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T-Duality Simplifies Bulk–Boundary
Correspondence: Some Higher Dimensional
Cases

Varghese Mathai and Guo Chuan Thiang

Abstract. Recently we introduced T-duality in the study of topologi-
cal insulators, and used it to show that T-duality transforms the bulk–
boundary homomorphism into a simpler restriction map in two dimen-
sions. In this paper, we partially generalize these results to higher di-
mensions in both the complex and real cases, and briefly discuss the 4D
quantum Hall effect.

Introduction

In an earlier paper [41], we introduced the technique of T-duality from string
theory, in the study of topological insulators. This was then applied in [42],
where we studied a model for the bulk–boundary correspondence as explained
in [27–29,51], for three phenomena in condensed matter physics: the 2D quan-
tum Hall effect [3,11], the 2D Chern insulator [8,17,26], and the 2D and 3D
time-reversal invariant topological insulators [15,25,30]. The approach to the
bulk–boundary correspondence in these papers uses the language of K-theory
and Connes’ noncommutative geometry [11]. We showed that in all these cases,
T-duality simplifies the bulk-to-boundary homomorphism as formulated in
terms of topological boundary maps. For some related mathematical inves-
tigations into the bulk–boundary correspondence, see [1,5,12,16,23,31,33,34].

The general study of topological phases of matter deals with systems
in arbitrary spatial dimension d [14,21,32,49–51,62,63], in which gapped sys-
tems may be attributed various topological indices which remain invariant
under continuous deformations. For the special case of band insulators, the
valence bands form vector bundles over the Brillouin d-torus T

d through a
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Bloch–Floquet decomposition of Z
d-invariant Hamiltonians. Such vector bun-

dles have interesting invariants (K-theory, Chern classes, etc.) that take values
in topological invariants of the Brillouin torus. If the Z

d translation symme-
tries are realized projectively (for example if they are magnetic translations)
then they generate a noncommutative torus, or a deformation of T

d, instead.
The full bulk–boundary correspondence at the level of measured phys-

ical quantities should, strictly speaking, involve numerical pairings between
K-theory invariants representing the topological “state”, and some dual invari-
ants such as cyclic cocycles or K-homology classes representing the physical
measurement. In the complex case, such pairings are reviewed and discussed
in great detail in the monograph [51]. The precise analogue of such pairings in
the real case is a less settled issue, but an approach using Kasparov’s bivari-
ant K-theory is a candidate [5]. In this paper, our focus is on the application
of T-duality to the (weaker) bulk–boundary correspondence at the level of a
homomorphism between the K-theory groups carrying the bulk and bound-
ary topological invariants. In a detailed analysis of realistic condensed matter
systems, disorder should be built into the mathematical model as well. The
case of a contractible disorder space for arbitrary d was studied in [51]. In
[42] we studied the effect of T-duality on the bulk–boundary correspondence
when the disorder space is a Cantor set. For d > 2, general disorder spaces
are much more difficult to handle. We do not discuss these cases in detail in
this paper, but in a separate work [21]. Our focus is rather to draw attention
to some mathematical techniques that are very general, and can be applied
equally well to topological phases in condensed matter physics and to string
theory.

More specifically, we study the bulk–boundary correspondence for the
higher dimensional versions of the quantum Hall effect, the Chern insulator
and time-reversal invariant topological insulators. In the complex case, we show
that noncommutative T-duality is equivalent to T-duality composed with strict
deformation quantization, and use it to reduce noncommutative T-duality to
commutative T-duality, where it is straightforward to show that T-duality
“trivializes” the bulk–boundary homomorphism in the sense of converting it
into a simple restriction map. This is relevant to the 4D quantum Hall effect
and Chern insulator, which we discuss in the last section. In particular, we
give a new proof of a special case of our previous result [42]. In the real case,
we analyse the behaviour of T-duality under the wedge sum decomposition by
spheres, and use it to show that T-duality takes the bulk–boundary homomor-
phism in Real K-theory to a trivial restriction map in ordinary real K-theory.
This decomposition is a useful computational tool for studying both strong and
weak topological invariants. The T-duality transformation in real K-theory is
relevant to the study of time-reversal invariant topological insulators. Further-
more, the transformation relates the somewhat exotic KR-theory invariants
to the more classical and better-understood KO-theory invariants. We also
provide two different interpretations of the T-dualized K-theory groups.
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1. T-Duality as a Geometric Fourier Transform

The ordinary Fourier transform, used for instance in Bloch theory, gives an
isomorphism between functions spaces on a locally compact abelian group and
its Pontryagin dual. It provides computational advantages, by transforming
complicated maps between functions into simpler ones, as well conceptual ad-
vantages by illuminating the central role of symmetry in the harmonic analysis.
T-duality can be viewed as a generalized Fourier transform which, instead of
transforming ordinary functions, gives an isomorphism at the level of topologi-
cal invariants. Correspondingly, homomorphisms between such invariants can
also T-dualized.

Consider the Fourier transform FTTd : f �→ ̂f which takes f : Z
d → C

to ̂f : ̂

Zd = T
d → C, and is implemented by the kernel P (n,k) = e2πin·k, n ∈

Z
d,k ∈ T

d,

̂f(k) =
∑

n

P (n,k)f(n) =
∑

n

e2πin·kf(n).

Physically, FTTd transforms a function in real space into a function in quasi-
momentum space. The inverse transform is implemented by P (n,k)−1 with a
similar formula. In T-duality, the Chern character for the Poincaré line bundle
P → T

d × ̂

Td is the analogous object in the Fourier–Mukai transform (see Eq.
(5.1)). It implements an isomorphism between the K-theory groups of a torus
T

d, and those of a dual torus ̂

Td (note that the hat is meant to distinguish ̂

Td

from T
d and does not denote the Pontryagin dual of T

d).
Let us give a simple example of how the ordinary Fourier transform acts

on an integration map. Write (n, nd) = n ∈ Z
d and let ι be the inclusion of

Z
d−1 → Z

d taking n �→ (n, 0). Let ∂ : ̂f �→ ∂ ̂f be integration along the dth
circle in T

d. This picks out only the part of ̂f with Fourier coefficient nd = 0,
so there is a commutative diagram

f

ι∗

��

∼
FT

Td

��
̂f

∂

��
ι∗f ∼

FT
Td−1

�� ∂ ̂f

(1.1)

where ι∗ is simply restriction to nd = 0, and FTTd−1 is the restricted Fourier
transform.

Recall that integration along a fibre gives a push-forward map of differen-
tial forms. If we view the “bulk” function algebra C(Td) as a crossed product
of the “boundary” algebra C(Td−1) by a trivial action of the dth copy of Z,
then there is a Pimsner–Voiculescu boundary map which is implemented by
integration (or push-forward) along the last copy of T (see Sect. 5.2). The
Pimsner–Voiculescu homomorphism is a model for the bulk-to-boundary map
in physical applications, and we are interested in whether the analogue of (1.1)
continues to hold at the level of topological invariants, for C(Td) as well as its
deformed (i.e. noncommutative tori) and real versions.
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2. Bulk–Boundary Homomorphism and the Pimsner–Voiculescu
Boundary Map

In condensed matter physics applications, one often considers Hamiltonians
which are symmetric under translations by Z

d. Such a Hamiltonian transforms
into a family of Bloch Hamiltonians parametrized by the Brillouin torus T

d,
which is the Pontryagin dual of Z

d. Under a suitable gap hypothesis, one can
define a Fermi projection onto the occupied states with energy lying below the
Fermi level. This projection represents a class in the K0(C(Td)). With addi-
tional symmetries present, the appropriate K-theory group hosting the topo-
logical invariants associated to the Hamiltonian may be a real K-theory group
and/or of a different degree. For example, the appropriate invariant in the
presence of a chiral symmetry is a K1 group element represented by a unitary
constructed from the Fermi projection. When antiunitary symmetries such as
time-reversal are present, the invariants typically belong to a KR-theory group.

The boundary is usually taken to be a codimension-1 surface with only
a subgroup Z

d−1 of translation symmetries remaining. The bulk–boundary
correspondence is modelled as a homomorphism from the K-theory of a bulk
algebra into that of a boundary algebra. This is the paradigm of the topological
boundary map initially introduced for the quantum Hall effect in [27], and
explained in various other physical settings in [51]. We provide a brief outline
of the relevant Hamiltonians, algebras and the bulk–boundary homomorphism,
to give physical context to the subsequent sections, referring the reader to the
monograph [51] for more details.

A generic bulk Hamiltonian in a lattice model acts on a Hilbert space
l2(Zd) ⊗ V , where Z

d labels (after choosing some origin) the lattice sites and
V ∼= C

N is some internal finite-dimensional Hilbert space hosting, for instance,
spin or sublattice degrees of freedom. The unitary shift operators Sy, y ∈ Z

d

act on the l2(Zd) factor by translations Sy|n〉 = |n + y〉, and the lattice model
Hamiltonians may be written as

H =
∑

y∈Zd

Sy ⊗ Wy, (2.1)

where Wy are N × N hopping matrices satisfying W ∗
y = W−y. We also write

Si, i = 1, . . . , d for the generating translations in the ith direction. In concrete
models, the hopping matrices decay suitably quickly with y, reflecting some
locality condition on the hopping range. Since H commutes with the Z

d action
by Sy, the Fourier transform FT turns it into (FT)H(FT)−1 =

∫

⊕
k∈Td

dk Hk,
with the N × N Bloch Hamiltonian Hk at quasi-momentum k acting on the
space of Bloch wavefunctions ψk that acquire a phase e2πik·y under a transla-
tion by Sy.

2.1. Bulk and Boundary Algebras

The Hamiltonians (2.1) are representations of self-adjoint elements in a matrix
algebra over C∗(Zd) = C∗(Ui, . . . , Ud) ∼= C(Td), with Ui, i = 1, . . . , d commut-
ing unitaries. We call C = C∗(Zd) the bulk algebra, and the Fermi projection
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defines a projection in MN (C ) giving a class in K0(C ) as a topological invari-
ant associated to a gapped Hamiltonian.

The half-space algebra ̂C is a modified version of C . Instead of d com-
muting unitaries Ui generating the algebra, one of the unitaries Ud is replaced
by a partial isometry ̂Ud satisfying

̂U∗
d

̂Ud = 1, ̂Ud
̂U∗

d = 1 − ê,

where ê is a projection. The half-space algebra is ̂C = C∗(̂U1, . . . , ̂Ud) with ̂Ui

commuting unitaries for i = 1, . . . , d−1 and ̂Ud the above partial isometry. For
d = 1 we obtain the universal Toeplitz C∗-algebra generated by a non-unitary
partial isometry.

The boundary algebra E sits inside ̂C as the two-sided ideal generated by
ê, and there is a non-split exact sequence

0 −→ E −→ ̂C
q−→ C −→ 0, (2.2)

where q(̂Ui) = Ui.
The reason for the terminology “half-space algebra” and “boundary al-

gebra” is the following. Just as C is canonically represented on l2(Zd) with
Ui acting as the translations Si, the algebras ̂C and E are canonically repre-
sented on l2(Zd−1 × N) (for simplicity, we leave out the internal Hilbert space
V here). Explicitly, let Π : l2(Zd) → l2(Zd−1 ×N) be the partial isometry such
that ΠΠ∗ = 1l2(Zd−1×N) and Π∗Π is projection onto l2(Zd−1 × N). Then the
representatives ̂Si of ̂Ui are ΠSiΠ∗, so for instance, ̂Sd is the unilateral shift
in the dth direction. The generic half-space Hamiltonian ̂H (or the bulk-with-
boundary Hamiltonian) acts on l2(Zd−1 × N) and has a decomposition

̂H = ΠHΠ∗ + ˜H, (2.3)

where H is a bulk Hamiltonian as in (2.1). Thus the term ΠHΠ∗ in (2.3) is
a simple truncation of H to the half-space Z

d−1 × N, and ˜H is a compact
compensating boundary term which is picked up by the process of truncation.
As elements in the abstract algebras, the half-space Hamiltonian is a (non-
homomorphic) lift of the bulk Hamiltonian from the bulk algebra C to the
half-space algebra (or bulk-with-boundary algebra) ̂C .

2.2. Pimsner–Voiculescu Boundary Map

The bulk algebra C = C∗(Zd) can be written as a crossed product of C∗(Zd−1)
by a trivial action of the dth copy of Z, and the boundary algebra E is isomor-
phic to C∗(Zd−1)⊗K where K is the algebra of compact operators. The exact
sequence of algebras (2.2) is then the Toeplitz-like extension of C∗(Zd−1) asso-
ciated to this action. As explained in [51], additional ingredients are needed to
make this description more realistic. For instance, one often encounters Hamil-
tonians which are invariant under a group of magnetic translations [59,61].
Such translations generate a noncommutative torus AΘ (see Sect. 3), which is
a twisted group algebra for Z

d. Also, for the modelling of disorder, it is usual
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to take a compact probability space Ω on which Z
d acts via α′. As a conse-

quence of these additional considerations, the bulk algebra C containing the
disordered bulk Hamiltonians is a twisted crossed product C(Ω)�α′,Θ Z

d. The
action of the dth copy of Z can be peeled off so that C is itself a Z-crossed
product C = J �α Z, where J = C(Ω) �α′|,Θ| Z

d−1 is the restricted twisted
crossed product [13].

In this setting, the generalization of (2.2) is the Toeplitz-like extension
([48], 10.2 of [4])

0 −→ J ⊗ K −→ T (J , α) −→ J �α Z −→ 0, (2.4)

where K are the compact operators and T (J , α) is the Toeplitz algebra as-
sociated to J and α. Thus J (or its stabilization J ⊗ K) is the boundary
algebra, and the bulk algebra C is the crossed product J �α Z. The long
exact sequence in K-theory for Eq. (2.4) can be identified with the Pimsner–
Voiculescu (PV) exact sequence [48]

K0(J )
1−α∗ �� K0(J )

j∗ �� K0(J �α Z)

∂

��
K1(J �α Z)

∂

��

K1(J )
j∗

�� K1(J ).
1−α∗

��

(2.5)

Here, j is inclusion into the crossed product, and the K-theory of the bulk-
with-boundary algebra T (J , α) has been naturally identified with the K-
theory of J as in [48]. When dealing with time-reversal invariant Hamiltoni-
ans, we need to use real crossed products (e.g. see [42]), and the real version
of the PV cyclic sequence has 24 terms rather than six.

2.3. T-Dualization of the Bulk–Boundary Homomorphism

The Pimsner–Voiculescu boundary map ∂ of (2.5) plays a crucial role in the
bulk–boundary correspondence. It was argued in [42,51] to be the homomor-
phism taking a bulk topological invariant to a boundary topological invariant,
and is based on the approach pioneered in [27]. Combined with certain du-
ality results (e.g. in cyclic cohomology) along the lines of [27,43], equality of
numerical invariants for the bulk and the boundary can be established. These
invariants have physical interpretations in many concrete models (see Chapter
7 of [51] for some examples), the prototypical example being an equality of the
bulk and edge Hall conductivities in the 2D quantum Hall effect [27].

In general, K-theory boundary maps are rather complicated and ab-
stract. Following the intuition provided by Sect. 1, we will show in several
physically important cases that the T-dualized version of ∂ is a conceptually
simpler restriction map. Together with the interpretation of the T-dual K-
theory groups in Sect. 6.2.1, a surprising consequence is the following view of
the bulk–boundary homomorphism:
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Real space bulk invariant

Restriction
to boundary

��

∼
T−duality

�� Momentum space bulk
invariant

bulk–boundary

homomorphism

��
Real space boundary
invariant

∼
T−duality

�� Momentum space
boundary invariant

3. Higher Dimensional Noncommutative Tori

In this section, we give brief overview of noncommutative tori and how they
arise as strict deformation quantizations of ordinary tori. The 2D noncommu-
tative torus Aθ appears naturally in the study of T-duality in string theory
[39,40] and in the study of the quantum Hall effect [3] as a deformed version
of the Brillouin torus. It may be less familiar to the reader, so we review the
pertinent facts necessary for our paper. More details can be found in [13,55].

A higher dimensional noncommutative torus is the universal C∗-algebra
generated by unitaries which commute up to specified scalars. Let Θ = (Θij) be
a skew symmetric real (d×d) matrix. The noncommutative torus AΘ is by de-
finition [55,57] the universal C∗-algebra generated by unitaries U1, U2, . . . , Ud

subject to the relations for 1 ≤ j, k ≤ d,

UkUj = exp(2πiΘjk)UjUk.

Remark 3.1. AΘ is equivalently the universal C∗-algebra generated by uni-
taries ux, for x ∈ Z

d, subject to the relations

UyUx = exp(πi〈x,Θ(y)〉)Ux+y

for x, y ∈ Z
d. It follows that if B ∈ GLd(Z), and if Bt denotes the transpose

of B, then ABtΘB
∼= AΘ. That is, AΘ is independent of the choice of basis of

Z
d.

Every higher dimensional noncommutative torus can be written as an
iterated crossed product by Z. More precisely, let Θ be a skew symmetric
matrix as above. Then there is an automorphism Φ of AΘ| = AΘ|

Zd−1×{0}
homotopic to the identity and such that (cf. [13])

AΘ
∼= AΘ| �Φ Z.

The smooth noncommutative torus can be realized as a deformation
quantization of the smooth functions on a torus T = R

d/Z
d of dimension

equal to d, by a construction due to Rieffel [56] (we use the notation T rather
than T

d to emphasize the group structure, thus ̂T refers to the Pontryagin
dual of T ). The parametrized case was considered in [18,19]. Recall that the
Poisson bracket for a, b ∈ C∞(T ) is just
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{a, b} =
d

∑

i,j=1

Θij
∂a

∂xi

∂b

∂xj
,

where Θ = (Θij) is a skew symmetric matrix. The action of T on itself is
given by translation. The Fourier transform is an isomorphism between smooth
functions on the torus C∞(T ) and Schwartz functions on the Pontryagin dual
S( ̂T ), taking the pointwise product on C∞(T ) to the convolution product
on S( ̂T ) and taking differentiation with respect to a coordinate function to
multiplication by the dual coordinate. In particular, the Fourier transform of
the Poisson bracket gives rise to an operation on S( ̂T ) which we denote by the
same brackets. For φ, ψ ∈ S( ̂T ), define

{ψ, φ}(p) = −4π2
∑

p1+p2=p

ψ(p1)φ(p2)γ(p1, p2), p, p1, p2 ∈ ̂T ,

where γ is the skew symmetric form on ̂T ∼= Z
d defined by

γ(p1, p2) =
d

∑

i,j=1

Θij p1,i p2,j .

For t ∈ R, define a skew bicharacter σt on ̂T by

σt(p1, p2) = exp(−πtiγ(p1, p2)).

Using this, define a new associative product 
t on S( ̂T ),

(ψ 
t φ)(p) =
∑

p1+p2=p

ψ(p1)φ(p2)σt(p1, p2).

Then (S( ̂T ), 
t) is precisely the smooth noncommutative torus A∞
tΘ.

The norm || · ||t is defined to be the operator norm for the action of S( ̂T )
on L2( ̂T ) given by 
t. Via the Fourier transform, carry this structure back to
C∞(T ), to obtain the smooth noncommutative torus as a strict deformation
quantization of C∞(T ), [56] with respect to the translation action of T . The
operator norm closure of A∞

tΘ is AtΘ.

4. Noncommutative T-Duality and Deformation Quantization

4.1. Commutative T-Duality

Assume that d is a positive integer. We can realize standard T-duality using
crossed product algebras and Rieffel’s imprimitivity theorem [53]:

C(Td) � R
d ∼ C(Rd/R

d) � Z
d (Morita equivalence)

= C � Z
d

∼= C(̂Td),
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where the R
d action lifts the T

d action on itself. By the Connes–Thom isomor-
phism theorem [9],

K−d+j(C(Td)) ∼= Kj(C(̂Td)),

which is exactly T-duality in the commutative setting, cf. [6,7,24].

4.2. Noncommutative T-Duality

For t ∈ [0, 1], let σt denote the multiplier corresponding to the (p × p) skew
symmetric matrix tΘ. Then with αt the adjoint action associated with the
regular representation of σt,

C(Td) �σt
R

d ∼ C(Td,K) �αt
R

d (Morita equivalence)

∼ C(Rd/R
d,K) �αt

Z
d (Morita equivalence)

∼ C �σt
Z

d (Morita equivalence)
∼= AtΘ.

By Packer–Raeburn stabilization [46] and the Connes–Thom isomorphism the-
orem [9],

K−d+j(C(Td)) ∼= Kj(AΘ),

which is noncommutative T-duality, cf. [38–40].

4.3. Deformation Quantization

Now {C(Td) �σt
R

d : t ∈ [0, 1]} is a homotopy of twisted crossed products in
the sense of section 4, [47]. By Theorem 4.2 in [47], we deduce, after writing
σ ≡ σ1, that

Kj(C(Td) � R
d) ∼= Kj(C(Td) �σ R

d),

that is,

K−d+j(C(̂Td)) ∼= K−d+j(AΘ).

Assembling the above results together, we have

Theorem 4.1 (Noncommutative T-duality=T-duality ◦ deformation quantiza-
tion). The following diagram commutes,

K−d+j(C(Td))

NC T−duality

∼

�������������

T−duality

∼ �� Kj(C(̂Td))

deformation quantization

∼

������������

Kj(AΘ)

(4.1)

Remark 4.2. The availability of a path of deformations linking AΘ to C(̂Td)
is crucial for the identification of their K-theory groups, and allows us to link
noncommutative T-duality with commutative T-duality as above. There is a
more general notion of parametrized deformation quantization [19] of a torus
(or even torus bundles) for which the K-theory of the deformed torus differs
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from that of the undeformed one. There is still a notion of T-duality in this
parametrized setting, and we study some of its implications in [20].

5. T-Duality Trivializes Bulk–Boundary Homomorphism:
Complex Case

5.1. Torus K-Theory and the Fourier–Mukai Transform

We recall some facts about the complex K-theory of the d-torus T
d = ̂

Zd (e.g.
Sec. 2 of [13]). K∗(Td) can be computed in many ways, with the result that
it is canonically isomorphic as a Z2-graded ring to the exterior algebra Λ∗

Z
d,

with

K0(Td) ∼= Λeven
Z

d, K−1(Td) ∼= Λodd
Z

d.

The product is skew-commutative, i.e. a · b = (−1)ijb · a for a ∈ K−i(Td), b ∈
K−j(Td) [2]. With respect to a choice of d generators for Z

d, we denote the
subgroup corresponding to the ith generator by Z

(i), and the corresponding
circle in T

d by T
(i) = ̂

Z(i). The isomorphism K∗(Td) ∼= Λ∗
Z

d is the unique one
which identifies each Z

(i) ∈ Λ∗
Z

d with the copy of K−1(T(i)) ≡ K−1(̂Z(i)) ∼= Z

in K∗(Td). It is convenient to pass to cohomology via the Chern character
isomorphism, then the canonical generators of Λ∗

Z
d can be identified with

the volume forms dx1,dx2, . . . ,dxi, . . . ,dxd for each circle T
(i) in T

d = T
(1) ×

T
(2) × . . . × T

(d) = ̂

Z(1) × ̂

Z(2) × . . . × ̂

Z(d) = ̂

Zd.
Let ̂

Td denote a “dual” d-torus (note: the hat here does not mean the
Pontryagin dual of T

d). We will write K•( · ), • ∈ Z2 when referring to a
K-theory group in a particular degree. The commutative T-duality group iso-
morphisms K•(Td) ↔ K•−d(̂Td) are implemented by the Poincare line bundle
P over T

d × ̂

Td, which has first Chern class c1(P) =
∑d

i=1 dyi ∧ dxi, where
xi, yj are coordinates on T

d and ̂

Td, respectively:

P

��

T
d × ̂

Td

p

����
��

��
��

�
p̂

		��
��

��
��

�

T
d

̂T
d.

(5.1)

Here, p and p̂ are the canonical projections onto T
d and ̂

Td, respectively. The
T-duality map TTd : K•(Td) → K•−d(̂Td) is defined to be TTd = p̂!(p∗[a] · [P])
for [a] ∈ K•(Td), where p̂! is the push-forward along p̂, or “integration over
T

d”, and [P] is the K-theory class of P.
Let I be a multi-index I = {i1, i2, . . . , in}, 1 ≤ i1 < i2 < . . . < in ≤ d,

which has a complementary multi-index Ic = {ic1, . . . , i
c
d−n}, 1 ≤ ic1 < ic2 <

. . . < icd−n ≤ d such that I ∪ Ic = {1, . . . , d}. We write dxI := dxi1 ∧ . . .∧dxin .
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For I = ∅, define dx∅ := 1. The dxI form a canonical Z-basis for K∗(Td) ∼=
Λ∗(Zd). Then for a generator of K•(Td) represented by the homogeneous form
dxI , the T-dual, or the Fourier–Mukai transform, has Chern character

TTd(dxI) =
∫

Td

dxI ∧ Ch(P)

= ±
∫

Td

dxI ∧ dxIc ∧ dyIc

= ±dyIc

, (5.2)

where the ±1 comes from the appropriate rearrangement of the dxi,dyj factors
in the calculation.

Remark 5.1. The are some sign conventions involved in defining the Fourier–
Mukai transform in (5.2). For example, we could have taken the Poincaré
line bundle to be a line bundle P ′ with first Chern class

∑d
i=1 dxi ∧ dyi

instead. Up to an overall sign, the inverse transform is implemented by P ′.
The Fourier–Mukai transform can be thought of as a geometric version of
the ordinary Fourier transform for functions, which implements isomorphisms
between topological invariants instead. Note that a similar sign choice in the
integral kernel occurs when defining the ordinary Fourier transform and its
inverse.

5.2. Bulk–Boundary Homomorphism

Next, we study how the Pimsner–Voiculescu boundary map acts on K∗(Td) ∼=
K∗(C(Td)). This is a special case of (2.5) where J = C(Td−1) and α is the
trivial action of Z

(d) on C(Td−1); thus C(Td) = C(Td−1) �id Z
(d). Then the

Toeplitz-like extension is simply the tensor product of C(Td−1) with the basic
Toeplitz extension

0 −→ K −→ T −→ C(T(d)) ∼= C∗(Z(d)) ∼= C(S1) −→ 0, (5.3)

where T is the Toeplitz C∗-algebra generated by the unilateral shift. The PV-
sequence (2.5) simplifies to

0 −→ K•(C(Td−1))
j∗−→ K•(C(Td)) ∂−→ K•−1(C(Td−1)) −→ 0,

and we deduce that K•(C(Td)) ∼= K•(C(Td−1)) ⊕ K•−1(C(Td−1)). Since
C(Td) ∼= C(Td−n) ⊗ C(Tn), after using the Künneth theorem, it suffices to
consider what happens for the case of d = 1. In this case, the boundary maps
become

K0(T) = Z[1] ∂=0−−−→ 0 = K−1(pt)

K−1(T) = Z[dx1] � b
∂←→ −b ∈ Z[1] = K0(pt). (5.4)

In (5.4), the map ∂ can be understood as the boundary map for (5.3), i.e. the
usual Fredholm index

Index(Tf ) = −Winding(f)
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for a Toeplitz operator Tf with continuous and nowhere vanishing symbol f ,
which is invariant under compact perturbations.

For d = 2, we have

K0(T2) = Z[1] ⊕ Z[dx1 ∧ dx2] � (a, b) ∂�→ b ∈ Z[dx1] = K−1(T)

K−1(T2) = Z[dx1] ⊕ Z[dx2] � (a, b) ∂�→ −b ∈ Z[1] = K0(T),

and similarly for d ≥ 2. At the level of differential forms, we may regard ∂ as
−

∫

T(d) for any d.
Let ι be the inclusion of T

d−1 ≡ T
(1) × . . . T(d−1) into T

d with last co-
ordinate xd = 0, and T̂d−1 the dual (d − 1)-subtorus of ̂

Td with yd = 0. Let
TTd−1 denote the corresponding T-duality map K•(Td−1) → K•−d+1(T̂d−1),
implemented by the restricted Poincaré line bundle P| over T

d−1 × T̂d−1 with
first Chern class c1(P|) =

∑d−1
i=1 dyi ∧ dxi.

Theorem 5.2 (T-duality trivializes bulk–boundary homomorphism, complex
commutative case). The following diagram commutes:

K•+d(Td)

ι∗

��

T
Td �� K•(̂Td)

∂

��
K•+d(Td−1)

T
Td−1 �� K•+1(T̂d−1)

(5.5)

Proof. Ignoring the ±1 sign for now, if d ∈ I, we have

∂ ◦ TTd(dxI) =
∫

̂

T(d)
dyIc

= 0 = TTd−1(0) = TTd−1 ◦ (ι∗)(dxI).

On the other hand, if d �∈ I, then

∂ ◦ TTd(dxI) =
∫

̂

T(d)
(dyIc

) = dyIc\{d}

and

TTd−1 ◦ (ι∗)(dxI) = TTd−1(dxI) = dyIc\{d}.

A simple counting exercise verifies that the ±1 factor matches up as well. �

We emphasize that the main point of Theorem 5.2 is not in the computa-
tion of ∂, but in the somewhat surprising conversion of ∂ into a homomorphism
of a different nature under T-duality, cf. Sects. 6.2.1 and 6.2.2 for further dis-
cussion.

5.3. Noncommutative T-Duality Trivializes Bulk–Boundary Correspondence

There is in fact a canonical isomorphism K•(C(Td)) ∼= K•(AΘ) based on
a construction carried out in [13], which we now outline. We will write Θ|
for the restriction of Θ to Z

d−1 × Z
d−1, σ| for its associated multiplier, and

AΘ| = C �σ| Z
d−1 for the associated noncommutative (d − 1)-torus. Note

that each entry Θij of the skew-symmetric form Θ parametrizing AΘ is only
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determined up to the addition of an integer. Thus we can regard Θ as a point in
a p-torus, where p = d(d−1)

2 . The p-torus is the hypercube [0, 1]p with opposite
faces identified, and we can take Θ such that each Θij ∈ [0, 1). Given such a
Θ, there is always a contractible path from 0 to Θ, by taking t �→ tΘ. Then
the image X of this path defines a C∗-algebra AX which is obtained from
C(X) by taking d successive crossed products with Z, cf. pp. 163–165 of [13].
We can regard AX as a continuous family {Ax}x∈X of noncommutative tori
parameterized by X. We write AX| for the (d − 1)-fold crossed product of
C(X) with Z, thus AX = AX| � Z

(d).
For each x ∈ X, the noncommutative torus Ax is itself the d-fold crossed

product of C with Z in such a way that the evaluation projection AX| → Ax|
is equivariant for the dth action of Z

(d). Also, the Z
(d)-actions on AX| and Ax|

are homotopic to the identity. The contractibility of X implies that these eval-
uation projections induce canonical isomorphisms in K-theory [13]. In partic-
ular, K•(C(Td)) = K•(A0) ∼= K•(AX) ∼= K•(AΘ). Similarly, K•(C(Td−1)) ∼=
K•(AX|) ∼= K•(AΘ|). Using these facts along with the functoriality of the PV-
exact sequence with respect to Z-equivariant homomorphisms (cf. pp. 47 of
[52], pp. 164 of [13]), we obtain the commutative diagram

K•(C(Td))

∂

��

K•(AX)∼��

∂

��

∼ �� K•(AΘ)

∂

��
K•−1(C(Td−1)) K•−1(AX|)

∼�� ∼ �� K•−1(AΘ|)

(5.6)

Combining the commutative diagrams in (5.5), (5.6) and Theorem 4.1, we
obtain:

Theorem 5.3 (Noncommutative T-duality trivializes bulk–boundary homo-
morphism). The following diagram commutes:

K•−d(C(Td))

ι∗

��

NC T−duality �� K•(AΘ)

∂

��
K•−d(C(Td−1))

NC T−duality �� K•−1(AΘ|)

(5.7)

6. Real T-Duality and Wedge Sums of Spheres

For T-duality computations in the real case, the Chern character does not
work, so we embark on a different strategy involving the stable splitting of tori
into spheres. This facilitates the expression of the real T-duality isomorphisms
explicitly on generators. In general, this duality takes K-theory groups defined
on a torus T

d with trivial involution, to K-theory groups defined on a dual
torus ̂

Td with non-trivial involution. The latter torus is the Brillouin zone for
time-reversal invariant insulators, with the involution on ̂

Td due to the Fourier
transform of complex-conjugation coming from the time-reversal operator.
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There are at least two different ways to interpret the torus T
d with trivial

involution. It could be thought of as the Brillouin zone for a “T-dual” PT -
symmetric insulator (see Sect. 6.2.2 and [42]), or it could be the fundamen-
tal domain (in real-space) for the underlying Z

d-translation symmetry (Sect.
6.2.1).

6.1. Stable Splitting of Tori

By Proposition 4.I.1 of [22], there is a homotopy equivalence

Σ(X × Y ) � ΣX ∨ ΣY ∨ Σ(X ∧ Y ) (6.1)

for (base-pointed) CW complexes X,Y , where Σ is the reduced suspension and
∨ is the wedge sum. For example, T

(i1) ×T
(i2) ∼= T

2 and T
(i1) ∨T

(i2) ∨ (T(i1) ∧
T

(i2)) ∼= S1 ∨ S1 ∨ S2 are homotopy equivalent after taking a suspension.
Note that each circle T

(i) has a basepoint k = 0. It is convenient to write
SI := T

(i1) ∧ . . . ∧ T
(in) ∼= S|I|. Then iterating (6.1), we obtain

Lemma 6.1 (Stable splitting of the torus). The d-torus T
d is stably homotopy

equivalent to a wedge sum of spheres,

T
d stable�

∨

1≤|I|≤d

SI ∼=
d

∨

n=1

(Sn)∨(d
n). (6.2)

Since K-theory is a stable homotopy invariant, and the reduced K-theory of
a wedge sum is the direct sum of the reduced K-theory of the summands,
Lemma 6.1 gives an alternative way to compute the K•(Td) which also works
for the real case. Namely, after taking a suitable number of suspensions, and
writing S∅ = S0, we obtain

K•(Td) ∼= ˜K•(S0) ⊕ ˜K•(Td) ∼=
⊕

I

˜K•(SI) ∼=
d

⊕

n=0

⊕

|I|=n

˜K•(SI). (6.3)

Thus, we can identify the subgroup of K∗(Td) generated by dxI with ˜K |I|(SI),
where |I| is taken modulo 2.

We also write ̂SI := ̂
T(i1) ∧ . . . ∧ ̂

T(in) ∼= S|I| for the “dual” spheres and
tori. The same stable splitting applies for ̂

Td,

̂

Td
stable�

∨

1≤|I|≤d

̂SI , (6.4)

as well as its K-theory,

K•(̂Td) ∼=
⊕

I

˜K•(̂SI). (6.5)

Then we see that the T-duality map (or Fourier–Mukai transform) dxI ↔
±dyIc

computed in (5.2) and implemented by the Poincaré line bundle P,
corresponds to the “Poincaré duality” isomorphisms

˜K•(SI) ∼←→ ˜K•−d(̂SIc) (6.6)
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for each factor in the decompositions (6.3) and (6.5). This expresses the iso-
morphisms,

K•(Td) ∼= K•−d(̂Td),

explicitly, generator-by-generator.
For the subtorus T

d−1, we also have the stable splitting

T
d−1 stable�

∨

1≤|I|≤d−1

SI , (6.7)

where d �∈ I in the multi-index. The wedge sum in (6.7) includes naturally into
that in (6.2), and the induced restriction map in K-theory respects the direct
sum (6.3), i.e. ι∗ takes K•(SI) to K•(SI) if d �∈ I and is the zero map otherwise.
Similarly, the boundary map ∂ respects the direct sum decomposition; it takes
˜K•(SIc

) → ˜K•+1(SIc\{d}) if d ∈ Ic and is the zero map if d �∈ Ic. Thus we
have a useful alternative way to express ∂ as a push-forward map without
using differential forms, which can be carried over to real case.

6.2. T-Duality Trivializes Bulk–Boundary Homomorphism: Real Case

The real KO-theory functors can be applied to Lemma 6.1, giving the decom-
position

KO•(Td) ∼=
⊕

I

˜KO
•
(SI).

However, KO-theory does not provide the appropriate topological invariants
for time-reversal invariant topological insulators. The complex bundle of va-
lence states over the Brillouin torus is required to host the action of an antilin-
ear time-reversal operator T. The Brillouin torus ̂

Td is regarded as a Real space
with involution k �→ −k inherited from the complex conjugation of characters
for Z

d. The valence bundle comes with a Real (T2 = +1) or Quaternionic
(T2 = −1) structure, and defines a class in the Real KR-theory or Quater-
nionic KQ-theory of ̂

Td [14,34,41,42,45]. Quaternionic and Real K-theories
are related by a degree shift of 4, and for notational convenience, we work
mostly with KR-theory. Real T-duality was discussed in [58] in the context
of the real Baum–Connes conjecture. It can be expressed as the real Baum–
Connes assembly map following Poincaré duality. We work with a special case
of real T-duality at a more concrete level, expressing the isomorphisms at the
level of K-theory generators.

We consider the dual spheres ̂SI as Real spaces as follows. First, ̂S1 is
the Real space S1 with involution k �→ −k, with base-point k = 0 which
is a fixed point. Each dual circle ̂

T(i) is homeomorphic to ̂S1 as Real space.
Note that ̂S1 is sometimes written as S1,1, which is the unit circle in R

1,1

where the involution in the latter is (w1, w2) �→ (w1,−w2) and the base-point
is (1, 0). Similarly, ̂Sn as a Real space is the unit n-sphere in R

1,n, and we
have ̂Sn1 ∧ ̂Sn2 ∼= Ŝn1+n2 . Each ̂SI is homeomorphic as a Real space to ̂S|I|.
We regard the dual torus ̂

Td as the Real space ̂
T(i1) × . . . ̂

T(id). The reduced
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suspension ̂Σ taken in the Real sense is the smash product with ̂S1, and there
is again a stable splitting (6.4), now regarded in the category of Real spaces.
We thus have

KR•(̂Td) ∼=
⊕

I

˜KR
•
(̂SI).

Our convention for the Real K-theory groups is ˜KR
−n

(X) = ˜KR
0
(Sn ∧ X) =

˜KR
0
(ΣX) and ˜KR

n
(X) = ˜KR

0
(̂Sn ∧ X) = ˜KR

0
(̂ΣX).

Although we can no longer represent the real/Real K-theory generators
of T

d and ̂

Td by differential forms, we still have the “Poincaré duality” iso-
morphisms

˜KO
•+d

(SI) ∼←→ ˜KR
•
(̂SIc), (6.8)

which is the real analogue of (6.6). Note that ˜KO
•+d

(SI) and ˜KR
•
(̂SIc) are

both isomorphic to KO•+d−|I|(pt). The isomorphisms (6.8) assemble to give
an explicit isomorphism

KO•+d(Td) ∼=
⊕

I

˜KO
•+d

(SI) ∼=
⊕

Ic

˜KR
•
(̂SIc) ∼= KR•(̂Td).

In analogy to the complex case, the boundary map ∂ : KR•(̂Td) →
KR•+1(T̂d−1), or push-forward map along the dth coordinate, is taken to be

KR•(̂SIc) → KR•+1( ̂SIc\{d}) if d ∈ Ic and the zero map otherwise. The restric-
tion map ι∗ is the obvious one, so we have the real analogue of Theorem 5.2:

Theorem 6.2 (T-duality trivializes bulk–boundary homomorphism, real case
version I). The following diagram commutes:

KO•+d(Td)

ι∗

��

T
Td �� KR•(̂Td)

∂

��
KO•+d(Td−1)

T
Td−1 �� KR•+1(T̂d−1)

(6.9)

6.2.1. Fundamental Domain in Real Space. The torus T
d appearing at the

top-left of Theorem 6.2 is the (real) classifying space R
d/Z

d for the group Z
d

of translations. Physically, it is the fundamental domain, or unit cell in real
space for a lattice in R

d. Because the time-reversal operator acts pointwise
in real-space, this fundamental domain as a Real space (i.e. a space with Z2-
action) has the trivial involution, in contrast to the momentum-space Brillouin
torus ̂

Td. From this point of view, the momentum-space K-theory invariants in
KR•(̂Td) have real-space counterparts in KO•+d(Td) under the real T-duality
isomorphisms. In the real-space picture, the map ι∗ is simply restriction onto
the fundamental subdomain for Z

d−1 (the subgroup of translation symmetries
for the boundary). The commuting diagram (6.9) is then the statement that
this real-space restriction homomorphism is T-dual to the momentum-space
bulk–boundary homomorphism.
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Apart from ι∗ being conceptually simpler than ∂, there is also the advan-
tage that the ordinary KO-theory groups are more directly related to classi-
cally known characteristic classes for real vector bundles. An example of this
is the interpretation of the classical Stiefel–Whitney classes as the T-dual to
the physicists’ Fu–Kane–Mele [15] invariants, as explained in [42].

6.2.2. PT-Symmetric Insulators. If the time-reversal symmetry also effects
spatial inversion (but time-reversal and spatial inversion are not separately
symmetries), then the involution on the Brillouin torus due to antilinearity
is cancelled out by that due to inversion. We write (PT ) for such a space-
inverting and time-reversing symmetry element, and (PT) for its realization
as an antilinear map on the valence bundle. Since (PT) provides an ordinary
real (if (PT)2 = +1) or quaternionic (if (PT)2 = −1) structure on the va-
lence bundle, and ordinary KO-theory and quaternionic KSp-theory differ by
a degree shift of 4, we can use KO-theory to study such (PT )-symmetric in-
sulators [41]. Note that the group of symmetries is now a semi-direct product
Z

d
� {1, (PT )}, whereas we had Z

d × {1, T} earlier on.
In this case, a bulk–boundary homomorphism should take place on the

KO-theory side, taking KO•(Td) ∼= KO−•(C(Td, R)) to KO•−1(Td−1)
∼= KO−•+1(C(Td−1, R)). Note, however, that the real C∗-algebra C(Td, R)
is not simply obtained from C(Td−1, R) by a crossed product with Z

(d).

We thus define ∂ to be ˜KO
•
(SI) ∼−→ ˜KO

•−1
(SI\{d}) if d ∈ I, and the

zero map otherwise. The restriction ι∗ : KR•(̂Td) → KR•(̂Td) takes ˜KR
•
(̂SI)

isomorphically to ˜KR
•
(̂SI) if d �∈ I and is zero otherwise. Then it is straight-

forward to see that T-duality turns ∂ into the restriction ι∗ on the KR-theory
side, as summarized in the commutative diagram

KO•(Td)

∂

��

T
Td �� KR•−d(̂Td)

ι∗

��
KO•−1(Td−1)

T
Td−1 �� KR•−d(T̂d−1).

(6.10)

6.3. Higher Codimensional Bulk–Boundary Homomorphism

In principle, we can also consider codimension-n boundaries with 1 < n ≤ d,
then the bulk–boundary homomorphism should involve a push-forward along
the n transverse directions, which we can take to be labelled by the last n
coordinates without loss of generality. This may be achieved by iterating ∂, so
that ∂(n) := ∂◦. . .◦∂ : K•(̂Td) → K•+n(T̂d−n). Composition of the restrictions
ι∗ is simply the K-theory map induced by the inclusion ι(n) : T

d−n ↪→ T
d.

Since we have a commutative diagram like (5.5) at each stage, we also obtain
a commutative diagram
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K•+d(Td)

(ι(n))∗

��

T
Td �� K•(̂Td)

∂(n)

��
K•+d(Td−n)

T
Td−n �� K•+n(T̂d−n)

(6.11)

and similarly for the noncommutative and real cases.

7. Four-Dimensional Quantum Hall Effect

In this section, we apply main Theorem 5.3 to analyse the bulk–boundary
correspondence for the 4D quantum Hall effect (as studied in [32,50,51,64]
for example) via T-duality. We show that cyclic cohomology pairings with K-
theory, can be computed on the T-dual side in terms of integrals over the torus
that are easy to compute.

Consider the noncommutative torus AΘ when d = 4, which is generated
by four unitaries U1, U2, U3, U4 subject to the relations

UiUj = e2πiΘijUjUi, (1 ≤ i, j ≤ 4).

From the work of Elliott [13], the K-theory of AΘ can be identified with
that of C(T4). Namely, K0(AΘ) ∼= Λeven

Z
4 ∼= Z

8, K1(AΘ) ∼= Λodd
Z

4 ∼= Z
8,

and the (total) Chern character can be used to distinguish classes from one
another. For this section, AΘ is understood to be the smooth version of the
noncommutative torus as in Sect. 3, which has the same K-theory. Note that
if we write B for the two-form 1

2dxtΘdx, where dx is the column vector of
one-forms (dx1,dx2,dx3,dx4), then B generalizes the magnetic field 2-form in
the 2D quantum Hall effect. Although we work in the d = 4 case, the analysis
presented in this section works equally well for any even d.

Let

I = {i1, . . . , ik}, 1 ≤ i1 < . . . ik ≤ 4

be a multi-index, with complementary multi-index Ic, and let ΘI denote the
submatrix (Θij) with i, j ∈ I. Let δ1, δ2, δ3, δ4 be the standard derivations on
AΘ such that δj(Uk) = δjkUk. The noncommutative second Chern class on AΘ

is given, up to a normalization, by the expression [10,11,44],

ctop(a0, a1, a2, a3, a4) =
∑

η∈S4

sign(η) τ
(

a0δ1(aη(1))δ2(aη(2))δ3(aη(3))δ4(aη(4))
)

,

(7.1)

with η running over the permutations of 4 elements and τ the von Neumann
trace. Here, ctop is a cyclic 4-cocycle on the noncommutative 4-torus AΘ.
There is a pairing of ctop with K0(AΘ) given by the usual formula ctop([P ]) =
1
2ctop(P, P, P, P, P ) with ctop extended to matrix algebras over AΘ. The pairing
is integral, that is, ctop([P ]) ∈ Z for any projection P ∈ MN (AΘ).
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When |I| = 2, we define PI to be the Rieffel projection [54] for the non-
commutative 2-subtorus1 AΘI

generated by Ui1 , Ui2 . There are six independent
first Chern classes cI , |I| = 2, given up to a normalization by the formula

cI(a0, a1, a2) =
∑

η∈S2

sign(η) τ
(

a0δi1(aη(1))δi2(aη(2))
)

,

and they are such that their pairings with the Rieffel projections are cI([PJ ]) =
1 if I = J and zero otherwise. The trace of a Rieffel projection satisfies τ(PI) =
Θi1i2 , and can be written more invariantly as a Pfaffian τ(PI) = Pf ΘI , where
ΘI denotes the 2 × 2 antisymmetric submatrix whose off-diagonal entries are
±Θi1i2 . Since δk(PI) = 0 if k /∈ I, we have ctop([PI ]) = 0. Also, ctop([1AΘ ]) =
0 = cI([1AΘ ]) where 1AΘ denotes the unit of AΘ. With this notation, we can
write

K0(AΘ) = Z[P] ⊕
⊕

|I|=2

Z[PI ] ⊕ Z[1AΘ ], (7.2)

where [P] is a final independent generator which has ctop([P]) = 1.
The restricted 3D noncommutative torus AΘ| is generated by three uni-

taries U1, U2, U3 subject to UiUj = e2πiΘijUjUi, (1 ≤ i, j ≤ 3). The cyclic
3-cocycle codd

top representing the odd top Chern class for AΘ| is, up to a nor-
malization,

codd
top (a0, a1, a2, a3)

=
∑

η∈S3

sign(η) τ
(

a0δ1(aη(1))δ2(aη(2))δ3(aη(3))
)

, aj ∈ AΘ|,

and extends to matrix algebras over AΘ|. The odd cocycle codd
top pairs with

classes [U ] in K1(AΘ|) in the usual way,

codd
top ([U ]) = codd

top (U−1 − 1AΘ| , U − 1AΘ| , U
−1 − 1AΘ| , U − 1AΘ|).

In particular, codd
top ([Ui]) = 0, i = 1, 2, 3, since δk(Ui) = 0 if k �= i. There are

also three independent “winding numbers” built from the 1-cocycles codd
i , i =

1, 2, 3, given by

codd
i (a0, a1) = τ (a0δi(a1)) , aj ∈ AΘ|,

which are such that codd
i ([Uj ]) = δij . The odd K-theory of AΘ| is

K1(AΘ|) ∼= Z[U1] ⊕ Z[U2] ⊕ Z[U3] ⊕ Z[U ], (7.3)

where U is a unitary such that codd([U ]) = 1.
There are also boundary maps in cyclic cohomology which are dual to

the Pimsner–Voiculescu boundary map [43]. One may proceed to evaluate the
pairings ctop([P ]) and codd

top (∂[P ]) and show using a duality theorem that they
are equal, c.f. Chapter 5.5 of [51] and references therein. We show, on the other
hand, that an analogous computation can be done on the T-dual side, which

1 We assume for simplicity that Θi1i2 ∈ (0, 1), otherwise the Rieffel projection should be

replaced by the Bott projection for the 2-torus.
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has a further advantage that the K-theory generators [P] and [U ] are more
explicit.2

In more detail, [P] can be given by the twisted higher index theorem,
cf. Section 2 of [35] and [36], together with the fact that the twisted Baum–
Connes map μΘ : K0(T4) → K0(AΘ) is an isomorphism in this case. As in
Sect. 4.2, μΘ is a strict deformation of the Baum–Connes map μ0 : K0(T4) →
K0(A0) = K0(C(̂T4)), with the latter being the same as the Connes–Thom
isomorphism in Sect. 4.1. Thus we consider a deformation parameter t ∈ [0, 1]
and μtΘ : K0(T4) → K0(AtΘ) as a deformed index map,

μtΘ([E]) = indexAtΘ(/∂R4 ⊗ ∇A ⊗ ˜∇E), [E] ∈ K0(T4),

where A is a one-form such that dA = B, E is a vector bundle on the 4D
torus, ∇E is a hermitian connection on E and ˜∇E is the lift of the connection
on the lifted vector bundle ˜E over R

4; this implements the noncommutative
T-duality in Sect. 4.2.

We can now define [P] to be the image μΘ[1] of the trivial line bundle 1
over T

4. More generally, instead of (7.2), we can conveniently write K0(AΘ)
in terms of the images under μΘ of the natural generators of K0(T4),

K0(AΘ) ∼= Z[μΘ[1]] ⊕
⊕

|I|=2

Z[μΘ[˜LI ]] ⊕ Z[μΘ[˜E ]]; (7.4)

here [˜LI ] = [LI ] − [1] where LI is the line bundle with first Chern class dxI ,
and [˜E ] = [E ] − [rank(E) · 1] where E is a vector bundle with vanishing first
Chern class and second Chern class the volume form.

Similarly, there is a restricted twisted Baum–Connes map μΘ| : K0(T3)
→ K1(AΘ|), and we define [U ] ∈ K1(AΘ|) to be μΘ|[1]; instead of (7.3), we
can write

K1(AΘ|) ∼= Z[μΘ|[1]] ⊕
⊕

|I′|=2

Z[μΘ|[ ˜LI′ ]]. (7.5)

Note that we have abused notation slightly in (7.5)—1 and LI′ are now bundles
over T

3—and that I ′ is a multi-index in {1, 2, 3}.
The cyclic cocycles ctop, cI , etc., can also be understood on the T-dual

side, using Connes’ map μcyc
Θ : Heven(T4) → HP 0(AΘ). Namely, under the

Eilenberg–Maclane isomorphism H∗(T4) ∼= H∗(Z4), the form dxI determines
a group cocycle CI on Z

4, which in turn determines a periodic cyclic cocycle
μcyc

Θ (dxI) ∈ HP 0(AΘ), cf. [35]. For example, the volume form, vol, gives the
“volume” group 4-cocycle Cvol ≡ C1234,

Cvol(g1, g2, g3, g4) = det[g1, g2, g3, g4].

2 We thank E. Prodan for pointing out that the construction of [60], which we had used in
an earlier version of this paper, does not work here.
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This then defines a cyclic 4-cocycle, defined on delta functions Δg, g ∈ Z
4

(which generate the twisted group algebra) by

(μcyc
Θ (vol))(Δg1 ,Δg2 ,Δg3 ,Δg4)

≡ Cvol(g1, g2, g3, g4) · τ (Δg0 
 Δg1 
 Δg2 
 Δg3 
 Δg4)

= det[g1, g2, g3, g4] · τ (Δg0 
 Δg1 
 Δg2 
 Δg3 
 Δg4) , (7.6)

where 
 is the twisted convolution product. Note that the derivations δi are
such that δi(Δg) is the ith component gi of g. Then we also have

ctop(Δg0 ,Δg1 ,Δg2 ,Δg3 ,Δg4)

=
∑

η∈S4

sgn(η) · τ
(

Δg0 
 δη(1)Δg1 
 δη(2)Δg2 
 δη(3)Δg3 
 δη(4)Δg4

)

=
∑

η∈S4

sgn(η)gη(1)
1 g

η(2)
2 g

η(3)
3 g

η(4)
4 · τ (Δg0 
 Δg1 
 Δg2 
 Δg3 
 Δg4)

= det[g1, g2, g3, g4] · τ (Δg0 
 Δg1 
 Δg2 
 Δg3 
 Δg4) ,

so that ctop = μcyc
Θ (vol). A similar calculation shows that cI = μcyc

Θ (dxI), |I| =
2, for the cyclic 2-cocycles, and that τ corresponds to the constant function
(0-form) 1.

Using the twisted higher index formula in Section 2 of [35] and Eq. 1.5
of [37], we have

(μcyc
Θ (dxI))(μΘ[E]) =

∫

T4
dxI ∧ eB ∧ Ch(E)

where E is any vector bundle over T
4 and Ch(E) its Chern character. For

example,

ctop(μΘ[1]) = (μcyc
Θ (vol))(μΘ[1]) =

∫

T4
vol ∧ eB = 1,

cI(μΘ[1]) = (μcyc
Θ (dxI))(μΘ[1]) =

∫

T4
dxI ∧ eB = Pf ΘIc ,

τ(μΘ[1]) = (μcyc
Θ (1))(μΘ[1]) =

∫

T4
eB = Pf Θ, (7.7)

showing in particular that [P] = μΘ[1] has ctop([P]) = 1 as required. Similarly,

ctop(μΘ[˜LJ ]) =
∫

T4
vol ∧ eB ∧ dxJ = 0,

cI(μΘ[˜LJ ]) =
∫

T4
dxI ∧ eB ∧ dxJ =

{

1, J = Ic

0, J �= Ic,

τ(μΘ[˜LJ ]) =
∫

T4
eB ∧ dxJ = Pf ΘJc , (7.8)
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and with Ch[˜E ] = vol,

ctop(μΘ[˜E ]) =
∫

T4
vol ∧ eB ∧ vol = 0,

cI(μΘ[˜E ]) =
∫

T4
dxI ∧ eB ∧ vol = 0,

τ(μΘ[˜E ]) =
∫

T4
eB ∧ vol = 1. (7.9)

The same analysis for the restricted Connes map μcyc
Θ| : Heven(T3) →

HP 1(AΘ|) gives codd
top = μcyc

Θ| (volT3) and codd
i = μcyc

Θ| (dxi), i = 1, 2, 3. Analo-
gously to (7.7)–(7.9), we have, for the restricted twisted Baum–Connes iso-
morphism μΘ| : K0(T3) → K1(AΘ|) and the restricted two-form B|,

codd
top (μΘ|[1]) = μcyc

Θ| (volT3)(μΘ|[1]) =
∫

T3
volT3 ∧ eB| = 1,

codd
i (μΘ|[1]) = μcyc

Θ| (μΘ|[1]) =
∫

T3
dxi ∧ eB| = Pf Θ|{i}c , (7.10)

so we can take [U ] = μΘ|[1]. Similarly,

codd
top (μΘ|[˜LJ ′ ]) =

∫

T3
volT3 ∧ eB| ∧ dxJ ′

= 0,

ctop
i (μΘ|[˜LJ ′ ]) =

∫

T3
dxi ∧ eB ∧ dxJ ′

=

{

1, J ′ = {i}c

0, J ′ �= {i}c.
(7.11)

The above computations show that the cyclic cohomology pairings with
the K-theories of AΘ and AΘ| can be computed on the T-dual side in terms of
integrals over the torus, which are straightforward to compute. Of particular
interest are the following identities:

ctop([P ]) = codd
top (∂[P ])

c{i,4}([P ]) = codd
i (∂[P ]), i = 1, 2, 3, [P ] ∈ K0(AΘ). (7.12)

The reason for their relevance to the bulk–boundary correspondence is that
ctop is the (dual PV) boundary cocycle to codd

top , while c{i,4} is the boundary
of codd

i . Thus (7.12) expresses the equality of pairings under the PV boundary
maps (c.f. [51]), generalizing the correspondence proved for the 2D quantum
Hall effect in [27].

Working on the T-dual side, we first write [P ] = μΘ[E] for some (virtual)
bundle E over T

4. By our Theorem 5.3, ∂(μΘ[E]) = μΘ|(ι∗[E]) for any [E] ∈
K0(T4), where ι is the inclusion T

3 → T
4. Note that ι∗[1] = [1], ι∗[˜E ] = 0,

and ι∗[˜LI ] = [˜LI ] if 4 /∈ I and is zero otherwise. It suffices to check (7.12) for
generators [E] = [1], [˜LI ], [˜E ]; the equalities in these cases follow from (7.7)–
(7.11) above.
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Étude Sci. 62(1), 41–144 (1985)

[11] Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)

[12] Elbau, P., Graf, G.M.: Equality of bulk and edge Hall conductance revis-
ited. Commun. Math. Phys. 229(3), 415–432 (2002)

[13] Elliott, G.A.: On the K-theory of the C∗-algebra generated by a projective
representation of a torsion-free discrete abelian group. In: Arsene, G. et. al. (eds.)
Operator Algebras and Group Representations I (Neptun, Romania 1980). In:
Monographs Stud. Math., vol. 17, pp. 157–184. Pitman, Boston (1984)

[14] Freed, D.S., Moore G., W.: Twisted equivariant matter. Ann. Henri
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