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Abstract. We consider the problem of deciding if a set of quantum one-
qudit gates S = {g1, . . . , gn} ⊂ G is universal, i.e. if <S> is dense in G,
where G is either the special unitary or the special orthogonal group. To
every gate g in S we assign the orthogonal matrix Adg that is image of g
under the adjoint representation Ad : G → SO(g) and g is the Lie algebra
of G. The necessary condition for the universality of S is that the only
matrices that commute with all Adgi ’s are proportional to the identity. If
in addition there is an element in <S> whose Hilbert–Schmidt distance
from the centre of G belongs to ]0, 1√

2
[, then S is universal. Using these

we provide a simple algorithm that allows deciding the universality of
any set of d-dimensional gates in a finite number of steps and formulate
a general classification theorem.

1. Introduction

Quantum computer is a device that operates on a finite-dimensional quantum
system H = H1⊗· · ·⊗Hn consisting of n qudits [4,19,28] that are described by
d-dimensional Hilbert spaces, Hi � C

d [29]. When d = 2 qudits are typically
called qubits. The ability to effectively manufacture optical gates operating on
many modes, using, for example, optical networks that couple modes of light
[9,33,34], is a natural motivation to consider not only qubits but also higher-
dimensional systems in the quantum computation setting (see also [30,31]
for the case of fermionic linear optics and quantum metrology). One of the
necessary ingredients for a quantum computer to work properly is the ability
to perform arbitrary unitary operation on the system H. We distinguish two
types of operations. The first are one-qudit operations (one-qudit gates) that
belong to SU(Hi) � SU(d) and act on a single qudit. The second are k-qudit
operations (k-qudit gates), k ≥ 2, that belong to SU(Hi1⊗· · ·⊗Hik

) � SU(dk)
and act on the chosen k qudits. A k-qudit gate is non-trivial if it is not a tensor
product of k single-qudit gates. We say that one-qudit gates S = {g1, . . . , gn}
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are universal if any gate from SU(d) can be built, with an arbitrary precision,
using gates from S. Mathematically, this means that the set <S> generated
by elements from S is dense in SU(d) and its closure is the whole SU(d),
i.e. < S > = SU(d). It is known that once we have access to a universal
set of one-qudit gates together with one additional two-qudit gate that does
not map separable states onto separable states, we can build within a given
precision, an arbitrary unitary gate belonging to SU(H) [12] (see [32] for the
similar criteria for fermionic and bosonic quantum computing). Thus, in order
to characterise universal sets of gates for quantum computing with qudits, one
needs to characterise sets that are universal for one qudit.

Although there are some qualitative characterisations of universal one-
qudit gates, the full understanding is far from complete. It is known, for exam-
ple, that almost all sets of qudit gates are universal, i.e. universal sets S of the
given cardinality c form a Zariski open set in SU(d)×c. By the definition of a
Zariski open set we can therefore deduce that non-universal gates can be char-
acterised by vanishing of a finite number of polynomials in the gates entries
and their conjugates [21,27]. These polynomials are, however, not known, and
it is hard to find operationally simple criteria that decide one-qudit gates uni-
versality. Some special cases of two- and three-dimensional gates have been
studied in [8,35]. The main obstruction in these approaches is the lack of clas-
sification of finite and infinite disconnected subgroups of SU(d) for d > 4.
Recently, there were also approaches providing algorithms for deciding univer-
sality of a given set of quantum gates that can be implemented on quantum
automatas [17].

The goal of this paper is to provide some simple criteria for universality of
one-qudit gates that can be applied even if one does not know classification of
finite/infinite disconnected subgroups of SU(d). To achieve this we divide the
problem into two. First, using the fact that considered gates S = {g1, . . . , gn}
belong to groups that are compact simple Lie groups G, we provide a cri-
terion which allows to decide if an infinite subgroup is the whole group G.
It is formulated in terms of the adjoint representation matrices Adg, g ∈ S
and boils down to finding the dimension of the commutant of all Adgi

’s. The
necessary condition for universality is that the commutant is one-dimensional.
Checking this reduces to calculating the dimension of the kernel of a matrix
constructed from Adgi

’s, whose coefficients are polynomial in the entries of
gates and their complex conjugates. Next, we give sufficient conditions for
a set generated by S to be infinite. They stem from inequalities that relate
the distances of two group elements and their commutators from the identity
[7,15]. In particular, we show that for a pair of gates g1 and g2, for which the
Hilbert–Schmidt distances from the centre Z(G) of G are less than 1√

2
and

such that [g1, g2]• := g1g2g
−1
1 g−1

2 /∈ Z(G), deciding universality boils down
to checking if the corresponding Lie algebra elements generate the whole Lie
algebra. Next we show that for a gate whose distance from Z(G) is larger than
1√
2
, dist(g, Z(G)) ≥ 1√

2
, there is always n ∈ N such that dist(gn, Z(G)) < 1√

2
.

Moreover, using Dirichlet approximation theorems (and their modifications)
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we give an upper bound for the maximal NG such that for every g ∈ G we
have dist(gn, Z(G)) < 1√

2
for some 1 ≤ n ≤ NG. For the gates that satisfy the

necessary condition for universality, we show that the group generated by S
is either 1) finite iff the distance of all its elements (besides those belonging
to Z(G)) from Z(G) is longer than 1√

2
or 2) otherwise equal to G. This key

observation gives rise to a simple algorithm that allows to decide universality
of any given set of gates. Moreover, it leads to a general classification theorem.
In order to formulate it we introduce the notion of the exceptional spectrum.
For example, the spectrum of g ∈ SU(d) is exceptional iff it is a collection of
nth roots of α ∈ C, where 1 ≤ n ≤ NSU(d) and αd = 1. Notably, there are
only finitely many exceptional spectra and their number can be easily calcu-
lated. Our classification theorem states that S which satisfies the necessary
universality condition and contains at least one matrix with a non-exceptional
spectrum is universal. Our approach to checking if the generated group is infi-
nite is somehow related to [22,25]; however, the conceptual differences in both
approaches are significant and the methods should be treated as independent.
The problem of deciding if a finitely generated group is infinite has been also
studied, and there are some algorithms that allow checking this property (see,
for example, [2,3,17,18]). In contrast to these approaches, our reasoning is
based on the set of basic properties of compact connected simple Lie groups.
The advantage for us of this approach is that it is explicit and direct. Moreover,
the resulting algorithm is simple and can be easily implemented.

It is worth stressing here that universality criteria on the level of Lie
groups require some additional conditions comparing to the level of Lie alge-
bras. As an example, it was shown in [37] that for the system of n qubits,
the set S consisting of all 1-qubit gates and the SWAP gates between all
pairs of qubits is not universal, whereas an analogous set of gates with the
square roots of SWAP is universal. It is, however, evident that in both cases
the corresponding Hamiltonians generate su(2n). The interesting universal and
non-universal extensions of local unitary gates in the setting for fermionic and
bosonic quantum computing can be also found in [32].

In our paper we also demonstrate that the adjoint representation, this
time for Lie algebras, can be useful in deciding if a finite subset X of a real
compact semisimple Lie algebra generates the whole algebra (Sect. 3.1). This
problem has been studied intensively in control theory [1,11,26] and in connec-
tion to universality of Hamiltonians, symmetries and controllability of quan-
tum systems [14,36,40,41]. There are numerous criteria known, and admit-
tedly some are very general. Nevertheless, in Sect. 3.1 we provide criteria for
the universality of X using our approach with the adjoint representation. As
the considered groups are compact and connected, any gate g ∈ G can be
written as g = eX , where X is an element of the Lie algebra of the group. In
Theorem 4.6 we show that when all elements g ∈ S satisfy dist(g, Z(G)) < 1√

2

the necessary and sufficient condition for universality of S is completely deter-
mined by generation of the Lie algebra by the logarithms of the gates from S
(see Sect. 4.1 for the definition of the logarithm).
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The last part of the paper concerns applications of the above ideas to
SU(2), SO(3) and SU(3). In particular, we give a full characterisation of the
universal pairs of single-qubit gates and show that for any pair of SU(2) gates
our algorithm terminates for a word of the length l ≤ 13. Moreover, if the
universality algorithm does not terminate in Step 2 with 1 ≤ l ≤ 4 the set S
cannot be universal. We also show that for SU(2) the exceptional spectra are
in direct correspondence with the characters of the finite subgroups of SU(2).
We also characterise real and complex 2-mode beamsplitters that are universal
when acting on d ≥ 3 modes. Our approach allows to reproof the results of
[8,35] without the knowledge of disconnected infinite or finite subgroups of
SO(3) and SU(3).

2. Preliminaries

2.1. Compact Semisimple Lie Algebras

A real Lie algebra is a finite-dimensional vector space g over R together with
a commutator [·, ·] : g × g → g that: (1) is bilinear, (2) is antisymmetric and
(3) satisfies Jacobi identity [[X,Y ] , Z] + [[Z,X] , Y ] + [[Y,Z] ,X] = 0. In this
paper we will often skip ‘real’ as we will consider only real Lie algebras. A Lie
algebra g is non-abelian if there is a pair X,Y ∈ g such that [X,Y ] �= 0. A
subspace h ⊂ g is a subalgebra of g if and only if for any X,Y ∈ h we have
[X,Y ] ∈ h, i.e. h is closed under taking commutators. An important class of
subalgebras are ideals. A subalgebra h ⊂ g is an ideal of g if for any X ∈ g
and any Y ∈ h we have [X,Y ] ∈ h. One easily checks that an intersection of
ideals is an ideal.

Definition 2.1. A non-abelian Lie algebra g is simple if g has no ideals other
than 0 and g.

We say that a Lie algebra g is a direct sum of Lie algebras, g = ⊕n
i=1gi,

if and only if it is a direct sum of vector spaces {gi}n
i=1 and [gi, gj ] = 0 for

all i �= j. In this case gi’s are ideals of g. The algebras we are interested in
belong to a special class of either simple Lie algebras or their direct sums. In
the following we briefly discuss their properties.

A representation of a real Lie algebra on a real vector space is a linear map
φ : g → EndR(V ) that satisfies φ ([X,Y ]) = [φ(X), φ(Y )]. A representation is
called irreducible if V has no φ(g)-invariant subspace W ⊂ V , i.e. a subspace
for which φ(X)W ⊂ W , for all X ∈ g.

As g is a real vector space itself, one can consider representation of g on
g. In fact, there exists a canonical representation of this type that is called the
adjoint representation:

ad : g → End(g), adX(Y ) := [X,Y ]. (2.1)

Note that invariant spaces of the adjoint representation are ideals and therefore
the adjoint representation of a simple Lie algebra is irreducible. Using the
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adjoint representation we define a bilinear form on g, called the Killing form
given by B(X,Y ) = tr (adX ◦ adY ).1 The Killing form satisfies

B (adX (Y ) , Z) + B (adX (Z) , Y ) = 0. (2.2)

Definition 2.2. A real Lie algebra g is a compact semisimple Lie algebra if its
Killing form is negative definite.

Assume now that g is a compact semisimple Lie algebra, and let a ⊂ g
be an ideal. Let a⊥ be the orthogonal complement of a with respect to the
Killing form. For any X ∈ g, Y ∈ a⊥, and Z ∈ a we have

B ([X,Y ] , Z) = −B (Y, [X,Z]) = 0. (2.3)

Hence, [X,Y ] ∈ a⊥. Therefore, a⊥ is also an ideal. Note next that [a, a⊥] ⊂
a ∩ a⊥. The restriction of B to the ideal a ∩ a⊥ is obviously zero. But B is
negative definite; hence, a∩ a⊥ = 0. As a result, g = a⊕ a⊥ is a direct sum of
ideals. We can repeat this procedure for a and a⊥, and after a finite number
of steps finally we get:

Fact 2.3. A real compact semisimple Lie algebra is a direct sum of real compact
simple Lie algebras.

Let us next choose a basis {Xi}dimg
i=1 in g that satisfies B(Xi,Xj) = −δij .

On this basis adX is an antisymmetric trace zero real matrix, hence an ele-
ment of the special orthogonal Lie algebra so(dim g). Finally, we remark that
the subalgebra of a simple or a semisimple Lie algebra need not to be sim-
ple/semisimple.

2.2. Compact Semisimple Lie Groups

A Lie group G is a group that has a structure of a differential manifold, and
the group operations are smooth. We say that G is compact if it is a compact
manifold, i.e. any open covering of G has a finite subcovering. It is well known
that a closed subgroup of a Lie group is a Lie group [13,38]. In this section
we will always consider closed subgroups. An important class of subgroups are
normal subgroups. H ⊂ G is a normal subgroup if for each g ∈ G we have
gHg−1 ⊂ H. We denote it by H �G. In this case the quotient G/H is a group.
A disconnected G consists of connected components. Connected components
of a Lie group are open, and their number is finite if G is compact, as other-
wise they would constitute an open covering of G that does not possess finite
subcovering. The identity component Ge, i.e. the component that contains the
neutral element e, is a normal subgroup of G. This can be easily seen as the
maps φg : G → G, φg(h) = ghg−1 are continuous for every g ∈ G; hence,
they map components into components. But e ∈ φg(Ge) for all g ∈ G; hence,
φg(Ge) = Ge. The quotient G/Ge is a group (because Ge is normal) which for
a compact G is a finite group called the components group.

The connection between Lie groups and Lie algebras is established in
the following way. Left invariant vector fields on G together with vector fields

1 Upon a choice of basis in g endomorphisms adX and adY are matrices and hence we can
compute the trace.
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commutators form the Lie algebra g of a Lie group G. Note that these fields
are determined by their value at e and therefore g can be identified with the
tangent space to G at e, i.e. g = TeG. For every X ∈ g there is a unique
one-parameter subgroup γ(t) whose tangent vector at e is X. We define the
exponential map exp : g → G to be: exp(X) := γ(1). For any Lie group the
image of the exponential map, exp(g), is contained in the identity component
Ge and when G is compact exp(g) = Ge. Therefore, for a compact and con-
nected group every element g ∈ G is of the form exp(X) for some X ∈ g. For
matrix Lie groups G ⊂ GL(n,C) these definitions simplify as the exponential
map is the matrix exponential that is defined by eX =

∑∞
i=0

Xn

n! and the Lie
algebra is defined as g = {X : etX ∈ G, ∀t ∈ R}.

Definition 2.4. A compact connected Lie group is simple/semisimple if its Lie
algebra is a compact simple/a compact semisimple Lie algebra.

Recall that the Lie algebra h of the identity component of H � G is
an ideal of the Lie algebra g. We can also use an equivalent definition that
says a compact connected group G is simple if it has no connected normal
subgroups. Similarly, as for Lie algebras, compact semisimple Lie groups have
a particularly nice structure.

Fact 2.5. Let G be a compact connected semisimple group. Then

G = (G1 × · · · × Gk) /Z,

where each Gi is a simple compact group and Z is contained in the centre of
G1 × · · · × Gk.

A representation of a Lie group on a real vector space is a homomor-
phism Φ : G → GLR(V ), i.e. Φ satisfies Φ(g1g2) = Φ(g1)Φ(g2). A particularly
important example is the adjoint representation of G on g.

Ad : G → Aut(g), Adg(X) := gXg−1. (2.4)

The image of AdG is AdG = G/Z(G), where Z(G) is the centre of G. For a
semisimple compact Lie group Z(G) is finite by definition and therefore Ad
is a finite covering homomorphism onto G/Z(G). For a compact connected
simple Lie groups the adjoint representation is irreducible.

The relation between the adjoint representations of a compact connected
semisimple Lie group and its Lie algebra, Ad and ad, follows from the fact that
Ad is a smooth homomorphism. For any X ∈ g and all t ∈ R elements AdetX

form a one-parameter subgroup in Aut(g) whose tangent vector at t = 0 is adX .
As this group is uniquely determined by its tangent vector we have AdetX =
eadtX . Using this relation we easily see that the Killing form on g is invariant
with respect to the adjoint action, i.e. B(AdgX,AdgY ) = B(X,Y ). Recall
that for a compact semisimple G the Killing form is an inner product (negative
definite) and therefore Adg is an orthogonal matrix belonging to SO(g). After
the choice of an orthonormal basis in g, using (2.4) we can calculate entries of
the matrix Adg. It is easy to see that this matrix belongs to SO(dim g).
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2.3. Subgroups of a Compact Semisimple Lie Group

Let G be a Lie group. We say that H ⊂ G is a discrete subgroup of G if
there is an open cover of H such that every open set in this cover contains
exactly one element from H—we will call it a discrete open cover of H. If G
is compact every discrete subgroup is finite. To see this, assume that there
is an infinite discrete subgroup H in a compact G and take the open cover
of G that is a union of the discrete open cover of H and the open set which
consists of elements not in this discrete cover. Then this cover is infinite and has
no finite subcover; hence, we get contradiction. By the similar argument any
closed disconnected subgroup H of a compact G has finitely many connected
components. The Lie algebra h of the identity component He is a subalgebra
of g, and the exponential map is surjective onto He; however, h needs not to
be semisimple. We distinguish three possible types of closed subgroups of the
compact Lie group G: (1) finite discreet subgroups, (2) disconnected subgroups
with a finite number of connected components and (3) connected subgroups.

In this paper we consider groups that are generated by a finite number
of elements from some compact semisimple Lie group G. More precisely for
S = {g1, . . . , gk} ⊂ G we consider the closure of

< S >:=
{

gk1
i1

. . . gkm
im

: gij
∈ S, kj ∈ N, ij ∈ {1, . . . , n}

}
,

which is a Lie subgroup of G (see Fact 2.6 for the proof). In particular, we
want to know when < S > = G. It is known that almost any two elements
of G generate a compact semisimple G. Moreover, as shown by Kuranishi [27]
elements that are in a sufficiently small neighbourhood of e generate G if
and only if their corresponding Lie algebra elements generate g. The proof is,
however, not constructive. The author of [21] shows that pairs generating G
form a Zariski open subset of G × G. In our work we adopt and develop some
of the ideas contained in [21] and [27] and this way obtain characterisation of
sets S that generate groups SU(d) or SO(d). Moreover, our approach results
in a simple algorithm that enables deciding the universality of any given set
of gates. For the completeness we prove the following.

Fact 2.6. The closure of <S> is a Lie group.

Proof. By the theorem of Cartan [13,38] we know that a closed subgroup of
a Lie group is a Lie group. The set <S > is obviously closed, and hence we
are left with showing that it is has a group structure. By the construction S
is invariant under multiplication and therefore < S > has this property too.
As a direct implication of Dirichlet approximation theorem (see Theorem 5.2),
for every element g ∈ S there is a sequence {gnk}, such that gnk → I when
k → ∞. Thus, I ∈ < S >. Note, however, that by the same argument the
sequence {gnk−1} ⊂ S converges to g−1. Thus, < S > has a group structure.
The result follows. �

In order to clarify the terminology, whenever we say the group generated
by S we mean the compact Lie group < S >.



3522 A. Sawicki, K. Karnas Ann. Henri Poincaré

3. Generating Sets for Compact Semisimple Lie Algebras and
Lie Groups

We begin with some remarks concerning irreducible representations on real vec-
tor spaces that we will call irreducible real representations. The well-known
version of the Schur lemma states that a representation of a Lie group or
a Lie algebra on a complex vector space (complex representation) is irre-
ducible iff the only matrices that commute with all representation matrices
are {λI : λ ∈ C}. In our paper the considered representations are irreducible
real representations. A real irreducible representation can be of (1) real type,
(2) complex type or (3) quaternion type. The type of representation determines
the structure of endomorphisms commuting with the representation matrices
(see chapter II.6 of [10] for full discussion). The following theorem holds (the-
orem II.6.7 of [10])

Fact 3.1 (Schur Lemma). For a real irreducible representation, the algebra of
endomorphisms commuting with the representation matrices is isomorphic to:
(1) R when the representation is of the real type, (2) C when the representation
is of the complex type, (3) H when the representation is of the quaternion type;
H stands for Hamilton quaternions.

Next we show that the adjoint representation for a compact simple Lie
group/algebra is of the real type. Using Table II.6.2 and Propositions II.6.3 of
[10] it suffices to show that its complexification is of the real type. On the other
hand, by Proposition II.6.4 it reduces to showing that the complexfication
gC of a compact simple Lie algebra g possesses a symmetric, non-degenerate
and AdG-invariant form. To this end we define the Killing form on gC in the
analogues way as in g, i.e. BgC(X1,X2) = tr(adX ◦ adY ), X,Y ∈ gC. Note
that a basis of g over R is a basis of gC over C. Thus, BgC is a non-degenerate
symmetric AdG-invariant form as the Killing form for g is such. Hence,

C(adg) = {λI : λ ∈ R} = C(AdG).

3.1. Generating Sets for Compact Semisimple Lie Algebras

In this section g will denote a compact semisimple Lie algebra. Let X =
{X1, . . . , Xn} ⊂ g. We say that X generates g if any element of g can be written
as a finite linear combination of Xi’s and finitely nested commutators of Xi’s:

∑

i

αiXi +
∑

i,j

αi,j [Xi,Xj ] + · · · .

Our aim is to provide a general criterion that uses the adjoint representation
of compact semisimple Lie algebras to verify when X ⊂ g generates g. This
problem has been studied over the years, and there are many other approaches
that do not use the adjoint representation. It is also an important question in
control theory as it plays a central role in controllability of certain dynamical
systems [1,11,26]. The corresponding conditions are known as the so-called
Lie algebra rank condition [11,26]. The more recent conditions that are in the
spirit of what we will present in Lemma 3.2 include [39,40] and in particular
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[41] where the problem for compact Lie algebras is studied. As we will see in
the next section conditions for generation of Lie algebras are too weak when
one considers generation of Lie groups. Thus, this section plays a marginal
role for the rest of the paper (excluding Theorem 4.6). The main purpose of
this section is to give evidence that the adjoint representation can be useful in
deciding both Lie algebras and Lie groups generation problem.

Let C(adg) = {L ∈ End(g) : ∀X ∈ g [adX , L] = 0} denote the space of
endomorphisms of g that commute with all adX , X ∈ g. By the Jacobi identity
C(adg) is a Lie subalgebra of End(g). Moreover, also by Jacobi identity, if
L ∈ End(g) commutes with adX and adY then it also commutes with adαX+βY

and ad[X,Y ]. Let us denote by C(adX ) the solution set of

[adX1 , ·] = 0, . . . , [adXn
, ·] = 0.

It is clear that if X generates g, then C(adg) = C(adX ). It happens that the
converse is true for semisimple Lie algebras. Let next g = g1 ⊕ · · · ⊕ gk be a
decomposition of a semisimple g into simple ideals. Let X = {X1, . . . , Xn} ⊂ g.
Every Xi ∈ X has a unique decomposition:

Xi = Xi,1 + · · · + Xi,k, where Xi,j ∈ gj .

Therefore, X generates g if every set Xi = {X1,i, . . . , Xn,i} generates gi, i ∈
{1, . . . , k}. Note that if the projection of X onto some simple component of g
is zero then X cannot generate and g and C(adg) �= C(adX ). Thus, the equality
C(adg) = C(adX ) implies that X has nonzero intersection with every simple
component of g.

Lemma 3.2. Let g be a compact semisimple Lie algebra and X = {X1, . . . , Xn}
⊂ g its finite subset. X generates g if and only if C(adg) = C(adX ).

Proof. Let n be the number of components of g, and let us denote by h ⊂ g
the Lie algebra generated by X . Assume that h �= g, but C(adg) = C(adX ).
The equality of commutants implies that h has nonzero intersection with every
simple component of g. Using the Killing form we can decompose g into a direct
product of vector spaces (not necessarily Lie algebras), g = h ⊕ h⊥. For any
X ∈ h, Y ∈ h and Z ∈ h⊥ we have adXY ∈ h and adXZ ∈ h⊥. The latter
is true as B(adXZ, Y ) = −B(Z, adXY ) = 0, for any Y ∈ h. Therefore, for
X ∈ h operators adX respect the decomposition g = h ⊕ h⊥ and have a block
diagonal structure:

adX =

(
adX

∣
∣
h

0
0 adX

∣
∣
h⊥

)

. (3.1)

Let P : g → h be the orthogonal, with respect to the Killing form, projection
operator onto h. Then obviously [P, adX ] = 0 for any X ∈ h. Note, however,
that if P belonged to C(adg) then h would be an ideal of g. But the only ideals
of g are direct sums of its simple components. Thus, h is either g which is a
contradiction or h is a direct sum of k < n simple components of g which is
again a contradiction. �

Using the Schur lemma we obtain:
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Corollary 3.3. Let g be a compact simple Lie algebra and X = {X1, . . . , Xn} ⊂
g be its finite subset. X generates g if and only if C(adg) = {λI : λ ∈ R}.

Finally, let us remark that it is very important to consider not a defining
but the adjoint representation. To see this let X1,X2 be two matrices that
generate su(2) and consider the set X = {X1 ⊗ I,X2 ⊗ I, I ⊗ X1, I ⊗ X2} ⊂
su(4). Note that the Lie algebra generated by X is su(2) ⊕ su(2) ⊂ su(4). One
checks by direct calculations that the only 4 × 4 matrix commuting with X is
proportional to the identity. This is, however, not the case for matrices adX ,
X ∈ X . Hence, changing the adjoint representation in Corollary 3.3 into the
defining one would obtain the equality between su(2) ⊕ su(2) and su(4) which
is of course not true.

3.2. Generating Sets for Compact Semisimple Lie Groups

We are interested in the following problem. Let G be a compact connected
semisimple Lie group, and let S = {g1, . . . , gn} ⊂ G. We want to know when
< S > = G. To this end we use adjoint representation.

Let C(AdG) = {L ∈ End(g) : ∀g ∈ G [Adg, L] = 0} denote the space of
endomorphisms of g that commute with all Adg, g ∈ G. By the Jacobi identity
C(AdG) is a Lie subalgebra of End(g). Moreover, if L ∈ End(g) commutes with
Adg and Adh then it also commutes with Adgh. Let us denote by C(AdS) the
solution set of

[Adg1 , ·] = 0, . . . , [Adgn
, ·] = 0.

It is clear that if S generates G then C(AdG) = C(AdS). It happens that with
some additional assumptions the converse is true for semisimple Lie groups.

Lemma 3.4. Let G be a compact connected semisimple Lie group and S =
{g1, . . . , gn} ⊂ G its finite subset such that <S> is infinite and the projection
of <S> onto every simple component of G is also infinite. S generates G if
and only if C(AdG) = C(AdS).

Proof. Let us denote by H the closure of the group generated by S, i.e. H =
< S >. H is a compact Lie group that contains infinite number of elements.
Let He be the identity component of H. As we know He is a normal subgroup
of H. Let h ⊂ g be the Lie algebra of He, and let n be the number of simple
components of g = Lie(G). Under our assumption h has nonzero intersection
with every simple component of g. Assume that h �= g, but C(AdG) = C(AdS).
Using the Killing form we can decompose g into a direct product of vector
spaces (not necessarily Lie algebras), g = h⊕h⊥. For any g ∈ H, X ∈ h and Y ∈
h⊥ we have AdgY ∈ h and AdgY ∈ h⊥. The latter is true as B(AdgY,X) =
B(Y,Adg−1X) = 0, for any X ∈ h. Therefore, for h ∈ H the operators Adh

respect the decomposition g = h ⊕ h⊥ and have a block diagonal structure:

Adh =

(
Adh

∣
∣
h

0
0 Adh

∣
∣
h⊥

)

. (3.2)

Let P : g → h be the orthogonal projection with respect to the Killing form
onto h. Then obviously [P,Adh] = 0 for any h ∈ H. Note, however, that if
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P belonged to C(AdG) then h would be AdG-invariant subspace of g. But the
only Ad-invariant subspaces of g are simple components of g. Hence, either
h = g which is a contradiction or h is a direct sum of k < n simple components
of g which again is a contradiction as h has nonzero intersection with all n
simple components. �

Using the Schur lemma we obtain:

Corollary 3.5. Let G be a compact connected simple Lie group and S =
{g1, . . . , gn} its finite subset. Assume <S> is infinite. The set S generates
G if and only if C(AdG) = {λI : λ ∈ R}.

Finally, note that < S > is infinite in particular when at least one of gi’s
is of infinite order. Hence,

Corollary 3.6. Let G be a compact connected simple Lie group and S =
{g1, . . . , gn} ⊂ G its finite subset such that at least one of gi’s is of infinite
order. S generates G if and only if C(AdS) = {λI : λ ∈ R}.

In the next section we characterise when <S> is infinite and when C(AdS)
can be different from C(adX ) for semisimple groups of our interest, i.e. for
G = SU(d) and G = SO(d).

4. Groups SU(d) and SO(d)

In this section we focus on two groups G that are particularly important from
the perspective of quantum computation and linear quantum optics, i.e. G =
SO(d) or G = SU(d).

SO(d) = {O ∈ Gld(R) : OtO = I, detO = 1}, (4.1)

SU(d) = {U ∈ Gld(C) : U†U = I, detX = 1}. (4.2)

Their Lie algebras g are:

so(d) = {X ∈ Matd(R) : Xt = −X, trX = 0}, (4.3)

su(d) = {X ∈ Matd(C) : X† = −X, trX = 0}. (4.4)

The centres of G are finite and given by Z(SU (d)) =
{
αI : α ∈ C, αd = 1

}
,

Z(SO (2d)) = {±I} and Z(SO (2d + 1)) = I. Groups SU(d) for d ≥ 2 and
groups SO(d) for d ≥ 3 and d �= 4 are compact connected simple Lie groups. On
the other hand, SO(4) is still compact and connected, but it is not simple as its
Lie algebra is a direct sum of Lie algebras so(4) = so(3)⊕so(3); hence, SO(4) is
semisimple. The Killing form on both su(d) and so(d), up to a constant positive
factor, is given by B(X,Y ) = trXY . We next introduce an orthonormal basis
in su(d) and so(d). Let Ekl = |k〉〈l| be a d × d matrix whose only nonzero
(and equal to 1) entry is (k, l). The commutation relations are [Eij , Ekl] =
δjkEil − δliEk,j . Let

Xij = Eij − Eji, Yij = i (Eij + Eji) , Zij = i(Eii − Ejj). (4.5)



3526 A. Sawicki, K. Karnas Ann. Henri Poincaré

One easily checks that for i, j ∈ {1, . . . , d}, i < j matrices {Xij , Yij , Zi,i+1}
form an orthogonal basis of su(d) and matrices {Xij} of so(d). We will call
these two bases the standard bases of su(d) and so(d), respectively.

4.1. Gates and Their Lie Algebra Elements

In this section we explain how to any set of gates S we assign the set of Lie
algebra elements X .

Let us recall that for a unitary matrix U ∈ SU(d) there is a unitary
matrix V ∈ SU(d) such that D = V †UV = diag{eiφ1 , . . . , eiφd}. The nonzero
entries of D constitute the spectrum of U . In order to find X ∈ su(d) such
that U = eX one should calculate a logarithm of U . This can be done using
the decomposition U = V DV †, and it boils down to calculating logarithms of
diagonal matrix D. Since the logarithm of z ∈ C is not uniquely defined we
will use the convention that log z = arg(z), where arg(z) is the argument of
z, and we assume arg(z) ∈ [0, 2π). Thus, we choose X ∈ su(d) that satisfies
U = eX as X = V D̃V †, where D̃ = diag{iφ1, . . . , iφd}, every φi ∈ [0, 2π). This
way to any set of gates S = {U1, . . . , Un} ⊂ SU(d) we assign the set of Lie
algebra elements X = {X1, . . . , Xn} ⊂ su(d).

Matrices in SO(d) typically cannot be diagonalised by the orthogonal
group. Nevertheless, for a matrix O ∈ SO(d) there is an orthogonal matrix
V such that R = V tOV is block diagonal with two types of blocks: (1) one
identity matrix Ik of dimension 0 ≤ k ≤ d and (2) 2 × 2 rotations by angles
φi ∈ (0, 2π), i.e. matrices O(φi) from SO(2). We again want to find X ∈ so(d)
such that O = eX . In our paper we choose X = V R̃V t, where R̃ has the same
block diagonal structure as R and (1) the block of R̃ corresponding to the iden-
tity block of R is the zero matrix 0k of dimension 0 ≤ k ≤ d, (2) the blocks cor-

responding to 2×2 φi-rotation blocks of R are matrices
(

0 φi

−φi 0

)

∈ so(2),

where every φi ∈ (0, 2π). We will call R and R̃ normal forms of O ∈ SO(d)
and X ∈ so(d), respectively, and angles φi’s the spectral angles. Summing up,
using the above procedure, to any set of gates S = {O1, . . . , On} ⊂ SO(d) we
assign the set of Lie algebra elements X = {X1, . . . , Xn} ⊂ so(d).

Throughout the paper, whenever we speak about the Lie algebra ele-
ments associated with gates (or the logarithms of the gates) we mean matrices
constructed according to the above two procedures.

4.2. The Difference Between C(AdS) and C(adX )
4.2.1. The Case of SU(d). Let S = {U1, . . . , Un} ⊂ SU(d), and let
X = {X1, . . . , Xn} be the corresponding set of Lie algebra elements (con-
structed as described in Sect. 4.1). In this section we study when the spaces
C(AdS) and C(adX ) are different. Note first that using AdeXi = eadXi we
have C(adX ) ⊆ C(AdS). Hence, we are particularly interested in the situa-
tion when C(AdS) is strictly larger then C(adX ). Matrices Ui can be put into
diagonal form Ui = ViDiV

†
i , where Vi ∈ SU(d) and Di = {eφi

1 , . . . , eφi
d},

φi
j ∈ [0, 2π). Note now that AdUi

= AdViDiV
†

i
= OiAdDi

Ot
i , where O =

AdVi
∈ SO(d2 − 1). Let us order the standard basis of su(d) as follows
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{X12, Y12, . . . , Xd−1,d, Yd−1,d, Z1,2, . . . Zd−1,d}. The matrix AdDi
in this basis

has a block diagonal form:

AdDi
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O(φi
1,2)

. . .
O(φi

1,d)
. . .

O(φi
2,d)

. . .
O(φi

d−1,d)
Id−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.6)

where

O
(
φi

k,l

)
=

⎛

⎝
cos

(
φi

k,l

)
sin

(
φi

k,l

)

− sin
(
φi

k,l

)
cos

(
φi

k,l

)

⎞

⎠ , where, φi
k,l := φi

k − φi
l, (4.7)

and Id−1 is (d−1)×(d−1) identity matrix. Matrices from X are given by Xi =
ViD̃iV

†
i and D̃i = i

{
φi
1, φ

i
2, . . . , φ

i
d

}
. Hence, adXi

= adViD̃iV
†

i
= OadD̃i

Ot, and
we have (in the standard basis of su(d) ordered as previously):

adD̃i
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X(φi
1,2)

. . .
X(φi

1,d)
. . .

X(φi
2,d)

. . .
X(φi

d−1,d)
0d−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.8)

where

X
(
φi

k,l

)
=
(

0 φi
k,l

−φi
k,l 0

)

, where, φi
k,l = φi

k − φi
l, (4.9)

and 0d−1 is (d−1)×(d−1) zero matrix. Note that φi
k,l ∈ (−2π, 2π). Comparing

structures of matrices AdDi
and adD̃i

we deduce that if all φi
i,j �= ±π then

C(AdS) = C(adX ). The situation is different when φi
k,l = ±π. In this case AdDi

has additional degeneracies compared to adD̃i
as O(φi

k,l) = O(±π) = −I2. Let
P be the rotation plane corresponding to the angle φi

k,l = ±π. One can then
construct a rotation O′ ∈ SO(d2 − 1) whose elementary rotation planes are
exactly as in adD̃i

except P which is replaced by a plane P ′, P ⊥ P ′. This
can be achieved using available d − 1 directions corresponding to Id−1. If the
rotation angle along P ′ is also π then [AdUi

, O′] = 0 and [adXi
, O′] �= 0. Hence,

the space C(AdUi
) is larger than C(adXi

) and there is possibility that it might
be true also for sets C(AdS) and C(adX ). As a conclusion we get
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Fact 4.1. Let S = {U1, . . . , Un} ⊂ SU(d) and X = {X1, . . . , Xn} be the corre-
sponding set of Lie algebra elements (constructed as described in Sect. 4.1). The
space C(AdS) can be larger than C(adX ) if and only if the difference between
spectral angles for at least one of the matrices Ui ∈ S is equal to ±π.

4.2.2. The Case of SO(d). We consider S = {O1, . . . , On} ⊂ SO(d) and
X = {X1, . . . , Xn} be the corresponding Lie algebra elements (constructed
as described in Sect. 4.1). We have C(adX ) ⊆ C(AdS), and our goal is to
characterise the cases when the space C(AdS) can be strictly larger than
C(adX ). Matrices Oi can be put into a standard form Oi = ViRiV

†
i , where

Vi ∈ SO(d) and Ri is a block diagonal matrix consisting of k ≤ �d
2� two-

dimensional blocks representing rotations by angles {φi
1, . . . , φ

i
k}, φi

j ∈ (0, 2π)
and one (d−2k)-dimensional block that is the identity matrix. Note next that
AdOi

= AdViRiV
†

i
= AdVi

AdRi
Adt

Vi
. Each matrix AdRi

can be brought to the
standard block diagonal form containing the following blocks

1. O(φi
a,b) and O(ψi

a,b), where φi
a,b = φi

a − φi
b, ψi

a,b = φi
a + φi

b, a < b. The
number of these blocks is k(k − 1).

2. The identity block of dimension k + (d−2k)(d−2k−1)
2 .

3. Blocks O(φi
j), where j ∈ {1, . . . , k}. Each block O(φi

j) appears (d − 2k)
times. Hence, we have k(d − 2k) blocks like this.

Matrices adXi
have the same structure as matrices AdOi

albeit the identity
block is replaced by the 0-block of the same dimension, and the rotational

blocks O(φi
a,b), O(ψi

a,b) and O(φi
j) are replaced by

(
0 φi

j

−φi
j 0

)

∈ so(2),

where every φi
j ∈ (0, 2π). Repeating the reasoning for SU(d) we get:

Fact 4.2. Let S = {U1, . . . , Un} ⊂ SO(d) and X = {X1, . . . , Xn} ⊂ so(d)
be the corresponding set of Lie algebra elements (constructed as described in
Sect. 4.1). The space C(AdS) can be bigger than C(adX ) if and only if the dif-
ference or the sum of spectral angles φi

a and φi
b for at least one of the matrices

Oi ∈ S is an odd multiple of π.

4.3. Pairs Generating Infinite Subgroups of G

In this section we show that elements that are close enough to Z(G) generate
G if the corresponding Lie algebra elements generate g (see Theorem 4.6). We
begin with recalling the elementary properties of the matrix exponential and
the matrix logarithm. To this end we define the norm of A ∈ Matd(C) by
‖A‖ =

√
tr(AA†).

Next we recall that the group commutator of two invertible matrices
(with respect to matrix multiplication) is defined as [A,B]• = ABA−1B−1.
Naturally, if matrices commute in a usual sense then [A,B]• = I. The following
lemma relates the distance between [A,B]• and I to the distances of A and B
from the identity.

Lemma 4.3. Let A,B ∈ G where G = SU(d) or G = SO(d), and let C =
[A,B]•. We have the following:

‖C − I‖ ≤
√

2‖A − I‖‖B − I‖, (4.10)
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If [A,C]• = I and ‖B − I‖ < 2, then [A,B]• = I. (4.11)

Proof. Can be found in Lemmas 36.15 and 36.16 of [15]. �

We next define open balls in G = SO(d) or SU(d) centred around ele-
ments from Z(G) and of radius 1/

√
2, Bα = {g ∈ G : ‖g − αI‖ < 1/

√
2}. Let

B =
⋃

αI∈Z(G) Bα.

Lemma 4.4. Let g, h ∈ B1, and assume [g, h]• �= I. The group <g, h> generated
by g, h is infinite.

Proof. Define the sequence g0 = g, g1 = [g0, h]•, gn = [gn−1, h]•. By our
assumptions ‖h − I‖ = d ≤ 1/

√
2. Therefore, using Lemma 4.3

‖gn − I‖ ≤
√

2d‖gn−1 − I‖.

Thus, ‖gn − I‖ ≤ (
√

2d)n‖g − I‖ and gn → I, when n → ∞. Assume
that the sequence is finite, i.e. for some N we have gN = I. That means
[gN−1, h]• = I. But gN−1 = [gN−2, h]• and clearly ‖gk − I‖ < 2 and by
Lemma 4.3, [gN−2, h]• = I. Repeating this argument we get [g, h]• = I which
is a contradiction. Therefore, <g, h> is infinite. �

Corollary 4.5. Let g ∈ Bα1 and h ∈ Bα2 , where α1 and α2 are such that
α1I, α2I ∈ Z(G) and assume [g, h]• /∈ Z(G). Then the group <g, h> is infinite.

Proof. If α1 = α2 = 1 the result follows from Lemma 4.4. For all other αi’s
let g′ = α−1

1 g and h′ = α−1
2 h. Then h′, g′ ∈ B1 and [g′, h′]• �= I. Thus, by

Lemma 4.4, <g′, h′> is infinite. Note that <g, h> is up to the finite covering
equal to <g′, h′> and therefore is infinite too. �

We next provide explicit conditions for elements of G to belong to balls
Bα. To this end let αmI be the elements of Z(G). We have the following

‖g − αmI‖2 = tr(g − αmI)(g∗ − α∗
mI) = 2trI − α∗

mtrg − αmtrg∗. (4.12)

For SU(d) we have αd
m = 1 and hence αm = cos θm +i sin θm, where θm = 2mπ

d

and m ∈ {1, . . . , d}. Let {eiφ1 , eiφ2 , . . . , eiφd} be the spectrum of Ud ∈ SU(d).
The conditions for Ud ∈ SU(d) to belong to the ball Bαm

read:

Ud ∈ Bαm
⇔

d∑

i=1

sin2 φi − θm

2
<

1
8
,

d∑

i=1

φi = 0mod 2π. (4.13)

For SO(2k + 1) the centre is trivial and we have only one ball B1. Let
{1, eiφ1 , e−iφ1 , . . . , eiφk , e−iφk} be the spectrum of O2k+1 ∈ SO(2k + 1). We
have

O2k+1 ∈ B1 ⇔
k∑

i=1

sin2 φi

2
<

1
16

. (4.14)

Finally, Z(SO(2k)) = {I,−I} and we have two balls B1, B−1. Let

{eiφ1 , e−iφ1 , . . . , eiφk , e−iφk},
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be the spectrum of O2k. The conditions for the spectral angles are as follows

O2k ∈ B1 ⇔
k∑

i=1

sin2 φi

2
<

1
16

, (4.15)

O2k ∈ B−1 ⇔
k∑

i=1

sin2 φi − π

2
<

1
16

. (4.16)

Theorem 4.6. Let G = SO(d) or G = SU(d). Let S = {g1, . . . , gn} ⊂ G be
such that gi ∈ Bα, where αI ∈ Z(G), and let X = {X1, . . . , Xn} ⊂ g be the
Lie algebra elements assigned to S (constructed as described in Sect. 4.1). S
generates G if and only if X generates g.

Proof. By Lemma 3.4, matrices S generate G if they generate an infinite sub-
group and C(AdS) = C(AdG). The cases when spaces C(AdS) and C(adX ) can
differ are characterised by Facts 4.1 and 4.2. Assume that S ⊂ SU(d). The
spaces C(AdS) and C(adX ) can differ if and only if for one of the matrices
gi ∈ S we have φi

a,b = kπ, where k is odd. But then φi
a = φi

b ± π and for some
θm = 2πm

d

sin2 φi
b ± π − θm

2
+ sin2 φi

b − θm

2
= 1,

which means gi does not satisfy (4.13). Assume next that S ⊂ SO(d). The
spaces C(AdS) and C(adX ) can differ iff the difference or the sum of spectral
angles φi

a and φi
b is equal to an odd multiple of π. For odd d we arrive at

sin2 ±φi
b ± π

2
+ sin2 φi

b

2
= 1,

and for even d we additionally have

sin2 ±φi
b ± π − π

2
+ sin2 φi

b − π

2
= 1,

which means gi does not satisfy (4.14), (4.15) or (4.16). �

4.4. Universal Sets for G

In this section we consider situation when not all the matrices belonging
to S are contained in B. We already know that if there are two elements
g, h ∈ < S > ∩ B such that [g, h]• /∈ Z(G) then the group < S > is infinite.
It turns out that for S that satisfies the necessary universality condition, i.e.
C(Adg1 , . . . ,Adgk

) = {λI}, this is actually an equivalence relation.

Lemma 4.7. Let S = {g1, . . . , gk} ⊂ G be such that C(Adg1 , . . . ,Adgk
) = {λI}.

The group < S > is infinite if and only if there are at least two elements
g, h ∈ < S > ∩ B satisfying [g, h]• /∈ Z(G).

Proof. Assume < S > is infinite. Then under the assumption C(AdS) = {λI}
we have < S > = G. Thus, balls Bα must contain elements of <S> commuting
to a non-central elements and the result follows. On the other hand, if there
are at least two elements g, h ∈ < S > such that they belong to some balls
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Bα, where αI ∈ Z(G), and [g, h]• /∈ Z(G) then by Corollary 4.5 < S > is
infinite. �

We already know that the necessary universality condition places signif-
icant constraints on the structure of the infinite < S >. It turns out that this
is the case also when < S > is finite. The constrains regard the structure of
<S> ∩ B.

Lemma 4.8. Let S = {g1, . . . , gk} ⊂ G be such that C(Adg1 , . . . ,Adgk
) = {λI}.

Then either the intersection of <S> with B is dense in B or is a subgroup of
Z(G). In the first case < S > = G, and in the second one < S > is finite.

Proof. The group < S > can be either infinite or finite. When it is infinite,
then by the necessary universality condition, i.e. C(Adg1 , . . . ,Adgk

) = {λI},
we have < S > = G, and it is obvious that B ∩ < S > is dense in B. Assume
next that <S> is finite. By Corollary 4.5 the group commutators of elements
from B ∩ < S > belong to Z(G). We first show that in fact they are equal to
the identity, i.e. elements from B ∩ < S > commute. To see this let h1 ∈ Bα1

and h2 ∈ Bα2 . Assume [h1, h2]• ∈ Z(G). One can always find h̃1, h̃2 ∈ B1 such
that h1 = α1h̃1 and h2 = α2h̃2. We have:

[h1, h2]• = [α1h̃1, α2h̃2]• = α1h̃1α2h̃2α
−1
1 h̃−1

1 α−1
2 h̃2 = [h̃1, h̃2]•. (4.17)

But by inequality (4.10) we have [h̃1, h̃2]• ∈ B1, and it is also easy to see that
Bαi

’s are disjoint. Thus, [h1, h2]• = I. Next we note that each Bα ∩ < S > is
invariant under the conjugation by elements from G. Let {h1, . . . , hm} be all
elements from Bα∩ < S >. Once again we can find elements {h̃1, . . . , h̃m} ⊂
B1 satisfying hi = αh̃i. Let g � Xi = log h̃i (constructed as described in
Sect. 4.1). Thus, elements of Bα∩ < S > are of the form {αeX1 , . . . , αeXm}.
We also know that Bα∩ < S > is AdS -invariant, i.e.

giαeXj g−1
i = αAdgi

eXj = αeXr , gi ∈ S, (4.18)

where i ∈ {1, . . . , k} and j, r ∈ {1, . . . , m}. Thus, we have Adgi
eXj = eXr .

As the distance from the identity of the left and right sides is smaller than 1
we have log Adgi

eXj = log eXr . By the construction, log eXr = Xr and from
our definition of logarithm: log Adgi

eXj = Adgi
log eXj = Adgi

Xj . Hence,
Adgi

Xj = Xr and the subspace {X1, . . . , Xm} ⊂ g is an invariant subspace
for all matrices {Adg1 , . . . Adgk

}. By the condition C(Adg1 , . . . ,Adgk
) = {λI}

this subspace must be either 0 or g. Assume it is g. Recall that we have:

[αeXj , αeXj ] = 0, i, j ∈ {1, . . . , k}.

Thus, there is U such that αeXi = αeUDiU
−1

, where Di is diagonal. Hence,
Xi = UDiU

−1. Thus, matrices {X1, . . . , Xm} commute and we get a contra-
diction. Hence, <S> ∩ Bα is either empty or αI. The result follows. �

Lemma 4.8 leads to the following conclusion:

Corollary 4.9. Let S = {g1, . . . , gk} ⊂ G be such that C(Adg1 , . . . ,Adgk
) =

{λI}. Then <S> is infinite if and only if there is an element in <S> that
belongs to B and does not belong to Z(G).
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Figure 1. Group SU(d) with the exemplary open balls Bα

centred at elements form Z(SU(d))

Of course, S can be such that its elements do not belong to B. In the
following we show that by taking powers we can move every element of G
into Bα for some αI ∈ Z(G). Moreover, there is a global upper bound for the
required power.

Fact 4.10. For groups G = SU(d) and G = SO(d) there is NG ∈ N such that
for every g ∈ G, gn ∈ Bαm

for some αmI ∈ Z(G) and 1 ≤ n ≤ NG.

Proof. Let us first recall that by the Dirichlet theorem (see Theorem 201
in [23]), for given real numbers x1, x2, . . . , xk we can find n ∈ N so that
nx1, . . . , nxk all differ from integers by as little as we want. Let {φ1, . . . , φk}
be the spectral angles of g ∈ G, and let φi = 2πxi, where xi ∈ [0, 1). By
Dirichlet theorem we can always find n such that nxi’s are close enough to
integers to make gn to belong to B1. For g ∈ G let ng be the smallest positive
integer such that gng ∈ Bα for some αI ∈ Z(G) (by Dirichlet theorem we
know that ng < ∞). Let Ong

g be an open neighbourhood2 of g such that for
any h ∈ Ong

g we have hng ∈ Bα. Note that there might be some h ∈ Ong
g for

which ng is not optimal, but this will not play any role. Let
{Ong

g

}
g∈G

be the

resulting open cover of G. As G is compact there is a finite subcover
{Ongi

gi

}

and hence NG = supingi
is well defined and finite. �

For g ∈ G let 1 ≤ ng ≤ NG denote the smallest integer such that gng ∈ B
(see Fig. 1). Using Corollary 4.9 we deduce that <S> is finite if and only if for
every g ∈< S > we have gng ∈ Z(G). This in turn places certain constrains
on the spectra of elements belonging to <S>.

2 This kind of a neighbourhood exists as taking powers is a continuous operation.
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Definition 4.11. Assume g /∈ B. The spectrum of g is exceptional if for some
1 ≤ n ≤ NG we have gn ∈ Z(G).

In other words the spectrum of g is exceptional iff (1) g ∈ SU(d) and
all spectral elements of g are nth roots of α ∈ C, where αd = 1, for some
fixed 1 ≤ n ≤ NSU(d), (2) g ∈ SO(2k + 1) and all spectral elements of g are
nth roots of unity for some fixed 1 ≤ n ≤ NSO(2k+1), (3) g ∈ SO(2k) and
all spectral elements of g are nth roots of α, where α2 = 1, for some fixed
1 ≤ n ≤ NSO(2k+1). Note that the set of exceptional spectra is a finite set. As
a direct consequence we get the following result:

Theorem 4.12. Let S = {g1, g2, . . . , gk} ⊂ G, where G = SO(d) and d �= 4 or
G = SU(d). Assume C(Adg1 , . . . ,Adgk

) = {λI} and that there is at least one
element in S for which the spectrum is not exceptional. Then < S > = G.

4.5. The Algorithm for Checking Universality

In this section we present a simple algorithm that allows to decide universality
of any given set of gates S ⊂ G in a finite number of steps. It works for
G = SU(d) and G = SO(k), besides k = 4.

The Algorithm for checking universality of S = {g1, . . . , gn}
Step 1. Check if C(AdS) = {λI}. If the answer is NO stop as the set S is not

universal. If YES, set l = 1 and go to Step 2.
Step 2. Check if there is a matrix g ∈ S for which gng belongs to B but not

to Z(G), where 1 ≤ ng ≤ NG. If so S is universal. If NO, set l = l+1.
Step 3. Define the new set S by adding to S words of length l, i.e. products

of elements from S of length l. If the new S is equal to the old, the
group <S> is finite. Otherwise, go to Step 2.

If the group generated by S is finite the algorithm terminates in Step 3 for
some l < ∞. Otherwise, it terminates in Step 2 for l < ∞. In the following
we discuss the bounds for l. In case when the group generated by S is finite
the upper bound for l is the order of largest finite subgroup of SU(d). When
the set S is symmetric, i.e. S = {U1, . . . , Uk, U−1

1 , . . . , U−1
k } and the group

generated by S is infinite, the bound for l can be determined by looking at the
averaging operator TS : L2(SU(d)) → L2(SU(d)):

(TSf) (g) =
1
2k

k∑

i=1

(
f(Uig) + f

(
U−1

i g
))

. (4.19)

Let ‖T‖op := supf∈L2(SU(d))
‖Tf‖2
‖f‖2

, where ‖·‖2 is the usual L2 norm. One easily

checks that shifting operators (Ũf)(g) = f(U−1g) are unitary and hence their
operator norm is 1. Thus, using triangle inequality, we see that ‖TS‖op ≤ 1. In
fact, the constant function f = 1 is the eigenvector of TS with the eigenvalue
1 and ‖TS‖op = 1. Let L2

0(SU(d)) be the subspace of L2(SU(d)) containing
functions with the vanishing mean. Consider operator TS |L2

0(SU(d)). The norm
of this operator is 1 if and only if 1 is an accumulation point of the spectrum
of TS . Otherwise, it is strictly less than 1 and we will denote it by λ1. If this
is the case we say that TS has a spectral gap. The recent results [5,6] ensure
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that TS has a gap at least when matrices from S have algebraic entries. For
transcendental entries the problem of the spectral gap existence is open. In
fact, Sarnak conjectures the spectral gap is present for any universal set. The
existence of spectral gap has interesting implications. As shown in [24] (our
formulas are slightly different than in [24] as we use Hilbert–Schmidt norm):

Fact 4.13. Let S be a universal, symmetric set of gates and assume TS has a
spectral gap. Let λ1 = ‖TS |L2

0(SU(d))‖op. For every U ∈ SU(d), ε > 0 and

n > A log
(

1
ε

)

+ B

there is Un ∈ Wn(S) such that ‖U − Un‖ < ε, where

A =
d2 − 1

log (1/λ1)
, B =

log
(
2d2−1/a1

)
+ 1

2 (d2 − 1) log(d2 − 1)

log (1/λ1)

and a1 is such that for any ball of radius ε in SU(d) its volume (with respect
to normalised Haar measure) VBε

satisfies

V (Bε) ≥ a1ε
d2−1.

The upper bound for l in our algorithm in case when <S> is infinite
is given by the minimal number of gates that are needed to approximate an
element whose distance from B is equal to 1

2
√
2

with the precision ε = 1
2
√
2+δ

,
where δ is arbitrarily small positive number. Using Fact 4.13 this number is
bounded by:

l ≤ d2 − 1
log (1/λ1)

log(2
√

2 + δ) +
log

(
2d2−1/a1

)
+ 1

2 (d2 − 1) log(d2 − 1)

log (1/λ1)
(4.20)

Moreover, by explicit calculation the volume

V (Bε) =
1
π

(

2 arcsin
ε

2
√

2
− 1

2
sin 4 arcsin

ε

2
√

2

)

.

One easily checks that a1ε
3, where

a1 =
16

√
2

π

(

2 arcsin
1
8

− 1
2

sin
(

4 arcsin
1
8

))

,

satisfies V (Bε) ≥ a1ε
3 for ε ∈ [0, 1

2
√
2
].

Finally, we note that when spectral gap is small, i.e. λ1 is close to 1
the upper bound given by 4.20 can be in fact very big. This is the case, for
example, when matrices S are very close to some matrix U ∈ SU(d). But
then they can be simultaneously introduced to a ball Bα and deciding their
universality requires actually l = 1. Thus, it seems that the bound given in 4.20
is useful only if λ1 is well separated from 1.
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5. Computing NG

In this section we find upper bounds for NSU(d) and NSO(d) using Dirich-
let’s approximation theorem [16,23]. These bounds are used in the algorithm
presented in Sect. 4.5.

Theorem 5.1. For a given real number a and a positive integer N there exist
integers 1 ≤ n ≤ N and p such that nφ differs from p by at most 1

N+1 , i.e.

|na − p| ≤ 1
N + 1

. (5.1)

We will use Theorem 5.1 in calculation of NG for G = SO(3) and
G = SU(2)—these are two cases when g ∈ G has a one spectral angle. The
simultaneous version of Dirichlet’s theorem gives a similar approximation for
a collection of real numbers φ1, . . . , φk. We will use it for SO(2k + 1).

Theorem 5.2. For given real numbers a1, . . . , ad and a positive integer N there
exist integer 1 ≤ n ≤ N and integers p1, . . . , pk such that

|nai − pi| ≤ 1
(N + 1)1/d

. (5.2)

For groups SO(2k) and SU(d) we need to prove a modified version of
Dirichlet’s theorem. To this end for any x ∈ R and d ∈ Z+ we define {x}k to
be the difference between x and the largest p+ k

d that is smaller or equal to x,
where p ∈ Z, k ∈ {0, 1, . . . , d−1}. Clearly, {x}k ∈ [0, 1). For x = (x1, . . . , xm) ∈
R

m we define {x}k = ({x1}k, . . . , {xm}k). Let Lm,d be the lattice in R
m given

by points

(q1, . . . , qm),
(

q1 +
1
d
, . . . , qm +

1
d

)

, . . . ,

(

q1 +
d − 1

d
, . . . , qm +

d − 1
d

)

,

where q1, . . . qm ∈ Z. An important property of the lattice Lm,d is that for any
p, q ∈ Lm,d we have p ± q ∈ Lm,d. As a direct consequence of this property we
get the following theorem.

Theorem 5.3. For a = (a1, . . . , am) and positive ε < 1
2d there exist integer

1 ≤ n ≤ ⌈
1

dεm

⌉
and a point p = (p1, . . . , pm) ∈ Lm,d such that ∀i ∈ {1, . . . , m}:

|nai − pi| < ε. (5.3)

Proof. For a given point a = (a1, . . . , am) ∈ R
m consider dQm + 1 points:

{na}0, {na}1, . . . , {na}d−1, n ∈ {0, . . . , Qm} (5.4)

Next take an m-dimensional cube [0, 1)m and divide it into dQm boxes by
drawing planes parallel to its faces at distances 1

m√
dQ

. By Dirichlet’s pigeon
hole principle, at least two points from (5.4) fall to the same box. Let these
points be {q1a}i and {q2a}j , where i, j ∈ {1, . . . , d − 1} and q1 < q2. Note
that q1 cannot be equal to q2 as in this case ε > 1

2d . As the lattice Lm,d

is invariant with respect to addition and subtraction of its points we have
maxl |{(q2 − q1)al}k| < 1

m√
dQ

, where k = j − i if i < j or k = d + j − i when
i > j. The result follows. �
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We begin with finding the exact values of NSU(2) and NSO(3).

Fact 5.4. NSO(3) = 12 and NSU(2) = 6.

Proof. Let O ∈ SO(3), and let [0, 2π) � φ = 2aπ be its spectral angle. By
Theorem 5.1 for a given N there are integers p and 1 ≤ n ≤ N such that
|na−p| ≤ 1

N+1 . Multiplying this inequality by π yields |nφ
2 −pπ| ≤ π

N+1 . Note
that (4.14) simplifies to | sin ψ

2 | < 1
4 , i.e. for a given φ we look for n such that

|nφ
2 − pπ| < arcsin 1

4 . Combining these two observations we need to find the
smallest N such that π

N+1 < arcsin 1
4 . It is

N =
⌈

π − arcsin 1
4

arcsin 1
4

⌉

= 12. (5.5)

Formula (5.5) gives an upper bound for NSO(3). Note, however, that for φ
2 =

arcsin 1
4 the smallest n such that |n arcsin 1

4 − π| < arcsin 1
4 is exactly 12 (see

Fig. 2a); hence, NSO(3) = 12.
Assume next U ∈ SU(2) and [0, 2π) � φ = aπ be its spectral angle. By

Theorem 5.1 for a given N there are integers p and 1 ≤ n ≤ N such that
|na − p| ≤ 1

N+1 . Multiplying this inequality by π
2 yields

∣
∣
∣nφ

2 − pπ
2

∣
∣
∣ ≤ π

2(N+1) .

Note that (4.14) simplifies to
∣
∣
∣sin ψ

2

∣
∣
∣ < 1

4 or
∣
∣
∣sin ψ−π

2

∣
∣
∣ < 1

4 , i.e. for a given φ we

look for n such that
∣
∣
∣nφ

2 − pπ
2

∣
∣
∣ < arcsin 1

4 . Combining these two observations

we need to find the smallest N such that π
2(N+1) < arcsin 1

4 . This is

N =
⌈ π

2 − arcsin 1
4

arcsin 1
4

⌉

= 6. (5.6)

Formula (5.6) gives an upper bound for NSU(2). Note, however, that for φ
2 =

arcsin 1
4 the smallest n such that

∣
∣n arcsin 1

4 − π
2

∣
∣ < arcsin 1

4 is exactly 6 (see
Fig. 2b). Hence, NSU(2) = 6. �

Fact 5.5. The values of NSO(2k+1) and NSO(2k) are bounded from the above
by:

NSO(2k+1) <

⎡

⎢
⎢
⎢

(
π

arcsin 1
4
√

k

)k
⎤

⎥
⎥
⎥

, (5.7)

NSO(2k) <

⎡

⎢
⎢
⎢

1
2

(
π

arcsin 1
4
√

k

)k
⎤

⎥
⎥
⎥

. (5.8)

Proof. The spectral angles of O ∈ SO(d) are {φ1,−φ1, . . . , φk,−φk} if d = 2k
or {φ1,−φ1, . . . , φk,−φk, 0} if d = 2k+1. We first address the case of SO(2k).
Assume that φi = aiπ for all i ∈ {1, . . . , k}. The lattice π · Lk,2 corresponds

exactly to points
{

φ1
2 , . . . , φk

2

}
at which balls B1 and B−1 given by condi-

tions (4.15) and (4.16) are centred. Let us next find the smallest hypercube
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Figure 2. a Condition (4.14) for SO(3). Black dots corre-
spond to n arcsin 1

4 , and dashed segments are determined by∣
∣
∣sin φ

2

∣
∣
∣ < 1

4 . b Conditions (4.13) for U ∈ SU(2). Black dots

correspond to n arcsin 1
4 , and dashed segments are determined

by
∣
∣
∣sin φ

2

∣
∣
∣ < 1

4 or
∣
∣
∣sin φ−π

2

∣
∣
∣ < 1

4

[
−βk

2 , βk

2

]×k

contained in the ball B1. By symmetry, its edge length will be

the same for B−1. To this end one needs to minimise
∑

i φ2
i under the con-

dition
∑

i sin2 φi = 1
16 . Calculations with the use of the Lagrange multipliers
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show that the coordinates of the minimising point are all equal and hence
k sin2 βk

2 = arcsin 1
16 . That means βk

2 = arcsin 1
4
√

k
is the half of the edge length

of the largest hypercube contained in a ball B±1. We next apply Theorem 5.3

to the lattice Lk,2 and the point a = (a1, . . . , ak) with ε =
arcsin 1

4
√

k

π < 1
4 . As

a result we obtain point p ∈ Lk,2 such that:

|nai − pi| <
arcsin 1

4
√

k

π
, (5.9)

where

n <

⎡

⎢
⎢
⎢
⎢

πk

2
(
arcsin 1

4
√

k

)k

⎤

⎥
⎥
⎥
⎥

.

For SO(2k + 1) we can directly apply Theorem 5.2. Looking at the hypercube
that is contained in one of the balls given by conditions (4.15) and (4.16) we
get the desired result. �

Fact 5.6. For d ≥ 3 the value of NSU(d) is bounded from the above by:

NSU(d) <

⌈
1
d

(
2π

βd

)d−1
⌉

,

where βd is such that (d − 1) sin2 βd

2 + sin2 (d−1)βd

2 = 1
8 .

Proof. For U ∈ SU(d) let {φ1, . . . , φd} be the spectral angles of U . Assume that
for every i ∈ {1 . . . , d − 1} we have [0, 2π) � φi = aiπ. As

∑
i φi = 0mod 2π

we can always put φd = −∑d−1
i=1 φi. We need to first find the edge length of

the largest hypercube
[
−βd

2 , βd

2

]×(d−1)

contained in the ball B1. By symmetry
of condition (4.14), this length will be the same for other balls. We need to
minimise

∑
i φ2

i under the condition
∑d−1

i=1 sin2 φi + sin2
(∑d−1

i=1 φi

)
= 1

8 . Cal-
culations with the use of the Lagrange multipliers show that the coordinates
of the minimising point are all equal and hence βd satisfies:

(d − 1) sin2 βd

2
+ sin2 (d − 1)βd

2
=

1
8
. (5.10)

In order to apply Theorem 5.3 we need to check if βd

2π < 1
2d . By Eq. (5.10) βd

is clearly close to zero and therefore we can assume that sin βd

2 approximately
equals βd

2 . Then it follows that βd

2π = 1

2π
√

2d(d−1)
which is clearly smaller

than 1
2d . Thus, we can apply Theorem 5.3 to the lattice Ld−1,d and the point

a = (a1, . . . , ad−1) with ε = βd

2π < 1
2d . As a result, we obtain point p ∈ Ld−1,d

such that:

|nai − pi| <
βd

2π
, (5.11)
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Figure 3. Smallest hypercubes contained in the balls B1 for
SO(4) and SU(3), respectively

where

n <

⌈
1
d

(
2π

βd

)d−1
⌉

.

The result follows. �

For d = 3 we obtain β3
2 = arctan

√
6−√

34
2+

√
34

and NSU(3) < 154. On the
other hand, numerical calculations yield NSU(3) = 49. For orthogonal groups
we have that numerical calculations yield NSO(5) = 172 and NSO(4) = 86,
where the bounds given by (5.7) and (5.8) are NSO(5) < 312 and NSO(4) <
151, respectively. The difference between the bounds and values calculated
numerically reflects the obvious fact that the considered hypercubes are rather
brutal approximations of the balls Bα (see Fig. 3). However, we stress that the
choice of hypercubes we made is the most optimal from the perspective of
Dirichlet’s theorems. Let us also note that the upper bound for NG seems to
be more accurate for SO(4) than for SU(3). We believe this stems from the
fact that the ‘square-ball’ area ratio is smaller for SU(3) than for SO(4) (see
Fig. 3). The way how these ratios should be incorporated into formulas for the
upper bound on NG is left as an open problem. We suppose this should be
done by introducing some additional factor that depends on the square-ball
ratio.

6. Universality for SU(2) and SO(3)

In the following we discuss universality of gates in case when G = SU(2) or G =
SO(3). In particular, we formulate explicit conditions (Fact 6.1) for C(AdS) =
{λI}, where S is a finite subset of G. For both SU(2) and SO(3) exceptional
spectra are determined by one spectral angle, and if at least one matrix from
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S has non-exceptional spectrum the algorithm in Sect. 4.5 terminates in Step
2 with l = 1. In Sect. 6.3.1 we show that for S consisting of two matrices that
have exceptional spectra one can decide their universality in at most l = 4
steps. Moreover, our algorithm always terminates for l ≤ 13.

6.1. SU(2) and SO(3): Review of Useful Properties

In the following we recall useful facts about groups SO(3) and SU(2). In par-
ticular, we introduce their parameterisations and briefly discuss the covering
homomorphism given by the adjoint representation.

Commutation relations for the Lie algebras of the considered groups are
as follows:

su(2) : [X,Y ] = 2Z, [X,Z] = −2Y, [Y,Z] = 2X. (6.1)

where X, Y, Z are defined as

X =
(

0 1
−1 0

)

, Y =
(

0 i
i 0

)

, Z =
(

i 0
0 −i

)

,

and

so(3) : [X23,X13] = −X12, [X23,X12] = X13, [X13,X12] = X23, (6.2)

where Xij are defined as in (4.5). The Lie algebras su(2) and so(3) are isomor-
phic through the adjoint representation ad : su(2) → so(3). The isomorphism
is established by X �→ adX = −2X23, Y �→ adY = 2X13, Z �→ adZ = −2X12.

Elements of groups SU(2) and SO(3) can be expressed using exponential
map. By Cayley–Hamilton theorem we have:

SU(2) : U(φ,k) = eφ·u(	k) = eφ(kxX+kyY +kzZ) = cos φI + sinφu(k), (6.3)

SO(3) : O(φ,k) = eφ·o(	k) = eφ(−kxX23+kyX13−kzX12)

= I + sinφo(k) − 2 sin2 φ

2
o(k)2, (6.4)

where k = [kx, ky, kz] ∈ R
3 is a rotation axis, k2

x +k2
y +k2

z = 1, and φ ∈ [0, 2φ).
Groups SU(2) and SO(3) are related by the covering homomorphism Ad :
SU(2) → SO(3) given by AdeA = eadA , where A ∈ su(2) and Ad : U(φ,k) �→
O(2φ,k). Ad is in this case double covering. Using (6.3) we can easily calculate
the product U(γ,k12) = U(φ1,k1)U(φ2,k2), where

cos γ = cos φ1 cos φ2 − sin φ1 sin φ2
k1 · k2, (6.5)

k12 =
1

sin γ

(
k1 sin φ1 cos φ2 + k2 sin φ2 cos φ1 + k1 × k2 sin φ1 sin φ2

)
.

(6.6)

Making use of (6.5) one checks that two SU(2) matrices U(φ1,k1), U(φ2,k2)
that do not belong to {I,−I} commute iff the axes k1 and k2 are parallel,
that is [u(k1), u(k2)] = 0. Similarly, they anticommute iff the axes k1 and
k2 are orthogonal and rotation angles are φ1, φ2 ∈ {π

2 , 3π
2 }. As for matrices

from SO(3), recall that they cannot anticommute. In order to check when
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they commute we note that commuting and anticommuting SU(2) matrices
satisfy the identity U1U2U

−1
1 U−1

2 = ±I. But Ad±I = I and therefore O(φ1,k1)
commutes with O(φ2,k2) iff either axes k1 and k2 are parallel or k1 ⊥ k2 and
φ1, φ2 ∈ {π

2 , 3π
2 }.

Finally, it is known that all automorphisms of SU(2) are inner automor-
phisms; thus, they are in one-to-one correspondence with elements of SO(3).
Using our notation O ∈ SO(3) determines the automorphism ΦO : SU(2) →
SU(2) given by

ΦO(U(φ,k)) = U(φ,Ok). (6.7)

6.2. Exceptional Spectra and Spaces C(AdS) for SU(2) and SO(3)

For any matrix U(φ,k) ∈ SU(2) the spectrum is given by {eiφ, e−iφ}, φ ∈
[0, 2π). By Definition 4.11 the spectrum of U(φ,k) is exceptional iff eiφ is a
root of 1 or −1 of order n = {1, . . . , NSU(2)}. The corresponding φ ∈ [0, 2π)
will be called exceptional angle. Similarly, for O(φ,k) ∈ SO(3) the spectrum is
given by {eiφ, e−iφ, 1} and thus is exceptional iff eiφ is a root of unity of order
1 ≤ n ≤ NSO(3). The corresponding φ ∈ [0, 2π) will be called an exceptional
angle. We can easily compute the number of exceptional spectra for SU(2)
and SO(3) using the Euler’s totient function ϕ(n) by noting that the roots of
−1 of order n are the roots of unity of order 2n.

Let us denote the sets of exceptional angles for SU(2) and SO(3) by
LSU(2) and LSO(3), respectively. We have:

|LSU(2)| =
6∑

n=1

ϕ(n) +
6∑

n=4

ϕ(2n) = 24, (6.8)

|LSO(3)| =
12∑

n=1

ϕ(n) = 46. (6.9)

The elements of sets LG are of the form LG = {aπ : a ∈ L′
G}, where

L′
SU(2) =

{

0,
1
2
, 1,

3
2
,
1
3
,
2
3
,
4
3
,
5
3
,
1
4
,
3
4
,
5
4
,
7
4
,
1
5
,
2
5
,
3
5
,
4
5
,
6
5
,
7
5
,
8
5
,
9
5
,
1
6
,
5
6
,
7
6
,
11
6

}

,

L′
SO(3) = L′

SU(2) ∪
{

2
7
,
4
7
,
6
7
,
8
7
,
10
7

,
12
7

,
2
9
,
4
9
,
8
9
,
10
9

,
14
9

,
16
9

,
2
11

,
4
11

,
6
11

,
8
11

,

10
11

,
12
11

,
14
11

,
16
11

,
18
11

,
20
11

}

, (6.10)

We next discuss the conditions when the space C
(
AdU(φ1,	k1)

,AdU(φ2,	k2)

)
is

different than C
(
adu(	k1)

, adu(	k2)

)
. First, we note that elements u(k1), u(k2)

generate Lie algebra su(2) iff [u(k1), u(k2)] �= 0. In this case by Lemma 3.3,
the solution set C(adu(	k1)

, adu(	k2)
) = {λI}. Using Fact 4.2 we note that the

space C
(
AdU(φ1,	k1)

,AdU(φ1,	k2)

)
can be different than C

(
adu(	k1)

, adu(	k2)

)
if
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at least one φi is equal to kπ
2 . In the following we give exact conditions when

it happens.

Fact 6.1. Assume that [u(k1), u(k2)] �= 0. The space C
(
AdU(φ1,	k1)

,AdU(φ2,	k2)

)

is larger than {λI : λ ∈ R} if and only if: (1) φ1, φ2 ∈ {
π
2 , 3π

2

}
and (2) one of

φi ∈ {
π
2 , 3π

2

}
and k1 ⊥ k2.

Proof. By Fact 4.2 C
(
AdU(φ1,	k1)

,AdU(φ2,	k2)

)
can be larger than {λI : λ ∈ R}

if at least one of the spectral angles of AdU(φ1,	k1)
, AdU(φ2,	k2)

is kπ. Therefore,
we have to consider situation when either two angles φ1 and φ2 are equal to
kπ
2 or exactly one of φi’s is kπ

2 , k ∈ {1, 3}. For the case (1) generators are

of the form U
(

kπ
2 ,k1

)
and U

(
kπ
2 ,k2

)
, where k1 · k2 is arbitrary. Note that

AdU( kπ
2 ,	k1) = O(kπ,k1) and AdU( kπ

2 ,	k2) = O(kπ,k2) are rotation matrices

by angles 2φ1 = 2φ2 = kπ. A rotation O(φ3,k3) by an arbitrary angle φ3

and about the axis k3 = k1 × k2 commutes with the rotations O(kπ,k1) and
O(kπ,k2) and is different than λI.

Let us consider the case when exactly one of φi’s is kπ
2 . We are given

the generators U
(

kπ
2 ,k1

)
and U

(
φ2,k2

)
. Note that the rotation O(π,k),

where k ‖ k2, commutes with both AdU( kπ
2 ,	k1) = O(kπ,k1) and AdU(φ2,	k2) =

O(2φ2,k2) provided k1 ⊥ k2. Therefore, in this case C(AdU( kπ
2 ,	k1)

,AdU(φ2,	k2)
)

is larger than {λI : λ ∈ R}. We are left with showing that if k1 �⊥ k2 and
exactly one φi’s is an odd multiple of π, the space C(AdU( kπ

2 ,	k1)
,AdU(φ2,	k2)

) is
equal to {λI : λ ∈ R}.

By formula (6.3) if k1 �⊥ k2, φ1 = kπ
2 and φ2 �= kπ

2 , then the only
orthogonal matrix commuting with AdU( kπ

2 ,	k1)
= O(kπ,k1) and AdU(φ2,	k2)

is
the identity matrix. In the following we show that relaxing orthogonality to an
arbitrary endomorphism gives only λI. To see this, note that endomorphisms
commuting with AdU(φ2,	k2)

are of the form

A = α2O(θ2,k2) + β2|k2〉〈k2|,
where α2, β2 ∈ R and θ2 ∈ [0, 2π). On the other hand, matrices commuting
with AdU( kπ

2 ,	k1)
are of the form

B = E
(
k⊥
1

)
+ β1|k1〉〈k1|,

where E
(
k⊥
1

)
is an arbitrary matrix acting on the two-dimensional space

perpendicular to k1 such that E
(
k⊥
1

)
k1 = 0 and β1 ∈ R. Let {k1,k2,k12},

where k12 = k1 × k2 be a basis of R3. Matrices A and B must agree on the
basis vectors. This way we obtain the following equations:

β1
k1 = α2O(θ2,k2)k1 + β2〈k1|k2〉k2, (6.11)
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(α2 + β2)k2 = E
(
k⊥
1

)
k2 + β1〈k1|k2〉k1, (6.12)

E
(
k⊥
1

)
k12 = α2O(θ2,k2)k12. (6.13)

The left-hand side of (6.10) is a vector perpendicular to k1, and the right-
hand side of (6.10) is a vector perpendicular to k2. The only vector satisfying
both of these conditions is proportional to k12 and therefore θ2 = nπ. Hence,
O(θ2,k2) = ±I. From Eq. (6.10) we get

β1
k1 = ±α2

k1 + β2〈k1|k2〉k2,
which means β1 = ±α2 and either β2 = 0 or k1 ⊥ k2. If β2 = 0 then A = ±α2I
and hence the equality between A and B implies

C
(
AdU( kπ

2 ,	k1),AdU(φ2,	k2)

)
= {λI : λ ∈ R}.

Therefore, the only solution that yields a bigger space C(AdU( kπ
2 ,	k1)

,

AdU(φ2,	k2)
) corresponds to k1 ⊥ k2. �

6.3. Universal SU(2) Gates

In this section we consider the set S of two non-commuting matrices U(φ1,k1),
U(φ2,k2) and ask when they generate SU(2). We treat separately three cases:

1. When C(AdU(φ1,	k1)
,AdU(φ2,	k2)

) = {λI} and at least one of φi’s is non-
exceptional—by Theorem 4.12, < S > = SU(2),

2. When C(AdU(φ1,	k1)
,AdU(φ2,	k2)

) = {λI} and both angles are exceptional.
This determines the maximal running time of the algorithm shown in
Sect. 4.5 to be l = 13.

3. When C(AdS) �= {λI} we identify what is the structure of <S>.

We start from studying the last case. We already know that when k1 ⊥ k2
and φ2 = mπ

2 , where m ∈ {1, 3} the group generated by U(φ1,k1), U(φ2,k2)

is not SU(2) as C
(
AdU(φ1,	k1)

,AdU(φ2,	k2)

)
�= {λI}. We will now show that in

this case this group is either finite or infinite dicyclic group. To this end let
b := U(φ1,k1) and x := U(π

2 ,k2) and assume b is of finite order. The group
generated by b and x has the following presentation:

H =
〈
b, x|x4 = I, bn = I, xbx−1 = b−1

〉
. (6.14)

As H contains −I we have (−b)n = −I for n odd. Let a = −b then

H =
〈
a, x|x4 = I, a2n = I, xax−1 = a−1

〉
, (6.15)

which is the definition of the dicyclic group of order 4n (it is the central exten-
sion of the dihedral group of order 2n by −I). In case when a is of the infinite
order, after closure, we obtain a group consisting of two connected compo-
nents. The first one is a one-parameter group {U(t,k1) : t ∈ R} generated by
U(φ1,k1), and the second one is its normaliser {U

(
π
2 ,k2

)
U(t,k1) : t ∈ R}.

The only other case when C
(
AdU(φ1,	k1)

,AdU(φ2,	k2)

)
�= {λI} corresponds to
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the situation when both φ1 and φ2 are odd multiples of π
2 . In this case the

group generated by U(φ1,k1), U(φ2,k2) is the same as the group generated by
U(γ,k12) = U(φ1,k1)U(φ2,k2) and U(φ2,k2). One can easily calculate that
cos γ = k1 · k2 and k12 ⊥ k2. Thus, the group is once again the dicyclic group
of the order 4n where n is the order of U(γ,k12).

Lemma 6.2. Assume that U(φ1,k1) and U(φ2,k2) do not commute and
k1 · k2 = 0 and φ2 ∈ {

π
2 , 3π

2

}
. Then the group generated by U(φ1,k1) and

U(φ2,k2) is either 1) the dicyclic group of order 4n

n = max(orderU(φ1,k1), orderU(φ1 + π,k1), (6.16)

when orderU(φ1,k1) < ∞, or 2) the infinite dicyclic group if orderU(φ1,k1) =
∞. When both φi’s belong to

{
π
2 , 3π

2

}
the group generated by U(φ1,k1) and

U(φ2,k2) is also the dicyclic group of the order 4n where n is the order of
U(γ,k12) = U(φ1,k1)U(φ2,k2).

In other words, the group generated by two non-commuting matrices from
SU(2) that do not satisfy the necessary condition for universality is either a
finite or an infinite dicyclic group.

6.3.1. Two Exceptional Angles. Let φ1 ∈ LSU(2)\
{
0, π

2 , π, 3π
2

}
3 and φ2 ∈

LSU(2)\{0, π}, and let S =
{

U(φ1,k1), U(φ2,k2)
}

be a two-element subset of
SU(2). Using automorphism (6.7), for any O ∈ SO(3) the group generated
by S is isomorphic with the group generated by U(φ1, Ok1) and U(φ2, Ok2).
This freedom allows us to choose O ∈ SO(3) such that k′

1 = Ok1 = [0, 0, 1]
and k′

2 = Ok2 = [sin α, 0, cos α], for some α ∈ [0, 2π). Thus, in the following
we will work with matrices S ′ =

{
U
(
φ1,k

′
1

)
, U

(
φ2,k

′
2

)}
. Our aim is to

determine how long does it take for the algorithm shown in Sect. 4.5 to decide
the universality of S ′. If the algorithm does not terminate with l = 1 this
means that the product of matrices from S have exceptional spectral angles.
Thus, using formula (6.5)

cos α = k′
1 · k′

2 =
cos φ1 cos φ2 − cos γ

sin φ1 sin φ2
, (6.17)

for some γ ∈ LSU(2). In order to determine all such cases we need to exclude
all triplets φ1, φ2, γ that lead to | cos α| ≥ 1. For all remaining cases we run
our algorithm with matrices S. The termination results are as follows:

1. The algorithm terminates in Step 2 for l ≤ 4, and the resulting group is
SU(2).

2. The algorithm terminates in Step 3 with 5 ≤ l ≤ 6, and the resulting
group has 24 elements and is isomorphic to the binary tetrahedral group
<2, 3, 3> := {a, b, c|a2 = b3 = c3 = abc}.

3 The case when both φi’s are odd multiples of π
2

was treated in Lemma 6.2.
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Table 1. Number of exceptional triplets φ1, φ2, γ terminat-
ing the universality algorithm for different l’s

l Step Number of triplets φ1, φ2, γ Generated group

– 1 80 Dicyclic group
3 2 3232 SU(2)
4 2 160 SU(2)
5 3 56 <2, 3, 3>
6 3 40 <2, 3, 3>
7 3 144 <2, 3, 4>
8 3 80 <2, 3, 4>
8 3 240 <2, 3, 5>
9 3 352 <2, 3, 5>
10 3 288 <2, 3, 5>
11 3 32 <2, 3, 5>
12 3 80 <2, 3, 5>
13 3 32 <2, 3, 5>

3. The algorithm terminates in Step 3 with 7 ≤ l ≤ 8, and the resulting
group has 48 elements and is isomorphic to the binary octahedral group
<2, 3, 4> := {a, b, c|a2 = b3 = c4 = abc}.

4. The algorithm terminates in Step 3 with 8 ≤ l ≤ 13, and the resulting
group has 120 elements and is isomorphic to the binary icosahedral group
<2, 3, 5> := {a, b, c|a2 = b3 = c5 = abc}.

To be more precise among all 10,560 exceptional triplets φ1, φ2, γ there are 4816
satisfying | cos α| < 1. The number of triplets φ1, φ2, γ that give termination
of the algorithm for the length of the word equal to l and the resulting groups
are presented in Table 1.

As a direct consequence we get the following theorem:

Theorem 6.3. Assume S =
{

U(φ1,k1), U(φ2,k2)
}

⊂ SU(2). In order to verify
universality of S it is enough to consider words of the length l ≤ 4. Moreover,
the algorithm terminates for l ≤ 13. If it terminates in Step 1 the resulting
group is either infinite or finite dicyclic group. If it terminates with 1 ≤ l ≤ 4
the resulting group is SU(2). For l ≥ 5 it is binary tetrahedral or binary
octahedral or binary icosahedral group.

7. Universality of 2-mode Beamsplitters

In this section we address the universality problem of a single gate that belong
to SO(2) or SU(2) and act on a d-dimensional space, where d > 2. More
precisely, we consider the Hilbert space H = H1 ⊕ · · · ⊕ Hd, where Hk � C,
d > 2. Next we take a matrix B ∈ SU(2) or B ∈ SO(2). This matrix will be
referred to as a 2-mode beamsplitter. We assume that we can permute modes
and therefore we have access to matrices B and Bσ = σtBσ, where σ is the
permutation matrix. Next, we define matrices Bij or Bσ

ij to be the matrices
that act on a two-dimensional subspace Hi ⊕Hj ⊂ H as B or Bσ, respectively,
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and on the other components of H as the identity. This way we obtain the
set of 2

(
d
2

)
= d(d − 1) matrices Sd =

{
Bij , B

σ
ij : i < j, i, j ∈ {1, . . . , d}} in

SU(d) or SO(d), respectively. Let us denote by Xd = {bij , b
σ
ij : i < j, i, j ∈

{1, . . . , d}} the set of corresponding Lie algebra elements Bij = ebij , Bσ
ij = ebσ

ij

(constructed as in Sect. 4.1). Our goal is to find out when Sd is universal, i.e.
when < Sd > = SO(d) or < Sd > = SU(d). In particular, we focus on showing,
for which B the set S3 is universal. It is known that for such B also any set
Sd with d > 3 will be universal (see [34,35] for two alternative proofs).

7.1. Spaces C(AdS3) and C(adX3)

In this section we characterise when C(AdS3) = {λI} for both orthogonal and
unitary beamsplitters. Our strategy is to first check when C(adX3) = {λI}.
This can be done relatively easy. Then we use Facts 4.1 and 4.2 to find C(AdS3).

7.1.1. The Case of Orthogonal Group. Let B ∈ SO(2) be a rotation matrix
by an angle φ ∈ (0, 2π). Making use of the notation introduced in Sect. 6 we
have

S3 = {B23(±φ), B13(±φ), B12(±φ)}, (7.1)
X3 = {±φX23,±φX13,±φX12}, (7.2)

where Bij(±φ) correspond to the rotation matrices in three dimensions, i.e.
B12(φ) = O(±φ,kz), B13(φ) = O(±φ,ky), and B23(φ) = O(±φ,kx), where
kx = [1, 0, 0], ky = [0, 1, 0], kz = [0, 0, 1] and matrices Xi,j are defined by (4.5).
Note that matrices belonging to X form a basis of the Lie algebra so(3) iff
φ �= 0. Therefore, by Corollary 3.3 we know that C(adX3) = {λI}. The adjoint
matrices AdO(±φ,	ki)

are again rotation matrices by angles ±φ along axes ki.
On the other hand, by Fact 4.2 we know that C(AdS3) can be different than
C(adX3) only if φ = ±π. Indeed, in this case the adjoint matrices AdO(±φ,	ki)

commute. Summing up we have

Fact 7.1. For a 2-mode orthogonal beamsplitter. If φ �= 0 then C(adX3) = {λI}.
On the other hand, C(AdS3) = {λI} iff φ /∈ {0, π}.
7.1.2. The Case of Unitary Group. Let B ∈ SU(2). Making use of the nota-
tion introduced in Sect. 6 we assume B = U(φ,k), φ �= 0mod π, k = [kx, ky, kz]
and k2

x + k2
y + k2

z = 1. Therefore, we have:

X3 =
{
bij , b

σ
ij : 1 ≤ i < j ≤ 3

}}
= φ · {kxXij + kyYij + kzZij ,

−kxXij + kyYij − kzZij : 1 ≤ i < j ≤ 3} , (7.3)
S3 = {Bij , B

σ
ij : 1 ≤ i < j ≤ 3}} = {Iij(φ) + sinφ(kxXij + kyYij + kzZij),

Iij(φ) + sin φ(−kxXij + kyYij − kzZij) : 1 ≤ i < j ≤ 3}, (7.4)

where Iij(φ) = cos φ(Eii + Ejj) + Ell, l ∈ {1, 2, 3}\{i, j} and matrices
{Xij , Yij , Zij} are defined as in (4.5). We start from finding C(adX3). To this
end note that

[
bij , b

σ
ij

]
= 4ky (kxZij − kzXij). If

[
bij , b

σ
ij

] �= 0 then bij and
bσ
ij generate su(2)ij . Thus, we have access to all elements Xij , Yij and Zij

1 ≤ i < j ≤ 3. Hence, X3 generates su(3) and C(adX3) = {λI}. If in turn
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[bij , b
σ
ij ] = 0 then we need to consider four cases: (1) ky �= 0 and kx = 0 = kz,

(2) ky = 0 and kx �= 0 and kz �= 0, (3) ky = 0 = kz and kx �= 0, (4) ky = 0 = kx

and kz �= 0.
1. In this case bij = kyYij = bσ

ij ; therefore, we have access to all {Yij}i<j ,
i, j ∈ {1, 2, 3}. But by the commutation relations [Yij , Yik] = −Xjk,
[Yij , Yjk] = −Xik, [Yij , Ykj ] = −Xik and [Xij , Yij ] = 2Zij . Thus, we
can generate all basis elements of su(3) starting from Yij ’s. This means
C(adX3) = {λI}.

2. In this case bij = −bσ
ij . Direct calculations show that elements:

[b12, [b12, b13]] , [b12, [b12, b23]] , [b13, [b13, b12]] ,
[b13, [b13, b23]] , [b23, [b23, b12]] , [b12, [b12, [b13, b23]]] ,
[b23, [b13, [b23, b12]]] , [b13, [b13, [b23, b12]]] ,

form a basis of su(3). Thus, C(adX3) = {λI}.
3. In this case the algebra generated by X3 is clearly so(3). Hence, C(adX3)

�= {λI}.
4. In this case the algebra generated by X3 is abelian. Hence, C(adX3)

�= {λI}.
We have just shown:

Fact 7.2. For a 2-mode unitary beamsplitter B = I cos φ + sinφ(kxX + kyY +
kzZ), where k2

x + k2
y + k2

z = 1 we have C(adX3) = {λI} unless (a) ky = 0 = kz

and kx = 1, (b) ky = 0 = kx and kz = 1.

Next we characterise C(AdS3). The adjoint matrices AdBij
and AdBσ

ij
are

elements of SO(su(3)) � SO(8). The rotation angles of both AdBij
and AdBσ

ij

are ±φ, 2φ and 0. On the other hand, by Fact 4.1 we know that C(AdS3) can
be different than C(adX3) only if the rotation angle is ±π. This corresponds
to situations when either φ = ±π or φ = ±π

2 . In the first case B = −I; thus,
obviously C(AdS3) �= {λI}. The case φ = ±π

2 corresponds to π
2 · S3 = X3.

Fact 7.3. For a 2-mode unitary beamsplitter B = I cos φ + sinφ(kxX + kyY +
kzZ) we have C(AdS3) = {λI} unless (a) ky = 0 = kz and kx = 1, (b)
ky = 0 = kx and kz = 1, (c) φ = ±π

2 and kz = 0.

Proof. Recall that C(adX3) ⊆ C(AdS3). Cases (a) and (b) correspond to situ-
ations when C(adX3) �= {λI}. Case (c) follows from direct calculations for six
Adg matrices with φ = ±π

2 and g ∈ S3. They were done with the help of a
symbolic calculation software. We only verify that when φ = ±π

2 and kz = 0
indeed C(AdS3) �= {λI}. Therefore, we define h = Span

R
{Z12, Z23}, dimRh = 2

and show that for φ = ±π
2 and kz = 0 the space h is an invariant subspace for

matrices AdBij
and AdBσ

ij
, i.e. of S3. To this end we calculate

AdB12Z12 = −Z12, AdB13Z12 = −Z23, AdB23Z12 = Z12 + Z23, (7.5)

AdB12Z23 = Z23 + Z12, AdB13Z23 = −Z12, AdB23Z23 = −Z23. (7.6)

and AdBσ
ij

Zkl = AdBij
Zkl. Therefore, the projection operator P : su(3) → h

commutes with matrices from S3, and thus it belongs to C(AdS3). �
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It is interesting to look at the structure of the group < S3 > when kz = 0
and φ = π

2 . Matrices are of the form Bij = eiψEij − e−iψEji + Ekk and
Bσ

ij = −e−iψEij + eiψEji + Ekk, where 1 ≤ i < j ≤ 3, k �= i, j and ψ ∈ [0, 2π).
If ψ is a rational multiple of π, then it is easy to see that <S3> is a finite
group and when ψ is an irrational multiple of π the group < S3 > is infinite
and disconnected. In fact, these are groups isomorphic to Δ(6n2) and Δ(6∞2)
given in [20].

7.2. When S3 is Universal?

Having characterised when C(AdS3) = {λI} we check in this section when the
group <S3> is infinite and this way we get the full classification of universal
2-mode beamsplitters.

7.2.1. The Case of the Orthogonal Group. Combining Theorem 4.12 with
Fact 7.1 for φ /∈ LSO(3) we obtain that the group generated by S3 is
exactly SO(3). When φ ∈ LSO(3) we consider the matrix: O(γ,kxz) =
O(φ,kx)O(φ,kz). The trace yields the following equation that relates γ and φ:

cos γ =
cos2 φ + 2 cos φ − 1

2
. (7.7)

If φ = (2k+1)π
2 , where k ∈ Z, then matrices O(φ,kx), O(φ,ky) and O(φ,kz) are

permutation matrices and they form three-dimensional representation of S3.
For all remaining φ ∈ LSO(3) we calculate cos γ using (7.7) and compare it with
the values of cos α for all α ∈ LSO(3). We find out they never agree. There-
fore, γ /∈ LSO(3), and we can apply Theorem 4.12 and Fact 7.1 to U(γ,kxz).
Summing up:

Theorem 7.4. Any 2-mode orthogonal beamsplitter with φ /∈ {
π
2 , 3π

2

}
is uni-

versal on 3 and hence n > 3 modes.

7.2.2. The Case of the Unitary Group. Recall that by Fact 7.3 the space
C(AdS3) = {λI} if and only if all the entries of a matrix B ∈ SU(2) are
nonzero and at least one of them belongs to C. So we are left with checking
if under these assumptions <S3> is infinite. Let {eiφ, e−iφ} be the spectrum
of B. Matrices Bij and Bσ

ij have the same spectra {eiφ, e−iφ, 1}. Looking at
the definitions of the open balls Bα, α3 = 1 we see that a matrix from SU(3)
with one spectral element equal to one can be introduced (by taking powers)
only to the ball with α = 1. Moreover, the maximal n that is needed is exactly
the same as for SO(3) and the exceptional angles belong to the set LSO(3).
Therefore, by Theorem 4.12, φ /∈ LSO(3) implies that the group generated by,
for example, B12 and B23 is infinite. In the following we show that <S3> is
infinite also for φ ∈ LSO(3) (providing φ is such that C(AdS3) = {λI}).

Let us consider <R> = <B12(φ), B23(φ)> with φ ∈ LSO(3). Our goal
is to show that R ⊂ S3 generates an infinite group. To this end we use the
following procedure:
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1. We calculate trace of the product B12(φ)B23(φ) and note that it belongs
to R. Therefore, spectrum of B12(φ)B23(φ) is of the form {eiγ , e−iγ , 1},
where the relation between φ and γ is given by

trB12(φ)B23(φ) = 2 cos φ + cos2 φ + k2
z sin2 φ = 2 cos γ + 1. (7.8)

2. Using (7.8), for each γ ∈ LSO(3) we compute

k2
z =

2 cos γ + 1 − 2 cos φ − cos2 φ

sin2 φ
, (7.9)

and check whether 0 < k2
z < 1. The pairs (φ, γ) that fail this test are

excluded from the further considerations. We note that k2
z = 1 corre-

sponds to diagonal matrices B12(φ), B23(φ) and k2
z = 0 corresponds the

situation when C(AdS3) �= {λI}.
3. For the pairs (φ, γ) that give 0 < k2

z < 1 we consider the matrix U(γ′) =
B12(2φ)B23(2φ). Its trace is again real, and we get

trB12(2φ)B23(2φ) =
1
2
(
2 + 4 cos(2φ) +

(
1 − k2

z

)
(cos(4φ) − 1)

)
= 2 cos γ′ + 1,

(7.10)

where k2
z is determined by φ and γ. Direct computations show that γ′ /∈

LSO(3) if φ /∈ {±π
2 ,± 2π

3

}
. We treat both of these cases separately.

4. For φ = ± 2π
3 and the fixed k2

z we consider yet another product of matrices
U(γ

′′
) = B2

23(φ)B2
12(φ)B23(φ)B12(φ) with a real trace:

trB2
23(φ)B2

12(φ)B23(φ)B12(φ)

=
1

8
(cos φ + 3 cos(2φ) + 4 cos(3φ) + 6 cos(4φ) + 4 cos(5φ) + cos(6φ) − 2)

+32k4
z sin4 φ cos2 φ + 8k2

z sin2 φ (−2 cos φ + 4 cos(2φ) + 2 cos(3φ) + cos(4φ) + 4)

= 2 cos γ
′′
. (7.11)

Direct computations show that γ
′′

/∈ LSO(3); thus, we are done for φ ∈
LSO(3)\{π

2 ,−π
2 }. The same composition for U23

(
π
2

)
, U12

(
π
2

)
may give a

matrix of the spectral angle γ = ± 2π
3 .

For φ = ±π
2 an additional treatment is needed. It consists of three steps:

1. Assume Bij

(
π
2

)
does not commute with its permutations Bσ

ij(
π
2 ) for 1 ≤

i < j ≤ 3. In this case we can use Bij(γ) = Bij

(
π
2

)
Bσ

ij

(
π
2

)
, 1 ≤ i < j ≤ 3

as the new set of generators. Note that the angle γ depends on the trace
of Bij

(
π
2

)
Bσ

ij

(
π
2

)
as cos γ = 1 − 2k2

y. Thus, γ �= ±π
2 if k2

y �= 1
2 and then

we can apply the previous procedure to show that <B12(γ), B23(γ)> is
infinite.

2. For φ = ±π
2 and k2

y = 1
2 , k2

x + k2
z = 1

2 we consider yet another product

trB2
12

(π

2

)
B13

(π

2

)
B23

(π

2

)
B2

13

(π

2

)
= k2

z = 2 cos γ
′′′

We find out that the only γ ∈ LSO(3) satisfying 2 cos γ = k2
z − 1 for

0 ≤ k2
z ≤ 1

2 are γ = ± 2π
3 . But then k2

z = 0. Thus, by Fact 7.3 the space
C(AdS3) is larger than {λI}.
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3. Finally, we assume that matrices Bij

(
π
2

)
commute with their permuta-

tions. Recall that it happens if either ky = ±1 and kx = kz = 0 or ky = 0
and kx, kz �= 0. The group generated for ky = ±1 is, of course, finite.
Therefore, we need to consider only the case when ky = 0 and kx, kz �= 0.
But in this case Step 2 of the previous procedure is never satisfied (from
Eq. (7.9) one can only obtain k2

z = 0 for γ = ± 2π
3 ).

Summing up:

Theorem 7.5. Any 2-mode unitary gate such that all its entries are nonzero
and at least one of them is a complex number is universal on 3 and hence
n > 3 modes.
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