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The Infrared Problem in QED: A Lesson
from a Model with Coulomb Interaction
and Realistic Photon Emission

Giovanni Morchio and Franco Strocchi

Abstract. The scattering of photons and heavy classical Coulomb interact-
ing particles, with realistic particle–photon interaction (without particle
recoil) is studied adopting the Koopman formulation for the particles. The
model is translation invariant and allows for a complete control of the Dol-
lard strategy devised by Kulish–Faddeev and Rohrlich (KFR) for QED:
in the adiabatic formulation, the Møller operators exist as strong limits
and interpolate between the dynamics and a non-free asymptotic dynam-
ics, which is a unitary group; the S-matrix is non-trivial and exhibits the
factorization of all the infrared divergences. The implications of the KFR
strategy on the open questions of the LSZ asymptotic limits in QED are
derived in the field theory version of the model, with the charged particles
described by second quantized fields: i) asymptotic limits of the charged
fields, Ψout/in(x), are obtained as strong limits of modified LSZ formulas,
with corrections given by a Coulomb phase operator and an exponential
of the photon field; ii) free asymptotic electromagnetic fields, Bout/in(x),
are given by the massless LSZ formula, as in Buchholz approach; iii)
the asymptotic field algebras are a semidirect product of the canonical
algebras generated by Bout/in, Ψout/in; iv) on the asymptotic spaces, the
Hamiltonian is the sum of the free (commuting) Hamiltonians of Bout/in,
Ψout/in and the same holds for the generators of the space translations.

1. Introduction

For the solution of the infrared problem in quantum electrodynamics (QED)
two strategies have been adopted:
A) Exploit the fact that all experiments involve limitations on the detection
of soft photons.
In the perturbative approach, this has led to the introduction of an infrared
cutoff ΔE corresponding to the energy resolution of the photon detectors [26].
A Lorentz invariant formulation of such a program has been advocated by
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Buchholz [6] and further developed in [4,8]. A similar philosophy is at the
basis of Steinmann’s notion of particle detection [25].
B) Pursue the program of the construction of an S-matrix by quantum field
theory (QFT) methods.
A crucial difficulty in this direction is the infraparticle spectrum of the charged
particles, which seems to preclude the existence of asymptotic Lehmann–
Symanzik–Zimmermann (LSZ), or Haag–Ruelle limits of the charged fields.
In fact, as a consequence of Gauss law, the energy–momentum spectrum of
the charged states cannot have a sharp mass [7], so that Dybalski’s extension
of the Haag–Ruelle theory [13] does not apply; it has been argued that such
a mass spectrum can be explained in terms of the infinite asymptotic photon
content of the charged states [14,15].

Chung has proposed [10] that the infrared divergencies disappear in per-
turbative QED if a proper description of the asymptotic states is adopted,
based on non-Fock coherent factors for the electromagnetic field, indexed by
the asymptotic momenta of the charged particles. The effectiveness of the
Chung ansatz for the cancelation of the infrared divergencies has been con-
trolled by Kibble [20]; however, Chung ansatz raises many problems in relation
with general structures in QFT:
i) the space–time translation covariance of Chung’s asymptotic charged states
(depending on non-translation invariant coherent factors)
ii) the possibility of obtaining the Chung charged states from appropriate
asymptotic charged fields
iii) the space–time covariance and canonical structure of such fields
iv) the existence of modified LSZ formulas for them.

A simple source of information has been provided by infrared models
in which a semi-classical treatment is made possible by the use of external
currents or of a dipole approximation [1,2,20]. Historically, such models have
played a crucial role for supporting the Chung picture; however, the absence of
a dynamical description of charged particles and the dipole approximation in
the photon interaction prevent space–time translation invariance and do not
allow for the discussion of i)–iv).

The action of the space–time translations on asymptotic states of Chung
type has been discussed in [14,15] in terms of a splitting of the total Hamilton-
ian H and momentum P as a sum, H = H0 ph +Hcharge, of a free photon term
and a “particle” contribution, with definite mass. In this picture, the infra-
particle spectrum is explained by the infinite photon content of the charged
states.

A non-perturbative control of the validity of Chung ansatz has been
obtained in non-relativistic QED [9]. The main difficulty in non-relativistic
models is given by the electromagnetic corrections to the energy–momentum
relation E(p) of the asymptotic charged particles, a problem which plays a
minor role in QED, where, by the Lorentz invariance of the energy–momentum
spectrum (which persists for charged states [3] in spite of the non imple-
mentability of the Lorentz symmetry), only a mass renormalization is admit-
ted. An LSZ modified formula for one charged particle state has been derived
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in [9]; the discussion of asymptotic particle observables has been restricted to
the velocity and Coulomb effects have not been discussed.

A concrete approach to the complete construction of an S-matrix in QED
in terms of Møller operators has been discussed by Kulish and Faddeev [21]
and by Rohrlich [19], who realized the crucial role of Dollard strategy of using a
modified large time dynamics [11,12], rather than the standard free dynamics.

Dollard strategy has been exploited and rigorously controlled only for
non-relativistic Coulomb scattering and its extension to QED faces substan-
tial problems, due to the infinite photon emission, the related persistent effects
and the lack of covariance under space–time translations of the photon inter-
action in Dollard’s dynamics (beyond the choice of the initial time in Dollard
treatment of Coulomb interaction).

On the basis of the Kulish–Faddeev identification of a Dollard reference
dynamics in QED, Rohrlich has proposed [19] to use it with the same role as the
free dynamics in the standard interaction picture. In this way, he introduces
(non-free) fields and states associated with a “modified interaction picture”
and describes the scattering in terms of transitions between such states; he
also argues that, for large times, such fields coincide with the asymptotic fields
proposed by Zwanziger [27]. The time dependence of such asymptotic fields,
reflecting asymptotic effects of photon emission and Coulomb distorsions, does
not satisfy the group property and space–time covariance is problematic.

As before, soluble infrared models do not provide instructive information
on such issues: in particular, the Pauli–Fierz–Blanchard model [1] leads to a
Dollard dynamics which is a group and substantially includes the full photon
interaction.

The aim of this work is to shed light on the above problems by discussing
a model describing Coulomb scattering with photon emission by N heavy
charged particles, treated as classical particles, with no recoil induced by the
photon interaction. Even if the particle dynamics is not affected by the photon
interaction, the model is not explicitely solvable, the photon dynamics depends
on the non-trivial particle trajectories and detailed estimates are needed for
the control of infrared effects arising from Coulomb asymptotic distorsions.

Such distorsions are of the same form (∼log t) as those induced by photon
recoil, which should not, therefore, lead to substantial changes for the control
of the asymptotic dynamics. Moreover, the results of [9] confirm that photon
recoil does not change the (coherent) characterization of asymptotic photons
in terms of the asymptotic charged particle velocity.

As a consequence of the no-recoil approximation, there is no scatter-
ing in the one charged particle sector; however, in the many particle sectors
the S-matrix is non-trivial and for its construction the Coulomb asymptotic
distortions play a substantial role. The overall picture qualifies as a realistic
description of scattering of heavy charged particles, with strong effects for
particles of high charge.

The fact that the interaction is translation invariant and the electromag-
netic current is not pre-assigned is a distinctive feature of the model with
respect to the external current and Pauli–Fierz–Blanchard models. In fact,
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the model allows for the discussion of the asymptotic limit of charged particle
variables and charged fields, with non-trivial electromagnetic effects even in
the one charged particle sector and a complete control of Coulomb effects. In
this way, asymptotic field algebras are constructed, with a full control of the
problems raised in i)–iv).

The model is defined by the Hamiltonian

H = h0 + hI + H0 + HI, r ,

where h0 is the (non-relativistic or relativistic) free Hamiltonian of N classical
particles in the Koopman formulation, hI the Coulomb interaction, H0 the free
photon Hamiltonian, HI, r the (renormalized) particle–photon interaction. H
is invariant under space translations, with generator denoted by P.

The first aim is to check the effectiveness of the Dollard–Kulish–Faddeev–
Rohrlich strategy for the mathematical control of the asymptotic limit. In
accord with the general approach and analysis of [22], we obtain, for the N
charged particle channel (see Theorem 5.4):
1) Existence of the Møller operators. The Møller operators Ω± are obtained
by introducing an adiabatic switching, e−ε|t|, of the electromagnetic coupling,
and a Dollard reference dynamics Uε

D(t),

Ω± = lim
ε→0, t→±∞

Uε ∗(t)Uε
D(t). (1.1)

2) The group of asymptotic space–time translations. There is a unique family
of unitary operators Uas(a, t), a ∈ IR3, t ∈ IR, satisfying the interpolation
formulas, Eq. (5.20), and therefore the group property and strong continuity,
given by

Uas(a, s) ≡ U+(a, s) = U−(a, s) = lim
ε→0 , t→±∞

Uε ∗
D (t)U0(a, s)Uε

D(t) , (1.2)

with U0(a, t) the free space–time translations. The corresponding generators
are

Has = h0 + αas(H0(a∗, a)) , Pas = −i

N∑

i

∂/∂qi + αas(Pph(a∗, a)) ,

with Pph the photon momentum and αas the standard non-Fock coherent shift,
a∗ → a∗ +

∑
i J(pi), associated to the momenta pi of the charged particles,

Eqs. (4.17) and (5.18). Uas is determined by UD, but the two notions are basi-
cally different, contrary to the discussion of the asymptotic fields adopted in
Refs. [19,27].
3) The S-matrix, S = Ω∗

+ Ω− is invariant under the asymptotic space–time
translations Uas(a, t).
4) The infrared divergences due to the Coulomb interaction and to the soft
photon emission factorize, Eq. (5.27).

The second aim of this work is to shed light on the asymptotic limits of
the Heisenberg fields, especially on the still open problem of the existence of
LSZ limits of charged fields and of their space–time covariance properties.

This can be done in the (second quantized) field theory version of the
model, with the introduction of charged fields Ψ∗(f, t), f a test function of the
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Koopman variables. In spite of the no-recoil approximation, such charged fields
are space–time covariant, with non-trivial and not pre-assigned dynamics; their
asymptotic limit exists as a strong limit, providing information which is not
available in soluble infrared models [1,2,20] and is only partially given by the
analysis of the one charged particle sector in non-relativistic QED [9].

On one side, the Møller operators automatically provide Heisenberg
asymptotic fields, defined on the scattering spaces H±, see Proposition 5.1,
by

Ψ∗
out/in(f) = Ω± Ψ∗(f)Ω∗

±, aout/in(g) = Ω± a(g)Ω∗
±. (1.3)

The fields Ψ∗
out/in and aout/in obey (equal times) canonical commutation rela-

tions, but their (Heisenberg) time evolution is not free, being explicitly given
by H = Has(Ψout/in, aout/in). This shows the effectiveness of the Kulish–
Faddeev–Rohrlich–Zwanziger strategy also for the construction of asymptotic
fields; their dynamics is not free, but no Coulomb distortion appears (in con-
trast with the properties of the asymptotic fields proposed by Zwanziger and
Rohrlich).

For the existence of the asymptotic limit of charged fields, the Dollard
corrections are essential; they give rise to modified LSZ (Haag–Ruelle) formu-
las. For the charged Heisenberg fields in the variables P = −i∂/∂q, p (see
Eq. (6.1)), one has

Ψ∗
out/in(f) = lim

ε→0
lim

t→±∞

∫
dP dp f−t(P, p)Ψε ∗

t (P, p) eiρε
t (χε

t (P, p))

× exp −i

∫ t

0

dsAε
t (

↔
∂t Dt−s ∗ jε(v(p); s)), (1.4)

where A is the electromagnetic potential, Dt(x) the massless commutator func-
tion, ∗ denotes the convolution in the space variable x, ft denotes the free time
evolution of f , Ψε

t , ρ
ε
t , A

ε
t the Heisenberg (adiabatically switched) time evolu-

tion of the corresponding variables, jε
μ(v(p);x, x0) ≡ e vμ(p)η̃(x − vx0) e−ε|x0|,

vμ ≡ (1, v), a function of p corresponding to the (free) asymptotic particle cur-
rent (with an ultraviolet cutoff η(k)), ρ is the charge density, χ is a Coulomb
phase.

As derived in general by Buchholz [5] on the basis of locality and of the
Huyghens principle, LSZ (Haag–Ruelle) asymptotic limits of the electromag-
netic fields exist, without any Dollard correction, and define massless fields.
In our case, the ordinary LSZ procedure converges in all sectors and yields
massless asymptotic fields bout/in; they are related to aout/in by

bout/in(g) = aout/in(g) + (ρout/in(J))(g), (1.5)

for any g(k, λ) ∈ S(IR3). All the above asymptotic limits exist in the strong
operator sense on the scattering space (on an invariant dense domain, for e.m.
fields), yielding the usual Haag–Ruelle limits of products of operators.
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The fields Ψout/in and bout/in define a semi-direct product of canonical
algebras, with the non-standard commutation relations (b# = b, b∗)

[b#
out/in(k, λ), Ψ∗

out/in(P, p)] = J(k, λ, p)Ψ∗
out/in(P, p) (1.6)

and H = h0(Ψout/in) + H0(bout/in) on the scattering space; while bout/in are
free fields, Ψout/in are not.

The LSZ (Haag–Ruelle) formula for the charged fields can also be written
with the e.m. factor replaced by the exponential of a string-like integral of the
asymptotic photon field, Eq. (6.24).

Equation (1.4) corresponds to the following LSZ formula for QED, which
automatically arises from the Dollard dynamics of the charged fields introduced
by Kulish–Faddeev and Rohrlich (KFR), through the same steps as in Sects.
6.1, 6.2a:

ψ∗
out/in(f) = lim

ε→0
lim

t→±∞

∫
d3p f−t(p)ψε ∗

t (p) ei e2
4π sign t ln |t| ∫

d3q ρ(q)
v(p,q)

× exp −i

∫ t

0

dsAε
t (

↔
∂t Dt−s ∗ jε(v(p); s)), (1.7)

with v(p, q) the Lorentz invariant relative velocity and jε
μ(v(p); s,x) ≡ e vμ(p)

δ(x − vs), see Eqs. (S4-10,11) and (S4-21,22) in [19].
The effectiveness of the KFR strategy in QED has been controlled by

Zwanziger [28], with the cancelation of the infrared divergencies in the pertur-
bative expansion of the reduction formulas. Our model gives
non-perturbative support to that strategy; it also shows that the same strat-
egy leads to asymptotic fields as (modified) LSZ (HR) strong limits, with a
complete control of the ensuing structure and covariance properties of the
asymptotic field algebras. The commutation relations of the asymptotic fields,
Eq. (1.6), directly follow from the last (e.m. field) term in Eqs. (1.4) and (1.7);
their space–time transformations are parametrized by the choice of the space–
time origin, implicit in such a term, giving rise to asymptotic charged fields
ψas(p, x), as in Eqs. (6.20) and (6.21).

In both Eqs. (1.4) and (1.7) the Dollard modifications are parametrized
by v(p), p the momentum variable of the interacting Heisenberg field, smeared
with f−t; convergence of the LSZ formula implies that v(p) can be identified
with the asymptotic “particle” velocity, independently of recoil assumptions.

The use of an adiabatic cutoff, while technically important, does not seem
to be essential for the results since, in the model, one may avoid it by adopting
a modified (Dollard) correction to the LSZ formula for the charged fields [23].

The lesson for the infrared problem in QED is manifold, briefly:
(i) the Kulish–Faddeev–Rohrlich approach to the infrared problem in QED
[19,21], based on Dollard’s strategy, allows for a systematic control of the
asymptotic limit;
(ii) in particular, it allows for the reexamination of the open problem of the
asymptotic condition for charged fields; modified LSZ (HR) formulas can be
written, yielding asymptotic limits of charged fields;
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(iii) the asymptotic field algebra, generated by a free photon field (given by
Buchholz asymptotic limit) and by the asymptotic charged fields, has the struc-
ture of a semidirect product, reproducing Chung’s ansatz;
(iv) the Hamiltonian is the sum of the free Hamiltonians of the asymptotic
fields, Eq. (6.17); the time evolution of the asymptotic charged fields is not
free only for the presence of infrared photons, with no residue of the Coulomb
interaction.

2. The Model

The model describes N classical charged particles of charge ei and mass mi, i =
1, . . . , N , with mutual interaction given by a Coulomb potential V, regularized
at the origin, and interacting with (transverse) photons.

The classical particles configurations are described by wave functions on
the phase space Γ, ψ(q1, . . . ,qN ;p1, . . . ,pN ) ∈ L2(d3Nq, d3Np), |ψ|2 repre-
senting the density in phase space governed by the Liouville time evolution;
the time evolution of ψ is given by the Koopman Hamiltonian

h = −i
∑

i

(
vi

∂

∂qi
− ∂V

∂qi

∂

∂pi

)
≡ h0 + hI , (2.1)

V(q) =
∑

j �=i

eiej

8π(|qi − qj |2 + a2)1/2
. (2.2)

We consider both the non-relativistic and the relativistic case, given by

vi(p) ≡ pi/m, respectively vi(p) ≡ pi

(p2
i + m2)1/2

. (2.3)

For simplicity, we have omitted the vector notation for the operators qi, pi,
∂/∂qi, ∂/∂pi and for their scalar products; this will also be done in the follow-
ing. qt(q, p), pt(q, p) will denote the solutions of the classical equations, with
initial data q, p; a is a fixed ultraviolet cutoff.

The Hilbert space H = L2(Γ) × HF can be identified with the space of
L2 functions ψ(q, p), q = (q1, . . . , qN ), p = (p1, . . . , pN ), taking values in the
Fock Hilbert space HF , where the transverse photons are described by the
standard canonical destruction and creation operators a(k, λ), a∗(k, λ) (λ =
±1 denoting the helicity), with commutation relations [ a(k, λ), a∗(k′, λ′) ] =
δ(k − k′) δλ λ′ , etc.
The total Hamiltonian H is (always omitting the vector notation and denoting
by ε(k, λ) the polarization vectors)

H = h + H0 + HI, r, H0 =
∑

λ=±1

∫
d3k |k| a∗(k, λ) a(k, λ), (2.4)

HI, r = HI − ΔE(p), HI = a(f(q, p)) + a(f(q, p))∗ ≡ HI(a, a∗, q, p),
(2.5)

f(k, λ; q, p) =
1

(2π)3/2

∑

i

1√
2|k|eiη(k) eikqi ε(k, λ) vi(p),
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a(f(q, p)) ≡
∑

λ=±1

∫
d3k a(k, λ)f(k, λ; q, p), (2.6)

where we have introduced a (real rotationally invariant) ultraviolet cutoff η(k),
η(0) = 1, with Fourier transform η̃ ∈ D(IR3); ΔE(p) is a C1 function of the
particle momenta, to be determined below (see Sect. 5), playing the role of a
mass counter-term, subtracting persistent effects of HI .

The Hamiltonian H is invariant under space translations, T (a), a ∈ IR3

and the corresponding generator

P = −i
∑

i

∂/∂qi + Pph, Pph =
∑

λ=±1

∫
d3k k a∗(k, λ) a(k, λ), (2.7)

is conserved. Pc =
∑

i pi is also conserved, but Pc + Pph �= P is not, corre-
sponding to the absence of particle recoil in the photon emission.

The particle total energy

E(q, p) = K(p) + V(q) ,

K(p) the kinetic energy, commutes with H, and is, therefore, a constant of
motion; however, E + H0 + HI, r is not.

For the treatment of photon emission, it is important to limit the particle
velocities to be smaller than the velocity of light (which is 1 in our units). To
this purpose, in the non-relativistic case, we shall restrict our discussion to a
suitable subspace Hnr ⊂ H.

Assuming that

κ0 ≡ N2e2
max

4πammin
< 1

2 ,

it is enough to take

Hnr = PnrH ≡ L2(Γnr) × HF , (2.8)

with Pnr the projector on K ≤ Kmax ≡ 1
2κmmin, with κ < 1 − 2κ0. In fact,

the conservation of E implies

v2
i, t ≤ (κ + 2κ0) < 1, ∀t, ∀i. (2.9)

Independent of the infrared problem, the convergence of the Møller opera-
tors requires some “time smearing” and for this purpose we adopt an adiabatic
regularization given by an adiabatic switching e−ε|t|. It can be combined with
the Dollard strategy, as discussed in [22]. It is enough to use it only for the
particle–photon interaction; its introduction also for the Coulomb interaction
will only be convenient for displaying a complete factorization of the infrared
divergences.

As needed in all QFT models with persistent effects, mass counter-terms
will be introduced, both in the Hamiltonian and in the Dollard correction to
the free dynamics.

In the N charged particle sector, we always consider the N particle chan-
nel, corresponding to asymptotic configurations excluding non-trivial charged
particle clusters. All the following results hold for all values of the charges and
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of the masses; for simplicity, in the following, we shall omit the particle indices
for charges and masses, putting ei = e, mi = m.

We start with the particle dynamics and scattering, providing the Møller
operators in the Koopman formulation and the estimates on the particle tra-
jectories which are needed for the control of photon emission (Sect. 3); for both
purposes, the main point is the control of the Coulomb effects (the analysis
becoming much simpler, but still instructive, for short-range potentials).

Then we introduce the (renormalized) electromagnetic interaction and a
Dollard reference dynamics for the full time evolution, both with an adiabatic
regularization, and prove the existence of the corresponding Møller operators
(Sect. 4, Proposition 4.1).

In Sect. 5 we discuss the removal of the adiabatic switching, after the spec-
ification of the mass counter-term, obtaining the existence of the Møller opera-
tors (Sect. 5.1), the existence and characterization of the asymptotic dynamics
(Sect. 5.2), the interpolation formulas and the explicit factorization of the
infrared divergences in the S-matrix (Theorem 5.4).

In Sect. 6, we discuss the second quantized version of the model and prove
the existence of LSZ asymptotic limits of the Heisenberg fields (Sect. 6.2a,b);
the asymptotic algebra and its covariance under space–time translations are
analyzed in Sect. 6.2c. Finally, in Sect. 6.2d we derive an asymptotic form of
the corrections to the standard LSZ formulas for the charged fields.

3. Particle Dynamics and Scattering

For the definition of the Dollard reference dynamics for the particles, it is
convenient to introduce the following operators:

Qi ≡ i∂/∂pi, Pi ≡ −i∂/∂qi, (3.1)

which satisfy

[ qi, Pi ] = iδi j , [ pi, Qi ] = −iδi j . (3.2)

Then, in a notation covering both the non-relativistic and the relativistic case,

h0 =
∑

i

viPi , hI =
∑

i j;j �=i

wi j(q; a)Qi ≡ hI(q,Q; a) ,

wi j(q; a) =
−eiej (qi − qj)

4π(|qi − qj |2 + a2)3/2
. (3.3)

The free Heisenberg evolution is

qi(t) = qi + vit, pi(t) = pi, Qi(t) = Qi + Vit, Pi(t) = Pi,

with (α, β = 1, 2, 3 the vector components)

Vi = (V α
i (p, P ), α = 1, 2, 3), V α

i (p, P ) ≡
3∑

β=1

∂vβ
i (p)

∂pα
i

P β
i , (3.4)

reducing to Vi = Pi/m in the non-relativistic case.
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With the same motivations as in Dollard treatment of Coulomb scatter-
ing [11,12,22], a reference large time dynamics for particle scattering may be
identified by putting q = vt, Q = V t in hI , where for simplicity we take a = 0:

hD(t) ≡ h0 + hI(vt, V t; 0). (3.5)

No adiabatic switching is necessary for the particle scattering and for simplicity
it will not be introduced until the end of Sect. 5, where it will be used to display
the explicit dependence on the “infrared cutoff” ε in the S-matrix.

Proposition 3.1. 1) The Hamiltonian h is essentially self-adjoint on the domain
C1

0 ⊂ L2(Γ) of differentiable functions ψ(q, p) of compact support and its expo-
nential u(t) = e−iht leaves C1

0 invariant;
2) the equation

iduD(t)/dt = hD(t)uD(t), uD(±1) = u0(±1) , (3.6)

with u0(t) ≡ e−ih0t and hD(t) given by Eq. (3.5), has a unique solution for
|t| ≥ 1 leaving C1

0 invariant, given by

uD(t) = u0(t) exp

⎛

⎝i
e2

4π
sign t ln |t|

∑

i<j

vi − vj

|vi − vj |3 (Vi − Vj)

⎞

⎠ , (3.7)

satisfying

[u0(s), uD(t) ] = 0, [ p, uD(t) ] = 0, [P, uD(t) ] = 0; (3.8)

3) the following strong limits exist

strong − lim
t→±∞ u(t)∗ uD(t) = ω±; (3.9)

moreover,

strong − lim
t→±∞ uD(t)∗ uD(t + s) = u0(s),

u(t)ω± = ω±u0(t); (3.10)

4) let C1
0 (δ,K) denote the set of ψ(q, p) with support in a compact set K and

such that ψ(q, p) = 0 if |vi − vj | < δ, for some i �= j, then, ∀ψ ∈ D± ≡ ω±D1
0,

D1
0 ≡ ∪δ K C1

0 (δ,K) dense in L2(Γ),

||(pt − p±)ψ||L2 = O(|t|−1 ln |t|), (3.11)

where p± is defined, on D±, by

p± ω± = ω± p ; (3.12)

5) let Γ± be the complements of the sets

{(q, p) : ω(t)ψ(q, p) → 0, t → ±∞, ∀ψ ∈ D1
0}, ω(t) ≡ u∗(t)uD(t) ;

then, ω±L2(Γ) = L2(Γ±) and (ω±ψ)(q, p) = ψ(γ±(q, p)) , (q, p) ∈ Γ± , with
γ± : Γ± �→ Γ = L2(d3Nq, d3Np) measure preserving transformations. p± are
multiplication operators p±(q, p) on L2(Γ±), essentially self-adjoint on D±
and, almost everywhere in Γ± (with v± ≡ v(p±),

pt(q, p) = p± + δp± t−1 + O(t−2 ln t), δp± i ≡ −
∑

j �=i

wij(v±, 0); (3.13)
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6) ω±K = (K + V)ω± and, therefore, s ≡ ω∗
+ω− commutes with the particle

kinetic energy K; thus, in the non-relativistic case, it leaves Hnr invariant.

Proof. 1) The solutions of the classical equations qt(q, p), pt(q, p) are C1 func-
tions of q, p and t, actually pi are uniformly bounded in t, as a consequence of
the energy conservation (E = K +V(q), V bounded below); hence, they define
a one-parameter unitary group

u(t)ψ(q, p) ≡ ψ(q−t(q, p), p−t(q, p)) , (3.14)

with locally finite propagation speed, leaving C1
0 invariant. By Stone theorem,

its generator is e.s.a on an invariant domain.
2) Since the argument of the exponential in Eq. (3.7) has a dense invariant
domain of analytic vectors, given, e.g., by functions ψ(q, p) analytic in q and
of compact support in p, with |vi − vj | > δ, ∀i �= j, the right-hand side of
Eq. (3.7) is well defined and

uD(t)ψ(q, p) ≡ ψ(qD
−t, p

D
−t) ,

(qDα
t )i ≡ qα

i + vα
i t − e2

4π
sign t ln |t|

∑

j �=i

(vi − vj)β

|vi − vj |3
∂vα

i

∂pβ
i

, (pD
t )i ≡ pi,

(3.15)

leaves C1
0 invariant and satisfies Eq. (3.6).

By hermiticity of hD(t) on C1
0 , for any two solutions u1

D, u2
D, one has

(d/dt)(u1
D(t)ψ, u2

D(t)ψ) = 0

and uniqueness follows.
3) For the existence of ω±, we note that ∀ψ ∈ C1

0 (δ,K), using

uD(t)∗ QuD(t) = Q + V t ≡ QD
t

and Eq. (3.8), one has

i(d/dt)(u∗(t)uD(t))ψ = u∗(t) [−hI(q,Q) + hI(vt, V t; 0)]uD(t)ψ

= u∗(t)uD(t)[−hI(qD
t , QD

t ) + hI(vt, V t; 0)]ψ

= u∗(t)uD(t)
∑

i�=j

[−wij(qD
t )Qi

+
(−wij(qD

t ) + wij(vt; 0)
)
Vit ]ψ.

Now, using ||∂vβ
i /∂pα

i || ≤ m−1,

|qD
i,t − qD

j,t| ≥ δ|t| − 2(e2/4πm)(N − 1)δ−2 ln |t| − supK,i,j |qi − qj | , (3.16)

so that the norm of first term is bounded by O(|t|−2). The same holds for the
Sup norm, since u∗(t)uD(t) amounts to a change of variables.
The difference in round brackets consists of a term which can be estimated by
O(|t|−2 ln |t|) and a term of the form (vi − vj)t

(
a−3

t − b−3
t

)
, with, for large |t|,

at = O(|t|), bt = O(|t|), |at − bt| = O(ln |t|).
Therefore, the term is bounded by O(|t|−2 ln |t|).
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In conclusion, one has

||(d/dt)u∗(t)uD(t)ψ|| ≤ O(|t|−2 ln |t|). (3.17)

and the same holds for the Sup norm. The first of Eq. (3.10) follows immedi-
ately from the explicit form of uD(t); then the second follows as in Propositions
2.1, 2.2 of [22].
4) The above estimates imply, ∀ψ ∈ C1

0 (δ,K), pointwise convergence of (ω(t)ψ)
(q, p), for |t| → ∞, and

||(ω± − ω(t))ψ|| = O(|t|−1 ln |t|).
Therefore, on C1

0 (δ,K), where the multiplication operators pt = pt(q, p) are
bounded uniformly in t, using pt = ω(t) pω∗(t), one has

pt ω± = pt (ω(t) + O(|t|−1 ln |t|)) = ω(t) p + O(|t|−1 ln |t|)
= ω± p + O(|t|−1 ln |t|) = p± ω± + O(|t|−1 ln |t|).

5) Lemma A.1 applies with ωt → ω(t) and D → ∪nC1
0 (1/n,Kn), for any

sequence Kn covering Γ and ω±L2(Γ) = L2(Γ±) follows. In the notation of
Lemma A.1, pt(q, p) = p(γt(q, p)), which converges to p(γ±(q, p)) = p±(q, p)
for almost all (q, p) ∈ Γ±; then, by Eq. (3.11), ∀ψ ∈ D1

0,

(p±ω±ψ)(q, p) = lim
t→±∞(ω(t)pψ)(q, p) = lim

t→±∞ p(γt(q, p))ψ(γt(q, p))

= p±(q, p)(ω±ψ)(q, p).

Therefore, p± coincides with the multiplication operators p±(q, p) on D±,
where p± are e.s.a. by Eq. (3.12). Convergence of pt(q, p) to p±(q, p) on Γ±
and

qt(q, p) − q =
∫ t

0

ds v(ps) (3.18)

imply, for (q, p) ∈ Γ±, ∀ε > 0, for large |s|,
|qi,s(q, p) − qj,s(q, p)| ≥ (1 − ε)|vi ±(q, p) − vj ±(q, p)| |s|, ∀i �= j

with v±(q, p) ≡ v(p±). By Eq. (3.12), |vi ± − vj ±| �= 0 a.e. in Γ±; hence, a.e. in
Γ±,

t2 dpi t/dt = −t2
∑

j �=i

wi j(qt, a) = −
∑

j �=i

wi j(qt/t, a/t)

→ −
∑

j �=i

wi j(v±, 0) ≡ δpi,±. (3.19)

This implies v(ps) = v± + O(1/s) and, by Eq. (3.18),

qt/t − v± = O(ln t/t),

which gives

t2 d pi t/dt = −δpi ±(q, p) + O(ln t/t),

a.e. in Γ±; Eq. (3.13) then follows from

pi ± − pi t =
∫ ∞

t

ds dpi s/ds.
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6) u∗
D(t)V(q)uD(t) = V(qD

t ) is bounded uniformly in t and converges
strongly to zero by Eq. (3.16). Therefore, since [K + V, u(t)∗ ] = 0 and by
Eq. (3.8), [K, uD(t)] = 0,

ω±K = (K + V)ω± − lim
t→±∞ u(t)∗uD(t)V(qD

t ) = (K + V)ω±.

�
In the case of repulsive Coulomb potential, the unitarity of ω± easily

follows for N = 2; a proof is given in Appendix B.

4. Dynamics and Scattering with an Adiabatic Regularization

We shall construct a regularized dynamics Uε(t) and a regularized Dollard
reference dynamics Uε

D(t), corresponding to the substitution: qi → vit, in HI. r;
we choose an ε regularization corresponding to the replacement e → e−ε|t|e:

HI, r → Hε
I, r(t) ≡ e−ε|t|HI − e−2ε|t|ΔE(p) , (4.1)

Hε
ID(t) ≡ e−ε|t| HI(a, a∗, vt, p) − e−2ε|t|ΔED(p). (4.2)

The counter-term ΔE(p) is needed for the convergence of the Møller
operators for ε → 0, which is obtained for ΔED(p) = ΔE(p), Eq. (5.6); it has
to cancel the photon contribution to the particle energy, which is of the second
order in e (Sect. 5).

Proposition 4.1. 1) The Hamiltonian H, Eq. (2.4), is essentially self-adjoint
on the dense domain D of C1

0 functions ψ(q, p) with values in D(H0);
2) its adiabatic version for ε > 0

Hε(t) = h + H0 + Hε
I, r(t) (4.3)

defines a family Uε(t) = u(t)U0(t)Uε(t), U0(t) ≡ e−iH0 t, of unitary operators
as the unique solution, leaving D invariant, of

i(d/dt)Uε(t)ψ = Hε(t)Uε(t)ψ, ∀ψ ∈ D , (4.4)

given by (with f(k; q, p) defined by Eq. (2.6))

Uε(t) = exp
(

−i

∫ t

0

ds e−ε|s| HI(s)
)

eiΦε
t −iϕε

t , (4.5)

HI(s) = a(fs) + a(fs)∗ , fs(k; q, p) ≡ e−i|k|s f(k; qs(q, p), ps(q, p)), (4.6)

Φε
t ≡ Φε

t (q, p) ≡ i/2
∫ t

0

ds

∫ s

0

ds′ e−ε(|s|+|s′|)[HI(s), HI(s′) ], (4.7)

ϕε
t ≡ ϕε

t (q, p) ≡ −
∫ t

0

ds e−2ε|s|ΔE(ps(q, p)) ; (4.8)

3) the operators

Hε
D(t) ≡ hD(t) + H0 + Hε

ID(t) (4.9)

are hermitean on D and the equation

i(d/dt)Uε
D(t) = Hε

D(t)Uε
D(t) (4.10)
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defines a family Uε
D(t) = uD(t)U0(t)Uε

D(t), of unitary operators as its unique
solution leaving D invariant, with Uε

D(0) = 1, given by

Uε
D(t) = exp

(
−i

∫ t

0

ds e−ε|s| HID(s)
)

eiΦD ε
t −iϕD ε

t , (4.11)

HID(s) = a(fD
s ) + a(fD

s )∗, fD
s (k; p) ≡ e−i|k|s f(k; vs, p) , (4.12)

ΦD ε
t ≡ ΦD ε

t (p) ≡ i/2
∫ t

0

ds

∫ s

0

ds′e−ε(|s|+|s′|)[HID(s), HID(s′) ],

(4.13)

ϕD ε
t ≡ ϕD ε

t (p) ≡ −
∫ t

0

ds e−2ε|s| ΔE(p); (4.14)

4) ∀ε > 0, the following strong limits exist:

lim
t→±∞ Uε(t)∗ uD(t)U0(t) ≡ W ε

0± ω± ,

Uε
D(t)∗uD(t)U0(t) = Uε ∗

D (t) →t→±∞ (4.15)

→ exp(i[a(FD ε
± (p)) + a(FD ε

± (p))∗)]) exp(−iΦD ε
± (p) + iϕD ε

± (p)) ≡ W ε
D ± ,

FD ε
± (k, λ; p) = −i

N∑

i=1

Jε
±(k, λ, pi) , (4.16)

Jε
±(k, λ, p) =

e

(2π)3/2

ε(k, λ) η(k) v(p)
(2|k|)1/2(|k| − v(p)k ∓ iε)

, (4.17)

lim
t→±∞ Uε(t)∗Uε

D(t) = W ε
0± ω± W ε ∗

D± = W ε
0±(q, p)W ε ∗

D±(p±)ω± ≡ Ωε
±;

(4.18)

W ε
0±(q, p), W ε

D±(p) are “time ordered Weyl exponentials”, acting on HF and
indexed by the particle variables q, p; they are given by Eqs. (4.5) and (4.11)
with t = ±∞, and similarly for ΦD ε

± , ϕD ε
± .

Remark. Equations (4.5) and (4.11) provide the existence and the explicit
expression of the standard formula for Uε(t) and Uε

D(t) in terms of time-ordered
exponentials,

Uε(t) = T (e−i
∫ t
0 ds Hε

int(s)) ,

where T denotes the chronological ordering, according to the free photon
dynamics and

Hε
int(s) ≡ U∗

0 (s)u∗(s)Hε
I, r(s)u(s)U0(s) ;

Uε
D(t) = T (e−i

∫ t
0 ds Hε

int D(s)) ,

Hε
int D(s) ≡ U∗

0 (s)u∗
D(s)Hε

I, r(s)uD(s)U0(s).

Apart from the mass renormalization counter-term, Uε
D(t) is the same

operator used in [19,21] for the identification of the Dollard reference dynamics,
with their asymptotic current taken as a function of our classical variables pi.

For the proof of Proposition 4.1 we need the following Lemma, proved in
Appendix C.
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Lemma 4.2. Let fα(k), |k|−1/2fα(k) ∈ L2(d3k), α ∈ IR; if they are differen-
tiable with respect to α in L2(d3k), then,

U(fα) ≡ ei(a(fα)+a(fα)∗), (4.19)

is strongly differentiable on D(H0) and

dU(fα)
dα

= [i(a(f ′
α) + a(f ′

α)∗) + Cα]U(fα) (4.20)

with f ′
α ≡ ∂αfα, Cα ≡ 1

2

∫
d3k (fαf ′

α − fαf ′
α). Moreover, if |k|fα ∈ L2(d3k),

then U(fα) leaves D(H0) invariant.

Proof (of Proposition 4.1)
1)–3). For fixed q, p, the argument of the exponential which defines Uε(t) is of
the form −i(a(F ε

t (q, p)) + a(F ε
t (q, p))∗), with

F ε
t (k; q, p) =

∫ t

0

ds e−ε|s|fs(k; q, p) ≡
∑

i

F ε
t (k, qi, pi). (4.21)

A similar form holds for Uε
D(t), with fs(k; q, p) replaced by fD

s (k; p). Both
F ε

t (k; q, p) and FD ε
t (k; p) satisfy the conditions of Lemma 4.2, with respect to

t, q, p. Therefore, ∀ε ≥ 0 the right-hand sides of Eqs. (4.5) and (4.11) define
unitary operators Uε(t), Uε

D(t) in the Fock space HF , indexed by the particle
coordinates q, p.
Such unitary operators leave D(H0) invariant and are strongly differentiable
with respect to t, q, p, on D(H0). Hence, in H the unitary operators Uε(t),
Uε

D(t) leave D invariant.
Again by Lemma 4.2, Uε(t), Uε

D(t) are strongly differentiable with respect
to t on D and satisfy Eqs. (4.4) and (4.10), respectively. Hermiticity of Hε(t)
implies d/dt V ∗(t)Uε(t) = 0 for any solution V (t) of Eq. (4.4) leaving D invari-
ant and, therefore, uniqueness; the same for Hε

D(t).
For ε > 0, this implies 2), 3). For ε = 0, the uniqueness of the solution of
Eq. (4.4) implies that U(t) is a one-parameter group; Eq. (4.4) and the invari-
ance of D imply the self-adjointness of H.
4). The left-hand side of Eq. (4.15) reads

Uε ∗(t)U0(t)∗ u(t)∗ uD(t)U0(t) = Uε ∗(t)u(t)∗uD(t).

Using Proposition 3.1 and Eqs. (4.7), (4.8) and (4.21), it converges to

ei
∫ ±∞
0 ds e−ε|s|HI(s) e−iΦε

±∞+iϕε
±∞ ω±

≡ ei(a(F ε
±(q, p))+a(F ε

±(q, p))∗) e−iΦε
±+iϕε

± ω±. (4.22)

In fact,
i) for |t| → ∞, F ε

t (k; q, p) converges in L2(d3k) uniformly in q, p on com-
pact sets K, so that exp i (a(F ε

t (q, p)) + a(F ε
t (q, p))∗) converges strongly on

L2(K, dq dp) ⊗ Dfin and, therefore, everywhere;
ii) by similar arguments, ||fs(k; q, p)||L2(d3k) is uniformly bounded in s and in
q, p on compact sets, so that

<fs, fr >≡
∫

d3k (fs f∗
r − f∗

s fr) (4.23)
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is uniformly bounded in s, r and in q, p on compact sets. Then

Φε
t (q, p) = i/2

∫ t

0

ds

∫ s

0

dr e−ε(|s|+|r|) < fs, fr >

converges for |t| → ∞.
The left-hand side of Eq. (4.16) reads

ei (a(F D ε
t (p))+a(F D ε

t (p))∗) e−iΦD ε
t +iϕD ε

t , FD ε
t (k; p) ≡

∫ t

0

ds e−ε|s| fD
s (k; p)

(4.24)

and converges as |t| → ∞, by the above argument applied to fD
s (k; p). An

explicit calculation gives Eqs. (4.16) and (4.17) and the unitarity of W ε
D±, as

in Lemma 4.2.
The first equality in Eq. (4.18) follows from Eqs. (4.15) and (4.16) and the
unitarity of W ε

D±, which implies the convergence of the adjoint of Eq. (4.16).
The second equality follows from Eq. (3.12).

5. Removal of the Adiabatic Switching

In this Section, we perform the limit ε → 0; the crucial ingredient is the use
of the Dollard reference dynamics Uε

D(t), but, as anticipated in Sect. 2, the
introduction of suitable counter-terms will be required. We have to consider
the behavior of the operators Ωε

±, Eq. (4.18), as ε → 0. Using Eqs. (4.21), (4.22)
and (4.16), one has

Ωε
± = ei(a(F ε

±(q, p))+a(F ε
±(q, p))∗) e−i(a(F D ε

± (p±))+a(F D ε
± (p±))∗)

×ei(−Φε
±+ΦD ε

± (p±))ei(ϕε
±−ϕD ε

± (p±)) ω± ≡ Ω(ΔF ε
±) e−iΔΦε

±+iΔϕε
± ω±,

(5.1)

where Ω(ΔF ε
±) denotes the product of the two Weyl exponentials in the l.h.s.

The convergence of the term Ω(ΔF ε
±) amounts to the cancelation of the

infrared divergences associated to infinite photon emission, thanks to the Dol-
lard subtraction given by the coherent factors, Eqs. (4.16) and (4.17).

For the convergence of the phases, we shall use the fact that Φε
± and ΦD ε

±
involve the commutators

[Ai(x) , Aj(y)] ≡ iDi j(x − y), x, y ∈ IR4, i, j = 1, 2, 3.

The fields Ai(x) are free because their time dependence is given by the inter-
action representation and one has (x2 = x2

0 − x2)

Di j(x) = δi jD(x) + ∂i∂j(sign(x0) θ(x2) + x0/|x| θ(−x2))/4π, (5.2)

with D(x) the standard commutator function. Di j(x) has spacelike support
and it is homogeneous of degree −2.

We denote by Dη
i j(x) the double convolution in the space variables

Dη
i j(x) ≡

∫
d3ξ d3η Di j(x − (ξ − η)) η̃(ξ) η̃(η).
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Considering the case of t > 0, we have to control the ε → 0 limit of

Φε
+(q, p) = 1

2

N∑

m,n=1

∫ ∞

0

Gε
m n(x0, q, p),dx0 ≡ 1

2

N∑

m,n=1

(Φε
+)mn, (5.3)

where omitting as before the vector notation for q and v,

Gε
m n(x0, q, p) ≡ e2

∫

0≤y0≤x0

d3xd4y e−ε(x0+y0) vm(x0) vn(y0)Dη(x − y)

×δ(x − qm(x0)) δ(y − qn(y0)), (5.4)

with vn(x0), qn(x0) given by the solution at time x0 of the equations of motion
with initial data (q, p) and vm vn Dη ≡ ∑3

i j=1 vm i vn j Dη
i j .

ΦD ε
+ (p+) is given by Eq. (5.3) with Gε

m n replaced by GD ε
m n,

GD ε
m n(x0, q, p) ≡ e2

∫

0≤y0≤x0

d3xd4y e−ε(x0+y0) vm + vn + Dη(x − y)

×δ(x − vm +x0) δ(y − vn +y0) ≡ Gε(x0, pm +, pn +) (5.5)

(reproducing Eq. (S4.21) in [19]).
The convergence of the off-diagonal terms in the phase difference Φε

± −
ΦD ε

± (p±), Eq. (5.7) below with n �= m, amounts to the Dollard cancelation of
the Lienard–Wiechert corrections to the Coulomb phases arising from “photon
exchanges”. The corresponding diagonal terms, n = m, are logarithmically
divergent, Eq. (5.7) with n = m, even if their 1/ε divergent terms are canceled
by Dollard’s subtraction; they correspond to a logarithmically divergent “mass
renormalization” effect produced by the Coulomb asymptotic distortion of the
trajectories (a point which is not discussed in [19]). The problem is solved by
the introduction of the same “mass renormalization” counter-term ΔE(p) in
HI and in HD,

ΔE(p) =
∑

n

δE(pn) ≡ 1
2

∑

n

e2

∫

y0≤0

d4y v2
nDη(−y)δ(y − vny0); (5.6)

it corresponds to the linearization, with parameters pn, of the particle trajec-
tories in Eq. (5.4), qn(y0) = qn(x0) + (y0 − x0)vn, vn = v(pn). We denote by
(ϕε

±)n the contribution of δE(pn) to ϕε
±, see Eq. (4.8).

Actually, the introduction of the above counter-term in the Dollard
dynamics cancels the divergence of the Dollard phases (ΦD ε

± )nn and, there-
fore, the convergence of the diagonal terms reduces to the convergence of
(Φε

±)nn − (ϕε
±)n, i.e., to the effect of the renormalization counter-term.

In the following, for simplicity, in the non-relativistic case, we shall write
H for Hnr and Γ± for γ−1

± (Γnr), Γnr the set of non-relativistic particle config-
urations, Eq. (2.8). We also introduce

H± ≡ ω±L2(Γ) × HF = L2(Γ±) × HF .
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5.1. The Møller Operators

Proposition 5.1. As ε → 0,
1) Ω(ΔF ε

±), Eq. (5.1) converge strongly, to unitary operators, on H±;
2) for almost all (q, p) in Γ±,

(Φε
± − ΦD ε

± (p±))mn = δm nR(p±, δp±) ln ε + O(1), (5.7)

with R(p±, δp±) defined below, see Eq. (5.11);
3) with the choice of the counter-term given by Eq. (5.6), we have

(Φε
±)nn − (ϕε

±)n = O(1) , a.e. in Γ±

and

(ΦD ε
± (p±))nn − (ϕD ε

± (p±))n ≡ δϕD ε
± (pn ±) = O(1) ;

the phase δϕD ε
± (pn ±) vanishes after the redefinition

Uε
D → Uε

D ei
∑

i δϕD ε
± (pi)

for ±t > 0, which shall be understood in the following.
Therefore, with the above choice of the counter-terms, the following strong
limits exist:

lim
ε→0

Ωε
± ≡ Ω± = W± ω± on H, W± unitary in H± = ω± H,

W± = lim
ε→0

W ε
0±(q, p)W ε ∗

D±(p±) on H±. (5.8)

Proof. 1) Omitting the dependence on polarization vectors, we put

ΔF ε
±(k) ≡ F ε

±(k; q, p) − FD ε
± (k; p±(q, p))

and we have (with the notation of Lemma 4.2 and of Eq. (4.23))

Ω(ΔF ε
±)) = U(ΔF ε

±) e
1
2<F ε

± , F D ε
± >.

We shall prove convergence, in L2(d3k), almost everywhere in Γ±, of both
i) ΔF ε

±(k, q, p) and ii) |k|−1/2 ΔF ε
±(k, q, p). i) Implies strong convergence of

U(ΔF ε
±) in Fock space, for fixed q, p, and their strong convergence, as mul-

tiplication operators in q, p, on H±, by a Lebesgue dominated convergence
argument, to unitary operators.
Moreover, by Eq. (4.17), for fixed p in Γ±, |k|1/2 FD ε

± (k, λ; p) converges in
L2(d3k) as ε → 0. Then, since

〈F ε
± , FD ε

± 〉 = 〈ΔF ε
± , FD ε

± 〉,
ii) implies convergence of the phase factors, pointwise and, therefore, strongly
on H±.
It is enough to prove ii), which implies i) thanks to the ultraviolet cutoff η(k).
To this purpose, we note that Eqs. (3.13) and (3.18) imply that, for almost all
(q, p) in Γ±, for large |s|,

|k|s − k qi s ≡ (|k| − k vi ±) s′(s, k/|k|) ≡ θ(k/|k|) |k| s′

defines a function s′(s, k/|k|) ≡ s − Δs, satisfying J(s) ≡ ∂Δs/∂s = O(s−1)
and Δs = O(ln |s|), uniformly in k/|k|; s(s′) will denote the inverse function,
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for large s′, at fixed k/|k|. Then, considering for simplicity positive times,
apart from an integral over a finite time interval, 0 < s < c, giving rise to a
convergent term, |k|−1/2 ΔF ε

+ may be written as η(k)/|k| times
∫ ∞

c

ds e−εse−i |k| s (eikqs(q, p) vs − eikv+(q, p)s v+)

=
∫ ∞

c

ds e−εs (e−iθ |k| s′ − e−iθ |k| s) v+

+
∫ ∞

c

ds′ e−εs(s′)e−iθ |k| s′
g(s′, k/|k|),

with g(s′, k/|k|) of order 1/s′ and, therefore, in L2(ds′), with norm bounded
uniformly in k/|k|. Since, for bounded momenta, θ is bounded away from 0,
the last term converges in L2(d|k|), uniformly in k/|k|, as ε → 0. Therefore, it
gives a contribution to |k|−1/2 ΔF ε

+ which converges in L2(d3k). By an obvious
change of variables, and omitting as before the integration over a finite interval,
the first term can be written∫ ∞

c

ds e−iθ |k| s e−εs(e−εΔs/(1 + J) − 1) p+.

Therefore, it is the Fourier transform of a function which converges, as ε → 0,
in L2(ds), since 1/(1 + J) = 1 + O(s−1) and, for s ≥ 1,

eε ln s − 1 ≤ ε ln s eε ln s.

Hence, its contribution to |k|−1/2 ΔF ε
+ converges in L2(d3k), with convergence

rate O(ε1/2−δ), ∀δ > 0. Similarly for ΔF ε
−.

2) First, we consider the terms corresponding to m �= n, with non-collinear
vm +, vn +, a condition which holds almost everywhere in Γ+, by Eq. (3.12).
For their contribution to ΔΦε

+ we exploit Lemma 5.2 below. In fact, as a con-
sequence of Eqs. (3.13) and (3.18), the particle trajectories satisfy Eqs. (5.12)–
(5.14), for any α < 1, a.e. in Γ+.

Then, for m �= n, uniformly in ε,

Gε
m n(s) − GD ε

m n(s) ≤ O(s−(1+α))

and the corresponding contribution to ΔΦε
+ is convergent with rate O(εα).

For n = m, we compute the logarithmic divergences, which arise from the
subleading terms in the asymptotic estimates of the trajectories.
In this case, for q, p in Γ+, the velocities |vi| have a bound less than 1 and,
therefore, by the support properties of D and η, x0 − y0 is bounded uni-
formly in x0, i.e., x0 − y0 < T , in the integration in Eq. (5.4). The diagonal
term Gε

nn is a functional Gε of the nth particle trajectory, {qn(τ), pn(τ)} ≡
{(qn τ (q, p), pn τ (q, p)), τ ∈ IR},

Gε
nn(x0, q, p) = Gε(x0; {qn(τ), pn(τ)}); (5.9)

the expression for the corresponding Dollard term is given by the Dollard
trajectories, GD ε

nn (x0, q, p) = Gε(x0; {vn +τ, pn +}). We introduce

Gε
n +(x0, q, p) ≡ Gε(x0; {vn +τ + v′(pn +) δpn + ln τ, pn + + δpn +/τ}),
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v′(p) ≡ ∂v(p)/∂p, which satisfies, a.e. in Γ+,

|Gε
nn(x0, q, p) − Gε

n +(x0, q, p)| ≤ C(q, p) ln |x0|/x2
0, (5.10)

uniformly in ε. In fact, by Eq. (3.13), omitting the index n,

q(x0) − q(y0) − v+(x0 − y0) − v′(p+) δp+ ln(x0/y0)

=
∫ x0

y0

ds (v(s) − v+ − v′(p+)δp+/s)

= O(ln x0/x2
0)(x0 − y0) = O(ln x0/x2

0)T ;

since Dη(x) is a C∞ function of x and pn(t) satisfies the estimate (3.13),
Eq. (5.10) follows, uniformly in ε since x0 − y0 ≤ T . In conclusion, the contri-
bution to ΔΦε

+ is

(ΔΦε
+)nn =

∫
dx0 (Gε

nn(x0, q, p) − GD ε
nn (x0, q, p))

=
∫

dx0 (Gε
n +(x0, q, p) − GD ε

nn (x0, q, p)) + O(1). (5.11)

Gε
n + − GD ε

nn is a function of pn +, δpn + and x0; by a Taylor expansion in τ

around τ = x0, it is of the form ((R(pn +, δpn +) + O(ε))x−1
0 e−2εx0 + O(x−2

0 )
and 2) follows. Similarly for (ΔΦε

−)nn .
3) (ΦD ε

+ (p+))nn is given by Eq. (5.5) and (ϕD ε
+ (p))n, see Eqs. (4.14) and (5.6),

is given by the same expression, without the factor e−ε(x0+y0) and the restric-
tion 0 ≤ y0. Hence, they only depend on pn + and their difference converges
as ε → 0.
With a change of variables, x′ ≡ x − qn(x0), y′ ≡ y − qn(x0), y′

0 = y0 − x0 in
Eq. (5.4), putting Gε

nn = Ĝε
nn e−2εx0 , one has, for (q, p) in Γ+,

1
2 Ĝ

ε
nn(x0, q, p) − δE(pn x0(q, p)) = − 1

2e
2

∫

y′
0≤0

d4y′ Dη(−y′) vn(x0)

×[vn(x0 + y′
0) δ(y′ − qn(x0 + y′

0) + qn(x0)) eε y′
0 − vn(x0) δ(y′ − vn(x0) y′

0)]

As before, |y′
0| ≤ T and, therefore, vn(x0 + y′

0) = vn(x0) + O(x−2
0 ), qn(x0 +

y′
0) + qn(x0) = vn(x0) y′

0/m + O(x−2
0 ). Hence, Ĝε

nn(x0, q, p) − δE(pn x0(q, p)) ∈
L1(dx0) uniformly in ε and (Φε

+)nn − (ϕε
+)n converge for ε → 0, with rate

O(ε ln ε).
Convergence of the regularized Møller operators follows, with rate of conver-
gence O(ε1/2−δ), ∀δ > 0, on H+ = L2(Γ+)×HF ; their limit, W+, is a product
of phases and Weyl operators, acting as multiplication operators on L2(Γ+),
and therefore unitary operators in H+. The same applies for t → −∞. �

Lemma 5.2. Let qn(x0), vn(x0) ∈ C1(IR) satisfy, for x0 → ∞,

|q̇n(x0)| < 1 − δ, (5.12)
qn(x0)/x0 = vn + + O(x−α

0 ), (5.13)

pn(x0) = pn + + O(x−α
0 ), (5.14)
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with δ, α > 0. Then, for vm +, vn + non-collinear, ∀ε ≥ 0, denoting jm(x) ≡
vm(x0)δ(x− qm(x0)), jm +(x) ≡ vm +δ(x− vm +x0), omitting the vector nota-
tion as in Eqs. (5.4) and (5.5),
∫

0<y0<x0

d3xd4y e−εy0 jm(x)Dη(x − y) jn(y)

=
∫

0<y0<x0

d3xd4y e−εy0 jm +(x)Dη(x − y) jn +(y) + O(x−1−α
0 ), (5.15)

uniformly in ε. By homogeneity of Di j, for ε = 0, the first term in the r. h. s.
is of the form vn +vm +C(vm +, vn +)x−1

0 .

Proof. The l.h.s. of Eq. (5.15) is well defined, for all x0, thanks to the regu-
larization given by η̃ and, by a change of variables, τ ≡ y0/x0, x′ ≡ x/x0,
y′ ≡ y/x0, it becomes

1
x0

∫

0<τ<1

dτ d3x′ d3y′ vm(x0) vn(τx0) e−εx0τ

Dη̃x0 (x′ − y′, 1 − τ) δ(x′ − qm(x0)/x0) δ(y′ − qn(τx0)/x0), (5.16)

where η̃x0(ξ) ≡ η̃(x0 ξ)x3
0 and the homogeneity of Di j has been used. For

large x0, the integrand of Eq. (5.16) vanishes for τ < δ/2. In fact, Dη̃x0 has
spacelike support, apart from a correction of order x−1

0 ; moreover, τ < δ/2
and Eq. (5.12) imply

|qm(x0) − qn(τx0)|/x0 ≤ x−1
0 (|qm(0)| + |qn(0)|) + (1 − δ)(1 + τ) < 1 − τ,

the last inequality following, for large x0, from

(1 − τ)/(1 + τ) ≥ (1 − τ)2 > 1 − δ.

Therefore, by Eq. (5.13), qn(τx0)/x0 = τvn ++O(x−α
0 ) in Eq. (5.15). Moreover,

for non-collinear asymptotic velocities and x0 large, the support of integrand
in Eq. (5.16) excludes a neighborhood of x′ − y′ = 0.
Outside a neighborhood of x = 0, the second term in the representation of
Di j(x), Eq. (5.2), is a bounded function with spacelike support and bounded
derivatives inside the spacelike region, and the same applies to its convolution
with η̃x0 , with bounds uniform in x0, apart from the addition of a uniformly
bounded function with support within a distance of order x−1

0 from the light
cone; therefore, one may replace qm(x0)/x0 �→ τvm + and qn(τx0)/x0 �→ τvn +

in Eq. (5.15), with an error of order x−α
0 .

The first term, δi jD(x), only involves δ functions and may therefore be treated
explicitly; the result follows, for vm +, vn + non-collinear, from
Eqs. (5.13) and (5.14), the convolution with ηx0 giving rise to corrections of
order x−2

0 . �

5.2. The Asymptotic Dynamics

As shown in [22], any Dollard reference dynamics allowing for the existence of
Møller operators defines asymptotic dynamics, for t → ±∞, U±(t), which need
not coincide with the free dynamics, but are always one-parameter groups, sat-
isfying the Møller intertwining relations. In presence of an adiabatic procedure,
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the latter property involves the recovery of the dynamics from its adiabatic
regularization [22].

Therefore, the next step in the analysis of the model is the determination
of the asymptotic dynamics, and the verification of the intertwining relations.

The resulting asymptotic dynamics, U+(t) = U−(t) ≡ Uas(t) is uniquely
determined by the Dollard dynamics UD(t) but cannot be identified with it, as
implicit in Rohrlich and Zwanziger notions of asymptotic fields and dynamics.

Proposition 5.3. With the counter-term given by Eq. (5.6), one has
1) the existence of the following strong limits

U±(s) ≡ lim
ε→0

lim
t→±∞ Uε ∗

D (t)Uε
D(t + s) , (5.17)

which define the asymptotic dynamics

U+(s) = U−(s) = u0(s)αas(U0(s)) ≡ Uas(s) ,

with αas the coherent automorphism of the photon algebra

αas(a∗(k, λ)) = a∗(k, λ) + J(k, λ; p) , (5.18)

J(k, λ; p) =
∑

i J(k, λ, pi), J = Jε=0
± , see Eq. (4.17); in the non-relativistic

case, Uas(s) leaves Hnr invariant;
2) the recovering of U(t) from the regularized dynamics Uε(t):

lim
ε→0

lim
t→±∞ Uε ∗(t)Uε(t + s) ≡ lim

ε→0
Ũε(s) = U(s) , (5.19)

all the limits being strong;
3) the interpolation formula

U(t)Ω± = Ω± Uas(t) ; (5.20)

4) covariance under space translations,

P Ω± = Ω± Pas Pas ≡ i
∑

i

∂/∂qi + αas(Pph). (5.21)

Proof. 1) By definition,

Uε ∗
D (t)Uε

D(t + s) = Uε ∗
D (t)U∗

0 (t)u∗
D(t)uD(t + s)U0(t + s)Uε

D(t + s) ;

by Eq. (4.16), [uD, U0] = 0 and Eq. (3.10), the above expression converges
strongly, for t → ±∞, to

W ε
D ± u0(s)U0(s)W ε ∗

D ± →ε→0 u0(s) e−iH0(J)s ≡ Uas(s) ,

H0(J) ≡
∑

λ

∫
d3k |k|(a∗(k, λ) + J(k, λ; p)) (a(k, λ) + J(k, λ; p)); (5.22)

Uas(s) leaves Hnr invariant since so does u0 and H0(J) acts as a multiplication
operator on the particle space.
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2) From Eq. (4.5) one has (for large positive t)

Uε ∗(t)Uε(t + s) = e−iΦε
t+iϕε

t e
i

∫ t

0

ds′ e−εs′
HI(s′)

× u(s)U0(s)e−i
∫ t+s
0 ds′ e−εs′

HI(s′)eiΦε
t+s−iϕε

t+s

= u(s)U0(s)e
i

∫ t+s

s

ds′ e−εs′
HI(s′) eεs

e
−i

∫ t+s

0

ds′e−εs′
HI(s′)

× e(−iΦε
s,t+s+iϕε

s,t+s)e2εs

eiΦε
t+s−iϕε

t+s .

Now, by Proposition 5.1, both the phase factors on the r.h.s. converge as t → ∞
and ε → 0, as multiplication operators on Ω+(H), which coincides with H+

since Ω+ = W+ω+, (Eq. (5.8)), with W+ unitary operators in HF , indexed by
q, p. Therefore, the factor e2εs can be substituted by 1 and

ϕε
s,t+s − ϕε

t+s → −ϕs ,

−Φε
s,t+s + Φε

t+s → Φs + i/2
∫ ∞

s

dr1

∫ s

0

dr2 [HI(r1), HI(r2)] (5.23)

(with a compact integration range, by locality). The product of the exponen-
tials involving HI can be written as the exponential of

−i

∫ s

0

ds′ e−εs′
HI(s′) − i

∫ t+s

s

ds′ e−εs′
HI(s′)(1 − eεs)

+ 1
2

∫ t+s

s

dr1

∫ t+s

0

dr2 [HI(r1), HI(r2)] e−ε(r1+r2)eεs.

In the limit t → ∞, ε → 0, as a consequence of the antisymmetry of the
integrand, the last term exactly cancels the last term on the r.h.s. of Eq. (5.23).
With the notation of Eq. (4.19), the exponential of the first two terms is of the
form U(Gε(s, t)), with

Gε(s, t) ≡ F ε
s + (F ε

t+s − F ε
s )(1 − eεs).

For t → ∞, with the notation of Eqs. (4.17), (4.22) and (5.1), one has that
F ε

t+s → F ε
+ = FD ε

+ + ΔF ε
+ , a.e. in Γ+; for ε → 0, ΔF ε

+ converges in L2(d3k)
and ||FDε

+ ||L2(d3k) is bounded by O(ln ε), uniformly in q, p ∈ Γ+, apart from
sets of arbitrarily small measure. Therefore, for t → ∞ and then ε → 0,
Gε(s, t)(k, q, p) converges to F 0

s in L2(d3k), uniformly in q, p ∈ Γ+, apart from
sets of arbitrarily small measure. Then, strongly on Ω+ Hnr,

U(Gε(s, t)) → U(F 0
s ) = exp

(
−i

∫ s

0

dsHI(s′)
)

;

(the phases and the operator W+ act as multiplication operators in the vari-
ables q, p ∈ Γ+ and, therefore, leave the support of ψ(q, p) ∈ HF , (q, p) ∈ Γ+,
invariant). The same applies for t → −∞ and Eq. (5.19) follows.
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3) Using Eqs. (5.19) and (5.17), one has

U(s)Ω± = lim
ε→0

lim
t→±∞ Uε ∗(t)Uε(t + s)Uε ∗(t + s)Uε

D(t + s)

= lim
ε→0

lim
t→±∞ Uε ∗(t)Uε

D(t)Uε ∗
D (t)Uε

D(t + s) = Ω± Uas(t).

4) By Eqs. (5.8) and (3.12),

Ω± = lim
ε→0

W ε
0±(q, p)ω± W ε ∗

D±(p)

and, since the space translations T (a) commute with ω± and W ε ∗
0±(p),

T (a)Ω± = lim
ε→0

T (a)W ε
0±(q, p)ω± W ε ∗

D±(p)

= Ω± lim
ε→0

W ε
D±(q, p)T (a)W ε ∗

D±(p) = Ω± αas(T (a)) ≡ Ω± (Tas(a)).

�
Summarizing, for the above model, describing classical particles with

Coulomb interaction and with realistic, translation invariant, coupling to the
quantized electromagnetic field, the introduction of an asymptotic reference
dynamics UD(t) a la Dollard, an adiabatic switching and a particle energy
renormalization term, we obtain the existence of the Møller operators and of
the scattering matrix, describing infinite photon emission.

The Møller operators interpolate between the dynamics, U(t), and the
asymptotic dynamics, Uas ≡ U+(t) = U−(t), uniquely associated to UD(t) by
Eq. (5.17); the S-matrix is invariant under Uas(t) and Tas(a).

The Møller operators and the S-matrix exhibit a factorization of the
infrared divergences which may also be displayed for the particle scattering.
In fact, the same Møller operators are obtained if an adiabatic switching is
adopted also for the particle Coulomb interaction, as discussed in Appendix D.

We have, therefore,

Theorem 5.4. For the model defined by Eqs. (2.1)–(2.6) and (5.6), with the
adiabatic regularization given by Eqs. (4.1) and (4.2) and (Dollard) reference
dynamics Uε

D(t) given by Eqs. (3.5), (3.7), (4.9) and (4.10), or with hD replaced
by hε

D, Eq. (D.1), one has:
i) the Møller operators exist as strong limits

Ω± = lim
ε→0

lim
t→±∞ Ωε

t , Ωε
t ≡ Uε ∗(t)Uε

D(t), (5.24)

on the whole Hilbert space (with L2(IR6N ) replaced by L2(Γnr), Eq. (2.8), in
the n.r. case);
ii) the asymptotic dynamics Uas(t) associated to the Dollard reference dynam-
ics, Eq. (5.17), is a one-parameter continuous group; it is the product of the
free particle dynamics and a non-Fock coherent transformation of the free pho-
ton dynamics, Eq. (5.22), indexed by the moments of the particles; the Møller
operators interpolate between the dynamics U(t) and the asymptotic dynamics
Uas(t)

H Ω± = Ω± Has, Has ≡ h0 + αas(H0) ; (5.25)
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iii) the scattering matrix, S = Ω∗
+ Ω−, commutes with the asymptotic dynamics

Uas and with the asymptotic space translations Tas.
For two particles with repulsive Coulomb interaction, Ω± and S are unitary
operators;
iv) the Møller operators explicitly display the photon infrared divergences,

Ω± = lim
ε→0

W ε
0±(q, p)W ε ∗

D±(p±)ω± = lim
ε→0

W ε
0±(q, p)ω± W ε ∗

D±(p) ; (5.26)

in fact, W ε
0±(q, p)ω± are the Møller operators relative to the free photon dynam-

ics, Eq. (4.15), and their infrared divergences are canceled by the (time-ordered)
non-Fock coherent factors W ε ∗

D±(p);
v) the explicit factorization of all the infrared divergences is displayed in the
following form of the S-matrix:

S = lim
ε→0

W ε
D+(p) e−ilε VD Sε

0 e−ilε VD W ε ∗
D−(p) , (5.27)

with Sε
0 the standard adiabatic S-matrix, corresponding to the Hamiltonian

Hε(t) = h0 + e−ε|t|hI + H0 + Hε
I,r(t),

lε ≡
∫ ∞

1

dse−εs/s, VD ≡ e2

4π

∑

i<j

vi − vj

|vi − vj |3 (Vi − VJ). (5.28)

6. LSZ Asymptotic Limits

The model sheds light also on LSZ asymptotic limits in the presence of Coulomb
interactions and infinite photon emission. For definiteness, we consider a sys-
tem of identical charged (fermionic) particles, so that the Hilbert space is of
the form H =

∑
n Hn, Hn = L2

ant(IR
6n)⊕HF , L2

ant the space of L2 functions of
n positions and momenta, antisymmetric under odd permutations. The Hamil-
tonian is given on Hn by Eqs. (2.4)–(2.6) (the dynamics leaving invariant the
antisymmetric wave functions).

In the following, we adopt the relativistic form of the velocity, the second
of Eq. (2.3); the same results hold in the non-relativistic case with suitable
domain and momentum space restrictions on the charged fields.

6.1. Charged Fields and their Dollard Dynamics

The charged fields Φ(q, p) are defined, on all ψn ∈ Hn, f ∈ S(IR6), by

(Φ(f)∗ψn)(q, q1 . . . p . . . pn) =
√

(n + 1) (f(q, p)ψn(q1 . . . pn))ant,

the index ant denoting the projection on the antisymmetric subspace, and
satisfy the anti-commutation relations

{Φ(q, p), Φ∗(q′, p′)} = δ(q − q′) δ(p − p′) , {Φ(q, p), Φ(q′, p′)} = 0.

In the following, it will be convenient to work with the partial Fourier transform
Ψ∗(P, p) of Φ∗(q, p),

Ψ∗(P, p) = (2π)−3/2

∫
dq eiqP Φ∗(q, p)
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and, correspondingly, use states defined by antisymmetric L2 functions
ψ(P1, p1 . . . Pn, pn). As usual,

Ψ∗(f) ≡
∫

dP dp Ψ∗(P, p)f(P, p), f ∈ S(IR6),

ρ(P, p) ≡ Ψ∗(P, p)Ψ(P, p), ρ(p) ≡
∫

dP ρ(P, p).

Then,

ρ(g) ≡
∫

dP dp ρ(P, p) g(P, p),

and

ρρ(F ) ≡
∫

dr dr′ ρ(r)ρ(r′)F (r, r′), r ≡ (P, p)

are (unbounded) multiplication operators in Fock space, for all measurable
g, F , with F (r, r) measurable, and satisfy, for F (r, r′) = F (r′, r),

eiρ(f)Ψ∗(P, p)e−iρ(f) = eif(P, p)Ψ∗(P, p) ,

e
i
2 ρρ(F )Ψ∗(P, p)e− i

2 ρρ(F )

= Ψ∗(P, p) ei
∫

dP ′ dp′ ρ(P ′, p′)F (P, p, P ′, p′)+ i
2 F (P, p, P, p) ,

The use of the Wick-ordered product : ρρ : leads to the same equation
with the omission of e

i
2 F (P, p, P, p).

The free particle Hamiltonian takes the form

h0 =
∫

dP dp Ψ∗(P, p)Pv(p)Ψ(P, p)

and

u0(t)Ψ∗(f)u∗
0(t) = Ψ∗(f−t), f−t(P, p) = eiPvtf(P, p) ; (6.1)

clearly, ρ(P, p) is invariant under the free evolution.
The Dollard evolution operator Uε

D(t) = uD(t)U0(t)Uε
D(t), with U0 the

free electromagnetic evolution, is given by (see Eqs. (3.4), (4.11)–(4.14) and
the redefinition in Proposition 5.1),

uD(t) = u0(t)e
i
2 :ρρ:(Ct), (6.2)

Ct ≡ e2

4π
sign t ln |t| v − v′

|v − v′|3 (V − V ′) ≡ sign t ln |t|C(P, p, P ′, p′) ,

Uε
D(t) = e−i

∫
dp [a(F Dε

t (p))+h.c.]ρ(p) e
i
2

∫
dp dp′ Lε

t (p,p′)ρ(p)ρ(p′)

×ei
∫

dp ρ(p) (δE(p)
∫ t
0 ds e−2ε|s|+δϕD ε

± (p)) ,

FDε
t (p) = FDε

t (k, λ, p) ≡ FDε
± (k, λ, p)(1 − e−ε|t|e−i(|k|−vk)t) , (6.3)

with FDε
± (k, λ, p) (± = sign t) the one-particle coherent factor given by

Eq. (4.17),

Lε
t (p, p′) ≡ 1

2

∫ t

0

ds [Gε(s, p, p′) + Gε(s, p′, p)] , (6.4)
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G(s, p, p′) given by Eq. (5.5), δE(p) by Eq. (5.6).
Since uD and Uε

D are multiplication operators in the P, p representation,
they commute with ρ(P, p) and, therefore,

[Uε
D(t), ρ(P, p)] = 0.

The Dollard dynamics of the field Ψ(f) is, therefore, given by

Ψε ∗
D (f, t) ≡ Uε

D(t)Ψ∗(f)Uε ∗
D (t)

=
∫

dP dp f−t(P, p)Ψ∗(P, p) e−i[a(F Dε
t (p),t)+h.c.] eiρ (χε

t (P,p)) , (6.5)

where

a(FDε
t (p), t) ≡

∑

λ

∫
dk a(k, λ)FDε

t (k, λ, p) eikt ,

ρ (χε
t (P, p)) =

∫
dP ′ dp′ ρ(P ′, p′)(Lε

t (p, p′) + Ct(P, p, P ′, p′) + cε
t (p, p′)) ,

(6.6)

cε
t (p, p′) ≡ Im(FDε

t (p), FDε
t (p′)), having a finite limit for t → ∞ and then for

ε → 0; a “diagonal phase” has been omitted since it vanishes for t → ±∞, see
Proposition (5.1).

The integration in Eq. (6.5) is well defined since the exponential is
strongly continuous in P, p by Lemma 4.2 and Eqs. (6.2) and (5.5) (on a dense
domain and, therefore, everywhere). ρ (χε

t ) describes the (logarithmically diver-
gent) Coulomb phases, with Ct arising from the (classical) Coulomb interac-
tions of the particles and Lε

t representing the Lienard–Wiechert corrections
produced by the interaction with the photons.

For the electromagnetic field we have

aε ∗
D (k, λ, t) ≡ UDε(t) a∗(k, λ)UDε ∗(t)

= e−i|k|t a∗(k, λ) − i

∫
dpFDε

t (k, λ, p) ρ(p) , (6.7)

on the sum of the N particle domains D introduced before (C1 wave functions
of compact support with values in D(H0), see Prop. 4.1), still denoted by D.
D is also stable under Uas(t), as a consequence of Lemma 4.2.

6.2. LSZ Asymptotic Limits of Heisenberg Fields

a. Charged fields
The Heisenberg asymptotic charged fields Ψout/in(P, p) are defined by

Ψ∗
out/in(f) = Ω± Ψ∗(f)Ω∗

± = lim
ε→0

Ωε
± Ψ∗(f)Ωε∗

±

on H± = Ω± H, see Eq. (5.8). By Eq.(6.5),

Ψ∗
out/in(f) = lim

ε→0
lim

t→±∞ Uε ∗(t)Ψε ∗
D (f, t)Uε(t). (6.8)

Thus, for the construction of the Heisenberg asymptotic field, the rôle of the
Dollard dynamics is to provide explicit corrections to the free evolution, which
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allow for the existence of the asymptotic limits; the main virtue of the Dol-
lard correction is to subtract the infrared divergent terms which arise in the
standard formulation.

It should be stressed that, while in the standard case the interaction pic-
ture free fields are isomorphic to the asymptotic Heisenberg fields, the “inter-
action picture” Dollard fields Ψε

D(f, t), aε
D(k, λ, t), which strictly correspond

to the fields introduced by Rohrlich for QED [19], have little to do with the
asymptotic fields; in particular, their time evolution is substantially different,
see below.

Equation (6.8) can be written in an (“adiabatic”) LSZ form. To this
purpose, we note that a(FDε

t (p), t) + h.c. can be written in terms of the usual
invariant smearing (in the space variables) of the electromagnetic potential A
with the Green function D(x) θ(x0) of the wave equation,

a(FDε
t (p), t) + h.c. = e v(p)

∫ t

0

ds e−ε|s| A(
↔
∂t Dt−s ∗ η̃v(p)s) , (6.9)

where A(
↔
∂t D) ≡ −A(Ḋ) + Ȧ(D) and η̃v(p)s(x) ≡ η̃(x − v(p)s).

The r.h.s. of Eq. (6.9) has a simple physical interpretation since
Y ε

μ (x, t; v) ≡ ∫ t

0
ds e vμ e−ε|s| (Dt−s ∗ η̃vs)(x) is the Lienard–Wiechert poten-

tial generated at time t, with vanishing Cauchy data at t = 0, by the current
jε
μ(v;x, s) ≡ e vμη̃(x − vs) e−ε|s|, vμ ≡ (1, v).

Then, denoting by Ψε
t , Aε

t , ρε
t the Heisenberg time evolution of Ψ, A and

ρ, under Uε(t), we have, on H±,

Ψ∗
out/in(f) = lim

ε→0
lim

t→±∞

∫
dP dp f−t(P, p)Ψε ∗

t (P, p) eiρε
t (χε

t (P, p))

× exp −i

∫ t

0

dsAε
t (

↔
∂t Dt−s ∗ jε(v(p); s)). (6.10)

Equation (6.10) provides an explicit modification of the standard LSZ
prescription for the asymptotic limit of the charged fields. It amounts to the
insertion of Coulomb phases and of the exponential of an electromagnetic
operator, both given by fields at time t, smeared with explicitly given test
functions.

The effect of the electromagnetic factor is to provide a shift of the elec-
tromagnetic potential at time t by the Lienard–Wiechert potential Y ε(x, t; v)
produced in a Huyghens cone by the above current jε

μ. The Coulomb phases
and the exponential of A commute, since so do the corresponding terms in
Eq. (6.5).

We stress that the main achievement of the LSZ asymptotic limit, with
respect to the interaction picture approach, is fully reproduced in Eq. (6.10),
which has a well-defined meaning (within the adiabatic approach) independent
of the existence of the Møller operators.

The strong convergence of the density operators on Ω±Hn, ∀n, for t → ∞
and then ε → 0,

ρε
t (F ) ≡ Uε ∗(t) ρ(F )Uε(t) → Ω± ρ(F )Ω∗

± ≡ ρout/in(F ) ,
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F (P, p) bounded, follows from the invariance of ρ(P, p) under the Dollard
evolution and the norm boundedness of ρ(F ) on Hn. Clearly, ρout/in(P, p) =
Ψ∗

out/in(P, p)Ψout/in(P, p); both ρout(F ) and ρin(F ) define commutative alge-
bras.

Furthermore, by the same argument, if F ε
t converges uniformly to F∞,

then

ρε
t (F

ε
t ) → ρout/in(F∞), eiρε

t (F ε
t ) → eiρout/in(F∞), (6.11)

strongly on Ω±Hn, ∀n; by a density argument, the second of Eqs. (6.11) only
requires the uniform convergence of F ε

t on compact sets.
b. Electromagnetic fields
For the asymptotic limit of the electromagnetic field, it is convenient to work
with their Weyl exponentials,

W (f, λ) ≡ e−i(a(f, λ)+h.c.).

Then, for (complex) f and |k|−1/2f in L2, on H±,

Wout/in(f, λ) ≡ Ω± W (f, λ)Ω∗
± ≡ e−i(aout/in(f, λ)+h.c.)

= lim
ε→0

lim
t→±∞ Uε ∗(t)Uε

D(t)W (f, λ)Uε ∗
D (t)Uε(t) ≡ lim

ε, t
W ε

t (f, λ). (6.12)

By Eq. (6.7),

W ε
t (f, λ) = Uε ∗(t)W (f−t, λ) e−i[

∫
dp dk i F Dε

t (k, λ, p) ρ(p) f(k)+h.c.] Uε(t) ,

with ft(k) ≡ f(k) e−i |k| t. As in Eq. (6.11), the second factor converges for
t → ±∞ and ε → 0, to

exp(iρout/in(J)((f, λ) + h.c.)) ,

where J(k, λ, p), given by Eq. (4.17) with ε = 0, is integrated with ρout/in(p)
and f(k). In fact, k1/2J ∈ L2(d3k), with norm bounded uniformly in p, so
that, after integration in k, FD ε

± (p) converges uniformly for bounded p.
Hence, also the first factor converges. Its limit is a unitary operator which is
strongly continuous in α for f → αf , since so are Wout/in(αf, λ) (by definition)
and the limit of the second factor, by the above estimate. Therefore,

Uε ∗(t)W (f−t, λ)Uε(t) → e−i(bout/in(f, λ)+h.c.). (6.13)

Since aout/in, a∗
out/in, briefly a#

out/in and ρout/in(J)(f, λ) are well defined on
Ω±D, on such a domain one has

a#
out/in(f, λ) = b#

out/in(f, λ) − ρout/in(J)(f, λ). (6.14)

Equation (6.14) states that b#
out/in are related to a#

out/in by the second quantized
version of the transformation of Eq. (5.18).
b#
out/in(f, λ) define free massless fields; in fact, by Eq. (5.19), for t → ∞ and

then ε → 0,

U∗(τ)Uε ∗(t)Uε(t + τ) ≡ T ε(t + τ, τ) → 1
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strongly and the same holds for its adjoint; therefore,

U∗(τ) b#
out/in(f, λ)U(τ) = lim

ε, t
U∗(τ)Uε ∗(t) a#(f−t, λ)Uε(t)U(τ)

= lim
ε, s

T ε(s, τ)Uε ∗(s) a#(fτ−s, λ)Uε(s)T ε ∗(s, τ) = b#
out/in(fτ , λ).

We shall denote by Bout/in(x, t) the corresponding fields in Minkowski space.
They are the result of LSZ formulas for massless asymptotic fields, on the
whole scattering spaces, with no need of Dollard corrections, in agreement
with the general analysis by [5] on the asymptotic limit in the massless case.
c. Asymptotic algebras and space–time translations
In the following, when no confusion arises, the indexes out/in shall be replaced
by the single index as; we only recall that J and Has are independent of the
two alternatives. Since

[ρas(F ), ρas(G)] = [ρas(F ), a#
as(f, λ)] = 0 ,

both Bout and Bin satisfy the CCR and commute with ρout/in(F ), respectively.
As asymptotic field algebras we take the polynomial algebra Fas generated by
the free photon fields Bas(x, 0), their time derivative and by the asymptotic
charged fields Ψ#

as, smeared, e.g., with test functions in S(IR3) and S(IR6),
respectively.

By construction, Eqs. (6.8) and (6.12), a#
as and Ψ#

as are canonical inde-
pendent fields (at equal times); a#

as is well defined on Ω±D, which is stable
under Ψ#

as(f), for

f̂(q, p) = (2π)−3/2

∫
dP e−iqP f(P, p)

of compact support. Equation (6.14) implies, therefore, the following commu-
tation relations between Bas and Ψas:

[b∗
as(k, λ), Ψ∗

as(P, p)] = J(k, λ, p)Ψ∗
as(P, p), (6.15)

[bas(k, λ), Ψ∗
as(P, p)] = J(k, λ, p)Ψ∗

as(P, p). (6.16)

They hold, together with the equations for their h.c., on Ω±D, for the operators
obtained by smearing b#

as with f , k−1/2f(k), k1/2f(k) ∈ L2, and Ψ∗
as with g, ĝ

of compact support.
They extend, by closure of the corresponding operators, to g ∈ S(IR6),

since ||k1/2J(k, λ, p)||L2(d3k), is of order |p|. In particular, the commutation
relations, Eqs. (6.15) and (6.16), hold for the fields which generate Fas, all
smeared with test functions in S, on Das ≡ Fasψ0, ψ0 the vacuum vector;
Dout/in are dense in H± by Eq. (6.14) and cyclicity of the vacuum for the
fields at t = 0.

With respect to the standard case, the above non-standard commutation
relations are the only modification, produced in the asymptotic algebras by
the LSZ asymptotic formula for the charged fields, Eq. (6.10).



Vol. 17 (2016) The Infrared Problem in QED 2729

By Proposition 5.3, the Hamiltonian is given, on Ω±D(h0 + H0), by

H = Ω±HasΩ∗
± = Has(Ψas, aas) = h0(Ψas) + H0(bas)

=
∫

dP dp v(p)P Ψ∗
as(P, p)Ψas(P, p) +

∑

λ

∫
d3k |k| b∗

as(k, λ) bas(k, λ).

(6.17)

Similarly, from Eq. (5.21) one has, for the generator of space translations,
Eq. (2.7),

P =
∫

dP dpP Ψ∗
as(P, p)Ψas(P, p) +

∑

λ

∫
d3k k b∗

as(k, λ) bas(k, λ)

≡ Pc(Ψas) + Pph(bas) (6.18)

In the above decompositions, Eqs. (6.17) and (6.18), the two terms commute,
due to Eqs. (6.15) and (6.16). The commutativity of the two terms is also
implied by the fact that H0(bas) and Pph(bas) implement the space–time trans-
lations of the free massless field bas; this reproduces the structure advocated
in [15] in terms of explicit functions of the asymptotic fields, with Hcharge ≡
h0(Ψas), Pcharge ≡ Pc(Ψas).

The space–time evolution of Ψ∗
as(P, p) follows from Eqs. (6.15)–(6.18):

U(a, t)∗ Ψ∗
as(P, p)U(a, t)

= e−b∗
as(J

a,t(p)−J(p)) eiPv(p)t e−iPa Ψ∗
as(P, p) ebas(J̄

a,t(p)−J(p)), (6.19)

with Ja,t(k, λ, p) ≡ ei(kt−ka)J(k, λ, p). Hence, even if the Hamiltonian is the
sum of two free Hamiltonians, the time evolution of Ψ∗

as is not free as a con-
sequence of the commutation relations, Eqs. (6.15) and (6.16). Thus, on the N
charged particle states ΨN obtained by applying Ψ∗

as to the vacuum,

H ΨN �= h0(Ψas)ΨN .

Given Eqs. (6.17) and (6.18), the non-commutativity of Ψas and bas,
Eqs. (6.15) and (6.16), is crucial for the absence of an eigenvalue at the bot-
tom of the spectrum of the Hamiltonian in the one-particle sector, at given
P = Pcharge + Pph(bas) and given particle momentum p. In fact, in general P
and

∑
i pi commute with H; by Eqs. (6.17) and (6.18), on one-particle states

ψ,

Hψ = (h0(ψas) + H0(bas))ψ = (P v(p) + [H0(bas) − Pph(bas) v(p)])ψ.

The operator in square brackets is positive since |v(p)| < 1 and the bottom of
the spectrum of H is an eigenvalue iff ψ is the vacuum vector for bas, which is
admitted iff J(k, λ, p) ∈ L2(d3k), for a set of p of positive measure.

It is also important to stress that neither the commutation relations nor
the time evolution of the asymptotic fields are affected by the Coulomb and
Lienard–Wiechert corrections in the LSZ procedure.

One may introduce the fields

Ψ∗
as(P, p, x) ≡ e−b∗

as(J
x(p)−J(p)) Ψ∗

as(P, p) ebas(J̄
x(p)−J(p)), (6.20)
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which transform covariantly under space–time translations U(a), a = (ai, a0):

U(a)∗ Ψ∗
as(P, p, x)U(a) = eiPv(p)a0 e−iPa Ψ∗

as(P, p, x + a). (6.21)

Their commutation relations with b#
as are

[b#
as(k, λ), Ψ∗

as(P, p, x)] = e±ikx J(k, λ, p)Ψ∗
as(P, p, x). (6.22)

The field algebra Fas identifies a unique C∗ algebra Aas, generated by Ψas and
the Weyl exponentials of bas,

Was(f) = e−i(bas(f)+h.c.),

with f = f(k, λ) a C∞ complex function of fast decrease. Eqs. (6.15) and (6.16)
become

Wout/in(f)Ψ∗
out/in(P, p)Wout/in(f)∗ = Ψ∗

out/in(P, p)e2i ReJ(f, p) ,

J(f, p) =
∑

λ

∫
d3k J(k, λ, p) f(k, λ). (6.23)

The algebras Aout/in have the structure of a semidirect product of fermion
and Weyl algebras, of the same form as that discussed by Herdegen [17,18].
However, the time evolution is very different, since, in Herdegen algebra, Ψas

is a free field (of definite mass). In fact, the time evolution of the Herde-
gen variables is given by the sum of the free Hamiltonian for Ψas and a free
(e.m.) Hamiltonian commuting with Ψas; in our algebra, this would amount
to replace, in Eq. (6.17), H0(bas) with H0(aas). Moreover, the representation
of the semidirect product algebra adopted by Herdegen differs from ours by
the absence of the vacuum state, which would give rise, in his case, to charged
states of definite mass.
d. Asymptotic form of the corrections to the LSZ formula

The modification of the standard LSZ formulas for the charged fields aris-
ing from the electromagnetic interaction can be written in terms of asymptotic
e.m. fields and asymptotic currents.

Proposition 6.1. The asymptotic charged fields, Eq. (6.10), are also given by
the following LSZ formula

Ψ∗
out/in(f) = lim

ε→0
lim

t→±∞

∫
dP dp f−t(P, p)Ψε ∗

t (P, p) eiρε
t (Ct(P, p))

eiρout/in (Lε
±(p)+c(p)) exp −iBout/in(jε

±(v(p))) , (6.24)

on H±, with the notation of Eq. (6.6), Ct and Lε
t given by Eqs. (6.3) and (6.4),

jε
± j(v;x) ≡ jε

j (v;x) θ(±x0), so that

Bout/in(jε
±(v)) = e

∫ ±∞

0

ds e−ε|s|
∫

d3xBout/in(x + vs, s) v η̃(x) ;

c(p, p′) ≡ lim
ε→0

∫
d4x d4y Dij(x − y)(−j± i(v′, x) + 1/2 jε

± i(v
′, x)) jε

± j(v, y) ,

with j± j ≡ jε=0
± j , v′ ≡ v(p′).
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Proof. The basic content of Eq. (6.24) is that, in Eq. (6.10) one may take first
the asymptotic limits of the fields ρε

t and Aε
t , keeping ε and t fixed in the

test functions. The resulting procedure for the limits will be shown to give the
same result as the diagonal procedure, Eq. (6.10), apart from the correction
given by c(p).
1. We first control the ε, t limits of the fields in the phase and in the electro-
magnetic factor, keeping ε, t fixed in the smearing functions.
Eqs. (6.13) and (6.14) imply that

VA(p, ε′, τ, ε, t) ≡ e−i
∫ t
0 dx0 Aε′

τ (
↔
∂τ Dτ−x0∗jε

±(v(p),x0))

converges strongly to

e−i
∫ t
0 dx0Bout/in(jε

±(v(p),x0))

= e−i(aout/in(F D ε
t (p))+h.c.)e−(ρout/in(i J)(F D ε

t (p))−h.c.) (6.25)

as τ → ±∞ and then ε′ → 0, since
∫ t

0
ds e−ε|s| Dτ−s ∗ η̃vs is a regular solution

of the wave equation, corresponding to f−τ in Eq. (6.13).
Similarly, Vρ(p, ε′, τ, ε, t) ≡ exp iρε′

τ (Lε
t (p)) converges strongly, as τ → ±∞

and then ε′ → 0, ε, t fixed, to

Vρ(p, 0,±∞, ε, t) ≡ exp iρout/in (Lε
t (p)).

2. We must prove that, in Eq. (6.10), the phase and electromagnetic factor
can be replaced by their asymptotic version, apart from a phase, i.e., on H±,
omitting the p dependence and using [ρout/in, bout/in] = 0,

Vρ(ε, t, ε, t)VA(ε, t, ε, t) − eiρout/in (Lε
t )VA(0,±∞, ε, t) e+iρout/in(c−cε

t ) → 0
(6.26)

strongly as t → ±∞ and then ε → 0.
Using [Uε

D(τ) , ρ(p)] = 0 and (see Eq. (6.7))

Uε′ ∗
D (τ) a(k, λ)Uε′

D (τ) = e−ikτ (a(k, λ) − ρ(iFDε′
τ ))(k, λ)) ,

the first term in Eq. (6.26) can be written as

Ωε
t eiρ(Lε

t (p)) e−i(a(F D ε
t (p))+h.c.) Ωε ∗

t e−[ρt(F Dε
t )(F D ε

t (p)) − h.c.]. (6.27)

2a. The last factor in Eq. (6.27) involves the smearing of ρ(p′) with −2i times
the imaginary part of the scalar product (FD ε

t (p′), FD ε
t (p)) as functions of

k and λ. Similarly for the last factor in Eq. (6.25). By an explicit control,
Im (FD ε

t (p′), FD ε
t (p)) converges, for t → ±∞ and then ε → 0, to

lim
ε→0

lim
t→±∞ Im (−iJ(p′), FD ε

t (p)) − 1
2c

ε
t (p, p′) + 1

2c(p, p′) ,

uniformly for p, p′ bounded. Both terms are non-vanishing due to the presence
of ε singularities in the corresponding integrals.
Then, by the second of Eqs. (6.11), the last factor in Eqs. (6.27) and (6.25)
converge, for t → ±∞ and then ε → 0, and their limits differ by the factor
eiρout/in (c′(p)) , c′ = c − limε,t cε

t . Both limits leave H± invariant.
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2b. We have to discuss the convergence of the remaining factors in Eq. (6.27),
on H±. Since Ωε ∗

t converges on H±, its limit inverts Ω±; Eq. (6.26) reduces,
therefore, to

(Ωε
t − Ω±) eiρ(Lε

t ) e−i(a(F D ε
t (p))+h.c.) → 0 , strongly onH. (6.28)

Since, for t → ±∞, Lε
t (p

′) converges to Lε
±(p′) uniformly for bounded p′,

FD ε
t (k, λ, p) → FD ε

± (k, λ, p) in L2(d3k) and Ωε
t → Ωε

±, we are left with the
limit in ε. Since Ωε

± = W ε
± ω± , [W ε

±, ρ(p′)] = 0 = [W±, ρ(p′)] , ω± ρ =
ρout/in ω±, the exponential of ρ can be moved to the left, becoming
eiρout/in(Lε

±).
Since ω± a(FD ε

± (p)) = a(FD ε
± (p±))ω± and ω±L2(Γ) × HF = H±, we are

reduced to

(W ε
± − W±) e−i(a(F D ε

± (p±))+h.c.) → 0 (6.29)

strongly on H±. Using Eq. (5.1) and the fact that, for any n-particle subspace
L2(Γ(n)

± ), W ε
± are multiplication operators W ε

±(q′, p′), one has

W ε
± e−i(a(F D ε

± (p±))+h.c.) = e−<ΔF ε
±(q′,p′), F D ε

± (p±)> e−i(a(F D ε
± (p±))+h.c.) W ε

±.

By the proof of Proposition 5.1, |k|1/2FD ε
± (p±) and |k|−1/2ΔF ε

±(q′, p′) con-
verge in L2(d3k), for almost all (q′, p′) in Γ±; therefore, the above phases
converge to

lim
ε→0

lim
ε′→0

〈ΔF ε′
± (q′, p′), FD ε

± (p±)〉 ,

a.e. in Γ±. Eq. (6.27) then follows from

(W ε
± − W±) → 0 on H±, W±H± = H±.

�
In Eq. (6.24), the electromagnetic correction required for the LSZ asymp-

totic limit of the charged field is replaced by a string-like factor involving the
massless asymptotic photon field Bout/in; the string is a straight line, with
direction given by the momentum variable p of the test function f .

From this point of view, a convenient strategy for the asymptotic limit of
the charged fields is to first obtain the massless asymptotic photon field and
then use the corresponding string as the e.m. correction in the LSZ formula
for the charged field.

In Eq. (6.24), also the Lienard–Wiechert modification involves the asymp-
totic density ρout/in of the particle momentum p, whose construction does not
require the LSZ limit of the charged field (see Eq. (6.11)). Since Lε

±(p, p′) =
Lε

±(p′, p), the Lienard–Wiechert factor has no effect on the canonical structure
of the asymptotic charged fields.

On the contrary, the finite phase factor involving ρout/in(c(p)) (not nec-
essary for the existence of the LSZ limit) has an antisymmetric part, which
cancels the changes induced by the exponential of the asymptotic e.m. field on
the charged field anti-commutation relations.

To write the Coulomb correction ρout/in(Ct(P, p)) in terms of asymptotic
variables, one should adiabatically switch also the Coulomb potential, since
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exp iρas(Ct) − exp iρε
t (Ct) does not converge for t → ±∞. The asymptotic

form of the Coulomb correction will be more conveniently discussed in a further
work, within a framework which does not use at all the adiabatic switching,
on the basis of an improved Dollard subtraction.

7. Conclusions

The strategy advocated by Kulish–Faddeev [21] and Rohrlich [19] for QED,
supported by the cancelation of the infrared divergences in the perturbation
expansion, has been rigorously controlled in a translationally invariant model
reproducing basic infrared problems of QED.

Technically, this has been obtained by introducing an adiabatic procedure
and mass renormalization counter-terms; both ingredients are characteristic of
the Feynman–Dyson approach, in its non-perturbative version discussed by
Hepp [16].

The field theory version of the model provides a strategy for the control of
the asymptotic limit of the Heisenberg charged fields, through an explicit mod-
ification of the LSZ (HR) formulas. The resulting asymptotic fields are very
different from those advocated by Zwanziger [27], Schweber [24] and Rohrlich
[19].

The modifications of the LSZ formula may be written in two alternative
forms: one is given in terms of the photon field at the same time t of the charged
field, the other by a string-like factor involving the massless asymptotic photon
field. The formulas only involve Heisenberg fields and geometrical factors; they
represent the transcription of the KFR strategy into the LSZ (Haag–Ruelle)
approach and are, therefore, good candidates for asymptotic formulas in QED
(see Eq. (1.7)). Making explicit their dependence on the origin x of the string
required for the LSZ limit, they produce asymptotic charged fields ψout/in(p, x),
space–time covariant in the momentum variable p lying on the mass shell and
in the space–time point x.

For the one-particle sector, our first LSZ formula is close to that proved
by Chen et al. [9], Eqs. (III.29) and (III.30), for one-particle states in non-
relativistic QED. In fact, their LSZ modification factor Wk,σt

(v, t) acts on a
(previously constructed) one-electron state which requires an infrared dressing
by a Weyl operator W of the same form, at t = 0, to mimic the action of an
interpolating field. Then, modulo different infrared regularizations and other
technical points, their correction factor Wk,σt

(v, t)W−1 corresponds to our
e.m. correction for the one-particle case.

For the asymptotic limit of the electromagnetic field, the ordinary LSZ
(HR) limit (with no Dollard correction) applies, in accord with Buchholz result
[5], and defines massless fields Bout/in. The canonical fields Ψout/in and Bout/in

generate asymptotic algebras with a semidirect product structure, their com-
mutation relations, Eqs. (6.15) and (6.16), being determined by the electro-
magnetic field corrections to the LSZ formula for the charged fields. Their
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time evolution is generated by the sum of the free Hamiltonians of Ψout/in and
Bout/in Eq. (6.17).

Such a decomposition, which also holds for the momentum, reproduces
the splitting Pμ = Pμ

charge + Pμ
ph, advocated in [15]. The resulting structure

is substantially different from the Herdegen proposal of a semidirect product
of asymptotic algebras [17,18], which involves a different Hamiltonian, giving
rise to free charged asymptotic fields.

The absence of charged states of definite mass, which in Herdegen analysis
requires the absence of the vacuum, follows here from the above decomposition
of the Hamiltonian and the non-trivial commutation relations between Ψas

and Bas. On the other hand, the mass shell appears in the spectrum of Pμ
charge,

which acts on ψas(p, x) leaving x fixed.
The space–time transformations of Ψas, Bas are also different from those

of the asymptotic fields proposed by Zwanziger [27], mainly because his char-
ged fields include (Coulomb–Lienard–Wiechert) phase operators which spoil
the group property of their time dependence.

Appendix A. Asymptotic Limits of Classical Configurations

Lemma A.1. Let γt, t ∈ IR, be invertible measure preserving transformations of
Γ = IR6N , with the Lebesgue measure dx, defining, therefore, unitary operators
ωt, ωtψ(x) ≡ ψ(γtx), in L2(Γ,dx). If ωt converge strongly, for t → ±∞, to ω±,
and ψ(γtx) converge pointwise, ∀ψ ∈ D, D ≡ ∪nC1(An), An open bounded
sets covering Γ apart from a set of zero measure, then there exist measurable
subsets Γ± and measure preserving transformations γ± : Γ± → Γ such that:

γtx →t→±∞ γ±x ∀x ∈ Γ±, (A.1)

(ω±ψ)(x) vanishes (a.e.) in the complement of Γ± and

(ω±ψ)(x) = ψ(γ±x), ∀ψ ∈ L2(Γ,dx) , x ∈ Γ±, (A.2)
ω±L2(Γ,dx) = L2(Γ±,dx). (A.3)

Proof. Let Γ± be the complements of the sets

{x : ψ(γt x) →t→±∞ 0, ∀ψ ∈ D}.

Γ± are measurable since D is separable in the Sup norm. Let x ∈ Γ+; then
there exists ψx ∈ D such that γt x ∈ supp(ψx), ∀t > tx. ∀ε > 0, the (compact)
support of ψx can be covered by a finite number of balls Bε

i , of radius ε, and
a partition of unity argument shows that for some index i, γt x ∈ Bε

i for all
large t, so that γt x has the Cauchy property; we denote by (γ+ x) its limit.
For ψ ∈ D, Eq. (A.2) follows by the identification of L2 limits with pointwise
limits. Since D is dense in L2 and ω+ is an isometry, γ+ preserves the measure,
so that Eq. (A.2) extends to L2 and the image of ω+ can be identified with
L2(Γ±,dx). �
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Appendix B. Completeness of the Møller Operators
in the Repulsive Two-Particle Case

We consider the non-relativistic case, the relativistic case being very similar.
For N = 2, in the reference frame where p1 = −p2 ≡ p, all trajectories have
non-zero relative asymptotic velocity v± and, therefore,

|xt| ≡ |q1 t − q2 t| ≥ (1 − ε) |v±| |t| for |t| large. (B.1)

This allows for the existence of the limit of u∗
D(t)u(t)ψ as t → ±∞, which

implies the unitarity of ω±. In fact,

(d/dt) (u∗
D(t)u(t))ψ = u∗

D(t)u(t) (w(xt)X(t) − w(vtt; 0)V (t) t)ψ, (B.2)

where

v ≡ q̇1 − q̇2 , V ≡ V1 − V2 , X ≡ (Q1 − Q2) ,

X(t) = u∗(t)Xu(t) , V (t) = u∗(t)V u(t). (B.3)

Now, by Eq. (3.14), u(t) induces a linear transformation on X,V , with coeffi-
cients given by matrices A(t) = Aα β(q, p, t), etc., α, β = 1, 2, 3,

X(t) = A(t)X + B(t)V, V (t) = C(t)X + D(t)V, (B.4)

which (in the non-relativistic case, with reduced mass = 1) satisfy

Ȧ = C, Ḃ = D,

Ċαβ(t) = −V ′′
αγ(t)Aγ β(t) , Ḋα β(t) = − − V ′′

αγ(t)Bγ β(t) ,

with V ′′
αγ ≡ ∂2V/∂xα∂xγ . Then,

C(t) = C(t0) −
∫ t

t0

V ′′
(s) dsA(t0) −

∫ t

t0

V ′′
(s) ds

∫ s

t0

C(s′) ds′.

By Eq. (B.1), V ′′
(t) = O(t−3), so that

sup
t≥t0

||C(t)|| ≤ ||C(t0)|| + ||A(t0)||O(t−2
0 ) + sup

t≥t0

||C(t)||O(t−1
0 )

and, therefore,

sup
t≥t0

||C(t)|| ≤ ||C(t0)|| (1 + O(t−1
0 )). (B.5)

This implies ||A(t)|| = O(t) and ||Ċ(t)|| = O(t−2).
Then, ||A(t) − C(t)t|| = O(ln t). The same conclusion holds for B(t) and for
D(t). This yields the estimate, ∀ψ ∈ D1

0 (see Proposition 3.1)

||(w(xt)(X(t) − V (t) t)ψ|| = O(t−2 ln t). (B.6)

On the other hand,

||(w(xt) − w(vtt; 0))V (t) t)ψ|| = O(t−2 ln t) (B.7)

since ||V (t)ψ|| is bounded by Eq. (B.5) for C(t) and D and Eq. (B.1) implies

|xt − vtt| = O(ln t)

on the support of ψ, which is left invariant by V (t). Then, the argument
following Eq. (3.17) applies.
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Appendix C. Proof of Lemma 4.2

Existence and unitarity of U(f), ∀f ∈ L2(d3k), follows from the essential self-
adjointness of a(f) + a(f)∗ on the domain Dfin of vectors describing finite
numbers of particles. If f, |k|−1/2f ∈ L2(d3k), then a(f)+a(f)∗ is well defined
on D(H0) as a consequence of the following estimates for a#, a# = a, a∗, on
Dfin and, therefore, on D(H0):

||a#(f)Ψ||2 ≤ ||k−1/2f ||2(Ψ, H0 Ψ) + ||f ||2 ||Ψ||2
≤ ||k−1/2f ||2(a ||H0Ψ||2 + (1/4a)||Ψ||2) + ||f ||2||Ψ||2, a > 0.

(C.1)

Furthermore, under the above assumptions of differentiability, one has

U(fα+ε) − U(fα) = U(fα + εf ′
α + εgα(ε)) − U(fα),

with g(ε), |k|−1/2 g(ε) → 0 in L2(d3k) as ε → 0, which can also be written as

U(fα) [U(εf ′
α)U(εgα(ε)) e(ε Cα+ε o(ε)) − 1].

Now, by Eq. (C.1), ∀ψ ∈ D(H0), h, |k|−1/2h ∈ L2(d3k)

||(d/dλ)U(λh)ψ||2 ≤ 2 ||h|k|−1/2||2 (||H0ψ||2 + ||ψ||2) + 4||h||2 ||ψ||2,
which implies

||(U(h) − 1)ψ|| ≤ ||h|k|−1/2|| cψ + ||h|| dψ. (C.2)

Then, for h = ε gα(ε), ∀ψ ∈ D(H0),

ε−1 (U(εgα(ε)) − 1)ψ → 0, as ε → 0.

On the other hand, by Stone theorem, on D(H0)

ε−1 (U(εf ′
α) − 1) → i (a(f ′

α) + a(f ′
α)∗)

so that, on D(H0),

dU(fα)/dα = U(fα) [i(a(f ′
α) + a(f ′

α)∗) + Cα]

and Eq. (4.20) follows.
Finally, ft(k) = f(k) e−i|k|t satisfies the above conditions for fα(k), if f(k),
|k|−1/2f(k), |k|f(k) ∈ L2(d3k) and, therefore, ∀ψ ∈ D(H0)

eiH0t U(f)ψ = U(f−t) eiH0t ψ (C.3)

is differentiable in L2 with respect to t, and this implies that U(f)ψ ∈ D(H0).

Appendix D. Adiabatic Switching of the Coulomb Interaction

To display the complete factorization of the infrared divergences, we introduce
the Hamiltonian

Hε,ε′
= h0 + H0 + e−ε′|t|hI + Hε

I, r(t). (D.1)

We proceed as in Sect. (3.4), with Hε
D(t) replaced by

Hε,ε′
D (t) = h0 + H0 + e−ε′|t|hI(vt, V t; 0) + Hε

I, D(t) ,
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with Hε
I, D(t) still given by Eq. (4.2). For t → ±∞, the result are the Møller

operators

Ωε,ε′
± = W ε,ε′

0± ωε′
± W ε ∗

D± = W ε,ε′
0± (q, p)W ε ∗

D±(pε′
±) ωε′

±

with pε′
± ωε′

± = ωε′
± p, as in Eq. (3.12).

In fact, the estimate Eq. (3.16) holds uniformly in ε′ and, therefore, the limits
in Eqs. (3.9)–(3.11) are uniform in ε′. This also implies that ωε′

± converges to ω±
as ε′ → 0. Moreover, with an obvious extension of the notation of Appendix A,
as a consequence of the adiabatic cutoff, both γε′

t (q, p) and its inverse converge
pointwise a.e. in Γ as t → ±∞. The limit of the first, γε′

± (q, p), satisfies

(ωε′
±ψ)(q, p) = ψ(γε′

± (q, p)).

Convergence of γε′
t (q, p)−1 a.e. in Γ implies Γε′

± = Γ and then Eq. (A.3), applied
to ωε′

± , implies that ωε′
± are unitary operators. By the above uniformity argu-

ment, Eq. (A.1) applies to γε′
± , i.e., for ε′ → 0,

γε′
± (q, p) → γ±(q, p)

a.e. in Γ±. In particular,

pε′
±(q, p) → p±(q, p), ∀(q, p) ∈ Γ±

and Eq. (3.19) holds uniformly in ε′. This allows for the control of the conver-
gence of the W operators as in Sect.(5.1), see Proposition (5.1):

lim
ε→0

W ε,ε
0± (q, p)W ε ∗

D±(pε
±) = lim

ε→0
lim
ε′→0

W ε,ε′
0± (q, p)W ε ∗

D±(pε′
±) = W±.

In fact, the estimates for the convergence of ΔF ε,ε′
± in the proof of Proposition

5.1 only rely on the limit in Eq. (3.19), which is uniform in ε′.
Such uniformity also implies that the estimates of Eqs. (5.13) and (5.14), and
therefore the convergence of the phases, are uniform in ε′. In conclusion,

lim
ε→0

Ωε,ε
± = lim

ε→0
Ωε

± = Ω±.

By an explicit calculation, the Møller operators ωε
± are related to the standard

adiabatic Møller operators ωε
0 ±, defined solely by an adiabatic switching of the

Coulomb interaction with no Dollard correction, by

ω± = lim
ε→0

ωε
0 ± e±ilε VD , lε = lim

t→∞ lεt

lεt ≡
∫ t

1

e−εs 1/sds, VD =
e2

4π

∑

i<j

vi − vj

|vi − vj |3 (Vi − Vj). (D.2)
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