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Abstract. The Strong Cosmic Censorship conjecture states that for generic
initial data to Einstein’s field equations, the maximal globally hyperbo-
lic development is inextendible. We prove this conjecture in the class
of orthogonal Bianchi class B perfect fluids and vacuum spacetimes, by
showing that unboundedness of certain curvature invariants such as the
Kretschmann scalar is a generic property. The only spacetimes where
this scalar remains bounded exhibit local rotational symmetry or are of
plane wave equilibrium type. We further investigate the qualitative be-
haviour of solutions towards the initial singularity. To this end, we work
in the expansion-normalised variables introduced by Hewitt–Wainwright
and show that a set of full measure, which is also a countable intersec-
tion of open and dense sets in the state space, yields convergence to a
specific subarc of the Kasner parabola. We further give an explicit con-
struction enabling the translation between these variables and geometric
initial data to Einstein’s equations.

1. Introduction

In her ground-breaking work [4], Choquet-Bruhat showed that Einstein’s field
equations can be formulated as an initial value problem, where the initial
data are given on a spacelike Cauchy hypersurface. To given initial data, there
is a maximal globally hyperbolic development which is unique up to isome-
try, as was shown by Choquet-Bruhat and Geroch in [1]. As understood in
physics, this implies that this spacetime is uniquely determined by the ini-
tial data. The question arises whether one can find a larger development than
this when dropping the requirement of global hyperbolicity, and whether this
larger development is still unique in a meaningful sense. If two inequivalent
developments existed, this would imply that determinism breaks, as the data
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on the initial Cauchy hypersurface do no longer suffice for determining which
of the two developments the universe chooses. The Strong Cosmic Censor-
ship conjecture states that this does not happen, at least not generically, as
it conjectures that there is no development larger than the maximal globally
hyperbolic development.

Conjecture 1.1 (Strong Cosmic Censorship). For generic initial data to Ein-
stein’s equations, the maximal globally hyperbolic development (MGHD) is in-
extendible.

As the currently preferred spacetime models exhibit singularities at early
times, this conjecture is of additional interest: It claims that the occurrence
of such a singularity is not a consequence of a particularly bad choice of ini-
tial data hypersurface, i. e. of our point of view, but inherent to the four-
dimensional spacetime.

In the form given in Conjecture 1.1, the statement will not hold, one
has to add some form of boundary conditions such as spatial compactness or
asymptotic flatness, or homogeneity. To this date, a full answer in the general
case has not been given, and it is therefore of interest to consider subsets of
initial data with additional properties. The natural starting point for this dis-
cussion are the maximally symmetric de Sitter, Anti-de Sitter and Minkowski
spacetimes, which in a first step generalise to the spatially homogeneous and
isotropic Friedman–Lemâıtre–Robertson–Walker spacetimes. These can be fur-
ther generalised to the spatially homogeneous Bianchi spacetimes which admit
a three-dimensional symmetry group. Some of the Bianchi spacetimes in turn
appear as special cases of G2 cosmologies, where the symmetry group is only
of dimension two. In this paper, we discuss the case of Bianchi spacetimes.
The expectation is that the results obtained here will in part translate to the
more general G2 cosmologies and pave the way for the fully general setting.

The terms generic and inextendible in the conjecture have to be made
precise in order to obtain a meaningful statement. What we mean by gener-
icity will become clear below. There are first results on inextendibility in the
C0-sense (for Schwarzschild, [19], and for certain spherically symmetric space-
times, [2] and [6]), but here we consider inextendibility in the C2-sense, as we
can then replace Conjecture 1.1 with the following, stronger conjecture (see
[17, Conj. 17.2]).

Conjecture 1.2 (Curvature blow-up). For generic initial data to Einstein’s
equations, the Kretschmann scalar RαβγδR

αβγδ is unbounded in the incomplete
directions of causal geodesics in the maximal globally hyperbolic development
(MGHD).

Remark 1.3. Whenever the spacetime is not vacuum, i. e. the Ricci tensor
does not vanish, it may be enough to determine whether the contraction of
the Ricci curvature RαβRαβ is unbounded in the incomplete directions of
causal geodesics in the MGHD. Just like the Kretschmann scalar, this is a
four-dimensional quantity invariant under isometries, and its unboundedness
contradicts the existence of a C2 extension.
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1.1. Bianchi Perfect Fluid Spacetimes

We restrict our discussion to spacetimes (M, g) satisfying Einstein’s field equa-
tions

Rαβ − 1
2
Sgαβ = Tαβ , (1)

with Rαβ and S the Ricci and scalar curvature of the spacetime and Tαβ the
stress–energy tensor of a perfect fluid

Tαβ = μuαuβ + p(gαβ + uαuβ), (2)

where u is a unit timelike vector field. We assume that the pressure p and the
energy density μ satisfy a linear equation of state

p = (γ − 1)μ (3)

for some constant γ. The case of vacuum is included as μ = 0. We note at
this point that Greek indices α, β, . . . range from 0 to 3, while lower-case Latin
ones i, j, . . . range from 1 to 3.

We consider Bianchi perfect fluids, which are perfect fluid spacetimes
such that additionally there is a three-dimensional Lie group G acting on the
spacetime (M, g)

G × M → M.

The metric g is invariant under this action, and the unit timelike vector
field u appearing in the stress–energy tensor (2) of the perfect fluid is or-
thogonal to the orbits of this action. This defines non-tilted perfect fluids. The
name Bianchi spacetimes stems from the classification of three-dimensional Lie
groups by Bianchi from 1903, see [11] for a historical overview: Unimodular
Lie groups are called class A, non-unimodular ones class B, and depending on
the form of the structure constants of the corresponding Lie algebras, they can
be further separated into the following types:

• Bianchi class A: types I, II, VI0, VII0, VIII, IX;
• Bianchi class B: types IV, V, VIη, VIIη, where η ∈ R is a parameter.

In this paper, we focus on Bianchi class B models, but types I and II appear as
boundary cases. The models of class A have been the subject of more detailed
study in the past, and a number of results have been achieved, including an
affirmative answer to the Strong Cosmic Censorship conjecture. We refer to
[17] for a detailed exposition, in particular Proposition 22.23 therein, and are
going to relate our own findings to a number of other results further down.

In terms of initial data, we arrive at the following setting: The initial
data manifold is a three-dimensional Lie group G with a metric and second
fundamental form which are left-invariant, meaning that they are invariant
under the action of G on itself via multiplication from the left. Further, a
given constant represents the initial matter configuration.

Definition 1.4. Bianchi perfect fluid initial data consist of a Lie group G, a
left-invariant Riemannian metric h on G, a left-invariant symmetric covariant
two-tensor k on G, and a constant μ0 ≥ 0, satisfying the constraint equations
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R − kijk
ij + (trh k)2 = 2μ0,

∇i trh k − ∇j
kij = 0.

In these equations, ∇ is the Levi-Civita connection of h, and R the correspond-
ing scalar curvature. Indices are lowered and raised by h.

Here and in the following, we use the Einstein summation convention and
sum over indices which occur twice, both as a sub- and as a superindex.

The symmetry of the metric and second fundamental form is preserved
under Einstein’s equations, and the resulting maximal globally hyperbolic de-
velopment is isometric to the spatially homogeneous four-dimensional space-
time

(I × G , g = −dt2 + tg), (4)

with I an open interval and {tg}t∈I a family of left-invariant Riemannian
metrics on G ∼= {t} × G. We give an explicit construction of the maximal
globally hyperbolic development in Sect. 11.

1.2. Results for Orthogonal Perfect Fluid Initial Data

Let us now state the precise setting we discuss in this paper and give the main
results we obtain regarding the Strong Cosmic Censorship conjecture.

We focus our attention on Bianchi perfect fluid initial data with a Lie
group of Bianchi class B. Types I and II appear as boundary cases. In par-
ticular, we exclude Lie groups of types VIII and IX. The Lie algebra g asso-
ciated with the initial data Lie group G then admits an Abelian subalgebra,
see Lemma 11.1. In case of a Lie group of Bianchi class B, this subalgebra
can be characterised geometrically as the kernel of a certain one-form, see
Lemma 11.2. Using this geometric construction, the subalgebra is unique and
denoted by g2.

We introduce an orthonormal basis e1, e2, e3 of g such that e2, e3 span
the Abelian subalgebra g2 and e1 is orthogonal to it with respect to the initial
metric. By the previous argument, this can be done uniquely up to rotation in
the e2e3-plane and a choice of sign in e1, provided the Lie group is of class B.

For Bianchi perfect fluid initial data with a Lie group of class B, one
realises that the momentum constraint gives an algebraic relation for the com-
ponents of the initial symmetric two-tensor k with respect to this basis. For
all initial data apart from certain cases where the Lie group is of type VI−1/9,
this relation implies that the off-diagonal components k12 and k13 of this ten-
sor vanish, see Lemma 11.13. In the remaining special cases, the sets of initial
data admit an additional degree of freedom and their maximal globally hyper-
bolic development is a so-called ‘exceptional’ Bianchi cosmological spacetime,
denoted Bbii in [3]. This term should be understood as ‘having exceptional
behaviour’. We refer to Remark 11.14 for more details on this terminology.

In this paper, we exclude initial data with a Lie group of Bianchi type
VI−1/9 and thereby ensure that the resulting spacetime is a ‘non-exceptional’
or ‘orthogonal’ Bianchi spacetime.
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Definition 1.5. Orthogonal perfect fluid Bianchi class B initial data consist of
a Lie group G of class B other than type VI−1/9, a left-invariant Riemannian
metric h on G, a left-invariant symmetric covariant two-tensor k on G, and a
constant μ0 ≥ 0, satisfying the constraint equations

R − kijk
ij + (trh k)2 = 2μ0,

∇i trh k − ∇j
kij = 0.

Orthogonal perfect fluid Bianchi type I and II initial data are defined
similarly, allowing any type I or II Lie group G.

The reason for this restriction is the technique we apply in this paper.
We wish to transform initial data sets into a specific set of variables and prove
statements in this setting before translating them back. For Lie groups of
type VI−1/9 we encounter difficulties as this transformation, described in detail
in Sect. 11, can only be carried out for spacetimes which are ‘non-exceptional’.

Certain initial data sets with higher symmetry will be of importance in
the discussion of the Strong Cosmic Censorship conjecture. They are defined
using a suitably adapted basis of the Lie algebra g:

Definition 1.6 (Locally rotationally symmetric initial data). Consider initial
data (G,h, k, μ0) as in Definition 1.5, and denote by g the corresponding Lie
algebra with two-dimensional Abelian subalgebra g2. Let e1, e2, e3 be an or-
thonormal basis of g such that e2, e3 span g2. The initial data are said to be
locally rotationally symmetric (LRS) if the basis can be chosen such that

• e2 commutes with e1 and e3

[e2, e1] = 0 = [e2, e3] ,

• the commutator [e1, e3] is a multiple of e2,
• the two-tensor kij is diagonal, with k11 = k33.

Remark 1.7. The notion locally rotationally symmetric in the previous def-
inition stems from the fact that a rotation in the e1e3-plane is a Lie group
isomorphism and an isometry of the initial data.

Considering a three-dimensional Lie group G of class B with correspond-
ing Lie algebra g, we find that the following holds: In case [g, g] is two-
dimensional, there is no locally rotationally symmetric initial data on this
Lie group. If instead [g, g] is one-dimensional, then the vector spanning this
set defines a rotation axis contained in g2 and leaving the Lie algebra invariant.
Initial data on the given Lie group are locally rotationally symmetric if and
only if the two-tensor k is invariant under this rotation. For more details, we
refer to Sect. 11.8.

Definition 1.8 (Plane wave equilibrium initial data). Consider initial data
(G,h, k, μ0) as in Definition 1.5, and denote by g the corresponding Lie algebra
with two-dimensional Abelian subalgebra g2. Let e1, e2, e3 be an orthonormal
basis of g such that e2, e3 span g2, and denote by γk

ij the structure constants,
i. e.

[ei, ej ] = γk
ijek.
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The initial data are said to be of plane wave equilibrium type if the basis can
be chosen such that

γB
1A + γA

1B = −2kAB .

We note here that upper-case Latin indices A,B, . . . range from 2 to 3,
where we assume the frame elements e2, e3 to span g2.

Definition 1.9. A spacetime which is the maximal globally hyperbolic deve-
lopment of locally rotationally symmetric initial data is called a locally ro-
tationally symmetric spacetime. A spacetime which is the maximal globally
hyperbolic development of initial data of plane wave equilibrium type is called
a plane wave equilibrium spacetime.

We show in Sect. 11 how to construct the maximal globally hyperbolic
development (4) to given initial data as in Definition 1.5.

To answer the Strong Cosmic Censorship conjecture, we determine
whether geometric quantities invariant under isometries of this spacetime re-
main bounded in the incomplete directions of causal geodesics. For vacuum
models we find that a bounded Kretschmann scalar RαβγδR

αβγδ corresponds
to a spacetime with local rotational symmetry or of plane wave equilibrium
type. Whenever matter is present and γ �= 0, we do not have to compute the
full Kretschmann scalar, but it is enough to determine whether the contraction
of the Ricci curvature RαβRαβ is unbounded. We show that this is the case
for all causal geodesics; there are no exceptions. The arguments for the matter
case work similarly as in the Bianchi A case, which was discussed in [15]. The
full statement about curvature blow-up in the incomplete directions of causal
geodesics is collected in the following two theorems.

Theorem 1.10. Consider orthogonal perfect fluid Bianchi class B initial data
(G,h, k, μ0) for matter μ0 > 0. Let (M, g, μ) be the maximal globally hyperbo-
lic development of the data, solving Einstein’s equations for a perfect fluid (2)
with linear equation of state (3), where γ > 0. Then the contraction of the
Ricci tensor with itself RαβRαβ is unbounded in the incomplete directions of
causal geodesics.

Theorem 1.11. Consider orthogonal perfect fluid Bianchi class B initial data
(G,h, k, μ0) for vacuum μ0 = 0, which is neither locally rotationally symmetric
of Bianchi type VI−1 nor of plane wave equilibrium type. Let (M, g) be the ma-
ximal globally hyperbolic development of the data, solving Einstein’s equations
for vacuum Tαβ = 0. Then the Kretschmann scalar RαβγδR

αβγδ is unbounded
in the incomplete directions of causal geodesics.

Remark 1.12. We recall that orthogonal perfect fluid Bianchi class B initial
data exclude Lie groups of Bianchi type VI−1/9, see Definition 1.5. In case of
such initial data, more precisely for such initial data which are ‘exceptional’,
see Remark 11.14, our statements do not apply. In fact, their behaviour is ex-
pected to differ significantly: Close to the initial singularity, the corresponding
spacetimes are expected to show chaotic oscillatory behaviour, much the same
as Bianchi type VIII and IX spacetimes in class A.
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Due to the additional complications one meets in these models, they have
not been studied extensively to this date. An approach similar to the one we
choose here is made in [7]. In future works, one can hope that their results and
conjectures can be used to find an answer to Strong Cosmic Censorship which
also applies to the remaining Bianchi type we do not treat here.

Remark 1.13. Initial data such that both the Kretschmann scalar RαβγδR
αβγδ

and the contraction of the Ricci tensor with itself RαβRαβ remain bounded in
the incomplete directions of causal geodesics in the maximal globally hyperbo-
lic development are locally rotationally symmetric or of plane wave equilibrium
type. In particular, such initial data have additional symmetry and can there-
fore be considered non-generic. As a consequence, Strong Cosmic Censorship
holds in the class of orthogonal perfect fluid Bianchi class B initial data.

It is interesting to note here that we only in the vacuum case have to
exclude certain non-generic initial data sets. In the matter case, each initial
data set has a corresponding development which is inextendible. The presence
of matter appears to simplify things, at least in terms of the Strong Cosmic
Censorship conjecture.

Remark 1.14. In case μ > 0 and γ = 0, the stress–energy tensor (2) with linear
equation of state (3) takes the form

p = −μ

and can be interpreted as the stress–energy tensor of vacuum with a positive
cosmological constant. In this case, we find a statement similar to the previous
one: We can show that the maximal globally hyperbolic development (M, g)
is of form (4), with I = (t−, t+) an interval, and every timeslice {t} × G
has positive mean curvature with respect to the normal vector ∂t. Then the
Kretschmann scalar RαβγδR

αβγδ or the contraction of the Ricci tensor with
itself RαβRαβ is unbounded in the incomplete directions of causal geodesics,
with the following possible exceptions:

• local rotationally symmetric initial data of Bianchi type VI−1

• initial data of Bianchi class B, and in scale-free variables the metric and
second fundamental form of every slice {t} × G converge to initial data
of plane wave equilibrium type, as t → t−.

Note that we did not make precise in what sense the initial data converge, and
that for initial data on a Lie group of type other than Bianchi VI−1, we have
not clearly stated any property which can be interpreted as non-generic apart
from this convergence. Further, we have used the existence of a specific foliation
in order to formulate the statements. Precise results are given and proven in
scale-free variables using a notion of convergence which we introduce in the
following. The results, both for the two previous theorems and the special
case of positive cosmological constant in vacuum, then follow directly from
translating back into the current formulation.
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1.3. Expansion-Normalised Variables and Previous Results

Most of the work in this paper is carried out in a setting different from the one
above. Instead of starting with initial data (G,h, k, μ0) to Einstein’s equations
and proving properties of the resulting maximal globally hyperbolic develop-
ment, we adopt a different viewpoint. The information given by initial data
(G,h, k, μ0) can be translated into the form of expansion-normalised and di-
mensionless variables

(Σ+ , Σ̃ , Δ , Ã , N+),

which have been introduced in [10]. Einstein’s field equations translate into an
ordinary differential equation in these variables, defined on a compact subset
of R5 and with a changed time coordinate. It is in these variables that we work
and obtain the results on curvature blow-up. Every initial data set corresponds
to a point in the compact subset of R

5, and once one has determined the
solution curve in expansion-normalised variables, the maximal globally hy-
perbolic development (4) which solves Einstein’s field equations with correct
initial data can be determined. The detailed construction is carried out in
Sect. 11. Via this construction, our results in expansion-normalised variables
can be carried over to the setting of geometric initial data.

The evolution of these expansion-normalised variables is defined in the
following way: To start with, one fixes two parameters, κ ∈ R and γ ∈ [0, 2].
The evolution equations for the variables (Σ+, Σ̃,Δ, Ã, N+) are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Σ′
+ = (q − 2)Σ+ − 2Ñ ,

Σ̃′ = 2(q − 2)Σ̃ − 4Σ+Ã − 4ΔN+,

Δ′ = 2(q + Σ+ − 1)Δ + 2(Σ̃ − Ñ)N+,

Ã′ = 2(q + 2Σ+)Ã,

N ′
+ = (q + 2Σ+)N+ + 6Δ,

(5)

where ′ denotes differentiation d/dτ with respect to the dimensionless time τ .
The deceleration parameter q appearing in the equations satisfies

q =
3
2
(2 − γ)(Σ2

+ + Σ̃) +
1
2
(3γ − 2)(1 − Ã − Ñ), (6)

and one has set

Ñ =
1
3
(N2

+ − κÃ). (7)

The evolution is constrained to the set of points in R
5 satisfying

Σ̃Ñ − Δ2 − Σ2
+Ã = 0, (8)

and
Σ̃ ≥ 0, Ã ≥ 0, Ñ ≥ 0, Σ2

+ + Σ̃ + Ã + Ñ ≤ 1. (9)

One further introduces the density parameter

Ω = 1 − Σ2
+ − Σ̃ − Ã − Ñ , (10)
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which satisfies Ω ≥ 0 and, as a consequence of the differential equations (5),
evolves according to

Ω′ = (2q − (3γ − 2))Ω. (11)
Note that relations (8) and (9) are preserved by the evolution equations (5),
see Remark 3.2.

We now give a rough explanation as to how the expansion-normalised
variables are related to the maximal globally hyperbolic development to given
initial data (G,h, k, μ0) as in Definition 1.5. For this, assume that we are given
a spacetime as in (4), together with a function μ, which solves Einstein’s field
equations (1) for a perfect fluid (2) with linear equation of state (3). Assume
that ∂t, the vector field in the I direction which is unit timelike and orthogo-
nal to every {t} × G, coincides with the vector field u from the stress–energy
tensor. Assume further that the induced metric and second fundamental form
on {0} × G coincide with h and k from the initial data, i. e. (I × G, g, μ) is
a development of the data. One obtains consistency between the evolution in
expansion-normalised variables and the initial data approach if one chooses
the parameter γ from the expansion-normalised variables to coincide with the
same-named constant from the linear equation of state (3). Further, if the Lie
group G has a group parameter η, then the parameter κ from the expansion-
normalised variables is set to satisfy κ = 1/η. If the Lie group has no group
parameter, then κ = 0.

For every dimensionless time τ , the point (Σ+, Σ̃,Δ, Ã, N+)(τ) in
expansion-normalised variables describes the geometric and dynamical prop-
erties of the timeslice {t(τ)} × G. The variables Δ, Ã, N+ carry information
on the three-dimensional metric of this timeslice, while Σ+, Σ̃ describe the
shear of the vector field ∂t. A perfect fluid spacetime is described by a curve
in R

5 solving the constrained evolution equations (5)–(9), and we sometimes
call such a solution an orbit. Transforming the momentum constraint from the
point of view of geometric initial data into the expansion-normalised variables
yields the constraint equation (8). Similarly, the Hamiltonian constraint jus-
tifies the definition of Ω in (10), which is the expansion-normalised version of
the energy density μ.

Statements about geometric initial data can be transformed into state-
ments about specific points in the variables (Σ+, Σ̃,Δ, Ã, N+). Conversely, we
show in Sect. 11 how one can, given the solution in expansion-normalised vari-
ables through this point, construct the corresponding maximal globally hyper-
bolic development. Hence, statements about spacetimes solving Einstein’s per-
fect fluid equation, on the one hand, and orbits solving the evolution equations
in expansion-normalised variables (5)–(11), on the other hand, carry equiva-
lent information. It is for this reason that we can carry out our analysis wholly
in the setting of expansion-normalised variables, and only at the end translate
the results back to the point of view of geometric initial data. The setting of
expansion-normalised variables is a rather approachable one, as we discuss a
polynomial ordinary differential equation on a compact subset of R5. For in-
stance, this allows the use of techniques from the theory of dynamical systems.
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0 1−1

1

Σ+

Σ̃

T1
1/2

T2K

Figure 1. The Kasner parabola K, projected to the Σ+Σ̃-
plane. The special points Taub 1 and 2 satisfy Σ+ = −1 and
Σ+ = 1/2

The system of differential equations (5)–(7) with constraints (8)–(9) was
first introduced and studied in [10]. In this reference, Hewitt and Wainwright
identify invariant subsets representing the different Bianchi types, and we re-
call these subsets in Tables 1 and 2, together with several other invariant
subsets representing models with additional symmetry in Table 3. Addition-
ally, [10] discuss several sets of equilibrium points of the evolution equations.
Of importance to our work are the Kasner parabola with the two Taub points
and the plane wave equilibrium points, as convergence to points in these sets
corresponds to the incomplete direction of causal geodesics in the maximal
globally hyperbolic development, which is what we need to investigate in light
of the Strong Cosmic Censorship conjecture.

Definition 1.15. The Kasner parabola is the subset K defined by

Σ2
+ + Σ̃ = 1, Δ = Ã = N+ = 0.

Definition 1.16. On the Kasner parabola K, the points Taub 1 and 2 are defined
by

• Taub 1: T1 :=
{

(Σ+, Σ̃,Δ, Ã, N+) = (−1, 0, 0, 0, 0)
}

,

• Taub 2: T2 :=
{

(Σ+, Σ̃,Δ, Ã, N+) = (1/2, 3/4, 0, 0, 0)
}

.

Definition 1.17. The plane wave equilibrium points are the elements of the
set Lκ defined by

Σ+ > −1, Σ̃ = −Σ+(1 + Σ+), Δ = 0, Ã = (1 + Σ+)2,

N2
+ = (1 + Σ+)(κ(1 + Σ+) − 3Σ+).

(12)

Both the Kasner parabola K and the plane wave equilibrium points Lk

satisfy Ω = 0, are contained in the set defined by the constraint equations (8)–
(9), and consist of equilibrium points, i. e. the right-hand side of the evolution
equations (5) is zero.

Information about the local stability can be drawn from the linearised
evolution equations in the extended five-dimensional space, by which one
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0 1−1

1

Σ+

Σ̃

Lk

K

Figure 2. The plane wave equilibrium points Lκ, projected
to the Σ+Σ̃-plane. For reference, the Kasner parabola K is
plotted as a dashed line

means the linear approximation of the evolution equations (5)–(7), without
restricting to the constraint equations (8)–(9). We give the explicit form of
this vector field for points on the Kasner parabola K in “Appendix A.1”. The
eigenvalues of this vector field are

0 2(1 + Σ+ ±
√

3(1 − Σ2
+)) 4(1 + Σ+) 3(2 − γ). (13)

We note at this point that there appear to be typos in the eigenvalues in both
[10, Sect. 4.4] and [25, Sect. 7.2.3]. We give the corrected eigenvalues and state
the corresponding eigenvectors in “Appendix A.1”. The signs of the individual
eigenvalues in these two references, however, are given correctly, and with this
information Hewitt–Wainwright are able to identify the points on the Kasner
parabola to the right of Taub 2 (with 1/2 < Σ+ ≤ 1) as local sources, and
the points to the left of Taub 2 (with −1 < Σ+ < 1/2) as saddles. For the
two Taub points, the linearisation of the evolution equations alone does not
determine the local stability, as two, or even three in case of the point Taub 1,
of the eigenvalues vanish in these two points.

Similarly, one considers the linearised evolution equations in the extended
five-dimensional state space for plane wave equilibrium points. The eigenvalues
of this vector field are

0 −4(1 + Σ+) −4Σ+ − (3γ − 2) −2(1 + Σ+) ± 4iN+,

with N+ as in Eq. (12). See “Appendix A.2” for more details. Again, the
number of positive, negative, and zero eigenvalues can be used to determine the
local stability, and [10] identify points with Σ+ > −(3γ −2)/4 as local sources,
and points with Σ+ < −(3γ − 2)/4 as saddles. In the point Σ+ = −(3γ − 2)/4
two eigenvalues vanish, and the local stability cannot be determined this way.

Using dynamical systems method, Hewitt–Wainwright show that the
Kasner parabola K is of central importance for the asymptotic behaviour of
solutions to the evolution equation as τ → −∞, as it contains the α-limit set
of (non-constant, generic) solutions. We state and prove a refined version of
[10, Propositions 5.1, 5.2] in Proposition 4.2.
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1.4. New Results: Convergence Behaviour in Expansion-Normalised Variables,
Curvature Blow-Up

In the present paper, we obtain more detailed results about the behaviour of
solutions to the evolution equations (5)–(11) as τ → − ∞. We refine a state-
ment on the α-limit sets of solutions by [10]: All α-limit points are contained
in the union of the Kasner parabola K, the plane wave equilibrium points Lκ,
and the point {Σ+ = Σ̃ = Δ = Ã = N+ = 0}, see Proposition 4.2.

We further prove that every solution has one unique α-limit point, i. e.
solutions to the evolution equations converge, to a limit point contained the
plane wave equilibrium points Lk or the Kasner parabola K, see Proposi-
tions 4.4 and 6.1. Only constant solutions converge to the point {Σ+ = Σ̃ =
Δ = Ã = N+ = 0}, see Proposition 4.2.

Different subsets of this set of limit points have very different qualitative
properties: While solutions converging to the plane wave equilibrium points Lκ,
to the point {Σ+ = Σ̃ = Δ = Ã = N+ = 0}, and to the subarc of the Kasner
parabola K with −1 ≤ Σ+ ≤ 1/2 are contained in a ‘small’ set, namely a count-
able union of C1 submanifolds of positive codimension (Propositions 4.2, 5.1,
Theorems 7.2, 8.5, 10.3), the remaining arc of the Kasner parabola contains
the limit points of all remaining solutions. Considering the set of all possible
limit points as a whole, this yields the following statement:

Theorem 1.18. Assume either vacuum or inflationary matter, i. e. either Ω = 0
or Ω > 0, γ ∈ [0, 2/3). Then the following holds for solutions to the evolution
equations (5)–(11):

• Consider the sets describing Bianchi type VIη or VIIη, i. e. the sets

B(V Iη) = {(8)−(9) hold, κ = 1/η < 0, Ã > 0},

B±(V IIη) = {(8)−(9) hold, κ = 1/η > 0, Ã > 0, N+ > 0 or N+ < 0}.

Then the subset of points such that the corresponding solution converges
to a point in K ∩ {Σ+ > 1/2}, as τ → − ∞, is of full measure and a
countable intersection of open and dense sets in B(VIη) or B±(VIIη),
respectively.

• Consider the set describing Bianchi type IV, i. e. the set

B±(IV ) = {(8)−(9) hold, κ = 0, Ã > 0, N+ > 0 or N+ < 0}.

Then the subset of points such that the corresponding solution converges
to a point in K∩{Σ+ > 1/2} or to the point K∩{Σ+ = 0}, as τ → − ∞,
is of full measure and a countable intersection of open and dense sets in
B±(IV).

• Consider the set describing Bianchi type V, i. e. the set

B(V ) = {(8)−(9) hold, κ = 0, Ã > 0, Σ+ = Δ = N+ = 0}.

Then every non-constant solution converges to the point K ∩ {Σ+ = 0},
as τ → − ∞.

For Kasner points situated to the right of Taub 2, we further find that
they govern the behaviour of all solutions starting close to them. In fact, we
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show in Proposition 9.1 that for every element of the subarc K ∩ {Σ+ > 1/2},
points contained in a sufficiently small neighbourhood also converge to this
subarc as τ → −∞, to a limit point close to the original one.

For the subarc of the Kasner parabola K to the left of the point Taub 2,
i. e. satisfying −1 < Σ+ < 1/2, we additionally find the following restriction,
compare Proposition 6.2.

Proposition 1.19. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) con-
verging to (s, 1 − s2, 0, 0, 0) as τ → −∞. If s ∈ [−1, 1/2], then

Ã(3 s2 +κ(1 − s2)) = 0

along the whole orbit.

As a consequence of this result, for a given parameter κ, a solution con-
verging to a point on the Kasner parabola K situated to the left of Taub 2
has to be either a Bianchi class A (Ã = 0) solution, or a Bianchi class B
(Ã > 0) solution, but can only converge to one of two specific points on K,
namely one with Σ+ = ±√κ/(κ − 3). For this to hold, the parameter κ has
to be non-positive. In particular, no Bianchi type VIIη solution can converge
to a Kasner point situated to the left of Taub 2, as in this Bianchi type one
has κ = 1/η > 0.

This statement is very different in spirit than the property of a subarc
being a local source or saddle and goes far beyond what can be obtained by
considering only the local stability. Instead, we discuss the asymptotic conver-
gence behaviour of the individual expansion-normalised variables one by one,
taking into account the full nonlinear properties of the evolution equations (5)–
(7) in combination with the exact form of the constraint equation (8).

Using the same methods, we also obtain a detailed statement about the
Taub points, which due to the multiple zero eigenvalues of the linearised evo-
lution equations in these points cannot be treated by local stability at all.
We prove that only the constant orbit converges to the point Taub 1, see
Propositions 5.1 and 5.2. Solutions converging to the point Taub 2 have to be
locally rotationally symmetric, see Definition 3.4 and Theorem 7.2, and these
locally rotationally symmetric solutions appear as possible exceptions to an
unbounded Kretschmann scalar below in Theorem 1.23.

For the plane wave equilibrium points with more than one vanishing
eigenvalue, we make use of techniques from the theory of dynamical systems
and show that solutions are contained in a countable union of submanifolds of
dimension at most two and of positive codimension, see Proposition 10.3 and
Remark 10.4.

In addition to the statements about asymptotic behaviour in the limit
τ → − ∞, we also obtain the following result on the late time behaviour.

Remark 1.20. In case of inflationary matter, i. e. Ω > 0, γ ∈ [0, 2/3), all
solutions converge to the point (0, 0, 0, 0, 0) as τ → +∞, see Proposition 4.3.
Transforming this statement back to the setting of geometric initial data and
its maximal globally hyperbolic development, this implies isotropisation at late
times.
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The main objective of the present paper is to prove the Strong Cosmic
Censorship conjecture in the setting of orthogonal Bianchi class B perfect
fluid and vacuum spacetimes. This is done by showing that boundedness of
the Kretschmann scalar RαβγδR

αβγδ or the contraction of the Ricci curvature
with itself RαβRαβ in the incomplete direction of causal geodesics is a non-
generic property. Making use of the transformation between geometric initial
data with corresponding maximal globally hyperbolic development (4), on the
one hand, and points in the state space of expansion-normalised variables with
corresponding solutions to the evolution equations (5)–(9), on the other hand,
we can express these two curvature expressions in terms of the expansion-
normalised variables. Both quantities then depend only on the initial mean
curvature and energy density, the parameters γ and κ, the time τ , and the point
in expansion-normalised variables, as we explain in the beginning of Sect. 12.
The incomplete direction of causal geodesics corresponds to the limit τ → − ∞,
see Proposition 11.24. The statements about curvature blow-up in expansion-
normalised variables are as follows.

Theorem 1.21. Consider a solution to Eqs. (5)–(11) with Ω > 0 and γ > 0.
Then the contraction of the Ricci tensor with itself RαβRαβ is unbounded as
τ → − ∞.

Remark 1.22. We remark at this point that the statement in the matter case is
obtained without knowledge on the detailed asymptotic behaviour of the indi-
vidual variables. In fact, only the evolution equation (11) for Ω is considered to
prove this statement, combined with details on how the expansion-normalised
variables are obtained from geometric initial data sets. In contrast, the vacuum
case treated in the next theorem is rather intricate and necessitates a detailed
discussion of all variables.

It is interesting to see that in the vacuum case, there are certain excep-
tions to unboundedness of the curvature, while there are none in matter. In a
way, one could therefore consider the matter case as the easy case, while it is
the vacuum case where interesting—and ultimately more difficult—behaviour
becomes visible. In Bianchi class A models, a similar observation has been
made, see [15] and [17].

Theorem 1.23. Consider a solution to Eqs. (5)–(11) with Ω = 0 which is
neither the constant solution in the point Taub 1, nor a locally rotationally
symmetric Bianchi type I, II or VI−1 solution, nor a plane wave equilibrium
solution. Then the Kretschmann scalar RαβγδR

αβγδ is unbounded as τ → − ∞.

Remark 1.24. In the previous theorem, locally rotationally symmetric solutions
are defined by being contained in the set

3Σ2
+ = Σ̃, Σ+N+ = Δ, (κ + 1)Ã = 0,

see Definition 3.4, and consult Tables 1, 2, and 3 for more details on the
separation into the different Bianchi types.

In vacuum Ω = 0, a bounded Kretschmann scalar is possible only for
solutions converging to one of the Taub points or to the plane wave equilibrium
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points Lk. Only in case of Taub 2 can such a solution be non-constant, and it
necessarily has to be locally rotationally symmetric.

Theorem 1.25. Consider a solution to Eqs. (5)–(11) with Ω > 0 and γ = 0
which is neither the constant solution in the point Σ+ = Σ̃ = Δ = Ã = N+ = 0,
nor a locally rotationally symmetric Bianchi type I, II or VI−1 solution, nor
a solution contained in the set

C :={solutions to equations (5)–(11) with Ω > 0, γ = 0,

and converging to an element of Lk as τ → −∞}.

Then the Kretschmann scalar RαβγδR
αβγδ is unbounded as τ → − ∞.

Further, there is a countable family of C1 submanifolds {Lm}m∈N of di-
mension at most two such that

C ⊂
⋃

m

Lm.

For certain Bianchi types, or equivalently certain values of the parameter κ,
the following additional restrictions hold:

• Bianchi type VIη, which implies κ = 1/η < 0: Every solution in C con-
verges to an element of the plane wave equilibrium points Lκ with Σ+ = s
satisfying

s ≤ κ

3 − κ
< 0.

• Bianchi type V , which implies κ = 0: Every solution in C is contained
in Σ+ = Σ̃ = Δ = N+ = 0, and Ã decreases monotonically from 1 to 0.

Remark 1.26. In the state space in expansion-normalised variables, which is the
subset of R5 given by the constraint equations (8)–(9), the different Bianchi
types are represented by different invariant subsets, see Table 1. In case of
Bianchi type VIη, VIIη, or IV, this is a subset of dimension four. Consequently,
the sets Lm defined in the previous theorem are of positive codimension. The
invariant subset describing Bianchi type V solutions is of dimension two, and
by the additional restriction stated in the theorem the set C is contained in a
set of dimension one, which thus is also of positive codimension.

Compared to the statements in terms of initial data to Einstein’s equa-
tions, Theorems 1.10 and 1.11, there is a larger number of exceptions to un-
boundedness of either geometric scalar in Theorems 1.21, 1.23, and 1.25. The
reason is that the expansion-normalised formulation allows for every initial
data to the evolution equations (5) which satisfies the constraint equations (8)
and (9). This in particular includes certain points in R

5 which correspond to
Bianchi class A initial data. In Theorems 1.10 and 1.11, these are excluded by
the assumption on the initial data set.

2. Structure of the Paper

As the scope of this article is rather large, touching a number of different areas
and techniques, we wish to give the reader a guide on how to read it, depending
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on the interests and prerequisites. We also shortly present the main ideas of
the proofs.

We have given, in Eqs. (5)–(11), the evolution equations which correspond
to Einstein’s equations for orthogonal perfect fluid Bianchi B initial data, and
stated our main theorems in the introduction. In Sects. 3–10, we discuss various
properties of this evolution problem. We explain their content in more detail
a bit further down.

In Sect. 11, we move our focus away from a detailed discussion of the
evolution equations and towards the relation of these equations to spacetimes
solving Einstein’s equations. It is here that we prove equivalence between the
evolution problem in expansion-normalised variables and the problem of find-
ing, to given geometric initial data, the maximal globally hyperbolic develop-
ment. We recall the classification of three-dimensional Lie groups and how it
relates to Lie groups as initial data sets. This leads, in and after Lemma 11.13,
to an explanation of why we excluded Bianchi VI−1/9 Lie groups in the defi-
nition of initial data. We recall the construction of expansion-normalised vari-
ables for orthogonal Bianchi class B cosmological models, proposed by [10],
and show how this can be used to construct a spacetime which is shown to
be the maximal globally hyperbolic development. To the author’s knowledge,
these constructions and proofs have not been given before.

In the final section, we give the proofs of the main theorems, which
are stated in the introduction. Those which are formulated in expansion-
normalised variables, Theorems 1.18, 1.21, 1.23, and 1.25 are treated first.
Apart from computations of a number of curvature quantities in expansion-
normalised variables which we carry out there, most of the work has been done
in the sections before, and the proofs of these theorems merely collect the nec-
essary results from Sects. 3–10. In order to then prove the remaining main
theorems, Theorems 1.10 and 1.11, we use the equivalence between the set-
ting of geometric initial data to Einstein’s equation and that of the evolution
equations in expansion-normalised variables. With this information at hand,
proving the remaining main theorem is equivalent to translating the results
from Theorems 1.21 and 1.23 back to the setting of geometric initial data.

Let us now give a more detailed description of the content of Sects. 3–
11, which is where the main part of the work is carried out. These sections
all discuss more and more detailed properties of the evolution in expansion-
normalised variables. In the end, we wish to make a statement about Strong
Cosmic Censorship in the C2-sense, and one way of doing so is to determine for
which initial data both the Kretschmann scalar RαβγδR

αβγδ and the contrac-
tion of the Ricci tensor with itself RαβRαβ remain bounded in the incomplete
direction of causal geodesics in the maximal globally hyperbolic development,
see Conjectures 1.1, 1.2 and Remark 1.3. For spacetimes corresponding to so-
lutions to Eqs. (5)–(11), this direction corresponds to τ → − ∞. Consequently,
we have to understand the asymptotic behaviour of solutions as τ → −∞ and
determine boundedness of the Kretschmann scalar and the contraction of the
Ricci tensor with itself along such solutions. If we can show that the set of
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solutions along which both quantities are bounded at negative times is suit-
ably small and can be considered non-generic, we have proven Strong Cosmic
Censorship for this class of initial data.

Section 3 starts with a general discussion of basic properties of Eqs. (5)–
(11), such as compactness of the state space, the smoothness of the constraint
surface, and its division into different invariant subsets corresponding to the
different Bianchi types. In Sect. 4, we examine the so-called α-limit set, which
is the set of points where solutions accumulate as τ → −∞. In the case of
vacuum and inflationary matter, the α-limit set is contained in the Kasner
parabola K and the plane wave equilibrium points Lκ, together with one addi-
tional point in the case of inflationary matter, see Proposition 4.2. This result
about accumulation points is subsequently strengthened to convergence, as
τ → − ∞, in Propositions 4.4 and 6.1, where the latter requires additional
assumptions. In particular, one needs to argue that the only solution with the
point Taub 1 as an α-limit point is the constant orbit, which is the main result
we achieve in Sect. 5. We additionally prove a statement about isotropisation
at late times: In case of inflationary matter, all solutions converge to the same
point as τ → +∞, see Proposition 4.3.

Before we continue with a summary of the results of Sects. 6–11, let us
briefly describe the main techniques. In the end, we wish to understand exactly
which solutions or sets of solutions converge to specific points, for example to
those points which are of interest for the Strong Cosmic Censorship conjecture.
To do so, we determine exponential decay or convergence properties of the
individual variables using the evolution equations with constraints (5)–(11),
for example the variable Ã: For a solution converging to a point (s, 1−s2, 0, 0, 0),
s ∈ [−1, 1], on the Kasner parabola K, as τ → − ∞, the evolution equation

Ã′ = 2(q + 2Σ+)Ã

immediately implies that either Ã ≡ 0 or Ã = O(e(4+4 s −ε)τ ). This is a conse-
quence of Lemma 4.5, and in this particular case stated as Lemma 6.5. Further
in our discussion, we can improve this exponential decay estimate to not only
include the slowest, but also the second-slowest exponential term, see also
Proposition 6.14.

Similar convergence properties are obtained for the remaining variables
upon convergence to the Kasner parabola. We find that the five variables split
into two groups, with identical decay rates in each group. The variables Σ+, Σ̃
and Ã, converge to their respective limit value exponentially to order 4+4 s−ε,
while Δ and N+ decay to zero exponentially to order 2+2 s±2

√
3(1 − s2)−ε,

where the sign depends on the sign of ΔN+ at sufficiently negative times. In
some cases, this sign is determined by where the limit point on the Kasner
parabola is located with respect to the Taub point 2. This splitting into two
different decay rates leads to a tension which we exploit on several occasion:
The constraint equation (8) written in the form

Σ̃N2
+ − 3Δ2 = (3Σ2

+ + κΣ̃)Ã
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separates the variables according to their decay rate. The fast decay of the
left-hand side can only be achieved if the other side vanishes altogether, which
is what we use in Lemma 6.8 to show the relation stated in Proposition 1.19
between the parameter κ and the limit value s in Bianchi B solutions. We
further use this splitting to obtain lower bounds on the decay rates or even ex-
clude certain subsets of the state space altogether upon convergence to specific
subarcs of the Kasner parabola, see the proofs of Lemmas 6.8, 6.11, and 6.12.
Once these decay and convergence rates are found, they are used to determine
the subsets containing all solutions converging to the point Taub 2, or the
subarcs of the Kasner parabola to the left and right of it, respectively.

The most important of the convergence statements achieved in Sect. 6 are
the following: For all variables, the lowest order exponential terms upon con-
vergence to a point on the Kasner parabola (s, 1− s2, 0, 0, 0) with s ∈ [−1, 1/2]
are obtained in Proposition 6.2. For specific cases, this statement is refined
in Proposition 6.14, where we determine the lowest order exponential term
more precisely and find the second-lowest, again for all variables. Convergence
to a point on the Kasner parabola which is situated to the left of the point
Taub 2 requires that ΔN+ ≥ 0, and we have to treat the case of convergence
to the other subarc of the Kasner parabola while ΔN+ < 0 separately. In
Lemma 6.12, we determine the lowest order exponential terms for all variables
for this situation. This section is the foundation of most of the results obtained
later.

In Sect. 7, we determine exactly which solutions converge to the point
Taub 2. We rely on the results from the previous section and find that all
such solutions have a local rotational symmetry. This result is directly linked
to Strong Cosmic Censorship: The only non-constant solutions converging
to a point on the Kasner parabola for which both the Kretschmann scalar
RαβγδR

αβγδ and the contraction of the Ricci tensor with itself RαβRαβ pos-
sibly remain bounded as τ → −∞ are those which converge to the point
Taub 2. As all such solutions are locally rotationally symmetric, convergence
to the point Taub 2 and thereby boundedness of these two curvature invariants
can be considered non-generic.

Sections 8 and 10 treat the equivalent question for the arc of the Kasner
parabola K to the left of Taub 2 and the plane wave equilibrium points Lκ.
We give qualitative results on the set of solutions with this convergence be-
haviour, using a theorem from dynamical systems theory which we recall in
“Appendix B.3”. The statements we prove using dynamical systems theory
are Theorems 8.5 and 10.3, which build upon where the eigenvalues to the
linearised evolution equations are located in the complex plane.

Convergence towards one of the remaining points on the Kasner parabola
K, located to the right of the point Taub 2, is treated in Sect. 9. In [10], these
points have been identified as local sources, and we make this statement more
precise. For such perfect fluids where the convergence behaviour at early times
is sufficiently well understood, we show that given a solution converging to a
Kasner point to the right of Taub 2, all solutions intersecting a sufficiently
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small neighbourhood of its limit point converge to a Kasner point close to this
limit point.

In “Appendix A”, we discuss the linear approximation of the evolution
equations in the extended state space, which we investigate both on the Kasner
parabola K and on the plane wave equilibrium points Lκ.

In the second appendix, “Appendix B”, we present a result from the
theory of dynamical systems. This statement is an important prerequisite for
Sects. 8 and 10, where we discuss the properties of orbits converging to the
Kasner parabola K to the left of the point Taub 2 and to the plane wave
equilibrium points Lκ.

3. Basic Properties of the Expansion-Normalised Evolution

In this section, we start discussing properties of solutions to the evolution
equations with constraints in expansion-normalised variables, Eqs. (5)–(11).
We discuss the range of the individual variables and describe several subsets of
the state space which remain invariant under the evolution. These correspond
to specific Bianchi types, matter models, or families of models with additional
symmetry. For a classification of Bianchi Lie groups in terms of their structure
constants, we refer to Sect. 11.1.

One sees from the evolution equation of Ω, Eq. (11), that the sets Ω = 0
and Ω > 0 are invariant, and in the latter case the behaviour of Ω depends on
the value of the constant γ. One distinguishes between the following cases:

Definition 3.1. A solution to Eqs. (5)–(11) is called

• a vacuum solution if Ω ≡ 0 along the orbit,
• an inflationary matter solution if Ω > 0 along the orbit and γ ∈ [0, 2/3),
• a stiff fluid solution if Ω > 0 along the orbit and γ = 2.

In this paper we also cover the case γ ∈ [2/3, 2). Of particular interest
are the values γ = 1 and γ = 4/3, which correspond to dust and radiation, re-
spectively. Due to the definition of the variable Ω as the expansion-normalised
version of the energy density μ, see Eq. (68) below, the previous definition co-
incides with the distinction between vacuum and matter via μ = 0 and μ > 0,
respectively.

In vacuum, one sees that the expression for q, Eq. (6), simplifies to

q = 2(Σ2
+ + Σ̃) = 2(1 − Ã − Ñ), (14)

and in the general case the following expressions are of use

q =
3
2
(2 − γ)(Σ2

+ + Σ̃) +
1
2
(3γ − 2)(1 − Ã − Ñ),

= 2(1 − Ã − Ñ) − 3
2
(2 − γ)Ω,

= 2(Σ2
+ + Σ̃) +

1
2
(3γ − 2)Ω.

(15)
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Table 1. Bianchi B invariant sets

Notation Restrictions

B(VIη) κ = 1/η < 0, Ã > 0

B±(VIIη) κ = 1/η > 0, Ã > 0, N+ > 0 or N+ < 0

B±(IV) κ = 0, Ã > 0, N+ > 0 or N+ < 0

B(V) κ = 0, Ã > 0, Σ+ = Δ = N+ = 0

We note that the differential equations with constraints (5)–(11) as well as the
additional expressions for q, Eqs. (14)–(15), are invariant under the symmetry

(Δ, N+) 
→ −(Δ, N+).

Remark 3.2. The constraint equations (8)–(9) are invariant under the evolution
equations (5) with q and Ñ as in (6) and (7). For the first constraint, Eq. (8),
this follows from

(Σ̃Ñ − Δ2 − Σ2
+Ã)′ = 4(q + Σ+ − 1)(Σ̃Ñ − Δ2 − Σ2

+Ã).

The second and fourth relations in (9) are an immediate consequence of the
evolution equations of Ã in (5) and of Ω in (11), which imply that Ã = 0
and Ω = 0 are invariant sets.

For the remaining two inequalities Σ̃ ≥ 0 and Ñ ≥ 0, notice that equality
in both cases at some time implies Δ = 0 = Σ+Ã at that time by the constraint
equation (8). The evolution equations for Σ̃ and Δ in (5) together with those
for Ñ and Σ+Ã,

Ñ ′ = 2(q + 2Σ+)Ñ + 4ΔN+,

(Σ+Ã)′ = (3q + 4Σ+ − 2)Σ+Ã − 2ÃÑ ,

then reveal that Σ̃ ≡ 0 ≡ Ñ (as well as Δ ≡ 0 ≡ Σ+Ã) at all times. Further,
Σ̃ and Ñ cannot change sign at different times, as Σ̃Ñ < 0 is excluded by
the constraint equation (8). Hence, the inequalities Σ̃ ≥ 0 and Ñ ≥ 0 are
preserved.

Remark 3.3. The choice of expansion-normalised variables (Σ+, Σ̃,Δ, Ã, N+)
has two advantages. Firstly, normalisation yields a compact state space (8)–
(10), which facilitates the discussion of dynamical properties. In fact, Eqs. (9),
(10) and (15) in combination with γ ∈ [0, 2] yield

Σ+ ∈ [−1, 1], Σ̃ ∈ [0, 1], Ã ∈ [0, 1], Ñ ∈ [0, 1], Ω ∈ [0, 1], q ∈ [−1, 2].
(16)

The second advantage is that the different Bianchi B types are represented by
invariant subsets of the same state space and can thus be discussed simulta-
neously.

Table 1 lists the subsets and their names according to the Bianchi clas-
sification of Lie groups. We recall this classification in Sect. 11.1. This table
was already given by [10], as were Tables 2 and 3.1

1Note that only one of the three LRS subsets in Table 3 was mentioned in [10], namely
LRS Bianchi II. LRS Bianchi VI−1 first appeared in [25]; it is also called LRS Bianchi III
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Table 2. Bianchi A invariant sets

Notation Restrictions

B±(II) Ã = 0, N+ > 0 or N+ < 0

B(I) Ã = Δ = N+ = 0

Table 3. Bianchi invariant sets with higher symmetry. (Ab-
breviations: FLRW= Friedman–Lemâıtre–Robertson–Walker;
LRS= locally rotationally symmetric)

Notation Class of models Restrictions

SLRS(I) LRS Bianchi I Δ = Ã = N+ = 0, 3Σ2
+ = Σ̃

S±
LRS(II) LRS Bianchi II Ã = 0, 3Σ2

+ = Σ̃, Δ = Σ+N+

S±
LRS(VI−1)= S±

LRS(III) LRS Bianchi VI−1 κ = −1, Ã > 0, 3Σ2
+ = Σ̃, Δ = Σ+N+

S0(VIη) Bianchi VIη, tr n = 0 Δ = N+ = 0, 3Σ2
+ + κΣ̃ = 0, Ã > 0

SFLRW(V) Bianchi V FLRW κ = 0, Σ+ = Σ̃ = Δ = N+ = 0

S±
FLRW(VIIη) Bianchi VIIη FLRW Σ+ = Σ̃ = Δ = 0, κÃ = N2

+ > 0

In Table 2, two types of Bianchi A models are given, which appear as
boundary sets of Bianchi B invariant sets.

Table 3 lists several invariant subsets which describe Bianchi models with
higher symmetry.

We want to give particular attention to the locally rotationally symmet-
ric (LRS) models. The property of local rotational symmetry in expansion-
normalised variables is defined as follows:

Definition 3.4. (Local rotational symmetry (expansion-normalised)) A solution
to Eqs. (5)–(9) is called locally rotationally symmetric (LRS) if

3Σ2
+ = Σ̃, Σ+N+ = Δ, (κ + 1)Ã = 0.

Comparison with the three LRS subsets given in Table 3 shows that the
union of these subsets equals the union of all locally rotationally symmetric
solutions. We have now defined the notion of local rotational symmetry twice,
in terms of expansion-normalised variables in Definition 3.4 and in terms of
initial data to Einstein’s orthogonal perfect fluid equations in Definition 1.6.
In Sect. 11.8, we clarify why these two definitions are equivalent under suitable
transformation between the initial data setting and the expansion-normalised
variables.

Footnote 1 continued

in the literature. In the literature, the subset LRS Bianchi II in Table 3 is defined with
Δ2 = Σ2

+N2
+. Considering the evolution equations of 3Σ2

+ − Σ̃ and Σ+N+ ± Δ, we realise,
however, that it is the case with negative sign Σ+N+ − Δ = 0 which is preserved, not the
one with positive sign, see also Eq. (17).
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Considering the derivatives

(3Σ2
+ − Σ̃)′ = 2(q − 2)(3Σ2

+ − Σ̃) − 4N+(Σ+N+ − Δ)

+ 4ÃΣ+(1 + κ),

(Σ+N+ − Δ)′ = 2(q − 2 − 2Σ+ + 1)(Σ+N+ − Δ) + 2N+(3Σ2
+ − Σ̃), (17)

one sees that the three LRS subsets are invariant under the evolution equa-
tions (5). For the remaining sets given in Tables 1, 2, and 3, invariance follows
by direct computation, see also Remark 3.2 for Bianchi VIIη FLRW.

Remark 3.5. The evolution equations (5)–(7) define a dynamical system in R
5,

and we will on several occasions apply dynamical systems methods to this.
Whenever we restrict our attention to only these evolution equations, i. e.
without assuming the constraint equations (8)–(9), we call this the evolution
equations in the extended state space.

The evolution in the physical, i. e. constrained, state space, is obtained
via restriction to the set defined by the constraint equations (8)–(9). The first
equation is invariant under the evolution and describes a submanifold as long
as the gradient of its left-hand side

(

−2Σ+Ã ,
1
3
(N2

+ − κÃ) , −2Δ , −
(

Σ2
+ +

1
3
κΣ̃
)

,
2
3
Σ̃N+

)

(18)

does not vanish, implying that the hypersurface is non-singular. The only
exceptions to a non-vanishing gradient are:

• If κ > 0: Σ+ = Σ̃ = Δ = 0, N2
+ = κÃ. This defines an invariant set of

dimension one.
• If κ = 0: Σ+ = N+ = Δ = 0. This defines an invariant set of dimension

two.
• If κ < 0: Δ = Ã = N+ = 0, κΣ̃ + 3Σ2

+ = 0. This defines an invariant set
of dimension one.

Remark 3.6. There is a similar set of expansion-normalised coordinates which
is used to describe Bianchi class A models, but does not apply to class B
models. It was introduced by Wainwright and Hsu in [26] and motivated the
definition of the present coordinates. In the cases of Bianchi I and II, models
can be described in both sets of variables.

Certain Bianchi perfect fluid spacetimes with a Lie group of type VI−1/9

cannot be described by the evolution equations (5)–(11). This is the case for
the so-called ‘exceptional’ Bianchi B perfect fluids, a notion which we explain
in Remark 11.14. Initial data sets in these spacetimes admit an additional
degree of freedom compared to the ‘non-exceptional’ ones given in Defini-
tion 1.5. In these ‘exceptional’ cases as well, it is possible to introduce a set
of expansion-normalised variables and this has been done in [7]. Due to the
additional freedom, these spacetimes are described by evolution equations in
six dimensions instead of five.
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4. The Kasner Parabola and the Plane Wave Equilibrium Points

The dynamical system for the expansion-normalised variables described by
Eqs. (5)–(11) possesses a number of equilibrium points and sets, i. e. points
where the right-hand side of the evolution equations (5) becomes zero. These
equilibrium sets have been studied in [10], to which we refer for more details.
For our present discussion, the Kasner parabola K and the plane wave equi-
librium points Lk are of importance, see Definitions 1.15 and 1.17

On the Kasner parabola K, one finds Ω = 0. Furthermore, in case γ < 2,
the set K is characterised by q = 2. A closer look at the evolution equations
reveals that the Kasner parabola is a curve in the Σ+Σ̃-plane consisting of
individual equilibrium points. Information about the local stability can be
drawn from the linearised evolution equations in the extended five-dimensional
space. We give the explicit form of this vector field for points on the Kasner
parabola K in “Appendix A.1”. The eigenvalues of this vector field are given
in (13). The number of positive, negative, and zero eigenvalues corresponds
to the qualitative behaviour of orbits close to the Kasner parabola. This is a
result from dynamical systems theory, which we state in “Appendix B”, but
do not make use of in this section. The eigenvalues to the linearised evolution
equations will appear further down as the exponential decay rates of certain
linear combination of the variables.

We notice that for two special points on the Kasner parabola K the
number of zero eigenvalues is greater than one, namely the points Taub 1 and
Taub 2, see Definition 1.16. In particular, the latter point will play a dominant
role in our discussion, as it is the limit point of locally rotationally symmetric
solutions, which constitute exceptions to the Strong Cosmic Censorship con-
jecture. To the right of the point Taub 2 (1/2 < Σ+ ≤ 1) all non-vanishing
eigenvalues are positive, while to the left of Taub 2 (−1 < Σ+ < 1/2) exactly
one of the four non-vanishing eigenvalues is negative. This difference reflects
a difference in qualitative behaviour which we explore in more detail in this
paper.

The plane wave equilibrium points Lκ form a curve consisting of individ-
ual equilibrium points with Ω = 0, as was the case for the Kasner parabola.
Using the function

Z := (1 + Σ+)2 − Ã, (19)

which is discussed in [10], the set Lκ can be characterised as follows: Direct
computation shows that the constraint equation (8) is equivalent to

(Σ̃ − Ñ)2 + 4Δ2 + 2(Σ̃ + Ñ)Ω + (Ω − Z)2 = 4Z

(

Σ2
+ +

1
2
(Σ̃ + Ñ)

)

, (20)

which due to the non-negativity of Σ̃, Ñ and Ω, see (9), means that the func-
tion Z is non-negative and vanishes if and only if

Ω = 0, Δ = 0, −Σ+(1 + Σ+) = Σ̃ = Ñ . (21)

Note that the identity −Σ+(1 + Σ+) = Σ̃ is a reformulation of Ω = Z, using
identities (21). Consequently, Z = 0 characterises the plane wave equilibrium
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points together with the Kasner point Taub 1. In case Ã = 0, Z = 0 charac-
terises exactly the point Taub 1. The derivative of the function Z is

Z ′ = −2(2 − q)Z + 3(2 − γ)(1 + Σ+)Ω

due to the evolution equations (5).

Remark 4.1. Both the Kasner parabola K and the plane wave equilibrium
points Lκ can be interpreted in terms of initial data to Einstein’s orthogonal
perfect fluid equations. This is done in detail in Sect. 11.8, where we explain
how to establish a relation between initial data and solutions to Einstein’s
equations on the one hand and initial data and solutions to the evolution
equations (5)–(11) on the other. We find that

• The Kasner parabola K corresponds to vacuum Bianchi type I initial
data.

• The set of plane wave equilibrium points Lκ together with the point
Taub 1 corresponds to plane wave equilibrium initial data as in Defini-
tion 1.8.

• The point Taub 1 corresponds to initial data of Bianchi type I which is
of plane wave equilibrium type.

• The point Taub 2 corresponds to initial data of Bianchi type I which is lo-
cally rotationally symmetric and the symmetric two-tensor k additionally
satisfies k11 > k22.

The Kasner parabola and the plane wave equilibrium points are of central
importance when investigating the asymptotic behaviour of orbits as τ → − ∞.
In [10], the α-limit set of (non-constant, generic) orbits in vacuum and in
inflationary matter (γ ∈ [0, 2/3)) are determined. We state and prove a refined
version of their Propositions 5.1 and 5.2.

Proposition 4.2. (Alpha-limit sets in vacuum and inflationary matter) Assume
vacuum, i. e. Ω = 0. If Γ(τ) = (Σ+, Σ̃,Δ, Ã, N+)(τ), τ ∈ R, is a solution to
Eqs. (5)–(11), then the α-limit set of Γ satisfies

α(Γ) ⊂ K ∪ Lκ,

which means that for every sequence τn → −∞ all accumulation points of
Γ(τn) are contained in K ∪ Lκ. The only solutions with

α(Γ) ∩ Lκ �= ∅
are constant solutions.

Assume inflationary matter, i. e. Ω > 0, γ ∈ [0, 2/3). If Γ(τ) = (Σ+, Σ̃,

Δ, Ã, N+)(τ), τ ∈ R, is a solution to Eqs. (5)–(11), then the α-limit set of Γ
satisfies

α(Γ) ⊂ K ∪ Lκ ∪ {Σ+ = Σ̃ = Δ = Ã = N+ = 0}.

There are no solutions whose α-limit set intersects both K\ T1 and Lκ. The
only solution with

{Σ+ = Σ̃ = Δ = Ã = N+ = 0} ⊂ α(Γ)

is the constant solutions.
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Alongside with the proof of this proposition, we find a statement about
asymptotic behaviour in the future time direction in case of inflationary mat-
ter: For τ → + ∞, all non-constant solutions converge to one point. Note that
this is the only time that we consider this time direction; all other statements
treat the case τ → −∞.

Proposition 4.3. Assume inflationary matter, i. e. Ω > 0, γ ∈ [0, 2/3), and
consider a solution to Eqs. (5)–(11). Then

lim
τ→+∞(Σ+, Σ̃,Δ, Ã, N+)(τ) = (0, 0, 0, 0, 0).

Proof of Proposition 4.2. We start with the case of a vacuum solution Ω = 0.
If q < 2 and Z > 0, then the derivative of Z defined in (19) is negative, which
means that the function Z is strictly monotone decreasing. The α-limit set
is therefore contained in the union of {q = 2} and {Z = 0}. The first set is
the Kasner parabola K, while the second describes the plane wave equilibrium
points Lκ together with the point Taub 1. Suppose there is a solution with an
α-limit point in Lκ ∪ T1. Then there is a sequence of times τk → − ∞ such
that

Z(τk) ≤ 1
k

.

In combination with Z ≥ 0 and monotonicity, this implies that Z is vanishing
identically along the whole orbit. The orbit is therefore contained in the zero
set of Z, which are the plane wave equilibrium points together with the point
Taub 1. Hence, the orbit is the constant orbit.

For inflationary matter solutions Ω > 0, γ ∈ [0, 2/3), one reformulates
the evolution equation for Ω into the form

Ω′ = (4(Σ2
+ + Σ̃) − (3γ − 2)(1 − Ω))Ω

using (15). Due to the restrictions on the individual variables (16), this shows
that Ω is monotone increasing and implies that the α-limit set is contained in
the union of {Ω = 0} and {Ω = 1}, as the latter is equivalent to the bracket
vanishing. It follows immediately from monotonicity that if there is an α-limit
point in {Ω = 1}, then the whole solution is contained in this set. The condition
Ω = 1 characterises the point Σ+ = Σ̃ = Δ = Ã = N+ = 0, which proves the
last statement.

For 0 < Ω < 1, one computes
(

Z

Ω

)′
= −(6 − 3γ)

Z

Ω
+ (6 − 3γ)(1 + Σ+)

and concludes from
(

e(6−3γ)τ Z

Ω

)′
= (6 − 3γ)(1 + Σ+)e(6−3γ)τ ≥ 0

and the fact that both Ω and Z are non-negative that the quantity e(6−3γ)τZ/Ω
decreases monotonically to some non-negative constant B1 as τ → −∞. This
has to be understood in the sense that the expression decreases when going
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backwards in time, here and on similar occurrences of this formulation further
down. Monotone convergence to B1 implies

Z

Ω
= B1e

−(6−3γ)τ +
∫ τ

−∞
(6 − 3γ)(1 + Σ+)e(6−3γ)(s−τ)ds,

where the integral is well defined and bounded by 2 due to the bound on Σ+

from (16).
There are two cases to consider. If B1 > 0, one can reformulate the

previous equality into

e−(6−3γ)τΩ =
1

B1
(Z − Ω

∫ τ

−∞
(6 − 3γ)(1 + Σ+)e(6−3γ)(s−τ)ds)

and sees that the right-hand side is bounded. The evolution equation for the
left-hand side is

(e−(6−3γ)τΩ)′ = 2(q − 2)e−(6−3γ)τΩ,

which is of the form f ′ = g · f . For C1 functions f , g and f bounded as τ →
−∞, integration of f ′/f implies that g is integrable on (− ∞, 0). In our case,
one concludes that q − 2 is integrable on the interval (− ∞, 0). One further
knows from the evolution equations that the derivative of q−2 is a polynomial
in the expansion-normalised variables and consequently bounded, and thus can
conclude that q → 2 as τ → − ∞. The α-limit set is therefore contained in
{q = 2}, which characterises the Kasner parabola.

If B1 = 0, then we have already argued above that
Z

Ω
≤ 2.

As Ω → 0 for τ → −∞ due to monotonicity and the fact that the α-limit set is
contained in {Ω = 0}, this implies Z → 0. One concludes that the α-limit set is
contained in the set {Z = 0}, which characterises the plane wave equilibrium
points Lκ together with the point Taub 1. This proves the first statement for
inflationary matter models.

The two cases for B1 are mutually exclusive, and the only point satisfying
both q = 2 and Z = 0 is the point Taub 1, which is contained in the Kasner
parabola K. This concludes the proof. �

Proof of Proposition 4.3. We have found in the previous proof that Ω is mono-
tone increasing with

Ω′ = (4(Σ2
+ + Σ̃) − (3γ − 2)(1 − Ω))Ω.

Due to the restrictions on the individual variables (16), this shows that all
solutions with Ω > 0 have to satisfy Ω → 1 as τ → +∞, because the condi-
tion Ω = 1 is equivalent to the bracket vanishing. Due to the definition of Ω in
Eq. (10) and the restriction of the individual variables in (16), this concludes
the proof. �

In the next proposition, we strengthen the result about the α-limit set:
In inflationary matter models, there cannot be more than one α-limit point in
the plane wave equilibrium points Lκ, i. e. we find convergence.
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Proposition 4.4. (Convergence to plane wave equilibrium points) Assume in-
flationary matter, i. e. Ω > 0, γ ∈ [0, 2/3), and consider a solution to Eqs. (5)–
(11) whose α-limit set is contained in Lκ ∪ T1. Then there is an s ∈ [−1, 0]
such that

lim
τ→−∞(Σ+, Σ̃,Δ, Ã, N+)(τ) = (s,− s(1 + s), 0, (1 + s)2, ν+(s)),

where ν2
+(s) = (1 + s)(κ(1 + s) − 3 s).

Proof. If the point Taub 1 is the only α-limit point, there is nothing to show.
We assume therefore without loss of generality that there is at least one α-
limit point contained in Lκ. Due to the assumption on the α-limit set, the
solution satisfies Z → 0 as τ → −∞. The zero set of Z is characterised by
expressions (21), and inserting these into the third expression for q in (15), we
conclude that the solution satisfies

q + 2Σ+ → 0

as τ → −∞. All plane wave equilibrium points Lκ satisfy −1 < Σ+ ≤ 0,
which means that q converges to a non-negative value. In combination with
the fact that 3γ − 2 is a strictly negative constant, this implies that the factor
2q − (3γ − 2) in the evolution equation (11) is strictly positive for τ ≤ τ0

sufficiently negative. Consequently, Ω decays to zero exponentially as τ →
−∞.

We have seen in the proof of Proposition 4.2 that the solutions under
consideration satisfy B1 = 0 and, consequently, 0 ≤ Z ≤ 2Ω. Therefore,
Z decays to zero exponentially as well. Boundedness of the state space, see
Remark 3.3, therefore reveals that the right-hand side of Eq. (20) decays to
zero exponentially, and therefore, the same has to hold for all terms appearing
on the left-hand side. Using identities (21) to rewrite Ω − Z → 0, we find
exponential decay for

Σ+(1 + Σ+) + Σ̃ → 0, Δ → 0,

and as a consequence also for q+2Σ+, applying the third expression in Eq. (15).
Inserting this into the evolution equation (5) shows the same decay for Σ′

+;
therefore, Σ+ converges to some s ∈ [−1, 0]. The limiting values for the re-
maining variables follow from the definition of the plane wave equilibrium
points Lκ, Definition 1.17. �

Consider now a non-constant solution to (5)–(11) in vacuum or inflation-
ary matter whose α-limit set has a non-empty intersection with K\ T1 instead.
Due to Proposition 4.2, this implies that the whole α-limit set is contained in
the Kasner parabola K. Then

Σ2
+ + Σ̃ → 1, Δ → 0, Ã → 0, N+ → 0, Ñ → 0, Ω → 0, q → 2,

(22)
as τ → − ∞, as otherwise compactness of the state space, see Remark 3.3,
would yield an α-limit point which does not lie on the Kasner parabola. A
convergence result similar to the previous statement is achieved further down
in Proposition 6.1. Its proof needs some additional work.
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For the discussion of more detailed properties of solutions close to the
α-limit points, we frequently make use of the following lemma which appears
with slightly different notation as [14, Lemma 8].

Lemma 4.5. Consider a positive function M : R → (0,∞) satisfying M ′ = ζM ,
where ζ : R → R and ζ(τ) → ι as τ → −∞. Then for all ε > 0 there is a
τε > − ∞ such that τ ≤ τε implies

e(ι+ε)τ ≤ M(τ) ≤ e(ι−ε)τ .

This lemma can be applied to the density parameter Ω without any fur-
ther assumptions: In vacuum Ω = 0 holds, while inflationary matter models
satisfy Ω > 0 with γ ∈ [0, 2/3). If the α-limit set is contained in the Kasner
parabola K, one uses (22) to find convergence to zero at rate

e(6−3γ+ε)τ ≤ Ω(τ) ≤ e(6−3γ−ε)τ , (23)

for τ ≤ τε sufficiently negative.

Notation 4.6. When we are only interested in the upper bound as τ → − ∞,
we also make use of the big O notation, i. e. we write

Ω = O(e(6−3γ)τ ),

as τ → − ∞, if we want to say that there is a τ0 > −∞ and a CΩ > 0 such
that τ ≤ τ0 implies Ω(τ) ≤ CΩe(6−3γ)τ . As we are in the present paper not
interested in any other limit than τ → −∞, we frequently omit the range of τ .

If the function ζ in the previous lemma converges exponentially, the state-
ment can be improved as follows.

Lemma 4.7. Consider a positive function M : R → (0,∞) satisfying M ′ = ζM ,
where ζ : R → R and ζ(τ) = ι+O(eξτ ) as τ → −∞, for some constants ξ > 0,
ι. Then there are constants cM , CM > 0 and a τ0 such that τ ≤ τ0 implies

cMeιτ ≤ M(τ) ≤ CMeιτ .

Proof. Integration of

(ln M)′ =
M ′

M
= ζ = ι + O(eξτ )

yields
M(τ) = eιτM(τ0)e−ιτ0+O(eξτ0 ).

The last two factors are contained in some interval [cM , CM ] ⊂ (0,∞) for τ
smaller than a fixed number τ0. �

5. Convergence to Taub 1

In this section, we show that in vacuum and inflationary matter the only orbit
with Taub 1 as an α-limit point is the constant orbit. As a consequence, this
special Kasner point can be neglected when we determine in more detail the
asymptotic behaviour close to the Kasner parabola.



Vol. 20 (2019) SCC in Bianchi B Perfect Fluids and Vacuum 717

Proposition 5.1. Assume either vacuum or inflationary matter, i. e. either Ω =
0 or Ω > 0, γ ∈ [0, 2/3), and consider a solution to Eqs. (5)–(11) such that
the point Taub 1

(Σ+, Σ̃,Δ, Ã, N+) = (−1, 0, 0, 0, 0)
is contained in the α-limit set. Then the solution is the constant orbit.

Proposition 5.2. Assume Ω > 0 and γ ∈ [2/3, 2), and consider a solution to
Eqs. (5)–(11) converging to the point Taub 1

(Σ+, Σ̃,Δ, Ã, N+) = (−1, 0, 0, 0, 0)

as τ → −∞. Then the solution is the constant orbit.

Remark 5.3. As the point Taub 1 is contained in the vacuum set Ω = 0, we
conclude from these propositions that if Ω > 0, then the point Taub 1 is not
allowed as an α-limit point.

Proof of Proposition 5.1. The proof revolves around the function Z defined by
Eq. (19), and we start with the case of a vacuum solution Ω = 0. As the point
Taub 1 is an α-limit point, but does not lie in Lκ, Proposition 4.2 yields that
the α-limit set is contained in the Kasner parabola K, which is characterised
by q = 2. In the point Taub 1, the function Z vanishes. This point being an α-
limit point therefore implies that Z → 0 along a time sequence τk → −∞. In
the proof of Proposition 4.2, we have used the existence of such a time sequence
together with monotonicity of the function Z to conclude that Z is vanishing
constantly along the whole orbit. This argument applies to the present case,
and we conclude that the orbit is contained in the zero set of Z. The set Z = 0
equals the union of Lk and the point Taub 1 and consists solely of equilibrium
points. As a consequence, the solution has to be the constant one in the point
Taub 1, as this is the only point which satisfies both Z = 0 and q = 2.

In the case of matter Ω > 0, one first realises that due to its evolution
equation (5), if Ã vanishes at one time, then it vanishes along the whole orbit.
One then reformulates the evolution of Σ+ using the definition of Ñ from (7)
together with Eq. (15) for q to find

Σ′
+ = −2Σ+Ã +

2
3
(Σ+ + 1)κÃ − 2

3
(Σ+ + 1)N2

+ − 3
2
(2 − γ)Ω.

If Ã = 0, then Σ′
+ < 0, as Σ+ is contained in the interval [−1, 1] by Remark 3.3.

Hence, Σ+ is monotone decreasing, and an argument similar to the one for Z
in the vacuum case applies: The assumption on the α-limit set gives a sequence
of times τk → − ∞ such that

Σ+(τk) ≤ −1 +
1
k

.

In combination with Σ+ ≥ −1 and monotonicity, this shows that Σ+ = −1
along the whole orbit. This in turn implies that Z vanishes along the orbit and
concludes the proof for Ã = 0, as then Ω = 0 due to (21), a contradiction.

Assume therefore Ã > 0 and Ω > 0. We first prove convergence, i. e. that
Taub 1 is the unique α-limit point, then show that the only orbit converging to
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this point is the constant one. From Proposition 4.2 we know that the α-limit
set is either contained in K or in Lκ ∪ T1, and together with Proposition 4.4
this implies that we only have to show convergence for solutions where the
α-limit set is contained in the Kasner parabola K.

As shown in (23), Ω then decays as

e(6−3γ+ε)τ ≤ Ω(τ) ≤ e(6−3γ−ε)τ ,

for τ ≤ τε sufficiently small. Setting R̃ :=
∫ 0

τ
(q − 2)ds, one finds that R̃ is

non-positive for τ ≤ 0 due to Remark 3.3. The derivative of this function is
R̃′ = 2 − q. Hence,

d
dτ

(e2R̃Z) = e2R̃3(2 − γ)(1 + Σ+)Ω = O(e(6−3γ−ε)τ )

for τ ≤ τε, since all factors apart from Ω are at least bounded. Therefore, there
exists a non-negative constant B2 such that

e2R̃Z = B2 + O(e(6−3γ−ε)τ ).

In case B2 > 0, the function Z is bounded away from zero, which excludes
Taub 1 as an α-limit point. Consequently, B2 = 0, which means

e2R̃Z = O(e(6−3γ−ε)τ ).

The convergence of q to 2, see (22), implies |q − 2| < ε for sufficiently negative
times; hence,

Z = O(e(6−3γ−2ε)τ ).

As Z → 0, and additionally Ã → 0 from the assumption that the α-limit set is
contained in the Kasner parabola K, one concludes that Σ+ → −1. The only
point in K with this property is the point Taub 1, which implies convergence
to this point.

It remains to exclude non-constant solutions with Ã > 0 and Ω > 0 which
converge to the point Taub 1 as τ → −∞. Knowing that Σ+ → −1 and q → 2,
one can apply Lemma 4.5 to the evolution equation of Ã, Eq. (5), to obtain

eετ ≤ Ã(τ) ≤ e−ετ (24)

for τ ≤ τε. Using the decay of the function Z together with boundedness of
the state space, Remark 3.3, in Eq. (20) yields Δ2 = O(e(6−3γ−ε)τ ). With this,
one computes

(
Ñ

Ã

)′
=

4ΔN+

Ã
= O(e(3− 3

2γ−2ε)τ ),

as N+ is at least bounded, and finds

Ñ

Ã
= B3 + O(e(3− 3

2γ−2ε)τ )

for some constant B3. The constraint equation (8) then reads

O(e(6−3γ−2ε)τ ) = Δ2 = Σ̃Ñ − Σ2
+Ã = (B3Σ̃ − Σ2

+)Ã + O(e(3− 3
2γ−3ε)τ ),
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and therefore
(B3Σ̃ − Σ2

+)Ã = O(e(3− 3
2γ−3ε)τ ).

However, due to (24) Ã decays at most as eετ , and the bracket on the left-
hand side converges to −1, a contradiction. Thus, Ã > 0 is not possible, which
concludes the proof. �

Proof of Proposition 5.2. The proof is similar to the one of Proposition 5.1 for
inflationary matter, i. e. Ω > 0 with γ ∈ [0, 2/3). In that setting, we first had
to show that the point Taub 1 is the unique α-limit point, but for the current
statement, this holds by assumption. Showing that there are no non-constant
solutions converging to the point Taub 1 then hinged on the fact that

3 − 3
2
γ − 3ε > 0.

In the case γ ∈ [2/3, 2), it is still possible to choose ε > 0 sufficiently small that
this holds. The argument at the end of the proof of Proposition 5.1 excluding
non-constant solutions then applies without any change. �

6. Convergence Properties and Asymptotic Decay Towards the
Kasner Parabola

This section is the longest and most technical in our discussion of the evolution
equations (5)–(11), and it is here that we prove the main statements we build
upon in the following.

We focus our attention on solutions whose α-limit set is contained in
the Kasner parabola K. For vacuum models, all non-constant solutions satisfy
this property, while in the case of inflationary matter we have to additionally
assume that the α-limit set does not intersect the plane wave equilibrium
points Lκ, see Proposition 4.2.

In a first step we show that these non-constant solutions with α-limit set
in K converge, i. e. every such solution has a unique accumulation point. This
is done in Proposition 6.1. An equivalent convergence result for inflationary
matter solutions with an α-limit point in Lκ has been obtained in Propo-
sition 4.4, and we therefore find convergence for all inflationary matter and
vacuum solutions.

The main aim of this section is to now obtain decay and convergence rates
of the individual variables under the assumption of convergence to a limit point
on the Kasner parabola K. The behaviour we discover is exponential decay or
convergence, and the different exponents coincide with specific eigenvalues to
the linearised evolution equations in the extended state space, see (13). We
further find that the rates of convergence depend on where the limit point is
situated relative to the point Taub 2. For solutions converging to the point
Taub 2 or to a limit point to the left of this point, the lowest order exponential
terms are determined in Proposition 6.2. In certain situations, we can refine
this statement to even include the second-lowest term, see Proposition 6.14.
Solutions which converge to such a point on the Kasner parabola necessarily
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have to satisfy that ΔN+ > 0 for sufficiently negative times or Δ ≡ 0 ≡ N+,
as we conclude from Lemmas 6.4 and 6.11. In case ΔN+ < 0 for sufficiently
negative times, we determine the exponential convergence rates in Lemma 6.12.

We remark that even though we prove convergence only in the case of
vacuum and inflationary matter, we then drop this restriction on the matter
in all the following statements and only assume convergence to a limit point
on the Kasner parabola. The results we show hold for all matter models apart
from, for some statements, the stiff fluid case γ = 2.

Proposition 6.1 (Convergence to the Kasner parabola). Assume either vac-
uum or inflationary matter, i. e. either Ω = 0 or Ω > 0, γ ∈ [0, 2/3), and
consider a non-constant solution to Eqs. (5)–(11). In the inflationary matter
case, assume additionally that the α-limit does not intersect the plane wave
equilibrium points Lκ. Then there is an s ∈ (−1, 1] such that

lim
τ→−∞(Σ+, Σ̃,Δ, Ã, N+)(τ) = (s, 1 − s2, 0, 0, 0).

We prove this statement below.

Proposition 6.2. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) con-
verging to (s, 1 − s2, 0, 0, 0). If s ∈ [−1, 1/2], then

Ã(3 s2 +κ(1 − s2)) = 0

along the whole orbit, and

Σ+ = s +O(e(Π−ε)τ ),

Σ̃ = 1 − s2 +O(e(Π−ε)τ ),

Ñ = O(e(4+4 s −ε)τ ),

q = 2 + O(e(Π−ε)τ ),

as τ → −∞, for every ε > 0. Here Π := min(6 − 3γ, 4 + 4 s) if Ω > 0, and
Π := 4 + 4 s if Ω = 0. Furthermore, the following properties hold:

• If Δ and N+ do not both vanish identically, then ΔN+ > 0 along the
whole orbit and for all ε > 0 there is a τε > −∞ such that τ ≤ τε implies

e(2+2 s +2
√

3(1−s2)+ε)τ ≤ |Δ| ≤ e(2+2 s +2
√

3(1−s2)−ε)τ ,

e(2+2 s +2
√

3(1−s2)+ε)τ ≤ |N+| ≤ e(2+2 s +2
√

3(1−s2)−ε)τ .

• Either Ã = 0 along the whole orbit, or for all ε > 0 there is a τε > −∞
such that τ ≤ τε implies

e(4+4 s +ε)τ ≤ Ã ≤ e(4+4 s −ε)τ .

• Either Ω = 0 along the whole orbit (vacuum), or for all ε > 0 there is a
τε > −∞ such that τ ≤ τε implies

e(6−3γ+ε)τ ≤ Ω ≤ e(6−3γ−ε)τ .
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The proof is divided into several steps which will have additional indi-
vidual use later. The arguments revolve around the constraint equation (8)
written in the form

Σ̃N2
+ − 3Δ2 = (3Σ2

+ + κΣ̃)Ã (25)
which is then used to determine the asymptotic decay properties of the indi-
vidual variables.

Lemma 6.3. Consider a solution to Eqs. (5)–(11). If Σ+ ∈ [0, 1], then Σ′
+ ≤ 0,

i. e. Σ+ is monotonically decreasing.

Proof. This follows from inspection of the evolution equation (5) for Σ′
+, using

the range of the variables given by constraints (9) and Remark 3.3. �
Lemma 6.4. Consider a solution to Eqs. (5)–(11) whose α-limit set is contained
in K and such that Σ̃(τ) > δ > 0 for τ ≤ τ0. Then one of the following
statements holds:
(i) Δ = N+ = 0 along the whole orbit,
(ii) There is τ1 ∈ R such that ΔN+(τ) > 0 for all τ ≤ τ1,
(iii) There is τ1 ∈ R such that ΔN+(τ) < 0 for all τ ≤ τ1.

Note that this statement does not require any assumption on the matter
model, but holds for all values of γ ∈ [0, 2].

Proof. The set Δ = 0 = N+ is invariant under the evolution equations (5),
which means that every orbit with Δ = 0 = N+ at one time will satisfy
this property at all times. One can therefore assume that Δ2 + N2

+ > 0. The
evolution equations (5) for Δ and N+ yield

(ΔN+)′ = 6Δ2 + (3q + 4Σ+ − 2)ΔN+ + 2(Σ̃ − Ñ)N2
+,

and due to the convergence relation (22) and the assumption on Σ̃, the coef-
ficient to N2

+ is strictly positive for τ ≤ τ2 sufficiently negative. Therefore, for
every time τ1 < τ2 where the product ΔN+(τ1) becomes zero, the derivative
(ΔN+)′(τ1) is strictly positive, which means that ΔN+ changes sign from neg-
ative to positive. Consequently, the product ΔN+ can become zero at most
once, which concludes the proof. �
Proof of Proposition 6.1. Using Proposition 4.2, we can conclude that un-
der the given assumptions, the α-limit points are contained in the Kasner
parabola K, both for the vacuum and for the inflationary case. We show in the
following that no solution can have α-limit points with different Σ+-values. As
points on the Kasner parabola are uniquely identified by their Σ+-value, this
implies convergence.

In case Σ+(τ0) > 0 at some time τ0, monotonicity of Σ+ shown in
Lemma 6.3 contradicts the existence of two α-limit points with different Σ+

values. Consequently, there is exactly one α-limit point, which is equivalent to
convergence. Recall that in the proof of Proposition 5.1 we have computed the
evolution of Σ+ to be

Σ′
+ = −2Σ+Ã +

2
3
(Σ+ + 1)κÃ − 2

3
(Σ+ + 1)N2

+ − 3
2
(2 − γ)Ω. (26)
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Hence, monotonicity of Σ+ holds in general in case Ã = 0, as then (26) gives
Σ′

+ ≤ 0 due to Σ+ ∈ [−1, 1] and Ω ≥ 0. Assume therefore that Σ+ ≤ 0 and
Ã > 0.

According to Proposition 5.1, either the orbit is the constant one in the
point Taub 1, or this Kasner point is not contained in the α-limit set. The
first case is excluded by the assumption. In the latter case, one can assume
that for sufficiently negative times the orbit is bounded away from the point
Taub 1, which implies that Σ+ is bounded from below by some constant greater
than −1 for sufficiently negative times τ . Consequently, Σ̃ is bounded away
from 0, as all possible α-limit points are contained in K ∩ {Σ+ ≤ 0} and the
point Taub 1 is excluded. Using additionally that q → 2 due to (22), the
term 2(q + 2Σ+) is bounded from below by some suitable constant D1 > 0 for
sufficiently negative times, and the evolution equation (5) for Ã reads

Ã′ ≥ D1Ã.

Consequently, one finds
Ã = O(eD1τ ).

One computes from the evolution equations (5) that
(

N2
+

Ã

)′
=

12ΔN+

Ã

and sees that according to Lemma 6.4 this derivative does not change sign
for τ sufficiently negative. As a consequence, the term N2

+/Ã either converges
to a non-negative real number or diverges to ∞ as τ → −∞. In the latter
case, the evolution of Σ+ is dominated by N2

+ alone, in the sense that Σ′
+ as

in (26) has negative sign for sufficiently negative times. One concludes as for
Σ+ > 0 that there is a unique α-limit point. If the limit of N2

+/Ã is finite, this
means N2

+ = O(eD1τ ). In combination with the decay estimate (23) on Ω, this
yields that Σ′

+ is integrable and implies convergence. �

As a direct consequence of convergence which we have shown in Propo-
sition 6.1, we can apply Lemma 4.5 to Ã.

Lemma 6.5. Consider a solution to Eqs. (5)–(11) converging to (s, 1−s2, 0, 0, 0)
with s ∈ [−1, 1]. Then either Ã = 0 along the whole orbit, or there exists for
every ε > 0 a τε > −∞ such that τ ≤ τε implies

e(4+4 s +ε)τ ≤ Ã(τ) ≤ e(4+4 s −ε)τ .

The next lemma is of a technical nature and will be used in the following.

Lemma 6.6. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (s, 1 − s2, 0, 0, 0) with s ∈ [−1, 1]. Then the function

R :=
∫ τ

−∞
(2 − q)ds

is well defined.
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Proof. If s = −1, Propositions 5.1 and 5.2 imply that the orbit is the constant
orbit, in which case R = 0 along the whole orbit. Assume therefore that
s > −1. One computes using the evolution equations (5)

(Σ+ + 1)′ = (q − 2)Σ+ − 2Ñ

= (q − 2)(Σ+ + 1) − (q − 2) − 2Ñ

= (q − 2)(Σ+ + 1) + 2Ã +
3
2
(2 − γ)Ω.

(27)

Suppose that the function R̃ :=
∫ 0

τ
(q − 2)Pds is unbounded as τ → −∞,

meaning that the integral tends to −∞. As

d
dτ

(eR̃(Σ+ + 1)) = (2Ã +
3
2
(2 − γ)Ω)eR̃

and Ã and Ω decay as in Lemma 6.5 and Eq. (23), integration yields

eR̃(Σ+(τ) + 1) =
∫ τ

−∞
(2Ã +

3
2
(2 − γ)Ω)eR̃ds = O(e(Π−ε)τ ),

where Π := min(6 − 3γ, 4 + 4 s) if Ω > 0, and Π := 4 + 4 s if Ω = 0. The as-
sumption on γ ensures that Π > 0. Due to convergence to the Kasner parabola
which implies 2 − q ≤ ε for sufficiently negative times, one finds that for some
suitably chosen constant D2 > 0 and sufficiently negative times τ

R̃ ≥ ετ − D2.

Therefore, one concludes

Σ+ + 1 = O(e(Π−2ε)τ ),

which is a contradiction to Σ+ → s > −1. As a consequence, the function R̃
is bounded on (−∞, 0), and

R(τ) =
∫ τ

−∞
(2 − q)ds =

∫ 0

−∞
(2 − q)ds + R̃

is well defined. �

Having found detailed decay properties for Ã and Ω, the next step is
to determine the asymptotic behaviour of Δ and N+. Their decay rates are
intertwined: One searches for a linear combination of Δ and N+ such that the
evolution equation has a form suitable for Lemma 4.5, i. e.

(Δ + r̂N+)′ = ζ(Δ + r̂N+),

and ζ converging as τ → −∞. It turns out that the limit of ζ not only depends
on the value of s, but also on the sign of ΔN+, and one recovers exactly the
eigenvalues 2 + 2 s ±2

√
3(1 − s2) of the linearised evolution equations on the

Kasner parabola, see (13) and “Appendix A.1”.



724 K. Radermacher Ann. Henri Poincaré

Lemma 6.7. Consider a solution to Eqs. (5)–(11) converging to (s, 1−s2, 0, 0, 0)
with s ∈ (−1, 1). If ΔN+(τ) > 0 for all τ ≤ τ0, then for every ε > 0 there
exists τε > −∞ such that τ ≤ τε implies

e(2+2 s +2
√

3(1−s2)+ε)τ ≤ |Δ +

√
1 − s2

3
N+| ≤ e(2+2 s +2

√
3(1−s2)−ε)τ .

If on the other hand ΔN+(τ) < 0 for all τ ≤ τ0, then for every ε > 0 there
exists τε > −∞ such that τ ≤ τε implies

e(2+2 s −2
√

3(1−s2)+ε)τ ≤ |Δ −
√

1 − s2

3
N+| ≤ e(2+2 s −2

√
3(1−s2)−ε)τ .

Consider a solution to Eqs. (5)–(11) converging to (1, 0, 0, 0, 0). If ΔN+

(τ) > 0 for all τ ≤ τ0, then for every ε > 0 there exists ε̂ > 0 and τε > −∞
such that τ ≤ τε implies

e(4+ε)τ ≤ |Δ + ε̂N+| ≤ e(4−ε)τ .

If on the other hand ΔN+(τ) < 0 for all τ ≤ τ0, then for every ε > 0 there
exists ε̂ > 0 and τε > −∞ such that τ ≤ τε implies

e(4+ε)τ ≤ |Δ − ε̂N+| ≤ e(4−ε)τ .

We remark at this point that for this statement, no restriction on γ is
imposed.

Proof. For notational convenience, set

r̂ :=

√
1 − s2

3
(28)

and note that
2(1 − s2) = 6r̂2.

In case ΔN+ > 0 and s ∈ (−1, 1), one computes

(Δ + r̂N+)′ = (2q + 2Σ+ − 2 + 6r̂)Δ + (r̂q + 2r̂Σ+ + 2Σ̃ − 2Ñ)N+

and notices

lim
τ→−∞(2q + 2Σ+ − 2 + 6r̂) = 2 + 2 s +6r̂,

lim
τ→−∞(r̂q + 2r̂Σ+ + 2Σ̃ − 2Ñ) = 2r̂ + 2r̂ s +2(1 − s2).

Therefore,

(Δ + r̂N+)′ = (2 + 2 s +6r̂ + f1)Δ + (2r̂ + 2r̂ s +6r̂2 + f2)N+

=
(

2 + 2 s +6r̂ +
f1Δ + f2N+

Δ + r̂N+

)

(Δ + r̂N+)

=
(

2 + 2 s +2
√

3(1 − s2) +
f1Δ + f2N+

Δ + r̂N+

)

(Δ + r̂N+),

(29)

with two functions f1, f2 converging to 0 as τ → −∞. We do not need the
explicit form of these two functions here, but use them in the proof of Propo-
sition 6.14. Note that this computation makes use of the fact that Δ and N+

have the same sign. As the last term in the bracket vanishes asymptotically,
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Lemma 4.5 yields the decay of Δ+r̂N+ in case both Δ and N+ are positive. If
both are negative, the statement follows due to the invariance of the evolution
equations (5)–(11) under a change of sign in these two variables.

In case s = 1, we find r̂ = 0 and can no longer conclude that the quotient
in the last line in equation (29) vanishes asymptotically. We assume ΔN+ > 0
and compute

(Δ + ε̂N+)′ = (2q + 2Σ+ − 2 + 6ε̂)Δ + (ε̂q + 2ε̂Σ+ + 2Σ̃ − 2Ñ)N+,

for ε̂ > 0. By similar argument as above, we obtain the requested statement.
In order to treat the cases where ΔN+ < 0 it is enough to replace every

occurrence of r̂ and ε̂ by −r̂ and −ε̂, respectively. �

The decay of Δ and N+, depending on whether they have the same or
opposite sign, determines the decay of the remaining variables.

Lemma 6.8. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (s, 1 − s2, 0, 0, 0) with s ∈ [−1, 1]. Assume that ΔN+(τ) > 0 for all τ ≤ τ0.
Then

Σ+ = s +O(e(Π−ε)τ ),

Σ̃ = 1 − s2 +O(e(Π−ε)τ ),

Δ = O(e(2+2 s +2
√

3(1−s2)−ε)τ ),

N+ = O(e(2+2 s +2
√

3(1−s2)−ε)τ ),

Ñ = O(e(4+4 s −ε)τ ),

q = 2 + O(e(Π−ε)τ ),

as τ → −∞, for every ε > 0. Here Π := min(6 − 3γ, 4 + 4 s) if Ω > 0, and
Π := 4 + 4 s if Ω = 0. Furthermore,

Ã(3 s2 +κ(1 − s2)) = 0

holds along the whole orbit, and Ã > 0 implies that

3Σ2
+ + κΣ̃ = O(e(4+4 s +4

√
3(1−s2)−ε)τ )

as τ → −∞, for every ε > 0.
Under the additional restriction that s ∈ (−1, 1), there is for each ε > 0

a τε > −∞ such that τ ≤ τε implies

e(2+2 s +2
√

3(1−s2)+ε)τ ≤ |Δ|,
e(2+2 s +2

√
3(1−s2)+ε)τ ≤ |N+|.

Remark 6.9. As a consequence of this result, one finds that in the setting of
this lemma

1
3
Σ̃N2

+ − Δ2 = (Σ2
+ +

κ

3
Σ̃)Ã = O(e(8+8 s +4

√
3(1−s2)−ε)τ )

both for Ã = 0 and for Ã > 0.
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Proof of Lemma 6.8. If s = −1, then due to Propositions 5.1 and 5.2 the
solution is the constant orbit for which all the required properties hold. Let us
therefore assume s ∈ (−1, 1). It follows from Lemma 6.7 that for sufficiently
negative τ

|Δ + r̂N+| ≤ e(2+2 s +2
√

3(1−s2)−ε)τ ,

with r̂ as in Eq. (28). In particular r̂ > 0, which implies that Δ and r̂N+ have
the same sign and yields the upper bound of Δ and N+ in the statement. In
case s = 1, we can use the same argument with r̂ replaced by ε̂.

Comparing the decay of N+ with the decay Ã = O(e(4+4 s −ε)τ ) from
Lemma 6.5, we find

Ñ =
1
3
(N2

+ − κÃ) = O(e(4+4 s −ε)τ ).

Due to its definition (15), the quantity q inherits its convergence rate either
from the decay of Ω as in Eq. (23) or from the one of Ñ + Ã, whichever is
slower:

q = 2(1 − Ã − Ñ) − 3
2
(2 − γ)Ω = 2 + O(e(Π−ε)τ )

for Π := min(6 − 3γ, 4 + 4 s). Vacuum is defined by Ω = 0, and one sees that
the statement holds if one sets Π := 4 + 4 s in this case. Using the above
information in the evolution equations (5) for Σ+ and Σ̃ yields

Σ′
+ = O(e(Π−ε)τ ), Σ̃′ = O(e(Π−ε)τ )

and thus gives the convergence rates for Σ+ and Σ̃.
Writing the constraint equation as in (25) and applying the convergence

rates of Σ+ and Σ̃, one sees that

Σ̃N2
+ − 3Δ2 = (3Σ2

+ + κΣ̃)Ã = (3 s2 +κ(1 − s2) + O(e(Π−ε)τ ))Ã. (30)

The left-hand side is of order O(e(4+4 s +4
√

3(1−s2)−ε)τ ) due to the above. The
right-hand side—if non-vanishing—consists of the bracket with its explicitly
given decay and the factor Ã which—if non-vanishing—decays at most as
e(4+4 s +ε)τ , see Lemma 6.5. In order for Eq. (30) to be consistent, either Ã = 0
or 3 s2 +κ(1 − s2) = 0 has to hold.

For the term in the bracket, one further computes from the evolution
equations (5) and Ñ = (N2

+ − κÃ)/3 that

(3Σ2
+ + κΣ̃)′ = 6Σ+Σ′

+ + κΣ̃′

= 6(q − 2)Σ2
+ − 12Σ+Ñ + 2κ(q − 2)Σ̃ − 4κΣ+Ã − 4κΔN+

= 2(q − 2)(3Σ2
+ + κΣ̃) − 4Σ+N2

+ − 4κN+Δ

= 2(q − 2)(3Σ2
+ + κΣ̃) − 4N+(Σ+N+ + κΔ).

In Lemma 6.6, the function

R(τ) =
∫ τ

−∞
(2 − q)ds
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is found to be well defined; hence, one obtains
d
dτ

(e2R(3Σ2
+ + κΣ̃)) = −e2R4N+(Σ+N+ + κΔ),

and consequently

e2R(3Σ2
+ + κΣ̃) = 3 s2 +κ(1 − s2) −

∫ τ

−∞
e2R4N+(Σ+N+ + κΔ)ds

= 3 s2 +κ(1 − s2) + O(e(4+4 s +4
√

3(1−s2)−ε)τ )

due to the above. If Ã > 0, then the constant term on the right-hand side
vanishes due to our previous arguments, and one can conclude that

3Σ2
+ + κΣ̃ = O(e(4+4 s +4

√
3(1−s2)−ε)τ ).

This yields that the right-hand side of Eq. (25)
1
3
Σ̃N2

+ − Δ2 =
(
Σ2

+ +
κ

3
Σ̃
)

Ã

decays exponentially to order at least 8+8 s +4
√

3(1 − s2)−ε, both for Ã = 0
and Ã > 0: In the first case, the right-hand side vanishes identically, while in
the latter case we have determined the decay properties for both factors on
the right-hand side individually.

It remains to show the lower bound for Δ and N+ in case s ∈ (−1, 1).
From the last argument we conclude that

1
3
Σ̃
(

N+

Δ + r̂N+

)2

−
(

Δ
Δ + r̂N+

)2

=
(Σ2

+ + κ
3 Σ̃)Ã

(Δ + r̂N+)2
→ 0

as τ → −∞, due to the lower bound on the denominator found in Lemma 6.7.
As 1−s2 > 0, the variable Σ̃ is bounded away from zero for sufficiently negative
times. If one of the two squared terms tends to zero along a time sequence, so
does the other one (along the same time sequence), which would imply that

Δ
Δ + r̂N+

+ r̂
N+

Δ + r̂N+
→ 0,

a contradiction. Consequently, both

| Δ
Δ + r̂N+

| and | N+

Δ + r̂N+
|

are bounded from below by a positive constant for τ ≤ τε sufficiently negative.
This gives the lower bounds on Δ and N+ and concludes the proof. �

Lemma 6.10. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (s, 1 − s2, 0, 0, 0) with s ∈ [−1, 1]. Assume that Δ = N+ = 0 along the orbit.
Then

Ã(3 s2 +κ(1 − s2)) = 0
and

Σ+ = s +O(e(Π−ε)τ ),

Σ̃ = 1 − s2 +O(e(Π−ε)τ ),
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Ñ = O(e(4+4 s −ε)τ ),

q = 2 + O(e(Π−ε)τ ),

as τ → −∞, for every ε > 0. Here Π := min(6 − 3γ, 4 + 4 s) if Ω > 0, and
Π := 4 + 4 s if Ω = 0.

Proof. The first equation follows immediately from the constraint equation (25)
for τ → −∞. For the decay properties, there is nothing to show for s = −1, as
this is the constant orbit due to Propositions 5.1 and 5.2. In the other cases,
one simplifies Eq. (7) for Ñ , Eq. (15) for q, and the evolution equations (5)
for Σ+ and Σ̃ using Δ = N+ = 0 to find

Ñ = − 1
3
κÃ,

q = 2
(

1 − Ã +
1
3
κÃ

)

− 3
2
(2 − γ)Ω,

Σ′
+ = (q − 2)Σ+ +

2
3
κÃ,

Σ̃′ = 2(q − 2)Σ̃ − 4Σ+Ã,

then inserts the decay of Ã and Ω from Lemma 6.5 and Eq. (23), respectively,
to conclude the proof. �

For an orbit with ΔN+ ≥ 0 for sufficiently negative times, there is no a
priori restriction on where its limit point on the Kasner parabola is located
with respect to Taub 2. In the case of opposite signs, the limit point has to be
situated to the right of Taub 2, as the next lemma shows.

Lemma 6.11. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (s, 1−s2, 0, 0, 0). If ΔN+(τk) < 0 for a sequence τk → −∞, then s ∈ (1/2, 1].

Proof. As Σ+ ∈ [−1, 1] due to Remark 3.3, the limit value s is contained
in the same interval. The case s = −1 can be excluded by Propositions 5.1
and 5.2. Due to Lemma 6.4 and under the assumption that s ∈ (−1, 1), we
know that ΔN+ has a fixed sign for sufficiently negative τ ; hence, it is enough
to show that orbits with ΔN+(τ) < 0 for τ ≤ τ0 cannot converge to a Kasner
point with s ∈ (−1, 1/2].

Consider first the case −1 < s < 1/2 and recall from Lemma 6.7

|Δ − r̂N+| ≥ e(2+2 s −2
√

3(1−s2)+ε)τ

for τ sufficiently negative, where r̂ is as in Eq. (28). The bracket in the exponent
is strictly negative for sufficiently small ε, which means that |Δ − r̂N+| grows
exponentially as τ → −∞. This contradicts the fact that Δ and N+ converge
to zero.

We can therefore assume that s = 1/2. One finds the special value r̂ = 1/2
and notices

2 + 2 s −2
√

3(1 − s2) = 0.

Hence,
|2Δ − N+| ≥ eετ
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for τ sufficiently negative. This estimate holds for Δ and N+ individually, as the
following argument shows: The constraint equation (25) can be reformulated
into

(3Σ2
+ + κΣ̃)Ã = Σ̃N2

+ − 3Δ2

=
(

Σ̃N+ − 3
4
N+ +

3
4
N+ − 3

2
Δ
)

N+ +
3
2
(N+ − 2Δ)Δ.

The right-hand side divided by 3(N+ − 2Δ)/4 equals
(

4(Σ̃ − 3
4 )

3(N+ − 2Δ)
N+ + 1

)

N+ + 2Δ = (1 + f3)N+ + 2Δ,

with an asymptotically vanishing function f3, while the left-hand side divided
by the same expression decays exponentially to order O(e(4+4 s −2ε)τ ) due to
Lemma 6.5. This yields

|N+| ≥ eετ , |Δ| ≥ eετ .

Using the definition of Ñ , the decay of Ã from Lemma (6.5), and Eq. (15)
for q, one additionally finds

Ñ ≥ eετ , 2 − q ≥ eετ .

The rest of the proof aims at constructing a contradiction to the slow
decay behaviour of N+. This becomes possible by considering the evolution
equations in more detail and relating the decay of several quantities. One starts
by noting that Taylor expansion of the square root applied to the constraint
equation (25) yields

Δ = −
√

3
3

Σ̃1/2N+ + O(e(6−2ε)τ ), (31)

where we used Lemma 6.5, and the sign stems from our assumption ΔN+ <
0. We then multiply the constraint equation (8) by N2

+ and reformulate the
resulting expression using Eq. (7) defining Ñ and Eq. (15) in the form

Ñ =
1
2
(2 − q) − Ã − 3

4
(2 − γ)Ω

to find

Δ2N2
+ = Σ̃ÑN2

+ − Σ2
+ÃN2

+

= 3Σ̃Ñ2 + κΣ̃ÃÑ − Σ2
+ÃN2

+

=
3
4
(2 − q)2Σ̃ + O(e(6−3γ−ε)τ ).

The last line follows from convergence to the point Taub 2, i. e. s = 1/2, in
combination with Lemma 6.5: Ã decays as O(e(6−ε)τ ), which is faster than the
decay of Ω, given by O(e(6−3γ−ε)τ ). Using once more Taylor expansion of the
square root yields

ΔN+ = −
√

3
2

(2 − q)Σ̃1/2 + O(e(6−3γ−2ε)τ ).
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In the next step one determines the behaviour of Σ+ and Σ̃. The evolution
of Σ+ + 1 has been computed in (27). With the function R defined as in
Lemma 6.6, integration of (eR(Σ+ + 1))′ yields

eR(Σ+(τ) + 1) =
3
2

+
∫ τ

−∞

(

2Ã +
3
2
(2 − γ)Ω

)

eRds,

and thus
Σ+ + 1 =

3
2
e−R(τ) + O(e(6−3γ−2ε)τ ). (32)

For Σ̃, one finds

Σ̃′ = 2(q − 2)Σ̃ − 4ΔN+ − 4Σ+Ã

= 2(q − 2)(Σ̃ −
√

3Σ̃1/2) + O(e(6−3γ−2ε)τ ).

Hence,

(Σ̃1/2 −
√

3)′ =
1
2

Σ̃′

Σ̃1/2
= (q − 2)

(
Σ̃1/2 −

√
3
)

+ O(e(6−3γ−2ε)τ ),

from which one concludes
d
dτ

(
eR(Σ̃1/2 −

√
3)
)

= O(e(6−3γ−2ε)τ ).

Integration yields

Σ̃1/2 −
√

3 = −
√

3
2

e−R(τ) + O(e(6−3γ−2ε)τ ). (33)

One can eliminate R using a linear combination of Eqs. (32) and (33) and
finds

Σ+ +
√

3Σ̃1/2 − 2 = O
(
e(6−3γ−2ε)τ

)
. (34)

Now, we consider the evolution of N+. Due to Eqs. (31) and (34) and the
slow decay of N+, one finds

N ′
+ = (q + 2Σ+)N+ + 6Δ

= (q + 2Σ+ − 2
√

3Σ̃1/2)N+ + O(e(6−2ε)τ )

= (q − 2 + 4Σ+ − 2 + O(e(6−3γ−2ε)τ ))N+ + O(e(6−2ε)τ )

= (q − 2 + 4Σ+ − 2 + O(e(6−3γ−3ε)τ ))N+,

which, recalling the discussion of R in the proof of Lemma 6.6, implies that
there is a function f4 which is integrable on (−∞, 0) and satisfies

N ′
+ = (4Σ+ − 2 + f4)N+.

Set
F4(τ) :=

∫ τ

−∞
f4(s)ds

and compute
d
dτ

(e−F4N+) = (4Σ+ − 2)e−F4N+.

As Σ′
+ ≤ 0 asymptotically due to Lemma 6.3, every solution converging to

the point Taub 2 satisfies 4Σ+ ≤ 2, which means that the function |e−F4N+|
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increases as τ → −∞. It follows that N+ does not converge to 0, a contradic-
tion. �

With the results found above, we are finally in a position to prove Propo-
sition 6.2.

Proof of Proposition 6.2. In case s = −1, the solution is the constant solution
(Propositions 5.1 and 5.2), for which the statement trivially holds. Otherwise,
the decay of Ω and Ã follows from Eq. (23) and Lemma 6.5. According to
Lemma 6.4, there are three cases to be considered regarding the sign of ΔN+.
As s ∈ (−1, 1/2], the case ΔN+ < 0 is excluded by Lemma 6.11, and the
remaining two cases are discussed in Lemmas 6.8 and 6.10. �

In the proof of the previous lemma, we have discussed the asymptotic
behaviour of orbits converging to a Kasner point to the left of Taub 2, as
τ → −∞. In particular, we could exclude ΔN+ < 0 asymptotically. For orbits
converging to a Kasner point to the right of the point Taub 2, i. e. with Σ+

converging to s ∈ (1/2, 1], we cannot exclude the negative sign. This stems
from the fact that the non-positive eigenvalue 2 + 2 s−2

√
3(1 − s2) which

was used to construct a contradiction in the proof of Lemma 6.11 becomes
positive when changing from the Kasner arc to the left of Taub 2 to the one
on the right. Orbits which satisfy ΔN+ < 0 asymptotically and converge
to a point on the Kasner parabola to the right of Taub 2 exist, and as in
the case of ΔN+ > 0 asymptotically, one finds that the rates of convergence
are related to eigenvalues of the linearised evolution equation: For ΔN+ > 0
asymptotically, we found exponential decay of order 2 + 2 s +2

√
3(1 − s2) (see

Proposition 6.2), while for ΔN+ < 0 asymptotically, we obtain exponential
decay of order 2 + 2 s −2

√
3(1 − s2).

Lemma 6.12. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (s, 1 − s2, 0, 0, 0) with s ∈ (1/2, 1]. Assume that ΔN+(τ) < 0 for all τ ≤ τ0.
Then

Σ+ = s +O(e(Π−ε)τ ),

Σ̃ = 1 − s2 +O(e(Π−ε)τ ),

Δ = O(e(2+2 s −2
√

3(1−s2)−ε)τ ),

N+ = O(e(2+2 s −2
√

3(1−s2)−ε)τ ),

Ñ = O(e(4+4 s −4
√

3(1−s2)−ε)τ ),

q = 2 + O(e(Π−ε)τ )

as τ → −∞, for every ε > 0. Here Π := min(6 − 3γ, 4 + 4 s −4
√

3(1 − s2)) if
Ω > 0, and Π := 4 + 4 s −4

√
3(1 − s2) if Ω = 0.

Under the additional restriction that s ∈ (1/2, 1), there is for each ε > 0
a τε > −∞ such that τ ≤ τε implies
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e(2+2 s −2
√

3(1−s2)+ε)τ ≤ |Δ|,
e(2+2 s −2

√
3(1−s2)+ε)τ ≤ |N+|.

Proof. By assumption, we know that s ∈ (1/2, 1]. As in the beginning of
the proof of Lemma 6.8, we conclude the upper bounds for Δ and N+ from
Lemma 6.7.

The decay for Ω and Ã has been determined in Eq. (23) and Lemma 6.5
independently of the sign of ΔN+. In particular, Ã decays faster than Δ2

and N2
+, and consequently the evolution is no longer dominated by Ã, but

rather by those two variables. More precisely

Ñ =
1
3
(N2

+ − κÃ) = O(e(4+4 s −4
√

3(1−s2)−ε)τ ),

q − 2 = −2Ã − 2Ñ − 3
2
(2 − γ)Ω = O(e(Π−ε)τ ),

with Π defined as in the statement of the lemma. Using these properties in the
evolution equations for Σ+ and Σ̃ yields

Σ′
+ = O(e(Π−ε)τ ), Σ̃′ = O(e(Π−ε)τ ),

and hence gives the convergence rates for Σ+ and Σ̃.
In order to show the lower bounds for Δ and N+ in case s ∈ (−1, 1), one

considers the expression

1
3
Σ̃
(

N+

Δ − r̂N+

)2

−
(

Δ
Δ − r̂N+

)2

=
(Σ2

+ + κ
3 Σ̃)Ã

(Δ − r̂N+)2
,

which is a reformulation of the constraint equation (25). Due to the previ-
ous argument, the numerator of the right-hand side decays as O(e(4+4 s −ε)τ ),
while the denominator is bounded from below by e(2+2 s −2

√
3(1−s2)+ε)τ due to

Lemma 6.7. The left-hand side consequently converges to 0 as τ → −∞. We
conclude the same way we did when proving the lower bounds of Lemma 6.8.

�

So far, we have obtained exponential convergence rates with exponents
that always included an ε > 0. Such convergence rates hold for all variables.
As an immediate consequence, we can apply Lemma 4.7 in order to eliminate
the ε in the decay of Ã and Ω.

Lemma 6.13. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (s, 1 − s2, 0, 0, 0) with s ∈ [−1, 1). Then the following holds:

• Either Ã = 0 along the whole orbit, or there are constants cÃ, CÃ > 0
and τ0 such that τ ≤ τ0 implies

cÃe(4+4 s)τ ≤ Ã(τ) ≤ CÃe(4+4 s)τ .

• Either Ω = 0 along the whole orbit, or there are constants cΩ, CΩ > 0
and τ0 such that τ ≤ τ0 implies

cΩe(6−3γ)τ ≤ Ω(τ) ≤ CΩe(6−3γ)τ .
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Proof. In case s = −1, nothing has to be shown, as this is the constant orbit
(Propositions 5.1 and 5.2). For the remaining values, all that has to be shown
to apply Lemma 4.7 is that the expressions

2(q + 2Σ+), 2q − (3γ − 2)

appearing in the evolution equations of Ã and Ω converge at exponential rates.
From Lemma 6.4, one knows that ΔN+ has constant sign for sufficiently neg-
ative times. The case ΔN+ > 0 is covered in Lemma 6.8. If Δ = N+ = 0 along
the whole orbit, then Lemma 6.10 yields the result. In case ΔN+ < 0 expo-
nential convergence is shown in Lemma 6.12. Note, however, that this case of
opposite sign can be excluded for s ∈ (−1, 1/2] by Lemma 6.11. �

These more detailed estimates can now be used to determine the con-
vergence of the remaining variables in more detail. So far, we have found the
constant term and the slowest order of exponential convergence. This is im-
proved in the following way: We can relate the slowest order of exponential
convergence of several variables and determine which is the next non-vanishing
order.

We carry this out for orbits converging to the left of the point Taub 2, as
it is in this case that we make use of the more detailed convergence properties
in Sect. 8. We point out, however, that the same approach can also be used
on the remaining Kasner limit points.

Proposition 6.14. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) con-
verging to (s, 1 − s2, 0, 0, 0) with s ∈ (−1, 1/2). If Ã > 0, and if Δ and N+

do not both vanish identically along the solution, then s = ±√κ/(κ − 3), and
there are constants α > 0, ω ≥ 0, βΔ �= 0 and βN+ �= 0 such that

Δ = βΔe(2+2 s +2
√

3(1−s2))τ + O(e(2+2 s +2
√

3(1−s2)+Π−ε)τ ),

Ã = αe(4+4 s)τ + O(e(4+4 s +Π−ε)τ ),

N+ = βN+e(2+2 s +2
√

3(1−s2))τ + O(e(2+2 s +2
√

3(1−s2)+Π−ε)τ ),

Ñ = −κ

3
αe(4+4 s)τ + O(e(4+4 s +Π−ε)τ ),

q = 2 + 2α(
κ

3
− 1)e(4+4 s)τ − 3

2
(2 − γ)ωe(6−3γ)τ + O(e(2Π−ε)τ ),

as τ → −∞, for every ε > 0. Here Π := min(6 − 3γ, 4 + 4 s) if Ω > 0, and
Π := 4 + 4 s if Ω = 0, and irrespectively of whether Ω is positive or not

βΔ =
√

(1 − s2)/3βN+ .

Furthermore, if s �= 0, then

Σ+ = s +
ακ

6 s
e(4+4 s)τ − s

2
ωe(6−3γ)τ + O(e(2Π−ε)τ ), (35)

Σ̃ = 1 − s2 −αe(4+4 s)τ − (1 − s2)ωe(6−3γ)τ + O(e(2Π−ε)τ ); (36)
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otherwise,

Σ+ = O(e(4+4
√

3)τ ), (37)

Σ̃ = 1 − αe4τ − ωe(6−3γ)τ + O(e(2Π−ε)τ ). (38)

Additionally, either Ω ≡ 0 and then ω = 0, or

Ω = ωe(6−3γ)τ + O(e(6−3γ+Π−ε)τ )

with ω > 0.

Proof. It follows from Lemma 6.11 that ΔN+ > 0 for sufficiently negative
times, and Lemma 6.8 collects the convergence properties which we have ob-
tained so far. From the relation

Ã(3 s2 +κ(1 − s2)) = 0,

which was shown there, we find the special value for s. In particular, if κ > 0
then there are no solutions converging to a point on the Kasner parabola
with s ∈ (−1, 1/2). We now deduce more precise decay properties for the
individual variables.

For Ã, the decay established in Lemma 6.13 implies that e−(4+4 s)τ Ã is
bounded for sufficiently negative τ . As

(e−(4+4 s)τ Ã)′ = (2(q − 2) + 4(Σ+ − s))e−(4+4 s)τ Ã

and 2(q−2)+4(Σ+−s) = O(e(Π−ε)τ ), the left-hand side decays as O(e(Π−ε)τ ),
and one finds

e−(4+4 s)τ Ã(τ) = lim
τ→−∞ e−(4+4 s)τ Ã(τ) +

∫ τ

−∞
O(e(Π−ε)s)ds. (39)

Setting
α := lim

τ→−∞ e−(4+4 s)τ Ã(τ),

Eq. (39) is equivalent to

Ã = αe(4+4 s)τ + O(e(4+4 s +Π−ε)τ ).

The exact value of α is not known, only that it is positive due to Ã > 0. But
this form shows that there are no terms of exponential order between 4 + 4 s
and 4 + 4 s +Π. By the same method one finds that

Ω = ωe(6−3γ)τ + O(e(6−3γ+Π−ε)τ )

with a constant ω > 0, if not Ω ≡ 0 along the whole orbit.
The improved decay properties of Ã and Ω together with the ones from

Lemma 6.8 imply

Ñ =
1
3
(N2

+ − κÃ) = −κ

3
αe(4+4 s)τ + O(e(4+4 s +Π−ε)τ ),

q = 2(1 − Ã − Ñ) − 3
2
(2 − γ)Ω

= 2 + 2α
(κ

3
− 1

)
e(4+4 s)τ − 3

2
(2 − γ)ωe(6−3γ)τ + O(e(2Π−ε)τ ),
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as 4
√

3(1 − s2) ≥ 4 + 4 s if and only if s ∈ [−1, 1/2]. The evolution equations
for Σ+ and Σ̃ thus read
Σ′

+ = (q − 2)Σ+ − 2Ñ

= 2α

(
1

3
κ s − s +

1

3
κ

)

e(4+4 s)τ − sω
3

2
(2 − γ)e(6−3γ)τ + O(e(2Π−ε)τ ),

Σ̃′ = 2(q − 2)Σ̃ − 4ΔN+ − 4Σ+Ã

= 4α

(
1

3
κ − 1

3
κ s2 −1 + s2 − s

)

e(4+4 s)τ − 3ω(1 − s2)(2 − γ)e(6−3γ)τ + O(e(2Π−ε)τ ).

Integrating these expressions and making use of the relation s2 = κ/(κ − 3)
yields that for s �= 0 (or equivalently κ �= 0) one finds (35) and (36). In
case s = 0 and κ = 0, one obtains Eq. (38) for Σ̃, and

Σ+ = O(e(2Π−ε)τ ).

Note that 2Π ≤ 8 < 4 + 4
√

3. We are going to obtain a stronger estimate
further down.

To find the improved decay for the remaining variables Δ and N+, we
recall from the proof of Lemma 6.7 that

(Δ + r̂N+)′ =
(

2 + 2 s +2
√

3(1 − s2) +
f1Δ + f2N+

Δ + r̂N+

)

(Δ + r̂N+), (40)

which there appeared as Eq. (29). Here, one has r̂ =
√

(1 − s2)/3, and a
closer look at the computation carried out in that proof reveals that the two
functions f1, f2 which vanish asymptotically as τ → −∞ have the form

f1 = 2q − 4 + 2Σ+ − 2 s,

f2 = r̂q − 2r̂ + 2r̂Σ+ − 2r̂ s +2Σ̃ − 2(1 − s2) − 2Ñ .

Due to the previous results, both functions decay as O(e(Π−ε)τ ). As Δ and
r̂N+ have the same sign, we see that the quotient with the functions f1, f2 in
Eq. (40) inherits the asymptotic behaviour of these two functions, i. e. decays
exponentially to order O(e(Π−ε)τ ). Hence, we have

(
e−(2+2 s +2

√
3(1−s2))τ (Δ + r̂N+)

)′

= e−(2+2 s +2
√

3(1−s2))τ (Δ + r̂N+)O(e(Π−ε)τ ),

and find
e−(2+2 s +2

√
3(1−s2))τ (Δ + r̂N+) = β + O(e(Π−ε)τ ),

for some constant β �= 0 having the same sign as Δ and N+. Consequently, we
obtain

(Δ + r̂N+) = βe(2+2 s +2
√

3(1−s2))τ + O(e(2+2 s +2
√

3(1−s2)+Π−ε)τ ). (41)
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We further see from Remark 6.9 that
⎛

⎝

√

Σ̃
3

N+ + Δ

⎞

⎠

⎛

⎝

√

Σ̃
3

N+ − Δ

⎞

⎠ =
1
3
(3Σ2

+ + κΣ̃)Ã

= O(e(8+8 s +4
√

3(1−s2)−ε)τ ).

The very first bracket is of order e(2+2 s +2
√

3(1−s2))τ and not faster. Thus,

Δ = r̂N+ + O(e(2+2 s +2
√

3(1−s2)+Π−ε)τ ).

Together with Eq. (41), this implies the decay expressions for Δ and N+ in
the statement, with βΔ = r̂βN+ .

It remains to show Eq. (37). We know from the above that Ñ = N2
+/3 =

O(e(4+4
√

3)τ ). Using the function R defined as in Lemma 6.6, we integrate

(Σ+eR)′ = −2ÑeR = O(e(4+4
√

3)τ )

and obtain
Σ+eR = O(e(4+4

√
3)τ ).

As the function R is non-negative, this gives the decay for Σ+ and concludes
the proof. �

7. Asymptotics at Taub 2

In this section, we determine precisely which orbits converge to the point
Taub 2, i. e. which solutions to Eqs. (5)–(11) satisfy

lim
τ→−∞(Σ+, Σ̃,Δ, Ã, N+)(τ) =

(
1
2
,
3
4
, 0, 0, 0

)

.

We have to restrict ourselves to γ ∈ [0, 2) in order to apply our results from
the previous section. From Proposition 6.2, we know that along every solution
converging to the point Taub 2

Ã(κ + 1) = 0

has to hold, and we found precise decay conditions for all variables.
We deduce in the present section that only locally rotationally symmetric

models of Bianchi types I, II, and VI−1 are possible. In order to prove this
statement, we show that the invariant set consisting of these three Bianchi
types, compare Table 3 and Definition 3.4, contains all solution converging to
the point Taub 2.

Proposition 7.1. Let γ ∈ [0, 2) and consider a solution to (5)–(11) which sat-
isfies

lim
τ→−∞(Σ+, Σ̃,Δ, Ã, N+)(τ) =

(
1
2
,
3
4
, 0, 0, 0

)

.

Then the solution is contained in the invariant set

3Σ2
+ = Σ̃ Σ+N+ = Δ.
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The proof revolves around the function

f = (3Σ2
+ − Σ̃)2 + 2(Σ+N+ − Δ)2.

It is constructed in such a way that its zero set characterises the invariant set
from Proposition 7.1. The proof consists of showing that the function vanishes
along all orbits converging to the point Taub 2. This is an adaptation of an
approach which has already been used successfully in [14, Sect. 4] in the case of
Bianchi A vacuum models. However, our method of showing that the function f
indeed vanishes is slightly different.

Proof. The derivatives of the constituents of f have been computed in (17).
Combining this with

Ã(κ + 1) = 0
which holds due to Proposition 6.2, this immediately yields that the set f = 0
is invariant. From the definition of f as the sum of two squares we see that
either f ≡ 0 or f > 0. In the first case, the statement follows. Assume therefore
that f > 0 holds.

Let us have a closer look at the derivatives of the two terms which com-
pose f, see Eq. (17). As

2Σ+ → 1, N+ → 0, q → 2,

due to the assumption on the limit point, we conclude that

f′ ≤ ζf,

for some function ζ which is integrable on (−∞, T ] for some sufficiently neg-
ative time T . This follows from the convergence rates obtained in Proposi-
tion 6.2. Consequently, integration yields

f(T ) ≤ eC f(τ)

for all τ ≤ T , where C > 0 is a constant. Due to f(τ) → 0 as τ → −∞, this
implies f(T ) = 0, a contradiction. �

As a direct consequence of Proposition 7.1, the following theorem char-
acterises the models whose orbits converge to the Kasner point Taub 2.

Theorem 7.2. Let γ ∈ [0, 2) and consider a solution to Eqs. (5)–(11) converging
to (1/2, 3/4, 0, 0, 0) as τ → −∞. Then this solution is one of the following:

• Bianchi I LRS, i. e. Δ = Ã = N+ = 0, 3Σ2
+ = Σ̃,

• Bianchi II LRS, i. e. Ã = 0, 3Σ2
+ = Σ̃, Σ+N+ = Δ,

• Bianchi VI−1 LRS, i. e. κ = −1, Ã > 0, 3Σ2
+ = Σ̃, Σ+N+ = Δ.

8. Asymptotics to the Left of Taub 2

In this section, we discuss the set of solutions converging to a Kasner point
to the left of Taub 2 as τ → −∞, i. e. with a limit point (s, 1 − s2, 0, 0, 0)
satisfying −1 < s < 1/2. We have shown in Proposition 6.2 that for such
orbits either Ã = 0 has to hold, or the limit value s and the parameter κ
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have to satisfy the relation 3 s2 +κ(1− s2) = 0. This is the same restriction we
appealed to in the previous section, when discussing convergence to the point
Taub 2. In other words, for a given κ, any solution to Eqs. (5)–(11) converging
to a point (s, 1−s2, 0, 0, 0) on the Kasner parabola with −1 < s < 1/2 is either a
Bianchi A solution or has to converge to the limit point with s = ±√κ/(κ − 3).
This last special case, which can only occur if κ ≤ 0, is discussed in more detail
in this section, using concepts, notation, and results from dynamical systems
theory which we recall in “Appendix B”.

The object we are interested in is the submanifold called centre-unstable
manifold Cu, as it contains the maximal negatively invariant set A−(U) of a
suitable open neighbourhood U of the point (s, 1 − s2, 0, 0, 0). This latter set
consists of all points which remain in U under the evolution in the negative time
direction. In particular, all solutions converging to a point in U as τ → −∞
are contained in this set A−(U) for sufficiently negative times.

To determine the properties of the centre-unstable manifold Cu, we con-
sider the linearised evolution equations in the extended five-dimensional state
space, by which we mean the linear approximation of the evolution equa-
tions (5), with q and Ñ defined as in Eqs. (6) and (7), but without assuming the
constraint equations (8) and (9). The corresponding matrix is a linear trans-
formation of the five-dimensional tangent space to R

5 at equilibrium points of
the evolution. We give the explicit form of the linear mapping and its eigen-
vectors and eigenvalues in “Appendix A.1”. For every Kasner point to the
left of Taub 2, there are exactly four eigenvectors such that the corresponding
eigenvalues are non-negative.

The centre-unstable manifold Cu which we want to understand is tangent
to the set Em

c ⊕ Em
u which in its turn is spanned by the eigenvectors to

eigenvalues with non-negative real part. The information on the number of such
eigenvalues therefore translates into properties of the centre-unstable manifold,
and thus into information on the set which solutions converging to a Kasner
point to the left of Taub 2 have to eventually be contained in. We find the
following statement: There is a four-dimensional manifold in R

5 such that
every solution converging to a point (s, 1 − s2, 0, 0, 0) on the Kasner parabola
with −1 < s < 1/2 is contained in this manifold for sufficiently negative times.

Proposition 8.1. Consider the evolution equations (5)–(7) in the extended state
space, i. e. without assuming the constraint equations (8)–(9). If κ ≤ 0 and
s := ±√κ/(κ − 3) ∈ (−1, 1/2), then there is a neighbourhood U of the point
(s, 1 − s2, 0, 0, 0) and a four-dimensional C1 submanifold MK of R5 in U with
the following properties:

• MK contains the point (s, 1 − s2, 0, 0, 0) and in this point is tangent to
those eigenvectors of the linearised evolution equations in the extended
five-dimensional space, given in “Appendix A.1”, which correspond to
eigenvalues with non-negative real part.

• Points in U are either contained in MK or their evolution under Eqs. (5)–
(7) leaves U as τ → −∞.
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Remark 8.2. We see in the proof that we could change the regularity of the
manifold MK to Cr, for some r < ∞. Further, as all eigenvalues on K are
real, the manifold MK is tangent to those eigenvectors which correspond to
non-negative eigenvalues.

Remark 8.3. This statement in particular applies to every solution to the
evolution equations (5)–(11) which converges to the point (s, 1 − s2, 0, 0, 0), as
τ → −∞, with limit value s := ±√κ/(κ − 3) ∈ (−1, 1/2): There is a time τ0

such that the solution is contained in the neighbourhood U for all times τ ≤ τ0.
Therefore, the solution has to be contained in the submanifold MK for τ ≤ τ0.

Proof of Proposition 8.1. Every point on the Kasner parabola is a zero-dimen-
sional manifold consisting of equilibrium points of the evolution equations. Us-
ing the notation of “Appendix B”, we can therefore apply Theorem B.3 to this
zero-dimensional submanifold of equilibrium points to find a centre-unstable
manifold Cu near this point, and a neighbourhood U of (s, 1 − s2, 0, 0, 0) such
that the maximal negatively invariant set A−(U) is contained in Cu. The
point (s, 1−s2, 0, 0, 0) is contained in the manifold Cu by Definition B.2. With-
out loss of generality, we therefore restrict the manifold to U .

By definition, the manifold Cu is tangential to Em
c ⊕Em

u, which are the
subspaces of the tangent space at (s, 1 − s2, 0, 0, 0) associated with eigenvalues
on the imaginary axis and in the right half-plane:

0 2(1 + s +
√

3(1 − s2)) 4(1 + s) 3(2 − γ).

The evolution equations (5) are polynomial and consequently C∞. We can
therefore apply Theorem B.3 with some finite r, for example r = 1. Conse-
quently, Cu is a four-dimensional submanifold, and it has the requested prop-
erties. �

Remark 8.4. This statement could have been achieved using results from the
theory of dynamical systems which are less powerful than the one we used
here, Theorem B.3, as we only apply it to zero-dimensional manifolds and
the individual points they contain. However, in Sect. 10, we make use of this
theorem again, this time using it to a fuller extent.

The previous statement gives information on the centre-unstable mani-
fold corresponding to the evolution in the extended state space. In order to
understand the evolution in the non-extended state space, i. e. restricted to
the set of points such that the constraint equations (8) and (9) are satisfied,
we need to understand the relation between the manifold we found and the
constraint surface defined by Eq. (8). More precisely, we are interested in the
codimension of their intersection, which is what we determine in Theorem 8.5.
As the constraint equation (8) defines a set which becomes singular in certain
points, see Remark 3.5, we cannot deduce this codimension solely from the
knowledge about normal and tangent directions derived above. In addition,
we use the convergence behaviour of the individual variables from Proposi-
tion 6.14, where we determined the slowest order exponential term and the
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next non-vanishing one, for convergence to Kasner points to the left of the
point Taub 2.

Theorem 8.5. Let 0 �= κ ∈ R, γ ∈ [0, 2) and consider the set of solutions to
Eqs. (5)–(11) converging to (s, 1 − s2, 0, 0, 0) with s ∈ (−1, 1/2), as τ → −∞.
If Ã > 0, then

s = ±
√

κ

κ − 3
and the solution is contained in one of the following subsets:

• The invariant set satisfying Ã > 0, Δ = 0 = N+, 3Σ2
+ + κΣ̃ = 0.

• A countable union of C1 submanifolds satisfying Ã > 0, and Δ, N+ not
both vanishing identically. The submanifolds are contained either in the
set of non-vacuum solutions or the set of vacuum solutions, and in the
respective sets have codimension at least one.

Proof. The relation between the parameter κ and the value of s is an imme-
diate consequence of Proposition 6.2, as we assume Ã > 0. If the solution
satisfies Δ = 0 = N+ at some time, then it does so at all times, as this prop-
erty is invariant under the evolution equations (5). The relation between Σ+

and Σ̃ follows from Eq. (8), which concludes the proof for the first case. It thus
remains to calculate the maximal dimension and codimension of the subman-
ifolds in the second case.

Consider a solution as in the statement which satisfies that Δ and N+

do not both vanish identically. Due to convergence, the solution is contained
in the neighbourhood U from the previous proposition for sufficiently negative
times, and therefore the solution has to lie in the submanifold MK for suffi-
ciently negative times. At the same time, the solution satisfies the constraint
equation (8). We therefore have to show that the constraint surface and the
submanifold MK either have an empty intersection or intersect transversally
in a set of the correct dimension, when additionally restricted to Ã > 0 and Δ,
N+ not both vanishing identically. To do this, we compare the normal direc-
tion of the constraint surface to the vectors spanning MK. By counting the
number of spanning vectors which are orthogonal to the gradient direction, we
find the dimension and properties of the set in question.

As we consider solutions with Ã > 0 and Δ, N+ not both vanishing, and

κ =
3 s2

s2 −1
< 0

by Proposition 6.2, we conclude from Remark 3.5 that the gradient of the
constraint equation does not vanish along such solutions. Consequently, the set
of points defined by Eq. (8) is smooth along the solutions under consideration.
However, due to the special value of κ the constraint surface becomes singular
in the limit point (s, 1 − s2, 0, 0, 0). We therefore cannot simply compute the
scalar product between the (vanishing) gradient of the constraint equation and
the vectors spanning the submanifold MK to show transversality, at least not in
the limit point itself. Instead, we consider the gradient in its general form (18),
but replace the fourth component using the constraint equation (25) to obtain
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(

−2Σ+Ã ,
1
3
(N2

+ − κÃ) , −2Δ , − 1
3Ã

(Σ̃N2
+ − 3Δ2) ,

2
3
Σ̃N+

)

.

Applying the improved convergence properties found in Proposition 6.14 as
well as Remark 6.9 shows that the decay behaviour of this gradient is

(
−2 s,−κ

3
, 0, 0, 0

)
· αe(4+4 s)τ + O(e(min(2+2 s +2

√
3(1−s2),4+4 s +Π−ε))τ ),

where we used the special value of κ. The last term here denotes a vector in R
5

whose every component has the denoted decay. This decay is faster than the
one of the first vector, which decays to order 4 + 4 s. Consequently, we can
normalise the gradient vector by multiplying with e−(4+4 s)τ/α to eliminate
the highest order of decay. Rescaling in this manner gives a well-defined non-
vanishing gradient direction even up to the singular point (s, 1 − s2, 0, 0, 0).

Let us now turn to MK. In the limit point (s, 1 − s2, 0, 0, 0), this four-
dimensional submanifold is spanned by the eigenvectors to non-negative eigen-
values, see “Appendix A.1” for the explicit form of these eigenvectors. Direct
computation of the scalar product shows that the rescaled gradient of the
constraint equation, i. e. the vector (−2 s,−κ/3, 0, 0, 0), is orthogonal to the
eigenvectors to eigenvalues 2+2 s ±2

√
3(1 − s2), 4(1+s) and 3(2−γ), but not

the eigenvector to 0.
Similarly, we can compare the spanning directions of MK to the normal

direction of the set Ω = 0, i. e. the gradient of Ω. Due to Eq. (10), this gradient
is (

−2 s,−1, 0,
κ

3
− 1, 0

)

for the point on the Kasner parabola K with Σ+ = s. Direct computation of
the scalar product shows that this gradient is orthogonal to the eigenvectors
to eigenvalues 2 + 2 s ±2

√
3(1 − s2), 4(1 + s) and 0, but not the eigenvector

to 3(2 − γ).
As the manifold MK is C1, the spanning vectors depend continuously

on the point. Consequently, in a sufficiently small neighbourhood of the point
(s, 1−s2, 0, 0, 0), the manifold MK and the constraint surface intersect transver-
sally in a submanifold of dimension at most three if they intersect at all. The
solutions for non-vacuum, i. e. Ω > 0, form a set of dimension four in the
constraint surface, see also Table 1, as κ < 0 by assumption. Hence, in a suf-
ficiently small neighbourhood the intersection of the manifold MK and the
constraint surface is of codimension at least one in the set of all non-vacuum
solutions.

For vacuum solutions, we realise that one of the four eigenvectors in
question is non-orthogonal to the gradient of Ω, and another one is non-or-
thogonal to the rescaled gradient of the constraint equation. Consequently,
restricting the manifold MK first to the set Ω = 0 and then additionally to the
constraint surface by an argument similar to the one for Ω > 0 yields that in a
sufficiently small neighbourhood of the point (s, 1− s2, 0, 0, 0), the intersection
of the manifold MK, the constraint surface and the set Ω = 0 is a submanifold
of dimension at most two. As all vacuum solutions form a set of dimension
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three, in a sufficiently small neighbourhood this intersection is of codimension
at least one in the set of all vacuum solutions.

We now apply the flow corresponding to the evolution equations and
integer times to this intersection manifold. As the flow is a diffeomorphism
coming from a polynomial evolution equation, the resulting set is a countable
union of C1 submanifolds of codimension at least one in the respective set of
solutions, and by construction contains all solutions satisfying the properties
listed in the statement. Further, the set Ω = 0 is invariant under the flow. �

Remark 8.6. In case κ = 0, we cannot apply the same reasoning, as the
improved convergence properties from Proposition 6.14 and the relation be-
tween βΔ and βN+ found in the same proposition yield that gradient (18) of
the constraint equation decays as

(

0, 0,−1, 0,

√
3

3

)

· 2βΔe(2+2
√

3)τ + O(e(2+2
√

3+Π−ε)τ ),

where we used Remark 6.9 for the fourth component. One can normalise this
vector by multiplication with e−(2+2

√
3)τ/(2βΔ), but the resulting direction

in the limit point (0, 1, 0, 0, 0) is orthogonal to all four eigenvectors to non-
negative eigenvalues. This means that the submanifold MK and the constraint
surface do not intersect transversally, but are tangent in the limit point. This
does not give any additional information on the set containing possible solu-
tions.

9. Asymptotics to the Right of Taub 2

In this section, we turn our attention to solutions with a limit point on the
Kasner parabola to the right of Taub 2, i. e. a limit point in K ∩ {Σ+ > 1/2}.
For such points, all eigenvalues but one are positive as soon as γ < 2. One can
therefore expect that this arc of equilibrium points acts as a source, even in
the extended state space, as mentioned by Hewitt–Wainwright in [10]. As one
considers an arc of equilibrium points, it is desirable to make a more thorough
analysis. We carry out this analysis, using not the signs of the eigenvalues but
the explicit evolution equations. In our understanding, an arc of the Kasner
parabola can be considered a source if for any point on this arc, every orbit
which enters a sufficiently small neighbourhood of that point also converges
to the Kasner parabola as τ → −∞, and the limiting point is close to that
particular point on the arc. Corollary 9.2 states that this holds for the arc of
the Kasner parabola which lies to the right of the point Taub 2, for vacuum
and inflationary matter models. In general, we are able to show that the Σ+

coordinate cannot differ too much.

Proposition 9.1. Let 1/2 < s̄ ≤ 1 and 0 < ε < s̄ − 1/2. Then there is a
neighbourhood U of (s̄, 1 − s̄2, 0, 0, 0) with the following properties: For every
solution to Eqs. (5)–(11) which intersects U at time τ0, the Σ+-value satisfies
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|Σ+(τ) − s̄| < ε

for all τ ≤ τ0.

This estimate holds in particular for the Σ+-value of every α-limit point
of the solution. In case one knows that all α-limit points satisfying Σ+ > 1/2
are located on the Kasner parabola, this immediately gives an even stronger
statement:

Corollary 9.2. Assume either vacuum or inflationary matter, i. e. either Ω = 0
or Ω > 0, γ ∈ [0, 2/3), let 1/2 < s̄ ≤ 1 and 0 < ε < s̄ − 1/2. Then there is a
neighbourhood U of (s̄, 1 − s̄2, 0, 0, 0) such that every solution to Eqs. (5)–(11)
which intersects U converges to a Kasner point (s, 1−s2, 0, 0, 0) with |s −s̄| < ε.

Proof. It follows from the previous proposition in combination with Proposi-
tion 4.2 and the fact that

Lκ ∩
{

Σ+ ≥ 1
2

}

= ∅
that the α-limit set of every such solution is contained in the Kasner parabola
K and does not intersect the plane wave equilibrium points Lκ. Due to Propo-
sition 6.1, the solution converges to a Kasner point (s, 1 − s2, 0, 0, 0), and the
estimate on s follows from applying Proposition 9.1 again. �
To prove the previous proposition, the main idea is to use the fact that to the
right of Taub 2, the Kasner parabola has a slope which is steeper than −1.
Then, one shows that one can bound solutions from below by some straight
line with this slope. This is the statement of Lemma 9.3 below and we provide
a visualisation in Fig. 3. As the convergence point has to lie above this line
but below the Kasner parabola, one gains control over where the convergence
point has to be situated exactly.

0 1

3/4

Σ+

Σ̃

1/2

T2
K

Σ̃(τ0)
Σ̃(τ0) − ε1

Σ+(τ0)

(Σ+, Σ̃)(τ0)

Figure 3. Visualisation of Lemma 9.3: For times τ ≤ τ0,
the projection of the solution to the Σ+Σ̃-plane has to be
contained in the shaded area
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Lemma 9.3. Consider a solution to Eqs. (5)–(11) such that Σ+(τ0) > 1/2 for
some fixed τ0, and let ε1 > 0. Then there is a δ = δ(ε1) > 0 such that Ã(τ0) < δ
implies

Σ+(τ) ≥ Σ+(τ0), Σ̃(τ) ≥ −Σ+(τ) + (Σ+ + Σ̃)(τ0) − ε1, Ã < δeτ−τ0 ,

for all τ ≤ τ0.

We visualise the two first inequalities of this statement in Fig. 3: Given
that the Σ+- and Σ̃-values are known at some time τ0, the solution at earlier
times τ ≤ τ0 has to be contained in the shaded area which is bounded by
the vertical Σ+ = const line, the straight line with slope −1 through the
point (Σ+(τ0), Σ̃(τ0) − ε1), and the Kasner parabola K.

Proof. The estimate for Σ+ is an immediate consequence of the monotonicity
shown in Lemma 6.3. It then follows that Σ+(τ) > 1/2 for all τ ≤ τ0, and
Eq. (15) implies

q = 2(Σ2
+ + Σ̃) +

1
2
(3γ − 2)Ω ≥ 2Σ2

+ − Ω ≥ −1
2

due to Remark 3.3. Using this estimate in the evolution equation for Ã, Eq. (5),
one finds

Ã(τ) ≤ Ã(τ0)eτ−τ0

for all τ ≤ τ0. Consequently, the estimate on Ã holds for every choice of δ.
To prove the remaining estimate, we fix a time τ1 ≤ τ0 and distinguish

between the two cases that ΔN+(τ1) ≥ 0 or ΔN+(τ1) < 0. We prove that in
both cases

(Σ+ + Σ̃)′(τ1) ≤ M

√

Ã(τ1), (42)

for some constant M > 0 independent of τ1. This estimate is then used to
conclude the proof.

We start with the case ΔN+(τ1) ≥ 0. As Σ+(τ) > 1/2 holds for all τ ≤ τ0

due to the estimate on Σ+, we find

(Σ+ + Σ̃)′(τ1) ≤ 0,

which gives the desired statement.
Next, we consider the case ΔN+(τ1) < 0. The constraint equation (8) in

the form

Δ2 =
1
3
Σ̃N2

+ −
(
Σ2

+ +
κ

3
Σ̃
)

Ã

implies that

|Δ| ≤
√

Σ̃
3

|N+| +

√
3 + |κ|

3

√
Ã,

using Σ+ ∈ [−1, 1] and Σ̃ ∈ [0, 1]. Due to the assumption on the sign of ΔN+,
this implies

0 < −ΔN+ ≤
√

Σ̃
3

N2
+ +

√
3 + |κ|

3
|N+|

√
Ã
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at time τ1. With this and Eq. (15) for q one computes, suppressing the time τ1

for readability, that

(Σ+ + Σ̃)′(τ1) = −2

3
(Σ+ + 1)N2

+ − 4

3
Σ̃N2

+ − 4ΔN+ − 3

2
(2 − γ)(Σ+ + 2Σ̃)Ω

− 2Ã
((

3 − κ

3

)
Σ+ + 2

(
1 − κ

3

)
Σ̃ − κ

3

)

≤ 4

3

(

−1

2
(Σ+ + 1) − Σ̃ +

√
3Σ̃

)

N2
+ − 3

2
(2 − γ)(Σ+ + 2Σ̃)Ω + f1

√
Ã,

for a function f1 which is bounded due to the compactness on the state space,
say

|f1| ≤ M

for some constant M > 0. The term containing Ω is non-positive. For the first
bracket, one easily sees that Σ+ ∈ [1/2, 1] and Σ̃ ∈ [0, 3/4] imply

−1
2
(Σ+ + 1) ∈

[

−1,−3
4

]

,

−Σ̃ +
√

3Σ̃ ∈
[

0,
3
4

]

;

hence, the term containing N2
+ is non-positive as well. In total, this implies

that
(Σ+ + Σ̃)(τ1)′ ≤ M

√
Ã.

We now integrate inequality (42) from τ < τ0 to τ0. Using the estimate
on Ã yields

(Σ+ + Σ̃)(τ) ≥ (Σ+ + Σ̃)(τ0) −
∫ τ0

τ

M

√

Ã(s)ds

≥ (Σ+ + Σ̃)(τ0) −
∫ τ0

τ

M
√

δe(s−τ0)/2ds

≥ (Σ+ + Σ̃)(τ0) − 2M
√

δ,

and setting δ := ε2
1(2M)−2 concludes the proof. �

Proof of Proposition 9.1. Set Ũ to be the neighbourhood of the limiting point
(s̄, 1 − s̄2, 0, 0, 0) that satisfies

|Σ+ − s̄| < ε.

One now constructs an even smaller neighbourhood U whose closure is con-
tained in Ũ and such that all orbits starting in this smaller neighbourhood are
contained in Ũ .

The construction proceeds as follows: Note that due to the restriction on
the state space, Eq. (9), one finds that

0 ≤ Σ2
+ + Σ̃ ≤ 1.

That is, the orbit projected to the (Σ+, Σ̃)-plane lies below the Kasner parabola,
which is the graph of a function with slope −2Σ+. For Σ+ in the interval
(1/2, 1), this slope is strictly less than −1 and decaying. One can therefore
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choose a constant d < 1− s̄2 such that the straight line with slope −1 through
(s̄, d)

Σ̃ − d = −(Σ+ − s̄) (43)
intersects the Kasner parabola at some s̄ < Σ+ < s̄ + ε. Let 0 < ε1 < min((1−
s̄2 − d)/2, ε), choose δ = δ(ε1) as in Lemma 9.3, and let U be the set defined
by

|Σ+ − s̄| < ε1, Σ+ + Σ̃ > s̄ + d + ε1, Ã < δ.

By Lemma 9.3, any orbit which is contained in U at time τ0 satisfies

Σ+(τ) ≥ Σ+(τ0) > s̄ − ε1,

Σ̃(τ) ≥ −Σ+(τ) + (Σ+ + Σ̃)(τ0) − ε1 > −Σ+(τ) + s̄ + d,

for all τ ≤ τ0. From the first inequality we conclude that Σ+(τ) > s̄ − ε at
all times τ ≤ τ0. The second inequality implies that the graph of the solution
lies above the straight line from Eq. (43). Both inequalities are visualised in
Fig. 3. Because the graph also has to lie below the Kasner parabola, but we
have chosen the constant d such that the straight line and the Kasner parabola
intersect at some s̄ < Σ+ < s̄ + ε, this implies that

Σ+(τ) < s̄ + ε

for all times τ ≤ τ0 and every α-limit point. This concludes the proof. �

10. Asymptotics Towards the Plane Wave Equilibrium Solutions

In this section, we use the theory of dynamical systems to determine the
qualitative behaviour of solutions converging to the plane wave equilibrium
points Lκ as τ → −∞. The statements are not qualitatively new, as certain
parts of Lκ have already been identified as ‘saddles’ or ‘sinks’ in [10]. Here, we
state and prove more detailed properties of solutions converging to Lκ. The
approach we use here is similar to the one in Sect. 8, where we discussed the
behaviour of solutions converging to a Kasner point situated to the left of the
point Taub 2.

Proposition 10.1. Consider the evolution equations (5)–(7) in the extended
state space, i. e. without assuming the constraint equations (8)–(9). Let K1,
K2 be compact subsets of the arc Lκ ∩ {−1 < Σ+ < −(3γ − 2)/4} and the arc
Lκ ∩ {−(3γ − 2)/4 < Σ+ < 0}, if these are non-empty. Let K3 and K4 denote
the points on Lκ with Σ+ = −(3γ − 2)/4 and Σ+ = 0, respectively. Then
there are neighbourhoods Ui of Ki, i = 1, . . . , 4, and C1 submanifolds MLκ,left,
MLκ,right, MLκ,special, MLκ,0 of R

5 in U1, U2, U3, U4, respectively, with the
following properties:

• MLκ,left contains the set K1 and in these points is tangent to those
eigenvectors of the linearised evolution equations in the extended five-
dimensional space, given in “Appendix A.2”, which correspond to eigen-
values with non-negative real parts.

• MLκ,right contains the set K2 and in these points is tangent to those
eigenvectors which correspond to eigenvalues with non-negative real parts.
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• MLκ,special contains the point K3 and in this point is tangent to those
eigenvectors which correspond to eigenvalues with non-negative real parts.

• MLκ,0 contains the point K4 and in this point is tangent to those eigen-
vectors which correspond to eigenvalues with non-negative real parts.

Further:
• Points in U1 are either contained in MLκ,left or their evolution under

Eqs. (5)–(7) leaves U1 as τ → −∞, and similarly for the remaining Ui.
The dimensions of the submanifolds are

dim MLκ,left = 2,

dim MLκ,right = 1,

dim MLκ,special = 2,

dim MLκ,0 =
{

1 if 3γ − 2 > 0,
2 if 3γ − 2 ≤ 0 .

Remark 10.2. We see in the proof that we could change the regularity of the
submanifolds to Cr, for some r < ∞. Further, the eigenvalues on Lk which
are not real have real part −2(1+Σ+). The only possibility where this is non-
negative for a point in one of the compact sets is if γ = 2 and Σ+ = −1. This
implies that the solution converges to the point Taub 1 and hence is constant,
see Proposition 5.2. For the current statement, this situation is not of interest,
and excluding the case K4 = Lk ∩ {Σ+ = −1}, the submanifolds are tangent
to those eigenvectors which correspond to non-negative eigenvalues.

For the proof, we make use of the concepts and notation introduced in
“Appendix B”, see also the explanation in the beginning of Sect. 8. The set
of points which remain in Ui under the evolution in negative time direction
is the maximal negatively invariant set A−(Ui), and we prove the proposition
using properties of the centre-unstable manifold Cu.

Proof. The arc Lκ ∩ {−1 < Σ+ < −(3γ − 2)/4} is a manifold in R
5 consisting

of equilibrium points of the evolution equation, with three eigenvalues of the
linearised evolution equations lying in the left half-plane, one vanishing, and
one lying in the right half-plane, see Definition 1.17 and the adjacent text.

According to Theorem B.3, there is a centre-unstable manifold Cu near K1

and a neighbourhood U1 of K1 such that the maximal negatively invariant
set A−(U1) is contained in Cu. Without loss of generality, we can restrict the
manifold Cu to the open set U1.

The manifold Cu is by definition tangential to Em
c ⊕Em

u, which are the
subspaces of the tangent spaces at points on K1 associated with eigenvalues on
the imaginary axis and in the right half-plane. These are the eigenvalues 0 and
−4Σ+ − (3γ − 2) whose eigenvectors span a two-dimensional subspace, which
implies that Cu is a submanifold of dimension two. The evolution equations (5)
are polynomial and consequently C∞, and the plane wave equilibrium points
form a smooth curve. We can therefore apply Theorem B.3 with some finite r,
for example r = 1.
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The proof for the arc Lκ ∩ {−(3γ − 2)/4 < Σ+ < 0} proceeds in the
same way, with 0 being the only eigenvalue with non-negative real part. The
two individual points on the arc Lκ constitute (zero-dimensional) manifolds of
equilibrium points on their own, to which we can also apply Theorem B.3. In
case Σ+ = 0, the value of γ determines where the eigenvalue −4Σ+ − (3γ − 2)
is situated in the complex plane. �

As in Sect. 8, we now have to restrict the submanifolds to the constraint
surface. There are two main differences between the situation in that section
and the present one: The dimension of all centre-unstable manifolds is now at
most two, and the constraint surface is singular only in the point Σ+ = 0, see
Remark 3.5.

On the other hand, intersecting the centre-unstable manifolds for plane
wave equilibrium points Lκ with the constraint surface does not necessarily re-
sult in a lower dimension: We know from the proof of the previous proposition
that the centre-unstable manifolds are tangent to the eigenvectors to eigenval-
ues with positive or zero real parts, which are 0 and possibly −4Σ+ − (3γ −2),
depending on the relation between Σ+ and γ, see “Appendix A.2”. It follows
by direct computation that these eigenvectors are orthogonal to the gradient
of Eq. (8). Consequently, the centre-unstable manifolds and the constraint sur-
face do not intersect transversally. We can only conclude that restricting the
submanifolds to the constraint surface yields submanifolds of at most the same
dimension, that is dimension at most one or two.

Theorem 10.3. For a given κ ∈ R and γ ∈ [0, 2), consider the set of solutions
to Eqs. (5)–(11) converging to a point on Lκ as τ → −∞. Assume that the
limit point satisfies Σ+ = s. Then

κ(1 + s) ≥ 3 s (44)

has to hold. Furthermore:
• If −(3γ − 2)/4 < s < 0, then the solution is the constant solution. In

particular, the solution is a vacuum solution.
• There is a countable family of C1 submanifolds {L′

m}m∈N of dimension
at most two such that if s ≤ −(3γ − 2)/4 and s < 0, then the solution is
contained in

⋃
m∈N

L′
m.

• There is a countable family of C1 submanifolds {L′′
m}m∈N of dimension at

most two such that if s = 0, then the solution is contained in
⋃

m∈N
L′′

m.

Proof. The relation between the parameter κ and the limiting value s fol-
lows from the definition of the plane wave equilibrium points, Definition 1.17,
as N2

+ ≥ 0.
We start with the case −(3γ − 2)/4 < s < 0. Fix a compact subarc K2

of the arc Lκ ∩ {−(3γ − 2)/4 < Σ+ < 0} containing the limiting point of
the solution. As the solution converges to a point in K2, it is contained in
the neighbourhood U2 from the previous statement for sufficiently negative
times, and therefore, the solution has to lie in the one-dimensional submani-
fold MLκ,right for sufficiently negative times. The set of plane wave equilibrium
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points Lκ itself forms a one-dimensional submanifold as well. It consists of
constant solutions, and K2 consequently must be contained in the centre-
unstable manifold MLκ,right. Due to the dimension, both submanifolds coincide
in a sufficiently small neighbourhood of the limiting point, and the first part of
the statement follows. The solution satisfies Ω = 0 due to the definition of Lκ,
see Definition 1.17 and below.

For the second case, choose a countable family of compact subarcs Km,
m ∈ N, which exhaust the arc Lκ∩{−1 < Σ+ < −(3γ−2)/4}. For every Km as
well as for the point on Lκ with Σ+ = −(3γ − 2)/4, consider the submanifolds
found in Proposition 10.1. Convergence implies that for sufficiently negative
times the solution cannot escape the corresponding open neighbourhoods, and
it consequently lies in one of these submanifolds for sufficiently negative times.

Still without restricting to the constraint equations we apply the flow
corresponding to the evolution equations and integer times to these submani-
folds. The flow resulting from a polynomial evolution equation implies that
the regularity of the submanifolds is preserved. As the graph of any solution is
invariant under this flow, solutions to the evolution equations in the extended
state space are fully contained in the resulting family of submanifolds L′

m. By
construction, the family is countable. In the extended state space, the state-
ment about the dimension follows from Proposition 10.1 and the fact that the
dimension of a submanifold is invariant under diffeomorphisms, consequently
invariant under the flow. Restricting to the constraint equations cannot in-
crease the dimension, which concludes the proof in this case. The remaining
case where s = 0 is treated in the same way. �

Remark 10.4. Consider the element of the plane wave equilibrium points Lκ

which satisfies Σ+ = s ∈ (−1, 0]. We have found in the previous theorem that
the question whether there is a solution to Eqs. (5)–(11) converging to this
point, and whether it is constant or not, depends on the relation between s
and the group parameter κ, as well as the relation between s and the matter
parameter γ.

In case of vacuum Ω = 0, the only solutions converging to Lκ are the
constant solutions, see Proposition 4.2. Assume that Ω > 0. All solutions
have to be non-constant and in particular cannot converge to limit points
with −(3γ −2)/4 < s < 0. We analyse the possible combinations of s, κ and γ,
depending on the Bianchi type.

• Bianchi class A solutions cannot converge to the plane wave equilibrium
points Lκ, due to Ã = 0 for class A but non-vanishing on Lκ.

• Bianchi type VIη: As κ < 0 in this Bianchi type, solutions can only
converge to limit points satisfying

s ≤ κ

3 − κ
< 0, s ≤ −(3γ − 2)/4,

due to inequality (44) and Ω > 0. The solutions are then contained in
the union of submanifolds L′

m.
• Bianchi type VIIη: In this Bianchi type, the parameter κ is positive.

Inequality (44) is satisfied for all possible values of s. Then either s ≤
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−(3γ − 2)/4 and s < 0, or s = 0 has to hold, and the solutions are
contained in the union of submanifolds L′

m or L′′
m.

• Bianchi type IV: As κ = 0, inequality (44) is satisfied for all possible
values of s. Then either s ≤ −(3γ − 2)/4 and s < 0, or s = 0 has to hold,
and the solutions are contained in the union of submanifolds L′

m or L′′
m.

• Bianchi type V: These models are defined by κ = 0, Ã > 0, Σ+ = Δ =
N+ = 0, which implies that solutions can only converge to the limit point
with s = 0. The evolution equation (5) for Σ̃ reads

Σ̃′ = 2(q − 2)Σ̃

on Bianchi type V solutions. As q ≤ 2 and Σ̃ ≥ 0, due to (16), this
implies that Σ̃ is monotone decreasing or constant. As the only element
of the plane wave equilibrium points Lκ with s = 0 satisfies Σ̃ = 0, this
shows that Σ̃ vanishes at all times. Further, the element in the plane wave
equilibrium point with s = 0 satisfies Ã = 1. With the information on
the other variables, the evolution equation of Ã reads

Ã′ = (3γ − 2)(1 − Ã)Ã.

Its range, see (16), then implies that for γ ≥ 2/3, only the constant orbit
is possible. In case 0 ≤ γ < 2/3, the solution is contained in Σ+ = Σ̃ =
Δ = N+ = 0 and Ã decreases monotonically from 1 to 0.

11. Equivalence of the Initial Data Perspective and the
Expansion-Normalised Variables

The goal of this section is to justify the use of expansion-normalised variables
and show that under the correct transformation the evolution of these variables
is equivalent to solving Einstein’s equation for orthogonal Bianchi B perfect
fluid initial data. At the same time, we show how to construct, for given initial
data (G,h, k, μ0) as in Definition 1.5, the maximal globally hyperbolic develop-
ment and prove properties of this spacetime. This is done via the expansion-
normalised variables (Σ+, Σ̃,Δ, Ã, N+) for Bianchi class B models.

The expansion-normalised variables in Bianchi class B models were devel-
oped in [10], motivated by a similar set of coordinates for Bianchi A models in-
troduced in [26]. Their deduction starts out with given structure constants γδ

αβ

of a suitably chosen four-dimensional orthonormal frame of the spacetime in
question. To connect this to the initial data perspective, we have to understand
how such a frame can be constructed from the knowledge of the metric h and
the two-tensor k on the Lie group G. In particular, this means choosing a suit-
able three-dimensional basis of the Lie algebra associated with the Lie group.
For this reason, we collect the necessary background on three-dimensional Lie
groups in Sect. 11.1.

We recall the deduction of the expansion-normalised variables from given
structure constants γδ

αβ in Sect. 11.2. Note that this deduction already starts
with the full spacetime, in particular with structure constants γδ

αβ in four
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dimensions. For initial data, this information is not available, only three-
dimensional spacelike structure constants γk

ij make sense. The structure con-
stants γj

0i require the existence of a timelike vector field e0. However, to begin
with there is no such vector field. Nonetheless, we can define objects γ̃j

0i us-
ing the metric h and the two-tensor k and need to make sure that they have
the form required for the construction by [10], which means that the only
non-vanishing ones are

γ̃1
01, γ̃B

0A,

A,B ∈ {2, 3}. In order to see that in our setting we can indeed choose a suitable
basis such that the commutators have the required form, we discuss in more
detail initial data sets where the three-dimensional Riemannian manifold is a
Lie group with left-invariant metric. This is done in Sect. 11.3, and it is here
that we explain the terms ‘exceptional’ and ‘orthogonal’ as well as the reason
for excluding Lie groups of type VI−1/9.

The objects γ̃1
01, γ̃

B
0A have to be understood as merely numbers, devoid

of any geometric meaning. It is only a posteriori that we can interpret these
numbers as structure constants of a suitable four-dimensional frame. With
these objects at our disposal, we can follow through with the transformation
explained in Sect. 11.2. We wish to point out, however, that we make use only
of the algebraic relations, not their geometric interpretation. This yields initial
data (Σ+, Σ̃,Δ, Ã, N+)(0) for the evolution equations in expansion-normalised
variables, Eqs. (5)–(11).

In order to avoid confusion and shorten notation, we are going to denote
initial data to Einstein’s field equation, i. e. initial data as in Definition 1.5, by
geometric initial data, and initial data to the evolution equations in expansion-
normalised variables, Eqs. (5)–(11), by dynamical initial data. The details of
how to translate geometric initial data into dynamical initial data are given in
the first part of the construction of the maximal globally hyperbolic develop-
ment, Sect. 11.4.

Once geometric initial data are translated into the expansion-normalised
variables setting, i. e. into dynamical initial data, and we have obtained a
solution in these variables, the main work lies in the construction of a global
four-dimensional frame with structure constants behaving correctly over time,
and such that our initially defined objects γ̃j

0i are consistent with the geometric
objects γj

0i at the starting time t = 0, i. e. on the initial Cauchy hypersurface.
Finally, we use this four-dimensional frame to construct a spacetime metric.
This is done in the second and third parts of the construction, Sects. 11.5
and 11.6. Having obtained through this construction a spacetime into which
the initial data are embedded in the correct way, we investigate its properties
in Sect. 11.7. We can show that this spacetime is in fact the maximal globally
hyperbolic development of the geometric initial data.

In Sect. 11.8, we then consider Bianchi spacetimes with additional sym-
metries, namely local rotational symmetry and plane wave equilibrium solu-
tions. We compare their definitions from the point of view of geometric initial
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data with their definitions in expansion-normalised variables and show that
these definitions coincide, respectively.

The construction of expansion-normalised variables by [10] which we ex-
plain in Sect. 11.2 is related to the study of orthogonally transitively G2 cos-
mologies. Even though [10] appeal to results having been obtained in this
context, our construction does not make use of these additional statements
but is self-contained. We do nonetheless give several remarks explaining the
relations, but these are logically independent from the construction presented
here.

In the Bianchi class A setting, results equivalent to what we achieve in
this section have been obtained by [16], however with a somewhat different
approach.

11.1. Bianchi Classification of Three-Dimensional Lie groups

We give a brief introduction to the classification of three-dimensional Lie
groups proposed by Bianchi in 1903. The article [11] gives a historical overview
and provides insights into how our modern understanding of this classification
came to be. In [3], the details are laid out, and for the first part of this sub-
section, we refer to [18, App. E] for the details.

For a three-dimensional Lie group G, let {ei}, i = 1, 2, 3, be a basis of
the associated Lie algebra g, and let γk

ij denote the structure constants, i. e.

[ei, ej ] = γk
ijek.

The equivalent information is encoded in the symmetric matrix n and the
vector a given by

nij =
1
2
γ

(i
klε

j)kl, ak =
1
2
γi

ki, (45)

with εijk = εijk the permutation symbol which satisfies ε123 = 1 and is
antisymmetric in all indices. The brackets () denote symmetrisation, in fact
γ

(i
klε

j)kl = (γi
klε

jkl + γj
klε

ikl)/2. Equivalence follows from

γi
jk = εjkln

li + ajδ
i
k − akδi

j . (46)

The structure constants have to satisfy the Jacobi identity, which is equivalent
to the condition

na = 0.

Applying a suitable change of basis yields n and a in a specific simplified
form and gives the following classification of three-dimensional Lie groups, of
which we sketch a proof further down in Lemma 11.6. As there is a one-to-one
correspondence between simply connected Lie groups and their Lie algebras,
see [24, Theorem 3.28], we formulate this classification in terms of (simply
connected) Lie groups.
(i) In the case of simply connected unimodular Lie groups (Bianchi class A)

which are defined by a = 0, one can choose n diagonal, i. e. n = diag(ν1,
ν2, ν3), such that it falls in exactly one of the categories given in Table 4.

Given a left-invariant metric in G, the basis e1, e2, e3 producing a
and n of this form can be chosen orthonormal.
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Table 4. Bianchi class A

Type ν1 ν2 ν3

I 0 0 0
II + 0 0
VI0 0 + –
VII0 0 + +
VIII – + +
IX + + +

Table 5. Bianchi class B

Type ν1 ν2 ν3

V 0 0 0
IV 0 0 +
VIη 0 + –
VIIη 0 + +

(ii) In the case of simply connected non-unimodular Lie groups (Bianchi
class B) which are defined by a �= 0, one can choose a1 �= 0, a2 = a3 = 0,
and n diagonal, i. e. n = diag(ν1, ν2, ν3). The Jacobi identity then implies
ν1 = 0. All possible types and their resp. names are listed in Table 5.

Again, given a left-invariant metric in G, the basis e1, e2, e3 can be
chosen orthonormal.

Lie groups of Bianchi types VI and VII have an additional degree
of freedom which is captured in the quantity η. In the chosen basis this
parameter satisfies

ην2ν3 = a2
1 (47)

and is invariant under scaling. We give a more geometric definition fur-
ther down, see Lemma 11.5.

In order to understand the parameter η, we have to gather more detailed
information on the structure of the Lie algebras of the different Bianchi types.

Lemma 11.1. Let G a three-dimensional Lie group, and g the associated Lie
algebra. Then g admits a two-dimensional Abelian subalgebra if and only if G
is not of Bianchi type VIII or IX.

Proof. Choose a basis e1, e2, e3 of the Lie algebra such that n and a are of one
of the forms given in i) and ii). If the Lie group is not of Bianchi type II, VIII,
or IX, then ν1 = 0. One computes that

[e2, e3] = γi
23ei = (ε23ln

li + a2δ
i
3 − a3δ

i
2)ei = ε231n

1iei = ν1e1 = 0,

which implies that e2, e3 span an Abelian subalgebra. For a Lie group of
Bianchi type II one finds ν2 = 0, and e1, e3 commute.
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Assume now that the Lie group is of type VIII or IX and suppose that
there are two linearly independent vectors b, c ∈ g which commute, i. e.

b =
3∑

i=1

biei, c =
3∑

i=1

ciei,

for bi, ci ∈ R, and
[b, c] = 0.

This implies

0 = [b, c] =

⎡

⎣
3∑

i=1

biei,

3∑

j=1

cjej

⎤

⎦ =
∑

i,j

bicj [ei, ej ] =
∑

i,j

bicjγ
k
ijek;

hence, for all k = 1, 2, 3

0 =
∑

i,j

bicjγ
k
ij =

∑

i<j

(bicj − bjci)γk
ij . (48)

As the two Bianchi types in question are of class A, one finds from Eq. (46)
that

γk
12 = δ3kν3, γk

13 = −δ2kν2, γk
23 = δ1kν1.

All νi, i = 1, 2, 3, are non-vanishing, and Eq. (48) is therefore equivalent to
the system of equations

b2c3 − b3c2 = 0, b1c3 − b3c1 = 0, b1c2 − b2c1 = 0,

or in other words b× c = 0, where × denotes the cross product. Hence, b and c
are parallel, a contradiction. �

In case the Lie group is of class B, there is also a geometric way of defining
the Abelian subalgebra. For this, we consider the adjoint ad : g → End(g),
adx y = [x, y], see [24, Proposition 3.47].

Lemma 11.2. Let G a three-dimensional Lie group of class B and H the one-
form

H : g → R, x 
→ 1
2

tr(adx).

Denote by g2 the kernel of H. Then g2 is an Abelian subalgebra and coincides
with the subalgebra identified in Lemma 11.1.

Proof. We choose a basis e1, e2, e3 of g and denote by ek, k = 1, 2, 3, the dual
basis. Setting ak, k = 1, 2, 3, as in (45), we find

H = akek.

As the Lie group is of class B, we can choose the basis e1, e2, e3 as above in ii),
meaning that a1 �= 0, a2 = a3 = 0, and n is diagonal, i. e. n = diag(0, ν2, ν3).
With this, we find that the kernel g2 is spanned by the two basis elements e2

and e3. Comparison with the proof of Lemma 11.1 shows that it is the same
subalgebra we identified there. �
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Remark 11.3. Given a class B Lie group G with a left-invariant metric, we ob-
tain the following useful interpretation of the kernel g2: it provides a splitting
of the Lie algebra g2 into a two-dimensional Abelian subalgebra and the direc-
tion orthogonal to it. For any orthonormal basis e1, e2, e3 of g such that e2, e3

span g2, the basis element e1 is the one with the non-vanishing ai.

Remark 11.4. Given a Lie group of class B with Lie algebra g and a left-
invariant metric on G, we have at our disposal the uniquely defined Abelian
subalgebra g2. If instead the Lie group is of class A but not of type VIII or IX,
we can fix an Abelian subalgebra, which exists due to Lemma 11.1. In both
cases, we can then introduce an orthonormal basis e1, e2, e3 of g such that e2, e3

span the Abelian subalgebra and e1 is orthogonal to this span. Given g2, this
basis is uniquely defined up to a rotation in the e2e3-plane and a choice of sign
in e1.

One easily sees that it is equivalent to say that one uses the choice of
orthonormal basis from i) and ii), and then allows for a rotation in the e2e3-
plane. This holds in all cases apart from the case of Bianchi type II, where it is
necessary to first switch the basis elements e1 and e2. In the later subsections,
in particular for the deduction of the different variables in Sect. 11.2, this
rotation in the e2e3-plane is left as a gauge freedom.

With this knowledge, we are now in a position to give an invariant defi-
nition of the parameter η appearing in the Lie groups of type VIη and VIIη,
which are of class B.

Lemma 11.5. Let G a three-dimensional Lie group of type VIη or VIIη, η �= 0 in
either case, with associated Lie algebra g, and g2 the uniquely defined Abelian
subalgebra which is the kernel of the one-form H. Let v1 ∈ g\g2. Then

A2 := adv1 |g2 : g2 → g2,

and a different choice v̂1 ∈ g\g2 results in a map Â2 differing from A2 by a
constant nonzero multiple. Further, setting

η :=
(tr A2)2

4 det A2 − (tr A2)2

is well defined independently of the choice of v1 and consistent with Eq. (47),
i. e. under a choice of basis as in ii) one finds

ην2ν3 = a2
1.

Proof. Consider a basis e1, e2, e3 as in ii), i. e. satisfying a1 �= 0, a2 = a3 = 0,
and n = diag(0, ν2, ν3). By Remark 11.4, the Abelian subalgebra g2 is spanned
by e2, e3. Consequently, we can express the given unit vector v1 as v1 = b1e1 +∑

A bAeA and find

A2(eB) =

[

b1e1 +
∑

A

bAeA, eB

]

= b1 [e1, eB ] = b1γ
C
1BeC ∈ g2,

as [e2, e3] = 0 and γ1
1A = 0. This proves the first statement.
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For the second statement, we realise that v1, e2, e3 also forms a basis of g,
hence v̂1 = c1v1 +

∑
A cAeA with c1 �= 0, and

(A2 − Â2)(eB) = [e1 − c1e1, eB ] = (1 − c1)A2(eB).

From the last computation, it even follows immediately that η is inde-
pendent of the choice of v1, and we can for all purposes assume that v1 = e1.
Doing so, the linear mapping A2 in the chosen basis e2, e3 is described by the
matrix (

a1 ν3

−ν2 a1

)

,

which implies
tr A2 = 2a1, detA2 = a2

1 + ν2ν3,

and yields

η =
a2
1

ν2ν3
.

This is equivalent to the requested relation and in addition shows that η is
well defined, as both ν2 and ν3 are non-vanishing for the Bianchi types in
question. �

We conclude this subsection by proving that the types we listed in Ta-
bles 4 and 5, together with the parameter η, indeed provide a classification of
all three-dimensional Lie algebras.

Lemma 11.6. Two three-dimensional Lie algebras are isomorphic if and only
if they have the same Bianchi type, and in case of Bianchi type VI or VII
additionally the same quantity η.

Proof. Given a Lie algebra of either class, the matrix n and the vector a defined
in Eq. (45) admit the form n = diag(ν1, ν2, ν3) and a = (a1, 0, 0) after applying
a suitable change of basis. As a consequence, the Lie algebra falls in one of
the types defined in Tables 4 and 5. From the transformation behaviour of n
and a under a change of basis, see [18, eq. (E.4)], we see that the number
of non-vanishing diagonal elements of ν as well as the number of diagonal
elements of ν having the same sign is fixed. As a conclusion, the given Lie
algebra cannot fall in two different of the types from Tables 4 and 5. For Lie
algebras of class A, scaling the basis such that νi ∈ {−1, 0, 1}, i = 1, 2, 3,
shows that each of the types in Table 4 has one unique representative, which
concludes the proof for this class. For a Lie algebra of type V or IV, one can
apply scaling to achieve a1 = 1, ν3 ∈ {0, 1}, and thereby uniqueness. In case of
a Lie algebra of type VI or VII, the quantities a1 and ν2, ν3 cannot be scaled
independently of one another but have to satisfy Eq. (47). Requesting ν2 = 1
and ν3 ∈ {±1} fixes a1 up to sign, which by a change of direction in e1 can be
set to be positive. This concludes the proof. �
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11.2. The Expansion-Normalised Variables from a Four-Dimensional Space-
time Point of View

For this subsection and this subsection alone, we assume the existence of a four-
dimensional spacetime from the start. That is, we assume that we already have
a four-dimensional solution to Einstein’s equations at our disposal, not only
geometric initial data consisting of information on a three-dimensional mani-
fold. With the four-dimensional information given, we recall the deduction
of the expansion-normalised variables (Σ+, Σ̃,Δ, Ã, N+) from given structure
constants γδ

αβ , as it was developed in [10]. In the following subsections, we then
connect this to the initial data perspective we started with in the beginning
of this paper.

We restrict ourselves to spacetimes with a Bianchi symmetry, i. e. with a
three-dimensional Lie group G acting on the spacetime. We assume a stress–
energy tensor which is either that of vacuum or that of a perfect fluid, and
additionally assume that the fluid velocity u is orthogonal to the group orbits
of G.

We further assume that we are given an orthonormal frame (e0, e1, e2, e3)
such that the only nonzero structure constants are

γ1
01, γ1

10, γB
0A, γB

A0, γB
1A, γB

A1, (49)

with A,B = 2, 3, which is the setting considered in [10].

Remark 11.7. In [10], the property that the only non-vanishing structure con-
stants are those in (49) is justified by building upon the study of orthogonally
transitive G2 cosmologies, which are a generalisation of orthogonal Bianchi
cosmologies. In [22], a suitably adapted orthonormal frame (e0, e1, e2, e3) of
a G2 spacetime is introduced, such that the vector fields e2, e3 are tangential
to the group orbits of the two-dimensional symmetry group G2, the vector
field e1 is spacelike, and the vector field e0 is aligned with the fluid velocity.
The study of orthogonally transitive G2 cosmologies is continued in [9] where
the authors, following a construction proposed by [12], decompose the struc-
ture constants and deduce the corresponding evolution equations equivalent
to the Einstein field equations of an orthogonal perfect fluid. This decomposi-
tion is explicitly adapted to the setting of Bianchi B orthogonal perfect fluid
models by [10].

We do not make use of these arguments but instead treat the non-
vanishing of all structure constants other than those in (49) as an assumption.
In the following subsection, we discuss in more detail initial data sets where
the three-dimensional manifold is a Lie group. We notice that by excluding
one specific Bianchi type, we can ensure that we end up in a setting where
the structure constants have the requested form, see Lemma 11.13 and the
beginning of Sect. 11.4.
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With structure constants as in (49) at hand, we set
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ22 = −γ2
02 +

1
3
(γ1

01 + γ2
02 + γ3

03), n22 = −γ2
13,

σ23 =
1
2
(−γ3

02 − γ2
03) = σ32, n23 =

1
2
γ2
12 − 1

2
γ3
13 = n32,

σ33 = −γ3
03 +

1
3
(γ1

01 + γ2
02 + γ3

03), n33 = γ3
12,

θ = −γ1
01 − γ2

02 − γ3
03, a1 =

1
2
(γ2

12 + γ3
13).

Ω1 =
1
2
(γ3

02 − γ2
03),

(50)

This gives a decomposition of the structure constants as proposed for general
cosmological models by [12] and deduced in the present setting by [10]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e0, e1] =
(

σA
A − 1

3
θ

)

e1,

[e0, eA] =
(

−σA
B − 1

3
θδB

A + Ω1εA
B

)

eB ,

[e1, eA] = (εABnBC + a1δ
C
A)eC ,

[eA, eB ] = 0,

(51)

with A,B ∈ {2, 3}, εAB the two-dimensional permutation symbol, and δAB

the Kronecker delta which is also used for lifting and lowering indices. The
non-vanishing structure constants γδ

αβ , see (49), of the frame elements on the
one hand and the set of variables (θ, σAB ,Ω1, a1, nAB) as given in (51) on the
other hand encode the same information.

The choice of orthonormal frame (e0, e1, e2, e3) is not unique but allows
for a rotation in the e2e3-plane. In the classification of Lie groups in Sect. 11.1
we have chosen a specific frame which additionally diagonalises nAB , but for
the remainder of this section, we leave this rotation as a gauge freedom. Having
this freedom of rotation in choosing the frame, however, becomes an issue when
constructing the maximal globally hyperbolic development in Sects. 11.4–11.6.

Remark 11.8. The quantities appearing in the left column of (50) can be
interpreted geometrically. In order to do so, assume that the spacetime is I×G,
with I an open interval described by a time parameter t, and the frame is such
that e0 = ∂t, and ei, i = 1, 2, 3, are tangential to every {t} × G and invariant
under the action of G.

The decomposition of structure constants in a spacetime was originally
proposed by [12]. Upon comparison, one notices that the quantity θij given
there (but in our index convention) equals the second fundamental form of
{t} × G in the spacetime. Consequently, the trace θ of θij equals the mean
curvature of {t} × G, and

σij = θij − θ

3
hij
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is the trace-free part of the second second fundamental form, where h is the
spacetime metric restricted to {t} × G.

We compute

γi
0i = 〈[e0, ei] , ei〉 = 〈∇e0ei − ∇ei

e0, ei〉 = −θii,

where ∇ denotes the four-dimensional Levi-Civita connection corresponding
to the metric on I × G, which we here denote by 〈·, ·〉. As σij is trace-free, we
find

0 = σ11 + σ22 + σ33 = θ11 − θ

3
+ σ22 + σ33,

or equivalently

−θ11 = σA
A − 1

3
θ,

which should be compared to the first equation in (51).
The quantity Ω1 can be expressed in terms of the four-dimensional frame

as follows:
Ω1 = 〈e3,∇e0e2〉,

where ∇ denotes the four-dimensional Levi-Civita connection. The quantity Ω1

thus describes a certain timelike derivative, but not one which is encoded in
the second fundamental form θij .

Following the deduction of the expansion-normalised variables (Σ+, Σ̃,

Δ, Ã, N+) as given in [10], one in a first step replaces nAB and σAB , A,B ∈
{2, 3}, by their trace and trace-free part (with respect to the two-dimensional
trace in the 23-components), i. e. one defines

⎧
⎪⎨

⎪⎩

σ+ =
3
2
δABσAB , n+ =

3
2
δABnAB ,

σ̃AB = σAB − 1
3
σ+δAB , ñAB = nAB − 1

3
n+δAB .

(52)

The information encoded in these new variables is equivalent to that encoded
in nAB , σAB . Additionally, one sets

∗σ̃AB = σ̃A
CεBC , ∗ñAB = ñA

CεBC . (53)

Assuming that the only non-vanishing structure constants are those given
in (49) which are decomposed as above, and further assuming a stress–energy
tensor of an orthogonal perfect fluid (2) with linear equation of state (3), the
evolution equations for the variables (θ, σ+, σ̃AB , a1, n+, ñAB) have been given
explicitly in [10, App. A]:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = −1
3
θ2 − 2

3
σ2

+ − σ̃ABσ̃AB − 1
2
(3γ − 2)μ,

σ̇+ = −θσ+ − ñABñAB ,

˙̃σAB = −θσ̃AB + 2Ω1
∗σ̃AB − 2

3
n+ñAB + 2a1

∗ñAB ,

ȧ1 =
1
3
(2σ+ − θ)a1,

ṅ+ =
1
3
(2σ+ − θ)n+ + 3σ̃ABñAB ,

˙̃nAB =
1
3
(2σ+ − θ)ñAB + 2Ω1

∗ñAB +
2
3
n+σ̃AB ,

(54)

with constraint equation

3a1σ+ − 3
2

∗σ̃ABñAB = 0, (55)

defining equation for μ

μ =
1
3
θ2 − 1

3
σ2

+ − 1
2
σ̃ABσ̃AB − 1

2
ñABñAB − 3a2

1, (56)

and auxiliary equation
μ̇ = −γμθ. (57)

Remark 11.9. Consider a four-dimensional spacetime with an orthonormal
frame (e0, e1, e2, e3). Under the assumption that the only non-vanishing struc-
ture constants γδ

αβ are those given in (49) and they additionally satisfy

ei(γδ
αβ) = 0,

the system of evolution equations with constraints (54)–(57) holds if and only
if the Ricci curvature of the spacetime is invariant under a three-dimensional
Lie group action in the e1e2e3-space such that in the chosen basis the only
non-vanishing terms are

Ric(e0, e0) =
1
2
(3γ − 2)μ, Ric(ei, ei) =

1
2
(2 − γ)μ,

i = 1, 2, 3, and the Jacobi identities hold in the e1e2e3-space. This follows from
direct computation, expressing the Ricci curvature in terms of the structure
constants γδ

αβ and then replacing them by the variables (θ, σ+, σ̃AB , a1, n+,

ñAB). A Ricci curvature of this form is equivalent to Einstein’s equations of a
perfect fluid (2) with linear equation of state (3).

In detail, one finds that the evolution equations for the variables θ, σ+

and σ̃AB correspond to the Ricci curvature terms Ric(ei, ej) with i �= 0 �= j,
while the evolution of a1, n+ and ñAB follows from the Jacobi identities on
the Lie group. The constraint equation (55) is equivalent to the momentum
constraint, and Eq. (56) defining μ is equivalent to the Hamiltonian constraint.
The evolution of μ is equivalent to the matter equation of a perfect fluid with
linear equation of state.
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In the next step of the construction, one introduces the variables
⎧
⎪⎨

⎪⎩

σ̃ =
3
2
σ̃ABσ̃AB , ñ =

3
2
ñABñAB ,

δ =
3
2
σ̃ABñAB , ∗δ =

3
2

∗σ̃ABñAB ,

(58)

which are invariant under the freedom of rotation and satisfy σ̃ñ = δ2 +
∗δ2. The constraint equation (55) implies ∗δ = 3a1σ+, which can be used to
eliminate ∗δ in the following. One further finds that there is a constant κ such
that

ñ =
1
3
(n2

+ − 9κa2
1). (59)

In the case of Bianchi types VI and VII, this relation immediately follows from
the definition of the Bianchi group parameter η in Eq. (47), and the constant
satisfies κ = 1/η. In all other Bianchi cases, one computes directly from the
form of nAB and a1 that Eq. (59) holds for κ = 0. One further sets

ã = 9a2
1 (60)

for simplification. The resulting variables (θ, σ+, σ̃, δ, ã, n+) are called the basic
variables and evolve according to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = −1
3
θ2 − 2

3
(σ2

+ + σ̃) − 1
2
(3γ − 2)μ,

σ̇+ = −θσ+ − 2
3
ñ,

˙̃σ = −2θσ̃ − 4
3
n+δ − 4

3
ãσ+,

δ̇ =
2
3
(σ+ − 2θ)δ +

2
3
n+(σ̃ − ñ),

˙̃a =
2
3
(2σ+ − θ)ã,

ṅ+ =
1
3
(2σ+ − θ)n+ + 2δ.

(61)

They satisfy

σ̃ ≥ 0, ã ≥ 0, ñ ≥ 0, σ2
+ + σ̃ + ã + ñ ≤ θ2, (62)

and the constraint
σ̃ñ − δ2 − ãσ2

+ = 0, (63)

where

ñ =
1
3
(n2

+ − κã). (64)

The matter μ is given by

μ =
1
3
(θ2 − σ2

+ − σ̃ − ã − ñ), (65)

and the auxiliary equation is satisfied

μ̇ = −γθμ. (66)



762 K. Radermacher Ann. Henri Poincaré

Remark 11.10. One sees that the evolution equations (54)–(57) imply the
evolution equations (61)–(66), provided relation (64) holds and the matter μ
in the first set of equations is assumed to be non-negative.

Note also that the relations in (62) and the constraint equation (63)
are preserved under the evolution equations (61). This follows from similar
arguments as for the expansion-normalised variables, see Remark 3.2.

Lemma 11.11. Consider a solution to Eqs. (61)–(66). Then either the solution
is the trivial solution

θ = σ+ = σ̃ = δ = ã = n+ = μ = 0,

or θ �= 0 at all times.

Proof. Using non-negativity of μ in Eq. (65) shows that if θ = 0 at one time
then

σ+ = 0, σ̃ = 0, ã = 0, ñ = 0, μ = 0
at this time, and from Eqs. (64) and (63), even n+ and δ vanish at this time.
The evolution equations (61) imply that all variables vanish at all times. �

In the final step, the basic variables are normalised with appropriate
powers of the rate of expansion scalar θ. By excluding the trivial solution in
basic variables, we ensure that θ(t) �= 0 at all times t, see Lemma 11.11. Setting
then

Σ+ =
σ+

θ
, Σ̃ =

σ̃

θ2
, Δ =

δ

θ2
, Ã =

ã

θ2
, N+ =

n+

θ
, Ñ =

ñ

θ2
, (67)

and replacing the energy density μ by the density parameter Ω defined by

Ω =
3μ

θ2
(68)

yields the expansion-normalised and dimensionless variables (Σ+, Σ̃, Δ, Ã, N+).
After changing to the dimensionless time τ which satisfies

dt

dτ
=

3
θ

(69)

and some arbitrarily chosen initial condition, they evolve according to Eqs. (5)–
(11). The deceleration parameter q appearing in these evolution equations is
related to the basic variable θ via

θ′ = −(1 + q)θ. (70)

Remark 11.12. It follows by direct computation that the evolution in basic
variables, Eqs. (61)–(66), on the one hand, and the evolution in expansion-
normalised variables, Eqs. (5)–(11), together with Eq. (70) on the other hand
are equivalent to one another, provided θ �= 0, the variables are related as
in (67)–(68), and the time t is related to the dimensionless time τ as in Eq. (69).
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11.3. Lie groups as Initial Data Subsets

In this subsection, we consider initial data sets where the three-dimensional
manifold is a Lie group, and the initial metric and second fundamental form are
invariant under the group action. In addition to the purely three-dimensional
Lie group properties which we have discussed in Sect. 11.1, the Hamilton and
momentum constraint equations pose restrictions on the two-tensor k which
we now investigate in detail. In the following subsections, these restrictions are
used to connect geometric initial data to expansion-normalised variables and
the construction of the maximal globally hyperbolic development.

We start with initial data (G,h, k, μ0) as in Definition 1.5: A Lie group G
of class B or of type I or II, a left-invariant Riemannian metric h on G, a
left-invariant symmetric covariant two-tensor k on G, and a constant μ0 ≥ 0,
satisfying the constraint equations

R − kijk
ij + (trh k)2 = 2μ0,

∇i trh k − ∇j
kij = 0.

In a first step, we fix a two-dimensional Abelian subalgebra g2 of the Lie alge-
bra g corresponding to the Lie group G. In case of a group of Bianchi class B,
this is the uniquely defined subalgebra which is the kernel of the one-form H,
see Lemma 11.2. In case of a group of Bianchi types I or II, the existence of
such a subalgebra is ensured by Lemma 11.1. We then choose an orthonormal
basis ẽ2, ẽ3 of this subalgebra. Having fixed g2, these two vectors can be chosen
uniquely up to rotation and reflection. Using the given initial metric h to fix a
third unit vector ẽ1 in the Lie algebra orthogonal to the span of those two yields
a basis of g. This choice of basis gives structure constants γk

ij , i, j, k ∈ {1, 2, 3},
or equivalently nij , ak, see (45) and (46) in Sect. 11.1.

For a fixed g2, the chosen frame of the Lie algebra g is unique up to
rotation and reflection in g2 in case of ẽ2, ẽ3, and a choice of sign in case
of ẽ1. We can therefore use the frame from the classification of Lie groups in
Sect. 11.1, see also Remark 11.4. Note that in the case of a Bianchi type II
Lie group, we rename the basis elements such that ẽ2 and ẽ3 commute. For
this special frame, the structure constants are such that a2 = a3 = 0, the
matrix n is diagonal with n11 = 0, and a1 �= 0 for G of Bianchi class B. The
reflection in ẽ1 and as well as the rotation and reflection in g2 do not affect ai

or n1i = ni1, i = 2, 3.
Let us now have a closer look at the constraint equations, which the

metric h and two-tensor k have to satisfy by Definition 1.5. As both tensors
are left-invariant, the momentum constraint reduces to

∇j
kij = 0.

In terms of the chosen orthonormal frame, we find

∇lkij = ẽl(k(ẽi, ẽj)) − k(∇ẽl
ẽi, ẽj) − k(ẽi,∇ẽl

ẽj) = −Γ
m

li kmj − Γ
m

lj kim,
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where Γ
k

ij denote the Christoffel symbols Γ
k

ij ẽk = ∇ẽi
ẽj corresponding to the

Levi-Civita connection ∇ on the Riemannian manifold (G,h). We conclude
that the momentum constraint is equivalent to

0 = −
3∑

j=1

(Γ
m

jikmj + Γ
m

jjkim). (71)

As a consequence of Koszul’s formula, the Christoffel symbols can be expressed
in terms of the structure constants via

Γ
k

ij =
1
2
(−γi

jk + γj
ki + γk

ij). (72)

Using the definitions for nij and ak, Eq. (45), as well as the symmetry of k we
then find

0 = −2a1k11 + a1(k22 + k33) + (n33 − n22)k23 (73)
for the i = 1-component, while the i = 2 and i = 3-component of Eq. (71)
read { 0 = −3a1k12 − n33k13

0 = +n22k12 − 3a1k13.
(74)

We conclude that there is a non-vanishing solution (k12, k13) of the system of
Eq. (74) if and only if

9a2
1 + n22n33 = 0.

In Bianchi class B, this is only possible for Bianchi type VI due to a2
1 > 0

and the signs of nii, compare Table 5. Furthermore, the invariance of the
parameter η, Eq. (47), implies that only the case η = −1/9 allows for a non-
vanishing solution. In total, we have shown the following:

Lemma 11.13. Let G be a Lie group of class B, h a left-invariant Riemann-
ian metric on G, and k a left-invariant symmetric covariant two-tensor on G
satisfying the momentum constraint

∇i trh k − ∇j
kij = 0.

Let g2 be the kernel of the one-form H from Lemma 11.2 which is an Abelian
subalgebra of the Lie algebra g corresponding to G. Let (ẽ1, ẽ2, ẽ3) an ortho-
normal basis of g such that ẽ2 and ẽ3 span g2. If k12 or k13 is non-vanishing,
then the Lie group G is of Bianchi type VI−1/9.

Note that in the previous Lemma, the subalgebra g2 is defined geometri-
cally, as the kernel of a well-defined one-form. Consequently, whether

k12 = k21 = 0 = k13 = k31 (75)

or not is also a well-defined geometric property, and independent of the exact
choice of orthonormal basis, as long as ẽ2 and ẽ3 span g2.

For a Lie group of Bianchi class A, a basis can be chosen which satis-
fies the properties of i) in the classification and diagonalises both the metric
and the second fundamental form, see [17, Cor. 9.14]. Therefore, in this basis
relations (75) hold as well.
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Lemma 11.13 is the reason why we have explicitly excluded Bianchi
type VI−1/9 Lie groups in the definition of geometric initial data, Definition 1.5:
By doing so, we ensure that Eq. (75) hold. In fact, we do not have to exclude
the special Bianchi type VI−1/9 altogether. It can be included in the discussion
as long as we adopt Eq. (75) as an additional assumption.

Remark 11.14. It has been shown in [3] that condition (75) is equivalent to
‘non-exceptionality’ of a Bianchi spacetime. More precisely, this reference con-
siders the trace-free part

σij = kij − θ

3
hij

of k, where θ = trh k is the mean curvature, see also Remark 11.8, and makes
use of the equivalent formulation

σ12 = σ21 = 0 = σ13 = σ31.

This notion of ‘non-exceptionality’ is a property of the four-dimensional space-
time, namely not being one of the ‘exceptional’ spacetimes which [3] denote
by Bbii. These ‘exceptional’ spacetimes are those which admit an orthonor-
mal frame ei, i = 0, 1, 2, 3, such that e1, e2, e3 are tangential to the spacelike
hypersurfaces and

σ12σ13 �= 0, η = −1/9, n22 =
3a1σ13

σ12
, n33 = −3a1σ12

σ13

holds.
The property of being ‘non-exceptional’ is further related to the notion of

orthogonally transitive G2 cosmologies, see [22, Theorem 3.1(i)] for a charac-
terisation of orthogonal transitivity. In combination with several results from
[3], in particular Lemma 4.1 and Theorem 5.1 in that reference, we conclude
the following: A Bianchi class B spacetime admits an Abelian subgroup acting
orthogonally transitively if and only if it is ‘non-exceptional’. For this reason,
we use the terms ‘orthogonal’ and ‘non-exceptional’ initial data interchange-
ably.

In terms of the Bianchi classification, only certain initial data sets for
one specific parameter in one Bianchi type of class B satisfy the ‘exceptional’
properties. However, due to the additional degree of freedom, the phase space
effectively has a higher dimension than that of all remaining Bianchi class B
types. For this reason, the notion ‘exceptional’ should be interpreted as ‘having
exceptional behaviour’, not ‘being special enough to discard’. In fact, towards
the initial singularity such spacetimes are expected to show chaotic oscillatory
behaviour, see [7].

11.4. Construction Part I: From Geometric Initial Data to the Expansion-
Normalised Evolution Equations

In this subsection and the two following ones, we carry out the construction of
the maximal globally hyperbolic development for given geometric initial data,
by which we mean initial data to Einstein’s field equations.

We start with initial data (G,h, k, μ0) as in Definition 1.5. We fix a two-
dimensional Abelian subalgebra g2 of the Lie algebra g corresponding to the
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Lie group G. As we detailed in the previous subsection, this is the kernel of
the one-form H from Lemma 11.2 in case of a Lie group of class B, otherwise
such a subalgebra exists due to Lemma 11.1. We then choose an orthonormal
basis ẽ1, ẽ2, ẽ3 of g such that ẽ2, ẽ3 span g2. Such a choice of basis gives initial
structure constants γk

ij(0), i, j, k ∈ {1, 2, 3}, and this information is equivalent
to

nij(0), ak(0)
due to (45) and (46) in Sect. 11.1. We have explained in the previous subsection
that in this basis one has a2 = a3 = 0, the matrix n is diagonal with n11 = 0,
and a1 �= 0, in case of a Lie group G of Bianchi class B. For groups of types I
or II, we can assume that a1 = a2 = a3 = 0 and the matrix n is diagonal
with n = diag(0, n22, n33). In particular, the initial structure constants are
such that the third and fourth equations in (51) hold.

We further set initial values for θ and σij

θ(0) := trh k, σij(0) := kij − θ(0)
3

hij , (76)

in accordance with Remark 11.8. For the initial value Ω1(0), we choose an
arbitrary value. This is not determined by the geometric initial data. We will
see further down that one can without loss of generality assume Ω1 ≡ 0,
but at this stage this is a non-determined variable. From Lemma 11.13, we
conclude that the 12- and 13-components of σij (or equivalently of kij) vanish.
In particular, we are now in a position to connect geometric initial data to
the construction carried out in Sect. 11.2, as the only non-vanishing initial
quantities are those appearing on the left-hand side of Eq. (50).

With the definitions made so far, we can introduce quantities

γ̃1
01(0) := σA

A(0) − 1
3
θ(0), γ̃B

0A(0) := −σA
B(0) − 1

3
θ(0)δB

A + Ω1(0)εA
B .

We stress that these are merely numbers at this point. Only after we have
constructed the spacetime can they be interpreted as the structure constants on
the hypersurface {0}×G of a suitable four-dimensional frame. In combination
with the three-dimensional structure constants γk

ij(0) we found above, we have
now constructed, at time t = 0, a set of numbers as appear on the right-hand
side of Eq. (51).

In the next step, we apply the algebraic operations (52) and (53) to the
set of numbers

(θ, σAB ,Ω1, a1, nAB)(0)
to obtain a set of numbers

(θ, σ+, σ̃AB , a1, n+, ñAB)(0).

Direct computation shows that the Hamiltonian constraint

R − kijk
ij + (trh k)2 = 2μ0

which the geometric initial data have to satisfy is equivalent to Eq. (56), using
for example [18, Eq. [E.12]] to compute the three-dimensional scalar curva-
ture R. The i = 1-component of the momentum constraint implies Eq. (55),
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as can be concluded from Eq. (73). We therefore interpret (θ, σ+, σ̃AB , a1,
n+, ñAB)(0) as initial data for the evolution Eqs. (54)–(57). Note that from
this point on, the arbitrary value Ω1(0) does no longer appear. Applying now
also the transformations (58) and (60), one obtains a set of numbers

(θ, σ+, σ̃, δ, ã, n+)(0)

which can be interpreted as initial data in basic variables. Note that Eq. (64)
holds due to the underlying Lie group structure of the geometric initial data
we started with.

We assume that we have started out with initial data (G,h, k, μ0) such
that after the steps carried out so far, the initial data in basic variables are
different from the trivial data, i. e.

(θ, σ+, σ̃, δ, ã, n+)(0) �= (0, 0, 0, 0, 0, 0).

Further down in Lemma 11.16, we show that this restriction is equivalent to
geometric initial data whose maximal globally hyperbolic development is not
isometric to a quotient of Minkowski space. Going through the construction so
far, looking for a solution to (54)–(57) for the initial values we constructed, we
can assume that θ �= 0 at all times due to Lemma 11.11. We therefore assume
that

θ > 0.

Once we have obtained a spacetime which admits the geometric initial data
induced on a hypersurface, this choice of sign corresponds to the choice of
normal vector e0, or in other words fixes the orientation of time t.

Essentially, the transformation of geometric initial data into initial values
in basic variables is a one-to-one correspondence up to sign. We can recover
the signs from the geometric initial data, see the third part of the construction.

In the next step, we normalise the initial values via Eq. (67) to obtain
initial values

(Σ+, Σ̃,Δ, Ã, N+)(0).
These are interpreted as initial data to the evolution equations in expansion-
normalised variables (5)–(11), where we also change to an expansion-normalised
time τ which we choose to satisfy τ(t = 0) = 0.

In total, we have achieved the following: Geometric initial data (G,h, k, μ0)
as in Definition 1.5 (or even of Bianchi type VI−1/9 satisfying Eq. (75)) are
transformed into dynamical initial data (Σ+, Σ̃,Δ, Ã, N+)(0) for the evolution
equations (5)–(11) of expansion-normalised variables. In the process, an arbi-
trary number Ω1(0) was chosen, but the resulting dynamical initial data are
independent of the choice of Ω1(0).

11.5. Construction Part II: From the Expansion-Normalised Evolution Equa-
tions to a Solution in Basic Variables

At the end of the first part of the construction, Sect. 11.4, we have obtained
dynamical initial data (Σ+, Σ̃,Δ, Ã, N+)(0). One can apply the evolution equa-
tions (5)–(11) for the expansion-normalised variables, which form a system of
polynomial differential equations on a compact subset of R5, see Remark 3.3.
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Consequently, for given dynamical initial data, there exists a unique solution
which is defined at all times τ ∈ (−∞,∞). In this part of the construction,
this solution is now translated back to a solution in basic variables, and then
in the following subsection even further, to a spacetime solving the correct
Einstein’s equations and with correct initial data.

In order to retrieve basic variables at all times t, one considers the evo-
lution equation for the basic variable θ, Eq. (70). The initial value θ(0) is
given from the geometric initial data, see Eq. (76). Consequently, this evolu-
tion equation has a unique maximal solution θ(τ). As q ∈ [−1, 2] due to the
relations in (16), there are two cases to consider:
(i) q = −1 at some time. This corresponds to γ = 0 and Ω = 1, which

implies
Σ+ = Σ̃ = Δ = Ã = N+ = 0.

This point is an equilibrium point of the evolution equations (5), from
which we conclude that q = −1 at all times and θ = θ(0) constant.

(ii) q > −1 at all times. In case of inflationary matter Ω > 0, γ ∈ [0, 2/3),
we have shown in Proposition 4.2 that the only solution whose α-limit
set contains the point Σ+ = Σ̃ = Δ = Ã = N+ = 0 is the constant
solution, which is excluded in this case. Consequently, 1 + q is bounded
from below by a positive number for τ sufficiently negative. In vacuum
and in the remaining matter cases Ω > 0, γ ∈ [2/3, 2], Eqs. (14) and
(15) even yield 1+ q > 1. With this, Eq. (70) implies that θ is monotone
and, for sufficiently negative times, |θ| can be estimated from above and
below by exponential functions of τ with a negative exponent. Due to the
choice of sign we have made in the first part of the construction, θ > 0 at
all times and therefore θ monotone decaying. Thus, θ converges to some
non-negative number θ∞ as τ → ∞, and diverges to ∞ as τ → −∞.

In both cases, θ is positive and defined for all τ ∈ (−∞,∞). One can therefore
multiply the individual components of the solution (Σ+, Σ̃,Δ, Ã, N+)(τ) with
the corresponding power of θ such that Eq. (67) holds and retrieves the remain-
ing basic variables (σ+, σ̃, δ, ã, n+)(τ). As was the case for θ, these variables
are defined at all times τ ∈ (−∞,∞).

To replace the expansion-normalised time τ , we define a different time
scale t via Eq. (69) and the initial condition τ(t = 0) = 0. Due to θ > 0, this
definition immediately yields that t and τ have the same time orientation. In
case q = −1, the time t is simply a rescaling of τ , and the basic variables are
defined at all times t ∈ (−∞,∞). In case q > −1, our discussion in ii) implies
that time τ → −∞ corresponds to diverging θ and a finite time t, while τ → ∞
corresponds to θ → θ∞ ≥ 0 and t → ∞.

In total, we obtain a curve in basic variables (θ, σ+, σ̃, δ, ã, n+)(t). By
our construction, they are related to the solution in expansion-normalised
variables (Σ+, Σ̃,Δ, Ã, N+)(τ) exactly as in Sect. 11.2. We have noted there,
in Remark 11.12, that the evolution equations for the expansion-normalised
variables and the evolution equations for the basic variables are equivalent.
Therefore, the construction carried out here yields the maximal solution to
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Eqs. (61)–(66). The resulting maximal interval of existence is (t−,∞), with
t− > −∞ apart from when γ = 0 and Ω = 1, in which case t− = −∞.

11.6. Construction Part III: From a Solution in Basic Variables to a Spacetime

Having found a solution in basic variables (θ, σ+, σ̃, δ, ã, n+)(t) via the previous
two parts of the construction, Sects. 11.4 and 11.5, we now translate this
into a spacetime with suitable Lorentzian metric which is consistent with the
geometric initial data (G,h, k, μ0) we started with.

Recall how the construction started: In order to obtain initial data in
basic variables from the geometric initial data, one introduced a frame ẽ1, ẽ2, ẽ3

and then had to choose an arbitrary initial value Ω1(0), whose information
was lost in the first algebraic manipulation. This corresponded to introducing
variables which were explicitly invariant under the choice of frame, in the
sense that they did no longer depend on the freedom of rotation in the ẽ2ẽ3-
plane. In order to now recover from a maximal solution (θ, σ+, σ̃, δ, ã, n+)(t),
t ∈ (t−,∞), a spacetime frame with four-dimensional structure constants and
then a spacetime metric, one needs to break this gauge invariance and reverse
this process by choosing a suitable frame. This is done in several steps:
(i) Given an arbitrary, sufficiently smooth Ω1 defined on the same t-time

interval (t−,∞) as the solution in basic variables, one retrieves the vari-
ables (σAB , θ, nAB , a1)(t).

(ii) With this, one defines a manifold and constructs a frame e0, e1, e2, e3.
(iii) Then, one checks that this construction holds through time, indepen-

dently of the choice of Ω1.
(iv) Once the frame is obtained, one defines this frame as orthonormal,

which uniquely defines the corresponding spacetime metric on the man-
ifold (t−,∞) × G.

(v) Finally, one checks that in the resulting spacetime Einstein’s equations
are satisfied and the correct initial data induced.

We begin with the first step, which is achieved via constructing a solution
in the variables (θ, σ+, σ̃AB , a1, n+, ñAB) satisfying Eqs. (54)–(57). With this
solution at our disposal, we can immediately deduce the variables (σAB , θ,
nAB , a1)(t). It is the first part which is more intricate, as we have to be careful
about notation. We start with a solution in basic variables, which for the sake
of precision, we denote by

(θbasic , σ+,basic , σ̃basic , δbasic , ãbasic , n+,basic)(t) ,

as the solution satisfies the evolution equations for basic variables, Eqs. (61)–
(66).

We want to find a solution (θ, σ+, σ̃AB , a1, n+, ñAB) to Eqs. (54)–(57).
Even though we do not know that the functions θbasic, σ+,basic and n+,basic

evolve correctly, we carry them over, but keep the subscript as a reminder.
The variable a1 is supposed to satisfy ã = 9a2

1, see Eq. (60). As ã = 0 is an
invariant set due to the evolution equations (61), the sign of a1 cannot change
and is determined by the initial data. From the knowledge of ãbasic and the
initial data, we can uniquely define a function a1,basic. Upon comparison with
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the evolution equation for ã in (61), we find that a1,basic satisfies the evolution
equation for a1 in (54), if one replaces σ+ and θ by σ+,basic and θbasic.

Now consider the evolution equations of σ̃AB and ñAB in (54). Together,
they form a system of linear differential equations whose coefficients are the
function Ω1 and—after adding the subscript basic at all necessary places—
quantities whose time development is known from the solution in basic vari-
ables. For every sufficiently smooth function Ω1, there is a maximal solu-
tion (ñAB,basic, σ̃AB,basic) to this system. Due to linearity of the differential
equations, the maximal solution is defined on the whole time interval on which
the coefficients are defined. By construction, this is the same time interval as
for the solution in basic variables.

Next, we consider the expressions

Fσ̃ := σ̃basic − 3
2
σ̃AB

basicσ̃AB,basic,

Fñ := ñbasic − 3
2
ñAB

basicñAB,basic,

Fδ := δbasic − 3
2
σ̃AB

basicñAB,basic,

Fconstraint := 3a1,basicσ+,basic − 3
2

∗σ̃AB
basicñAB,basic,

with ñbasic defined by Eq. (64). These expressions should be compared to the
constraint equations (55) and (58). The derivative of (Fσ̃, Fñ, Fδ, Fconstraint) is
a homogeneous system of equations, and as all four functions vanish initially
due to their components having been constructed from the same geometric
initial data, we see that all four functions vanish identically. In particular,
the constructed functions ñbasic,AB and σ̃basic,AB are related to the basic vari-
ables σ̃basic, ñbasic and δbasic as in Eq. (58), and we can replace these expres-
sions at every occurrence. This in particular implies that the function μbasic,
defined via Eq. (65) in basic variables, also satisfies Eq. (56). Further, we con-
clude from the argumentation above that the constraint equation (55) holds
for the functions indexed basic.

It remains to check that the variables θbasic, σ+,basic and n+,basic sat-
isfy the evolution equations (54). To this end, consider the initial data to the
evolution equations (54)–(57) which we, in the construction in Sect. 11.4, ob-
tained from geometric initial data and then subsequently used to obtain initial
data to the evolution in basic variables. There is a unique solution with these
initial data, and in order to distinguish its individual variables from the ones
constructed above, we denote this solution by

(θi.d. , σ+,i.d. , σ̃i.d. , δi.d. , ãi.d. , n+,i.d.)(t).

The initial values of these variables coincide with the initial values of the
ones constructed, and uniqueness of systems of ordinary differential equations
yields that θi.d. = θbasic at all times, and equivalently for all other variables.
We conclude that via this construction, we have obtained the unique solution
to Eqs. (54)–(57) to the initial data coming from the geometric initial data.
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In this transformation, the maximal interval of the solution (θ, σ+, σ̃AB ,
a1, n+, ñAB) cannot exceed that of the solution in basic variables, as otherwise
this would yield an extension of the solution in basic variables, a contradiction.
Consequently, the maximal interval of existence of the solution after transfor-
mation coincides with the interval (t−,∞). With this solution at hand, we use
Eq. (52) and uniquely retrieve the variables σAB and nAB , defined on the same
interval.

In the next step, we construct a four-dimensional manifold with a frame
whose structure constants have the correct form. To this end, we define scalar
functions γδ

αβ(t) on the time interval (t−,∞) via setting
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1
01(t) := σA

A(t) − 1
3
θ(t),

γB
0A(t) := −σA

B(t) − 1
3
θ(t)δB

A + Ω1(t)εA
B ,

γC
1A(t) := εABnBC(t) + a1(t)δC

A ,

(77)

and setting all other γδ
αβ to vanish identically. The form of these scalar func-

tions coincides with the form of the structure constants in Eq. (51). By con-
struction, these objects are consistent with the initial data: At time t = 0,
the spacelike ones γk

ij(0) coincide with the Lie group structure constants we
chose in Sect. 11.4, and the remaining ones γj

0i(0) coincide with the structure
constant-like object γ̃j

0i(0) defined there. We construct now a four-dimensional
frame whose structure constants coincide with these γδ

αβ(t) at all times. Note
that it is at this point that the structure constant-like object γ̃j

0i(0) can finally
be interpreted geometrically.

From the initial data, we have obtained an initial frame ẽ1, ẽ2, ẽ3 on the
Lie group G. We consider the manifold (t−,∞)×G and in this manifold extend
this frame globally, i. e. time-independently to every {t}×G. Further, we choose
e0 = ∂t globally. This gives a four-dimensional frame e0, ẽ1, ẽ2, ẽ3, but the re-
lation between its structure constants and the solution (θ, σAB ,Ω1, a1, nAB)(t)
does not necessarily fulfil Eq. (51) at times other than t = 0. The final frame
e0, e1, e2, e3 which does satisfy these relations can be constructed as follows.

We wish the frame vectors e2, e3 to be tangent to the subalgebra g2 which
we have chosen in the beginning of Sect. 11.4, which implies that we need to
construct time-dependent functions fB

A (t) such that

eA = fB
A ẽB , fB

A (0) = δB
A .

Assuming the existence of such functions gives the following commutator re-
lation:

[e0, eA] =
[
e0, f

B
A ẽB

]
= e0(fB

A )ẽB + fB
A [e0, ẽB ] = e0(fB

A )ẽB ,

where we seek to find

[e0, eA] =

(

−σA
B − 1

3
θδB

A + Ω1εA
B

)

eB =

(

−σA
B − 1

3
θδB

A + Ω1εA
B

)

fC
B ẽC .
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Consequently, solving the system

e0(fC
A ) =

(

−σA
B − 1

3
θδB

A + Ω1εA
B

)

fC
B , fC

A (0) = δC
A ,

yields the final frame vectors e2 and e3. Note that in order to do so, we have
to fix a function Ω1(t).

For the missing spatial frame component e1, we make the ansatz

e1 = f1
1 ẽ1 + fA

1 ẽA, f1
1 (0) = 1, fA

1 (0) = 0.

After a computation similar to the above, the resulting commutator reads

[e0, e1] =
[
e0, f

1
1 ẽ1 + fA

1 ẽA

]
= e0(f1

1 )ẽ1 + e0(fA
1 )ẽA.

Comparison with the desired commutator

[e0, e1] =
(

σA
A − 1

3
θ

)

e1 =
(

σA
A − 1

3
θ

)
(
f1
1 ẽ1 + fA

1 ẽA

)

gives the following systems:

e0(f1
1 ) =

(

σA
A − 1

3
θ

)

f1
1 , f1

1 (0) = 1,

e0(fA
1 ) =

(

σA
A − 1

3
θ

)

fA
1 , fA

1 (0) = 0.

In particular, fA
1 (t) = 0 at all times. The solution to this system of equations

is independent of Ω1 and yields the final frame vector e1.
Having found functions fB

A , fA
1 , f1

1 , we have constructed a frame which
satisfies all but the third commutator relation in (51). These remaining equa-
tions can be considered as constraint equations. From the construction of the
final frame vectors, we obtain

[e1, eA] =
[
f1
1 ẽ1 + fC

1 ẽC , fB
A ẽB

]
= f1

1 fB
A [ẽ1, ẽB ] + fC

1 fB
A [ẽC , ẽB ] = f1

1 fB
A [ẽ1, ẽB ]

= f1
1 fB

A γC
1B(0)ẽC ,

which has to coincide with

γB
1AeB = γB

1AfC
B ẽC ,

γB
1A as defined in (77), in order for our construction to be consistent. Thus, we

have to check whether

LHSC
A := f1

1 fB
A γC

1B(0) = γB
1AfC

B =: RHSC
A (78)

holds. Initially, the left-hand side and right-hand side coincide, and in order
to prove that the relation holds at all times, it is therefore enough to prove an
evolution equation of the form

∂t((LHS − RHS)C
A) = (LHS − RHS)B

A · MC
B ,

for some time-dependent functions MC
B .

Using the derivatives of the functions f1
1 , fA

1 and fB
A which we determined

above, we find that the derivative of the left-hand side of (78) reads
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∂t(LHSC
A ) = ḟ1

1 fB
A γC

1B(0) + f1
1 ḟB

A γC
1B(0)

= γ1
01f

1
1 fB

A γC
1B(0) + f1

1 γD
0AfB

D γC
1B(0)

= γ1
01LHSC

A + γD
0ALHSC

D. (79)

For the right-hand side, we find

∂t(RHSC
A ) = γ̇B

1AfC
B + γB

1AḟC
B = γ̇B

1AfC
B + γB

1AγD
0BfC

D = (γ̇B
1A + γD

1AγB
0D)fC

B .

The time-derivative of the structure constants can be obtained by express-
ing γB

1A in terms of the variables (θ, σ+, σ̃AB , a1, n+, ñAB), applying their evo-
lution equations (54)–(57), and converting the results back to structure con-
stants. This yields

γ̇B
1A + γD

1AγB
0D = γ1

01γ
B
1A + γD

0AγB
1D,

and therefore

∂t(RHSC
A ) = (γ1

01γ
B
1A + γD

0AγB
1D)fC

B = γ1
01RHSC

A + γD
0ARHSC

D,

which is the same structure we also found for the evolution of the left-hand side,
Eq. (79). We conclude that the constraint is preserved independently of the
choice of Ω1. For all our purposes, we can assume Ω1 ≡ 0 at all times. The above
construction results in a time-dependent left-invariant frame e1(t), e2(t), e3(t)
on the Lie group, which in combination with e0 = ∂t yields a spacetime frame
admitting the correct structure constants (51). In checking this consistency,
we have completed the third step of our construction of the spacetime.

There is for every t a unique metric tg on {t} × G such that the frame
e1(t), e2(t), e3(t) is orthonormal. With this, we define the spacetime

I × G, g = −dt2 + tg, (80)

where I is the existence interval of the basic variables and contains 0, i. e.
I = (t−,∞), with −∞ < t− < 0 apart from the case γ = 0, Ω = 1, where
t− = −∞.

By our construction above, the only non-vanishing structure constants of
the four-dimensional frame (e0, e1, e2, e3) are those in (49), and as the variables
composing the structure constants satisfy the evolution equations (54)–(57),
we can deduce from Remark 11.9 that the spacetime constructed in this way
solves Einstein’s field equations for an orthogonal perfect fluid with linear
equation of state.

On the t = 0 timeslice, the frame vectors ei and ẽi coincide, i = 1, 2, 3.
The metric induced on this timeslice by the spacetime metric (80) therefore
coincides with the initial metric h. Due to our choice of metric, the vector
field e0 is the timelike unit normal to every {t} × G timeslice. It follows from
the construction that the second fundamental form of the timeslice {0} × G
in (I × G, g) coincides with the initial two-tensor k. We conclude that the
constructed spacetime induces the correct initial data. This completes the fifth
step, and as a consequence, the following definition is reasonable.
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Definition 11.15. Given initial data as in Definition 1.5, we call a spacetime (I×
G, g, μ) constructed as in the three parts of the construction, Sects. 11.4–11.6,
a Bianchi B development of the data.

Due to the choice of frame ẽ2, ẽ3 in the beginning of the construction, the
spacetime constructed this way is not necessarily unique.

In order to transform to expansion-normalised variables in Sect. 11.4, we
had to exclude initial data with zero mean curvature θ. We now prove that this
corresponds to excluding Bianchi B developments which are part of Minkowski
spacetime.

Lemma 11.16. Consider initial data as in Definition 1.5. Then either its uni-
versal covering space is initial data for the four-dimensional Minkowski space-
time, or the mean curvature θ = trh k is non-vanishing at all times.

The proof proceeds similar to that of [17, Lemma 20.6] for Bianchi class A
developments.

Proof. As in the first part of the construction, Sect. 11.4, we choose a suitable
frame and carry out the transformations into initial data in basic variables,
i. e. initial data for the evolution equations (61)–(66). From the construction,
we see that the mean curvature coincides with the initial value for θ. Using
Lemma 11.11, we find that if the initial value θ(0) vanishes, then the solution
in basic variables is the trivial solution.

With this trivial solution in basic variables at hand, we retrace the steps of
the third part of the construction, Sect. 11.6, and recover a spacetime with an
orthonormal frame (e0, e1, e2, e3) such that the initial data is correctly induced.
We have been able to choose Ω1 ≡ 0 in this construction, and from this we
conclude that all structure constants γδ

αβ vanish identically.
Consider now the Lie group G with structure constants γk

ij = 0. The

three-dimensional Christoffel symbols Γ
k

ij vanish due to Eq. (72), and we con-
clude that the three-dimensional Ricci curvature

Rij =
3∑

l=1

〈R(ei, el)el, ej〉 =
3∑

k,l=1

(Γk
llΓ

j
ik − Γk

ilΓ
j
lk − γk

ilΓ
j
kl)

is zero identically. As G is three-dimensional, this implies that the Riemannian
curvature tensor vanishes as well. As the metric is left-invariant, it is complete,
from which it follows that G with this metric is isometric to a quotient of
Euclidean space, by virtue of having the same dimension, index, and curvature,
see [13, Proposition 8.23].

We have explained in Remark 11.8 that the second fundamental form of
the timeslice {t} × G can be computed from θ and the trace-free variable σij ,
which satisfies σ12 = σ13 = 0. We can therefore conclude that the second
fundamental form vanishes. This concludes the proof. �
11.7. Properties of Bianchi B Developments of Initial Data

We now show that a development as in Definition 11.15 of given geometric
initial data, i. e. one which we obtain through our construction in the previous
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three subsections, is in fact the maximal globally hyperbolic development of
the geometric initial data. The proof of global hyperbolicity works identically
as in the case of Bianchi class A and has been carried out in [17, p. 217]. We
only state the proposition:

Proposition 11.17. Let (G,h, k, μ0) be initial data as in Definition 1.5, and (I×
G, g, μ) a Bianchi B development of the data. Then {t} × G is a Cauchy hy-
persurface for every t ∈ I.

For the proof of maximality, we wish to apply the following proposition,
which is part of [17, Proposition 18.16]:

Proposition 11.18. Let (M, g) be a connected and time-oriented Lorentzian
manifold and assume that the following holds:

• (M, g) is future geodesically complete, and there are real numbers κj such
that κj → ∞ as j → ∞ and smooth spacelike Cauchy hypersurfaces Σj

in (M, g) with constant mean curvature κj.
Assume (M̃, g̃) to be a time-oriented and connected Lorentzian manifold satis-
fying the timelike convergence condition: Ric(v, v) ≥ 0 for all timelike vectors
v ∈ TM . Assume further i : M → M̃ to be a smooth embedding such that
i(M) is an open set, and that there is a Cauchy hypersurface S in (M, g) such
that i(S) is a Cauchy hypersurface in (M̃, g̃). Then i(M) = M̃ .

We further adapt [17, Proposition 20.10] to our setting:

Lemma 11.19. Consider a Bianchi B development (M = I × G, g, μ) of initial
data as in Definition 1.5. Let c : (s−, s+) → M be a future directed inextendible
causal geodesic, and

f0(s) = 〈c′(s), e0|c(s)〉.
Then either θ ≡ 0 and f0 is a constant, or

d
ds

(f0θ) ≥ Cθ2f2
0 ,

with C := min(1/2 − √
2/3, γ/2) if μ > 0, and C := (2 − √

2)/3 if μ = 0.

Proof. By construction of the Bianchi B development in Sects. 11.4–11.6, we
know that the trace-free part σij of the second fundamental form θij of the
submanifold {t} × M satisfies

σ12 = σ21 = 0 = σ13 = σ31.

For a fixed time s, we apply a rotation in the e2e3-plane to diagonalise σij

(and simultaneously θij) and then define

fi(s) = 〈c′(s), ei|c(s)〉,
for i = 1, 2, 3.
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As f0(s) = 〈c′(s), e0|c(s)〉 and c is a geodesic, we find

df0

ds
= 〈c′(s),∇c′(s)e0〉 =

∑

i,j

fi(s)fj(s)〈ei,∇ej
e0〉

=
∑

i

f2
i θii =

1
3
θ
∑

i

f2
i +

∑

i

f2
i σii,

where we applied ∇e0e0 = 0. The diagonalisation we applied does not affect
the basic variables (θ, σ+, σ̃, δ, ã, n+), as they are invariant under rotation in
the e2e3-plane. We can therefore apply Lemma 11.11 to see that θ = 0 at some
time implies that

0 = σ̃ =
3
4
(σ22 − σ33)2, 0 = σ+ =

3
2
(σ22 + σ33),

at all times. In particular σij ≡ 0, and from this we see that f0 is constant.
The Raychaudhuri equation for an orthogonal perfect fluid with linear

equation of state (3) is

θ̇ + θijθij = −μ

2
(3γ − 2), (81)

and coincides with the evolution equation for θ in (54). Here, the dot ˙ denotes
differentiation with respect to the time parameter t of the foliation M = I ×G,
in contrast to ′ denoting differentiation with respect to the parameter s of the
geodesic c. The Raychaudhuri equation follows from the 00-component of the
Ricci curvature for a perfect fluid (2) with linear equation of state (3) and
holds independently of the Bianchi class, see [18, Eq. (25.10)]. The general
expression in terms of an orthonormal tetrad for a perfect fluid can be found
in [12, Eq. (82)].

Combining the Raychaudhuri equation (81) with the fact that the sur-
faces have constant mean curvature, it follows that

d
ds

(f0θ)=
1
3
θ2
∑

i

f2
i +

∑

i

θf2
i σii+

1
3
f2
0 θ2+f2

0

∑

i

σ2
ii +

1
2
f2
0 (3γ − 2)μ. (82)

We observe that apart from the last term including the energy density μ this
coincides with the expression for vacuum Bianchi A developments used in the
proof of [17, Lemma 20.10]. In particular, in case this last term is non-negative,
the identical argument works, yielding that

d
ds

(f0θ) ≥ 2 − √
2

3
θ2f2

0 .

Note that (2 − √
2)/3 is in particular larger than the constant C we aim to

achieve in case μ > 0.
To conclude the proof, we have to deal with the case that the last term

in Eq. (82) is negative, i. e. the case μ > 0 and 0 ≤ γ < 2
3 . Without loss of

generality one can assume that |σ11| ≤ |σ22| ≤ |σ33|, and as σij is trace-free,
one can estimate

3σ2
33 = 2σ2

33 + (σ11 + σ22)2 ≤ 2
∑

i

σ2
ii.



Vol. 20 (2019) SCC in Bianchi B Perfect Fluids and Vacuum 777

Consequently,

|
∑

i

f2
i σii| ≤

(
2
3

)1/2
(
∑

i

σ2
ii

)1/2
∑

i

f2
i .

We compute that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ2
+ + σ̃ =

9
4
(σ11)2 +

3
4
(σ22 − σ33)2 +

3
2
(σ23)2 +

3
2
(σ32)2

=
3
2
(σ11)2 +

3
4
(σ22 + σ33)2 +

3
4
(σ22 − σ33)2 +

3
2
(σ23)2 +

3
2
(σ32)2

=
3
2
σijσij ,

(83)
and as σij is diagonal by assumption, we can use the definition of μ in terms
of the basic variables, Eq. (65) to find

1
3
θ2 − μ =

1
3
(σ2

+ + σ̃ + ã + ñ) ≥ 1
3
(σ2

+ + σ̃) =
1
2

∑

i

σ2
ii.

We conclude that the derivative of f0θ can be estimated by

d
ds

(f0θ) ≥ 1
3
θ2
∑

i

f2
i +

∑

i

θf2
i σii +

3
2
f2
0

∑

i

σ2
ii +

3
2
f2
0 γμ. (84)

On the other hand, we can use the fact that 3γ − 2 < 0 to find

1
3
θ2 +

1
2
(3γ − 2)μ =

1
3
θ2 +

1
2
(3γ − 2)

1
3
(θ2 − σ2

+ − σ̃ − ã − ñ)

≥ 1
2
γθ2 +

(
1
3

− 1
2
γ

)

(σ2
+ + σ̃)

=
1
2
γθ2 +

(
1
2

− 3
4
γ

)
∑

i

σ2
ii

and start out with the estimate
d
ds

(f0θ) ≥ 1
3
θ2
∑

i

f2
i +

∑

i

θf2
i σii +

1
2
γθ2f2

0 +
(

3
2

− 3
4
γ

)

f2
0

∑

i

σ2
ii. (85)

We now divide into the three cases 1
3θ2 ≤ ∑

i σ2
ii,

1
6θ2 ≤ ∑

i σ2
ii ≤ 1

3θ2 and
∑

i σ2
ii ≤ 1

6θ2. In the first two cases, inequality (84) and causality of the curve
yield the desired estimate, while in the third case we apply inequality (85). �

Lemma 11.20. Consider a Bianchi B development of initial data as in Defi-
nition 1.5. If μ = 0 or μ > 0, γ > 0, then all inextendible causal geodesics
are future complete and past incomplete. If instead μ > 0, γ = 0, then all
inextendible causal geodesics are future complete.

Proof. In case μ = 0 or μ > 0, γ > 0, the previous lemma implies that

d
ds

(f0θ) ≥ Cθ2f2
0
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for a positive constant C. Additionally, from Eq. (65) one finds

θ2 = 3μ + σ2
+ + σ̃ + ã + ñ ≥ σ2

+ + σ̃,

and in combination with the computation carried out in (83) concludes

σijσij ≤ 2
3
θ2,

which is identical to [17, Eq. (20.19)]. These two inequalities are the only
ingredients necessary for the proof of [17, Lemma 20.12], which is the Bianchi
class A variant of the present lemma.

In case μ > 0, γ = 0, the constant in the previous lemma is zero. Conse-
quently, f0θ is non-decreasing, which is enough to conclude future completeness
of inextendible causal geodesics, retracing the arguments in the proof of [17,
Lemma 20.12]. �

Corollary 11.21. Consider a Bianchi B development of initial data as in Defi-
nition 1.5. If μ = 0 or μ > 0, γ > 0, then this development is isometric to the
maximal globally hyperbolic development of the initial data.

Proof. The case of vacuum μ = 0 is equivalent to Ric = 0; thus, the timelike
convergence condition is satisfied. The convergence properties of the mean
curvature θ are discussed in Sect. 11.5. With this, the statement is a direct
consequence of Lemma 11.20, Propositions 11.17, 11.18, and the definition of
the maximal globally hyperbolic development.

In the matter case μ > 0, γ > 0, Lemma 11.20 yields future completeness
of inextendible causal geodesics. If the development was extendible towards
the past as a globally hyperbolic manifold, then it would in particular be
extendible as a semi-Riemannian manifold. In Lemma 12.1, we show that the
Ricci curvature contraction RαβRαβ is unbounded as τ → −∞, using the
expansion-normalised variables. The statement translates into the setting of
the Bianchi B development I×G, I = (t−,∞), when we translate the condition
on the time τ into the condition that t → t−. By an argument similar to [17,
Lemma 18.18], this contradicts extendibility. �

The only case not covered by this last statement is when μ > 0, γ = 0, in
which case one can interpret the stress–energy tensor Tαβ as that of vacuum
with a positive cosmological constant Λ > 0.

We have to distinguish between the two situations which we encountered
in Sect. 11.5: q ≡ −1 and q > −1. In the first case, θ = θ0 is constant and
all expansion-normalised variables vanish at all times. One concludes from the
construction of Bianchi B development that the commutators have the form

[e0, ei] = −1
3
θ0ei, [ei, ej ] = 0.

From the second relation, we can conclude that a left-invariant metric on the
universal covering group of the Lie group G is isometric to Euclidean three-
space (R3, δ), while the first relation implies

tk =
θ0

3
· tg,
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with tg and tk the metric and second fundamental form of {t}×G with respect
to the development. Combined, the second fundamental form of {t}×G equals

tk =
θ0

3
δ.

One compares this with the spacetime

(R × R
3 , g = −dt2 + e2Htδ),

with H =
√

Λ/3, which can be isometrically embedded in the well-known
de Sitter spacetime, see [20, eq. (52)]. Upon comparison, one realises that
the t = const slices in this spacetime have the same induced metric and sec-
ond fundamental form as we computed for our case γ = 0, q ≡ −1. We conclude
that a Bianchi B development, which by Proposition 11.17 is a globally hy-
perbolic development of the given initial data, corresponds to a development
of a hypersurface in a quotient of the de Sitter spacetime. This concludes the
case γ = 0, q = −1.

In case q > −1, we can show that the development we constructed cannot
be isometrically embedded into a globally hyperbolic spacetime which extends
the development to the past.

Proposition 11.22. Consider a Bianchi B development (M = I × G, g, μ) of
initial data as in Definition 1.5. If μ > 0, γ = 0, and the mean curvature
of {t}×G covers the interval (θ∞,∞), then the development is past inextendible
as a globally hyperbolic spacetime.

Proof. Suppose that the opposite holds, i. e. there exists a proper globally
hyperbolic extension (M̃, g̃, μ̃) of the Bianchi B development (M = I×G, g, μ),
I = (t−,∞), to the past. Then there exists a point p in the interior of M̃\M .
As the timeslice {0} × G is a Cauchy hypersurface by Proposition 11.17, the
set

J+(p) ∩ J−({0} × G)

is compact by [13, Lemma 40, p. 423], where J± denote the causal future and
past. Consequently, there exists a unit speed causal curve

c : [s−, s+] → M̃

maximising the length between the point p and the timeslice {0} × G. Denote
by q the endpoint of this curve on {0} × G.

By construction, the curve also maximises the length between q and every
earlier timeslice {t}×G, t ∈ (t−, 0) and therefore the causal vector c′ is ortho-
gonal to every one of these hypersurfaces. We conclude that in M , the curve c
has the form

c : s 
→ (t(s), q).

Assume that s0 ∈ (s−, s+) is the curve parameter such that c(s0) ∈
∂M ⊂ M̃ and choose a sequence of times sn ∈ (s0, s+) such that sn ↘ s0.
Set tn to be the time satisfying c(sn) ∈ {tn} × M , for every n ∈ N.



780 K. Radermacher Ann. Henri Poincaré

Let now Ei, i = 1, 2, 3, be vector fields which are parallelly propagated
along c and such that they form an orthonormal basis of Tc(0)({0} × G). Con-
sequently, they are orthonormal along the whole curve and span the ortho-
gonal complement to c′(s), for every s ∈ [s−, s+]. Construct a local spacelike
hypersurface Σc(s−) through the point c(s−) which is tangent to this frame,
for example by using the exponential map. Consider then a smooth func-
tion χ : [s−, s+] → [0, 1] with χ(s−) = 0 and χ(s) = 1 for all s ≥ s0.
According to [17, Lemma 18.4], for every i = 1, 2, 3 and every n ∈ N there
is a piecewise smooth variation x of c|[s−,sn], such that the variation vec-
tor field of x is χEi, i. e. there exists a continuous and piecewise smooth
curve x : [s−, sn] × (−δ, δ) → M̃ such that

• x(s, 0) = c(s) for all s ∈ [s−, sn],
• xv(s, 0) = χ(s)Ei for all s ∈ [s−, sn],
• x(s−, ·) is contained in Σc(s−) and x(sn, ·) is contained in {tn} × G.

Note that the subscript v denotes derivation with respect to the second com-
ponent.

We see that x is a variation of c with fixed endpoint x(s−, ·) = c(s−) = q.
By assumption, the curve c maximises the length between q and the hypersur-
face {tn} × G. We can therefore apply [17, Lemma 18.7] to find

0 ≥
∫ sn

s−
〈Rc′ χ·Ei

χ · Ei, c
′〉ds + k{tn}×G[Ei(c(sn)), Ei(c(sn))] − kΣ[0, 0],

where we have used that E′
i = 0 and the properties of the function χ. Here

k{tn}×G and kΣ denote the second fundamental form of {tn} × G and Σ,
respectively. Summing over i, we obtain the inequality

∫ sn

s−
χ2(s)Ric(c′(s), c′(s))ds + θ(tn) ≤ 0, (86)

where, as in the construction of a Bianchi B development, θ(t) denotes the
mean curvature of the timeslice {t} × M .

We are interested in estimate (86) in the limit n → ∞. Due to the assump-
tion on extendibility, the Ricci curvature is bounded along c; consequently,

∫ s+

s−
|Ric(c′(s), c′(s))ds| < ∞.

However, the mean curvature θ(t = tn) diverges to ∞ as n → ∞ by construc-
tion of the development, which is a contradiction. �

We can conclude from the previous proof that in a Bianchi B development
with μ > 0, γ = 0 and θ covering (θ∞,∞), a causal curve connecting the
hypersurfaces {t1}×G and {t2}×G has length at most |t1 − t2|. In particular,
causal curves have finite length towards the past. This stands in contrast to
the de Sitter spacetime, where causal curves have infinite length towards the
past.

With Proposition 11.22 at hand, we can now prove that in the remaining
case μ > 0 with γ = 0 but q > −1, the Bianchi B development is isometric to
the maximal globally hyperbolic development.
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Corollary 11.23. Consider a Bianchi B development of initial data as in Def-
inition 1.5. If μ > 0, γ = 0, and the development does not correspond to a
development of a hypersurface in a quotient of the de Sitter spacetime, it is
isometric to the maximal globally hyperbolic development of the initial data.

Proof. Recall the construction we carried out in Sects. 11.4–11.6. We argued
in the second part of the construction that there are two different cases which
can occur: q ≡ −1 and q > −1. We showed above that the first case results in a
development which is part of the de Sitter spacetime and is hence excluded by
assumption. As q > −1, the mean curvature θ(t) covers the interval (θ∞,∞),
see the end of Sect. 11.5. As a result, we can apply Proposition 11.22 to see
that the Bianchi B development cannot be extended to the past as a glob-
ally hyperbolic development. We further know from Lemma 11.20 that every
timelike geodesic is future complete. This concludes the proof. �

We collect the statements we made about Bianchi B developments in the
different cases in the following proposition.

Proposition 11.24. Given orthogonal perfect fluid Bianchi class B initial data
as in Definition 1.5, consider the maximal globally hyperbolic development
(M̃, g̃) to these data. In case the universal covering of this spacetime is not
a part of the Minkowski or the de Sitter spacetime, it is isometric to every
Bianchi B development (M = I ×G, g, μ), I = (t−, t+), as in Definition 11.15.
The mean curvature θ of {t} × G in M is positive, monotone, and tends to ∞
at t−, where −∞ < t− < 0 and t+ = ∞.

Consider a causal geodesic in M̃ . The behaviour of any geometric quantity
in the incomplete direction of this geodesic is the same as the behaviour of
this geometric quantity on {t} × G as t → t−, while the complete direction
corresponds to t → t+.

Proof. If we exclude spacetimes isometric to (quotients of) the Minkowski
spacetime, we can carry out the construction from Sects. 11.4–11.6, see also
Lemma 11.16. We have seen in Corollaries 11.21 and 11.23 that the resulting
Bianchi B development is isometric to the maximal globally hyperbolic deve-
lopment of the data, if in case γ = 0 we exclude de Sitter spacetime.

The properties of t−, t+ and the convergence behaviour of θ are a con-
sequence of the construction, see also at the end of Sect. 11.5. The one case
with t− = −∞ mentioned there corresponds to γ = 0 and Ω = 1, or in other
words q ≡ −1, which implies de Sitter spacetime and is therefore excluded by
assumption.

Consider an inextendible causal geodesic in M̃ . Using the isometry be-
tween M̃ and the Bianchi B development M , we obtain an inextendible causal
geodesic in M . All geometric quantities are invariant under isometries, and in
addition constant on every timeslice {t}×G due to the metric being invariant
under the action of the Lie group G.

As in the proof of Corollary 11.23, the case q = −1 is excluded by as-
sumption, and θ covers the interval (θ∞,∞). Consequently, Proposition 11.22
applies and in combination with Lemma 11.20 implies that the geodesic in M
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is future complete and past incomplete. The incomplete direction of an inex-
tendible geodesic in both M̃ and M therefore corresponds to t → t−, and the
complete direction to t → t+. This concludes the proof. �

11.8. Solutions with Additional Symmetry

In the results of this paper, several types of geometric initial data sets as
well as invariant subsets are of interest which have additional properties. In
particular, those with local rotational symmetry and those describing plane
wave equilibrium solutions appear frequently. We have defined both notions
twice, first in the setting of geometric initial data and then in the setting of
expansion-normalised variables. In this subsection, we show that these defini-
tions are consistent provided we transform between geometric initial data sets
and expansion-normalised variables the way we described in Sects. 11.4–11.6.

The notion of locally rotationally symmetric geometric initial data is
given in Definition 1.6, where such initial data are defined via the properties
of a specific basis of the associated Lie algebra. Given more generally some
orthonormal basis e1, e2, e3 of the Lie algebra g such that

[e2, e1] = 0 = [e2, e3] , [e1, e3] ‖ e2, k = diag(k11, k22, k33 = k11),

but not necessarily with e2, e3 spanning a particular subalgebra, we find that
these properties are preserved under a rotation in the e1e3-plane. The term
local rotational symmetry is therefore meaningful and should be compared to
the definition of local rotational symmetry in Bianchi class A spacetimes in
[17, Definition 19.16] and in more general spacetimes in [21].

Let us now discuss Definition 1.6 in connection with the different Bianchi
types. For a Lie group of type V or IV, the form of the structure constants
from Table 5 reveals

[e1, e2] = a1e2 + ν3e3, [e1, e3] = a1e3, [e2, e3] = 0,

for a basis chosen as in the classification of Lie groups in Sect. 11.1. Note that
the basis elements e2, e3 span g2, see Remark 11.4. There is no rotation in
the e2e3-plane such that the commutators of the rotated basis have the form
requested for local rotational symmetry. Consequently, no initial data set of
Bianchi type V or IV can have local rotational symmetry.

Let us therefore assume that the Lie group is of type VI or VII. When
comparing the properties of local rotational symmetry from Definition 1.6
with the decomposition of the structure constants in (51), we see that the
vanishing of [e2, e1] and [e2, e3] is equivalent to a1 = −n32 and n33 = 0,
while [e1, e3] ‖ e2 holds if and only if a1 = n23. In particular, we can consider
the linear map A2 = adv1 |g2 , v1 ∈ g\g2, from Lemma 11.5 and conclude
that local rotational symmetry implies detA2 = 0. The image of either adv1

or A2, which coincides with [g, g], is one-dimensional and spanned by e2. After
a rotation in the e2e3 plane, we can assume that n is diagonal, but lose the
properties a1 = n23 = −n23 and n33 = 0, see Remark 11.4. A vanishing
determinant of A2 implies that η = −1, hence the Lie group can only be of
type VI−1.
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Alternatively, let e1, ẽ2, ẽ3 be a basis of the Lie algebra g with ẽ2, ẽ3

spanning g2 and such that a = (a1, 0, 0), n = diag(0, ν2, ν3), i. e. a basis as in
the classification of Lie groups in Sect. 11.1. Let us further assume that η =
−1, i. e. the Lie group is of type VI−1. In this case, we find from the matrix
representation of A2 that

[g, g] = span
(

ẽ2 ±
√

|ν2

ν3
|ẽ3

)

,

where the sign depends on the sign of a1. We further find that if we set e2

and e3 to be unit vectors in g2, one spanning [g, g] and one orthogonal to it,
and by a change of sign in e1 ensure that a1 is negative, then we recover that
the commutator of this new basis satisfy the properties

[e2, e1] = 0 = [e2, e3] , [e1, e3] ‖ e2

from the definition of local rotational symmetry, Definition 1.6. Whether geo-
metric initial with an associated Lie algebra of type VI−1 is locally rotationally
symmetric then depends solely on the two-tensor k.

Given geometric initial data as in Definition 1.6, we can deduce from the
commutators the corresponding basic variables via expressions (50), (52), (53),
and (58) and find that local rotational symmetry implies that 3σ2

+ = σ̃
and σ+n+ = δ. Further, the Lie group has to be of class A or of type VI−1

due to the above discussion. The expansion-normalised variables result from
applying (67) and (68), and one recovers the definition of locally rotationally
solutions in expansion-normalised variables, Definition 3.4, as Bianchi class A
corresponds to Ã = 0.

For the notion of plane wave equilibrium initial data, we turn to Defini-
tion 1.8. In terms of structure constants for the four-dimensional spacetime,
the property γB

1A + γA
1B = −2kAB is equivalent to

γ2
12 = γ2

02, γ3
13 = γ3

03, γ3
12 + γ2

13 = γ3
02 + γ2

03. (87)

This should be compared with the definition given in [8], where the special
spacelike direction is set to be e1 instead of en. Applying an appropriate per-
mutation of the basis elements to fit with our choice of frame, the definition
given there reads

γB
1A = γB

0A.

In terms of geometric initial data, the right-hand side is not defined, but its
symmetrisation can be replaced by the expression −kAB , see Eq. (51) and
Remark 11.8. This tensor is symmetric by definition, and also replacing the
left-hand side by its symmetrisation one obtains Definition 1.8.

Translating structure constants into basic variables via expressions (50),
(52), (53), and (58), and using the constraint equation (55), one finds that the
relations (87) carry information equivalent to

−σ+(θ + σ+) = σ̃ = ñ, δ = 0, μ = 0.
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Via (67) and (68) one obtains that this is equivalent to expansion-normalised
variables satisfying Z = 0, see (21). This characterises the set Lκ, Defini-
tion 1.17, together with the point Taub 1, and is equivalent to dropping the
condition Σ+ > −1 in Eq. (12).

Remark 11.25. In terms of initial data, the Kasner parabola K corresponds
to vacuum Bianchi type I data. This can easily be deduced from Table 2 and
using the condition for vacuum, Ω = 0, in Eq. (10).

The two special Taub points have the following characterisation:

• The point Taub 1 corresponds to initial data of Bianchi type I which is
of plane wave equilibrium type.

• The point Taub 2 corresponds to initial data of Bianchi type I which
is locally rotationally symmetric and additionally the unique eigenvalue
of k in the rotation plane is smaller than the unique eigenvalue along
the rotation axis. In a basis satisfying the conditions for local rotation
symmetry from Definition 1.6, this means that k11 < k22 holds.

This follows from the consistency check we carried out before. Geometric initial
data being locally rotationally symmetric are equivalent to the corresponding
expansion-normalised variables satisfying Definition 3.4, and geometric initial
data of plane wave equilibrium type correspond to Definition 1.17, includ-
ing the possibility that Σ+ = −1. Intersection with the Kasner parabola K,
which consists of all Bianchi type I vacuum spacetimes, yields the character-
isation: Taub 1 is the unique point on the Kasner parabola which satisfies
the plane wave equilibrium point relations. Taub 2 is one of two intersection
points between the Kasner parabola K and the set of LRS solutions, the one
with Σ+ > 0. This last property translates into 2k11 − k22 − k33 < 0, and as
k11 = k33 for LRS geometric initial data, the statement follows.

12. Proof of the Main Theorems

In this final section, we give the proofs of the main theorems stated in the
introduction. Four of them, Theorems 1.18, 1.21, 1.23, and 1.25, are stated
in the setting of expansion-normalised variables, and these are proven first.
The remaining statements, Theorems 1.10 and 1.11, are translated versions of
Theorems 1.21 and 1.23, giving the results in terms of geometric initial data
and the corresponding maximal globally hyperbolic development.

In the previous sections, we have determined the asymptotic behaviour
of solutions to the evolution equations (5)–(11). We have found possible α-
limit sets and determined in detail the solutions which converge to the Kas-
ner parabola K or the plane wave equilibrium points Lκ as τ → −∞. The-
orems 1.21, 1.23, and 1.25 state that apart from a short list of ‘exceptional’
solutions, either the Kretschmann scalar RαβγδR

αβγδ or the contraction of the
Ricci tensor with itself RαβRαβ or both become unbounded along solutions
as τ → −∞. This implies Strong Cosmic Censorship in the C2-sense. We start
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with a discussion of these two geometric invariants and their form and asymp-
totic behaviour in terms of expansion-normalised variables, before we are then
in a position to give the proof of these three theorems.

We then continue this section with a proof of Theorem 1.18, where we
show that apart from a ‘small’ subset, all solutions to the evolution equa-
tions (5)–(11) converge to a Kasner point to the right of Taub 2, as τ → −∞.
For this proof as well, we heavily rely on the results on asymptotic behaviour
of solutions which we obtained in the previous sections.

At the end of this section, we conclude with the proofs of the main state-
ments in the initial data perspective, Theorems 1.10 and 1.11. The equiva-
lent statements in expansion-normalised variables are given in Theorems 1.21
and 1.23. Using the transformation between this set of variables and the ma-
ximal globally hyperbolic development to given geometric initial data which
we constructed in Sects. 11.4–11.6, we re-translate the statements back to the
setting of geometric initial data. Applying the proof to μ > 0, γ = 0, i. e.
the stress–energy tensor of a positive cosmological constant in vacuum, even
justifies the statement given in Remark 1.14 as a re-translated version of The-
orem 1.25.

We start with computing several curvature expressions in terms of
expansion-normalised variables. The Weyl tensor of a four-dimensional mani-
fold with metric g is given by

Cαβγδ = Rαβγδ − (gα[γRδ]β − gβ[γRδ]α) +
1
3
Sgα[γgδ]β ,

see [23, Eq. (3.2.28)]. For a spacetime satisfying Einstein’s equation (1) with
stress–energy tensor of a perfect fluid (2) with linear equation of state (3), one
computes that the contraction of the Ricci tensor with itself is

RαβRαβ = μ2 + 3p2 = (1 + 3(γ − 1)2)μ2 (88)

and finds the Kretschmann scalar

RαβγδR
αβγδ = CαβγδC

αβγδ + 2RαβRαβ − 1
3
S2

= CαβγδC
αβγδ +

1
3
(4 + (3γ − 2)2)μ2.

The relation between the Weyl tensor and the expansion-normalised variables
(Σ+, Σ̃,Δ, Ã, N+) has been computed in [10, App. B], referring to [3]:

CαβγδC
αβγδ = θ4

(

ẼABẼAB +
2
3
E2

+

)

− θ4

(

H̃ABH̃AB +
2
3
H2

+

)

, (89)

where the electrical components are

ẼABẼAB =
2
27

[Σ̃(2Σ+ − 1)2 + 4(ÃΣ+ + Ñ(Ã + 3Ñ − 2Σ̃))

+ 4Δ2 − 4N+Δ(2Σ+ − 1) + 4κÃÑ ],

E+ =
1
3
(Σ̃ − Σ+(1 + Σ+) − 2Ñ),
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and the magnetic ones are

H̃ABH̃AB =
2
27

[9Σ2
+Ñ + 6Σ̃Ñ + Σ̃Ã + 6Δ2 + 12Σ+N+Δ + 4κÃΣ̃],

H+ = −Δ.

Lemma 12.1. Consider a solution to Eqs. (5)–(11). If Ω > 0 and γ > 0, then

lim
τ→−∞ RαβRαβ = ∞.

If Ω > 0, γ = 0, or if Ω = 0, then RαβRαβ remains bounded as τ → −∞.

The central idea of proof has already been given in [15], where the
Bianchi A case was discussed. It only relies upon Eq. (88), which follows imme-
diately from the assumption on the stress–energy tensor and is independent of
the Bianchi class of the Lie group. Note that only the evolution equations for θ
and Ω come into play. In particular, this statement can be obtained without
knowledge on the detailed asymptotic properties of the individual variables.

Proof. The contraction of the Ricci tensor with itself is given by (88). The
density μ satisfies Eq. (68), and the evolution equations (70) and (11) for θ
and Ω yield

9μ2(τ) = Ω2θ4(τ)

= Ω(τ0)2θ(τ0)4 exp
(∫ τ

τ0

−4 − 4q + 4q − 2(3γ − 2)ds

)

= Ω(τ0)2θ(τ0)4 exp(−6γ(τ − τ0)).

As Ω > 0 is an invariant set by Eq. (11), and θ �= 0 by construction of the
expansion-normalised coordinates in Sects. 11.4–11.6, the statement follows.

�

Lemma 12.2. Assume either vacuum or inflationary matter with γ = 0, i. e.
Ω = 0 or Ω > 0, γ = 0, and consider a solution to Eqs. (5)–(11). Assume that
the solution has an α-limit point (Σ+, 1 − Σ2

+, 0, 0, 0) with Σ+ /∈ {−1, 1/2}.
Then

lim sup
τ→−∞

|RαβγδR
αβγδ| = ∞.

Proof. Vacuum is equivalent to vanishing Ricci curvature; consequently,

RαβγδR
αβγδ = CαβγδC

αβγδ

in this case, while for Ω > 0, γ = 0, the argument from the previous proof
implies that

RαβγδR
αβγδ − CαβγδC

αβγδ = 2RαβRαβ − 1
3
S2 =

1
3
(4 + (3γ − 2)2)μ2

is a constant.
Direct computation shows that on the Kasner parabola K one finds

ẼABẼAB +
2
3
E2

+ − H̃ABH̃AB − 2
3
H2

+ =
4
27

(2Σ+ − 1)2(Σ+ + 1),
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which is nonzero if and only if Σ+ /∈ {−1, 1/2}. The statement then follows
from Eq. (89) and the fact that θ → ∞ as τ → −∞, due to Eq. (70). �

Lemma 12.3. The expression

ẼABẼAB +
2
3
E2

+ − H̃ABH̃AB − 2
3
H2

+

vanishes for the Kasner points Taub 1 and 2, for the plane wave equilibrium
points Lκ, and for the point Σ+ = Σ̃ = Δ = Ã = N+ = 0.

Proof. This follows from direct computation, which we in the case of the Taub
points already carried out in the previous proof, and where the set Lκ is defined
in Definition 1.17. �

Remark 12.4. On the Taub points 1 and 2, on the plane wave equilibrium
points Lκ, and on the point Σ+ = Σ̃ = Δ = Ã = N+ = 0, the contraction
of the Weyl tensor with itself, expression (89), vanishes due to Lemma 12.3.
Together with the result from Lemma 12.1 and Eq. (88), this implies that
both the Kretschmann scalar RαβγδR

αβγδ and the contraction of the Ricci
tensor with itself RαβRαβ remain bounded for the constant solutions in the
points Taub 1 and Taub 2, the plane wave equilibrium points and the point
Σ+ = Σ̃ = Δ = Ã = N+ = 0.

We now give the proofs of the theorems stated in expansion-normalised
variables.

Proof of Theorem 1.21. This statement is an immediate consequence of
Lemma 12.1. �

Proof of Theorem 1.23. Proposition 4.2 restricts the possible α-limit sets of
solutions in vacuum Ω = 0 to the Kasner parabola K and the plane wave
equilibrium points Lκ. Non-constant solutions with α-limit set in Lκ are im-
mediately excluded by the same statement. One knows further from Proposi-
tion 6.1 that solutions with α-limit set in K have a unique α-limit point, i. e.
they converge as τ → −∞. We now discuss the different possible locations
of limit points for solutions to Eqs. (5)–(11) and check in which cases the
Kretschmann scalar possibly remains bounded.

Lemma 12.2 states that the Kretschmann scalar becomes unbounded
upon convergence to every Kasner points but the points Taub 1 and 2. The
only solution converging to the point Taub 1 is the constant one, see Proposi-
tion 5.1. All solutions converging to Taub 2 are characterised in Theorem 7.2.
This concludes the proof. �

Proof of Theorem 1.25. The proof proceeds similarly to the previous one.
Proposition 4.2 restricts the possible α-limit sets of solutions with Ω > 0,
γ = 0, to the Kasner parabola K, the plane wave equilibrium points Lκ, and
the point Σ+ = Σ̃ = Δ = Ã = N+ = 0. Non-constant solutions converging
to the point Σ+ = Σ̃ = Δ = Ã = N+ = 0 are immediately excluded by the
same proposition, which also states that solutions whose α-limit set intersects
both K\ T1 and Lκ do not exist. One knows further from Propositions 6.1
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and 4.4 that solutions with α-limit set in either K or Lκ have a unique α-limit
point, i. e. they converge as τ → −∞. We now discuss the different possi-
ble locations of limit points and check in which cases the Kretschmann scalar
possibly remains bounded.

The constant solution in the point Σ+ = Σ̃ = Δ = Ã = N+ = 0 sat-
isfies Ω = 1. Due to the previous remark, the Kretschmann scalar remains
bounded.

Let us now turn to solutions converging to a plane wave equilibrium
point, i. e. solutions contained in C. We apply Theorem 10.3 and find that
the case −(3γ − 2)/4 < s < 0 is excluded by γ = 0. Every solution in C is
contained in the union of submanifolds L′

m or L′′
m, and the limiting value s

and the parameter κ have to satisfy relation (44). In Remark 10.4, we list the
possible values depending on the Bianchi type. Setting the union of submani-
folds {Lm} to include all L′

m and L′′
m gives the statement.

The arguments regarding solutions converging to a point on the Kasner
parabola K are identical to the ones given in the previous proof. Note that
only the non-constant solutions, i. e. locally rotationally symmetric solutions
of Bianchi type I, II or VI−1 can satisfy Ω > 0. This concludes the proof. �

For the case of vacuum, our statement Theorem 1.23 makes precise and
proves a claim by [25, p. 165] saying that all solutions except those contained in
the unstable manifold of the point Taub 2 have an initial curvature singularity.

Proof of Theorem 1.18. The three sets describing solutions of Bianchi type
VIη, VIIη and IV are open sets of R

5. Restricted to the constraint equa-
tions (8) and (9), they form open subsets of the set defined by these equations.
Consequently, these three Bianchi sets are of dimension four. Restricting to
vacuum Ω = 0 yields sets of dimension three. The set describing solutions
of Bianchi type V is a two-dimensional closed subset of R5 and contained in
the set defined by the constraint equations (8) and (9). Restricted to vac-
uum Ω = 0, this Bianchi type yields a set of dimension one. We prove the
theorem by showing that all solutions with convergence behaviour different
from the one in the statement are contained in countable unions of smooth
submanifolds of positive codimension.

Independently of the Bianchi type, the α-limit set of a solution to Eqs. (5)–
(11) with either Ω = 0 or Ω > 0, γ ∈ [0, 2/3) is given in Proposition 4.2: We
exclude constant solutions as they are contained in two smooth curve arcs
together with one additional point, namely the Kasner parabola K, the plane
wave equilibrium points Lκ and the point Taub 1. In Bianchi type V, we ad-
ditionally notice that the intersection between these two arcs and the subset
defining this Bianchi type consists of two points.

Proposition 5.1 states that only the constant solution has Taub 1 as an
α-limit point, so in particular we exclude solutions with Taub 1 as an α-limit
point. We conclude from Proposition 4.2 that the α-limit set is contained
in either the Kasner parabola K without the point Taub 1 or in the plane
wave equilibrium points Lκ, and also see that latter set can only occur for
inflationary matter, i. e. for Ω > 0, γ ∈ [0, 2/3).
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In Propositions 6.1 and 4.4, we further showed that the α-limit sets
consist of exactly one point meaning that solutions converge as τ → −∞.
All that remains to show now is that the set of solutions converging to a
plane wave equilibrium point Lκ or a point on the Kasner parabola K with
−1 < Σ+ ≤ 1/2, resp. the complement of this set of solutions, has the neces-
sary properties.

We start with solutions converging to a point on the Kasner parabola K.
According to Theorem 7.2, the only Bianchi class B solutions converging to
the point Taub 2 are those of Bianchi type VI−1 which are locally rotationally
symmetric. They are characterised by

κ = −1, Ã > 0, 3Σ2
+ = Σ̃, Σ+N+ = Δ,

and are solutions of Bianchi type VI−1. In particular, no Bianchi type VIIη,
type IV or type V solution converges to the point Taub 2. The set is a C1

submanifold of dimension three, and its restriction to vacuum of dimension two.
In particular, it forms a subset of positive codimension in the set of all Bianchi
type VI−1 solutions, both in case of vacuum and inflationary matter.

The solutions converging to a Kasner point to the left of Taub 2 are
given in Theorem 8.5. In case of Bianchi type VIη, solutions either satisfy
Ã > 0, Δ = 0 = N+, 3Σ2

+ + κΣ̃ = 0 (Bianchi type VIη with nα
α = 0, see

Table 3), or have to be contained in a countable union of C1 submanifolds
satisfying Ã > 0 and Δ, N+ not both vanishing identically. These submani-
folds are contained either in the set of all non-vacuum solutions or the set of
all vacuum solutions, and in the respective set have codimension at least one.
Solutions of Bianchi type VIIη cannot converge to a Kasner point to the left
of Taub 2 due to κ > 0. In the remaining two cases, Bianchi type IV and V,
the restriction κ = 0 implies that solutions can only converge to the Kasner
point with s = 0.

For non-constant solutions converging to a plane wave equilibrium point,
Theorem 10.3 states that they converge to the arc Lκ ∩ {Σ+ ≤ −(3γ − 2)/4},
which includes the point Lκ ∩ {Σ+ = 0} due to the assumption on γ. All
solutions are contained in the countable union of C1 submanifolds L′

m or L′′

whose dimension is at most two. This is enough to identify them as subsets of
positive codimension in the Bianchi type VIη, VIIη and IV. For Bianchi type V
solutions, we have argued in Remark 10.4 that the solution is contained in the
subset Σ+ = Σ̃ = Δ = N+ = 0, which is a subset of positive codimension in
non-vacuum.

Collecting the different partial results, we conclude the following: In the
case of Bianchi type VIη or VIIη, if a solution does not converge to a Kasner
point to the right of Taub 2, then it is contained in a countable union of C1

submanifolds of positive codimension, both in case of vacuum and inflationary
matter. Therefore, this set of exceptions has the right properties: Its comple-
ment is of full measure and a countable intersection of open and dense sets.
We argue similarly in case of Bianchi type IV, with the additional possibil-
ity of convergence to the Kasner point with s = 0. For the case of Bianchi
type V, convergence to Kasner point to the right of Taub 2 is not possible, as
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all such Bianchi solutions satisfy Σ+ = 0 by definition. We have shown that
all non-constant solutions converge to the point on the Kasner parabola K
satisfying s = 0. �

We conclude this section with the proof of the two remaining theorems,
which are stated in the setting of geometric initial data. As large portions of
the proofs are identical, we combine them into one.

Proofs of Theorems 1.10 and 1.11. We consider initial data which is of Bianchi
class B. This implies in particular that the Minkowski spacetime or quotients
of this space cannot occur as development of the data. This excludes the
case θ = trh k = 0, see Lemma 11.16, and we can therefore consider a devel-
opment of the data (I × G, g, μ) as in Definition 11.15, i. e. one constructed as
in Sects. 11.4–11.6. According to Corollary 11.21, this development is isomet-
ric to the maximal globally hyperbolic development of the given initial data.
We further know from Proposition 11.24 that the behaviour of any geometric
quantity in the incomplete direction of causal geodesics in M corresponds to
the behaviour of this geometric quantity on {t} × G as t → t−.

We now switch to the point of view of expansion-normalised variables,
as explained in Sect. 11.4. The behaviour of any geometric quantity in the
incomplete direction of causal geodesics in M consequently corresponds to the
behaviour of this geometric quantity as τ → −∞, see also the construction of
the development, specifically the end of Sect. 11.5.

The result in the matter case μ0 > 0, γ > 0, which is the setting of
Theorem 1.10 is an immediate consequence of Theorem 1.21, as the definition
of the density parameter in Eq. (68) yields Ω > 0 at τ = 0, and this property
is conserved by the evolution equation (11).

Consider now the vacuum case μ0 = 0, i. e. the setting of Theorem 1.11. In
the setting of expansion-normalised variables this corresponds to Ω = 0, and we
have listed all exceptions to curvature blow-up as τ → −∞ in Theorem 1.23.
To prove the theorem for geometric initial data, we have to carry over the
individual exceptions to the geometric initial data perspective. As we only
consider initial data with a Lie group of Bianchi class B, a number of these
exceptions cannot occur by assumption, namely those assuming Bianchi type I
and II. Note also that the point Taub 1 is a constant Bianchi type I solution.

We have argued in Sect. 11.8 that the definitions of local rotational
symmetry in terms of geometric initial data, Definition 1.6, and in terms of
expansion-normalised variables, Definition 3.4, carry equivalent information.
This proves the statement. �

Remark 12.5. We can adapt the proof to justify the statement made in Re-
mark 1.14. Assuming μ > 0 and γ = 0, we switch to expansion-normalised
variables. The de Sitter spacetime or quotients of this space cannot occur
as development of the data due to the assumption on the Bianchi class. It
therefore follows from Proposition 11.24 that the spacetime constructed as in
Sects. 11.4–11.6 is in fact the maximal globally hyperbolic development of the
given geometric initial data; otherwise, the arguments are identical to those
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given in the previous proof. The exceptions to curvature blow-up are LRS
Bianchi VI−1 solutions and solutions converging to plane wave equilibrium
points, see Theorem 1.25.
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Appendix A. Additional Properties of Expansion-Normalised
Variables

A.1. The Linearised Evolution Equations on the Kasner Parabola

By the linearised evolution equations in the extended five-dimensional state
space we mean the linear approximation of the evolution equations (5). For
points on the Kasner parabola K, this is the vector field R

5 → R
5 given by

the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3(2 − γ)Σ2
+

3
2
(2 − γ)Σ+ 0 1

2
(3γ − 2)(κ

3
− 1)Σ+ + 2

3
κ 0

6(2 − γ)Σ+Σ̃ 3(2 − γ)Σ̃ 0 (3γ − 2)(κ
3
− 1)Σ̃ − 4Σ+ 0

0 0 2Σ+ + 2 0 2Σ̃

0 0 0 2(2 + 2Σ+) 0
0 0 6 0 2 + 2Σ+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that γ and κ are constants, and we did not replace Σ̃ by 1− Σ2
+ to make

it more readable.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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As there appear to be typos in the eigenvalues in both [10, Sect. 4.4]
and [25, Sect. 7.2.3], we give here the corrected eigenvalues and state the
corresponding eigenvectors.

• The eigenspace to eigenvalue 0 is tangential to the Kasner parabola; it is
spanned by

(1 , −2Σ+ , 0 , 0 , 0).

• The eigenspace to eigenvalue 2(1 + Σ+ +
√

3(1 − Σ2
+)) lies in the ΔN+-

plane and is spanned by
(

0 , 0 , +
1
3

√

3(1 − Σ2
+) , 0 , 1

)

.

• The eigenspace to eigenvalue 2(1 + Σ+ −
√

3(1 − Σ2
+)) lies in the ΔN+-

plane and is spanned by
(

0 , 0 , −1
3

√

3(1 − Σ2
+) , 0 , 1

)

.

• The eigenspace to eigenvalue 4(1 + Σ+) is spanned by
(

1
6
(κΣ+ − 3Σ+ + κ) ,

1
3
(3Σ2

+ − κΣ2
+ + κ − 3 − 3Σ+) , 0 , 1 + Σ+ , 0

)

.

• The eigenspace to eigenvalue 3(2 − γ) is spanned by

(Σ+ , 2(1 − Σ2
+) , 0 , 0 , 0)

Whenever two eigenvalues coincide, the eigenspace consists of all linear com-
binations of the respective eigenvectors.

A.2. The Linearised Evolution Equations on the Plane Wave Equilibrium
Points

For points on the plane wave equilibrium points Lκ, linearising the evolution
equations (5) gives raise to the vector field R

5 → R
5 given by the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2Σ+ − 2 + 3(2 − γ)Σ2
+

3
2 (2 − γ)Σ+ . . .

−6(2 − γ)Σ2
+(Σ+ + 1) − 4(Σ+ + 1)2 −4Σ+ − 4 − 3(2 − γ)Σ+(Σ+ + 1) . . .

0 −2|N+| . . .

(6(2 − γ)Σ+ + 4)(Σ+ + 1)2 3(2 − γ)(Σ+ + 1)2 . . .

−(3(2 − γ)Σ+ + 2)|N+| − 3
2 (2 − γ)|N+| . . .

. . . 0 1
2 (3γ − 2)( κ

3 − 1)Σ+ + 2
3 κ 1

3 (3γ − 2)Σ+|N+| + 4
3 |N+|

. . . 4|N+| −(3γ − 2)( κ
3 − 1)Σ+(Σ+ + 1) − 4Σ+ − 2

3 (3γ − 2)Σ+(Σ+ + 1)|N+|
. . . −2Σ+ − 2 − 2

3 κ|N+| − 4
3 N2

+

. . . 0 (3γ − 2)( κ
3 − 1)(Σ+ + 1)2 2

3 (3γ − 2)(Σ+ + 1)2|N+|
. . . 6 − 1

2 (3γ − 2)( κ
3 − 1)|N+| − 1

3 (3γ − 2)N2
+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where N2
+ = (1 + Σ+)(κ(1 + Σ+) − 3Σ+) as in Eq. (12), by definition of the

plane wave equilibrium points. The eigenvalues to this vector field are

0, −4(1 + Σ+), −4Σ+ − (3γ − 2), −2(1 + Σ+) ± 2iN+.

We do not make use of the explicit form of corresponding eigenvectors in any
of the proofs and therefore only give those with a relatively short form.
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• The eigenspace to eigenvalue 0 is tangential to the plane wave equilibrium
points; it is spanned by
(

−2|N+| , (4Σ+ + 2)|N+| , 0 , −4|N+|(Σ+ + 1) ,
2N2

+

Σ+ + 1
− 3

)

.

• The eigenspace to eigenvalue −4(1 + Σ+) is spanned by
(
(1 − Σ+)N2

+ , (Σ+ + 1)(2Σ+N2
+ − N2

+ − 2κΣ+ − 5Σ+ + 2κ + 1),

(1 − Σ+)(1 + Σ+)|N+| , −(Σ+ + 1)2(Σ+ + 2N2
+ + 1) , |N+|(2Σ+ + N2

+ − 1)
)
.

The eigenspace to eigenvalue −4Σ+ −(3γ −2) has an explicit expression which
is lengthy but can be computed using mathematical software. One can further
check that this vector is orthogonal to the gradient of Eq. (8), as we claim in
Sect. 10.

Direct computation shows that the eigenvector to eigenvalue −4(1+Σ+)
is not orthogonal to gradient (18) of the constraint equation (8). Wherever the
hypersurface defined by this constraint is non-singular, this means that this
eigenvector is transverse to the constraint hypersurface, see Remark 3.5.

Appendix B. Results from Dynamical Systems Theory

In this section, we state a theorem about the qualitative behaviour of solutions
to a differential equation close to a submanifold of equilibrium points. It is part
of a more general discussion of singular perturbation theory given by [5]. We
describe the setting and state the result in the form necessary for our work
and then explain the relation to the original statement.

Let M be a Cr+1 manifold, 1 ≤ r < ∞, and let Y be a Cr vector field
on M . The solution to

d
dt

φt(m) = Y (φt(m)), φ0(m) = m,

with t in an interval chosen to be maximal, is the flow corresponding to the
vector field. The family {φt} defines a 1-parameter family of diffeomorphisms
of M . In the setting we are interested in, the interval is R, and we assume this
from now on.

Definition B.1. For an open set U ⊂ M , the maximal positively invariant
set A+(U), the maximal negatively invariant set A−(U), and the maximal
invariant set I(U) are defined by

m ∈ A+(U) ⇔ {φt(m) : t ∈ [0,∞)} ⊂ U,

m ∈ A−(U) ⇔ {φt(m) : t ∈ (−∞, 0]} ⊂ U,

m ∈ I(U) ⇔ {φt(m) : t ∈ R} ⊂ U,

where the bar denotes closure.

Consider a point m ∈ M which is an equilibrium point of Y , i. e. a fixed
point of the flow. The vector field Y induces a linear mapping

TY (m) : TmM → TmM.
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Let E be a Cr submanifold consisting entirely of equilibrium points of Y ,
and K ⊂ E a compact subset such that the numbers of non-vanishing eigen-
values of TY (m) situated in the left half-plane, on the imaginary axis, and
in the right half-plane, respectively, are constant for all points m ∈ K. For
every m ∈ K, denote by Em

s, Em
c and Em

u the invariant subspaces of TmM
associated with the eigenvalues of TY (m) in the left half-plane, on the imagi-
nary axis, and in the right half-plane, respectively.

Definition B.2. A C1 manifold Cs is called a centre-stable manifold for Y
near K if

• K ⊂ Cs;
• Cs is locally invariant under the flow of Y , i. e. there is an open neighbour-

hood V of Cs such that m ∈ Cs, t0, t1 ≥ 0 and {φt(m) : t ∈ [−t0, t1]} ⊂ V
implies {φt(m) : t ∈ [−t0, t1]} ⊂ Cs;

• for all m ∈ K, Cs is tangent to Em
s ⊕ Em

c at m.
Centre-unstable and centre manifolds Cu and C are defined the same way, with
Em

s ⊕ Em
c replaced by Em

c ⊕ Em
u and Em

c, respectively.

The following theorem states that these manifolds exist, at least locally,
around the compact set K, and that they contain the different maximal in-
variant sets.

Theorem B.3. Let M be a Cr+1 manifold, 1 ≤ r < ∞, let Y be a Cr vector field
on M . Let E be a Cr submanifold consisting entirely of equilibrium points of Y ,
and K ⊂ E a compact subset such that the number of non-vanishing eigenvalues
of TY |K situated in the left half-plane, on the imaginary axis, and in the right
half-plane, respectively, is constant. Then there is a Cr centre-stable mani-
fold Cs, a Cr centre-unstable manifold Cu, and a Cr centre manifold C for Y
near K. Furthermore, there is a neighbourhood U of K such that

A+(U) ⊂ Cs, A−(U) ⊂ Cu, I(U) ⊂ C.

In addition, the following uniqueness properties hold:
• Let Ds be any Cr manifold which is locally invariant relative to U and

tangent to Cs at a point m ∈ A+(U). Then Cs and Ds have contact of
order r at m.

• Let Du be any Cr manifold which is locally invariant relative to U and
tangent to Cu at a point m ∈ A−(U). Then Cu and Du have contact of
order r at m.

• Let D be any Cr manifold which is locally invariant relative to U and
tangent to C at a point m ∈ I(U). Then C and D have contact of order r
at m.

The statement appears as Theorem 9.1 (i) and (iv) in [5], where one
considers not only one vector field Y , but a family Xε, ε ∈ (−ε0, ε0). The
theorem stated here is a direct consequence of restricting to a vector field
which remains unchanged in ε, i. e. Xε = X0 = Y , and ignoring the ε-direction
in the definition of centre-stable, centre-unstable, and centre manifolds.
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