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Abstract. The paper is devoted to operators given formally by the expres-
sion

−∂2
x +

(
α − 1

4

)
1

x2
.

This expression is homogeneous of degree minus 2. However, when we try
to realize it as a self-adjoint operator for real α, or closed operator for
complex α, we find that this homogeneity can be broken. This leads to
a definition of two holomorphic families of closed operators on L2(R+),
which we denote Hm,κ and Hν

0 , with m2 = α, −1 < Re(m) < 1, and where
κ, ν ∈ C∪{∞} specify the boundary condition at 0. We study these oper-
ators using their explicit solvability in terms of Bessel-type functions and
the Gamma function. In particular, we show that their point spectrum
has a curious shape: a string of eigenvalues on a piece of a spiral. Their
continuous spectrum is always [0, ∞[. Restricted to their continuous spec-
trum, we diagonalize these operators using a generalization of the Hankel
transformation. We also study their scattering theory. These operators
are usually non-self-adjoint. Nevertheless, it is possible to use concepts
typical for the self-adjoint case to study them. Let us also stress that −1 <
Re(m) < 1 is the maximal region of parameters for which the operators
Hm,κ can be defined within the framework of the Hilbert space L2(R+).
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1. Introduction

The family of differential operators

− ∂2
x +

(
α − 1

4

)
1
x2

(1.1)

is very special. They are homogeneous of degree −2. They appear in numerous
applications, e.g., as the radial part of the Laplacian in any dimension. Their
eigenfunctions can be expressed in terms of Bessel-type functions, and they
have a surprisingly long and intricate theory, see [8,9,12,14,25,29].

It is natural to try to interpret (1.1) as a closed operator on L2(R+). The
most natural interpretation was given and extensively studied in [7]. It involves
setting α = m2 and considering a family of closed operators Hm defined for
Re(m) > −1, depending on m holomorphically. In fact, the region Re(m) > −1
can be divided into two parts. For Re(m) ≥ 1, the operator Hm corresponds
to the closure of

− ∂2
x +

(
m2 − 1

4

)
1
x2

(1.2)

restricted to C∞
c (R+). For −1 < Re(m) < 1, it is necessary to specify a

boundary condition: H±m are both extensions of (1.2) with elements in their
domain behaving like cx

1
2 ±m near 0 for some c ∈ C. Note that all operators

Hm are homogeneous of degree −2.
For −1 < Re(m) < 1, more general boundary conditions can be studied.

By considering elements of L2(R+) behaving like c
(
κx1/2−m + x1/2+m

)
for

some c ∈ C, one naturally obtains a two-parameter family of closed operators
Hm,κ, with κ ∈ C∪{∞}. Note that these operators are no longer homogeneous,
except for Hm,0 = Hm and Hm,∞ = H−m.

A separate analysis is required for m = 0. Possible boundary conditions
for this case are c

(
x1/2 ln(x) + νx1/2

)
for some c ∈ C. These lead to a family

of closed operators that we denote by Hν
0 , where ν ∈ C ∪ {∞}. Note that

H∞
0 = H0, and that this operator is the only homogeneous one amongst the

operators Hν
0 .

The study of the two families of operators Hm,κ and Hν
0 is the object of

our paper. We extensively use their explicit solvability, so that for these oper-
ators, we can give exact formulas for many constructions of operator theory.
Let us mention part of the analysis performed below.

The operators Hm have no point spectrum. However, Hm,κ and Hν
0 usu-

ally have point spectrum, which coincides with the discrete spectrum. All the
eigenvalues are simple and depend quite sensitively on the parameters. The
number of these eigenvalues can be finite, but also infinite. Their position
forms rather interesting patterns on the complex plane: typically, it is a se-
quence situated along a piece of a spiral.

The continuous spectrum always coincides with the positive half-line
[0,∞[. One can express the resolvent of our operators in terms of the MacDon-
ald and modified Bessel functions Km and Im. The resolvent has boundary
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values at [0,∞[, which can be expressed in terms of the Hankel and Bessel func-
tions H±

m and Jm. We make sense out of these boundary values as bounded
operators between appropriate weighted Hilbert spaces, a property often called
the Limiting Absorption Principle. We provide formulas for the spectral projec-
tions onto parts of the continuous spectrum, and introduce bounded invertible
operators that diagonalize Hm,κ and Hν

0 , except for a small set of parame-
ters that we call exceptional. These operators can be called generalized Hankel
transformations, see also [33] for related results. Finally, we describe the scat-
tering theory for Hm,κ and Hν

0 , giving formulas for the Møller (wave) operators
and for the scattering operator.

Let us mention that most of the operators Hm,κ and Hν
0 are not self-

adjoint, but that the subfamilies of self-adjoint ones are also exhibited. More
precisely, Hm,κ are self-adjoint for real m and κ, or for purely imaginary m and
|κ| = 1. Similarly, Hν

0 are self-adjoint for real ν. Thus, our analysis fits into
a recent fashion of studying spectral properties of non-self-adjoint operators.
Indeed, we observe that in the non-self-adjoint cases, our operators have quite
interesting discrete spectrum.

We also stress that the operators that we study are extremely natural
and appear in many situations. For example, they describe oscillations of a
conical membrane, the Aharonov–Bohm effect [7,28], and sticky diffusion [16].
They also play an important role in the study of the wave and Klein–Gordon
equations on anti-de Sitter spacetime, see [5,15,19] and references therein. We
are convinced that they possess many more applications we are not aware of.
Indeed, since (1.2) is a homogeneous expression and the only non-homogeneity
is due to boundary conditions, we expect that the studied operators appear in
various scaling limits, or renormalization group analysis.

The analysis of our paper can also be considered as a large part of modern
theory of the Bessel equation and the Gamma function (which belong to the
oldest objects of mathematics, going back at least to Euler in 17th century).
Indeed, many identities for Bessel-type functions and the Gamma function
have a meaning in the theory of Hm,κ and Hν

0 . Let us give some simple ex-
amples: the identity zΓ(z) = Γ(z + 1) is related to the Møller operators for
the pair (Hm+2,Hm), and the identity Γ(z)Γ(1 − z) = π

sin πz is related to the
Møller operators for the pair (H−m,Hm). Note that our point of view on Bessel
functions is further developed in Sect. 3 and in Appendix A.

Many authors studied various classes of one-dimensional Schrödinger op-
erators on the half-line, also called Sturm–Liouville operators on the half-line.
Among classic works on this topic, which included complex potentials and
various boundary conditions, let us mention [11, Chap. XX] and [27].

The methods used in our paper are of course adaptations of known ap-
proaches. Let us also note that the resolvents of Hm,κ, resp. Hν

0 are rank one
perturbations of the resolvents of the operators Hm, resp. H0. Therefore, our
analysis can be interpreted as an example of the theory of singular rank one
perturbation, which is a well-studied subject. Nevertheless, it seems that a
large part of our analysis of the operators Hm,κ and Hν

0 , especially in the non-
self-adjoint case, is new. Let us also mention that there are still some topics
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about these operators, which are open. In particular, in this paper, we do not
analyze fully the exceptional case, in which the generalized Hankel transfor-
mation are unbounded. In this case, spectral singularities appear, first noted
in a similar context in [27].

In our paper, we restrict ourselves to a rather narrow, explicit, and solv-
able family of operators. However, it is not easy to find papers about more
general classes of operators that cover the whole family we consider. In many
works on one-dimensional Schrödinger operators, the singularity 1

x2 is excluded
by restrictive assumptions. This is, e.g., the case of [11,27]. Many papers also
assume that the operator is dissipative or accretive (its numerical range is con-
tained in the upper, resp. lower complex half-plane). Our operators are often
neither dissipative nor accretive. In fact, it was noted already in [7] that for
Re(m) < 0 and Im(m) �= 0, the numerical range of Hm is the whole C.

A vast majority of papers about Schrödinger operators considers only self-
adjoint cases. One often assumes the essential self-adjointness on
C∞

c (R+). Then, Hm with |m| < 1 are not seen at all. If one considers the
Friedrichs extension, only the case m ≥ 0 is covered. If one considers both
the Friedrichs and Krein extensions, one throws away the interesting region
m2 < 0. Looking at the exactly solvable potential (m2− 1

4 ) 1
x2 and using theory

of the Bessel equation, we can check what are the natural assumptions in our
case. In particular, we can notice that it is natural to include non-self-adjoint
cases, which interpolate in an interesting way between self-adjoint cases, and
to study a holomorphic family of closed operators depending on two complex
parameters.

With this idea in mind, let us compare our work with some of the recent
papers dealing with the operator (1.2). Note that many papers are related to
this operator, and therefore, we mention only a few of them (see also the ref-
erences in these papers). First of all, let us mention [17] in which an extensive
study of Schrödinger operators of the form −∂2

x + V with singular V is per-
formed. However, when the special case of V (x) =

(
α − 1

4

)
1
x2 is considered,

only the parameters m ≥ 1 are considered. In [13] the operator (1.2) is also
thoroughly analyzed in the range m ∈ [0, 1[, but at the end of the day, only
the Friedrichs self-adjoint extension is considered.

In [2] the Friedrichs realization Hm of the operator (1.2) with m ∈ [0, 1[ is
considered and the scattering theory is developed for the pair (Hm,HD) with
HD the Dirichlet Laplacian on the half-line. Again, the set of m considered
is rather restrictive. In addition, a sentence like “for m ≥ 1, no scattering is
possible between HD and Hm” (see page 85 of that paper) is in contradiction
with the scattering theory developed in our Sect. 4 and even further extended
in the subsequent sections.

In the paper [24] and in the preprint [3], the Friedrichs realization of
the operator (1.2) is also considered for m ≥ 0. In the former paper, some
dispersive estimates are provided for the evolution group {e−itHm}t∈R with an
emphasis in the dependence in m. In [3], a new study of the expression (1.2)
on finite intervals or on the half-line is performed with the recently introduced
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approach of boundary triplets. The Krein and the Friedrichs extensions are,
indeed, considered on the half-line, but the parameter m is always real.

Finally, let us mention the recent paper [23] and the related subsequent
preprint [20]. In the former one, dispersive estimates are provided for the opera-
tor −∂2

x+
(
m2 − 1

4

)
1
x2 +q(x) under some additional conditions on the potential

q. Here, only the Friedrichs extension for m > 0 is considered. Obviously, the
additional potential enlarges the set of operators under investigation, but on
the other hand, only the simplest realization of these operators is analyzed. In
the preprint [20], only the initial operator (1.2) is considered, (i.e., q = 0) for
m ∈]0, 1[, but a rather large family of self-adjoint realizations of this operator
is introduced. Dispersive estimates for these operators are obtained, and their
dependence on the boundary condition at 0 is emphasized.

The family of operators Hm with Re(m) > −1 was introduced in [7].
Thus, our study of Hm,κ and Hν

0 can be viewed as a continuation of [7]. It
seems, however, that some of the properties of Hm, notably about scattering
in the non-self-adjoint case, are described in our present paper for the first
time.

One could ask how complete our analysis is. In particular, it is natural to
ask whether the operators Hm can be extended holomorphically outside the
domain −1 < Re(m), and Hm,κ outside −1 < Re(m) < 1. Most probably, if we
stick to the framework of the Hilbert space L2(R+), the answer is negative. A
question about whether Hm can be extended holomorphically was formulated
in [7] and has not been settled rigorously yet. However, one can extend the
operators Hm,κ and Hm to larger domains of parameters, if one goes beyond
the framework of the Hilbert space L2(R+). This subject will be considered in
a separate paper.

2. Inverse Square Potential

2.1. Notation

C
× denotes C\{0}. α means the complex conjugate of α ∈ C. If Y is a set,

then #Y denotes the number of elements of Y . If Ξ is a subset of R, then 1lΞ
represents the characteristic function of Ξ. C∞

c (R+) denotes the set of smooth
functions on R+ :=]0,∞[ with compact support.

For an operator A, we denote by D(A) its domain and by σp(A) the set
of its eigenvalues (its point spectrum). We also use the notation σ(A) for its
spectrum and σess(A) for its essential spectrum. If z is an isolated point of
σ(A), then 1l{z}(A) denotes the Riesz projection of A onto z. Similarly, if A is
self-adjoint and Ξ is a Borel subset of σ(A), then 1lΞ(A) denotes the spectral
projection of A onto Ξ.

A (possibly unbounded) operator A on a Hilbert space H is invertible
(with a bounded inverse) if its null space is {0}, its range is H and A−1 is
bounded. If A is a positive invertible operator on H and s ≥ 0, then A−sH
denotes D(As) and AsH denotes its (antilinear) dual. Thus, we obtain a nested
scale of Hilbert spaces AsH, s ∈ R.
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In the sequel, we will usually work with the Hilbert space L2(R+) with
the generic variable denoted by x or y, and sometimes also by k. It is equipped
with the norm denoted by ‖ · ‖, the scalar product

(f |g) :=
∫ ∞

0

f(x)g(x)dx,

as well as the bilinear form

〈f |g〉 :=
∫ ∞

0

f(x)g(x)dx. (2.1)

If B is an operator on L2(R+), then B∗ denotes the usual Hermitian adjoint
of B, whereas B# denotes the adjoint (the transpose) of B w.r.t. the (2.1).
Clearly, if B is a bounded linear operator on L2(R+) with

(Bf) (k) :=
∫ ∞

0

B(k, x)g(x)dx,

then

(B∗g) (x) =
∫ ∞

0

B(k, x)g(k)dk,

while

(B#g) (x) =
∫ ∞

0

B(k, x)g(k)dk.

We shall use the symbol X to denote the operator of multiplication by the
variable in R+, i.e., (Xf) (x) = xf(x) for f ∈ D(X) ⊂ L2(R+) and x ∈ R+.
Note that if it is clear that the name of the variable is x, we will also write x
instead of X. We will often use the scale of Hilbert spaces based on the operator
〈X〉 := (1 + X2)1/2, denoted by 〈X〉−sL2(R+). The Sobolev spaces H 1

0 (R+)
and H 1(R+) are the subspaces of L2(R+) defined as the form domain of the
Dirichlet and Neumann Laplacian, respectively.

We will also consider the unitary group {Uτ}τ∈R of dilations acting on
f ∈ L2(R+) as (Uτf) (x) = eτ/2f(eτx). An operator B on L2(R+) is said to
be homogeneous of degree α ∈ R if UτD(B) ⊂ D(B) for any τ ∈ R and if the
equality UτBU−1

τ = eατB holds on D(B). For instance, X is an operator of
degree 1. The generator of dilations is denoted by A, so that Uτ = eiτA. On
suitable functions f , one has

Af(x) =
1
2i

(∂xx + x∂x)f(x).

The following holomorphic functions are understood as their principal
branches, that is, their domain is C\]−∞, 0] and on ]0,∞[, they coincide with
their usual definitions from real analysis: ln(z),

√
z, zλ, arg(z) := Im (ln(z)).

Ln(z) will denote the multivalued logarithm. This means, if w0 satisfies ew0 =
z, then Ln(z) is the set w0 + 2πiZ.

The Wronskian W (f, g) of two continuously differentiable functions f, g
on R+ is given by the expression

Wx(f, g) ≡ W (f, g)(x) := f(x)g′(x) − f ′(x)g(x). (2.2)
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2.2. Maximal and Minimal Homogenous Schrödinger Operators

For any α ∈ C, we consider the differential expression

Lα := −∂2
x +

(
α − 1

4

)
1
x2

acting on distributions on R+, and denote by Lmin
α and Lmax

α , the corresponding
minimal and maximal operators associated with it in L2(R+), see [7, Sec. 4 &
App. A] for details. We simply recall from this reference that

D(Lmax
α ) = {f ∈ L2(R+) | Lαf ∈ L2(R+)}

and that D(Lmin
α ) is the closure of the restriction of Lα to C∞

c (R+). Clearly,
both Lmin

α and Lmax
α are homogeneous of degree −2. Note that, from now

on, we shall simply say homogeneous, without specifying the degree −2. In
addition, the following relation holds:(

Lmin
α

)∗
= Lmax

α .

Let us recall some additional results which have been obtained in [7,
Sec. 4]. For that purpose, we say that f ∈ D(Lmin

α ) around 0, (or, by an abuse
of notation, f(x) ∈ D(Lmin

α ) around 0) if there exists ζ ∈ C∞
c ([0,∞[) with

ζ = 1 around 0, such that fζ ∈ D(Lmin
α ). In addition, it turns out that it is

useful to introduce a parameter m ∈ C, such that α = m2, even though there
are two m corresponding to a single α �= 0. In other words, we shall consider,
from now on, the operator

Lm2 := −∂2
x +

(
m2 − 1

4

)
1
x2

.

With this notation, if |Re(m)| ≥ 1, then Lmin
m2 = Lmax

m2 , while if |Re(m)| < 1,
then Lmin

m2 � Lmax
m2 , and D(Lmin

m2 ) is a closed subspace of codimension 2 of
D(Lmax

m2 ). More precisely, if |Re(m)| < 1 and if f ∈ D(Lmax
m2 ), then there exist

a, b ∈ C, such that:

f(x) − ax1/2−m − bx1/2+m ∈ D(Lmin
m2 ) around 0 if m �= 0,

f(x) − ax1/2 ln(x) − bx1/2 ∈ D(Lmin
0 ) around 0.

In addition, the behavior of any function g ∈ D(Lmin
m2 ) is known, namely g ∈

H 1
0 (R+) and as x → 0:

g(x) = o
(
x3/2

)
and g′(x) = o

(
x1/2

)
if m �= 0,

g(x) = o
(
x3/2 ln(x)

)
and g′(x) = o

(
x1/2 ln(x)

)
if m = 0.

2.3. Two Families of Schrödinger Operators with Inverse Square Potentials

Let us first recall from [7, Def. 4.1] that for any m ∈ C with Re(m) > −1, the
operator Hm has been defined as the restriction of Lmax

m2 to the domain

D(Hm) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C,

f(x) − cx1/2+m ∈ D(Lmin
m2 ) around 0

}
.
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It is then proved in this reference that {Hm}Re(m)>−1 is a holomorphic family
of closed homogeneous operators in L2(R+). In addition, if Re(m) ≥ 1, then

Hm = Lmin
m2 = Lmax

m2 .

For this reason, we shall concentrate on the case −1 < Re(m) < 1, considering
a larger family of operators.

For |Re(m)| < 1 and for any κ ∈ C∪{∞}, we define a family of operators
Hm,κ:

D(Hm,κ) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C,

f(x) − c
(
κx1/2−m + x1/2+m

) ∈ D(Lmin
m2 ) around 0

}
, κ �= ∞;

(2.3)

D(Hm,∞) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C,

f(x) − cx1/2−m ∈ D(Lmin
m2 ) around 0

}
. (2.4)

For m = 0, we introduce an additional family of operators Hν
0 with

ν ∈ C ∪ {∞}:

D(Hν
0 ) =

{
f ∈ D(Lmax

0 ) | for some c ∈ C,

f(x) − c
(
x1/2 ln(x) + νx1/2

) ∈ D(Lmin
0 ) around 0

}
, ν �= ∞;

(2.5)

D(H∞
0 ) =

{
f ∈ D(Lmax

0 ) | for some c ∈ C,

f(x) − cx1/2 ∈ D(Lmin
0 ) around 0

}
. (2.6)

The following properties of these families of operators are immediate:

Lemma 2.1. (i) For any |Re(m)| < 1 and any κ ∈ C ∪ {∞},
Hm,κ = H−m,κ−1 . (2.7)

(ii) The operator H0,κ does not depend on κ, and all these operators coincide
with H∞

0 .

As a consequence of (ii), all the results about the case m = 0 will be
formulated in terms of the family Hν

0 .
Let us now derive two simple results for this family of operators. The first

one is related to the action of the dilation group, while the second is dealing
with the Hermitian conjugation.

Proposition 2.2. For any m with |Re(m)| < 1 and any κ, ν ∈ C ∪ {∞}, we
have

UτHm,κU−τ = e−2τHm,e−2τmκ,

UτHν
0 U−τ = e−2τHν+τ

0 ,

with the convention that α∞ = ∞ for any α ∈ C\{0} and ∞+ τ = ∞ for any
τ ∈ C. In particular,



878 J. Dereziński, S. Richard Ann. Henri Poincaré

(i) Amongst the family of operators Hm,κ with m �= 0, only

Hm,0 = Hm and Hm,∞ = H−m

are homogeneous,
(ii) Amongst the family Hν

0 , only

H∞
0 = H0

is homogeneous.

Proof. If f ∈ D(Hm,κ), then Uτf ∈ D(Hm,e−2mτ κ). Thus, the only domains
which are left invariant are D(Hm,0) and D(Hm,∞). Since Lmax

m2 is homoge-
neous, the same applies for Hm,0 and Hm,∞.

If f ∈ D(Hν
0 ), then Uτf ∈ D(Hν+τ

0 ). Thus, only D(H∞
0 ) is left invariant,

and consequently, only H∞
0 is homogeneous. �

Proposition 2.3. For any m ∈ C with |Re(m)| < 1 and for any κ, ν ∈ C∪{∞},
one has

(Hm,κ)∗ = Hm,κ and (Hν
0 )∗ = Hν

0 (2.8)

with the convention that ∞ = ∞.

Proof. Recall from [7, App. A] that for any f ∈ D(Lmax
m2 ) and g ∈ D(Lmax

m2 ),
the functions f, f ′, g, g′ are continuous on R+, and that the equality

(Lmax
m2 f |g) − (f |Lmax

m2 g) = −W0(f, g)

holds with W0(f, g) = lim
x→0

Wx(f, g) and Wx defined in (2.2). In particular, if

f ∈ D(Hm,κ), one infers that

(Hm,κf |g) = (f |Lmax
m2 g) − W0(f, g).

Thus, g ∈ D ((Hm,κ)∗) if and only if W0(f, g) = 0, and then (Hm,κ)∗g =
Lmax

m2 g. Then, by considering the explicit description of D(Hm,κ), straightfor-
ward computations show that W0(f, g) = 0 if and only if g ∈ D(Hm,κ). One
then deduces that (Hm,κ)∗ = Hm,κ.

A similar computation leads to the equality (Hν
0 )∗ = Hν

0 . �

Corollary 2.4. (i) The operator Hm,κ is self-adjoint for m ∈] − 1, 1[ and
κ ∈ R ∪ {∞}, and for m ∈ iR and |κ| = 1.

(ii) The operator Hν
0 is self-adjoint for ν ∈ R ∪ {∞}.

Proof. For the operators Hm,κ, one simply has to consider formula (2.8) for
the first case, and the same formula together with (2.7) in the second case.
Finally, for the operators Hν

0 , considering formula (2.8) leads directly to the
result. �

Remark 2.5. By blowing up around m = 0, it is possible to make one single
holomorphic function out of Hm,κ and Hν

0 . In fact, we can extend the function
Hν

0 by setting

Hν
m := Hm, νm−1

νm+1
, m �= 0.
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Then, Hν
m is holomorphic for 1 < Re(m) < 1, ν ∈ C ∪ {∞} and covers all

values of Hm,κ. To see the holomorphy at m = 0 (at least at the level of the
boundary conditions), note that for |m| very small, one has

κx1/2−m + x1/2+m ≈ m(1 − κ)
(

x1/2 ln(x) +
1 + κ

m(1 − κ)
x1/2

)
,

which is c
(
x1/2 ln(x) + νx1/2

)
for κ = νm−1

νm+1 .

3. Bessel-Type Equations and Functions

In this section, we establish the link between our initial operator (1.1) and
different forms of the Bessel equation. By considering the dependence of the
space dimension in these equations, one is naturally led to introduce a new
basic family of Bessel-type functions.

Let us recall that the Laplace operator in d dimensions and in spherical
coordinates is given by

−Δd = −∂2
r − d − 1

r
∂r − 1

r2
ΔSd−1 ,

where r is the radial coordinate and ΔSd−1 is the Laplace–Beltrami operator
on the sphere S

d−1. For simplicity, we also use, in this section, the notation
r for the corresponding operator of multiplication by the radial coordinate.
Eigenvalues of −ΔSd−1 for d = 2, 3, . . . are

l(l + d − 2), l ∈ {0, 1, 2, . . . }, (3.1)

where l corresponds to the order of spherical harmonics.
Note that in the special case d = 2, one has ΔS1 = ∂2

φ and the angular
momentum operator −i∂φ has eigenvalues m ∈ Z. As a consequence, (3.1) can
also be written as

m2, m ∈ Z.

For d = 1, the sphere reduces to a pair of points and ΔS0 corresponds to the
0-operator. It has the eigenvalue 0 of multiplicity 2, and this corresponds to
the values l = 0 and l = 1 in (3.1).

Thus, if one sets m := l + d
2 − 1, then the radial part of the Laplacian

takes the following form in any dimension:

−∂2
r − d − 1

r
∂r + l(l + d − 2)

1
r2

= −∂2
r − d − 1

r
∂r +

(
m2 −

(d

2
− 1

)2) 1
r2

(3.2)

with an appropriately restricted range of m. In what follows, we will call (3.2)
the Bessel operator of dimension d, allowing then the parameter m to take
arbitrary complex values. In particular, the Bessel operator of dimension 2 is

− ∂2
r − 1

r
∂r +

m2

r2
, (3.3)
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while the Bessel operator of dimension 1 is

− ∂2
r +

(
m2 − 1

4

) 1
r2

. (3.4)

Operators (3.2) are related to one another for different d by a simple sim-
ilarity transformation. Indeed, by a short computation performed on C∞

c (R+),
one easily observes that the following equality holds:

− ∂2
r − d − 1

r
∂r +

(
m2 −

(d

2
− 1

)2) 1
r2

= r− d
2 +1

(
−∂2

r − 1
r
∂r +

m2

r2

)
r

d
2 −1

= r− d
2 + 1

2

(
−∂2

r +
(
m2 − 1

4

) 1
r2

)
r

d
2 − 1

2 .

It is then a matter of taste, convenience, and historical circumstances whether
the operator (3.3) or (3.4) is taken as the basic one. In the literature, at least
since the times of Bessel, it seems that (3.3) has a distinguished status. We
prefer (3.4) at least in the context of this paper, since our initial operator (1.1)
has a form similar to (3.4).

A simple scaling argument shows that the eigenvalue problem for (3.3)
can be reduced to one of the following two equations:

the modified Bessel equation
(

∂2
r +

1
r
∂r − m2

r2
− 1

)
v = 0, (3.5)

the (standard) Bessel equation
(

∂2
r +

1
r
∂r − m2

r2
+ 1

)
v = 0. (3.6)

Certain distinguished solutions of (3.5) are

the modified Bessel function Im(z),
the MacDonald function Km(z),

and of (3.6) are

the Bessel function Jm(z),

the Hankel function of the 1st kind H+
m(z) = H(1)

n (z),

the Hankel function of the 2nd kind H−
m(z) = H(2)

n (z),
the Neumann function Ym(z).

We call them jointly the Bessel family. They are probably the best known and
the most widely used special functions in mathematics and its applications
[1,4,18,34].

Remark 3.1. The notation H
(1)
m , H

(2)
m for the two kinds of Hankel functions is

more common in the literature. We use the notation H+
m, H−

m, which is much
more convenient.
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Instead of (3.5) and (3.6), we will prefer to consider their analogs for
dimension 1, namely (

∂2
r −

(
m2 − 1

4

) 1
r2

− 1
)

v = 0, (3.7)
(

∂2
r −

(
m2 − 1

4

) 1
r2

+ 1
)

v = 0. (3.8)

We will also introduce new special functions that solve (3.7)

the modified Bessel function for dim. 1 Im(r) :=
√

πr

2
Im(r),

the MacDonald function for dim. 1 Km(r) :=

√
2r

π
Km(r),

and new special functions that solve (3.8)

the Bessel function for dim. 1 Jm(r) :=
√

πr

2
Jm(r),

the Hankel function of the 1st kind for dim. 1 H+
m(r) :=

√
πr

2
H+

m(r),

the Hankel function of the 2nd kind for dim. 1 H−
m(r) :=

√
πr

2
H−

m(r),

the Neumann function for dim. 1 Ym(r) :=
√

πr

2
Ym(r).

Jointly, they will be called the Bessel family for dimension 1. Accordingly,
the Bessel family should be called the Bessel family for dimension 2. As we
shall show later on, the Bessel family for dimension 1 contains a number of
standard elementary functions: the exponential function, the trigonometric
sine and cosine functions, and the hyperbolic sine and cosine functions.

Obviously, properties of the Bessel family for dimension 1 can easily be
deduced from the corresponding properties of the Bessel family for dimension
2, and the other way round. Most properties seem to have a simpler form
in the case of dimension 1 than in the case of dimension 2. There are some
exceptions, mostly involving integer values of m which play a distinguished
role in dimension 2 and, more generally, in even dimensions. We collect basic
properties of the Bessel family for dimension 1 in Appendix A.

Let us note that in the literature, one sometimes introduces the modified
and standard Bessel equations for all dimensions d ≥ 2, as well as the corre-
sponding functions, see [26]. In particular, there exists a standard notation for
the functions of the Bessel family for dimension 3: im, km, jm, h±

m, and ym. In
our opinion, however, this introduces too many unnecessary special functions:
the main issue is whether the dimension is even or odd. One could argue that
the Bessel family for dimension 2, that is Im, Km, Jm, H±

m, and Ym, is better
adapted for all even dimensions and integer values of m, whereas the Bessel
family for dimension 1, that is Im, Km, Jm, H±

m, and Ym, is better adapted
for odd dimensions, as well as for general values of m.
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4. The Homogeneous Case

In this section, we consider the homogeneous operators Hm. Part of the fol-
lowing results was proved in [7], but we add some new material. In particular,
some statements and proofs in [7] were restricted to the self-adjoint case. We
extend them to all Re(m) > −1. In addition, we shall now express everything
in terms of the Bessel family for dimension 1 instead of the Bessel family for
dimension 2.

4.1. Resolvent

In [7, Sec. 4.2], the resolvent of Hm is constructed. For completeness, we recall
its construction below:

Theorem 4.1. For any m ∈ C with Re(m) > −1, the spectrum of Hm is [0,∞[.
In addition, for k ∈ C with Re(k) > 0, the resolvent

Rm(−k2) := (Hm + k2)−1

has the kernel

Rm(−k2;x, y) =
1
k

{Im(kx)Km(ky) if 0 < x < y,
Im(ky)Km(kx) if 0 < y < x.

(4.1)

Sketch of proof provided in [7]. It is first checked that the kernel provided by
(4.1) defines a bounded operator which we denote by Rm(−k2). Then, it is
verified that ( (

Lm2 + k2
)
Rm(−k2)

)
(x, y) = δ(x − y).

Next, one has Rm(−k2)f ∈ D(Hm) for any f ∈ C∞
c (R+). Thus, the previous

equality can be reinterpreted as (Hm + k2)Rm(−k2) = 1l. In addition, since
H∗

m = Hm and Rm(−k2)∗ = Rm(−k
2
), one then infers that

Rm(−k2)(Hm + k2) =
(
(Hm + k

2
)Rm(−k

2
)
)∗

= 1l.

Therefore, −k2 belongs to the resolvent set of Hm and Rm(−k2) is the resolvent
of Hm. �

For |Re(m)| < 1, we also introduce the operator Pm(−k2) defined by its
kernel

Pm(−k2;x, y) :=
sin(πm)

m
kKm(kx)Km(ky) if m �= 0, (4.2)

P0(−k2;x, y) := πkK0(kx)K0(ky). (4.3)

By the bounds (A.7) and (A.8), the function x �→ Km(kx) is square integrable.
Considering (A.16) and (A.17), one easily infers that the operator Pm(−k2)
is a rank one projection. It is orthogonal if k and m2 are real. By considering
the equality Km = K−m and (A.4), one can also deduce the following relation
for |Re(m)| < 1:

R−m(−k2) − Rm(−k2) =
m

k2
Pm(−k2). (4.4)
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4.2. Boundary Value of the Resolvent and Spectral Density

In this section, we show that a Limiting Absorption Principle holds for the
operators Hm. We also compute the kernels of the boundary values of the
resolvent and of the spectral density.

Theorem 4.2. Let m ∈ C with Re(m) > −1, and let k > 0. Then, the boundary
values of the resolvent

Rm(k2 ± i0) := lim
ε↘0

Rm(k2 ± iε)

exist in the sense of operators from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for any
s > 1

2 , uniformly in k on each compact subset of R+. They have the kernels

Rm(k2 ± i0;x, y) = ± i
k

{Jm(kx)H±
m(ky) if 0 < x ≤ y,

Jm(ky)H±
m(kx) if 0 < y < x.

(4.5)

The above theorem describes a property that, at least in the context
of self-adjoint Schrödinger operators, is often called the Limiting Absorption
Principle. Its proof will be based on an explicit estimate of the resolvent kernel:

Proposition 4.3. Let us consider Re(k) > 0. Then, for Re(m) ≥ 0 with m �= 0,
one has

|Rm(−k2;x, y)| ≤ C2
m

|k| e−Re(k)|x−y| min(1, |xk|) 1
2 min(1, |yk|) 1

2 , (4.6)

for −1 < Re(m) ≤ 0 with m �= 0, one has

|Rm(−k2;x, y)| ≤ C2
m

|k| e−Re(k)|x−y| min(1, |xk|)Re(m)+ 1
2 min(1, |yk|)Re(m)+ 1

2 ,

(4.7)

while, in the special case m = 0, one has

|R0(−k2;x, y) ≤C2
0

|k| e−Re(k)|x−y| min(1, |xk|) 1
2 min(1, |yk|) 1

2

× (
1 +

∣∣ ln(min(1, |kx|))∣∣) (1 +
∣∣ ln(min(1, |ky|))∣∣) . (4.8)

The constants Cm and C0 are independent of x, y, and k.

Proof. The proof is based on the following estimates on the Bessel and Mac-
Donald functions. For ε > 0 and | arg z| < π − ε, one has

|Km(z)| ≤ Cme−Re(z) min(1, |z|)−|Re(m)|+ 1
2 , m �= 0,

|K0(z)| ≤ C0e−Re(z) min(1, |z|) 1
2
(
1 +

∣∣ ln(min(1, |z|))∣∣) , (4.9)

and

|Im(z)| ≤ Cme|Re(z)| min(1, |z|)Re(m)+ 1
2 , m �= 0,

|I0(z)| ≤ C0e|Re(z)| min(1, |z|) 1
2 .
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Using Re(k) > 0 and for m �= 0, observe first that for 0 < x < y, we
obtain

|Rm(−k2;x, y)| ≤ C2
m

|k| e
xRe(k)e−yRe(k) min(1, |kx|)Re(m)+ 1

2 min(1, |ky|)−|Re(m)|+ 1
2 ,

while for 0 < y < x, we have

|Rm(−k2;x, y)| ≤ C2
m

|k| e
yRe(k)e−xRe(k) min(1, |kx|)−|Re(m)|+ 1

2 min(1, |ky|)Re(m)+ 1
2 .

If Re(m) ≥ 0, one observes then that |kx|
|ky| < 1 in the first case, while

|ky|
|kx| < 1 in the second case. This directly leads to (4.6). On the other hand, for
Re(m) < 0, one has −|Re(m)| = Re(m), from which one infers (4.7). Finally,
the special case m = 0 is obtained by a straightforward computation. �

Proof of Theorem 4.2. Define the operator Rm(k2 ± i0) by its kernel (4.5). We
will show that

〈X〉−sRm(k2 ± iε)〈X〉−s, (4.10)

whose kernel is

〈x〉−sRm(k2 ± iε;x, y)〈y〉−s, (4.11)

is a Hilbert–Schmidt operator and converges as ε ↘ 0 in the Hilbert–Schmidt
norm to

〈X〉−sRm(k2 ± i0)〈X〉−s. (4.12)

Consider first the (slightly more difficult) case −1 < Re(m) ≤ 0 with
m �= 0. By the estimate (4.7), the expression (4.11) can be bounded by

C

|k|e
−Re(

√−k2∓iε)|x−y|〈x〉−s〈y〉−s min(1, |xk|)Re(m)+ 1
2 min(1, |yk|)Re(m)+ 1

2

≤ C

|k| 〈x〉−s〈y〉−s min(1, |xk|)Re(m)+ 1
2 min(1, |yk|)Re(m)+ 1

2 , (4.13)

where C is a constant independent of x, y, and k. Note that in the computation,
the inequality Re(

√−k2 ∓ iε) ≥ 0 has been used, and that such an inequality
holds by our choice of the principal branch of the square root. One clearly
infers that (4.13) belongs to L2(R+ × R+) and dominates (4.11). Since (4.11)
converges pointwise to

〈x〉−sRm(k2 ± i0;x, y)〈y〉−s, (4.14)

one concludes by the Lebesgue Dominated Convergence Theorem that (4.11)
converges in L2(R+ × R+) to (4.14). This is equivalent to the convergence of
(4.10) to (4.12) in the Hilbert–Schmidt norm. Note finally that the uniform
convergence in k on each compact subset of R+ can be checked directly on the
above expressions.

For Re(m) ≥ 0 with m �= 0, the same proof holds with the estimate (4.6)
instead of (4.7). Finally, for m = 0, the result can be obtained using (4.8), and
by observing that the factor with the logarithm is also square integrable near
the origin. �
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Based on the previous theorem, one can directly deduce the following
statement.

Proposition 4.4. There exists the spectral density

pm(k2) := lim
ε↘0

1
2πi

(
Rm(k2 + iε) − Rm(k2 − iε)

=
1

2πi

(
Rm

(
k2 + i0

)− Rm

(
k2 − i0

) )
,

understood in the sense of operators from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for
any s > 1

2 . The kernel of this operator is provided for x, y ∈ R+ by

pm(k2;x, y) =
Jm(kx)Jm(ky)

πk
.

4.3. Hankel Transformation

This section is mostly inspired from Sects. 5 and 6 of [7], from which most of
the statements are borrowed. We refer to this reference for more details, or to
the subsequent sections of this paper for a more general approach.

For any m ∈ C with Re(m) > −1 let us set

Fm : Cc(R+) → L2(R+)

with

(Fmf) (x) :=
∫ ∞

0

Fm(x, y)f(y)dy

and

Fm(x, y) :=

√
2
π

Jm(xy). (4.15)

We also define the unitary and self-adjoint transformation J : L2(R+) →
L2(R+) by the formula

(Jf) (x) =
1
x

f
( 1

x

)
(4.16)

for any f ∈ L2(R+) and x ∈ R+. Finally, we recall that A denotes the generator
of dilations.

Proposition 4.5. For any m ∈ C with Re(m) > −1, the map Fm continuously
extends to a bounded invertible operator on L2(R+) satisfying F#

m = Fm =
F−1

m . In addition, the following equalities hold:

Fm = JΞm(A) = Ξm(−A)J, (4.17)

with

Ξm(t) := ei ln(2)t Γ(m+1+it
2 )

Γ(m+1−it
2 )

. (4.18)
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Proof. Let us start by proving the first equality in (4.17). For that purpose,
consider the operator JFm : Cc(R+) → L2(R+) whose kernel is given by√

2
π

1
x

Jm

(y

x

)
=

1
2π

1√
xy

∫ +∞

−∞

Γ(m+it+1
2 )

Γ(m−it+1
2 )

(
1
2

)−it
y−it

x−it
dt, (4.19)

where (A.23) has been used for the second equality. By considering the explicit
formula for the kernel of an operator ψ(A), as recalled for example in [7,
Lem. 6.4], one infers that the r.h.s. of (4.19) corresponds to the kernel of
an operator ψ(A) with ψ provided by the expression (4.18). Then, from the
density of Cc(R+) in L2(R+) and since the map t �→ Ξm(t) is bounded, one
obtains that JFm extends continuously to the bounded operator Ξm(A). Since
J is unitary and self-adjoint, one directly deduces the first equality in (4.17).

The second equality in (4.17) is a straightforward consequence of the
equality

J eiτAJ = e−iτA

which is easily checked. The equality F 2
m = 1l can now be deduced from the

equalities (4.17). As a consequence, F−1
m = Fm, and this provides a direct

proof of the boundedness of the inverse of Fm. The equality F#
m = Fm is

finally a direct consequence of the expression (4.15) for the kernel of Fm. �

The map Fm will be called the Hankel transformation of order m. It
provides a kind of diagonalization of the operator Hm, as shown in the next
statement.

Proposition 4.6. For any m ∈ C with Re(m) > −1 and for any k ∈ C with
Re(k) > 0, the following equality holds:(

Hm + k2
)−1

= Fm (X2 + k2)−1F#
m.

Proof. The kernel of the operator on the r.h.s. is given by the expression
(
Fm (X2 + k2)−1F#

m

)
(x, y) =

2
π

∫ ∞

0

Jm(xp)Jm(yp)
1

(p2 + k2)
dp.

By (A.19), it coincides with the kernel of Rm(−k2) provided in (4.1). �

Proposition 4.6 is convenient technically, because it contains only
bounded operators. One can rewrite it using unbounded operators as follows:

Theorem 4.7. The operator Hm is similar to a self-adjoint operator. More
precisely, the following equalities hold:

Hm = FmX2F#
m. and Hm = Ξm(−A)X−2Ξm(A).

4.4. Spectral Projections

For any 0 < a < b, let us now consider the operator

1l[a,b](Hm) :=
∫ √

b

√
a

pm(k2)d(k2) = 2
∫ √

b

√
a

pm(k2)kdk,
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which is defined as a bounded operator from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for
any s > 1

2 . The kernel of this operator is given for x, y ∈ R+ by the expression

1l[a,b](Hm)(x, y) =
2
π

∫ √
b

√
a

Jm(kx)Jm(ky)dk. (4.20)

Clearly, by Stone’s formula, for real m > −1, the above operator extends
to the self-adjoint operator Hm onto the interval [a, b]. For complex m, Hm

is not self-adjoint, hence strictly speaking Stone’s formula is not available.
However, Hm is similar to a self-adjoint operator, hence the properties of
1l[a,b](Hm) are almost the same as in the self-adjoint case.

Proposition 4.8. For any 0 < a < b and any m ∈ C with Re(m) > −1, one
has

1l[a,b](Hm) = Fm 1l[a,b](X2)F#
m (4.21)

in B
(
L2(R+)

)
. In addition, 1l[a,b](Hm) is a projection.

Proof. Let us first compute the r.h.s. of (4.21). For that purpose, recall that
F#

m = Fm, and then one gets for any f ∈ Cc(R+) and x ∈ R+

(
Fm 1l[a,b](X2)F#

mf
)
(x) =

√
2
π

∫ √
b

√
a

Jm(kx) (F#
mf) (k)dk

=
2
π

∫ √
b

√
a

J (kx)
(∫ ∞

0

J (ky)f(y)dy

)
dk

=
∫ ∞

0

(
2
π

∫ √
b

√
a

Jm(kx)Jm(ky)dk

)
f(y)dy,

where Fubini’s theorem has been applied for the last equality. By comparing
the last expression with (4.20), one directly infers the equality (4.21). Note that
since the r.h.s. of (4.21) defines a bounded operator on L2(R+), this equality
provides a natural continuous extension of 1l[a,b](Hm) as a bounded operator
on L2(R+). Finally, since Fm satisfies F#

mFm = 1l, one directly infers that
1l[a,b](Hm) is a projection. �

4.5. Møller Operators and Scattering Operator

In this section, we describe the scattering theory for the operators Hm. Note
that we also treat non-self-adjoint operators, and therefore, we cannot always
invoke standard results.

Let us start by introducing the incoming and outgoing Hankel transfor-
mations of order m defined by

F∓
m := e∓i π

2 mFm. (4.22)

Their kernel is provided by the expressions

F∓
m(x, y) = e∓i π

2 m

√
2
π

Jm(xy)
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and the following relations trivially hold:(
F∓

m

)−1 = F±
m = F±#

m .

Now, for any m,m′ ∈ C with Re(m),Re(m′) > −1, we define

W±
m,m′ := F±

mF∓#
m′ . (4.23)

Some easy properties of these operators are gathered in the next statement.

Proposition 4.9. W±
m,m′ are bounded invertible operators satisfying

W∓#
m,m′ W

±
m,m′ = 1l,

W±
m,m′ W

∓#
m,m′ = 1l,

W±#
m,m′ = W∓

m′,m,

W±
m,m′Hm′ = HmW±

m,m′ .

Formally, the kernel of W±
m,m′ is given by

W±
m,m′(x, y) = e±i π

2 (m−m′) 2
π

∫ ∞

0

Jm(kx)Jm′(ky)dk.

On the other hand, using the expression derived in Sect. 4.3, one also gets

W±
m,m′ = e±i π

2 (m−m′) Γ(m+1−iA
2 )Γ(m′+1+iA

2 )
Γ(m+1+iA

2 )Γ(m′+1−iA
2 )

. (4.24)

Note also that the equality (W±
m,m′)−1 = W∓#

m,m′ holds. Therefore, the scatter-
ing operator is defined by

Sm,m′ := W−#
m,m′W

−
m,m′ ,

and for the operators considered above, one simply gets

Sm,m′ = e−iπ(m−m′)1l.

Let us now make a link with the traditional approach of scattering theory.
By Proposition 4.6 and the boundedness of the Hankel transformations, the
operators Hm generate a bounded one-parameter group by the formula:

eitHm = FmeitX2
F#

m.

Therefore, we can try to apply time-dependent scattering theory, even though
the operators Hm may be non-self-adjoint. (We refer to [10,21,32] for addi-
tional information on scattering theory in the non-self-adjoint setting). In the
next statement, we show that W±

m,m′ coincide with the Møller operators for
the pair (Hm,Hm′).

Theorem 4.10. For any m,m′ ∈ C with Re(m),Re(m′) > −1, one has

s− lim
t→±∞ eitHme−itHm′ = W±

m,m′ .

In the following proof, C ([−∞,∞]) denotes the set of continuous func-
tions on R having a limit at +∞ and a limit at −∞.
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Proof. Consider first the equality

eitHme−itHm′ = FmeitX2
F#

mFm′e−itX2
F#

m′

and observe that

F#
mFm′ = Ξm(−A)Ξm′(A) =

Γ(m+1−iA
2 )Γ(m′+1+iA

2 )
Γ(m+1+iA

2 )Γ(m′+1−iA
2 )

.

By considering then, the asymptotic behavior of the Γ-function, as presented,
for example, in [1, Eq. 6.1.37] or in Lemma A.2, one infers that the map

t �→ Ξm(−t)Ξm′(t)

belongs to C ([−∞,∞]) and that

Ξm(∓∞)Ξm′(±∞) = e∓i π
2 (m−m′). (4.25)

One infers then by Lemma B.1 that

s− lim
t→±∞ eitX2

F#
mFm′e−itX2

= e±i π
2 (m−m′),

from which one deduces that

s− lim
t→±∞ eitHme−itHm′ = Fme±i π

2 (m−m′)F#
m′

= F±
mF∓#

m′ .

�

4.6. Some Special Cases

In some special situations, the scattering theory for Hm is very explicit. The
Gamma function is not even used in these special cases. Some of them are
provided in this section.

Proposition 4.11. The following identities hold:

F−m = Fm

cos
(

π
2 (m + iA)

)
cos

(
π
2 (m − iA)

) =
cos

(
π
2 (m − iA)

)
cos

(
π
2 (m + iA)

)Fm,

F∓
−m = F∓

m

e±πA + e±iπm

e±πA + e∓iπm
=

e∓πA + e±iπm

e∓πA + e∓iπm
F∓

m ,

W±
−m,m =

e±πA + e∓iπm

e±πA + e±iπm
,

S−m,m = ei2πm1l. (4.26)

Proof. Using the identity

Γ
(
z +

1
2

)
Γ
(

− z +
1
2

)
=

π

cos(πz)
,

one infers that

Ξ−m(t) = Ξm(t)
cos

(
π
2 (m + it)

)
cos

(
π
2 (m − it)

) .

All the mentioned equalities can then be easily deduced. �
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Proposition 4.12. The following identities hold:

Fm+2 = Fm
m + 1 + iA
m + 1 − iA

=
m + 1 − iA
m + 1 + iA

Fm,

F±
m+2 = F±

m

m + 1 + iA
m + 1 − iA

=
m + 1 − iA
m + 1 + iA

F±
m ,

W±
m+2,m =

m + 1 − iA
m + 1 + iA

,

Sm+2,m = 1l.

Proof. Using the identity Γ(z + 1) = zΓ(z), one infers that

Ξm+2(t) = Ξm(t)
m + 1 + it
m + 1 − it

,

from which all the equalities can be easily deduced. �

4.7. Dirichlet and Neumann Laplacians on the Half-Line

The simplest cases of operators Hm are obtained for m = ± 1
2 . They correspond

to the Neumann and the Dirichlet boundary conditions. We denote them with
the usual notation, that is

HN := H− 1
2
, HD := H 1

2
,

and recall some of their properties.
On L2(R+), we define the cosine and sine transformation:

(FNf) (x) :=

√
2
π

∫ ∞

0

cos(xy)f(y)dy,

(FDf) (x) :=

√
2
π

∫ ∞

0

sin(xy)f(y)dy.

Note that the transformations FN and FD are involutive, real, and unitary,
and that they correspond to the Hankel transforms, namely

F− 1
2

= FN, F 1
2

= FD.

In addition, it is well known, and also a consequence of our previous compu-
tations, that these transformations diagonalize HN and HD:

FN HNFN = X2, FD HDFD = X2.

Let us also recall the resolvents of these operators, their boundary values
and their spectral densities:

RN(−k2;x, y) =
1
2k

(
e−k|x−y| + e−k(x+y)

)
,

RN(k2 ± i0;x, y) = ± i
k

{
cos(kx)e±iky if 0 < x ≤ y
cos(ky)e±ikx if 0 < y < x

,

pN(k2;x, y) =
1
πk

cos(kx) cos(ky),
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and

RD(−k2;x, y) =
1
2k

(
e−k|x−y| − e−k(x+y)

)
,

RD(k2 ± i0;x, y) =
1
k

{
sin(kx)e±iky if 0 < x ≤ y
sin(ky)e±ikx if 0 < y < x

,

pD(k2;x, y) =
1
πk

sin(kx) sin(ky).

The incoming and outgoing Hankel transforms in this case differ from the
regular ones by a phase factor closely related to the Maslov correction, famous
in the late 70’s (see the introduction to [6]). According to our definition given
in (4.22), one has

F∓
N = e±i π

4 FN, F∓
D = e∓i π

4 FD. (4.27)

Proposition 4.13. The wave operators for the pair (HN,HD) are given by

W±
ND = e∓i π

2 FNFD (4.28)

= ± tanh(πA) ∓ i cosh(πA)−1. (4.29)

Its kernel is

W±
ND(x, y) = ∓2i

π

∫ ∞

0

cos(ky) sin(kx)dk. (4.30)

The corresponding scattering operator is simply given by SN,D = −1l.

Proof. The equality (4.28) directly follows from Proposition 4.11 together with
the explicit formula (4.27). The kernel (4.30) is then a direct consequence of
(4.28).

For (4.29), recall that W±
ND = W±

− 1
2 , 1

2
, and from (4.26), one infers that

W±
− 1

2 , 1
2

= ±eπA − i
eπA + i

= ± tanh(πA) ∓ i cosh(πA)−1,

where some identities involving the hyperbolic functions have been used. �

Note that with a different approach, the expressions of Proposition 4.13
were already obtained in [31, Sec. 2].

5. Point Spectrum

In this section, we return to the study of the operators Hm,κ and Hν
0 , and

describe their point spectra.

5.1. Eigenvalues

In the first statement, we fix z ∈ C and then look for operators from our
families which have the eigenvalue z. Obviously, since most of the operators
are not self-adjoint, we consider arbitrary complex eigenvalues. Recall also that
the notations z �→ ln(z) and z �→ zm are used for the principal branch of both
functions, with domain C\] − ∞, 0]. Recall that γ denotes Euler’s constant.
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Proposition 5.1. Let m ∈ C
× with |Re(m)| < 1 and let κ, ν ∈ C ∪ {∞}. Then,

one has
(i) z ∈ σp(Hm,κ) if and only if z ∈ C\[0,∞[ and

κ =
Γ(m)

Γ(−m)
(−z/4)−m. (5.1)

(ii) z ∈ σp(Hν
0 ) if and only if z ∈ C\[0,∞[ and

ν = γ +
1
2

ln(−z/4).

Before providing the proof of this proposition, we deduce from it the main
result about the point spectrum for our operators. For that purpose, let us also
introduce for m �= 0 the new parameter

ς(m,κ) = ς := κ
Γ(−m)
Γ(m)

. (5.2)

Theorem 5.2. Let m ∈ C with |Re(m)| < 1.
(i) For m �= 0 and κ ∈ C

×, one has

σp(Hm,κ) =
{

− 4e−w | w ∈ 1
m

Ln(ς) and − π < Im(w) < π
}

. (5.3)

(ii) For any ν ∈ C, σp(Hν
0 ) is non-empty if and only if −π

2 < Im(ν) < π
2 ,

and then

σp(Hν
0 ) =

{− 4e2(ν−γ)
}
.

(iii) σp(Hm,0) = σp(Hm,∞) = σp(H∞
0 ) = ∅ .

Proof. Only (i) needs a comment, because multivalued functions can be tricky.
We can rewrite (5.1) as

(−z/4)−m = ς.

This is equivalent to

ln(−z/4) ∈ −1
m

Ln(ς), (5.4)

where on the right of (5.4), we have the set of values of the multivalued loga-
rithm. Finally, one deduces from the above inclusion that

−z/4 = e−w, w ∈ 1
m

Ln(ς), −π < Im(w) < π,

which corresponds to (5.3). �

Let us stress that σp(Hm,κ) depends in a complicated way on the para-
meters m and κ. There exists a complicated pattern of phase transitions, when
some eigenvalues “disappear”. This happens if

π ∈ Im
( 1

m
Ln(ς)

)
, or − π ∈ Im

( 1
m

Ln(ς)
)
. (5.5)

A pair (m,κ) satisfying (5.5) will be called exceptional.
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Similarly, for the family of operators Hν
0 , we shall say that ν is exceptional

if

Im(ν) = −π

2
, or Im(ν) =

π

2
. (5.6)

Below, we provide a characterization of #σp(Hm,κ), i.e., of the number
of eigenvalues of Hm,κ.

Proposition 5.3. Let m = mr + imi ∈ C
× with |mr| < 1.

(i) Let mr = 0.
(a) If ln(|κ|)

mi
∈] − π, π[, then #σp(Hm,κ) = ∞.

(b) If ln(|κ|)
mi

�∈] − π, π[, then #σp(Hm,κ) = 0.

(ii) If mr �= 0 and if N ∈ {0, 1, 2, . . . } satisfies N <
m2

r+m2
i

|mr| ≤ N + 1, then

#σp(Hm,κ) ∈ {N,N + 1}.

Proof. The case (i) can easily be deduced from (5.3). For (ii), let m = mr +
imi ∈ C

× and α = αr + iαi ∈ Ln(ς). Then, one has

Im
( 1

m
(α + 2πij)

)
=

αimr − αrmi

m2
r + m2

i

+
2πjmr

m2
r + m2

i

. (5.7)

If mr > 0, the condition −π <(5.7)< π is equivalent to

0 < j +
αi

2π
− αrmi

2πmr
+

m2
r + m2

i

2mr
<

m2
r + m2

i

mr
.

Thus, we can apply Lemma 5.4 below with β := m2
r+m2

i
mr

and γ := αi
2π − αrmi

2πmr
+

m2
r+m2

i
2mr

and infer the statement (ii). If mr < 0, one obtains

0 < j +
αi

2π
− αrmi

2πmr
− m2

r + m2
i

2mr
< −m2

r + m2
i

mr

and the same argument leads to the expected result. �

In the following lemma, [β] denotes the integral part of β ∈ R and {β} :=
β − [β].

Lemma 5.4. Let β ≥ 0 and γ ∈ R. If β ∈ Z, then

#{j ∈ Z | 0 < γ + j < β} =

{
β − 1 if γ ∈ Z,

β if γ �∈ Z,

while if β �∈ Z, then

#{j ∈ Z | 0 < γ + j < β} =

{
[β] if γ ∈ Z or {β} ≤ {γ},

[β] + 1 if 0 < {γ} < {β}.

Proof. For β ∈ Z, the following j are suitable:

j = −γ + 1, . . . ,−γ + β − 1, if γ ∈ Z,
j = −[γ], . . . ,−[γ] + β − 1, if γ �∈ Z.
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For β �∈ Z, the following j are suitable:

j = −γ + 1, . . . ,−γ + [β], if γ ∈ Z,
j = −[γ], . . . ,−[γ] + [β] − 1, if {β} ≤ {γ},
j = −[γ], . . . ,−[γ] + [β], if 0 < {γ} < {β}.

�

5.2. Proof of Proposition 5.1

In this section, we prove Proposition 5.1 about the location of possible eigen-
values. First of all, instead of looking for solution of the equation Lm2f = zf ,
it will be convenient to write z = −k2 with k ∈ C and Re(k) ≥ 0. Then, recall
that for k �= 0, two linearly independent solutions of the differential equation
(acting on distributions)

Lm2 f = −k2f (5.8)

are provided by x �→ Im(kx) and x �→ Km(kx). On the other hand, in the
special case k = 0, the equation Lm2 f = 0 corresponds to Euler’s equation, and
its solutions consist in elementary functions. In fact, we shall treat separately
the three cases Re(k) > 0, Re(k) = 0 but k �= 0, and the special case k = 0.

5.2.1. Re(k) > 0. We first concentrate on the case k ∈ C with Re(k) > 0.
Since | arg(kx)| < π

2 , the function x �→ Im(kx) exponentially increases for
large x. One deduces that for any m, it cannot be in L2(R+). On the other
hand, by (A.7) and (A.8), the function x �→ Km(kx) is square integrable. As
a consequence, it remains to determine for which pairs (m,κ) it belongs to
D(Hm,κ), or for which ν it belongs to D(Hν

0 ).
For |Re(m)| < 1 with m �= 0, consider the equality (A.4) and the power

expansion of Im provided in (A.1). For x ∈]0, 1[, one obtains

Km(kx) =
√

π

sin(πm)
1

Γ(1 + m)

(
Γ(1 + m)
Γ(1 − m)

(
kx
2

)1/2−m − (
kx
2

)1/2+m
)

+ fk(x)

=
Γ(−m)√

π

(
k
2

)1/2+m
(

Γ(m)
Γ(−m)

(k
2 )−2mx1/2−m + x1/2+m

)
+ fk(x),

with fk ∈ D(Lmin
m2 ) around 0, by [7, Prop. 4.12]. Thus, one infers from this

computation that the function x �→ Km(kx) belongs to D(Hm,κ) if and only
if

κ =
Γ(m)

Γ(−m)
(k/2)−2m. (5.9)

Equivalently, −k2 is an eigenvalue of Hm,κ if and only if the equality (5.9)
holds. Note that Hm,∞ has no eigenvalue.

In the special case m = 0, by (A.6), observe that

K0(kx) = −
√

2kx√
π

(
ln(x) + ln

(
k
2

)
+ γ

)
+ fk(x)

with fk ∈ D(Lmin
0 ) around 0, by [7, Prop. 4.12]. One infers from this com-

putation that the function x �→ K0(kx) does not belong to D(H0,κ), for any
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κ ∈ C ∪ {∞}. On the other hand, this function belongs to D(Hν
0 ) if and only

if

ν = γ + ln(k/2). (5.10)

Equivalently, −k2 is never an eigenvalue of H0,κ, but −k2 is an eigenvalue of
Hν

0 if and only if the equality (5.10) holds.

5.2.2. k ∈ iR×. Let us set k = iμ with μ ∈ R
×. Our aim is to show that

−k2 > 0 can never be an eigenvalue of Hm,κ or of Hν
0 . For that purpose,

consider the two linearly independent solutions of Lm2f = μ2f provided by
x �→ H±

m(μx). By the asymptotics (A.14), it appears that no non-trivial linear
combination of these functions is square integrable at infinity. As expected, we
have thus shown that if k ∈ iR×, no solution of the Eq. (5.8) is in L2(R+).

5.2.3. k = 0. When k = 0, the problem consists first in finding solutions
to the homogeneous equation Lm2f = 0 with f ∈ D(Lmax

m2 ). Basic solutions
for this equations for m �= 0 are the functions f± with f±(x) = x±m+1/2. In
the special case m = 0, a second solution for this equation is provided by the
function f0 with f0(x) = x1/2 ln(x). However, none of these functions belongs
to L2(R+), which means that 0 is never an eigenvalue for the operators Hm,κ

or Hν
0 .

Proof of Proposition 5.1. It has been shown above that −k2 is an eigenvalue
of some of the operators Hm,κ or Hν

0 if Re(k) > 0 and if (5.9) or (5.10) holds.
The first statement of the proposition corresponds to reformulation of (5.9)
with z = −k2, while the second statement corresponds to (5.10) also with
z = −k2. �
5.3. The Self-Adjoint Case

Let us summarize the content of the first part of this section for self-adjoint
operators Hm,κ or Hν

0 . The following statement is a reformulation of Corol-
lary 2.4 and that of Theorem 5.2.

Theorem 5.5. (i) If m ∈]− 1, 1[\{0}, then Hm,κ is self-adjoint if and only if
κ ∈ R ∪ {∞}, and then

σp(Hm,κ) =
{

−4
(
κ

Γ(−m)
Γ(m)

)−1/m
}

for κ ∈] − ∞, 0[,

σp(Hm,κ) = ∅ for κ ∈ [0,∞].

(ii) If m = imi ∈ iR\{0}, then Himi,κ is self-adjoint if and only if |κ| = 1,
and then

σp(Himi,κ) =

⎧⎨
⎩−4 exp

⎛
⎝−

arg
(
κΓ(−imi)

Γ(imi)

)
+ 2πj

mi

⎞
⎠ | j ∈ Z

⎫⎬
⎭ .

(iii) Hν
0 is self-adjoint if and only if ν ∈ R ∪ {∞}, and then

σp(Hν
0 ) =

{− 4e2(ν−γ)
}

for ν ∈ R,

σp(H∞
0 ) = ∅.
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Remark 5.6. Let us emphasize that none of the pairs (m,κ) corresponding to
a self-adjoint operator Hm,κ is an exceptional pair. Similarly, the parameter ν
corresponding to a self-adjoint operator Hν

0 is never exceptional.

6. Continuous Spectrum of Hm,κ

In this section, we extend the results obtained in Sect. 4 to the families of
operators Hm,κ.

6.1. Resolvent

In this section, we consider m ∈ C
× with |Re(m)| < 1, κ ∈ C ∪ {∞}, and

x ∈ R+. Let us also fix k ∈ C with −k2 �∈ σ(Hm,κ), and as before, we impose
Re(k) > 0. Note that we have directly imposed that k �∈ iR, since later on, we
shall show that [0,∞[ ⊂ σ(Hm,κ). Our aim is to compute the integral kernel
of the resolvent of Hm,κ

Rm,κ(−k2) := (Hm,κ + k2)−1.

First of all, recall from Sect. 5 that the map x �→ Km(kx) is a solution of
the equation

(Lm2 + k2)f = 0 (6.1)

and belongs to L2(R+). Similarly, both functions x �→ Im(kx) and x �→
I−m(kx) satisfy the equation (6.1), but only a certain linear combination be-
longs to D(Hm,κ) around 0.

Recall now, the parameter that we have introduced in (5.2), namely

ς = κ
Γ(−m)
Γ(m)

.

For (k
2 )2mς �= 1, by considering (A.2), one infers that the map

x �→ Im(kx) − ς(k
2 )2mI−m(kx)

1 − ς(k
2 )2m

, (6.2)

satisfies (2.3) or (2.4) around 0, and hence belongs to D(Hm,κ) around 0.
Obviously, it also solves (6.1). Furthermore, using the formulas of Sect. A.3,
the Wronskian of (6.2) and x �→ Km(kx) equals k

From the general theory of Sturm–Liouville operators, as recalled, for
example, in [7, Prop. A.1], the kernel of the operator (Hm,κ+k2)−1 is provided
for ς(k

2 )2m �= 1 by the expression

Rm,κ(−k2;x, y)

=
1

k
(
1 − ς(k

2 )2m
)
⎧⎨
⎩
(Im(kx) − ς(k

2 )2mI−m(kx)
) Km(ky) if 0 < x < y,

(Im(ky) − ς(k
2 )2mI−m(ky)

) Km(kx) if 0 < y < x.
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Let us still provide a relation between Rm,κ(−k2) and Rm(−k2). Indeed,
by the definition (6.2), and by considering the equalities Hm,0 = Hm and
Hm,∞ = H−m, one gets

Rm,κ(−k2) =
1

1 − ς(k
2 )2m

(
Rm(−k2) − ς(k

2 )2mR−m(−k2)
)

(6.3)

= Rm(−k2) − ς(k
2 )2m

1 − ς(k
2 )2m

m
k2 Pm(−k2), (6.4)

where Pm(−k2) is the projection defined in (4.2), see also (4.4).
Let us finally observe that for fixed κ, the condition ς(k

2 )2m = 1 defines a
discrete set which corresponds to the eigenvalues of Hm,κ by Proposition 5.1.
On the other hand, since Rm,κ(−k2) is a rank one perturbation of Rm(−k2),
one infers that [0,∞[ belongs to the spectrum of Hm,κ, as already mentioned
at the beginning of this section.

6.2. Boundary Value of the Resolvent and Spectral Density

Since [0,∞[ belongs to the spectrum of Hm,κ, it is natural to mimic the com-
putations performed in Sect. 4.2 for Hm. Recall that an exceptional pair (m,κ)
has been defined in (5.5).

Theorem 6.1. Let m ∈ C
× with |Re(m)| < 1, let κ ∈ C ∪ {∞}, and let k > 0.

(i) If (m,κ) is not an exceptional pair, then the boundary values of the re-
solvent

Rm,κ(k2 ± i0) := lim
ε↘0

Rm,κ(k2 ± iε) (6.5)

exist in the sense of operators from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for
any s > 1

2 , uniformly in k on each compact subset of R+. The kernel of
Rm,κ(k2 ± i0) is given for 0 < x ≤ y by

Rm,κ(k2 ± i0;x, y)

=
±i

k
(
1 − ςe∓iπm

(
k
2

)2m
)(Jm(kx) − ς

(
k
2

)2m J−m(kx)
)
H±

m(ky)

and the same expression with the role of x and y exchanged for 0 < y < x.
(ii) If (m,κ) is an exceptional pair, the same statement holds for k uniformly

on each compact subset of{
k ∈ R+ | (k

2

)2m
ςe∓iπm �= 1

}
. (6.6)

Proof. By considering the equality (6.3), one infers that the limiting absorption
principle (6.5) can be deduced from Theorem 4.2 for Rm and for R−m. The
local uniformity in k is also consequence of these estimates and of the explicit
formula for the prefactors appearing in (6.3), as long as the first factor has no
singularity.
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For the kernel, one directly gets for 0 < x ≤ y that

Rm,κ(k2 ± i0;x, y)

=
1

1 − ςe∓iπm
(

k
2

)2m Rm(k2 ± i0;x, y)

− ςe∓iπm
(

k
2

)2m

1 − ςe∓iπm
(

k
2

)2m R−m(k2 ± i0;x, y)

=
±i

k
(
1 − ςe∓iπm

(
k
2

)2m
)(Jm(kx) − ς

(
k
2

)2m J−m(kx)
)
H±

m(ky),

where (A.12) and (4.5) have been considered. Note that for 0 < y < x, one
gets the same expression with the role of x and y exchanged. �

Based on the previous result, the corresponding spectral density can now
be defined for any m ∈ C

× with |Re(m)| < 1. More precisely, for any k > 0
if (m,κ) is not an exceptional pair, or for k belonging to (6.6) if (m,κ) is an
exceptional pair, let us set

pm,κ(k2) :=
1

2πi

(
Rm,κ

(
k2 + i0

)− Rm,κ

(
k2 − i0

) )
,

which is bounded from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for any s > 1
2 .

Proposition 6.2. The kernel of the spectral density is given by the following
formula:

pm,κ(k2;x, y) =

(
Jm(kx) − ς

(
k
2

)2m J−m(kx)
)(

Jm(ky) − ς
(

k
2

)2m J−m(ky)
)

πk
(

sin2(πm) +
(
cos(πm) − ς

(
k
2

)2m
)2 ) .

Proof. For the kernel of this operator, observe that for 0 < x ≤ y, one has

2πkpm,κ(k2;x, y)

=
1

1 − ςe−iπm
(

k
2

)2m

(
Jm(kx) − ς

(
k
2

)2m J−m(kx)
)
H+

m(ky)

+
1

1 − ςeiπm
(

k
2

)2m

(
Jm(kx) − ς

(
k
2

)2m J−m(kx)
)
H−

m(ky)

=
Jm(kx) − ς

(
k
2

)2m J−m(kx)(
1 − ςe−iπm

(
k
2

)2m
)(

1 − ςeiπm
(

k
2

)2m
)

×
{(

1 − ςeiπm
(

k
2

)2m
)
H+

m(ky) +
(
1 − ςe−iπm

(
k
2

)2m
)
H−

m(ky)
}

=

(
Jm(kx) − ς

(
k
2

)2m J−m(kx)
)(

Jm(ky) − ς
(

k
2

)2m J−m(ky)
)

1
2

(
1 − 2ς cos(πm)

(
k
2

)2m
+ ς2

(
k
2

)4m
) .
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Then, using a simple trigonometric equality for the denominator, and since the
role of x and y can be exchanged, one directly obtains the desired expression
for any x, y ∈ R+. �

6.3. Generalized Hankel Transform

We would like to generalize the definition of the Hankel transformations of
Sect. 4.3 and to show their relations with the operators Hm,κ The main idea
is to factorize the spectral density, but let us stress that this factorization is
not unique.

One possibility, which works well for m and κ real, is as follows. For any
m ∈ R

× with |m| < 1 and any κ ∈ R ∪ {∞}, one could set

Fm,κ : Cc(R+) → L2(R+)

with

(Fm,κf) (x) :=
∫ ∞

0

Fm,κ(x, y)f(y)dy,

and

Fm,κ(x, y) :=

√
2
π

Jm(xy) − ςJ−m(xy)
(

y
2

)2m

√
sin2(πm) +

(
cos(πm) − ς

(
y
2

)2m
)2

.

For real m and κ, the denominator is the square root of a positive number,
which has a clear meaning. For general m and κ, we need to choose the branch
of the square root, which is ambiguous.

Another option, which we will prefer, since it has always a unique defi-
nition, is to define the incoming and outgoing Hankel transformations F∓

m,κ

given by the kernels

F∓
m,κ(x, y) := e∓i π

2 m

√
2
π

Jm(xy) − ςJ−m(xy)
(

y
2

)2m

1 − ςe∓iπm
(

y
2

)2m .

Note that the denominator of this kernel has a singularity if (m,κ) is an
exceptional pair. For simplicity, we shall not consider this situation anymore
in the sequel. Thus, if (m,κ) is not an exceptional pair, the following equalities
can easily be obtained:

F∓
m,κ =

(
Fm − ςF−m

(
X
2

)2m
) e∓i π

2 m

1 − ςe∓iπm
(

X
2

)2m . (6.7)

Let us now show that these transformations provide a kind of diagonal-
ization of the operator Hm,κ. The statements and the proofs are divided into
several shorter statements.

Lemma 6.3. For any m ∈ C
× with |Re(m)| < 1 and any κ ∈ C ∪ {∞} with

(m,κ) not an exceptional pair, the operators F∓
m,κ extend continuously to the
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following operators:
(
Ξm(−A) − ςΞ−m(−A)(2X)−2m

) e∓i π
2 m

1 − ςe∓iπm(2X)−2m
J

= J
(
Ξm(A) − ςΞ−m(A)

(
X
2

)2m
) e∓i π

2 m

1 − ςe∓iπm
(

X
2

)2m (6.8)

where Ξm and Ξ−m have been defined in (4.18).

Proof. The proof simply consists in using the equalities obtained in Proposi-
tion 4.5 and in a short computation based on the definition of J , see equation
(4.16). �

Let us still provide the expressions for the adjoint of these operators,
namely F∓#

m,κ are equal to the operators

J
e∓i π

2 m

1 − ςe∓iπm(2X)−2m

(
Ξm(A) − ς(2X)−2mΞ−m(A)

)

=
e∓i π

2 m

1 − ςe∓iπm
(

X
2

)2m

(
Ξm(−A) − ς

(
X
2

)2m
Ξ−m(−A)

)
J. (6.9)

Additional information on the operators F±#
m,κ is provided in the next state-

ment.

Lemma 6.4. For any m ∈ C
× with |Re(m)| < 1 and κ ∈ C ∪ {∞} with (m,κ)

not an exceptional pair, the following equalities hold:

F±#
m,κF

∓
m,κ = 1l.

Proof. The proof consists simply in considering the terms (6.8) and (6.9) and
in checking that their product (for the correct sign) is equal to 1l. Indeed,
observe first that on Cc(R+), the following equalities hold:(

Ξm(A) − ς(2X)−2mΞ−m(A)
)(

Ξm(−A) − ςΞ−m(−A)(2X)−2m
)

= 1 + ς2(2X)−4m

− ς
(
(2X)−2mΞ−m(A)Ξm(−A) + Ξm(A)Ξ−m(−A)(2X)−2m

)
.

If one then shows that

(2X)−2mΞ−m(A)Ξm(−A) + Ξm(A)Ξ−m(−A)(2X)−2m = 2 cos(πm)(2X)−2m,

(6.10)

the statement of the lemma directly follows using the full expressions provided
in (6.8) and (6.9).

For the proof of (6.10), recall {Uτ}τ∈R corresponds to the dilation group,
namely Uτ = eiτA as introduced in Sect. 2.1. Then, for any f ∈ Cc(R+) and
x ∈ R+, one has
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(
(2X)−2mUτ (2X)2mf

)
(x) = e−2m ln(x)

(
UτX2mf

)
(x)

= e−2m ln(x)eτ/2
(
X2mf

)
(eτx)

= e−2m ln(x)eτ/2e2m ln(eτ x)f(eτx)

= e2mτ
(
eiτAf

)
(x)

=
(
eiτ(A−i2m)f

)
(x).

One infers from this computation that the l.h.s. of (6.10) is equal to(
Ξ−m(A − i2m)Ξm(−A + i2m) + Ξm(A)Ξ−m(−A)

)
(2X)−2m.

Finally, by considering the explicit formula (4.18) for Ξm and the equality
Γ(z)Γ(1 − z) = π

sin(πz) , one gets (with t instead of A)

Ξ−m(t − i2m)Ξm(−t + i2m) + Ξm(t)Ξ−m(−t)

= Γ
(

m+1+it
2

)
Γ
(−m+1−it

2

)(
1

Γ(−3m+1−it
2 )Γ( 3m+1+it

2 ) + 1

Γ(m+1−it
2 )Γ(−m+1+it

2 )

)

=
1

sin(α)
(sin(α − 2β) + sin(α + 2β))

with α := π
(−m+1−it

2

)
and β := π m

2 . Some trigonometric identities lead then
directly to the equality

1
sin(α)

(sin(α − 2β) + sin(α + 2β)) = 2 cos(2β) = 2 cos(πm),

as expected. �
Let us now set

1lR+(Hm,κ) := F±
m,κF

∓#
m,κ (6.11)

and observe that this is again a projection. In the self-adjoint case, this opera-
tor corresponds to the usual projection onto the continuous spectrum of Hm,κ.
One can then prove the analog of Proposition 4.6.

Proposition 6.5. Let m ∈ C
× with |Re(m)| < 1 and κ ∈ C ∪ {∞} with (m,κ)

not an exceptional pair. Then, for any k ∈ C with Re(k) > 0 and −k2 �∈
σp(Hm,κ), the following equalities hold:

Rm,κ(−k2)1lR+(Hm,κ) = F±
m,κ(X2 + k2)−1F∓#

m,κ = 1lR+(Hm,κ)Rm,κ(−k2).

Proof. We will use the following convenient expression for F∓#
m,κ and two for-

mulas for the resolvent:

F∓#
m,κ =

e∓i π
2 m

1 − ςe∓iπm
(

X
2

)2m

(
Fm − ς

(
X
2

)2m
F−m

)
, (6.12)

Rm,κ(−k2) = Rm(−k2) − ς(k
2 )2m

1 − ς(k
2 )2m

m

k2
Pm(−k2), (6.13)

Rm,κ(−k2) = R−m(−k2) − 1
1 − ς(k

2 )2m

m

k2
Pm(−k2). (6.14)
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By multiplying (6.13) and (6.14) from the left by Fm and F−m, respectively,
we obtain

FmRm,κ(−k2) = (X2 + k2)−1Fm − ς(k
2 )2m

1 − ς(k
2 )2m

m

k2
FmPm(−k2),

F−mRm,κ(−k2) = (X2 + k2)−1F−m − 1
1 − ς(k

2 )2m

m

k2
F−mPm(−k2).

By combining then the above two identities, and by considering (6.12), we get

F∓#
m,κRm,κ(−k2) = (X2 + k2)−1F∓#

m,κ

− e∓i π
2 m(

1 − ςe∓iπm
(

X
2

)2m
)(

1 − ς(k
2 )2m

)

× mς

k2

( (
k
2

)2m
Fm − (

X
2

)2m
F−m

)
Pm(−k2).

By considering the equality (A.18), one can deduce that for any z > 0
and m ∈ C with |Re(m)| < 1, one has

∫ ∞

0

Km(z−1x)Jm(x)dx = z2m

∫ ∞

0

Km(z−1x)J−m(x)dx. (6.15)

We infer then from this equality that

(k

2

)2m

FmPm(−k2) =
(X

2

)2m

F−mPm(−k2), (6.16)

and as a direct consequence,

F∓#
m,κRm,κ(−k2) = (X2 + k2)−1F∓#

m,κ. (6.17)

This equality corresponds to one of the identities of our theorem, the proof of
the other identity being analogous. �

6.4. Spectral Projections

We first describe the spectral projections corresponding to eigenvalues of Hm,κ.

Proposition 6.6. For any −k2 ∈ σp(Hm,κ), one has

1l{−k2}(Hm,κ) = Pm(−k2).
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Proof. Let γ be a contour encircling −k2 in the complex plane, with no other
eigenvalue inside γ and with no intersection with [0,∞[. We use (6.4), and
then compute the residue of the resolvent at z = −k2:

1l{−k2}(Hm,κ) = − 1
2πi

∫
γ

Rm,κ(z)dz

= − 1
2πi

∫
γ

ς (−z)m

22m

1 − ς (−z)m

22m

m

z
Pm(z)

= − ς (−z)m

22m

d
dz

(
1 − ς (−z)m

22m

) m

z
Pm(z)

∣∣∣
z=−k2

= Pm(−k2).

�

Let us now assume that (m,κ) is not an exceptional pair. As in Sect. 4.4,
we can consider for any 0 < a < b < ∞, the operator

1l[a,b](Hm,κ) := 2
∫ √

b

√
a

pm,κ(k2)kdk, (6.18)

which is bounded from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for any s > 1
2 . Its kernel

is given for x, y ∈ R+ by the expression

1l[a,b](Hm,κ)(x, y)

= 2
∫ √

b

√
a

(
Jm(kx) − ς

(
k
2

)2m J−m(kx)
)(

Jm(ky) − ς
(

k
2

)2m J−m(ky)
)

π
(

sin2(πm) +
(
cos(πm) − ς

(
k
2

)2m
)2 ) dk.

(6.19)

Proposition 6.7. For any 0 < a < b, any m ∈ C
× with |Re(m)| < 1, and any

κ ∈ C ∪ {∞} with (m,κ) not an exceptional pair, one has

1l[a,b](Hm,κ) = F±
m,κ 1l[a,b](X2)F∓#

m,κ (6.20)

in B
(
L2(R+)

)
. In addition, 1l[a,b](Hm,κ) is a projection.

Proof. Let us recall that the l.h.s. has been defined in (6.18), and check that
the r.h.s. corresponds to this expression. Indeed, for any f ∈ Cc(R+) and
x ∈ R+, one has(

F±
m,κ 1l[a,b](X2)F∓#

m,κf
)
(x)

= e±i π
2 m

√
2
π

∫ √
b

√
a

Jm(xk) − ς
(

k
2

)2m J−m(xk)

1 − ςe±iπm
(

k
2

)2m

(
F∓#

m,κf
)
(k)dk

=
2
π

∫ √
b

√
a

(
Jm(xk) − ς

(
k
2

)2m J−m(xk)

1 − ςe±iπm
(

k
2

)2m
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×
∫ ∞

0

Jm(ky) − ς
(

k
2

)2m J−m(ky)

1 − ςe∓iπm
(

k
2

)2m f(y)dy

)
dk

=
∫ ∞

0

1l[a,b](Hm,κ)(x, y)f(y)dy,

where the kernel 1l[a,b](Hm,κ)(x, y) has been defined in (6.19). Note that since
the r.h.s. of (6.20) defines a bounded operator on L2(R+), this equality pro-
vides a natural continuous extension of 1l[a,b](Hm,κ) as a bounded operator
on L2(R+). Finally, by Lemma 6.4 one readily infers that 1l[a,b](Hm,κ) is a
projection. �

Note that the equality

1lΞ(Hm,κ) = F±
m,κ 1lΞ(X2)F∓#

m,κ (6.21)

extends (6.20) to any Borel subset Ξ of R+. In particular, 1lR+(Hm,κ) obtained
with this definition corresponds to the one already introduced in (6.11).

6.5. Møller Operators and Scattering Operator

In this section, we extend the results obtained for the Møller and the scat-
tering operators to the larger family of operators Hm,κ. For that purpose, we
consider pairs (m,κ) and (m′, κ′) which are not exceptional. The easiest way
to introduce the wave operators for the pair (Hm,κ,Hm′,κ′) is to define them
using the Hankel transformations:

W±
m,κ;m′,κ′ = F±

m,κF
∓#
m′,κ′ . (6.22)

These definitions immediately imply the following identities:

Proposition 6.8. The following identities hold:

W∓#
m,κ;m′,κ′ W

±
m,κ;m′,κ′ = 1lR+(Hm′,κ′),

W±
m,κ;m′,κ′ W

∓#
m,κ;m′,κ′ = 1lR+(Hm,κ),

W±#
m,κ;m′,κ′ = W∓

m′,κ′;m,κ,

W±
m,κ;m′,κ′Hm′,κ′ = Hm,κW±

m,κ;m′,κ′ . (6.23)

By (6.23), W−#
m,κ;m′,κ′ can be treated as an inverse of W+

m,κ;m′,κ′ . There-
fore, we define the scattering operator as

Sm,κ;m′,κ′ := W−#
m,κ;m′,κ′W

−
m,κ;m′,κ′ .

Clearly, the scattering operator can be expressed in terms of the Hankel trans-
form:

Sm,κ;m′,κ′ = F+
m′,κ′ F−#

m,κF
−
m,κF

+#
m′,κ′ .

To analyze the scattering operator, it is convenient to introduce the op-
erators

G∓
m,κ := F∓#

m,κF
∓
m,κ. (6.24)



Vol. 18 (2017) Inverse Square Potentials 905

Proposition 6.9. The following equalities hold:

G∓
m,κ = e∓iπm 1l − ςe±iπm(X

2 )2m

1l − ςe∓iπm(X
2 )2m

.

Proof. The proof consists in a simple computation, starting from the expres-
sions (6.8) and (6.9) and considering the equality (6.10). �

Let us stress that G∓
m,κ are simply functions of X. Finally, using the

Hankel transformations, one can obtain a diagonal representation of scattering
operators. These operators are expressed in terms of the operators (6.24),
namely

F−#
m′,κ′ Sm,κ;m′,κ′ F+

m′,κ′ = G−
m,κG+

m′,κ′ = F+#
m′,κ′ Sm,κ;m′,κ′ F−

m′,κ′ .

In the non-exceptional case, the operator Hm,κ generates a bounded one-
parameter group, at least on the range of the projection 1lR+(Hm,κ), by the
formula

eitHm,κ1lR+(Hm,κ) = 1lR+(Hm,κ)eitHm,κ = F±
m,κeitX2

F∓#
m,κ. (6.25)

In this context, we can then show that W±
m,κ;m′,κ′ correspond to the Møller

operators as usually defined in the time-dependent scattering theory.

Proposition 6.10. For any m,m′ ∈ C with |Re(m)| < 1 and |Re(m′)| < 1, and
for any κ, κ′ ∈ C∪{∞}, such that (m,κ) and (m′, κ′) are not exceptional pairs,
the Møller operators exist and coincide with the operators defined in (6.22):

s− lim
t→±∞ 1lR+(Hm,κ)eitHm,κe−itHm′,κ′ 1lR+(Hm′,κ′) = W±

m,κ;m′,κ′ .

Proof. By (6.25), we have

1lR+(Hm,κ)eitHm,κe−itHm′,κ′ 1lR+(Hm′,κ) = F±
m,κeitX2

F∓#
m,κF

±
m′,κ′e−itX2

F∓#
m′,κ′ .

Let us then observe that

F∓#
m,κF

±
m′,κ′ =

e∓i π
2 m

1 − ςe∓iπm
(

X
2

)2m

(
Ξm(−A) − ς

(
X
2

)2m
Ξ−m(−A)

)

×
(
Ξm′(A) − ς ′Ξ−m′(A)

(
X
2

)2m′ ) e±i π
2 m′

1 − ς ′e±iπm′ (X
2

)2m′ .

(6.26)

Using (4.25) and Lemma B.1, one infers that

s− lim
t→±∞ eitX2

(
Ξm(−A) − ς

(
X
2

)2m
Ξ−m(−A)

)

×
(
Ξm′(A) − ς ′Ξ−m′(A)

(
X
2

)2m′ )
e−itX2

=
(
e±i π

2 m − ς
(

X
2

)2m
e∓i π

2 m
)(

e∓i π
2 m′ − ς ′e±i π

2 m′ (X
2

)2m′ )

= e±i π
2 (m−m′)

(
1 − ςe∓iπm

(
X
2

)2m
)(

1 − ς ′e±iπm′ (X
2

)2m′ )
.
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This together with (6.26) yields

s− lim
t→±∞ eitX2

F∓#
m,κF

±
m′,κ′e−itX2

= 1l (6.27)

which directly implies the statement. �

7. Continuous Spectrum of Hν
0

In this section, we mimic the computations and results of the previous section
analyzing the family of operators Hν

0 .

7.1. Resolvent

From now on, we consider ν ∈ C ∪ {∞} and x ∈ R+. Let us also fix k ∈ C

with Re(k) > 0, and −k2 �∈ σ(Hν
0 ). Our first aim is to compute the integral

kernel of the resolvent of Hν
0

Rν
0(−k2) := (Hν

0 + k2)−1.

For that purpose, recall first that the map x �→ K0(kx) satisfies (6.1) and
belongs to L2(R+). We then consider the map

x �→ I0(kx) +
π

2(γ + ln(k
2 ) − ν)

K0(kx),

and infer from (A.2) and (A.8) that this map and the map x �→ I0(kx) satisfy
the equation (6.1) as well as the equation (2.5) or (2.6) around 0. In addition,
their Wronskian is equal to k.

From the general theory of Sturm–Liouville operators, as recalled for
example in [7, Prop. A.1], one deduces that the kernel of Rν

0(−k2) is given by
the expression

Rν
0(−k2;x, y) =

1
k

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝I0(kx) + π

2

(
γ+ln(

k
2 )−ν

)K0(kx)

⎞
⎠ K0(ky) if 0 < x < y,

⎛
⎝I0(ky) + π

2

(
γ+ln(

k
2 )−ν

)K0(ky)

⎞
⎠ K0(kx) if 0 < y < x.

Let us also observe that the following relation holds:

Rν
0(−k2) = R0(−k2) +

1
2k2(γ + ln(k

2 ) − ν)
P0(−k2), (7.1)

where P0(−k2) is the projection defined in (4.3). Hence, Rν
0(−k2) is well defined

except for ν = γ +ln(k
2 ). This restriction corresponds to the eigenvalue of Hν

0 ,
as already mentioned in Proposition 5.1. Note also that since Rν

0(−k2) is a
rank one perturbation of R0(−k2), one again infers that [0,∞[ belongs to the
spectrum of Hν

0 . This justifies a posteriori our choice for Re(k) > 0.
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7.2. Boundary Value of the Resolvent and Spectral Density

Since [0,∞[ belongs to the spectrum of Hν
0 , it is natural to mimic the com-

putations performed in Sect. 4.2. Note that it will be convenient to use the
function Y0, as introduced in Sect. A.6. Note also that since the special case
ν = ∞ has already been treated in Sect. 4, when considering the operator H0,
we shall not consider it again.

Proposition 7.1. Let ν ∈ C, and let k > 0.

(i) If ν is not an exceptional value, then the boundary values of the resolvent

Rν
0(k2 ± i0) := lim

ε↘0
Rν

0(k2 ± iε)

exist in the sense of operators from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for
any s > 1

2 , uniformly in k on each compact subset of R+. The kernel of
Rν

0(k2 ± i0) is given for 0 < x ≤ y by

Rν
0(k2 ± i0;x, y)

=
±i

k
(
γ + ln

(
k
2

)− ν ∓ iπ
2

)( (γ + ln
(

k
2

)− ν
)J0(kx) − π

2 Y0(kx)
)
H±

0 (ky),

and the same expression with the role of x and y exchanged for 0 < y < x.
(ii) If ν is an exceptional value, then the same statement holds for k uniformly

on each compact subset of R+\{2eRe(ν)−γ}.

Proof. The starting point for the proof of this statement is formula (7.1). In
addition, since the first term on the r.h.s. of this equality has already been
treated in Sect. 4.2, we shall concentrate on the second term only. For that
purpose and as in the proof of Theorem 4.2, we consider for s > 1

2 and x, y > 0,
the expression

〈x〉−sK0

(√
−k2 ∓ iεx

)
K0

(√
−k2 ∓ iεy

)
〈y〉−s. (7.2)

By the estimate provided in (4.9), one easily infers that this kernel belongs to
L2(R+ × R+). In addition, since this kernel converges pointwise to

±i〈x〉−sH±
0 (kx)H±

0 (ky)〈y〉−s

one concludes by the Lebesgue Dominated Convergence Theorem that this
convergence also holds in L2(R+ × R+), which is equivalent to a convergence
in the Hilbert–Schmidt norm. Note that the uniform convergence in k on com-
pact subsets of R+ can be directly checked, as well as the convergence of the
prefactors, as long as this factor has no singularity.



908 J. Dereziński, S. Richard Ann. Henri Poincaré

For the computation of the kernel of Rν
0(k2 ± i0), one has for 0 < x ≤ y,

Rν
0(k2 ± i0;x, y)

= R0(k2 ± i0;x, y) − π

2k
(
γ + ln

(∓ik
2

)− ν
) H±

0 (kx)H±
0 (ky)

= ± i
k

(
J0(kx) ± i

π
2(

γ + ln
(

k
2

)− ν ∓ iπ
2

) H±
0 (kx)

)
H±

0 (ky)

=
±i

k
(
γ + ln

(
k
2

)− ν ∓ iπ
2

)( (γ + ln
(

k
2

)− ν
)J0(kx) − π

2 Y0(kx)
)
H±

0 (ky),

as expected. For 0 < y ≤ x, the same expression can be obtained, with the
role of x and y exchanged. �

Based on the previous result, the corresponding spectral density can now
be computed, namely if ν is not exceptional for any k > 0 and for any s > 1

2 ,
one has

pν
0(k2):=

1
2πi

(
Rν

0

(
k2 + i0

)− Rν
0

(
k2 − i0

) )∈B (〈X〉−sL2(R+), 〈X〉sL2(R+)
)
.

If ν is exceptional, the same formulas hold once a suitable restriction on k has
been imposed. In the sequel, this restriction will be made tacitly.

Proposition 7.2. The kernel of the spectral density is given by the following
formula:

pν
0(k2;x, y)

=

(
(γ+ ln(k

2 ) − ν)J0(kx)−π
2 Y0(kx)

) (
(γ+ ln(k

2 ) − ν)J0(ky) − π
2 Y0(ky)

)
πk

(
(γ + ln(k

2 ) − ν)2 + (π
2 )2

) .

Proof. For 0 < x ≤ y, one has

2πkpν
0(k2;x, y)

=
1

γ + ln
(

k
2

)− ν − iπ
2

( (
γ + ln

(
k
2

)− ν
)J0(kx) − π

2 Y0(kx)
)
H+

0 (ky)

+
1

γ + ln
(

k
2

)− ν + iπ
2

( (
γ + ln

(
k
2

)− ν
)J0(kx) − π

2 Y0(kx)
)
H−

0 (ky)

=

(
(γ + ln(k

2 ) − ν)J0(kx) − π
2 Y0(kx)

) (
(γ + ln(k

2 ) − ν)J0(ky) − π
2 Y0(ky)

)
1
2

(
γ + ln(k

2 ) − ν − iπ
2

) (
γ + ln(k

2 ) − ν + iπ
2

) .

Since the role of x and y can be exchanged, one directly gets the statement. �
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7.3. Generalized Hankel Transform

Let us now define the incoming and outgoing Hankel transformations F ν∓
0

given by the kernels

F ν∓
0 (x, y) :=

√
2
π

(
J0(xy) ± iπ

2

γ + ln
(

y
2

)− ν ∓ iπ
2

H±
0 (xy)

)

=

√
2
π

((
γ + ln

(
y
2

)− ν
)J0(xy) − π

2 Y0(xy)
γ + ln

(
y
2

)− ν ∓ iπ
2

)
. (7.3)

Note that we have written two expressions, since they will be both useful later
on. Note also since the denominator has a singularity if ν is exceptional, we
shall ignore this special case in the sequel.

To have a better picture of the maps F ν∓
0 , we recall that Mellin–Barnes

representation of H±
0 has been provided in (A.25). Based on this formula,

the following statement can be proved. Note that Cb(R) denotes the set of
continuous and bounded functions on R.

Lemma 7.3. The map H ±
0 : Cc(R+) → L2(R+) with kernel

H ±
0 (x, y) :=

√
2
π

H±
0 (xy)

continuously extends to a bounded operator of the form JΞ±
0 (A) = Ξ±

0 (−A)J
with

Ξ±
0 (t) :=

1
π

Γ
(

1+it
2

)2
ei ln(2)te∓ π

2 t (7.4)

and Ξ±
0 ∈ Cb(R).

Proof. The operator JH ±
0 : Cc(R+) → L2(R+) has kernel

√
2
π

1
x

H±
0

(y

x

)
=

1
2π2

1√
xy

∫ +∞

−∞
Γ
(

1+it
2

)2
ei ln(2)te∓ π

2 t y−it

x−it
dt.

Using [7, Lem. 6.4], one infers that this kernel corresponds to the kernel of the
operator defined by Ξ±

0 (A), see also the proof of Proposition 4.5.

Clearly, the map t �→ 1
π Γ

(
1+it

2

)2
ei ln(2)te∓ π

2 t is continuous and locally
bounded. To show that it is bounded, let us estimate its asymptotic values as
t → ±∞. By a consequence of Lemma A.2, one gets

∣∣∣ 1
π

Γ
(

1+it
2

)2
ei ln(2)te∓ π

2 t
∣∣∣ = 2e− π

2 |t|e∓ π
2 t
(
1 + O(t−1)

)
.

One then infers that Ξ±
0 ∈ Cb(R), as expected. It also means that Ξ±

0 (A)
extends continuously to a bounded operator in L2(R+). �

Based on the previous result, one directly infers the following statement:
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Lemma 7.4. For any ν ∈ C with ν not exceptional, the operator F ν∓
0 extends

continuously to the following operator:

J
(
Ξ0(A) ± Ξ±

0 (A)
iπ
2

γ + ln(X
2 ) − ν ∓ iπ

2

)

=
(
Ξ0(−A) ± Ξ±

0 (−A)
iπ
2

γ − ln(2X) − ν ∓ iπ
2

)
J (7.5)

with Ξ0 defined in (4.18) and Ξ±
0 defined in (7.4).

Let us still provide the expression for the adjoint of this operator, namely

(F ν∓
0 )# =

(
Ξ0(−A) ± iπ

2

γ + ln(X
2 ) − ν ∓ iπ

2

Ξ±
0 (−A)

)
J

= J

(
Ξ0(A) ± iπ

2

γ − ln(2X) − ν ∓ iπ
2

Ξ±
0 (A)

)
. (7.6)

To derive alternative formulas for these operators, let us first recall the equality

Γ
(

1+it
2

)
Γ
(

1−it
2

)
=

π

cosh
(

π
2 t
) , ∀t ∈ R, (7.7)

and prove the following statement.

Lemma 7.5. The map Y0 : Cc(R+) → L2(R+) with kernel

Y0(x, y) :=

√
2
π

Y0(xy)

continuously extends to the bounded operator iJΞ0(A) tanh
(

π
2 A

)
.

Proof. From the equality Y0 = ∓i(H±
0 − J0), one infers that

Y0 = ∓i
(
H ±

0 − F0

)
= ∓iJ

(
Ξ±

0 (A) − Ξ0(A)
)

with

Ξ±
0 (t) − Ξ0(t) = ei ln(2)t Γ

(
1+it

2

)
Γ
(

1−it
2

)( 1
π Γ

(
1+it

2

)
Γ
(

1−it
2

)
e∓ π

2 t − 1
)

= Ξ0(t)

(
1

cosh
(

π
2 t
)e∓ π

2 t − 1

)
= ∓Ξ0(t)

sinh
(

π
2 t
)

cosh
(

π
2 t
) ,

which directly leads to the statement. �

Corollary 7.6. For any ν ∈ C not exceptional, the following alternative de-
scription of F ν∓

0 and (F ν∓
0 )# holds:

F ν∓
0 = F0

(
γ + ln

(
X
2

)− ν − iπ
2 tanh

(
π
2 A

) ) 1
γ + ln

(
X
2

)− ν ∓ iπ
2

(7.8)

and

(F ν∓
0 )# =

1
γ + ln

(
X
2

)− ν ∓ iπ
2

(
γ + ln

(
X
2

)− ν + iπ
2 tanh

(
π
2 A

) )
F0.

(7.9)
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Proof. The statement follows directly from the Definition (7.3), the previous
result, and the equality tanh(−t) = − tanh(t) for any t ∈ R. �

We can now derive additional properties of the operator F ν±
0 .

Lemma 7.7. For any ν ∈ C not exceptional, the equalities (F ν±
0 )#F ν∓

0 = 1l
hold.

Proof. The proof consists in computing the product of the terms (7.5) and
(7.6) (with the correct sign) and in checking that this product is equal to 1l.
For that purpose, one first observes that for any t ∈ R, one has

Ξ0(−t)Ξ0(t) = 1. (7.10)

By considering (7.7), one also observes that

Ξ0(−t)Ξ±
0 (t) = Ξ∓

0 (−t)Ξ0(t) =
e∓ π

2 t

cosh
(

π
2 t
) (7.11)

and that

Ξ∓
0 (−t)Ξ±

0 (t) =

(
e∓ π

2 t

cosh
(

π
2 t
)
)2

. (7.12)

Then, by a few algebraic manipulations, one easily reduces the statement
to the following equality in the form sense on Cc(R+):

∓ 1
π

[
i

e∓ π
2 A

cosh
(

π
2 A

) , ln(X)

]
− e∓ π

2 A

cosh
(

π
2 A

) + 1
2

(
e∓ π

2 A

cosh
(

π
2 A

)
)2

= 0. (7.13)

To check this equality, let us recall that the equality [iA, ln(X)] = 1l holds,
once suitably defined. One then infers that

∓ 1

π

[
i

e∓ π
2 A

cosh
(

π
2 A

) , ln(X)

]
=

1

cosh
(

π
2 A

)2
(

1
2e∓ π

2 A cosh
(

π
2 A

)± 1
2e∓ π

2 A sinh
(

π
2 A

) )

=
e∓ π

2 A

cosh
(

π
2 A

) − 1
2

(
e∓ π

2 A
)2

cosh
(

π
2 A

)2 , (7.14)

where the equalities cosh(y) = ey+e−y

2 and sinh(y) = ey−e−y

2 have been used for
the last equality. This final expression leads directly to the equality (7.13). �

Once again, it is natural to set

1lR+(Hν
0 ) := F ν±

0 (F ν∓
0 )#

which is again a projection.

Proposition 7.8. Let ν ∈ C be not exceptional. Then, for any k ∈ C with
Re(k) > 0 and −k2 �∈ σp(Hν

0 ), the following equalities hold:

Rν
0(−k2)1lR+(Hν

0 ) = F ν±
0 (X2 + k2)−1(F ν∓

0 )# = 1lR+(Hν
0 )Rν

0(−k2).
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Proof. Let us first prove that

(F ν∓
0 )#Rν

0(−k2) − (X2 + k2)−1(F ν∓
0 )# = 0 (7.15)

which implies the second equality of the statement. By considering the ex-
pression for (F ν∓

0 )# provided in (7.9) together with the equality (7.1), one
observes that the l.h.s. of (7.15) is equal to

1
γ + ln

(
X
2

)− ν ∓ iπ
2

{(
γ + ln

(
X
2

)− ν + iπ
2 tanh

(
π
2 A

) )
F0R

ν
0(−k2)

− (X2 + k2)−1
(
γ + ln

(
X
2

)− ν + iπ
2 tanh

(
π
2 A

) )
F0

}

=
1

γ + ln
(

X
2

)− ν ∓ iπ
2

{
iπ
2

[
tanh

(
π
2 A

)
, (X2 + k2)−1

]
F0

+
1

2k2(γ + ln(k
2 ) − ν)

(
γ + ln

(
X
2

)− ν + iπ
2 tanh

(
π
2 A

) )
F0P0(−k2)

}
.

By a few algebraic computations, one then observes that the term inside the
curly bracket would be equal to 0 if

πk2
[
i tanh

(
π
2 A

)
, (X2 + k2)−1

]
= −F0P0(−k2)F0 (7.16)

and (
ln
(

X
k

)
+ iπ

2 tanh
(

π
2 A

) )
F0P0(−k2)F0 = 0. (7.17)

From now on, let us compute some kernels, by always considering x, y ∈
R+. Since by (A.18)

∫∞
0

J0(xy)K0(ky)dy =
√

kx
x2+k2 , one first infers that the

kernel of the operator F0P0(−k2)F0 is given by

F0P0(−k2)F0(x, y) = 2k2(xy)1/2 1
x2 + k2

1
y2 + k2

. (7.18)

On the other hand, the kernel of tanh
(

π
2 A

)
is given by (see the proof of [31,

Lem. 9.2])

i tanh
(

π
2 A

)
(x, y) = − 2

π
Pv

(
1

x
y − y

x

)
(xy)−1/2,

where Pv denotes the principal value distribution. One then infers the following
kernel:

πk2
[
i tanh

(
π
2 A

)
, (X2 + k2)−1

]
(x, y)

= −2k2Pv
(

1
x
y − y

x

)
(xy)−1/2

( 1
y2 + k2

− 1
x2 + k2

)

= −2k2(xy)1/2 1
y2 + k2

1
x2 + k2

. (7.19)

By comparing (7.18) with (7.19), one directly gets (7.16).
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To check (7.17), let us first deduce from (7.18) that(
ln
(

X
k

)
F0P0(−k2)F0

)
(x, y) = 2k2 ln

(
x
k

)
(xy)1/2 1

x2 + k2

1
y2 + k2

.

(7.20)

On the other hand, since∫ ( 1
x2 − y2

) y

y2 + 1
dy =

1
2(x2 + 1)

ln
(

x2 + 1
|x2 − y2|

)
,

one can easily compute the kernel −iπ
2 tanh

(
π
2 A

)
F0P0(−k2)F0 and observe

that it corresponds to the expression obtained in (7.20). This finishes the proof
of the equality (7.17). �

7.4. Spectral Projections

Let us start again with a result about the spectral projection corresponding to
the eigenvalues of Hν

0 . The proof of the following statement can be mimicked
from the proof of Proposition 6.6.

Proposition 7.9. For any −k2 ∈ σp(Hν
0 ), one has

1l{−k2}(Hν
0 ) = P0(−k2).

As in Sects. 4.4 or 6.4, we can also consider for any 0 < a < b the operator

1l[a,b](Hν
0 ) := 2

∫ √
b

√
a

pν
0(k2)kdk,

which is bounded from 〈X〉−sL2(R+) to 〈X〉sL2(R+) for any s > 1
2 . Its kernel

is given for x, y ∈ R+ by the expression

1l[a,b](Hν
0 )(x, y)

= 2
∫ √

b

√
a

((γ+ln( k
2 )−ν)J0(kx)− π

2 Y0(kx))((γ+ln( k
2 )−ν)J0(ky)− π

2 Y0(ky))
π((γ+ln( k

2 )−ν)2+( π
2 )2) dk. (7.21)

One can now obtain a result similar to the one contained in Proposi-
tion 6.7.

Proposition 7.10. For any 0 < a < b and any ν ∈ C ∪ {∞} not exceptional,
one has

1l[a,b](Hν
0 ) = F ν±

0 1l[a,b](X2)(F ν∓
0 )# (7.22)

in B
(
L2(R+)

)
. In addition, 1l[a,b](Hν

0 ) is a projection.

Proof. The proof can be mimicked from the one of Proposition 6.7. The new
necessary information is the kernel of 1l[a,b](Hν

0 )(x, y), which is provided in
(7.21), and the equality recalled in (7.3). �

Finally, observe that the equality

1lΞ(Hν
0 ) = F ν±

0 1lΞ(X2)(F ν∓
0 )#

extends (7.22) to any Borel subset Ξ of R+.
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7.5. Møller Operators and Scattering Operator

In this section, we extend the results obtained for the Møller and the scattering
operators to the family of operators Hν

0 . As before, we shall consider any ν ∈ C

which is not an exceptional value.
For the pair (Hν

0 ,Hν′
0 ) using the Hankel transformations, we define

W ν;ν′;±
0;0 = F ν±

0 (F ν′∓
0 )#. (7.23)

Note that the Møller operators for any pairs (Hν
0 ,Hm,κ) or (Hm,κ,Hν

0 ) could
be defined similarly, but the corresponding expressions can also be directly
obtained using the chain rule. For that reason, we shall not analyze them
separately.

Based on these definitions and on the results obtained so far, one easily
infers some identities:

Proposition 7.11. The following identities hold:

(
W ν;ν′;∓

0;0

)#

W ν;ν′;±
0;0 = 1lR+(Hν′

0 ),

W ν;ν′;±
0;0

(
W ν;ν′;∓

0;0

)#

= 1lR+(Hν
0 ),(

W ν;ν′;±
0;0

)#

= W ν′;ν;∓
0;0 ,

W ν;ν′;±
0;0 Hν′

0 = Hν
0 W ν;ν′;±

0;0 . (7.24)

By (7.24), (W ν;ν′;−
0;0 )# can be treated as an inverse of W ν;ν′;+

0;0 . Therefore,
we define the scattering operator as

Sν;ν′
0;0 :=

(
W ν;ν′;−

0;0

)#

W ν;ν′;−
0;0 .

Clearly, the scattering operator can be expressed in terms of the Hankel trans-
form:

Sν;ν′
0;0 = F ν′+

0 (F ν−
0 )#F ν−

0 (F ν′+
0 )#.

To analyze the scattering operator, it is convenient to introduce the op-
erators

Gν∓
0 := (F ν∓

0 )#F ν∓
0 . (7.25)

Proposition 7.12. The following equalities hold:

Gν∓
0 =

γ + ln
(

X
2

)− ν ± iπ
2

γ + ln
(

X
2

)− ν ∓ iπ
2

.
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Proof. Starting with (7.5) and (7.6), and by considering successively the equal-
ities (7.10), (7.11), and (7.7), one infers that

(F ν∓
0 )#F ν∓

0 = J

(
1l ± iπ

2

γ − ln(2X) − ν ∓ iπ
2

e∓ π
2 A

cosh
(

π
2 A

)

± e± π
2 A

cosh
(

π
2 A

) iπ
2

γ − ln(2X) − ν ∓ iπ
2

+
iπ
2

γ − ln(2X) − ν ∓ iπ
2

1
cosh2

(
π
2 A

) iπ
2

γ − ln(2X) − ν ∓ iπ
2

)
J.

By observing then that

iπ
2

γ − ln(2X) − ν ∓ iπ
2

e∓ π
2 A

cosh
(

π
2 A

)

=
e∓ π

2 A

cosh
(

π
2 A

) iπ
2

γ − ln(2X) − ν ∓ iπ
2

+
π

2
1

γ − ln(2X) − ν ∓ iπ
2

[
i

e∓ π
2 A

cosh
(

π
2 A

) , ln(X)

]
1

γ − ln(2X) − ν ∓ iπ
2

and using (7.14) together with some algebraic manipulations, one directly in-
fers that

(F ν∓
0 )#F ν∓

0 = J

(
1l ± 2

iπ
2

γ − ln(2X) − ν ∓ iπ
2

)
J = J

γ − ln(2X) − ν ± iπ
2

γ − ln(2X) − ν ∓ iπ
2

J.

The statement follows then by the definition of J . �

Let us stress once again that Gν∓
0 are simply functions of X. Finally,

using the Hankel transformations, one can obtain a diagonal representation of
scattering operators. These operators are expressed in terms of the operators
(7.25), namely

(F ν′−
0 )# Sν;ν′

0;0 F ν′+
0 = Gν−

0 Gν′+
0 = (F ν′+

0 )# Sν;ν′
0;0 F ν′−

0 .

In the non-exceptional case, the operator Hν
0 generates a bounded one-

parameter group, at least on the range of the projection 1lR+(Hν
0 ), by the

formula

eitHν
0 1lR+(Hν

0 ) = 1lR+(Hν
0 )eitHν

0 := F ν±
0 eitX2

(F ν∓
0 )#.

We finally show that W ν;ν′;±
0;0 correspond to the Møller operators as usually

defined by the time-dependent scattering theory.

Proposition 7.13. For any ν, ν′ ∈ C not exceptional, the Møller operators exist
and coincide with the operators defined in (7.23):

s− lim
t→±∞ 1lR+(Hν

0 )eitHν
0 e−itHν′

0 1lR+(Hν′
0 ) = W ν;ν′;±

0;0 .
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Proof. The proof is parallel to the proof of Proposition 6.10. One first observes
that

(F ν∓
0 )#F ν′±

0 =

(
Ξ0(−A) ± iπ

2

γ + ln
(

X
2

)− ν ∓ iπ
2

Ξ±
0 (−A)

)

×
(

Ξ0(A) ∓ Ξ∓
0 (A)

iπ
2

γ + ln
(

X
2

)− ν′ ± iπ
2

)
.

Using the explicit expression for the products of Ξ0 and Ξ±
0 as given in (7.10),

(7.11), and (7.12), one then infers that for the four maps t �→ Ξ0(−t)Ξ0(t), t �→
Ξ±

0 (−t)Ξ0(t), t �→ Ξ0(−t)Ξ∓
0 (t), and t �→ Ξ±

0 (−t)Ξ∓
0 (t) belong to C ([−∞,∞])

with

Ξ0(−∞)Ξ0(∞) = 1 and Ξ0(∞)Ξ0(−∞) = 1,

Ξ+
0 (−∞)Ξ0(∞) = 2 and Ξ+

0 (∞)Ξ0(−∞) = 0,

Ξ−
0 (−∞)Ξ0(∞) = 0 and Ξ−

0 (∞)Ξ0(−∞) = 2,

Ξ+
0 (−∞)Ξ−

0 (∞) = 4 and Ξ+
0 (∞)Ξ−

0 (−∞) = 0.

Based on these observations, one directly deduces from Lemma B.1 that

s− lim
t→±∞ eitX2

(F ν∓
0 )#F ν′±

0 e−itX2

= s− lim
t→±∞ eitX2

(
Ξ0(−A) ± iπ

2

γ + ln
(

X
2

)− ν ∓ iπ
2

Ξ±
0 (−A)

)

×
(

Ξ0(A) ∓ Ξ∓
0 (A)

iπ
2

γ + ln
(

X
2

)− ν′ ± iπ
2

)
e−itX2

= 1l.

The remaining argument is similar to the one of the proof of Proposition 6.10.
�

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.

Appendix A: Bessel Family for Dimension 1

In this section, we gather several properties of the Bessel family for dimension
1. If no additional restriction is imposed, the parameter m is an arbitrary
element of C, but a special attention is often required when m ∈ {. . . ,−2,−1}.
All the described properties follow from the theory of the usual Bessel family
of dimension 2 described in literature. However, in general, we outline an
independent derivation.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Vol. 18 (2017) Inverse Square Potentials 917

A.1: The Function Im

The modified Bessel function for dimension 1, denoted Im, is defined by an
everywhere convergent power series or by the so-called Schläfli integral repre-
sentation:

Im(z) =
∞∑

n=0

√
π
(

z
2

)2n+m+ 1
2

n!Γ(m + n + 1)

=
√

z√
2π

∫ π

0

ez cos(φ) cos(mφ)dφ

−
√

z√
2π

sin(πm)
∫ ∞

0

e−z cosh(β)−mβ dβ for Re(z) > 0. (A.1)

Note that since z �→ 1/Γ(z) is an entire function, the first expression is mean-
ingful even for m ∈ {. . . ,−2,−1}. Clearly, the function Im is analytic on
C\] − ∞, 0], and it is analytic on C for m ∈ Z + 1

2 .
The function Im has the following asymptotics for z near 0:

Im(z) =
√

π

Γ(m + 1)

(z

2

)m+ 1
2

+ O(|z|Re(m)+ 5
2 ). (A.2)

On the other hand, for m ∈ Z, we have

I−m(z) = Im(z) =
√

z√
2π

∫ π

0

ez cos(φ) cos(mφ)dφ.

For any m, the analytic continuation around 0 by the angle ±π multiplies Im

by a phase factor, namely

Im(e±iπz) = e±iπ(m+ 1
2 )Im(z).

The value Im(z) is real for z > 0 and for m ∈ R, and more generally, one has

Im(z) = Im(z).

There also exists a generating function, namely for any t ∈ C
× and any z ∈

C\] − ∞, 0]:
√

πz√
2

exp
(z

2
(t + t−1)

)
=

∞∑
m=−∞

tmIm(z).

A.2: The Function Km

The MacDonald function for dimension 1, denoted Km, can be defined for
Re(z) > 0 by the integral representation

Km(z) :=
√

z√
2π

∫ ∞

0

exp
(
−z

2
(s + s−1)

)
s−m−1ds. (A.3)

It extends by analytic continuation onto a larger domain with a possible branch
point at 0. Outside of the basic region Re(z) > 0, one can obtain other integral
formulas by an appropriate deformation of the contour of integration in (A.3),
see [34, Sec. 6.22].
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For m �∈ Z, the functions Im and Km are connected by the equality

Km(z) =
1

sin(πm)
(I−m(z) − Im(z)) . (A.4)

For m ∈ Z, the relation (A.4) can be extended by l’Hôpital’s rule:

Km(z) =
(−1)m+1

π

(
d
dn

In(z)
∣∣∣
n=−m

+
d
dn

In(z)
∣∣∣
n=m

)
. (A.5)

By setting h(n) :=
n−1∑
k=1

1
k and h(1) = 0, the equality (A.5) leads for m ∈ to

Km(z) = (−1)m+1 2
π

(
ln
(z

2

)
+ γ

)
Im(z)

+
1√
π

m−1∑
k=0

(−1)k (m − k − 1)!
k!

(z

2

)2k−m+ 1
2

+
(−1)m

√
π

∞∑
k=0

h(k + 1) + h(m + k + 1)
k!(m + k)!

(z

2

)2k+m+ 1
2

, (A.6)

where γ is the Euler’s constant. Note that only the first and the third terms
are present in the special case m = 0.

The function Km is analytic for C\]−∞, 0] and satisfies K−m(z) = Km(z).
We also have

Km(z) = Km(z),

and the value Km(z) is real for z > 0 and for m ∈ R or m ∈ iR.
The function Km has a well-defined asymptotic at infinity, namely for

any ε > 0 and | arg(z)| < π − ε:

Km(z) = e−z
(
1 + O(|z|−1)

)
. (A.7)

The asymptotics near 0 can be obtained from (A.4) and (A.6). We present
the asymptotics in the strip |Re(m)| < 1:

Km(z)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
√

2z√
π

(
ln
(

z
2

)
+ γ

)
+ O

(
|z| 5

2 ln(|z|)
)

if m = 0,

Γ(m)√
π

(
z
2

)−m+ 1
2 + O(|z|Re(m)+ 1

2 ) if 1 > Re(m) > 0,
Γ(−m)√

π

(
z
2

)m+ 1
2 + O(|z|−Re(m)+ 1

2 ) if − 1 < Re(m) < 0,
√

π
sin(πm)

(
z
2

) 1
2

(
(z/2)−m

Γ(1−m)
− (z/2)m

Γ(1+m)

)
+ O(|z| 5

2 ) if m ∈ iR×.

(A.8)

Actually, we will only need the following estimates, valid for all m: For |z| < 1,
we have

|Km(z)| ≤
{

C0|z| 1
2 (1 + | ln(z)|) if m = 0,

Cm|z|−|Re(m)|+ 1
2 if m �= 0,

for some constants C0 and Cm independent of z.
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Let us also mention another relation between the functions Im and Km,
namely

Im(z) =
1
2

(
Km(e−iπz) − eiπ(m− 1

2 )Km(z)
)

.

A.3: Additional Properties of Im and Km

As already mentioned in Sect. 3, the functions Im and Km are solutions of the
modified Bessel equation for dimension 1:(

∂2
z −

(
m2 − 1

4

) 1
z2

− 1
)

v(z) = 0. (A.9)

They form a basis of solutions of this equation.
For the three functions Im, I−m, and Km, their respective Wronskians

(2.2) can be computed and are independent of z, namely:

Wz(Km, Im) = 1,

Wz(Km, I−m) = 1,

Wz(Im, I−m) = − sin(πm).

Let Lm denote either the functions Im or the function eiπmKm. Then,
the following contiguous relations are satisfied:

2mLm(z) = zLm−1(z) − zLm+1(z),

2m∂zLm(z) =
(
m +

1
2

)
Lm−1(z) +

(
m − 1

2

)
Lm+1(z).

They imply the following recurrence relations:

∂z

(
zm− 1

2 Lm(z)
)

= zm− 1
2 Lm−1(z),(

∂z +
(
m − 1

2

)1
z

)
Lm(z) = Lm−1(z),

∂z

(
z−m− 1

2 Lm(z)
)

= z−m− 1
2 Lm+1(z),(

∂z +
(

− m − 1
2

)1
z

)
Lm(z) = Lm+1(z).

Let us finally observe that for m = ± 1
2 , the functions Im and Km coincide

with well-known elementary functions:

K± 1
2
(z) = e−z,

I− 1
2
(z) = cosh(z),

I 1
2
(z) = sinh(z).

The simplicity of these relations is one of the motivations for introducing the
Bessel family for dimension 1.
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A.4: The Function Jm

The Bessel function for dimension 1, denoted Jm, is defined by the following
relations:

Jm(z) = e±i π
2 (m+ 1

2 )Im(e∓i π
2 z),

=
∞∑

n=0

(−1)n
√

π
(

z
2

)2n+m+ 1
2

n!Γ(m + n + 1)
(A.10)

=
1
2

(
e−i π

2 (m+ 1
2 )Km(e−i π

2 z) + ei π
2 (m+ 1

2 )Km(ei π
2 z)

)
. (A.11)

This function is clearly analytic on C\] − ∞, 0], and it is analytic on C for
m ∈ Z + 1

2 .
Some additional properties of this function are

Jm(e±iπz) = e±iπ(m+ 1
2 )Jm(z)

and

Jm(z) = Jm(z).

From the Taylor expansion, one infers that near 0, one has

Jm(z) =
√

π

Γ(m + 1)

(z

2

)m+ 1
2

+ O(|z|Re(m)+ 5
2 ).

For large z with | arg(z)| < π
2 − ε for some ε > 0, one also has

Jm(z) = cos
(
z − 1

2
πm − 1

4
π
)

+ e|Im(z)|O(|z|−1).

A.5: The Functions H±
m

The Hankel functions for dimension 1, denoted H±
m, are essentially analytic

continuations of the function Km, one for the lower part and the other one
for the upper part of the complex plane. Indeed, the following relations are
satisfied:

H±
m(z) = e∓i π

2 (m+ 1
2 )Km(e∓i π

2 z)

=
e∓i π

2 (m+ 1
2 )

sin(πm)

(
I−m(e∓i π

2 z) − Im(e∓i π
2 z)

)
,

from which one also infers that

H±
−m(z) = e±iπmH±

m(z). (A.12)

Some additional relations between Jm and H±
m are:

Jm(z) =
1
2
(H+

m(z) + H−
m(z)

)
,

J−m(z) =
1
2
(
eiπmH+

m(z) + e−iπmH−
m(z)

)
,

H±
m(z) =

−e∓iπ(m+ 1
2 )Jm(z) + e∓i π

2 J−m(z)
sin(πm)

.



Vol. 18 (2017) Inverse Square Potentials 921

The following asymptotic expansions will also be necessary: from (A.8),
one infers that for any θ, | arg(z)| < θ, as z → 0,

H±
m(z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±ie∓i π

2
m

√
2√
π

z
1
2
(
ln(z) + γ ∓ iπ

2

)
+ O

(
|z| 5

2 ln(|z|)
)

if m = 0,

∓iΓ(m)√
π

(
z
2

)−m+ 1
2 + O(|z|Re(m)+ 1

2 ) if 1 > Re(m) > 0,

∓ie∓iπm Γ(−m)√
π

(
z
2

)m+ 1
2 + O(|z|−Re(m)+ 1

2 ) if −1 < Re(m) < 0,

∓i
√

π
sin(πm)

(
z
2

) 1
2

(
(z/2)−m

Γ(1−m) − e∓iπm(z/2)m

Γ(1+m)

)
+ O(|z| 5

2 ) if m ∈ iR×.

(A.13)

On the other hand, for any ε > 0 the following asymptotic formulas are true
for |z| → ∞ with arg(z) �∈ [∓π

2 − ε,∓π
2 + ε]:

H±
m(z) = e±i(z− 1

2 πm− 1
4 π)

(
1 + O(|z|−1)

)
. (A.14)

A.6: Function Ym

The Neumann function for dimension 1, denoted Ym, is defined by

Ym(z) =
1
2i
(H+

m(z) − H−
m(z)

)
, H±

m = Jm ± iYm.

The function Ym is especially useful for m ∈ {0, 1, 2, . . . }, when we have

Ym(z) =
2
π

(
log(

z

2
) + γ

)
Jm(z)

− 1√
π

m−1∑
k=0

(m − k − 1)!
k!

(z

2

)2k−m+ 1
2

− 1√
π

∞∑
k=0

(−1)k h(k + 1) + h(m + k + 1)
k!(m + k)!

(z

2

)2k+m+ 1
2
,

with the function h introduced in Sect. A.2.

A.7: Additional Properties of Jm, H±
m and Ym

As already mentioned in Sect. 3, the functions Jm, H±
m, and Ym are solutions

of the Bessel equation for dimension 1:
(

∂2
z −

(
m2 − 1

4

) 1
z2

+ 1
)

v(z) = 0. (A.15)

In addition, their respective Wronskian can be computed and are independent
of z, for example

Wz(Jm,J−m) = − sin(πm),

Wz(H−
m,H+

m) = 2i.
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Let us still observe that for m = ± 1
2 , the resulting functions coincide

with well-known elementary functions:

J 1
2
(z) = sin(z),

J− 1
2
(z) = cos(z),

H±
1
2
(z) = e±i(z− π

2 ),

H±
− 1

2
(z) = e±iz.

A.8: Integral Identities

The following indefinite integrals follow from the recurrence relations of
Sect. A.3:∫ ∞

y

Km(ax)Km(bx)dx

=
1

a/b − b/a

(
1

b
Km−1(ay)Km(by) − 1

a
Km(ay)Km−1(by)

)
, Re(a + b) > 0;

∫ ∞

y

Km(ax)2dx

= −y

2
Km(ay)2 +

m

a
Km(ay)Km−1(ay) +

y

2
Km−1(ay)2, Re(a) > 0.

They imply the following definite integrals:∫ ∞

0

Km(ax)Km(bx)dx =
1

sin(πm)
(a/b)m − (b/a)m

√
ab(a/b − b/a)

,

m �= 0, |Re(m)| < 1, Re(a + b) > 0,∫ ∞

0

K0(ax)K0(bx)dx =
2
π

ln(a) − ln(b)√
ab(a/b − b/a)

, Re(a + b) > 0,

∫ ∞

0

Km(ax)2dx =
m

sin(πm)a
, (A.16)

m �= 0, |Re(m)| < 1, Re(a) > 0,∫ ∞

0

K0(ax)2dx =
1
πa

, Re(a) > 0. (A.17)

In the same vein, let us also mention the definite integral∫ ∞

0

Km(ax)Jm(bx)dx =
(a/b)m

√
ab(a/b + b/a)

, (A.18)

see [18, Eq. 6.521]. We also derive an additional relation which will be useful
later on. For Bessel functions for dimension 2, this result corresponds to [18,
Eq. 6.541].

Proposition A.1. For any m ∈ C with Re(m) > −1, one has

2
π

∫ ∞

0

Jm(xp)Jm(yp)
1

(p2 + k2)
dp =

1
k

{Im(kx)Km(ky) if 0 < x < y,

Im(ky)Km(kx) if 0 < y < x.

(A.19)
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Proof. For 0 < x < y, one has by (A.10) and (A.11)

2
π

∫ ∞

0

Jm(xp)Jm(yp)
1

(p2 + k2)
dp

=
1
π

∫ ∞

0

(
Im(e−i π

2 xp)Km(e−i π
2 yp) + Im(ei π

2 xp)Km(ei π
2 yp)

) dp

(p2 + k2)

=
1
π

∫ ∞

−∞
Im(−ixp)Km(−iyp)

dp

(p2 + k2)

=
2πi
π

Im(xk)Km(yk)
2ik

=
1
k

Im(kx)Km(ky).

In the last step, we used the fact that the integral over the semicircle on the
upper half-plane p = Reiφ, with φ ∈ [0, π], goes to zero as R → ∞. Besides,
we have a single singularity of the integrand inside the contour of integration
at p = ik, which is a simple pole, whose residue has been evaluated.

A similar proof holds for 0 < y < x. �

A.9: Barnes Identities

Integral representations of Bessel-type functions in terms of the Gamma func-
tion are sometimes called Barnes identities from the name of their discoverer.
Before we present them, let us quote a useful result about asymptotics of the
Gamma function given in [4, Cor. 1.4.4], which is a consequence of the Stirling
formula.

Lemma A.2. Let a, b ∈ R with a1 ≤ a ≤ a2 for two constants a1 and a2. Then,
one has

|Γ(a + ib)| =
√

2π|b|a− 1
2 e− π

2 |b| (1 + O(|b|−1)
)
,

where the constant implied by the term O(| · |) depends only on a1 and a2.

Let m ∈ C and c ∈ R with

c <
Re(m)

2
. (A.20)

The following representation is a reformulation of an identity found in [34,
Ch. VI.5]:

Jm(x) =
1

4i
√

π

∫
γ

Γ(c + s
2 )

Γ
(
m + 1 − c − s

2

) (x

2

)m+ 1
2 −2c−s

ds, (A.21)

where γ is a contour which asymptotically coincides with the vertical line
] − i∞,+i∞[ and passes on the right of −2c. Note that by Lemma A.2∣∣∣∣ Γ(c + i t

2 )
Γ(m + 1 − c − i t

2 )

∣∣∣∣ ≤ C(1 + |t|)2c−Re(m)−1,

hence, the condition (A.20) implies the integrability of the r.h.s. of (A.21).
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If we want that the contour is a straight vertical line, we need to assume
that c ∈ ]

0, Re(m)
2

[
(which implies c > 0 and Re(m) > 0), and then, we can

rewrite (A.21) as

Jm(x) =
1

4
√

π

∫ +∞

−∞

Γ(c + i t
2 )

Γ(m + 1 − c − i t
2 )

(x

2

)m+ 1
2 −2c−it

dt. (A.22)

As shown in the proof of [7, Lem. 6.3], the validity of (A.22) can then be
extended in the sense of distribution up to Re(m) > −1 and 0 < c < Re(m)+1.
In particular, by choosing c = m+1

2 , one infers that in the sense of distributions
for Re(m) > −1, we have

Jm(x) =
1

4
√

π

∫ +∞

−∞

Γ(m+it+1
2 )

Γ(m−it+1
2 )

(x

2

)−it− 1
2

dt. (A.23)

Let us also consider a representation of Hankel functions similar to (A.21)
and valid under the condition (A.20). The next formula follows from [34,
Sec. 6.5]:

H±
m(x) =

e∓iπ(m+ 1
2 )±iπc

4iπ
3
2

∫
γ′

Γ
(
c +

s

2

)
Γ
(
c − m +

s

2

)
e±i π

2 s
(x

2

)−2c−s+m+ 1
2
ds,

(A.24)

where γ′ is a contour which asymptotically coincides with the vertical line
] − i∞,+i∞[ and passes on the right of −2c and −2c + 2m. As a consequence
of Lemma A.2, one infers that∣∣∣∣Γ

(
c +

it
2

)
Γ
(
c − m +

it
2

)
e∓ π

2 t

∣∣∣∣ ≤ C(1 + |t|)2c−Re(m)−1e− π
2 |t|e∓ π

2 t,

which guarantees the integrability of (A.24). Here, we cannot choose γ′ to
be a straight line. However, if we are satisfied with the interpretation of the
integral (A.24) in the sense of distributions, then under conditions 0 < c and
Re(m) < c, a straight vertical line will work and we can rewrite (A.24) as

H±
m(x) =

e∓iπ(m+ 1
2 )±iπc

4π
3
2

∫ +∞

−∞
Γ
(
c +

it

2

)
Γ
(
c − m +

it

2

)
e∓ π

2 t
(x

2

)−2c−it+m+ 1
2
dt.

In particular, for −1 < Re(m) < 1 and by setting c = Re(m)+1
2 , we obtain

after a few manipulations and in the sense of distributions

H±
m(x) =

e∓i π
2 m

4π
3
2

∫ +∞

−∞
Γ
(−m + 1 + it

2

)
Γ
(m + 1 + it

2

)
e∓ π

2 t
(x

2

)−it− 1
2
dt.

(A.25)

Appendix B: Propagation of the Generator of Dilations

We derive some relations between the generator of dilations A and the multi-
plication operator X2. Note first that

eit ln(X) eiτA e−it ln(X) = eiτ(A−t).
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Therefore, ln(X) and A satisfy the canonical commutation relations, which
determines their properties up to unitary equivalence. It is easy to see that for
ψ ∈ C ([−∞,∞]), one has

eit ln(X)ψ(−A)e−it ln(X) = ψ(−A + t),

and consequently

s− lim
t→±∞ eit ln(X)ψ(−A)e−it ln(X) = ψ(±∞). (B.1)

The next lemma contains a similar result with the operator ln(X) re-
placed by X2. It can be obtained by an abstract argument based on Mourre
theory, see [30] for the details. We will give an alternative elementary proof.
Note that since X2 = ϕ(ln(X)) with ϕ(u) = e2u for any u ∈ R and since
ϕ′ > 0, the following statement has a flavor similar to the invariance principle
in scattering theory.

Lemma B.1. For any ψ ∈ C ([−∞,∞]), the following equalities hold:

s− lim
t→±∞ eitX2

ψ(−A)e−itX2
= ψ(±∞). (B.2)

Proof. Let us first note that it is enough to show that

w− lim
t→±∞ eitX2

ψ(−A)e−itX2
= ψ(±∞). (B.3)

Indeed, this easily follows from the equality:

∥∥(eitX2
ψ(−A)e−itX2 − ψ(±∞)

)
f
∥∥2

=
(
f |eitX2 |ψ|2(−A)e−itX2

f
)

+ ‖ψ(±∞)f‖2

−
(
ψ(±∞)f |eitX2

ψ(−A)e−itX2
f
)

−
(
eitX2

ψ(−A)e−itX2
f |ψ(±∞)f

)
.

We now introduce the unitary transformation W : L2(R) → L2(R+) by

(Wf)(x) = x− 1
2 f (ln(x)) , ∀x ∈ R+,

(W−1g)(t) = e
t
2 g

(
et
)
, ∀t ∈ R,

and check that

W−1X2W = e2Q and W−1AW = P

with Q and P , the usual self-adjoint operators of position and momentum in
L2(R). Therefore, one infers that

W−1eitX2
ψ(−A)e−itX2

W = eite2Q

ψ(−P )e−ite2Q

.
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For f1, f2 ∈ L2(R) with compact support, one then observes that(
f1|eite2Q

ψ(−P )e−ite2Q

f2

)

=
1
2π

∫
dx

∫
dξ

∫
dy f1(x)eite2x

ψ(−ξ)ei(x−y)ξ e−ite2y

f2(y)

=
1
2π

∫
dx

∫
dξ

∫
dy f1(x)ψ(−ξ) exp

(
i(x − y)

(
ξ + t e2x−e2x

x−y

))
f2(y)

=
1
2π

∫
dx

∫
dξ

∫
dy f1(x)ψ

(
−ξ + t e2x−e2x

x−y

)
ei(x−y)ξf2(y). (B.4)

Clearly, for any x, y, one has

e2x − e2y

x − y
> 0,

and thus for y ∈ suppf2 and x ∈ suppf1, there exists a strictly positive c0,
such that

e2x − e2y

x − y
≥ c0 > 0.

Finally, one easily obtains that (B.4) converges as t → ±∞ to

(f1|ψ(±∞)f2) ,

which shows (B.3) by a density argument. �
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