1). Then

σS
rot,ij = 0 or equivalently σS

prop,ij = σS
conv,ij .

Proof. By direct computation, since there exists λi,γ ∈ R such that XiχPγ
=

λi,γχPγ
, we have that

|C1|σS
rot,ij = Re Tr

(
χ1iXi[H0, S]Π1χ1

)
=
∑

γ∈I

Re Tr(χPγ
Xii[H0, S]Π1 χPγ

)

=
∑

γ∈I

λi,γ Re Tr(χPγ
i[H0, S]Π1 χPγ

) = 0,

because by Proposition A.3.1 Tr(χPγ
i[H0, S]Π1 χPγ

) = 0 for every γ ∈ I. �

5.2. When S is (Approximately) Conserved

The computation of the linear response coefficient σS
ij simplifies considerably

if we assume that S is a conserved quantity of the system, namely that

[H0, S] = 0. (5.16)

Under this assumption, then [Π0, S] = 0 as well, since Π0 is a spectral projec-
tion associated with H0, and thus S is diagonal in the decomposition induced
by Π0.

If (5.16) holds, then JS
i := JS

prop,i = JS
conv,i = i[H0,Xi]S is in P(Df ,Hf)

by Corollary 3.6.3 and the hypothesis S ∈ P(Df). Hence, since Πε ∈ P(Hf ,Df)
by Proposition 4.1.2, we have that JS

i Πε ∈ P(Hf) and furthermore applying
Proposition 6.6.1, we deduce that JS

i Πε is τ -class. Thus, the trace per unit
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volume of JS
i Πε is well defined and only the Chern-like term contributes to it.

Indeed, by Proposition 5.3 the extra term E	 does not contribute for � ∈ {2, 4}
and the next Lemma shows that τ(E1) = 0. Obviously, E3 = 0 = R whenever
(5.16) holds.

Lemma 5.10. Under Assumption 3.1 and the hypotheses on S in Definition 5.1,
assume further that [H0, S] = 0. Then,

τ(E1) = 0 and E3 = 0 = R

where E1, E3 and R are defined in (5.6) and (1.12).

The proof of Lemma 5.10 is also deferred to Sect. 6.5, but it is easily seen
to imply the following

Theorem 5.11. (S-conductivity in the S conserved case) Let Hε = H0 − εXj

be acting in L2(X )⊗C
N , with H0 and Π0 as in Assumption 3.1. Let Πε be the

NEASS defined in Sect. 4 and JS
i be as in Definition 5.1. Assume moreover

that [H0, S] = 0. Then, the S-conductivity is

σS
ij =

i
|C1|

Tr
(
χ1 SΠ0

[
[Xi,Π0], [Xj ,Π0]

]
χ1

)

=
i

(2π)d

∫

Bd

dk TrHf

(
(1 ⊗ s)Π0(k)

[
∂kj

Π0(k), ∂ki
Π0(k)

])
.

Proof. In view of Lemma 5.10, the extra terms E1 and E3, and the S-rotation
part σS

rot,ij do not contribute to the trace per unit volume of JS
i Π1. Therefore,

using Proposition 2.4.2 we are going to compute the k-space representation of
the trace of Cχ1 = iSΠ0

[
[Xi,Π0], [Xj ,Π0]

]
χ1. To this end, it suffices to notice

that the fiber operator associated with [Xj ,Π0] in the Bloch–Floquet–Zak
representation is given by i∂kj

Π0(k) (Proposition 3.4) and that |C1| |Bd| =
(2π)d. �

This theorem applies in particular to the transverse charge current in
quantum Hall systems (S = 1H), and to the transverse spin current in quan-
tum spin Hall systems (S = 1L2(X ) ⊗ sz) whenever the z-component of the
spin is conserved. In particular, in the latter case we recover the formula for
the spin conductivity proposed in [16,63], which was derived assuming that
the unperturbed Hamiltonian H0 has an identically degenerate Bloch band,
where the degeneracy comes from the spin degrees of freedom. So in that model
effectively (Π0H0Π0)(k) = E0(k)1L2(X ) ⊗ 1C2 , and (5.16) is in particular sat-
isfied after projection to the relevant spectral subspace. Our argument used
only (5.16) and no spectral assumption (other than the gap condition) on the
Hamiltonian.

Remark 5.12 (Spin conductivity and spin-Chern number). Let S = 1L2(X )⊗sz

with sz a spin operator for non-integer spin r, i.e. with spectrum {−r,−r +
1, . . . , r − 1, r}, acting on C

N with N = 2r + 1 (e.g. half the third Pauli
matrix σz for r = 1

2 and N = 2). Denote by sz =
∑2r

	=0(� − r)p	 its spectral
decomposition.
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Then, the commutation relation [Π0, S] = 0 implies that Π0 admits a
splitting in the decomposition induced by S:

Π0 =
2r∑

	=0

Π
(	)
0 :=

2r∑

	=0

Π0(1 ⊗ p	) .

The formula for the S-conductivity σS
ij in Theorem 5.11 simplifies then to

σS
ij =

i
|C1|

2r∑

	=0

(� − r)Tr
(
χ1 Π

(	)
0

[[
Xi,Π

(	)
0

]
,
[
Xj ,Π

(	)
0

]]
χ1

)

=:
1

(2π)d−1
S-Chern(Π0)ij . (5.17)

This spin-Chern number S-Chern(Π0)ij , proposed in [61] and intrinsically
defined in [56], is in general a half integer.15 It becomes an integer if the system
enjoys time-reversal symmetry. Even in time-reversal invariant systems it can
be different from zero while the Chern number

Chern(Π0) :=
i (2π)d−1

|C1|
Tr
(
χ1 Π0

[[
Xi,Π0

]
,
[
Xj ,Π0

]]
χ1

)

necessarily vanishes. Our approach to spin transport shows then that for d =
2 the bulk spin Hall conductivity (measured in units of e

2π ≡ 1
2π ) equals

the spin-Chern number, as long as [H0, S] = 0. On the other hand, when
S = 1L2(X ) ⊗ 1CN and d = 2 the integral in Theorem 5.11 computes, up
to a factor 1/2π, the Chern number Chern(Π0) of the family of projections
{Π0(k)}k∈R2 , implying the quantization of the Hall conductivity measured in
units of e2

h ≡ 1
2π (see [22] and references therein). �

Abstracting from the previous remark, we consider now any operator in
the form S = 1L2(X ) ⊗ s, with s as in Definition 5.1. If S is approximately
conserved, i.e. if λ := ‖[H0, S]‖P(Df ,Hf) is sufficiently small, then one can
still define a spin-Chern number related to Π0 [56,58] and the S-conductivity
is still approximately given by the spin-Chern number. To see this, let s =∑k

	=1 s	 p	 be the spectral representation of s (we need no assumptions on
the spectrum of s here), H̃0 :=

∑k
	=1(1 ⊗ p	)H0(1 ⊗ p	) and V := (H0 −

H̃0) =
∑

	1 	=	2
(1 ⊗ p	1)H0(1 ⊗ p	2) . Then, H0 = H̃0 + V , where [H̃0, S] = 0

and ‖V ‖P(Df ,Hf ) =
∥
∥
∥
∑

	1 	=	2
(1 ⊗ p	1)[H0, (1 ⊗ p	2)]

∥
∥
∥

P(Df ,Hf )
≤ λCs , with a

constant Cs that depends only on S.
The spin-conserving Hamiltonian H̃0 is H0-bounded with relative bound

λCs. For λ < 1
Cs

, H̃0 is thus self-adjoint on the domain of H0, and for λ small
enough, by standard perturbation theory, the Fermi energy μ lies also in a gap
of H̃0. Thus we can define the gapped Fermi projection Π̃0 := χ(−∞,μ](H̃0)

15The normalization we use here agrees with [56] and with the most recent physics literature,
but differs by a factor 2 from the original formula in [61].
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of H̃0 and, in analogy with Remark 5.12, its associated spin-Chern number.
More precisely, let

Π̃
(	)
0 := Π̃0(1 ⊗ p	) and thus

k∑

	=1

Π̃
(	)
0 = Π̃0 . (5.18)

It is straightforward to see that16 Π̃
(	)
0 ∈ P(Hf ,Df) ∩ Bτ

1 and thus the Chern
numbers

Chern(Π̃(	)
0 )ij :=

i(2π)d−1

|C1|
Tr
(
χ1 Π̃

(	)
0

[[
Xi, Π̃

(	)
0

]
,
[
Xj , Π̃

(	)
0

]]
χ1

)
∈ Z

are well defined and integer. The S-Chern number of Π0 is finally defined as

S − Chern(Π0)ij :=
k∑

	=1

s	 · Chern(Π̃(	)
0 )ij . (5.19)

We now show that the S-conductivity is given at leading order in λ by
S − Chern(Π0), a result which coherently complements the robustness of edge
spin currents proved by Schulz-Baldes [58].

To formulate such a perturbative statement precisely, we slightly change
perspective and notation and introduce a λ-dependent family of Hamiltonians:
Let H0 satisfy Assumption 3.1 and [H0, S] = 0 and assume V ∈ P(Df ,Hf).
Then, for λ0 > 0 sufficiently small, it holds that Hλ := H0 +λV is self-adjoint
on the domain of H0 and has a spectral gap at μ for each λ ∈ [0, λ0). As
before we consider the gapped Fermi projection Πλ := χ(−∞,μ](Hλ) of Hλ,
put Π

(	)
0 := Π0(1⊗p	) and the associated Chern numbers Chern(Π(	)

0 )ij . The
λ-independent S-Chern number associated with Πλ is again S-Chern(Πλ)ij :=
∑k

	=1 s	 · Chern(Π(	)
0 )ij ≡ S-Chern(Π0)ij .

Proposition 5.13. Let Hλ = H0 + λV , be a perturbation of a spin-commuting
Hamiltonian H0 as defined above. Then, the S-conductivity σS

ij,λ of Hλ satis-
fies

σS
ij,λ = S − Chern(Π0)ij + O(λ) .

Proof. By standard perturbation theory we obtain

‖Πλ − Π0‖P(Hf ,Df) = O(λ) , ‖[Πλ − Π0,Xi]‖P(Hf ,Df) = O(λ) ,

‖[Πλ, S]‖P(Hf ,Df) = O(λ) .

Observe that ‖Πλ‖1,τ = ‖Π0‖1,τ using the smallness argument in (16). Hence,
starting from (5.14) and (5.15), we find

σS
ij,λ =

1
|C1|

Re Tr
(
χ1

(
iΠλ

[
[Xi,Πλ], SD

λ [Xj ,Πλ]
]
+ i[Hλ,XD

i,λ]SOD
λ Π1,λ

)
χ1

)

164 By choosing λ small enough, one has that
∥
∥
∥Π̃0(k) − Π0(k)

∥
∥
∥ < 1 and thus the two

projections have the same rank for every k. Then, by the argument in the proof of Lemma

6.5, it follows that Π̃0 ∈ Bτ
1 and hence Π̃

(�)
0 ∈ Bτ

1 as well.
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+
1

|C1|
Re Tr

(
χ1iXD

i,λ[Hλ, S]Π1,λχ1

)
.

=
i

|C1|
Re Tr

(
χ1Π0

[
[Xi,Π0], S[Xj ,Π0]

]
χ1

)
+ O(λ)

=
i

|C1|
∑

	

s	 Tr
(
χ1Π

(	)
0

[
[Xi,Π

(	)
0 ], [Xj ,Π

(	)
0 ]
]
χ1

)
+ O(λ)

= S − Chern(Π0)ij + O(λ) .

In the second to last equality we used that 1 ⊗ p	 commutes with Xi and
Π0. �

6. Proofs

6.1. Diagonal and Off-Diagonal Operators

The Fermi projection Π0 of the unperturbed Hamiltonian H0 clearly induces
a decomposition of L2(X ) ⊗ C

N into RanΠ0 ⊕ (Ran Π0)⊥. Correspondingly,
operators acting in L2(X ) ⊗C

N will admit a block decomposition. We review
in this section some properties of this decomposition, heading toward the proof
of a well-known formula from asymptotic perturbation theory which allows to
invert the Liouvillian [H0, · ] acting on operators which only have off-diagonal
blocks.

Definition 6.1 (Diagonal and off-diagonal parts). Given an operator A and
an orthogonal projection Π, i.e. Π = Π∗ = Π2, such that AΠ is densely
defined17, one defines its diagonal and off-diagonal parts as

AD := ΠAΠ + (1 − Π)A(1 − Π),

AOD := ΠA(1 − Π) + (1 − Π)AΠ,

respectively. The operator A is called diagonal (resp. off-diagonal) if A = AD

(resp. A = AOD).

We collect in the following lemma two simple properties of diagonal and
off-diagonal operators in a general Hilbert space H, whose proof is elementary.

Lemma 6.2. Let A be an operator acting in H and Π an orthogonal projection
on H such that AΠ is densely defined.

1. A is diagonal if and only if [A,Π] = 0. A is off-diagonal if and only if
A = AΠ + ΠA.

2. AOD = [[A,Π],Π].

17The operator A may be unbounded and thus a careful analysis is required. In particular,

we want to avoid pathological examples and have A ⊇ AD +AOD on a dense domain. Later,
we will, for example, apply the block decomposition with respect to the Fermi projection
Π0 to the operator Xi for i ∈ {1, . . . , d} (see Sect. 5.1), and Xi Π0 is densely defined under
Assumption 3.1 on the unperturbed Hamiltonian (compare Corollary 3.6).
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6.2. Inverse Liouvillian

We study here the Liouvillian (super-)operator B �→ [H0, B] associated with
the unperturbed Hamiltonian, and in particular the possibility to invert it
away from its kernel. We look in other words for the solution B to the equation
[H0, B] = A, where A ∈ P(Hf) is off-diagonal with respect to the decomposi-
tion H = Π0H⊕ (1−Π0)H. We state in the following proposition the solution
to this problem, which traces back at least to [47,48].

Proposition 6.3. Under Assumption 3.1, let A ∈ P(Hf) be such that A = AOD

with respect to Π0. Then, the operator I(A), defined in (4.2), is the unique
off-diagonal solution in P(Hf ,Df) to the equation

[H0, I(A)] = A on U−1
BFL2

�(R
d,Df). (6.1)

Proof. From the very definition (4.2) and our hypotheses on A, we have that
I(A) is off-diagonal and is in P(Hf ,Df) by Lemma 3.5.

Thus, we need only to prove (6.1). Since H0(k) ∈ L(Df ,Hf) and
Ran(H0(k) − z1)−1 ⊂ Df for any z ∈ ρ(H0), applying [70, §V.5 Corollary
2] we have that on Df

[H0(k), I(A)(k)]

=
i

2π

∮

C

dz [H0(k), (H0(k) − z1)−1 [A(k),Π0(k)] (H0(k) − z1)−1].

Hence, we obtain that on the domain U−1
BFL2

�(R
d,Df)

[H0, I(A)] =
i

2π

∮

C

dz [H0 − z1, (H0 − z1)−1 [A,Π0] (H0 − z1)−1]

=
i

2π

∮

C

dz [[A,Π0], (H0 − z1)−1] = [[A,Π0],Π0] = AOD = A,

using the Riesz formula (compare (3.5)) and Lemma 6.2.2.
Finally, notice that I(A) is the unique off-diagonal solution in P(Hf ,Df)

to equation (6.1) for any off-diagonal operator A ∈ P(Hf). Indeed, if B ∈
P(Hf ,Df) is another solution to (6.1), then I(A) − B commutes with H0, and
hence with Π0. By Lemma 6.2.1, I(A)−B is diagonal, and hence B = BOD =
I(A)OD = I(A). �

6.3. NEASS

This section is devoted to the proof of Proposition 4.1 and thus to the explicit
construction of the NEASS Πε satisfying (SA1) and (SA2). In order to give
this proof, we first need the following preparatory lemma.

Lemma 6.4. If A ∈ P(Hf ,Df), then both (eεA − 1) and [eεA,Xj ] are in
P(Hf ,Df) and their norms in this space are bounded uniformly in ε ∈ [0, 1].

Proof. Clearly, (eεA − 1) is periodic as A is periodic. Since L(Hf ,Df) is a
Banach space,

eεA(k) − 1 = eεA(k) − 1 =
∞∑

n=1

εnAn(k)
n!
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converges in L(Hf ,Df) uniformly in k ∈ K for any compact set K ⊂ R
d

and ε ∈ [0, 1], as the sequence {
∑N

n=1
εnAn(k)

n! }N∈N ⊂ L(Hf ,Df) converges
absolutely in L(Hf ,Df) uniformly in k ∈ K and ε ∈ [0, 1]. Moreover, observe
that each summand is such that

R
d � k �→ An(k)

n!
∈ L(Hf ,Df) is smooth ∀n ≥ 1

and
∞∑

n=1

εn∂kj
(An(k))
n!

=
∞∑

n=1

εn

n!

n−1∑

h=0

Ah(k)
(
∂kj

A(k)
)
An−1−h(k)

converges in L(Hf ,Df) uniformly in ε ∈ [0, 1] and in k ∈ K for any compact
set K ⊂ R

d due to the assumption that A ∈ P(Hf ,Df). Therefore, we are
allowed to interchange the derivation in k and the series in n. Iterating this
argument implies that (eεA −1) is in P(Hf ,Df) and that its norm in this space
is uniformly bounded with respect to ε ∈ [0, 1]. Thus, by Proposition 3.4 we
deduce that [eεA,Xj ] = [eεA − 1,Xj ] ∈ P(Hf ,Df) again with uniform bounds
on its norm for ε ∈ [0, 1]. �

We are now ready to tackle the

Proof of Proposition 4.1. In this proof, we will abbreviate the expression “the
map [0, 1] � ε �→ Aε ∈ P is uniformly bounded” for some space of operators P
by just saying that “Aε is in P uniformly in ε ∈ [0, 1].”

1, By Corollary 3.6.1 one has that [[Xj ,Π0],Π0] is in P(Hf ,Df) ⊂ P(Hf)
and is off-diagonal with respect to Π0; hence, Proposition 6.3 implies that
S ∈ P(Hf ,Df). Self-adjointness of S is evident.

2, By Taylor’s formula, we find that for any ε > 0

e−iεS Π0 eiεS = Π0 + iε[Π0,S] − ε2

2 e−iε̃S [S, [S,Π0]] eiε̃S

for some ε̃ ∈ (0, ε). Thus, in view of Lemma 6.2.2 and of the fact that

[Xj ,Π0] = [Xj ,Π0]
OD

, one has

Π1 = i[Π0,S] = −
[
Π0, I

([
[Xj ,Π0] ,Π0

])]

= I
([[

[Xj ,Π0] ,Π0

]
,Π0

])
= I

(
[Xj ,Π0]

)
.

Moreover,

Πε
r = i

2e−iε̃S [Π1,S] eiε̃S . (6.2)

In view of Corollary 3.6.1 and of Proposition 6.3, we have Π1 ∈ P(Hf ,Df).
Notice now that [Π1,S] is in P(Hf ,Df) (because Π1,S ∈ P(Hf ,Df)), and
(e−iε̃S − 1) ∈ P(Hf ,Df) uniformly in ε̃ ∈ (0, ε) ⊆ [0, 1] by Lemma 6.4. There-
fore, we conclude that

Πε
r = i

2 (e−iε̃S − 1) [Π1,S] eiε̃S + i
2 [Π1,S] eiε̃S ∈ P(Hf ,Df) (6.3)

uniformly in ε̃ ∈ (0, ε) ⊆ [0, 1]. Finally, on the domain U−1
BFC∞

� (Rd,Df) we
have that

[Hε,Πε] = ε ([H0,Π1] − [Xj ,Π0]) + ε2 ([Hε,Πε
r ] − [Xj ,Π1]) .
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On the right-hand side, the first term vanishes in view of equation (6.1):

[H0,Π1] =
[
H0, I

(
[Xj ,Π0]

)]
= [Xj ,Π0] on U−1

BFC∞
� (Rd,Df).

As for the second term, we recognize that

[Hε,Πε
r ] − [Xj ,Π1]

∣
∣
∣
U−1

BFC∞
� (Rd,Df)

(6.4)

extends to a bounded operator in P(Hf) uniformly in ε ∈ [0, 1]. Indeed, the
second summand [Xj ,Π1]

∣
∣
∣
U−1

BFC∞
� (Rd,Df )

in (6.4) extends to an operator in

P(Hf ,Df) ⊂ P(Hf) by Proposition 3.4. We split instead the first summand
in (6.4) as

[H0,Π
ε
r ] − ε[Xj ,Π

ε
r ]
∣
∣
∣
U−1

BFC∞
� (Rd,Df )

.

The first of the terms above satisfies, in view of (6.3),
∥
∥
∥[H0,Πε

r ]
∥
∥
∥

P(Hf )
≤ 2 ‖H0‖P(Df ,Hf)

‖Πε
r‖P(Hf ,Df )

for ε ∈ [0, 1],

while [Xj ,Π
ε
r ]
∣
∣
∣
U−1

BFC∞
� (Rd,Df)

extends to an operator in P(Hf) applying again

Proposition 3.4. By using Leibniz’s rule, Lemma 6.4 and Proposition 3.4 one
concludes that

∥
∥
∥[Xj ,Πε

r ]
∥
∥
∥

P(Hf)
is bounded uniformly in ε ∈ [0, 1]. �

6.4. Well-Posedness of the Proper S-conductivity

By using (5.2) and combining the following results, here we prove that
Re τ(JS

prop,i Π1) = σS
prop,ij .

Lemma 6.5. Under Assumption 3.1 we have that Π0,Π1,Π
ε
r ∈ Bτ

1 .

Proof. By Assumption 3.1 Π0(k) is a finite-rank projection on Hf with rank
m (independent of k). Thus, in view of Proposition 2.4, we get

τ(|Π0|) = τ(Π0) =
1

|C1|
Tr(χ1Π0χ1) =

1
|C1|

1
|Bd|

∫

Bd

dk TrHf (Π0(k)) =
m

|C1|
(6.5)

hence Π0 ∈ Bτ
1 . In view of Propositions 4.1 and 6.3, we have that Π1 = ΠOD

1 is
off-diagonal with respect to the orthogonal decomposition induced by Π0, and
hence Lemma 6.2.1 implies that Π1 = Π1Π0+Π0Π1. Since Π1 ∈ P(Hf) ⊂ Bτ

∞
and Π0 ∈ Bτ

1 by (6.5), we deduce that the right-hand side of the above is in
Bτ
1 as Bτ

∞ · Bτ
1 · Bτ

∞ ⊂ Bτ
1 .

Finally, recall from (6.2) that Πε
r = i

2e−iε̃S [Π1,S] eiε̃S for some ε̃ ∈ (0, ε).
As we just proved Π1 ∈ Bτ

1 , and the other operators which appear on the right-
hand side of the above are in P(Hf) ⊂ Bτ

∞, we conclude that Πε
r ∈ Bτ

1 . �

Proposition 6.6. Under Assumption 3.1 and the hypotheses on S in Defini-
tion 5.1, for Π� ∈ {Π0,Π1,Π

ε
r} we have that

1. the operators [H0,Xi]SΠ� and [H0, S]Π� are in Bτ
1 ,



1098 G. Marcelli et al. Ann. Henri Poincaré

2. the operators Xi[H0, S]Π� and [H0,Xi]SΠ� have finite trace per unit vol-
ume.

Proof. 1. We have that Π� ∈ P(Hf ,Df) by Proposition 4.1, S ∈ P(Df) by
hypothesis, and [H0,Xi] ∈ P(Df ,Hf) by Corollary 3.6.3; thus, we deduce that

[H0,Xi]SΠ� ∈ P(Df ,Hf) · P(Df) · P(Hf ,Df) ⊂ P(Hf) ⊂ Bτ
∞. (6.6)

On the other hand, since

[H0, S] = H0S − SH0 ∈ P(Df ,Hf) · P(Df) + P(Hf) · P(Df ,Hf) ⊂ P(Df ,Hf),
(6.7)

we get that

[H0, S]Π� ∈ P(Df ,Hf) · P(Hf ,Df) ⊂ P(Hf) ⊂ Bτ
∞. (6.8)

Now we are going to show that the operators in (6.6) and (6.8) are in Bτ
1 , using

the previous results.
First we analyze the case Π� = Π0. In view of Lemma 6.5 we have

Π0 ∈ Bτ
1 , thus we deduce that [H0,Xi]SΠ0 = [H0,Xi]SΠ0 ·Π0 ∈ Bτ

∞ ·Bτ
1 ⊂ Bτ

1

and similarly [H0, S]Π0 = [H0, S]Π0 · Π0 ∈ Bτ
∞ · Bτ

1 ⊂ Bτ
1 .

We proceed with the case Π� = Π1. By virtue of Lemma 6.5, of the
construction in Proposition 4.1, and of Lemma 6.2.1, we have that Bτ

1 � Π1 =
Π1Π0 + Π0Π1; hence, we obtain that

[H0,Xi]SΠ1 = [H0,Xi]SΠ1 · Π0 + [H0,Xi]SΠ0 · Π1 ∈ Bτ
∞ · Bτ

1 ⊂ Bτ
1 .

(6.9)

One can argue in an analogous way to conclude that [H0, S]Π1 ∈ Bτ
1 using

(6.7).
Finally, we analyze the case Π� = Πε

r = i
2e−iε̃S [Π1,S] eiε̃S . Notice that

[H0,Xi]SΠε
r = [H0,Xi]S(e−iε̃S − 1)eiε̃SΠε

r + i
2 [H0,Xi]SΠ1Seiε̃S

− i
2 [H0,Xi]SSΠ1eiε̃S .

(6.10)

Observe that on the right-hand side of the last equality each summand is in
Bτ
1 . Indeed, since (e−iε̃S − 1) ∈ P(Hf ,Df) by Lemma 6.4 and eiε̃SΠε

r ∈ Bτ
1 by

Lemma 6.5, we deduce that [H0,Xi]S(e−iε̃S − 1) · eiε̃SΠε
r ∈ P(Hf) · Bτ

1 ⊂ Bτ
1 .

Using (6.9) and Seiε̃S ∈ P(Hf) by Proposition 4.1.1, we infer that [H0,Xi]SΠ1·
Seiε̃S ∈ Bτ

1 · Bτ
∞ ⊂ Bτ

1 . As for the third summand in (6.10), observe that
S ∈ P(Hf ,Df) by Proposition 4.1.1 and Π1eiε̃S ∈ Bτ

1 by Lemma 6.5, therefore
we get that [H0,Xi]SS · Π1eiε̃S ∈ P(Hf) · Bτ

1 ⊂ Bτ
1 . From a similar argument,

it follows that [H0, S]Πε
r ∈ Bτ

1 owing to (6.7).
2. The conclusion follows by applying part 1 of the statement (which we

just proved), Lemma 2.3, Proposition 2.4.1, and Proposition 2.5.1. �

In the following lemma, we prove that some expectation values of JS
conv,i

which are relevant to transport theory, reduce to the real part of the expecta-
tion value of JS

naive,i := i[H0,Xi]S.
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Lemma 6.7. Under Assumption 3.1 and the hypotheses on S in Definition 5.1,
let Π� ∈ {Π0,Π1,Π

ε
r ,Πε}. Then

τ(JS
conv,i Π�) = Re τ(i[H0,Xi]S Π�). (6.11)

Proof. We first prove the claim for Π� ∈ {Π0,Π
ε}, exploiting the fact that

Π2
� = Π� = Π∗

� in this case. Using in addition that Π� ∈ Bτ
1 by Lemma

6.5, JS
naive,iΠ� ∈ Bτ

∞ by Proposition 6.6.1, the cyclicity of the trace per unit
volume, Tr(A) = Tr(A∗), one has that

Re τ(i[H0,Xi]S Π�) = Re τ(Π� i[H0,Xi]S Π�)

=
1
2

(
τ(Π� JS

naive,i Π�) + τ(Π�(JS
naive,i)

∗ Π�)
)

= τ(Π� JS
conv,i Π�) = τ(JS

conv,i Π�).

The case Π� = Π1 is subtler, and we crucially use the fact that Π1 =
Π1Π0 + Π0Π1, and Π∗

1 = Π1. Indeed, by using Lemma 2.6, Lemma 6.5, and
Proposition 6.6 we obtain that

Re τ(JS
naive,i Π1) = Re τ(JS

naive,i Π1Π0) + Re τ(JS
naive,i Π0Π1)

=
1
2

(
τ(Π0J

S
naive,i Π1) + τ(Π1J

S
naive,i Π0)

)

+
1
2

(
τ(Π0JS

naive,i Π1) + τ(Π1JS
naive,i Π0)

)

=
1
2
τ(i[H0,Xi]S Π1) +

1
2
τ(Si[H0,Xi]Π1) = τ(JS

conv,i Π1).

Finally, it remains to prove the claim for Π� = Πε
r . The latter follows by

R-linearity from the previous cases, as Πε
r = Πε − Π0 − εΠ1. �

Proposition 6.8. (Bounds on the remainder terms) Under Assumption 3.1,
there exist C1, C2 ∈ R such that

∣
∣τ(JS

conv,i Πε
r )
∣
∣ ≤ C1 and

∣
∣τ(JS

prop,i Πε
r )
∣
∣ ≤ C2 ∀ ε ∈ [0, 1].

Proof. We begin by showing the first inequality. In view of Lemma 6.7 and the
triangle inequality, we obtain that
∣
∣τ(JS

conv,i Πε
r )
∣
∣ ≤

∣
∣
∣τ(i[H0,Xi]SΠε

r )
∣
∣
∣ ≤

∣
∣
∣τ([H0,Xi]S(e−iε̃S − 1)eiε̃SΠε

r )
∣
∣
∣

+ 1
2

∣
∣
∣τ([H0,Xi]SΠ1Seiε̃S)

∣
∣
∣+ 1

2

∣
∣
∣τ([H0,Xi]SSΠ1eiε̃S)

∣
∣
∣ .

(6.12)

By using the inequalities in (2.10) and Lemma 6.4, the first summand on the
right-hand side can be bounded uniformly in ε as
∣
∣
∣τ([H0,Xi]S(e−iε̃S − 1)eiε̃SΠε

r )
∣
∣
∣ ≤ C

∥
∥
∥[H0,Xi]

∥
∥
∥

P(Df ,Hf)
‖S‖P(Df )

‖[Π1,S]‖1,τ ,

where C is a constant independent of ε. Applying again the inequalities
in (2.10), we get for the second and third summand in (6.12), respectively

∣
∣
∣τ([H0,Xi]SΠ1Seiε̃S)

∣
∣
∣ ≤

∥
∥
∥[H0,Xi]SΠ1

∥
∥
∥
1,τ

‖S‖
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using Proposition 6.6.1 and
∣
∣
∣τ([H0,Xi]SSΠ1eiε̃S)

∣
∣
∣ ≤

∥
∥
∥[H0,Xi]

∥
∥
∥

P(Df ,Hf)
‖S‖P(Df )

‖S‖P(Hf ,Df )
‖Π1‖1,τ

in view of Lemma 6.5.
Now, to obtain the second inequality of the thesis, notice that

∣
∣τ(JS

prop,i Πε
r )
∣
∣ ≤

∣
∣
∣τ([H0,Xi]SΠε

r )
∣
∣
∣+ |τ(Xi[H0, S]Πε

r )| . (6.13)

The first summand on the right-hand side is bounded uniformly in ε, as it is
shown before, while for the second one we proceed as follows. Since [H0, S]Πε

r

is τ -class by Proposition 6.6.1, Proposition 2.5.1 implies that

|τ(Xi[H0, S]Πε
r )| =

1
|C1|

|Tr (χ1Xi[H0, S]Πε
rχ1)| .

Applying the inequality |Tr(AB)| ≤ ‖A‖ Tr(|B|) for a bounded operator A
and a trace class operator B, estimate (2.11) and Proposition 2.4.1, we have
that

1
|C1|

|Tr (χ1Xi[H0, S]Πε
rχ1)| ≤ 1

|C1|
‖χ1Xiχ1‖ Tr(|χ1[H0, S]Πε

rχ1|)

≤ ‖χ1Xiχ1‖ ‖[H0, S]Πε
r‖1,τ .

Finally, since [H0, S] ∈ P(Df ,Hf) as shown in (6.7), one can reason as in (6.12)
to conclude that ‖[H0, S]Πε

r‖1,τ ≤ D, for a constant D independent of ε, which
yields the second inequality in the thesis. �

6.5. Chern-Like and Extra Contributions to the S-conductivity

In this subsection, we prove Proposition 5.3, Proposition 5.4, Theorem 5.6 and
Lemma 5.10.

Proof of Proposition 5.3. We are going to show that C and E	 are in Bτ
1 for

any � ∈ {1, . . . , 4} and then equality (5.7) follows from Proposition 2.41. We
begin by looking at the Chern-like term C. We can write on Ran(χL) that
C = Π0

[
[Xi,Π0], S[Xj ,Π0]

]
, by using Remark 5.2 and (3.6). In view of Corol-

lary 3.6.1 and Lemma 6.5, we have that Π0·
[
[Xi,Π0], S[Xj ,Π0]

]
∈ Bτ

1 · P(Hf).
Therefore, the above operators are τ -class as P(Hf) · Bτ

1 ⊂ Bτ
1 . In view of the

cyclicity of the trace per unit volume and the off-diagonality of [Xi,Π0], one
can rewrite τ(C) as

τ(Π0

[
[Xi, Π0], S[Xj , Π0]

]
) = τ(Π0[Xi, Π0]S[Xj , Π0]) − τ(Π0S[Xj , Π0][Xi, Π0])

= τ(Π0[Xi, Π0]S[Xj , Π0]) − τ(Π0[Xj , Π0][Xi, Π0]S)

= τ(Π0

[
[Xi, Π0]S, [Xj , Π0]

]
).

We now analyze the first extra term E1. Similarly to the previ-
ous computation, we have on Ran(χL) that E1 = iΠ0[H0,Xi]Π0SΠ1 +
iΠ⊥

0 [H0,Xi]Π⊥
0 SΠ1. In view of Corollary 3.6.3, Lemma 3.5, Lemma 6.5

and Proposition 6.6.1, we get that Π0[H0,Xi]Π0S · Π1 ∈ P(Hf) · Bτ
1 and

Π⊥
0 [H0,Xi]Π⊥

0 SΠ1 = Π⊥
0 [H0,Xi]SΠ1 − Π⊥

0 [H0,Xi]Π0SΠ1 ∈ Bτ
1 . Then,

noticing that Π1 = ΠOD
1 by construction (see Propositions 4.1.2 and 6.3)
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and applying Lemma 2.6, we obtain the final expression for τ(E1) in (5.9).
The proof concerning the statement that E2,E3 and E4 are in Bτ

1 is obtained
by similar estimates. By applying Proposition 6.6.2, we infer that XiR has
finite trace per unit volume for any i ∈ {1, . . . , d} and equality (5.7) is implied
by Proposition 2.5.1.

Finally, Lemma 2.6 implies that τ(E2) = 0 = τ(E4). Indeed, for the first
identity observe that τ(XOD

i SΠ1H0) = τ(Π1H0X
OD
i S) = τ(H0X

OD
i SΠ1),

and for the second one just notices that E4 is the commutator of [Xi,Π0] ∈ Bτ
∞

and Π0S[Π0,Xj ] ∈ Bτ
1 . �

Proof of Proposition 5.4. 1. First of all, notice that [H0, B]Π1 ∈ Bτ
1 since Π1 =

Π1Π0 + Π0Π1 and, for Π� ∈ {Π0,Π1}, one has [H0, B] · Π� ∈ P(Df ,Hf) ·
P(Hf ,Df) ⊂ P(Hf) and Π� ∈ P(Hf ,Df) ∩ Bτ

1 . Since

Π1 =
i

2π

∮

C

dz (H0 − z1)−1
[
[Xj ,Π0],Π0

]
(H0 − z1)−1

by construction (see Propositions 4.1.2 and 6.3), we have that

iτ([H0, B]Π1) = − 1

2π

∮

C

dz τ
(
(H0 − z1)−1[H0, B](H0 − z1)−1

[
[Xj , Π0], Π0

])

= − 1

2π

∮

C

dz τ
(
[B, (H0 − z1)−1]

[
[Xj , Π0], Π0

])

= iτ
(
[B, Π0]

[
[Xj , Π0], Π0

])
, (6.14)

where in the first equality we have used the cyclicity of the trace per unit
volume, based on the fact that [H0, B](H0 − z1)−1 ∈ Bτ

∞ by Lemma 3.5, and
that

[
[Xj ,Π0],Π0

]
∈ Bτ

1 by Corollary 3.6.1 and Lemma 6.5.
Finally, in virtue of [B,Π0][Xj ,Π0]Π0 = Π0[B,Π0][Xj ,Π0] and by using

again the cyclicity of the trace per unit volume since Π0[Xj ,Π0] ∈ Bτ
1 and

[B,Π0] ∈ Bτ
∞, we conclude that

τ
(
i[B, Π0]

[
[Xj , Π0], Π0

])
= τ

(
iΠ0[B, Π0][Xj , Π0]

)
− τ

(
iΠ0[Xj , Π0][B, Π0]

)

= τ
(
iΠ0

[
[B, Π0], [Xj , Π0]

])
.

2. In view of intermediate formula (6.14), the claim is equivalent to show that
τ
(
[B,Π0]

[
[Xj ,Π0],Π0

])
= 0. By algebraic manipulations, exploiting the fact

that Π0 is a projection, we obtain that on Ran(χ1)

[B,Π0]
[
[Xj ,Π0],Π0

]
= Π⊥

0 BΠ0[Π0,Xj ] + Π0BΠ⊥
0 [Π0,Xj ].

Therefore, since each summand on the right-hand side above is in Bτ
1 , using

again the cyclicity of the trace per unit volume and the off-diagonality of
[Π0,Xj ], we get that

τ([B,Π0]
[
[Xj ,Π0],Π0

]
) = τ(BΠ0[Π0,Xj ]Π⊥

0 ) + τ(BΠ⊥
0 [Π0,Xj ]Π0)

= τ(B[Π0,Xj ]) =
1

|C1|
Tr (χ1[BΠ0,Xj ]χ1)

=
1

|C1|
{
Tr (χ1BΠ0χ1Xjχ1) − Tr (χ1Xjχ1BΠ0χ1)

}
= 0,
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where we have used that [B,Xj ] = 0 and the conditional cyclicity of the
trace, since χ1BΠ0χ1 is trace class in view of the fact that BΠ0 ∈ Bτ

1 and of
Lemma 2.3. �

Proof of Theorem 5.6. First of all, Proposition 6.6.2 implies that JS
prop,iΠ� has

a finite trace per unit volume for Π� ∈ {Π0,Π1,Π
ε
r}, thus all the terms appear-

ing in (5.2) are finite. By virtue of Proposition 6.8, we obtain that σS
prop,ij =

Re τ(JS
prop,i Π1). Now, notice that Re τ(i[H0,Xi]S Π1) = τ(JS

conv,i Π1) by
Lemma 6.7. Therefore, by previous computation in (5.3) and (5.4), we get
that

Re τ(JS
prop,i Π1) = Re τ(i[H0, Xi]S Π1) + Re τ(XiR) = τ(JS

conv,i Π1) + Re τ(XiR).

Observe that Proposition 6.8 implies that σS
conv,ij = Re τ(JS

conv,i Π1) =
τ(JS

conv,i Π1). From equation (5.5) and Proposition 5.3 we derive formula
(5.12). Corollary 5.5 along with Proposition 2.5.2 implies the well-posedness
of the rotation S-conductivity, as it appears in (5.13). �

Proof of Lemma 5.10. Obviously, E3 = 0 and R = 0 by using (5.16). Proposi-
tion 5.3 implies that τ(E1) = iτ([H0,X

D
i ]SODΠ1) = 0, since SOD = 0. �
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Appendix A. Unit Cell Consistency and Vanishing of Persistent
S-currents

A.1. Results on the Unit Cell Consistency

As a preliminary step, we prove that the trace per unit volume, acting on a
suitable class of operators, is independent of the choice of the fundamental
cell C1. First, notice that chosen any two primitive cells of arbitrary shape,
it is possible to cut the first up into pieces, which, when translated through
suitable lattice vectors, can be reassembled to give the second. This fact, well-
known to solid state physicists [4], can be reformulated in the following lemma,
whose proof is elementary. Recall that CL is defined in (2.7) with reference to
a linear basis {a1, . . . , ad} of Γ , while C̃L in (2.17) refers to another linear basis
{ã1, . . . , ãd} of Γ .

Lemma A.1. Let C1 and C̃1 be two primitive cells. Then there exist a finite set
I ⊂ Γ and a family of subsets {Pγ}γ∈I ⊂ X such that(7)

C1 =
⊔

γ∈I

TγPγ and C̃1 =
⊔

γ∈I

Pγ . (A.1)

In particular, one may choose

Pγ := T−γC1 ∩ C̃1 ⊂ C̃1. (A.2)

Denoting by τ( · ) and τ̃( · ), respectively, the trace per unit volume
induced by the choice of the primitive cells C1 and C̃1, we have the follow-
ing result.

Proposition A.2. Consider an operator A which is periodic and trace class on
compact sets.

1. Then, τ(A) = τ̃(A).
2. If, in addition, Tr(χPγ

AχPγ
) = 0 for all γ ∈ I, where {Pγ}γ∈I are the

sets defined in (A.2), then τ(XiA) = τ̃(XiA).

Proof. 1. In view of Proposition 2.4.1, it suffices to prove
1

|C1|
Tr(χ1 Aχ1) =

1

|C̃1|
Tr(χ̃1 A χ̃1).

Obviously, from decompositions (A.1) and the translation invariance of
the Lebesgue measure, it follows that |C1| = |C̃1|. The first identity in (A.1),
conditional cyclicity of the trace and identity χ2

TγPγ
= χTγPγ

imply that

Tr(χ1 Aχ1) =
∑

γ∈I

Tr(χTγPγ
AχTγPγ

) =
∑

γ∈I

Tr(TγχPγ
T ∗

γ ATγχPγ
T ∗

γ ).

(A.3)

Now, by the invariance of trace under unitary conjugation and the periodicity
of A, one has that

Tr(χ1 Aχ1) =
∑

γ∈I

Tr(χPγ
AχPγ

) = Tr(χ̃1 A χ̃1),
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where in the last equality we used the second decomposition in (A.1).
2. After arguing as in the steps leading to (A.3), one notices that

Tr(TγχPγ
T ∗

γ XiATγχPγ
T ∗

γ ) = Tr(χPγ
T ∗

γ XiATγχPγ
) = Tr(χPγ

T ∗
γ XiTγAχPγ

)

= γi Tr(χPγ
AχPγ

) + Tr(χPγ
XiAχPγ

)

where we have used [T ∗
γ ,Xi] = γi T ∗

γ . Therefore, in view of the decompositions
(A.1), we conclude that

Tr(χ1 XiAχ1) =
∑

γ∈I

γi Tr(χPγ
AχPγ

) + Tr(χ̃1 XiA χ̃1) = Tr(χ̃1 XiA χ̃1).

which yields the claim. �
For any γ ∈ I, consider the operator 1{TηTγPγ : η∈Γ} = 1{TηPγ : η∈Γ},

which is periodic by its very definition (here 1Ω is an alternative notation for
the characteristic function of the set Ω). By applying (2.13), one has

|C1|τ(1{TηPγ : η∈Γ}A) = Tr(χ11{TηPγ : η∈Γ}Aχ1) = Tr(χPγ
AχPγ

), (A.4)

for every operator A which is periodic and trace class on compact sets. Using
the previous rewriting, we are in position to prove that χPγ

RχPγ
, defined in

(1.12), has vanishing trace whenever the model enjoys a discrete rotational
symmetry.

A.2. Models with Discrete Rotational Symmetries

Let us fix indices i �= j ∈ {1, . . . , d}, and denote by Rϑ,(ij) the counterclockwise
rotation of angle ϑ ∈ [0, 2π) in the plane (xi, xj):

Rϑ,(ij)(x1, . . . , xi, . . . , xj , . . . , xd)
:= (x1, . . . , (cos ϑ)xi − (sin ϑ)xj , . . . , (sin ϑ)xi + (cos ϑ)xj , . . . , xd).

Rotation operators in the plane (xi, xj) on H are defined via

(Rϑ,(ij)ψ)(x) := ρϑ,(ij)ψ(R−1
ϑ,(ij)x), for ψ ∈ H,

where ρϑ,(ij) is a unitary matrix acting on C
N .18

Suppose that the d-dimensional crystal under consideration is invariant
under a rotation of angle ϑ = 2π/n, for some n ∈ N

∗, in the plane (xi, xj),
namely γ ∈ Γ if and only if Rϑ,(ij)γ ∈ Γ (then it trivially follows that x ∈ X
if and only if Rϑ,(ij)x ∈ X ). A periodic Hamiltonian H0 is said to be itself
rotationally symmetric or invariant under rotation of angle ϑ in the plane
(xi, xj) if and only if R−1

ϑ,(ij) H0 Rϑ,(ij) = H0. For example, several models on
the honeycomb structure, including e.g. the Kane–Mele model (see [33] or [43,
Appendix A]), are invariant under the rotation R2π/3,(12).

Proposition A.3. Let ϑ = 2π/n for some n ∈ N
∗. Let the Bravais lattice Γ be

invariant under the rotation Rϑ,(ij), i.e. γ ∈ Γ if and only if Rϑ,(ij)γ ∈ Γ ,
and

R−1
ϑ,(ij)1{TηPγ : η∈Γ}Rϑ,(ij) = 1{TηPγ : η∈Γ} ∀γ ∈ I. (A.5)

18In two-level systems one defines ρϑ,(12) := e−iϑsz to encode the rotation of angle θ around

the z-axis on C
2.
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Let the operator H0, as in Assumption 3.1, be rotationally symmetric of angle
ϑ in the plane (xi, xj). Let S = 1L2(X ) ⊗ s, as in Definition 5.1, be such that
ρ−1

ϑ,(ij)sρϑ,(ij) = s. Then

1. Tr(χPγ
RχPγ

) = 0 ∀γ ∈ I, where R = i[H0, S]Π1 and {Pγ}γ∈I are the
sets defined in (A.2).

2. the persistent conventional S-current vanishes, namely τ(JS
conv,iΠ0) = 0.

The vanishing of persistent S-currents is not expected to hold true in general,
i.e. for systems without a discrete symmetry. However, it has been argued that
such persistent currents do not contribute to transport [57].

Proof. 1. In view of Proposition 6.6.1 R ∈ Bτ
1 and thus applying (A.4) the thesis

is equivalent to show that τ(1{TηPγ : η∈Γ}R) = iτ(1{TηPγ : η∈Γ}[H0, S]Π1) = 0.
Using the invariance of the trace under unitary conjugation and the identities
R−1

ϑ,(ij)χ1Rϑ,(ij) = χ̃1, R−1
ϑ,(ij)H0Rϑ,(ij) = H0 and R−1

ϑ,(ij)SRϑ,(ij) = S and

(A.5), and Π1 = I
(
[Xj ,Π0]

)
by Proposition 4.1.2, we obtain that

|C1|τ
(
1{TηPγ : η∈Γ}[H0, S]I([Xj , Π0]

))
= Tr

(
χ11{TηPγ : η∈Γ}[H0, S]I([Xj , Π0]

)
χ1

)

= Tr
(
χ̃11{TηPγ : η∈Γ}[H0, S]I([R−1

ϑ,(ij)XjRϑ,(ij), Π0]
)
χ̃1

)

= |C̃1|τ̃
(
1{TηPγ : η∈Γ}[H0, S]I([R−1

ϑ,(ij)XjRϑ,(ij), Π0]
))

= |C1|τ
(
1{TηPγ : η∈Γ}[H0, S]I([R−1

ϑ,(ij)XjRϑ,(ij), Π0]
))

,

where we have used Proposition 2.4.1 and Proposition A.2.1. Therefore, by
iterating the previous computation we have that

τ(1{TηPγ : η∈Γ}[H0, S]I
(
[Xj ,Π0]

)
)

=
1
n

n−1∑

k=0

τ
(
1{TηPγ : η∈Γ}[H0, S]I

(
[R−k

ϑ,(ij)XjR
k
ϑ,(ij),Π0]

))
. (A.6)

Now we are going to compute
∑n−1

k=0 R−k
ϑ,(ij)XjR

k
ϑ,(ij). The rotation of angle

ϑ acts non-trivially only in the plane (xi, xj), which we parametrize with the
complex coordinate z := xi +ixj . In this parametrization, the rotation of angle
ϑ is implemented as R̂ϑz := eiϑz. Introducing the complex position operator
Z := Xi + iXj , one has then that R̂−k

ϑ,(ij) iXj R̂k
ϑ,(ij) = Im

(
eikϑZ

)
and thus

n−1∑

k=0

R̂−k
ϑ,(ij) iXj R̂k

ϑ,(ij) = Im

(
n−1∑

k=0

ei2πk/nZ

)

.

As
∑n−1

k=0 ei2πk/n = 0, we deduce that the term in (A.6) vanishes. This con-
cludes the proof.

2. In view of decomposition (A.1), it suffices to show that

Tr
(
χPγ

i[H0,Xi]SΠ0 χPγ

)
= 0 ∀γ ∈ I,

whose proof is analogous to the previous one since [H0,Xi]SΠ0 ∈ Bτ
1 . �
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Remark A.4. In general, even exploiting the peculiar discrete rotational sym-
metries in the hypotheses of Proposition A.3, it is not obvious that the per-
sistent proper S-current vanishes, i.e. τ(JS

prop,iΠ0) = 0, since the argument we
used relies on the periodicity of the operators involved and JS

prop,i is not peri-
odic. Nevertheless, in the Kane–Mele model this property holds true thanks
to the specific structure of the model.

A.3. Vanishing of Persistent S-current When S is Conserved

When S is a conserved quantity, namely when [H0, S] = 0, the vanishing of the
persistent S-current JS

i = JS
prop,i = JS

conv,i holds true without any symmetry
assumption on H0 (compare [10,12], where similar results are deduced in the
case S = 1, and [8], which offers a proof in the context of many-body quantum
spin systems).

To show this, notice first that [Π0, S] = 0 as well and that JS
i =

i[H0,Xi] S is a periodic operator in view of Lemma 2.1. Moreover, JS
i Π0 =

i[H0,Xi] SΠ0 is τ -class in view of Proposition 6.6.1. Consequently, by the iden-
tity Π2

0 = Π0, Lemma 2.6 and Proposition 2.4.1, we have that

τ([H0,Xi]SΠ0) = τ(Π0[H0,Xi]SΠ0) =
1

|C1|
Tr(χ1Π0[H0,Xi]SΠ0χ1).

By Remark 5.2, after some algebra, we get that

χ1Π0[H0,Xi]SΠ0χ1 = χ1Π0[H0,Xi]SΠ0χ1 = χ1[Π0H0SΠ0,Π0XiΠ0]χ1

= χ1[Π0H0SΠ0,Xi]χ1 − χ1[Π0H0SΠ0,Xi
OD]χ1.

(A.7)

Notice that the trace of the first summand above vanishes:

Tr(χ1[Π0H0SΠ0,Xi]χ1) = Tr(χ1Π0H0SΠ0χ1Xiχ1 − χ1Xiχ1Π0H0SΠ0χ1),

where both summands inside the trace are trace class. Indeed, Π0χ1 is
an Hilbert–Schmidt operator, since Tr((Π0χ1)∗Π0χ1) = Tr(χ1Π0χ1) =
|C1|τ(Π0) < ∞ by Lemma 6.5. This implies that the adjoint χ1Π0 is Hilbert–
Schmidt as well. Since S, Π0H0Π0 and χ1Xiχ1 are all bounded operators, the
desired claim follows in view of the conditional cyclicity of the trace Tr( · ).
Finally, we have that the trace of the second summand in (A.7) vanishes as
well. Indeed, by Remark 5.2, Lemma 6.2.2 and definition (3.6) we obtain that

χ1[Π0H0SΠ0,Xi
OD]χ1 = χ1[Π0H0SΠ0, [ [Xi,Π0] ,Π0]]χ1

and thus, using Proposition 2.41, we deduce

1
|C1|

Tr(χ1[Π0H0SΠ0,Xi
OD]χ1) = τ

(
Π0H0SΠ0[ [Xi,Π0] ,Π0]

)
+

− τ
(
[ [Xi,Π0] ,Π0]Π0H0SΠ0

)
.
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The conditional cyclicity of τ implies the conclusion, since Π0H0SΠ0 ∈ Bτ
∞

and [ [Xi,Π0] ,Π0] ∈ Bτ
1 .
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