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Computing Asymptotic Invariants
with the Ricci Tensor on Asymptotically Flat
and Asymptotically Hyperbolic Manifolds

Marc Herzlich

Abstract. We prove in a simple and coordinate-free way the equivalence
between the classical definitions of the mass or of the center of mass of an
asymptotically flat manifold and their alternative definitions depending
on the Ricci tensor and conformal Killing fields. This enables us to prove
an analogous statement in the asymptotically hyperbolic case.

Introduction

Mass is the most fundamental invariant of asymptotically flat manifolds. Orig-
inally defined in general relativity, it has since played an important role in
Riemannian geometric issues. Other interesting invariants, still motivated by
physics, include the energy momentum, the angular momentum, and the cen-
ter of mass (which will be of interest in this note). Moreover, they have been
extended to other types of asymptotic behaviours such as asymptotically hy-
perbolic manifolds.

Two difficulties occur when handling the mass of an asymptotically flat
or hyperbolic manifold (or any of its companion invariants): it is defined as
a limit of an integral expression on larger and larger spheres, and it depends
on the first derivatives of the metric tensor written in a special chart where
the metric coefficients are asymptotic to those of the model (flat, hyperbolic)
metric at infinity.

It seems unavoidable that a limiting process is involved in the definitions.
But finding expressions that do not depend on the first derivatives but on
rather more geometric quantities is an old question that has attracted the
attention of many authors. It was suggested by Ashtekar and Hansen [1] (see
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also Chruściel [6]) that the mass could be rather defined from the Ricci tensor
and a conformal Killing field of the Euclidean space. Equality between the two
definitions, as well as a similar identity for the center of mass, has then been
proved rigorously by Huang using a density theorem [12], cf. previous work
by Corvino and Wu [10] for conformally flat manifolds, and by Miao and Tam
[13] through a direct computation in coordinates.

The goal of this short note is twofold: we shall provide first a simple
proof of the equality between the classical definitions of the asymptotic invari-
ants and their alternative definitions using the Ricci tensor. Although similar
in spirit to Miao–Tam [13], our approach completely avoids computations in
coordinates. Moreover, it clearly explains why the equality should hold, by con-
necting it to a natural integration by parts formula related to the contracted
Bianchi identity. A nice corollary of our proof is that it can be naturally ex-
tended to other settings where asymptotic invariants have been defined. As an
example of this feature, we provide an analogue of our results in the asymp-
totically hyperbolic setting.

1. Basic Facts

We begin by recalling the classical definitions of the mass and the center of
mass of an asymptotically flat manifold, together with their alternative defi-
nitions involving the Ricci tensor. In all that follows, the dimension n of the
manifolds considered will be taken to be at least 3. We shall restrict ourselves
to manifolds with only one end, but the definitions can be straightforwardly
extended to the general case.

Definition 1.1. An asymptotically flat manifold is a complete Riemannian man-
ifold (M, g) such that there exists a diffeomorphism Φ (called a chart at in-
finity) from the complement of a compact set in M into the complement of a
ball in R

n, such that, in these coordinates and for some τ > 0,

|gij − δij | = O(r−τ ), |∂kgij | = O(r−τ−1), |∂k∂�gij | = O(r−τ−2),

where r = |x| is the Euclidean radius in R
n.

Definition 1.2. If τ > n−2
2 and the scalar curvature of g is integrable, the

quantity

m(g) =
1

2(n − 1)ωn−1
lim

r→∞

∫

Sr

(−δeg − d tre g)(νe) dvolesr
(1.1)

exists (where e refers to the Euclidean metric in the given chart at infinity, δ is
the divergence defined as the adjoint of the exterior derivative, νe denotes the
field of Euclidean outer unit normals to the coordinate spheres Sr, and ωn−1

is the volume of the unit round sphere of dimension n− 1) and is independent
of the chart chosen around infinity. It is called the mass of the asymptotically
flat manifold (M, g).
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Definition 1.3. If τ > n−2
2 , the scalar curvature Scalg of g is integrable,

m(g) �= 0, and the following so-called Regge–Teitelboim (RT) conditions are
satisfied:

|godd
ij | = O(r−τ−1), |∂k

(
godd

ij

) | = O(r−τ−2), (Scalg)odd = O(r−2τ−2)

(where ·odd denotes the odd part of a function on the chart at infinity), the
quantity

cα(g) =
1

2(n − 1)ωn−1m(g)
lim

r→∞

∫

Sr

[
xα(−δeg − d tre g)

− (g − e)(∂α, ·) + tre(g − e) dxα
]
(ν) dvolesr

exists for each α in {1, ..., n}. Moreover, the vector C(g) = (c1(g), . . . , cn(g))
is independent of the chart chosen around infinity, up to the action of rigid
Euclidean isometries. It is called the center of mass of the asymptotically flat
manifold (M, g).

The normalization factors may seem somewhat arbitrary in the previous
two definitions: they, however, show up naturally if one wants these invariants
to be equal to the usual parameters of the standard spacelike slices of the
Schwarzschild metrics (in any dimension).

Existence and invariance of the mass have been proved by Bartnik [2] and
Chruściel [5]. The center of mass has been introduced by Regge and Teitelboim
[15,16], and Beig and Ó Murchadha [3], see also the more recent works of
Corvino and Schoen [8,9].

We shall recall here the approach towards existence and well-definedness
of these invariants due to Michel [14]. Let g and b be two metrics on a complete
manifold M , the latter one being considered as a background metric, hence
the notation. Let also Fg (resp. Fb) be a (scalar) polynomial invariant in the
curvature tensor and its subsequent derivatives, V be a function, and (Mr)r�0

be an exhaustion of M by compact subsets, whose boundaries will be denoted
by Sr (later taken as large coordinate spheres in a chart at infinity). One then
may compute:

∫

Mr

V
(Fg − Fb

)
dvolb =

∫

Mr

V (DF)b(g − b) dvolb +
∫

Mr

V Q(b, g) dvolb

where Q denotes the (quadratic) remainder term in the Taylor formula for the
functional F . Integrating the linear term by parts leads to:

∫

Mr

V
(Fg − Fb

)
dvolb =

∫

Mr

〈(DF)∗
bV , g − b〉dvolb +

∫

Sr

U(V, g, b)

+
∫

Mr

V Q(b, g) dvolb (1.2)
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(where we include here the volume element in the definition of U). This formula
shows that

HF (V, g, b) = lim
r→∞

∫

Sr

U(V, g, b)

exists if the following two natural conditions are satisfied:
(1) The metric g is asymptotic to b so that V

(Fg − Fb
)

and V Q(b, g) are
integrable;

(2) V belongs to the kernel of (DF)∗
b (the adjoint of the first variation oper-

ator of the Riemannian functional F).
Moreover, Michel proves in [14] that HF (V, g, b) is an asymptotic invariant,
independent of the choice of chart at infinity, if
(3) The background geometry b is rigid enough, in the sense that any two

‘charts at infinity’ where g is asymptotic to b differ by a diffeomorphism
whose leading term is an isometry of b;

(4) Fb is a constant function.
This last result is a consequence of the diffeomorphism invariance of the inte-
grated scalar invariant Fg.

If one chooses Fg = Scalg on an asymptotically flat manifold (hence
b = e, the Euclidean metric), one has

(D Scal)∗
eV = Hesse V + (ΔeV ) e,

where Hesse denotes the Hessian of a function and Δe is the Euclidean Laplace
operator (defined here as the opposite of the trace of the Hessian, so that it has
non-negative spectrum). Its kernel then consists of affine functions. We now
let V ≡ 1. The scalar curvature of g is integrable and τ > n−2

2 in Definition
1.1, hence

HScal(1, g, e) = lim
r→∞

∫

Mr

Scalg dvole − lim
r→∞

∫

Mr

Q(e, g) dvole (1.3)

makes sense since integrability of Scalg yields convergence of the first term,
whereas the integrand in the second term is a combination of terms in (g−b)∂2g
and g−1(∂g)2 which are integrable due to the value of τ . Moreover, an easy
computation shows that

HScal(1, g, e) = lim
r→∞

∫

Sr

U(1, g, e) = 2(n − 1)ωn−1 m(g)

where m(g) is the classical definition of the mass given in Definition 1.2. More-
over, Michel’s analysis recalled above [14] shows that the mass is an asymptotic
invariant, independent of the choice of chart at infinity, since Euclidean geom-
etry is a rigid background geometry [2,5] and Scale ≡ 0.

If one takes V = V (α) = xα (the α-th coordinate function in the chart
at infinity, for any α in {1, ..., n}), the same procedure now yields the classical
definition of the α-th coordinate of the center of mass, i.e.
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HScal(V (α), g, e) = lim
r→∞

∫

Sr

U(V (α), g, e) = 2(n − 1)ωn−1 m(g) cα(g)

for any α ∈ {1, ..., n}. Under the RT conditions, these converge as well and the
vector C(g) is again an asymptotic invariant.

We now recall the alternative definitions of these asymptotic invariants
via the Ricci tensor, following the suggestions of Ashtekar and Hansen,
Chruściel, etc.:

Definition 1.4. Let X be the radial vector field X = r∂r in the chosen chart
at infinity. Then, we define the Ricci version of the mass of (M, g) by

mR(g) = − 1
(n − 1)(n − 2)ωn−1

lim
r→∞

∫

Sr

(
Ricg −1

2
Scalg g

)
(X, ν) dvolg (1.4)

whenever this limit is convergent. For α in {1, . . . , n}, let X(α) be the Euclidean
conformal Killing field X(α) = r2∂α − 2xαxi∂i and define the Ricci version of
the center of mass:

cα
R(g) =

1
2(n − 1)(n − 2)ωn−1m(g)

lim
r→∞

∫

Sr

(
Ricg −1

2
Scalg g

)
(X(α), ν) dvolg (1.5)

whenever this limit is convergent. We will call this vector CR(g) =
(c1

R(g), . . . , cn
R(g)).

Notice that these definitions of the asymptotic invariants rely on the
Einstein tensor, which seems to be consistent with the physical motivation.

2. Equality in the Asymptotically Flat Case

In this section, we will prove the equality between the classical expressions
m(g) and C(g) of the mass and the center of mass and their Ricci versions
mR(g) and CR(g). The proof we will give relies on Michel’s approach described
above together with two elementary computations in Riemannian geometry.

Lemma 2.1 (The integrated Bianchi identity). Let h be a C3 Riemannian
metric on a smooth compact domain with boundary Ω and X be a conformal
Killing field. Then∫

∂Ω

(
Rich −1

2
Scalh h

)
(X, ν) dvolh∂Ω =

n − 2
2n

∫

Ω

Scalh
(
δhX

)
dvolhΩ,

where ν is the outer unit normal to ∂Ω.

Proof. This equality is a variation of the well-known Pohozaev identity in
conformal geometry, as stated by Schoen [17]. Our version has the advantage
that the divergence of X appears in the bulk integral (the classical Pohozaev
identity is rather concerned with the derivative of the scalar curvature in the
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direction of X). The proof being very simple, we will give it here. From the
contracted Bianchi identity δh(Rich − 1

2 Scalh h) = 0, one deduces that
∫

∂Ω

(
Rich −1

2
Scalh h

)
(X, ν) dvolh∂Ω =

∫

Ω

〈
Rich −1

2
Scalh h, (δh)∗X

〉
h

dvolhΩ

where (δh)∗ in the above computation denotes the adjoint of the divergence
on vectors, i.e. the symmetric part of the covariant derivative. Since X is
conformal Killing, (δh)∗X = − 1

n (δhX)h and
∫

∂Ω

(
Rich −1

2
Scalh h

)
(X, ν) dvolh∂Ω

= − 1
n

∫

Ω

trh

(
Rich −1

2
Scalh h

)
(δhX) dvolhΩ

=
n − 2
2n

∫

Ω

Scalh(δhX) dvolhΩ

and this concludes the proof. �

Lemma 2.1 provides a link between the integral expression appearing
in the Ricci definition of the asymptotic invariants (see (1.4)) and the bulk
integral ∫

Ω

Scalh
(
δhX

)
dvolhΩ .

This latter quantity also looks like the one used by Michel to derive the de-
finitions of the asymptotic invariants, provided that some connection can be
made between divergences of conformal Killing fields and elements in the ker-
nel of the adjoint of the linearized scalar curvature operator. Such a connection
stems from our second lemma:

Lemma 2.2. Let h be a C3 Riemannian metric and X a conformal Killing
field. If h is Einstein with Einstein constant λ(n − 1), then V = δhX sits in
the kernel of (D Scal)∗

h. More precisely:

Hessh V = −λ V h. (2.1)

Proof. Recall that (D Scal)∗
hV = Hessh V + (ΔhV )h − V Rich [4, 1.159(e)], so

that its kernel is precisely the set of solutions of (2.1) if Rich = λ(n − 1)h.
Let φt be the (local) flow of X, which acts by conformal diffeomorphisms,

and e2ut the conformal factor at time t � 0, with u0 = 0. Hence

Ricφ∗
t h = λ(n − 1)φ∗

t h,

an equality which can be written equivalently as:

Rice2uth = λ(n − 1) e2uth
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since φt is conformal. From [4, 1.159(d)],

Rice2uth = Rich −(n − 2)
(
Hessh ut − dut ⊗ dut

)
+

(
Δhut − (n − 2) |dut|2h

)
h,

from which one deduces that

−(n − 2)
(
Hessh ut − dut ⊗ dut

)
+

(
Δhut − (n − 2)|dut|2h

)
h

= λ(n − 1)
(
e2ut − 1

)
h.

We now differentiate at t = 0. Denoting by u̇ the first variation of ut, the
conformal Killing equation yields the following relation between X and u̇:
δhX = −n u̇. Taking into account that u0 = 0, one gets:

− (n − 2)Hessh u̇ + (Δhu̇)h = 2(n − 1)λ u̇ h (2.2)

(note that this equation can also be obtained directly from the conformal
Killing equation on X but we prefer the proof above as it underlines the rela-
tion with the variations of the Ricci curvature under conformal deformations).
Tracing this identity yields 2(n − 1)Δhu̇ = 2n(n − 1)λ u̇, so that Δhu̇ = nλ u̇.
Inserting this in Eq. (2.2) leads to Hessh u̇ = −λ u̇ h, which is the desired
expression. �

We now have all the necessary elements to prove the equality between
the classical expressions of the asymptotic invariants and their Ricci versions
in the asymptotically flat case.

Theorem 2.3. If (M, g) is a C3 asymptotically flat manifold with integrable
scalar curvature and decay rate τ > n−2

2 , then the classical and Ricci defini-
tions of the mass agree: m(g) = mR(g). If m(g) �= 0 and the RT asymptotic
conditions are moreover assumed, the same holds for the center of mass, i.e.
cα(g) = cα

R(g) for any α ∈ {1, ..., n}.
Proof. We shall give the complete proof for the mass only, the case of the
center of mass being entirely similar. Fix a chart at infinity on M . As the
mass is defined asymptotically, we may freely replace a compact part in M
by a (topological) ball, which we shall decide to be the unit ball B0(1) in the
chart at infinity. The manifold is unchanged outside that compact region. For
any R >> 1, we define a cutoff function χR which vanishes inside the sphere
of radius R

2 , equals 1 outside the sphere of radius 3R
4 and moreover satisfies

|∇χR| � C1R
−1, |∇2χR| � C2R

−2, and |∇3χR| � C3R
−3

for some universal constants Ci (i = 1, 2, 3) not depending on R. We shall
now denote χ = χR unless some confusion is about to occur. We then define a
metric on the annulus ΩR = A(R

4 , R):

h = χg + (1 − χ)e,

and we shall also denote by h the complete metric obtained by gluing the
Euclidean metric inside the ball B0(R

4 ) and the original metric g outside the
ball B0(R).

Let now X be a conformal Killing field for the Euclidean metric.
Lemma 2.2 tells us that V = δeX sits in the kernel of the adjoint of the
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linearized scalar curvature operator, i.e. (D Scal)∗
eV = 0. We now compute as

in Lemma 2.1 over the annulus ΩR = A(R
4 , R):

∫

SR

(
Rich −1

2
Scalh h

)
(X, νh) =

∫

ΩR

〈Rich −1
2

Scalh h , (δh)∗X〉 ,

where the volume forms and scalar products are all relative to h but have
been removed for clarity. (Notice that the boundary contribution at R

4 vanishes
since h is flat there). We now split (δh)∗X into its trace part − 1

n (δhX)h and its
tracefree part (δh)∗

0X (where (δh)0 is as above the conformal Killing operator),
so that

∫

SR

(
Rich −1

2
Scalh h

)
(X, νh) = − 1

n

∫

ΩR

trh

(
Rich −1

2
Scalh h

)
δhX

+
∫

ΩR

〈Rich −1
2

Scalh h , (δh)∗
0X〉.

Hence,
∫

SR

(
Rich −1

2
Scalh h

)
(X, νh) =

n − 2
2n

∫

ΩR

(δhX) Scalh

+
∫

ΩR

〈Rich −1
2

Scalh h, (δh)∗
0X〉. (2.3)

We now choose X = r∂r (the radial dilation vector field), so that δeX =
−n in this case. We can now replace the volume form dvolh, the divergence
δh, and the conformal Killing operator (δh)∗

0 by their Euclidean counterparts
dvole, δe, and (δe)∗

0: indeed, from our asymptotic decay conditions, our choice
of cutoff function χ, and the facts that τ > n−2

2 and |X| = r, one has for the
first term in the right-hand side of (2.3):

∫

ΩR

(δhX) Scalh dvolh −
∫

ΩR

(δeX) Scalh dvole = O
(
Rn−2τ−2

)
= o(1)

as R tends to infinity (note that the second term in the left-hand side does not
tend alone to zero at infinity as the scalar curvature of h may not be uniformly
integrable). As (δe)∗

0X = 0, the last term in (2.3) can be treated in the same
way and it is o(1), too. One concludes that, in the case X is the radial field,

∫

SR

(
Rich −1

2
Scalh h

)
(X, νh) dvoleSR

=
n − 2
2n

∫

ΩR

(δeX) Scalh dvole +o(1).

(2.4)
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We now argue as in Michel’s analysis (see Eq. (1.2)) but over the annulus ΩR:∫

ΩR

(δeX) Scalh dvole =
∫

SR

U(δeX, g, e) +
∫

SR
4

U(δeX,h, e)

+
∫

ΩR

(δeX)Q(e, h) dvole .

But the boundary contribution at r = R
4 vanishes since h = e there and, more-

over, taking into account δeX = −n, the assumptions on χ, our asymptotic
decay conditions, and τ > n−2

2 , the integral containing the Q-term tends to 0
when R goes to infinity, for the very same reason that made it integrable in
Michel’s analysis. Thus, one gets eventually:

1
2(n − 1)ωn−1

∫

SR

(
Rich −1

2
Scalh h

)
(r∂r, ν

h) dvolSr
=

2 − n

2
m(g) + o(1),

and this proves the expected result.
If one now chooses X = X(α) = r2∂α − 2xαxi∂i, i.e. X is the essential

conformal Killing field of R
n obtained by conjugating a translation by the

inversion map, one has δeX(α) = 2nxα = 2nV (α) and one can use the same
argument. Some careful bookkeeping shows that all appropriate terms are o(1)
due to the Regge–Teitelboim conditions and one concludes that

1
2(n − 1)ωn−1

∫

Sr

(
Rich −1

2
Scalh h

)
(X(α), νh) dvolSr

= (n − 2)m(g) cα(g) + o(1)

as expected. �

3. Asymptotically Hyperbolic Manifolds

We now show that the same approach can be used to get analogous expressions
in other settings where asymptotic invariants have been defined. Looking back
at what has been done in the previous sections, we see that the proofs relied
on the following two crucial facts:
(1) The definition of the invariant should come (through Michel’s analysis)

from a Riemannian functional, which should in turn be related with some
version of the Bianchi identity;

(2) There should exist some link between conformal Killing vectors and func-
tions in the kernel of the adjoint linearized operator of the relevant Rie-
mannian functional.

In the presence of these two features, the equality between the classical def-
inition of the invariants (à la Michel) and their Ricci versions follows almost
immediately, as the estimates necessary to cancel out all irrelevant terms are
exactly the same as those used in the definition of the invariants, see for in-
stance Eq. (2.4) and the arguments surrounding it.
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We insist on the fact that this idea is completely general and might be
applied to a number of different geometric settings. As an example of this,
we shall study the case of asymptotically hyperbolic manifolds. The mass was
defined there by Chruściel and the author [7] and independently by Wang [18],
see [11] for a comparison.

Definition 3.1. An asymptotically hyperbolic manifold (with one end) is a
complete Riemannian manifold (M, g) such that there exists a diffeomorphism
Φ (chart at infinity) from the complement of a compact set in M into the
complement of a ball in H

n (equipped with the background hyperbolic metric
b = dr2 +sinh2 rgSn−1), satisfying the following condition: if (ε0 = ∂r, ε1,..., εn)
is a b-orthonormal basis, and gij = g(εi, εj), there exists some τ > 0 such that,

|gij − δij | = O(e−τr), |εk · gij | = O(e−τr), |εk · ε� · gij | = O(e−τr).

Definition 3.2. If τ > n
2 and (Scalg +n(n − 1)) is integrable in L1(erdvolb),

the linear map M(g) defined by

V 	−→ 1
2(n − 1)ωn−1

lim
r→∞

∫

Sr

[
V (−δbg − d trb g)

+ trb(g − b)dV − (g − b)(∇bV, ·) ]
(ν) dvolsr

is well defined on the kernel of (D Scal)∗
b and is independent of the chart at

infinity. It is called the mass of the asymptotically hyperbolic manifold (M, g).

As in the asymptotically flat case, the normalization factor comes from
the computation for a reference family of metrics, which are the generalized
Kottler metrics in the asymptotically hyperbolic case.

Existence and invariance of the mass can be proven using Michel’s ap-
proach [14]. The kernel K = ker(D Scal)∗

b is the space of functions V solutions
of

Hessb V = V b.

It is (n + 1)-dimensional and is generated, in the coordinates above, by the
functions V (0) = cosh r, V (α) = xα sinh r (for α ∈ {1, . . . , n}), where (xα) =
(x1, . . . , xn) are the Euclidean coordinates on the unit sphere induced by the
standard embedding S

n−1 ⊂ R
n. (An alternative definition of K is provided

as follows: when the hyperbolic space is seen as the upper hyperboloid in
Minkowski spacetime, then K is the set of functions generated by the restric-
tions of the Minkowskian coordinate functions to the hyperboloid.)

Contrarily to the asymptotically flat case, the center of mass is already
included here and does not need to be defined independently. Indeed, the
space K is an irreducible representation of O0(n, 1) (the isometry group of
the hyperbolic space), so that all functions V contribute to a single vector-
valued invariant M(g). In the asymptotically flat case, the kernel K splits into
a trivial 1-dimensional representation (the constant functions) which gives rise
to the mass, and the standard representation of R

n
� O(n) on R

n (the linear
functions), which gives birth to the (vector-valued) center of mass.
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The hyperbolic conformal Killing fields are the same as those of the
Euclidean space, but their divergences must now be explicited with respect
to the hyperbolic metric. In the ball model of the hyperbolic space, one com-
putes that δbX(0) = −nV (0) for the radial dilation vector field X(0), whereas
δbX(α) = −nV (α) for the (inverted) translation fields.

We can now argue as above, but starting with the modified Einstein
tensor

G̃g = Ricg −1
2

Scalg g − (n − 1)(n − 2)
2

g.

The Bianchi-like formula analogous to that of Lemma 2.1 reads, for any con-
formal Killing field X,∫

∂Ω

G̃g(X, ν) dvolg∂Ω =
n − 2
2n

∫

Ω

(Scalg +n(n − 1)) δgX dvolgΩ ,

and we note that the right-hand side is the expected expression to apply
Michel’s approach for the definition of the mass [7,14]. The sequel of the proof
is now completely similar to the one given above. The very same arguments
that provide convergence of the mass in Michel’s approach show that all irrel-
evant contributions at infinity cancel out, so that, keeping the same notation
as in the previous sections (the only difference being that polynomial decay
estimates must be changed to exponential ones),∫

ΩR

(δhX)
(
Scalh +n(n − 1)

)
dvolh

=
∫

ΩR

(δbX)
(
Scalh +n(n − 1)

)
dvolb +o(1)

=
∫

SR

U(δbX, g, b) + o(1).

The relation between the divergences of the conformal Killing vectors and the
elements in the kernel of the adjoint linearized operator comes again from
Lemma 2.2, and one concludes as above with the following alternative defini-
tion of the mass involving the Ricci tensor:

Theorem 3.3. For any i ∈ {0, ..., n},
M(g)

[
V (i)

]
= − 1

n
M(g)

[
δbX(i)

]

= − 1
(n − 1)(n − 2)ωn−1

lim
r→∞

∫

Sr

G̃g(X(i), ν) dvolSr
.

Acknowledgements
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