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The Hessian in Spin Foam Models

Wojciech Kamiński and Hanno Sahlmann

Abstract. We fill one of the remaining gaps in the asymptotic analysis of
the vertex amplitudes of the Engle–Pereira–Rovelli–Livine (EPRL) spin
foam models: We show that the Hessian is nondegenerate for the station-
ary points that corresponds to geometric nondegenerate 4 simplices. Our
analysis covers the case when all faces are spacelike.

1. Introduction

One of the central results of the research on spin foam models (defined in
[1,2] and extended in [3]) is the asymptotic analysis of the vertex amplitude
accomplished in [4–6] for the Euclidean case and in [7–9] for the Lorentzian
case). The graviton propagator [10–12], the relation to Regge calculus and
various semiclassical limits [13,14] are all based on this result. Let us mention
that exactly the asymptotic analysis [15] of the vertex of the Barrett–Crane
model [16] led to the discovery of nongeometric sectors [17] and in consequence
to the invention of the EPRL model. However, it is important to keep in mind
that the analysis of the vertex amplitude does not capture all properties of the
model—as seen by so-called flatness problem [18,19] that is not visible in the
asymptotics of a single vertex.

The proof of the asymptotic formula for various spin foam models is not
completely water-tight because of a few issues. First of all, the proof is based on
stationary phase method and typically integration is done over noncompact
domains. It is not clear if there are any contributions from infinity or from
boundary of the domain of integration. In the Hnybida–Conrady extension [3]
it is even not known if the amplitude is finite at all. Secondly, the contribution
from a stationary point depends on whether the point is nondegenerate (i.e.
the Hessian at that point has no zero eigenvectors, after gauge fixing) or not.
These issues were summarized in our previous paper [8].

The current paper is devoted to the problem of whether or not the Hes-
sian is nondegenerate for a given stationary point. The only analytic result
in this direction that we know about for 4d models is the result [20] for the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-019-00839-7&domain=pdf
http://orcid.org/0000-0003-3707-6087
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Barrett–Crane model [16]. For the Euclidean EPRL model, it was checked
for specific examples that the Hessian is nondegenerate1 so its determinant
is nonzero for generic boundary data. However, the example of the Barrett–
Crane model can serve as a warning, as in this case the Hessian is degenerate
for configurations where the map from lengths to areas of the 4-simplex is not
locally invertible. The Lorentzian models are more complicated. The number
of integration variables makes the determination of the determinant of the
Hessian an almost intractable task.

In this paper we will show that for the EPRL models in both, Euclidean
and Lorentzian signature (we consider also Hnybida–Conrady extension), with
spacelike faces, the Hessian is nondegenerate for every stationary point that
corresponds to a nondegenerate 4-simplex (of either Lorentzian or other sig-
nature).

We will first consider the Euclidean EPRL model with Barbero–Immirzi
parameter γ < 1, as it can be treated in a considerably simpler way. The crucial
observation for our analysis of this case is the specific behaviour of the Hessian
for actions satisfying a certain reality condition: If eiS denotes the integrand
of the amplitude, then the imaginary part of the action is nonnegative,

�S ≥ 0. (1)

In order to extend our result to the case of Lorentzian models, we introduce
a reduced action that is more closely related to the action of the Euclidean
model. The reduced action is defined in such a way that non-degeneracy of
its Hessian is equivalent to the non-degeneracy of that of the full action. We
then reexpress the analysis of the Euclidean amplitude in symplectic geometric
terms. The geometric theory of such actions is based on positive Lagrangians
that were introduced by [21]. This makes it applicable to the Lorentzian case
as well.

The main reference for our notation is [8]. There are a few departures
from that notation, for which we refer the reader to “Appendix A”.

2. Euclidean EPRL Model with γ < 1

In the following, our terminology and, in particular what is real and what is
imaginary is based on the convention that the integrand of the integral we
are approximating is eiS , and we will cal S the action. We note that this is
different from the convention of [7].

For a symmetric (or Hermitian) form H we will use the notation

Hv = H(·, v). (2)

We will say that the vector v annihilates H if

Hv = 0. (3)

For a real symmetric form I we write I ≥ 0 if for any real vector w

I(w,w) ≥ 0. (4)

1Frank Hellmann, private communication.
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This is equivalent to the condition that for any complex vector v

I(v̄, v) ≥ 0. (5)

Lemma 1. Assume that the symmetric complex form H can be decomposed as
H = R + iI where R and I are real and I ≥ 0. Then the following conditions
for a vector v are equivalent:

1. v annihilates H
Hv = 0. (6)

2. The following is true for the real and imaginary part of the vector v
(v = �v + i�v):

R�v = R�v = I�v = I�v = 0. (7)

Proof. Let us write v = vr + iva where vr and va are real.
We have from the linearity of the forms

0 = Hv = (Rvr − Iva) + i(Rva + Ivr), (8)

thus Rvr = Iva and Rva = −Ivr. Moreover, from the symmetry of R

I(va, va) = R(va, vr) = R(vr, va) = −I(vr, vr). (9)

As I ≥ 0 we see that I(va, va) = 0 and I(vr, vr) = 0, thus

Ivr = Iva = 0 (10)

and also Rvr = Rva = 0. �

Lemma 2. Suppose that the symmetric real form I =
∑

α Iα and Iα ≥ 0. Then

Iv = 0 ⇐⇒ ∀αIαv = 0. (11)

Proof. We have I(v̄, v) = 0 thus
∑

α Iα(v̄, v) = 0. All terms are positive, thus
each of them needs to be zero, but due to positivity this implies that Iαv = 0.

�

2.1. Hessian in Euclidean EPRL

The manifold of integration is
∏4

i=1 Spin(4) and thus the vectors of the tangent
space can be described by

v : {1, . . . , 5} → R
3 ⊕ R

3, v(5) = 0. (12)

We will denote self-dual (antiself-dual) part by v±.
The tensor of second derivatives of the action (the Hessian) is given by

[5]2

H(v, v′) = H+(v+, v′+) + H−(v−, v′−). (13)
Let us consider the self-dual part (the antiself-dual is analogous). We can write
H+ as

H = R + i

⎛

⎝
∑

1≤a<b≤5

Iab

⎞

⎠ , (14)

2Published version.
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where Iab are given by

Iab(v+, v+) = I ′
ab(v

+(a) − v+(b), v+(a) − v+(b)) (15)

in terms of symmetric real forms I ′
ab : R3 × R

3 → R

I ′
ab(w,w) =

j+
ab

2
(|w|2 − (w · n+

ab)
2
)
. (16)

This form is j+
ab

2 times the expectation value of the projector onto the space

perpendicular to n+
ab, so it is nonnegative ( j+

ab

2 ≥ 0), thus also Iab ≥ 0.
The real form R is given by

R(v, v′) =
∑

a,b∈{1,...5}

j+
ab

2
nab · v+(a) × v′+(b), (17)

where we use the convention that nab = −nba.

Lemma 3. If det H = 0 then there exist a 
= b ∈ {1, . . . 4} such that na5, nab,
nb5 are linearly dependent.

Proof. If det H = 0 then there exists a nonzero vector v′ such that Hv′ =
0 thus Lemma 1 assures that there exists a nonzero real vector v that is
annihilated by �H. It needs to be annihilated by every Iab due to Lemma 2.
The conditions

I5av = 0, I5bv = 0 (18)
give

v(a) = λbna5, v(b) = λanb5, (19)
where λk ∈ R. The condition Iabv = 0 gives

v(a) − v(b) = λ5nab, (20)

thus
λbna5 − λanb5 − λ5nab = 0. (21)

Either v(a) = v(b) = 0 or nab, na5, nb5 are linearly dependent.
As this is true for all a, b we have either v = 0 (contradiction) or there

exist a, b fulfilling the statement of the lemma. �

Theorem 1. The Hessian for the Euclidean EPRL model with γ < 1 is non-
degenerate for any stationary point that corresponds to a nondegenerate 4-
simplex.

Proof. If nab, na5, nb5 are linearly dependent then the matrix G̃ab5 defined in
equation (301) from [8] is degenerate, and lemma 28 from [8] (in its version for
Euclidean signature) tells us that there exists at most one stationary point (a
single vector geometry or a degenerate 4-simplex). �

For the case of Euclidean EPRL just considered the integration is over
the compact manifold; thus, the nondegeneracy of the Hessian was the only
missing part of the asymptotic analysis. We will not consider Euclidean case
with γ > 1 because it can be treated in an analogous way to the Lorentzian
case. We will now describe the Lorentzian case in detail.
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3. Extension to the Lorentzian EPRL Amplitude

In the case of the Lorentzian EPRL amplitude, integration is over many more
variables and the Hessian is more complicated. The action is a sum3

S̃({gi}, {zij}) =
∑

1≤i<j≤5

S̃ij(gi, gj , zij , zji), (22)

where

S̃ij(gi, gj , zij , zji) = S
nij

ij (g−1
i zij) + Sβ

ij(zij , zji) + S
nji

ji (g−1
j zji). (23)

Actions as well as measure factors are at least locally analytic. If we denote by
[zij ] elements of CP (i.e., equivalence classes of spinors) then the stationary
points are discrete and we are interested in one of them

g0
i , [z0

ij ], (24)

where g0
5 = 1. We will denote bivectors (see Sect. 4.1 and “Appendix A” for

notation4)
B0

ij = δzij
Sβ

ij , (25)

and we will write B0′
ij = g−1

i B0
ij for a bivector in the node frame. We will call

it the fundamental stationary point.

3.1. Reduced Action

The variables {gi} appear in many places, but for fixed ij the variables zij

and zji ∈ CP are only found in the action S̃ij . Let us denote the form of
second derivatives with respect to the CP variables by Hzz. It is block diagonal,
with blocks corresponding to {zij , zji}. We will show later that this form is
nondegenerate (in the neighbourhood of the fundamental stationary point).

Let us (locally) analytically extend the action in the z variables to the
complexification CP

C,5

S̃({gi}, {zCij}). (26)

Let us notice that S̃ depends only on the CP variables [zCij ] (equivalence classes
of spinors). As the Hessian Hzz is nondegenerate at the fundamental stationary
point we can (in the neighbourhood of g0

i ) find a unique (in the neighbourhood
of [zij ]0) solution

[zCij ] : ∀ij
∂S̃

∂[zCij ]
= 0. (27)

Here ∂S̃
∂[zC

ij ]
is a holomorphic derivative as the antiholomorphic one gives ∂S̃

∂[zC
ij ]

=

0 everywhere. Let us notice that due to the form of the action the solution has
a specific dependence on {gi}
3We will use the notation from [8]. A summary of notation and conventions is also in
“Appendix A”.
4It differs slightly from [8] due to other normalization constants in the scalar product and
some sign factors.
5We regard SL(2,C) and CP as real manifolds. Complexification of a space M that is already

a complex manifold gives a space M × M .
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[zCij ](gi, gj). (28)

Let us introduce a reduced action

Sred({gi}) =
∑

i<j

Sred
ij (gi, gj), Sred

ij (gi, gj) = S̃ij(gi, gj , [zCij ](gi, gj), [zCji](gj , gi)).

(29)
The point g0

i is a stationary point of this action and the Hessian at this point
is Hred =

∑
Hred

ij . Let us notice that Sred
ij depends only on the group element

gij = g−1
j gi

Sred
ij (gi, gj) = S′

ij(gij). (30)

We have the projection map on the complexified tangent space

Π: TC

{g0
i ,[z0

ij ]}

⎛

⎝
∏

i

SL(2,C) ×
∏

i�=j

CP

⎞

⎠ → TC

{g0
i }

(
∏

i

SL(2,C)

)

. (31)

We can also introduce a cross section

Ξ: TC

{g0
i }

(
∏

i

SL(2,C)

)

→ TC

{g0
i ,[z0

ij ]}

⎛

⎝
∏

i

SL(2,C) ×
∏

i�=j

CP

⎞

⎠ , (32)

Ξ(V ) = V +
∑

ij

V zCij(gi, gj)
∂

∂[zCij ]
+ V zCij(gi, gj)

∂

∂[zCij ]
. (33)

We also use these maps restricted to fixed ij sectors (Πij and Ξij).

Lemma 4. The following holds:

Hred
ij (Πij(Wij), Vij) = Hij(Wij ,Ξij(Vij)). (34)

Also
Hred(Π(W ), V ) = H(W, Ξ(V )). (35)

Proof. Due to the condition (27) on zC we have for Wij ∈ (T SL(2,C))2 ×
(TCP)2

Wij

(�Sij(gi, gj , z
C

ij(gi, gj), zCji(gi, gj))
)

(36)

= (Πij(Wij)�Sij) (gi, gj , z
C

ij(gi, gj), zCji(gi, gj)). (37)

Let us notice that for Vij ∈ T SL(2,C)2

Vij

(
(Πij(Wij)�Sij)(gi, gj , z

C

ij(gi, gj), zCji(gi, gj))
)

(38)

= Vij (Wij�Sij) (gi, gj , z
C

ij(gi, gj), zCji(gi, gj)) (39)

= (Ξij(Vij)Wij�Sij) (gi, gj , z
C

ij(gi, gj), zCji(gi, gj)). (40)

Thus Hred
ij (Vij ,Πij(Wij)) = Hij(Ξij(Vij),Wij). Summing over ij we get also

the second equality. �

Lemma 5. The Hessian is degenerate if and only if the reduced Hessian is.
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Proof. Let suppose that HV = 0, then for any W

0 = H(Ξ(W ), V ) = Hred(W,Π(V )), (41)

thus HredΠ(V ) = 0. The other way around, if HredW = 0 then for any V

H(Ξ(W ), V ) = Hred(W,Π(V )) = 0, (42)

thus HΞ(W ) = 0. �
Definition 1. An extremal point of the action S is a point on the real manifold
where ∂�S = 0 and the tensor of second derivatives of �S is nonnegative
definite.

If the action S satisfies the reality condition (1) (�S ≥ 0) then points
on the real manifold where �S = 0 are extremal. The fundamental stationary
point {g0

i , [zij ]0} is extremal for the actions S̃ij . The following is a consequence:

Lemma 6. The Hermitian form

�Hred
ij (Vij , Vij) (43)

is nonnegative definite.

Proof. The maps Ξij and Πij are compatible with complex conjugation thus

�Hred
ij (Vij , Vij) = �Hred

ij (Vij ,ΠijΞij(Vij)) = (44)

= �Hij(Ξij(Vij),Ξij(Vij)) = �Hij(Ξij(Vij),Ξij(Vij)) ≥ 0, (45)

because the imaginary part of the Hessian Hij is nonnegative definite. �
Let us summarize:

Lemma 7. The point {g0
i } is an extremal point of Sred

ij .

4. Symplectic Geometry

We will adapt the theory of positive Lagrangians introduced in [21]. Let Ω be
the symplectic form on T ∗M . It is the inverse to the Poisson bracket

Ω(v, {D, ·}) = v(D), v ∈ T (T ∗M), D ∈ C∞(T ∗M). (46)

Let us consider an analytic function S : M → C (maybe defined only on an
open set U). The manifold

LS = {(x, p) : θ = dS(x)} ⊂ T ∗CM (47)

is Lagrangian, that is it extends analytically to an analytic Lagrangian sub-
manifold of T ∗MC in some neighbourhood of the real T ∗M . Here we denoted
by θ the tautological form θ = pμdxμ.

Over real points of M the complex conjugation of the tangent space of the
Lagrangian, TCLS is in itself the tangent space of the holomorphic Lagrangian

LS̄ = {(x, p) : θ = dS̄(x)} ⊂ T ∗CM. (48)

The tangent space of LS can be identified by projection π : T ∗M → M with
the tangent space of M . We will denote this map by ΠS : TCL → TCM .

Now we will state and prove some important facts about extremal points:
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Lemma 8. The following holds for an extremal point x0 of the action S

1. p0 = dS(x0) is real.
2. The Hermitian form on TC

(x0,p0)
L

I(v, v′) = − i

2
Ω(x0,p0)(v̄, v′), v, v′ ∈ TC

(x0,p0)
L (49)

is nonnegative definite and

I(v, v′) = ∂2�S(ΠS v̄,ΠSv′). (50)

3. Let w ∈ Tx0M
C and we denote v = Π−1

S w then

Iv = 0 (that is: (∂2�S)w = 0 ) (51)

is equivalent to
v ∈ TC

(x0,p0)
LS ∩ TC

(x0,p0)
LS . (52)

Proof. At an extremal point p = d�S because derivatives of imaginary parts
vanish. Let us use local coordinates pμ, xμ on T ∗M then

{

pμ − ∂S̄

∂xμ
, pν − ∂S

∂xν

}

= 2i
∂2�S

∂xμ∂xν
. (53)

Every vector tangent to L can be written as

V = fμ{pμ − ∂μS, ·}, (54)

where fμ are some complex constants. Thus at the point (x0, p0)

− i

2
Ω(V̄ , V ) = − i

2
fμfν{pμ − ∂μS̄, pν − ∂νS} = fμfν∂μ∂ν�S. (55)

From tensoriality of the second derivative at a point where ∂�S = 0, we get

− i

2
Ω(V̄ , V ) = ∂2�S(ΠSV ,ΠSV ), (56)

thus it is nonnegative definite. Let V ∈ TCLS be such that IV = 0 then

Ω(V,W ) = 0 (57)

for all W ∈ TCLS = TCLS thus V ∈ TCLS . �

We need some definition.

Definition 2. We will say that the Lagrangian L at the real point (x0, p0) is
positive if

I(x0,p0)(v, v′) = − i

2
Ω(v̄, v′) (58)

is nonnegative definite. We will say that it is strictly positive if additionally
I(x0,p0) is nondegenerate (has no zero vectors).

A Lagrangian is strictly positive if and only if

TC

(x0,p0)
L ∩ TC

(x0,p0)
L = {0}, (59)

that is, the only real vector in TC

(x0,p0)
L is the trivial vector.



Vol. 20 (2019) The Hessian in Spin Foam Models 3935

Let f be an analytic function on T ∗M (it extends locally to T ∗MC) that
vanishes on LS . The complex vector field

{f, ·} (60)

is tangent to LS . If at the real point the Lagrangian is positive, then

− i{f̄ , f} = −iΩ({f̄ , ·}, {f, ·}) ≥ 0. (61)

4.1. Symplectic Theory of T ∗ SL(2,C)

The left invariant vector field L(L) of the Lie algebra element L corresponds
to the first order jets of g → getL. The right invariant vector field R(L) of the
same Lie algebra element will be g → e−tLg (the sign is necessary for proper
commutation relations).

With every point of the cotangent bundle T ∗ SL(2,C), we can associate
a left and a right coalgebra element pL and pR given by the formula

∀L ∈ so(1, 3) pL(L) = θ(L(L)), pR(L) = θ(R(L)). (62)

Let us notice that at the base point g

pR = −g−1 · pL, (63)

where g acts on the coalgebra by the co-adjoint action (if we identify the
coalgebra with bivectors using the scalar product, then the coadjoint action
is the same as the adjoint action, see “Appendix A”). For any Lie algebra
element L,

pL(L), pR(L) (64)

are functions on T ∗ SL(2,C). We have

{pL(L), pL(L′)} = −pL([L,L′]), {pR(L), pR(L′)} = −pR([L,L′]), (65)

{pL(L), pR(L′)} = 0, (66)

and also

{f(g), pL(L)} = L(L)f, {f(g), pR(L)} = R(L)f. (67)

Let us denote by δLS (δRS) the covectors identified by with coalgebra as
follows

δLS(L) = L(L)S, δRS(L) = R(L)S. (68)

We will use δ for the left version. We can use the standard scalar product (·, ·)
on bivectors to make the further identification of δS with a bivector.6

For any function S on the group, we can now define a Lagrangian sub-
manifold

LS = {θ = dS} = {pL = δS} = {pR = δRS}. (69)

6This introduces additional factor of 2 in comparison with [8] (see section A).
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4.2. Symplectic Theory of a Coadjoint Orbit

Let us recall that we can identify the space of bivectors (Lie algebra so(1, 3) =
Λ2

R
4) with the coalgebra using the natural scalar product (·, ·) on bivectors.

Let us consider a coadjoint orbit

Xn,ρ =
{

B ∈ Λ2
R

4 : (B,B) =
1
4
(n2 − ρ2), (B, ∗B) = −1

2
ρn

}

, (70)

where C1 = (B,B) and C2 = (B, ∗B) are two Casimirs (invariants). The
Lorentz group acts transitively on Xn,ρ. We have a natural Poisson bracket
given, for a linear function H(L)(B) = (B,L), by

{H(L),H(L′)} = −H([L,L′]). (71)

This turns the coadjoint orbits into symplectic manifolds. Let us introduce an
isomorphism from so(1, 3) to sl(2,C) (traceless matrices) by (see “Appendix
A”)

B → M(B), M(v ∧ v′) =
1
4

(
η−(v)η+(v′) − η−(v′)η+(v)

)
. (72)

We have identity

− 2 trM(B)2 = (B,B) − i(B, ∗B), (73)

thus for B ∈ Xn,ρ

1
2

trM(B)2 =
(

1
4
(ρ − in)

)2

. (74)

For the matrix M(B), there exist two spinors z±
B (unique up to a constant

each) such that

M(B)z±
B = ±1

4
(ρ − in)z±

B . (75)

We can thus define a projection

π : Xn,ρ → CP, π(B) = [z+
B ]. (76)

Definition 3. A function

S : U ⊂ C
2\{0} → C modulo 2π (77)

is of type (n, ρ) if
S(reiφz) = S(z) + ρ ln r + nφ. (78)

Usually we cannot define such actions globally. Let us introduce the no-
tation7 (where the action is on Weyl spinors S+, see “Appendix A”)

δzf(z) = δL
g f(g−1z)|g=1. (79)

Let us notice that δzS is a well-defined function on CP if S satisfies (78).
For a given z ∈ C

2\{0}, we can consider a group H[z] ⊂ SL(2,C) that
preserves [z] ∈ CP. The Lie algebra of this group is given by

Lie H[z] = {B : [z,M(B)z] = 0}, (80)

7Our notation differs from [8].
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where [u,v] = uT ωv (see “Appendix A”). The subgroup that preserves z is
H0

[z]

Lie H0
[z] = {B : M(B)z = 0} = {B : ∃λ ∈ C, M(B) = λzzT ω}. (81)

Let us notice that B ∈ Lie H0
[z]

⊥ is equivalent to

∀λ ∈ C : 0 = � trM(B)λzzT ω = �λ[z,M(B)z], (82)

thus to B ∈ Lie H[z]. Moreover, the scalar product is null on LieH0
[z].

The functions of type (0, 0) are special as they can be pushed forward to
CP. For such f we will denote [f ]CP such push forward, thus

f = [f ]CPπ. (83)

We have the action of SL(2,C) on S+ (and on CP, respectively) generated
by vector fields LS+(L) (LCP(L), respectively) for L ∈ so(1, 3). Vector fields
LS+(L) (respectively, LCP(L)) correspond to the jet of the curves

t → e−tLz, (t → [e−tLz], respectively). (84)

Let us consider a map

T ∗
[z]CP � p → φ[z](p) ∈ so(1, 3), ∀L(φ[z](p), L) = p(LCP(L)) at point [z].

(85)
Let us notice that for f ∈ C∞(CP) we have

δz(fπ)(z) = φ[z](df). (86)

Lemma 9. The map φ[z] is a bijection from T ∗
[z]CP to Lie H0

[z].

Proof. Let us notice that LCP(L)([z]) = 0 if and only if L ∈ Lie H[z] thus
φ[z] ∈ Lie H[z]

⊥ = Lie H0
[z]. As so(1, 3)CP span the whole tangent space at [z],

we have also injectivity. �

Lemma 10. For S of type (n, ρ), we have

δzS(z) ∈ Lie H[z] ∩ Xn,ρ (87)

and π(δzS(z)) = [z].

Proof. For any L ∈ Lie H0
[z], we have δzS(L) = 0 thus δzS ∈ Lie H0

[z]

⊥ =
Lie H[z]. Let us consider a traceless matrix (for some spinor u)

N =
1
2
(uzT + zuT )ω, (88)

then Nz = 1
2 [u, z]z. Let furthermore M(B) = N, then we have

(δzS,B) = −1
2
(�[u, z])ρ − 1

2
(�[u, z])n = −�1

2
(ρ − in)[u, z]. (89)

As M(δzS) ∈ Lie H[z], we can write

M(δzS) =
1
2
(vzT + zvT )ω (90)
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and
(δzS,B) = −2 trM(δzS)N = −[v, z][u, z], (91)

so [v, z] = 1
2 (ρ − in) and as

M(δzS)z =
1
2
(ρ − in)z, 2 trM(δzS)2 = [v, z]2 =

1
4
(ρ − in)2, (92)

thus δzS ∈ Xn,ρ and π(δS) = [z]. �

Lemma 11. For any real function S of type (n, ρ), the map

([z], p) → δzS + φ[z](p) (93)

is a symplectic diffeomorphism from T ∗
CP to Xn,ρ. This map is compatible

with the projection onto CP.

Proof. Let us choose f ∈ C∞(CP) such that df([z]) = p then

δzS + φ[z](p) = δz(S + fπ) ∈ Xn,ρ, (94)

as S + fπ is of type (n, ρ). Moreover,

M(δz(S + fπ))(z) =
1
4
(ρ − in)z + 0z, (95)

thus π(δz(S + fπ)) = [z], so it is compatible with the projection on CP.
If B ∈ Xn,ρ and π(B) = [z], then

B − δzS(z) ∈ Lie H⊥
[z] = Lie H0

[z]. (96)

However, φ[z] is a bijection onto Lie H0
[z].

In order to check that it is a symplectomorphism, we will show that
Poisson brackets between generators of so(1, 3) are right. For L ∈ so(1, 3) let
us consider the pull back of the Hamiltonian H(L) to T ∗

CP. It is

δzS(z)(L) + θ(LCP)(z) = LS+(S)(z) + θ(LCP(L))(z). (97)

Let us notice that LS+(S) descents to a function [LS+(S)]CP on CP. We have
thus for a given bivector a function on T ∗

CP

HCP(L) = [LS+(L)(S)]CP + θ(LCP(L)). (98)

Let us notice that

{[LS+(L)(S)]CP, [LS+(L′)(S)]CP} = 0, (99)
{θ(LCP(L)), θ(LCP(L′))} = −θ(LCP([L,L′])). (100)

Moreover,

{[LS+(L)(S)]CP, θ(LCP(L′))} = [LS+(L′)LS+(L)(S)]CP, (101)

thus
{[LS+(L)(S)]CP, θ(LCP(L′))} − {[LS+(L′)(S)]CP, θ(LCP(L))}

= [LS+([L′, L])(S)]CP.
(102)

Therefore, finally
{H(L),H(L′)} = −H([L,L′]). (103)
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Because the Hamiltonian vector fields of functions span in every point the
whole tangent space, Ω is the same as the canonical symplectic form on the
cotangent bundle. �

Let us now consider a complex action (locally defined) S of type (n, ρ).
Let us notice that �S is a function on CP. In particular, ∂2[�S]CP is a tensor
on CP.

Lemma 12. The space
L′

S = {δzS : [z] ∈ U} (104)
is a complex Lagrangian manifold in Xn,ρ and on the real point B ∈ Xn,ρ

IB(v, v′) = ∂2[�S([z])]CP(π(v), π(v′)), (105)

where v ∈ TL′
S and [z] = π(B).

Remark. We regard CP as a real manifold, thus π(v) ∈ TC
CP and the conjuga-

tion is with respect to this additional complex structure. It can be translated
into inner complex conjugation.

Proof. Let Saux be an auxiliary real action of type (n, ρ). The difference
f = S − Saux is a well-defined function on CP. Moreover, using the local
identification of X with CP, we have

L′
S = {θ = d[f ]CP}. (106)

Indeed this is equivalent to

B = δSaux + φ[z](p) = δSaux + φ[z](d[f ]CP) = δSaux + δf = δS. (107)

We know that

∂2[�S]CP(π(v), π(v′)) = ∂2[�(S − Saux)]CP(π(v), π(v′) = I(v, v′), (108)

thus the result. �

4.3. Casimir Reduction

Let us consider a symplectic reduction of T ∗ SL(2,C) with respect to Casimirs.
For SL(2,C) the moment map is nondegenerate except for bivectors equal to
zero.

Lemma 13. Two points (g, p) and (g′, p′) are connected by a flow of Casimirs
in SL(2,C) if and only if there exists λ, λ′ ∈ R such that

g = g′eλp+λ′∗p (109)

and pL = p′L (or equivalently pR = p′R).

Proof. Left covectors are preserved by Casimirs; thus, we only need to find the
vector field on the group. Let us denote the projection on the group manifolds
of the Poisson vector fields of the Casimirs by V1 and V2.

We identify bivectors with the left covectors on SL(2,C) by the scalar
product and then

V1 = 2L(pL), (110)
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and thus g is changed from the right (because left invariant vector field) by
pL.

The second Casimir is related to the first by Hodge star, thus

V2 = 2L(∗pL). (111)

Together (they commute) we have the flow

g′ = geλpL+λ′∗pL

. (112)

From preservation of left covectors, we have pL = p′L. �

The symplectic reduction with respect to the Casimirs is given by

([g], B) : B ∈ Xn,ρ, [g] = [g′] if ∃λ,λ′∈Rg = g′eλB+λ′∗B. (113)

Let us denote

Cn,ρ = {(g,B) : B ∈ Xn,ρ} ⊂ T ∗ SL(2,C). (114)

We have a map πCn,ρ
: Cn,ρ → S to the symplectic reduction.

If L′ ⊂ S is a real Lagrangian, then

π−1
Cn,ρ

(L′) (115)

is also a Lagrangian and it is a subset of Cn,ρ. The other way around, if a real
Lagrangian L ⊂ T ∗ SL(2,C) is such that L ⊂ Cn,ρ, then as Casimir generated
directions belong to L we have

L = π−1
Cn,ρ

(L′), (116)

where L′ is a Lagrangian in S.
The same holds for complex Lagrangians (in locally holomorphic exten-

sions).

4.3.1. Explicit Description. There is a direct description of this symplectic
reduction that is an analog of Peter–Weyl theorem in group representation
theory. Let us notice that the left and right invariant covectors Poisson com-
mute with the Casimirs. Moreover, the equation

pR = −g−1 · pL (117)

has a solution for g if pR and pL are of the same type (nonzero) and g is unique
up to [·] equivalence. Thus the map

([g], p) → (pL, pR) ∈ Xn,ρ × Xn,ρ (118)

is an isomorphism of symplectic spaces.8

8We used the fact that if B ∈ Xn,ρ, then also −B ∈ Xn,ρ.
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4.4. Symplectic Theory of S′
ij

Let us consider an action

S̃ij(gi, gj , zij , zji) = S
nij

ij (g−1
i zij) + Sβ

ij(zij , zji) + S
nji

ji (g−1
j zji). (119)

Let us now assume that for every ij the Lagrangian

L′
ij = L′

S
nij
ij

⊂ X2jij ,ρij
(120)

is strictly positive at the point corresponding to the fundamental stationary
point (that is [(g0

i )−1z0
ij ]). We will prove this fact in Sect. 5.3.

Because the action Sβ is real, the imaginary part of the Hessian with
respect to zij and zij is block diagonal with respect to every z variable. From
strict positivity of the Lagrangian, every block is strictly positive; thus, by
Lemma 1, the form Hzz is nondegenerate.

We can now consider

Sred
ij (gi, gj) = S′

ij(gij). (121)

It is well defined for gij in the neighbourhood of g0
ij .

Lemma 14. The Lagrangian manifold of the action S′
ij is given by

LS′
ij

= π−1
C2jij ,ρij

(L′
ij × L′

ji). (122)

Proof. Left and right invariant derivatives of S′
ij are equal to derivatives of S

nij

ij

and, respectively, S
nji

ji with spinors equal to the stationary point solutions zC

δLS′
ij = δL

gi
Sred

ij = δzS
nij

ij (g−1
i zCij), δRS′

ij = δL
gj

Sred
ij = δzS

nij

ji (g−1
j zCji),

(123)
because derivatives with respect to z vanish in the point [zC](gi, gj). We see
from the type of the actions that LS′

ij
⊂ CC

2jijρij
; thus, it is an inverse image

of a complex Lagrangian in X2jij ,ρij
× X2jij ,ρij

. We see also that

πC2jijρij
(LS′

ij
) ⊂ L′

ij × L′
ji, (124)

and by comparing dimension it needs to be equal. �
Let us denote

B0′
ij = δzS

nij

ij ((g0
i )−1z0

ij). (125)

Let us notice B0′
ij = (g0

i )−1B0
ij .

Lemma 15. If every Lagrangian L′
ij is strictly positive, then if for v ∈ so(1, 3)

(∂2�S′
ij)v = 0, (126)

then v ∈ {B0′
ij , ∗B0′

ij }.
Proof. From the previous lemma

LS′
ij

= π−1
C2jij ,ρij

(L′
ij × L′

ji). (127)

Let V = Π−1
S′

ij
(v) be the lift of v to TLS′

ij
, its image

πC2jij ,ρij
(V ) ∈ T (L′

ij × L′
ji) ∩ T (L′

ij × L′
ji) = {0}. (128)
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Thus V is in the space of the Casimirs’ Poisson vector fields. Thus its projection
onto the tangent space of the group

v ∈ {B0′
ij , ∗B0′

ij } (129)

as stated. �

5. Simplicity Constraints

Our goal in this section is to show that L′
ij is strictly positive at the extremal

point coming from the fundamental stationary point. In fact it is a simple
computation of a two-dimensional matrix. However, it is useful to describe
this Lagrangian (in the neighbourhood of this point). Let us notice that from
the reality condition of the action, we know that the Lagrangian is positive.

5.1. Conditions on the Action

Let us suppose that we have a function of the form

GN (z) = f(z)eiNS(z), (130)

defined and analytic for z ∈ U .
We have an action of the group on spinors z; thus, we can also consider

an operator

D̂ =
∑

|I|≤m

(−i)|I|dI1...I|I|
|I| LS+(LI1) . . .LS+(LI|I|), (131)

where LI are Lie algebra basis.
We associate with this operator a symbol (a homogenous polynomial on

the Lie coalgebra)

PD(p) =
∑

|I|=m

dI1...Im
m LI1(p) . . . LIm

(p), (132)

where p are Lie coalgebra elements. Let us remind that we identify both Lie
algebra and coalgebra with bivectors (thanks to the scalar product).

Let p(λ) be a polynomial of order m with m-homogeneous coefficient am

such that for every N (
D̂ − p(N)

)
GN (z) = 0. (133)

Then taking the leading term in the N expansion, we get for any z

PD (δzS) = am. (134)

5.2. Bivector Decomposition

For the given normal N0
i (see [8]) with the norm ci = |N0

i |2 ∈ {−1, 1}, we can
decompose the bivector B as follows

B = ∗(v ∧ N0
i ) + w ∧ N0

i , (135)

where v, w ∈ N0
i

⊥ and the two terms belong to

so(N0
i

⊥
) ⊕ ∗so(N0

i
⊥

). (136)
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We can now introduce maps

�Li : so(1, 3) → N0
i

⊥
, �Li(B) = v, (137)

�Ki : so(1, 3) → N0
i

⊥
, �Ki(B) = w. (138)

They are explicitly given by

�Li(B) = ciN
0
i �∗B, �Ki(B) = −ciN

0
i �B. (139)

We can identify so(N0
i

⊥) with the vector space N0
i

⊥ by the map �Li

[ ∗ (v ∧ N0
i ), ∗(v′ ∧ N0

i )] = ∗ (
(v × v′) ∧ N0

i

)
, (140)

where × is defined by

v × v′ = ∗(v ∧ N0
i )(v′) = − ∗ (

v ∧ v′ ∧ N0
i

)
. (141)

The Casimirs can be written in terms of these vectors as follows

C1 = (B,B) = −ci

(�L2
i − �K2

i

)
, C2 = (B, ∗B) = −2ci

�Li · �Ki. (142)

With the vector v ∈ N0
i

⊥ we can associate two complex vectors ki
s(v) (s = ±1)

given by the conditions:

1. ki
s(v) · N i

0 = ki
s(v) · v = ki

s(v) · ki
s(v) = 0.

2. The action of the vector on ks

v × ki
s(v) = isCki

s(v), (143)

where C =
√

(∗(v ∧ N0
i ), ∗(v ∧ N0

i )) =
√−civ · v.

In the case of spacelike faces, we choose C > 0. In this situation vectors ki
±1(v)

are complex and we assume

ki
−1(v) = ki

1(v). (144)

With the choice of signature (+−−−) the Hermitian form w ·w on {N0
i , v}⊥ is

negatively definite, thus ki
1(v)·ki

−1(v) < 0. We assume that ki
1(v)·ki

−1(v) = −1,
and this fixes vectors up to a phase.

Lemma 16. We have
ki
1(v) × ki

−1(v) = i
ci

C
v. (145)

Proof. Let us notice that ki
1(v) × ki

−1(v) = αv and

iCki
−1(v) · ki

1(v) = ki
−1(v) · (v × ki

1(v)) (146)

= −ki
−1(v) · (ki

1(v) × v) = (ki
1(v) × ki

−1(v)) · v = α(v · v). (147)

Thus

ki
1(v) × ki

−1(v) = i
C(ki

−1(v) · ki
1(v))

v · v
v, (148)

and substituting v · v = −ciC
2 we get the result. �
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Let us notice that if a complex vector w ∈ N0
i

⊥ satisfies w ·w = w ·v = 0,
then

w ∈ span{ki
1(v)} ∪ span{ki

−1(v)}. (149)

We can regard v · �Li and v · �Ki as linear maps on bivectors; thus, we can
compute Poisson brackets. In order to do it, we need to find the associated by
(the scalar product) bivectors

v · �Li(B) = (−ci ∗ (v ∧ N0
i ), B), v · �Ki(B) = (civ ∧ N0

i , B), (150)

thus we get

{v · �Li, v
′ · �Li} = ci(v × v′) · �Li, (151)

{v · �Li, v
′ · �Ki} = ci(v × v′) · �Ki, (152)

{v · �Ki, v
′ · �Ki} = −ci(v × v′) · �Li. (153)

5.3. Simplicity Constraints

The coherent states Φnij (zij) satisfy the following equations
1. Diagonal simplicity constraints, that for fixed spins means that the values

of the Casimir operators are related to twisted simplicity constraints9

Ĉ1 =
1
4
(n2 − ρ2 − 4), Ĉ2 = −1

2
nρ, (154)

where ρ = γn and n = 2jij .10

2. Cross simplicity constraints, that are implemented in the EPRL model
by

(
γ �̂Li + �̂Ki

)2

= 0, (155)
( �̂Li − γ �̂Ki

)
·
(
γ �̂Li + �̂Ki

)
= 0. (156)

3. The coherent state condition ksij
(vij) · �̂Li = 0, where sij is fixed and vij

is constructed from nij .
These conditions impose several conditions on S

nij

ij . We can describe them in
terms of L′

ij . Namely B ∈ L′
ij needs to satisfy

1. Diagonal simplicity constraints (B,B) = 1
4 (4j2ij − ρ2

ij) and (B, ∗B) =
− 1

22jijρij that are satisfied because B ∈ X2jij ,ρij
.

2. Cross simplicity constraints
(
γ �Li + �Ki

)2

= 0, (157)
(�Li − γ �Ki

)
·
(
γ �Li + �Ki

)
= 0. (158)

3. Coherent state condition ksij
(vij) · �Li = 0, where sij is fixed and vij is

constructed from nij .

9Quantisation of the action of the Lie algebra element L is L̂ = 1
i
LS+ (L).

10Our convention differs from [3] by a sign in C2 that can be seen from (142).
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In order to analyse the constraints let us introduce a twisting map

τ : so(1, 3) → so(1, 3), τ(B) = B + γ ∗ B. (159)

We can compute

(τ(B), τ(B)) = (1 − γ2)(B,B) + 2γ(B, ∗B), (160)

(τ(B), ∗τ(B)) = (1 − γ2)(B, ∗B) − 2γ(B,B). (161)

Similarly

�Li(τ(B)) = �Li(B) + γ �Ki(B), �Ki(τ(B)) = �Ki(B) − γ �Li(B). (162)

Let us denote Bτ = τ−1(B) and �Lτ
i (B) = �Li(Bτ ), �Kτ

i (B) = �Ki(Bτ ), then

�Li(B) = �Lτ
i (B) + γ �Kτ

i (B), �Ki(B) = �Kτ
i (B) − γ �Lτ

i (B). (163)

The first two conditions mean
1. Diagonal simplicity conditions:

(Bτ , Bτ ) = j2ij , (Bτ , ∗Bτ ) = 0. (164)

2. Cross simplicity: �Kτ
i ∈ span{ki

1(�Lτ
i )} ∪ span{ki

−1(�Lτ
i )}.

Thus we can write
Bτ = ∗(v ∧ N0

i ) + λ′ki
t(v) ∧ N0

i (165)

and the Casimir conditions means that

− ci|v|2 = j2ij . (166)

We are interested in the fundamental stationary point, and then (B0′
ij )τ =

∗vij ∧ N0
i . The space L′

ij around this point is a manifold; thus, there is a
choice tij such that

�Kτ
i ∈ span{ki

tij
(�Lτ

i )}. (167)

We also have

−i{ki
tij

(v)·( �Ki+γ �Li), ki
tij

(v)·( �Ki+γ �Li)} = −tij
v

C
·((γ2−1)�Li+2γ �Ki), (168)

and, from positivity of the Lagrangian, the right-hand side needs to be positive.
Let us notice that

v

C
· ((γ2 − 1)�Li + 2γ �Ki) = (1 + γ2)

v

C
· (γ �Kτ

i − �Lτ
i ). (169)

As at B = B0′
ij we have (C = jij)

vij · �Lτ
i = |vij |2 = −ciC

2, vij · �Kτ
i = 0, (170)

we see that tij = −ci.
Let us consider now coherent state condition ksij

(vij) · �Li = 0. It means
that

�Li = λ1vij + λ2ksij
(vij). (171)

However,
�L2

i = (λ1vij + λ2ksij
(vij))2 = λ2

1|vij |2. (172)
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but �Lτ
i · �Kτ

i = �Kτ
i · �Kτ

i = 0, thus
�L2

i = (�Lτ
i + γ �Kτ

i )2 = (�Lτ
i )2 = −ci[−ci((�Lτ

i )2 − ( �Kτ
i )2)] = −cij

2
ij , (173)

and λ1 = ±1. As the phase space point corresponding to the fundamental
stationary point is in the Lagrangian we have in the neighbourhood of this
stationary point λ1 = 1. We can now compute

− i{k−sij
(vij) · �Li, ksij

(vij) · �Li} = −sij
vij

C
· �Li = −sij

vij

C
· (�Lτ

i + γ �Kτ
i ),

(174)
at the fundamental stationary point it is equal to sijcijij , thus sij = ci.

We can now describe tangent space to the Lagrangian at B0′
ij . The con-

ditions for bivectors to be tangent directions to L′
ij are that

1. Tangency condition (B,B0′
ij ) = 0, (B, ∗B0′

ij ) = 0 (this is equivalent to
vij · �Li(B) = vij · �Ki(B) = 0 and also vij · �Lτ

i (B) = vij · �Kτ
i (B) = 0),

2. ktij
(vij) · ( �Ki(B) + γ �Li(B)) = 0 (that is ktij

(vij) · �Kτ
i (B) = 0),

3. ksij
(vij) · �Li(B) = 0.

It is not hard to find all vectors satisfying these conditions. Every tangent
bivector can be uniquely described by a pair

B → (�Li(B), �Kτ
i (B)). (175)

The conditions on B are

(�Li(B), �Kτ
i (B)) = (λsksij

(vij), λtktij
(vij)), λs, λt ∈ C. (176)

We can now summarize

Lemma 17. At the point B0′
ij the Lagrangian L′

ij is strictly positive.

Proof. We need to prove that the real tangent vector (bivector) is zero. Tangent
vectors satisfy

(�Li(B), �Kτ
i (B)) = (λsksij

(vij), λtktij
(vij)), λs, λt ∈ C, (177)

and from reality

(�Li(B), �Kτ
i (B)) = (�Li(B̄), �Kτ

i (B̄)) (178)

= (λsksij
(vij), λtktij

(vij)) = (λsk−sij
(vij), λtk−tij

(vij)). (179)

However, vectors ki
±1(vij) are linearly independent thus λs = λt = 0. �

6. Reduced Hessian

Let us denote the tensor of second derivatives of �Sij(g0
ij) by I ′

ij . We are
interested in the second derivatives �Sred

ij (gi, gj) at {g0
k} (we assume g0

5 = 1).
The tangent vectors to the manifold

∏4
i=1 SL(2,C) are given by

Vtot = {v : {1, . . . 5} → so(1, 3) : v(5) = 0}. (180)

For convenience we assumed v(5) = 0. We use here the right invariant vector
fields to identify Vtot with T

(∏4
i=1 SL(2,C)

)
.
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Lemma 18. We have

Iij(v, v′) := ∂2�Sred
ij ({g0

k})(v, v′) = I ′
ij(g

−1
i ·v(i)−g−1

i ·v(j), g−1
i ·v(i)−g−1

i ·v(j)),
(181)

where I ′
ij(L,L) = ∂2�S′

ij(L(L),L(L)).

Proof. Standard result about functions of the form f(g−1
j gi). We use the right

invariant vector fields, thus

gi = e−tLigi, gj = e−tLj gj . (182)

We have for left invariant vector fields

∂2f(L,L) =
d2

dt2
|t=0f(getL). (183)

We can now compute for v

v(i) = Li, v(j) = Lj , v(k) = 0 for k 
= i, j. (184)

Let us compute second derivative of F (gi, gj) = f(gij) where gij = g−1
j gi

∂2F (v, v) =
d2

dt2
|t=0f(g−1

j etLj e−tLigi) =
d2

dt2
|t=0f(g−1

j gie
X(t)). (185)

We used BCH formula and commuted (we use notation g · L = gLg−1)

eX(t) = etg−1
i Ljgie−tg−1

i Ligi , (186)

X(t) = tg−1
i · Lj − tg−1

i · Li − t2

2
[g−1

i · Lj , g
−1
i · Li] + O(t3). (187)

We use now ∂�S′
ij = 0 to get

∂2�Sred
ij (v, v) = ∂2�S′

ij(g
−1
i ·v(i)−g−1

i ·v(j), g−1
i ·v(i)−g−1

i ·v(j)), (188)

so we found the desired result. �

Lemma 19. Let us suppose that 0 
= v ∈ Vtot satisfies

∀1≤i<j≤5Iij(v, v) = 0, (189)

then there exist 1 ≤ a < b ≤ 4 such that the bivectors

B0
a5, ∗B0

a5, B0
b5, ∗B0

b5, B0
ab, ∗B0

ab, (190)

are linearly dependent.

Proof. As all Iij are positive definite and I ′
ij has the kernel spanned by

B0′
ij , ∗B0′

ij , (191)

we have
Iij(v, v) = 0 ⇔ v(i) − v(j) ∈ span{B0

ij , ∗B0
ij}. (192)

We see that from Ii5(v, v) = 0 it follows that v(i) ∈ span{B0
i5, ∗B0

i5} and thus
as v is nonzero there exist i, j 
= 5 such that

0 
= v(i) ∈ span{B0
i5, ∗B0

i5} (193)

and also

v(i) = (v(i) − v(j)) + v(j) ∈ span{B0
ij , ∗B0

ij , B
0
j5, ∗B0

j5}. (194)
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This means linear dependence. �

Lemma 20. If the reconstructed 4-simplex (in any signature) with spacelike
faces is nondegenerate then

BΔ
a5, ∗BΔ

a5, BΔ
b5, ∗BΔ

b5, BΔ
ab, ∗BΔ

ab, (195)

are linearly independent for {a, b, 5} distinct.

Here by BΔ
ij we denote geometric bivectors of the reconstructed 4-simplex

(see [8]).

Proof. Let us assume a = 3, b = 4. The bivectors BΔ
ij for i, j ∈ {3, 4, 5} can be

written as
BΔ

ij = ηij ∧ e12, (196)

where ηij ⊥ e12 and e12 is the edge vector connecting vertex 1 with 2 (this edge
is spacelike). Moreover, ηij are independent if the 4-simplex is nondegenerate.

Let us notice that e12�∗BΔ
ij = 0 and e12�BΔ

ij = −ηij |e12|2.
Let us assume that there is a linear equation for the bivectors

∑

ij∈{3,4,5}
λijB

Δ
ij + λ′

ij ∗ BΔ
ij = 0. (197)

Contracting it with e12, we get
∑

ij∈{3,4,5}
λijηij = 0 ⇒ λij = 0. (198)

Taking the Hodge dual of the equation and then contracting with e12, we get
∑

ij∈{3,4,5}
λ′

ijηij = 0 ⇒ λ′
ij = 0. (199)

Thus the bivectors are linearly independent if the reconstructed 4-simplex is
nondegenerate. �

Theorem 2. The reduced Hessian for the Lorentzian EPRL model (and for
the Conrady–Hnybida extension for spacelike faces) is nondegenerate at the
stationary point that corresponds to a nondegenerate 4-simplex.

Proof. If Hv = 0, then we are in the situation from Lemma 19. From positivity
of the Iij it thus follows that

B0
a5, ∗B0

a5, B0
b5, ∗B0

b5, B0
ab, ∗B0

ab, (200)

are linearly dependent.
Let us consider now separately two cases:

1. If the stationary point corresponds to a Lorentzian 4-simplex, then

B0
ij = τ(BΔ

ij ) (201)

and τ preserves the space (200). By Lemma 20 we have a contradiction.
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2. If the stationary point (+) corresponds to a 4-simplex solution with other
signature, then there is the second point (−) and

B+
ij = τ(∗v+

ij ∧ N0), B−
ij = τ(∗v−

ij ∧ N0), (202)

and BΔ
ij has selfdual and antiself-dual parts given by τ−1(B±

ij). From
(200) it follows that there exist constants λij , λ

′
ij such that

∑

ij∈{a,b,5}, i<j

λijB
+
ij + λ′

ij ∗ B+
ij = 0, (203)

thus taking �Lτ
i and �Kτ

i parts we get
∑

ij∈{a,b,5}, i<j

λijv
+
ij = 0,

∑

ij∈{a,b,5}, i<j

λ′
ijv

+
ij = 0. (204)

As some coefficients need to be nontrivial, we get that v+
ij and thus also

B+
ij ((i, j) ∈ {a, b, 5}) are linearly dependent. But this means that

BΔ
a5, ∗BΔ

a5, BΔ
b5, ∗BΔ

b5, BΔ
ab, ∗BΔ

ab, (205)

are linearly dependent and from Lemma 20 we have a contradiction.

Independently of the signature of the reconstructed 4-simplex the Hessian is
nondegenerate. �

7. Summary

We showed that the Hessian in the EPRL and Conrady–Hnybida (spacelike
surfaces case) is nondegenerate for any stationary point (corresponding to a
nondegenerate 4-simplex of either Lorentzian, Euclidean or split singnature).
We also showed nondegeneracy for the Euclidean γ < 1 case. Our method
works fine also for γ > 1, but we have not provided the details in this case.
However, the method does not extend immediately to the situation when some
of the faces are timelike (the asymptotic of this case was considered recently
in [9]). The action in this case is purely real, and as we based our proof
on the properties of imaginary part of the action, this case cannot be cov-
ered with the tools used in our paper unless they will be properly modified.
The issue deserves a separate treatment and we leave this topic for future
research.
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A. Notation

In this section we collect our notation:
1. The signature of the metric is (+ − −−).
2. Bivectors so(1, 3) = Λ2

R
4 (we use identification by the scalar product).

The action on vectors can be expressed as
(v ∧ v′)(w) = v(v′ · w) − v′(v · w). (206)

We define also a scalar product (·, ·) on bivectors

(v ∧ w, v′ ∧ w′) = det
(

v · v′ v · w′

w · v′ w · w′

)

. (207)

Hodge star operation is denoted by ∗.
3. The adjoint action on the Lie algebra is defined by

g · L = gLg−1. (208)

Coadjoint action on P is defined by g · P (L) = P (g−1 · L).
4. The Hessian is a symmetric two form (tensor) on the tangent vectors for

a function f at the point where the first derivative vanishes. We denote
this form by ∂2f .

5. The stationary point {g0
i , [z0

ij ]}, g0
5 = 1 of the total action is referred

to as the fundamental stationary point. The bivectors at this stationary
point are denoted B0

ij (in the simplex frame) and B0′
ij = (g0

i )−1B0
ij (see

the beginning of Sect. 3). The geometric bivectors BΔ
ij are described in

[8] and appear in Sect. 6.
6. Weyl spinor spaces S± = C

2: We denote spinors from S+ by z, v, u, etc.
Clifford elements for any vector v are η±(v) : S± → S∓ fulfilling

η∓(v)η±(v′) + η∓(v′)η±(v) = (v · v′)IS± . (209)

The Lie algebra isomorphism so(1, 3) to sl(2,C) (traceless matrices) is

B → M(B), M(v ∧ v′) =
1
4

(
η−(v)η+(v′) − η−(v′)η+(v)

)
. (210)

For two spinors u,v we denote

[u,v] = uT ωv, ω =
(

0 1
−1 0

)

. (211)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Every traceless matrix can be written as N = 1
2 (u+u

T
− + u−uT

+)ω and

N(u±) = ±1
2
[u−,u+]u± (212)

(see Sect. 4.2 and [8]).
7. pL and pR are left and right covectors (see Sect. 4.1) and

δLS(L) = L(L)S, δRS(L) = R(L)S, (213)

where L and R are left and right derivatives. We also denote δ = δL.
8. We denote

δzf(z) = δLf(g−1z)|g=1 (214)
(see Sect. 4.1).

9. [·] is a relation on spinors

[z] = [w] ⇔ ∃0 
= λ ∈ C : z = λw, (215)

thus [z] is a point of CP, [zCij ] is a point on complexified CP
C.

10. The vector fields of the action of SL(2,C) on CP are denoted by LCP(L)
for L ∈ so(1, 3). They correspond to the curves

t → [e−tLz]. (216)

Similarly, the vector field of the action of SL(2,C) on S+ are denoted by
LS+(L) for L ∈ so(1, 3). They correspond to the curves

t → e−tLz. (217)

11. The definition of �Li
�Ki is in Sect. 5.2. For the twisting map τ , and twisted

versions �Lτ , �Kτ
i see Sect. 5.3.

12. The vectors ki
±1(v) are defined in 5.2.

13. Xn,ρ is a coadjoint orbit space defined in Eq. (70).
14. The projection from Xn,ρ (coadjoint orbit) to CP is denoted by π. The

function f that is constant along the fibres can be pushed forward to CP

and such push forward is denoted by [f ]CP (see Sect. 4.2).
15. Sred, Sred

ij are defined in Sect. 3.1. Their Hessians are denoted by Hred

and Hred
ij .

16. S′
ij and gij = g−1

j gi is defined in Sect. 3.1.
17. L denotes Lagrangians. The subscript denotes the (part of the) action

generating the given Lagrangian. We use ′ to indicate Lagrangians in the
coadjoint orbit space.

18. The form I on the tangent space of the Lagrangian at the real point is
defined in Eq. (49).
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