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Abstract. We construct new concrete examples of relative differential char-
acters, which we call Cheeger–Chern–Simons characters. They combine
the well-known Cheeger–Simons characters with Chern–Simons forms. In
the same way as Cheeger–Simons characters generalize Chern–Simons in-
variants of oriented closed manifolds, Cheeger–Chern–Simons characters
generalize Chern–Simons invariants of oriented manifolds with bound-
ary. We study the differential cohomology of compact Lie groups G and
their classifying spaces BG. We show that the even degree differential co-
homology of BG canonically splits into Cheeger–Simons characters and
topologically trivial characters. We discuss the transgression in princi-
pal G-bundles and in the universal bundle. We introduce two methods
to lift the universal transgression to a differential cohomology valued
map. They generalize the Dijkgraaf–Witten correspondence between 3-
dimensional Chern–Simons theories and Wess–Zumino–Witten terms to
fully extended higher-order Chern–Simons theories. Using these lifts, we
also prove two versions of a differential Hopf theorem. Using Cheeger–
Chern–Simons characters and transgression, we introduce the notion of
differential trivializations of universal characteristic classes. It general-
izes well-established notions of differential String classes to arbitrary de-
gree. Specializing to the class 1

2
p1 ∈ H4(BSpinn; Z), we recover isomor-

phism classes of geometric string structures on Spinn-bundles with con-
nection and the corresponding spin structures on the free loop space. The
Cheeger–Chern–Simons character associated with the class 1

2
p1 together

with its transgressions to loop space and higher mapping spaces defines a
Chern–Simons theory, extended down to points. Differential String classes
provide trivializations of this extended Chern–Simons theory. This setting
immediately generalizes to arbitrary degree: for any universal character-
istic class of principal G-bundles, we have an associated Cheeger–Chern–
Simons character and extended Chern–Simons theory. Differential trivial-
ization classes yield trivializations of this extended Chern–Simons theory.
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1. Introduction
The present article contributes to the program of string geometry and its
higher-order generalizations. By string geometry, we understand the study of
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geometric structures on a smooth manifold X that correspond to so-called spin
structures on the free loop space LX.

As the name suggests, the notion of string geometry originates in mathe-
matical physics. String structures on a manifold X were introduced by Killing-
back [33] in the context of anomaly cancellation for the world sheet action of
strings. As spin structures account for supersymmetric point particles being
well defined, string structures are supposed to play an analogous role for su-
persymmetric strings.

Nonlinear sigma models, i.e., two-dimensional field theories on X, may
be considered as one-dimensional field theories on the free loop space LX.
As in the case of the manifold X itself, one needs a notion of spin structures
on the loop space LX to formulate the fermionic part of the theory. Such a
notion was introduced in [33] and further elaborated on in [16].

Actually, consistency of the supersymmetric sigma model requires slightly
stronger geometric structures than spin structures on LX, so-called geomet-
ric string structures on X. In [53], geometric string structures are defined as
trivializations of the extended Chern–Simons theory associated with a given
principal Spinn-bundle with connection π : (P, θ) → X. A geometric notion
of String connections that satisfies this definition was established by Waldorf
in [55] in terms of trivializations of bundle 2-gerbes with compatible connec-
tions. The full picture of the correspondence between spin geometry on LX
and string geometry on X was established recently in [56] as an equivalence of
categories between (geometric) string geometry on X and (superficial geomet-
ric) fusion spin structures on LX. Geometric string structures are classified
up to isomorphism by certain degree 3 differential cohomology classes, called
differential String classes.

In the present paper, we generalize the notion of (isomorphism classes
of) differential string structures to arbitrary universal characteristic classes
for principal G-bundles. Instead of bundle (2-)gerbes, we use differential char-
acters to represent differential cohomology classes. While the use of bun-
dle (2-)gerbes is limited to low degrees in cohomology, our approach ap-
plies to universal characteristic classes of arbitrary degree. We introduce a
notion of differential trivializations of characteristic classes and discuss triv-
ializations of the corresponding extended higher-order Chern–Simons theo-
ries.

Now, let us describe the above-mentioned geometric structures in more
detail. Given a principal Spinn-bundle π : P → X, the loop space functor
yields a principal L Spinn-bundle π : LP → LX. To construct associated
vector bundles, one needs good representations of the loop group. However,
all positive energy representations of the loop group L Spinn are projective
[44]. Thus, one aims at lifting the structure group of the loop bundle from
L Spinn to its universal central extension ̂L Spinn. The obstruction to such
lifts is a certain cohomology class in H3(LX; Z), most easily described as the
transgression to loop space of the class 1

2p1(P ) ∈ H4(X; Z). The actual bundle
lifts are referred to as spin structures on the loop bundle.
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Instead of lifts of loop bundles, one may also consider trivializations of
the class 1

2p1(P ) on the manifold X itself. This is the program of string geom-
etry. On the one hand, 1

2p1(P ) is the obstruction to lift the structure group
of π : P → X from Spinn to its 3-connected cover Stringn. As is well known,
Stringn cannot be realized as a finite-dimensional Lie group, but as an infinite-
dimensional Fréchet Lie group [43]. From this perspective, string geometry
may be regarded as the study of principal Stringn-bundles (with connection)
lifting the given principal Spinn-bundle (with connection). Actual such lifts
may be called (geometric) string structures in the Lie theoretic sense. On the
other hand, 1

2p1(P ) is the characteristic class of a higher categorical geometric
structure, the so-called Chern–Simons bundle 2-gerbe [12,55]. From this per-
spective, string geometry is the study of trivializations of the Chern–Simons
bundle 2-gerbe together with compatible connections. Actual such trivializa-
tions (with connection) are called (geometric) string structures in the gerbe
theoretic sense.

Isomorphism classes of Spinn-bundles π : P → X are in 1–1 correspon-
dence with homotopy classes of maps f : X → BSpinn to the classifying
space. Likewise, isomorphism classes of Stringn-lifts π : P → X are in 1–1
correspondence with homotopy classes of lifts

BStringn

��
X

˜f
��

f
�� BSpinn.

From the work of Redden [46], the latter are also in 1–1 correspondence with
certain cohomology classes in H3(P ; Z), called String classes. The set of all
String classes on π : P → X is a torsor for the cohomology H3(X; Z) of the
base. string classes are recovered by string structures, in both senses men-
tioned above. Associated with a String class on a compact Riemannian mani-
fold (X, g) is a canonical 3-form ρ ∈ Ω3(X) which trivializes the class 1

2p1; see
[46]. Transgression to loop space maps a String class to the Chern class of a
line bundle over LP . The total space of this line bundle is the total space of
the ̂L Spinn-lift of the loop bundle π : LP → LX.

String connections as described above refine String classes to differential
cohomology classes. More precisely, isomorphism classes of geometric string
structures are in 1–1 correspondence with differential String classes [56]. The
set of all differential String classes is a torsor for the differential cohomology
̂H3(X; Z) of the base [55].

String classes are a special case of the more general concept of trivializa-
tion classes for universal characteristic classes u ∈ H∗(BG; Z) for principal G-
bundles [46]. For a principal G-bundle with connection (P, θ) → X, we expect
to have canonical refinements of trivialization classes to differential cohomol-
ogy classes. In analogy with differential String classes, an appropriate notion
of differential trivialization classes should satisfy the following two properties:
firstly, restriction to any fiber should yield a canonical class in the differential
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cohomology of the Lie group G; secondly, the set of all differential trivializa-
tion classes should be a torsor for the action of the differential cohomology
̂H∗(X; Z) of the base.

In the present article, we establish a notion of differential trivializa-
tion classes for universal characteristic classes of principal G-bundles (with
connection) and show that it satisfies these two properties. This notion is
not as obvious as it may seem: taking the set of all differential cohomology
classes with characteristic class a trivialization class is far too large, even
after imposing the condition to restrict to a fixed differential cohomology
class along the fibers. Associated with a differential trivialization class in our
sense is a differential form on the base ρ ∈ Ω∗(X) which trivializes the given
characteristic class u(P ) ∈ H∗(X; Z). Specializing to the characteristic class
1
2p1 ∈ H4(BSpinn; Z), we recover differential String classes in the sense of [56]
and their canonical 3-forms on X.

On a compact Riemannian manifold (X, g), we find another equivalent
characterization of geometric string structures: by Hodge theory and adiabatic
limits [46], one obtains a canonical 3-form ρ ∈ Ω3(X) such that CSθ( 1

2p1) −
π∗ρ ∈ Ω3(P ) represents a given String class. We show that this setting uniquely
determines a differential String class with differential form ρ.

The main tool in our concept of differential trivialization classes is the no-
tion of Cheeger–Chern–Simons characters ̂CCSθ ∈ ̂H∗(π; Z). These are new
concrete examples of relative differential characters in the sense of [7]. Dif-
ferential characters were introduced by Cheeger and Simons in [14] as cer-
tain U(1)-valued characters on the group of smooth singular cycles in X.
The ring of differential characters on a manifold X is nowadays called the
differential cohomology of X. We denote it by ̂H∗(X; Z). Out of a differ-
ential character h ∈ ̂Hk(X; Z), one obtains a smooth singular cohomology
class c(h) ∈ Hk(X; Z)—its characteristic class—and a differential k-form
curv(h) ∈ Ωk(X) with integral periods—its curvature. Both the characteristic
class and the curvature map are well known to be surjective. In this sense,
differential characters are refinements of smooth singular cohomology classes
by differential forms.

As a particular example, Cheeger and Simons construct certain even de-
gree differential characters on the base X of a principal G-bundle with con-
nection (P, θ) → X with curvature given by the Chern–Weil forms of the
connection θ. The construction thus lifts the Chern–Weil map to a differen-
tial character-valued map. We refer to these particular characters as Cheeger–
Simons characters and denote them by ̂CW θ to emphasize their relation to
the Chern–Weil map. They are also called differential characteristic classes by
some authors [9,30].

Relative differential characters were introduced by Brightwell and Turner
in [7] as differential characters on the mapping cone cycles of a smooth map
ϕ : A → X. Thus, it would also be appropriate to call them mapping cone
characters. A relative character h ∈ ̂Hk(ϕ; Z) determines an absolute character
p̆(h) ∈ ̂Hk(X; Z); see [1]. Out of a relative character h ∈ ̂Hk(ϕ; Z), one obtains
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an additional differential form cov(h) ∈ Ωk−1(A)—its covariant derivative.
Relative differential characters in ̂Hk(ϕ; Z) may be regarded as sections along
the map ϕ : A → X of the absolute characters p̆(h) ∈ ̂Hk(X; Z). An absolute
character in ̂Hk(X; Z) has sections along a smooth map ϕ if and only if its
characteristic class vanishes upon pull-back by ϕ; see [1] for further details.

Bundle gerbes on X provide a particular class of examples of relative
differential characters: any bundle gerbe G with connection, defined by a sub-
mersion π : Y → X, determines a relative differential character hG ∈ ̂H3(π; Z)
with covariant derivative the curving B ∈ Ω2(Y ) of the bundle gerbe; see [1].
The absolute character p̆(hG ) ∈ ̂H3(X; Z) corresponds to the stable isomor-
phism class of the bundle gerbe. Analogously, bundle 2-gerbes with connection,
defined by a submersion π : Y → X, determine relative characters in ̂H4(π; Z)
with curvature given by the curvature 4-form of the bundle 2-gerbe and co-
variant derivative given by the curving B ∈ Ω3(Y ).

The Cheeger–Simons construction mentioned above is refined in the
present article to a relative differential character-valued map, which factor-
izes through the Cheeger–Simons map. We call the resulting relative char-
acters Cheeger–Chern–Simons characters and denote them by ̂CCSθ. Two
elementary observations lead to the construction of these Cheeger–Chern–
Simons characters: First of all, universal characteristic classes of principal
G-bundles vanish upon pull-back to the total space. Thus Cheeger–Simons
characters admit sections along the bundle projection π : P → X. Secondly,
the pull-back of a Chern–Weil form CWθ to the total space has a canoni-
cal trivialization: the associated Chern–Simons form CSθ. Putting these ob-
servations together, we obtain our notion of Cheeger–Chern–Simons charac-
ters. Let G be a Lie group with finitely many components and (P, θ) → X
a principal G-bundle with connection. Associated with an invariant homoge-
neous polynomial λ of degree k on the Lie algebra g and a corresponding
universal characteristic class u ∈ H2k(BG; Z) is a natural relative differential
character ̂CCSθ(λ, u) ∈ ̂H2k(π; Z). It is uniquely determined by the require-
ment that it projects to the Cheeger–Simons character ̂CW θ(λ, u) and that
its covariant derivative is given by the Chern–Simons form CSθ(λ). The con-
struction of the Cheeger–Chern–Simons character ̂CCSθ(λ, u) relies on the
same arguments as the construction of the Cheeger–Simons character ̂CW θ

in [14]. We also discuss multiplicativity and dependence upon the connec-
tion.

In the same way as Cheeger–Simons characters, ̂CW θ generalizes Chern–
Simons invariants of oriented closed manifolds, and Cheeger–Chern–Simons
characters ̂CCSθ generalize Chern–Simons invariants of oriented manifolds
with boundary. Specializing the universal characteristic class u = 1

2p1 ∈
H4(BSpinn; Z), the Cheeger–Chern–Simons character ̂CCSθ( 1

2p1) coincides
with the relative differential cohomology class hCS ∈ ̂H4(π; Z) represented
by the so-called Chern–Simons bundle 2-gerbe CS on X, constructed in
[12].
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We use Cheeger–Chern–Simons characters for two kinds of applications:
to introduce our notion of differential trivializations of universal characteris-
tic classes of principal G-bundles and to define trivializations of higher-order
Chern–Simons theories. For both these applications, we need two kinds of
transgression: transgression to loop space and higher mapping spaces by means
of fiber integration, and transgression in fiber bundles from the base space to
the fiber.

Transgression of differential cohomology classes to loop space was con-
structed by various authors in several models of differential cohomology [8,
10,20,23,26,32,36]. In [1], we study fiber integration and transgression of ab-
solute and relative differential cohomology systematically. We prove that fiber
integration is uniquely determined by naturality and compatibility with differ-
ential forms and construct particularly good and geometric fiber integration
and transgression maps.

Transgression in the cohomology of fiber bundles from the base to the
fiber is a classical tool, mainly used to study the algebraic topology of the prin-
cipal bundles [4]. To the best of our knowledge, there are no known general-
izations to differential cohomology. We discuss two different ways to construct
the cohomology transgression by appropriate diagram chase arguments: one
using the inclusion of the fiber in the total space, the other using the mapping
cone cohomology of the bundle projection. We show that only the latter nicely
generalizes to differential cohomology.

For an arbitrary fiber bundle, the transgression map is defined as usual
on the transgressive elements in the differential cohomology of the base and
takes values in a quotient of the differential cohomology of the fiber. On a
universal principal G-bundle, all differential cohomology classes of the base are
transgressive. We establish two different methods to lift the transgression to a
map ̂T : ̂H∗(BG; Z) → ̂H∗(G; Z) which takes values in differential cohomology
of the fibers, not just a quotient. We use these lifts to prove two versions of a
differential Hopf theorem: the differential cohomology of a compact Lie group
G is generated, up to certain topologically trivial characters, by transgressed
Cheeger–Simons characters on BG.

The cohomology transgression T : H4(BG; Z) → H3(G; Z) for compact
Lie groups has a well-known interpretation in mathematical physics terms [18]:
elements of H4(BG; Z) classify topological charges of 3-dimensional Chern–
Simons theories, while elements of H3(G; Z) are topological charges of two-
dimensional sigma models on G, i.e., Wess–Zumino models. By work of Dijk-
graaf and Witten, the correspondence between three-dimensional Chern–Sim-
ons theories and Wess–Zumino models on G is determined by the transgres-
sion, applied to the topological charges. Our differential cohomology transgres-
sion ̂T : ̂H∗(BG; Z) → ̂H∗(G; Z) generalizes the Dijkgraaf–Witten correspon-
dence to fully extended higher-order Chern–Simons theories. These higher-
order Chern–Simons theories are constructed from higher-degree Cheeger–
Simons and Cheeger–Chern–Simons characters by means of transgression to
loop space and higher mapping spaces. Trivializations of extended higher-order
Chern–Simons theories are constructed in terms of transgression of differen-
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tial String classes (in the case of 3-dimensional Chern–Simons theories) and
universal differential trivializations (in the general case).

The article is organized as follows: Sect. 2 reviews the well-known Chern–
Weil, Chern–Simons and Cheeger–Simons constructions and constructs Chee
ger–Chern–Simons characters. In Sect. 3 we discuss several notions of trans-
gression for Cheeger–Simons characters: transgression to loop space and trans-
gression in fiber bundles. It further establishes the basic results on the differ-
ential cohomology of compact groups and their classifying spaces. In Sect. 4 we
introduce differential trivializations of universal characteristic classes of prin-
cipal G-bundles. In Sect. 5 we specialize the case of differential String classes
and discusses trivializations of fully extended higher-order Chern–Simons theo-
ries. The appendices provide background information on differential characters,
bundle 2-gerbes and transgression.

2. Cheeger–Chern–Simons Theory

Throughout this section, let G be a Lie group with finitely many compo-
nents. Let g be its Lie algebra. Let (P, θ) → X be a principal G-bundle with
connection. More explicitly, P and X are smooth manifolds (not necessarily
finite dimensional)1 together with a smooth right G-action on P , a diffeo-
morphism P/G

≈−→ X and a connection 1-form θ ∈ Ω1(P ; g). Let λ be an
invariant polynomial on g, homogeneous to degree k. By the classical Chern–
Weil construction, the polynomial λ associates with (P, θ) the Chern–Weil
form CWθ(λ) ∈ Ω2k(X). In fact, the Chern–Weil form CWθ(λ) is closed and
its de Rham cohomology class [CWθ(λ)] ∈ H2k

dR(X) does not depend upon the
connection θ.

The Chern–Weil construction has two well-known refinements, the Chern–
Simons construction [15] and the Cheeger–Simons construction [14]: the pull-
back of the Chern–Weil form CWθ(λ) along the bundle projection π : P → X
is an exact form. The Chern–Simons form CSθ(λ) ∈ Ω2k−1(P ), constructed in
[15], satisfies dCSθ(λ) = π∗CWθ(λ). Moreover, the Chern–Weil construction
has a unique lift to the differential cohomology ̂H2k(X; Z), constructed in [14].
In other words, the Chern–Weil form CWθ(λ) is the curvature of a differential
character ̂CW θ(λ) ∈ ̂H2k(X; Z).

In this section, we further refine these well-known constructions: we show
that there is a canonical natural relative differential character for the bun-
dle projection π : P → X with covariant derivative CSθ(λ), which maps to
̂CW θ(λ) under the map p̆ : ̂H2k(π; Z) → ̂H2k(X; Z). Since this construction
combines the Chern–Simons form CSθ(λ) with the Cheeger–Simons differen-
tial character ̂CW θ(λ), we call it the Cheeger–Chern–Simons construction.

1 In an infinite-dimensional setting, one may take P and X to be either Banach or Fréchet
manifolds; see [24] for an overview of Fréchet manifolds and also [34] for the de Rham complex
on several categories of infinite-dimensional manifolds, including Fréchet manifolds.
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For convenience of the reader, we review the classical Chern–Weil and
Chern–Simons constructions. The basic notions of relative and absolute differ-
ential characters are reviewed in Appendix A.

2.1. The Chern–Weil, Chern–Simons and Cheeger–Simons
Constructions

In this section, we briefly review the results of the classical Chern–Weil and
Chern–Simons constructions. We review in more detail the refinement of the
classical Chern–Weil map to a differential character-valued map, constructed
by Cheeger and Simons in [14]. We term this the Cheeger–Simons construction.

2.1.1. Universal Bundles and Connections. Let G be a Lie group with finitely
many components. Let g be its Lie algebra. We denote by πEG : EG → BG
the universal principal G-bundle over the classifying space of G. Let x ∈ BG
and denote by EGx := π−1

EG(x) the fiber of EG over x.
Any principal G-bundle π : P → X can be written as pull-back of the

universal bundle via a pull-back diagram

P = f∗EG
F ��

π

��

EG

πEG

��
X

f
�� BG.

A map f : X → BG such that f∗EG = P as principal G-bundles is called a
classifying map for P → X.

The pull-back bundle π∗
EGEG → EG is trivial as a principal G-bundle. A

trivialization is given by the tautological section that maps any point p ∈ EG
to itself, considered as a point in the fiber (π∗

EGEG)p = EGπ(p) over π(p) ∈
BG.

A universal characteristic class for principal G-bundles is a cohomology
class in H∗(BG; Z). Since the total space EG of the universal principal G-
bundle is contractible, we have H∗(EG; Z) = {0}. Thus, any universal charac-
teristic class u ∈ H∗(BG; Z) satisfies π∗u = 0.

Connections on a principal G-bundle P → M can also be induced via pull-
back from certain universal data, called universal connections: Narasimhan
and Ramanan [42] construct universal connections on n-classifying principal G-
bundles.2 A universal connection Θ for principal G-bundles in the sense of [42]
is a family of universal connections on n-classifying G-bundles EGn → BGn

(or a direct limit of those).
While n-classifying bundles can be realized as finite-dimensional smooth

manifolds, the universal principal G-bundle cannot. As a topological bundle,
πEG : EG → BG is given by the Milnor construction [38]. It can also be given
a smooth structure either as a Banach manifold [49] or as a differentiable space

2 A principal G-bundle EGn → BGn is called n-classifying, if any principal G-bundle on
any manifold M of dimension ≤n is a pull-back of EGn → BGn.
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[39].3 In both cases, universal connections are realized as connection 1-forms
on EG in the respective sense.

Now for any principal G-bundle π : (P, θ) → X with connection, there
exists a smooth map f : M → BG such that (P, θ) → X and f∗(EG,Θ) → X
are isomorphic as principal G-bundles with connection over X. See also [35,45]
for further aspects of universal connections. Another construction of universal
connections on universal principal G-bundles has appeared more recently in
[6].

A map f : X → BG such that (P, θ) = f∗(EG,Θ) is called a classifying
map for (P, θ) → X as principal G-bundle with connection. Note that neither
universal connections nor classifying maps for a bundle with connection are
unique.

A completely different point of view on classifying spaces, universal bun-
dles and universal connections is taken in [21]. By means of homotopical al-
gebra, Freed and Hopkins construct a universal principal G-bundle, denoted
E∇G → B∇G, where both the total space and base are simplicial sheaves
(instead of infinite-dimensional manifolds). In this setting, there is a canonical
universal connection for principal G-bundles, which is a g-valued 1-form on
E∇G. Moreover, this universal connection induces unique classifying maps for
principal G-bundles with connection.

Although it would be interesting to study the Cheeger–Simons and
Cheeger–Chern–Simons characters in terms of this new notion of universal
connection, we will not pursue this approach in the present paper. For a re-
cent approach in this direction, see [47]. For a fairly general exposition of
generalized differential cohomology in terms of homotopical algebra, we refer
to [9].

2.1.2. The Chern–Weil Construction. Let G be a Lie group with finitely many
components. Let g be its Lie algebra. Following the notation of [14], we set

Ik(G) :=
{

λ : g ⊗ · · · ⊗ g
︸ ︷︷ ︸

k

→ R

∣

∣

∣ λ symmetric, multilinear, AdG-invariant
}

for the space of AdG-invariant symmetric multilinear real-valued functions
from the k-fold tensor product of g. Such functions are called invariant homo-
geneous polynomials of degree k on g.

Let π : (P, θ) → X be a principal G-bundle with connection. We denote
by Fθ ∈ Ω2(X,Ad(P )) the curvature 2-form of the connection θ. The Chern–
Weil map CWθ : Ik(G) → Ω2k(X) associates with an invariant polynomial
λ ∈ Ik(G) the Chern–Weil form4

CWθ(λ) := λ(F k
θ ) = λ(Fθ ∧ · · · ∧ Fθ

︸ ︷︷ ︸

k

) ∈ Ω2k(X). (2.1)

3 We expect that πEG : EG → BG can also be realized as a Fréchet manifold and that one
can construct universal connections as connection 1-forms in the Fréchet manifold sense.
But to the best of our knowledge, no such statement exists in the literature so far.
4 In [15], this form is denoted P (θ) where P denotes an invariant polynomial on g.
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The Chern–Weil form CWθ(λ) is a closed differential form whose de Rham
cohomology class does not depend upon the choice of connection θ.

More precisely, given two connections θ0, θ1, the Chern–Weil forms CWθ0 ,
CWθ1 differ by the differential of the Chern–Simons form CS(θ0, θ1;λ). The
construction of the Chern–Simons form is reviewed in Sect. 2.1.4 below.

2.1.3. The Cheeger–Simons Construction. As above, let G be a Lie group with
finitely many components. Let g be its Lie algebra. Let Θ be a fixed universal
connection on the universal principal G-bundle πEG : EG → BG. We denote
the corresponding universal Chern–Weil map to the real cohomology of BG
by

CW : Ik(G) → H2k(BG; R), λ �→ [λ(F k
Θ)]dR ∈ H2k

dR(BG) ∼= H2k(BG; R).

For any principal G-bundle with connection π : (P, θ) → X, we have the
commutative diagram:

Ik(G) CW ��

CWθ

��

H2k(BG; R)

clR

��

H2k(BG; Z)��

clZ

��
Ω2k

cl (X)
dR

�� H2k(X; R) H2k(X; Z)��

The maps clR and clZ are induced by a classifying map f : X → BG for
the bundle with connection (P, θ). They do not depend upon the choice of
the classifying map. The map dR : Ω2k

cl (X) → H2k(X; R) is the projection
Ω2k

cl (X) → H2k
dR(X), followed by the de Rham isomorphism. The horizontal

maps in the right square are the change of coefficients maps induced by the
inclusion Z ↪→ R. For an integral cohomology class u ∈ H2k(X; Z), we denote
by uR its image in H2k(X; R).

The question arises whether the Chern–Weil form CWθ(λ) may be repre-
sented as curvature of an appropriate differential character (in case it has inte-
gral periods). The question is answered affirmatively in [14] by what we term
the Cheeger–Simons construction. Following the notation established there, we
put:

K2k(G; Z) :=
{

(λ, u) ∈ Ik(G) × H2k(BG; Z)
∣

∣ CW (λ) = uR

}

(2.2)

for the set of pairs of invariant polynomials and integral universal characteristic
classes that match in real cohomology. Moreover, denote by

Rn(X; Z) :=
{

(ω,w) ∈ Ωn
0 (X) × Hn(X; Z)

∣

∣ [ω]dR = wR

}

the set of pairs of closed forms with integral periods ω and smooth singular
cohomology classes w that match in real cohomology.

It is shown in [14] that the Chern–Weil map CWθ has a unique natural
lift to a differential character-valued map in the following sense: for any k ≥ 1
and any principal G-bundle with connection π : (P, θ) → X, there exists a
unique natural map ̂CW θ such that the diagram
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̂H2k(X; Z)

(curv,c)

��
K2k(G; Z)

̂CW θ

��

CWθ×clZ

�� R2k(X; Z)

(2.3)

commutes. We call the differential character ̂CW θ(λ, u) ∈ ̂H2k(X; Z) the
Cheeger–Simons character associated with (λ, u) ∈ K2k(G; Z).5 From diagram
(2.3), the curvature of the Cheeger–Simons character is the Chern–Weil form

curv( ̂CW θ(λ, u)) = CWθ(λ) (2.4)

and its characteristic class is given by

c( ̂CW θ(λ, u)) = cZ(u) = f∗u = u(P ). (2.5)

Naturality of the map ̂CW θ means that for any smooth map g : X ′ → X and
the pull-back bundle g∗(P, θ) → X ′, we have

g∗(
̂CW θ(λ, u)

)

= ̂CW g∗θ(λ, u) ∈ ̂H2k(X ′; Z). (2.6)

We call the map ̂CW θ : K∗(G; Z) → ̂H∗(X; Z) the Cheeger–Simons construc-
tion. By [14, Cor. 2.3], it is a ring homomorphism with respect to the ring
structures of K∗(G; Z) and ̂H∗(X; Z).

2.1.4. The Chern–Simons Construction. As before, let π : (P, θ) → X be a
principal G-bundle with connection and λ ∈ Ik(G) an invariant polynomial.
The pull-back bundle π∗P → P has a tautological section σtaut, which maps
any point p ∈ P to itself, now considered as a point in the fiber (π∗P )p =
Pπ(p). The tautological section σtaut yields a trivialization P × G

∼=−→ π∗P ,
(p, g) �→ σtaut(p)·g. In particular, π∗P carries a canonical flat connection θtaut,
obtained from the trivial connection on P × G by pull-back via the inverse of
the trivialization. Since the de Rham cohomology classes of Chern–Weil forms
do not depend upon the choice of the connection, all Chern–Weil classes of
π∗P vanish. In particular, the pull-backs π∗CWθ(λ) = CWπ∗θ(λ) ∈ Ω2k(P ) of
Chern–Weil forms are exact forms on P .

The Chern–Simons form of a connection θ was first constructed in [15] as
an invariant (2k − 1)-form on P whose differential is the pull-back π∗CWθ(λ)
of the Chern–Weil form. In fact, there are two different notions of Chern–
Simons forms, closely related to one another: the Chern–Simons form of two
connections θ0, θ1 is a (2k − 1)-form on the base CS(θ0, θ1;λ) ∈ Ω2k−1(X)
with differential the difference of the corresponding Chern–Weil forms, while
the Chern–Simons form for one connection θ is a (2k − 1)-form on the total
space CSθ(λ) ∈ Ω2k−1(P ) with differential the pull-back of the Chern–Weil
form.

5 In [14], this character is denoted SP,u(α) where P denotes an invariant polynomial, u a

universal characteristic class and α a principal G-bundle with connection.
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Denote by A (P ) the space of connections on the principal G-bundle
P → X. It is an affine space for the vector space Ω1(X; Ad(P )) of 1-forms
on the base X with values in the associated bundle Ad(P ) := P ×Ad g. In
particular, A (P ) is path connected.

Let θ0, θ1 be connections on π : P → X. Let θ : [0, 1] → A (P ) be a
smooth path joining them. It defines a connection θ ∈ A (P × [0, 1]) on the
principal G-bundle P × [0, 1] → X × [0, 1]. Integrating the Chern–Weil form of
this connection over the fiber of the trivial bundle X × [0, 1] → X, we obtain a
(2k−1)-form

ffl
[0,1]

CWθ(s)(λ) ∈ Ω(2k−1)(X). By the fiberwise Stokes theorem,6

we have:

CWθ1(λ) − CWθ0(λ) = −d

 

[0,1]

CWθ(λ) +
 

[0,1]

dCWθ(λ)
︸ ︷︷ ︸

=0

. (2.7)

Since A (P ) is an affine space, there is a canonical path joining two con-
nections θ0 and θ1, namely the straight line θ(t) := (1 − t)θ0 + tθ1 from θ0 to
θ1. The Chern–Simons form for two connections is the (2k − 1)-form on the
base, obtained as above, for the straight line:

CS(θ0, θ1;λ) := −
 

[0,1]

CW(1−t)θ0+tθ1(λ) ∈ Ω(2k−1)(X). (2.8)

As above, it satisfies dCS(θ0, θ1;λ) = CWθ1(λ) − CWθ0(λ).
The Chern–Simons form CSθ(λ) ∈ Ω2k−1(P ) for one connection θ on the

bundle P → X is defined as the Chern–Simons form for the two connections
θtaut and π∗θ on the pull-back bundle π∗P → P :

CSθ(λ) := CS(θtaut, π
∗θ;λ). (2.9)

Since the tautological connection is flat, we have dCSθ(λ)
(2.7)
= CWπ∗θ(λ) =

π∗CWθ(λ).
We call the map CSθ : Ik(G) → Ω2k−1(P ), λ �→ CSθ(λ), the Chern–

Simons construction.7 Up to an exact remainder, the Chern–Simons form
CSθ(λ) is the unique natural (2k − 1)-form on P with differential π∗CWθ(λ).
In fact, any two (2k − 1)-forms on EG with differential π∗

EGCWΘ(λ) differ by
an exact form, since EG is contractible.

In general, the Chern–Simons form CSθ(λ) is an invariant form on P , but
it is neither horizontal nor closed. It depends in a well-known manner upon
the connection θ (see [15, Prop. 3.8] and Sect. 2.4 below). The pull-back of
the Chern–Simons form CSθ(λ) to the fiber Px

∼= G over any point x ∈ X
does not depend upon the choice of connection θ. It can be expressed solely
(and explicitly) in terms of the Maurer–Cartan form of G. Moreover, for low-
dimensional bases X, the Chern–Simons form CSθ(λ) is independent of the
connection θ and is itself a closed form; see [15, Thm. 3.9].

6 The orientation conventions for fiber bundles with boundary are as in [1, Ch. 4, 7].
7 In [15], the invariant polynomials are denoted by P . The corresponding Chern–Simons
form is denoted TP (θ) to emphasize its relation to the transgression of the Chern–Weil
form.
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Let Θ be a universal connection on the universal principal G-bundle πEG :
EG → BG. Then we have dCSΘ(λ) = π∗

EGCWΘ(λ) = curv(πEG
∗

̂CWΘ(λ, u)).
From the exact sequence (A.1) and contractibility of EG, we conclude that
ι(CSΘ(λ)) = πEG

∗
̂CWΘ(λ, u). Thus, the Chern–Simons form provides a topo-

logical trivialization of the pull-back of the Cheeger–Simons character ̂CWΘ

(λ, u) to EG.
Now, let (P, θ) → X be a principal G-bundle with connection. Let f :

X → BG be a classifying map for (P, θ) and denote by F : (P, θ) = f∗(EG,Θ)
→ (EG,Θ) the induced map of bundles with connection. Then we have:

ι(CSθ(λ)) = F ∗ι(CSΘ(λ))

= F ∗πEG
∗

̂CWΘ(λ, u)

= π∗f∗
̂CWΘ(λ, u)

= π∗
̂CW θ(λ, u). (2.10)

Here, ι : Ω2k−1(EG) → ̂H2k(EG; Z) denotes topological trivialization of dif-
ferential characters, as explained in Appendix A.

2.1.5. The Chern–Simons Action. Let (P, θ) → X be a principal G-bundle
with connection. Let f : M → X be a smooth map. Suppose that the pull-back
bundle π : f∗P → M admits a section σ : M → f∗P ; hence, π ◦ σ = idM .
Then we obtain a trivialization M × G → f∗P by (x, g) �→ σ(x) · g. Thus, the
bundle π : f∗P → M can be represented by a constant map f : M → BG and
hence all its characteristic classes vanish.

In particular, any Cheeger–Simons character ̂CW f∗θ(λ, u) is topologically
trivial. In fact, topological trivializations are given by pull-back via σ of the
corresponding Chern–Simons form CSf∗θ(λ). Namely, from (2.10) we obtain:

̂CW f∗θ(λ, u) = σ∗(π∗
̂CW f∗θ(λ, u)) = ι(σ∗CSf∗θ(λ)). (2.11)

Since the left hand side is independent of the choice of section σ, the same
holds for the right hand side.

In particular, if M is a closed oriented (2k−1) manifold and the pull-back
bundle f∗P → M admits sections, then we obtain the Chern–Simons invariant
of M by evaluating the Cheeger–Simons character on the fundamental class:

(

̂CW f∗θ(λ, u)
)

[M ] = exp
(

2πi

ˆ

M

σ∗CSf∗θ(λ)
)

.

This happens, e.g. if G is simply connected and M is a closed oriented 3-
manifold, for in this case, any principal G-bundle π : f∗P → M admits sec-
tions. In this sense, the Cheeger–Simons character ̂CW θ(λ, u) generalizes the
classical Chern–Simons invariants of closed oriented 3-manifolds.

In Sect. 2.3, we generalize this observation to the Chern–Simons action
of oriented manifolds with boundary.
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2.2. The Cheeger–Chern–Simons Construction

In this section, we combine the Cheeger–Simons and Chern–Simons construc-
tions to a relative differential character-valued map. This map will be called
the Cheeger–Chern–Simons construction.

As above, let G be a Lie group with finitely many components. Fix a uni-
versal connection Θ on the universal principal G-bundle πEG : EG → BG. Let
π : (P, θ) → G be principal G-bundle with connection and let f : X → BG be
a classifying map for the bundle with connection. Since EG is contractible, the
universal characteristic classes for principal G-bundles vanish upon pull-back
to the total space. Thus, any differential character on X with characteristic
class being a universal characteristic class for principal G-bundles is topologi-
cally trivial along the bundle projection.

This holds in particular for the Cheeger–Simons character ̂CW θ(λ, u) ∈
̂H2k(X; Z): since u ∈ H2k(BG; Z), we have

π∗c( ̂CW θ(λ, u))
(2.5)
= π∗clZu = f∗π∗u = 0.

From the exact sequence (A.3), we conclude that ̂CW θ(λ, u) admits sections
along π. A canonical such section will be obtained by the Cheeger–Chern–
Simons construction below.

2.2.1. Prescribing the Covariant Derivative. To begin with, we lift the map
CWθ × cZ from R2k(X; Z) to R2k(π; Z):

Proposition 2.1. Let (P, θ) → X be a principal G-bundle with connection.
Then the Chern–Weil map CWθ has a canonical natural lift CCSθ such that
the diagram

R2k(π; Z)

��
K2k(BG; Z)

CCSθ

��

CWθ×cZ

�� R2k(X; Z)

commutes.

Proof. Since EG is contractible, the long exact sequence for the mapping cone
complex of the bundle projection πEG : EG → BG reads:

· · · → H2k−1(EG; Z)
︸ ︷︷ ︸

={0}

→ H2k(π; Z)
∼=−→ H2k(BG; Z) → H2k(EG; Z)

︸ ︷︷ ︸

={0}

→ · · ·

In particular, we obtain isomorphisms p : H2k(πEG; Z)
∼=−→ H2k(BG; Z). For

a universal characteristic class u ∈ H2k(BG; Z), we denote by ũ := p−1(u) ∈
H2k(πEG; Z) its pre-image under this isomorphism.
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Now, let π : (P, θ) → X be a principal G-bundle with connection. We
define the lift CCSθ : K2k(BG; Z) → R2k(π; Z) by

CCSθ(λ, u) := (CWθ(λ), CSθ(λ), clZ(ũ)). (2.12)

As above, clZ : H2k(πEG; Z) → H2k(π; Z) denotes the pull-back with the
classifying map f : X → BG. In terms of a universal connection Θ on πEG :
EG → BG, we have:

CCSθ(λ, u) = f∗CCSΘ(λ, u)

= f∗(CWΘ(λ), CSΘ(λ), ũ).

Clearly, the composition of the map CCSθ with the forgetful map R2k(π; Z) →
R2k(X; Z) yields the map CWθ × clZ. By construction, the map CCSθ is
natural with respect to pull-back of bundles with connection by smooth maps
g : X ′ → X.

It remains to check that CCSΘ indeed takes values in R2k(πEG; Z). Let
(λ, u) ∈ K2k(G; Z). We show that (CWΘ(λ), CSΘ(λ)) ∈ Ω2k(πEG) is dπEG

-
closed with integral periods:8 By definition of the Chern–Weil and Chern–
Simons forms, we have:

dπEG
(CWΘ(λ), CSΘ(λ)) = (dCWΘ(λ), πEG

∗CWΘ(λ) − dCSΘ(λ)) = 0.

Since (λ, u) ∈ K2k(G; Z), the Chern–Weil form CWΘ(λ) has integral periods.
The U(1)-valued cocycle exp(2πiCWΘ(λ)) ∈ Z2k(BG; U(1)) vanishes on in-
tegral cycles and represents the trivial class in H2k(BG; U(1)) ∼= Hom(H2k

(BG; Z),U(1)). Hence, there is a U(1)-valued cochain w ∈ C2k−1(BG; U(1))
satisfying exp(2πiCWΘ(λ)) = δw. We then have:

δ(π∗w) = π∗(δw)

= π∗(exp(2πiCWΘ(λ))

= exp(2πi π∗CWΘ(λ))

= exp(2πi dCSΘ(λ))

= δ exp(2πiCSΘ(λ)).

Thus, (exp(2πiCS(λ))−π∗w) is a cocycle in Z2k−1(EG; U(1)). Since the total
space EG is contractible, we find a cochain v ∈ C2k−2(EG; U(1)) such that
(exp(2πiCS(λ)) − π∗w) = δv.

Now, let (s, t) ∈ C2k(πEG; Z) be a relative cycle. Then we have:

exp

(

2πi

ˆ

(s,t)

(CWΘ(λ), CSΘ(λ))

)

= (δw, π∗w + δv)(s, t)

= (w, v)(∂π(s, t))
= 1.

8 This essentially follows from the proof of [14, Prop. 3.15], but for convenience of the reader,
we give the full argument.
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Clearly, this implies that
´
(s,t)

(CWΘ(λ), CSΘ(λ)) ∈ Z. Hence, the pair of
differential forms (CWΘ(λ), CSΘ(λ)) ∈ Ω2k(πEG) has integral periods. In par-
ticular, the image of the relative de Rham class [CW (λ), CS(λ)]dR under the
de Rham isomorphism lies in the image of the reduction of coefficients map
H2k(πEG; Z) → H2k(πEG; R), ũ �→ ũR.

It remains to show that (CWΘ(λ), CSΘ(λ)) and ũR match in real coho-
mology, i.e., dR(CWΘ(λ), CSΘ(λ)) = ũR ∈ H2k(πEG; R). This follows from
the commutative diagram

Ω2k
0 (πEG) dR ��

pr1

��

H2k(πEG; R)

p∼=
��

H2k(πEG; Z)��

∼=
��

Ω2k
0 (BG)

dR
�� H2k(BG; R) H2k(BG; Z).��

.

Explicitly, we have p(dR(CWΘ(λ), CSΘ(λ))) = dR(CWΘ(λ)) = uR from
Eq. (2.2) and hence dR(CWΘ(λ), CSΘ(λ)) = ũR. �

2.2.2. The Cheeger–Chern–Simons Character. In the same way as the Chee-
ger–Simons construction, ̂CW θ lifts the map Chern–Weil construction CWθ ×
clZ to a differential character-valued map, and there is a canonical natural lift
of CCSθ to a relative differential character-valued map ̂CCSθ. The relative dif-
ferential character ̂CCSθ(λ, u) trivializes the differential character ̂CW (λ, u)
along the bundle projection π like the Chern–Simons form CSθ(λ) trivializes
the Chern–Weil form π∗CW (λ) in de Rham cohomology. It is the unique nat-
ural section of the Cheeger–Simons character with the prescribed covariant
derivative equal to the Chern–Simons form.

Theorem 2.2 (Cheeger–Chern–Simons construction). Let G be a Lie group with
finitely many components. Let (λ, u) ∈ K2k(G; Z). For any principal G-bundle
with connection π : (P, θ) → X, there exists a unique relative differential
character ̂CCSθ(λ, u) ∈ ̂H2k(π; Z) such that the following holds:

The curvature and covariant derivative of ̂CCSθ(λ, u) are given by the
Chern–Weil and Chern–Simons form:

(curv, cov)( ̂CCSθ(λ, u)) = (CWθ(λ), CSθ(λ)). (2.13)

The Cheeger–Chern–Simons character ̂CCSθ(λ, u) trivializes the Chern–
Simons character ̂CW θ(λ, u) along the bundle projection π:

p̆π( ̂CCSθ(λ, u)) = ̂CW θ(λ, u). (2.14)

The Cheeger–Chern–Simons construction ̂CCSθ is natural with respect to pull-
back by smooth maps, i.e., for any smooth map f : X ′ → X and the pull-back



1546 C. Becker Ann. Henri Poincaré

bundle f∗(P, θ), we have:9

f∗
̂CCSθ(λ, u) = ̂CCSf∗θ(λ, u). (2.15)

From (2.13) and (2.14), we obtain the commutative diagram:

̂H2k(π; Z)

(curv,cov,c)

��

p̆π������������

K2k(G; Z)
̂CW θ ��

CCSθ

		

��

ĈCSθ





CW×clZ

����������������������������
̂H2k(X; Z)

��

R2k(π; Z)

������������

R2k(X; Z).

(2.16)

In particular, we have

(curv, cov, c)( ̂CCSθ(λ, u)) = CCSθ(λ, u) = (CWθ(λ), CSθ(λ), u(P )). (2.17)

Proof. We first prove the uniqueness. By the requirement (2.15) that the
Cheeger–Chern–Simons construction be natural with respect to pull-back of
principal G-bundles with connections, it is uniquely determined by the map
̂CCSΘ : K2k(G; Z) → ̂H2k(πEG; Z) on the universal principal G-bundle πEG :
EG → BG with a fixed universal connection Θ. We show that this map is
uniquely determined by (2.13) and (2.14).

It is well known that H2k−1(BG; R) = {0} for any k ≥ 1. For convenience
of the reader, we briefly sketch the argument: by assumption, G has finitely
many components. Thus it has a maximal compact subgroup K such that K ⊂
G is a homotopy equivalence [31, Ch. XV.3]. The induced map of classifying
spaces yields isomorphisms H∗(BG; R) ∼= H∗(BK; R). Let K0 ⊂ K be the
connected component. The induced map BK0 → BK is a finite covering. Let
T ⊂ K0 be a maximal torus. Then we have H∗(BK0; R) ∼= H∗(BT ; R)W ,
where W is the Weyl group of K0 [31]. Since H∗(BT ; R) is an exterior algebra
in even degree generators, also H∗(BG; R) is generated by elements of even
degree.

Now, consider the long exact sequence of the mapping cone complex of
the bundle projection πEG : EG → BG:

· · · → H2k−2(EG; R)
︸ ︷︷ ︸

={0}

→ H2k−1(πEG; R) → H2k−1(BG; R)
︸ ︷︷ ︸

={0}

→ H2k−1(EG; R) → · · ·

9 Here, we denote the pull-back along the pull-back diagram of f : X → X′ simply by f∗.
Strictly speaking, we would have (f, F )∗, where F : f∗P → P is the induced bundle map
on the pull-back bundle. Likewise, the pull-back connection f∗θ is given by the connection
1-form F ∗θ ∈ Ω1(f∗P ).
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Thus, H2k−1(πEG; R) = {0} and the exact sequence (A.2) reads:

0 → H2k−1(πEG; R)
H2k−1(πEG; Z)R
︸ ︷︷ ︸

={0}

→ ̂H2k(πEG; Z)
(curv,cov,c)−−−−−−−→ R2k(πEG; Z) → 0. (2.18)

Hence, the map (curv, cov, c) : ̂H2k(πEG; Z) → R2k(πEG; Z) is an isomor-
phism.

Now, let ̂CCSΘ : K2k(G; Z) → ̂H2k(πEG; Z) be any map satisfying (2.13)
and (2.14). Let (λ, u) ∈ K2k(BG; Z) and ũ ∈ H2k(πEG; Z) as in the proof of
Lemma 2.1. By (2.14), we have c(p̆( ̂CCSΘ(λ, u))) = c( ̂CW (λ, u)) = u. The
isomorphism p : H2k(πEG; Z) → H2k(BG; Z), ũ �→ u, from the mapping cone
exact sequence yields the identification c( ̂CCSΘ(λ, u)) = ũ. Together with
(2.13), we obtain ̂CCSΘ(λ, u) = (curv, cov, c)−1(CWΘ(λ), CSΘ(λ), ũ). Thus,
the Cheeger–Chern–Simons map ̂CCSΘ : K2k(G; Z) → ̂H2k(πEG; Z) for a
universal bundle with universal connection πEG : (EG,Θ) → BG is the unique
lift in the diagram

̂H2k(πEG; Z)

(curv,cov,c)

��
K2k(G; Z)

CCS
��

ĈCS
��

R2k(πEG; Z).

In other words, ̂CCS = (curv, cov, c)−1 ◦ CCS.
To prove the existence, we define the Cheeger–Chern–Simons map by the

above formula and show that this construction satisfies the requirements: Let
π : (P, θ) → X be a principal G-bundle with connection. Fix a classifying map
f : X → BG such that (P, θ) = f∗(EG,Θ). Then put:

̂CCSθ(λ, u) := f∗
̂CCSΘ(λ, u)

= f∗((curv, cov, c)−1(CWΘ(λ), CSΘ(λ), ũ)
)

. (2.19)

By the very definition, the construction is natural with respect to pull-back of
G-bundles with connection, and hence it satisfies (2.15). Moreover,

(curv, cov)( ̂CCSθ(λ, u)) = f∗(curv, cov)( ̂CCSΘ(λ, u))

= f∗(CWΘ(λ), CSΘ(λ))

= (CWθ(λ), CSθ(λ)).

This shows that (2.13).
Exactness of the sequence

0 → H2k−1(BG; R)
H2k−1(BG; Z)R
︸ ︷︷ ︸

=0

→ ̂H2k(BG; Z) → R2k(BG; Z) → 0

implies that the Cheeger–Simons character ̂CWΘ(λ, u) is uniquely determined
by its curvature curv( ̂CWΘ(λ, u)) = CW (λ) and characteristic class c( ̂CWΘ
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(λ, u)) = u. Since c(p̆( ̂CCSΘ(λ, u))) = u and curv(p̆( ̂CCSΘ(λ, u))) = CW (λ),
we conclude that p̆( ̂CCSΘ(λ, u)) = ̂CWΘ. By naturality of the Cheeger–
Simons construction, we thus obtain:

p̆( ̂CCSθ) = p̆(f∗
̂CCSΘ) = f∗p̆( ̂CCSΘ) = f∗( ̂CWΘ) = ̂CW θ.

This proves (2.14).
Finally, diagram (2.16) and formula (2.17) are immediate from

(2.19). �

Remark 2.3. The existence of sections of the Cheeger–Simons character ̂CW θ

(λ, u) with the prescribed covariant derivative CSθ(λ) also follows from [1,
Prop. 75], since the pair (CWθ(λ), CSθ(λ)) ∈ Ω2k(πEG) is closed with integral
periods.

2.2.3. Multiplicativity. It is well known that the Cheeger–Simons construc-
tion is multiplicative: it defines a ring homomorphism ̂CW : K2∗(G; Z) →
̂H2∗(X; Z). In [1], we show that for any smooth map ϕ : A → X, the graded
group ̂H∗(ϕ; Z) is a right module over the ring ̂H∗(X; Z). It is easy to see
that the Cheeger–Chern–Simons construction is (almost) multiplicative with
respect to this module structure:

Proposition 2.4 (Multiplicativity). Let π : (P, θ) → X be a principal G-bundle
with connection. Let (λ1, u1) ∈ K2k1(G; Z) and (λ2, u2) ∈ K2k2(G; Z). Let
k := k1 + k2. Then there exists a differential form ρ ∈ Ω(2k−2)(P ) such that
we have:

̂CCSθ(λ1, u1) ∗ ̂CW θ(λ2, u2) = ̂CCSθ(λ1 · λ2, u1 ∪ u2) + ιπ(0, ρ). (2.20)

Proof. It suffices to prove this for the universal G-bundle πEG : EG → BG

with universal connection Θ. Relative differential characters in ̂H2∗(πEG; Z)
are uniquely determined by their curvature, covariant derivative and charac-
teristic class. Hence, it suffices to compare those data for the two sides of
(2.20).

The Chern–Weil map CWΘ is multiplicative, while the Chern–Simons
map CSΘ is multiplicative only up to an exact form. Thus, there exists a dif-
ferential form ρ ∈ Ω(2k−2)(EG) such that CSθ(λ1) ∧ π∗

EGCWθ(λ2) = CSθ(λ1 ·
λ2) − dρ. This yields:

(curv, cov)
(

̂CCSΘ(λ1, u1) ∗ ̂CWΘ(λ2, u2)
)

= (curv, cov)( ̂CCSΘ(λ1, u1)) ∧ π∗
EGcurv( ̂CWΘ(λ2, u2))

=
(

CWΘ(λ1) ∧ CWΘ(λ2), CSΘ(λ1) ∧ π∗
EGCWΘ(λ2)

)

=
(

CWΘ(λ1 · λ2), CSΘ(λ1 · λ2)
)

+ dπEG
(0, ρ)

= (curv, cov)( ̂CCSΘ(λ1 · λ2) + ιπEG
(0, ρ))
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and

c( ̂CCSΘ(λ1, u1) ∗ ̂CWΘ(λ2, u2)) = c( ̂CCSθ(λ1, u1)) ∪ π∗
EGc( ̂CWΘ(λ2, u2))

= ũ1 ∪ π∗u2

= ũ1 ∪ u2

= c( ̂CCSΘ(λ1 · λ2, u1 ∪ u2) + ιπEG
(0, ρ)).

�

2.3. The Chern–Simons Action

In the same way as the Cheeger–Simons character ̂CW θ(λ, u) generalizes the
classical Chern–Simons action along oriented closed (2k − 1)-manifolds, the
Cheeger–Chern–Simons character generalizes the classical Chern–Simons ac-
tion along oriented manifolds with boundary:

Let π : (P, θ) → X be a principal G-bundle with connection and (λ, u) ∈
K2k(G; Z). Let M be a compact oriented (2k−1)-manifold with boundary, and
denote by i∂M : ∂M → M the inclusion of the boundary. Let f : M → X be
a smooth map and F : f∗P → P the induced bundle map. Let σ : M → f∗P
be a smooth section of the pull-back bundle. Put g := F ◦ σ|∂M : ∂M → P .

This way, we obtain a map of pairs (M,∂M)
(f,g)−−−→ (X,P ). The character

(f, g)∗
̂CCSθ(λ, u) ∈ ̂H2k(i∂M ; Z) is topologically trivial, since H2k(i∂M ; Z) =

0 for dimensional reasons. We factorize the map (f, g) as

(f∗P, f∗P )
(π,id)

�������������

(M,f∗P )

(σ,id)
�����������

(id,id)
�� (M,f∗P )

(f,F )

��
(M,∂M)

(id,σ|∂M )

��

(f,g)
�� (X,P )

Note that differential characters in ̂H2k(idf∗P ; Z) are uniquely determined by
their covariant derivative. Thus, we have

(π, idf∗P )∗(f, F )∗
̂CCSθ(λ, u) = ιid(F ∗CSθ(λ), 0)

and hence

(f, g)∗
̂CCSθ(λ, u) = ιi∂M

(σ∗CSf∗θ(λ), 0).

This yields
(

̂CCSθ(λ, u)
)

((f, g)∗[M,∂M ]) =
(

(f, g)∗
̂CCSθ(λ, u)

)

[M,∂M ]

= exp
(

2πi

ˆ

M

σ∗CSf∗θ

)

.

Since the left hand side only depends upon σ|∂M , so does the right hand side.



1550 C. Becker Ann. Henri Poincaré

2.4. Dependence Upon the Connection

As above, let (P, θ) → X be a principal G-bundle with connection and (λ, u) ∈
K2k(G; Z). In this section, we discuss the dependence of the Cheeger–Chern–
Simons character ̂CCSθ(λ, u) upon the connection θ. We first review the well-
known dependencies of the Chern–Weil form CWθ(λ), the Chern–Simons form
CSθ(λ) and the Cheeger–Simons character ̂CW θ(λ, u) upon the connection θ.

Let θ0, θ1 ∈ A (P ) be connections on π : P → X. As explained in
Sect. 2.1.4, the Chern–Weil forms for the two connections differ by the dif-
ferential of the Chern–Simons form:

CWθ1(λ) − CWθ0(λ)
(2.7)
= dCS(θ0, θ1;λ).

Analogously, we find for the Chern–Simons forms of the two connections:

CSθ1(λ) − CSθ0(λ) = d

( 

[0,1]

CS(1−t)θ0+tθ1(λ)
︸ ︷︷ ︸

:=−α(θ0,θ1;λ)

)

−
 

[0,1]

dCS(1−t)θ0+tθ1

= −dα(θ0, θ1;λ) −
 

[0,1]

π∗CW(1−t)θ0+tθ1

(2.8)
= −dα(θ0, θ1;λ) + π∗CS(θ0, θ1;λ). (2.21)

Combining the formulae for the Chern–Weil and Chern–Simons forms, we thus
have

(CWθ1(λ), CSθ1(λ)) − (CWθ0(λ), CSθ0(λ))
= dπ(CS(θ0, θ1, λ), α(θ0, θ1, λ)). (2.22)

Now, consider the Cheeger–Simons characters for two connections θ0, θ1 ∈
A (P ). Choose smooth classifying maps fi : X → BG, i = 0, 1, for the bundle
with connection θi. Let θ(t) := (1 − t)θ0 + tθ1 be the straight line joining the
two connections, and ft : X → BG a smooth family of classifying maps for
the connections θt, t ∈ [0, 1]. Then the map F : X × [0, 1] → BG, F (t, ·) := ft,
is a smooth homotopy from f0 to f1. The homotopy formula (A.5) yields:10

̂CW θ1(λ, u) − ̂CW θ0(λ, u) = f∗
1

̂CWΘ(λ, u) − f∗
0

̂CWΘ(λ, u)

(A.5)
= ι

(ˆ 1

0

F ∗CWΘ(λ)
)

= ι

(

−
 

[0,1]

CW(1−t)θ0+tθ1(λ)

)

= ι
(

CS(θ0, θ1;λ)
)

.

We obtain the analogous result for dependence of the Cheeger–Chern–
Simons character upon the connection:

10 Note that by the orientation conventions, we have
ffl
[0,1] ω = (−1)k−1

´ 1
0 ωsds for any

k-form ω.
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Proposition 2.5 (Dependence upon the connection). Let π : P → X be a
principal G-bundle with connections θ0, θ1 ∈ A (P ). Let (λ, u) ∈ K2k(G; Z).
Then, we have:

̂CCSθ1(λ, u) − ̂CCSθ0(λ, u) = ιπ(CS(θ0, θ1;λ), α(θ0, θ1;λ)). (2.23)

Proof. As above, choose classifying maps ft for the connections θt := (1 −
t)θ0 + tθ1 for t ∈ [0, 1]. Denote by F : (X,P ) × [0, 1] → (BG,EG) the in-
duced homotopy from f0 to f1. Using the homotopy formula (A.6) for relative
characters, we find:

̂CCSθ1(λ, u)− ̂CCSθ0(λ, u) = f∗
1

̂CCSΘ(λ, u) − f∗
0

̂CCSΘ(λ, u)

(A.6)
= ιπ

(̂ 1

0

(F ∗CWΘ(λ),−F ∗CSΘ(λ))
)

= ιπ

(

−
 

[0,1]

(CW(1−t)θ0+tθ1 , CS(1−t)θ0+tθ1(λ))

)

= ιπ

(

CS(θ0, θ1;λ), α(θ0, θ1;λ)
)

.

�

3. Transgression

In this section, we discuss the transgression of Cheeger–Simons characters.
On the one hand, we have the usual transgression of absolute and relative
characters to (free and based) loop spaces. On the other hand, we derive a
generalization of the transgression map in the universal principal G-bundle
from integral cohomology to Cheeger–Simons characters. The two transgres-
sions coincide only topologically under the homotopy equivalence between G
and L0(BG). A further notion of transgression may be obtained from the work
of Murray and Vozzo [40] in combination with fiber integration of differential
characters.

3.1. Transgression to Loop Space

In [1, Ch. 9], we construct transgression of (absolute) differential characters
on X to mapping spaces and in particular to the free loop space LX:

τ : ̂H∗(X; Z) → ̂H∗(LX; Z), h �→ π̂!(ev∗h).

Here, ev : LX × S1 → X, (γ, t) �→ γ(t), denotes the evaluation map and π̂!

the fiber integration for the trivial bundle π : LX × S1 → LX. In [1, II,
Ch. 5], we generalize the concept of fiber integration to relative differential
characters. For a smooth map ϕ : A → X, we thus have the transgression map

τ : ̂H∗(ϕ; Z) → ̂H∗(L (X,A); Z), h �→ π̂!(ev∗h).

Here, L (X,A) denotes the Fréchet manifold of (pairs of) smooth maps γ :
S1 → (X,A) and ev : L (X,A) × S1 → (X,A), (γ, t) �→ γ(t) denotes the
evaluation map.
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Note that both transgression maps have natural restrictions to maps with
target on the based loop spaces. We will apply these transgression maps in
Sect. 5 to the Cheeger–Chern–Simons characters.

3.2. Transgression Along Smooth Maps

In this section, we briefly review the notion of cohomology transgression along
a smooth map f : E → X. Then we specialize to the case of a fiber bundle
π : E → X. Note that for principal bundles, two different notions of transgres-
sion are present in the literature. We follow the one used in [14,15,27], where
transgression is a degree −1 homomorphism from a subset of the cohomology
of the base into a quotient of the cohomology of the fiber. This transgression
is inverse to the one in [4]. The former is called suspension by some authors,
since it is closely related to the suspension isomorphism. Moreover, it is related
to the transgression to loop space as considered in the previous section. We
review these relations in Appendix C below.

Let f : E → X be a smooth map, and let x ∈ im(f). Let Ex := f−1(x)
be the fiber over x. Denote by ix : {x} ↪→ X and iEx

: Ex ↪→ E the natural
inclusions. The relative cohomology H∗(E,Ex; Z) is the same as the mapping
cone cohomology H∗(iEx

; Z) of the inclusion, and similarly for ix. There are
two ways to define the cohomology transgression

Tf : H∗(X; Z) ⊃ dom(T ) → H∗(Ex; Z)
i∗Ex

H∗(E; Z)
,

one using cohomology relative to the fiber H∗(E,Ex; Z), the other one using
the mapping cone cohomology H∗(f ; Z). We review both, since they differ in
differential cohomology:

A cohomology class u ∈ H∗(X; Z), ∗ ≥ 1, is called transgressive if f∗u =
0. The domain of the transgression is the set of transgressive elements in
H∗(X; Z). By the commutative diagram

H∗(X, {x}; Z)

f∗

�� ��

�� H∗(X; Z)

f∗

��

��

H∗(E; Z) �� H∗(Ex; Z) �� H∗(E,Ex; Z) ���� H∗(E; Z),

(3.1)

the set of transgressive classes maps under pull-back by f to the image of
H∗(Ex; Z) → H∗(E,Ex; Z). The transgression is the mapping induced by the
dashed lines in (3.1). More explicitly, it is the composition of maps:

H∗(X; Z) ≈ H∗(X,{x}; Z) ⊃ dom(T )
f∗
−→ H∗(E,Ex; Z) id−→ H∗(Ex; Z)

i∗Ex
H∗(E; Z)

. (3.2)

Equivalently, we may use the mapping cone cohomology of the map f .11 Denote
by fx : Ex → {x} the restriction of f to the fiber Ex. By the commutative
diagram

11 See also [11, Ch. A] for a similar treatment of transgression.
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H∗(E; Z) ��

i∗
Ex

��

H∗(f ; Z) ��

i∗
Ex

�� ��

H∗(X; Z)

i∗
x

��

��
f∗

�� H∗(E; Z)

H∗(Ex; Z) ≈ �� H∗(fx; Z) ���� H∗({x}; Z),

(3.3)

the set of transgressive classes is the image of H∗(f ; Z) → H∗(X; Z). The
transgression is the mapping induced by the dashed lines in (3.3). More ex-
plicitly, it is the composition of maps:

H∗(X; Z) ⊃ dom(T ) ≈−→ H∗(f ; Z)
H∗(E; Z)

i∗
Ex−−→ H∗(fx; Z)

i∗Ex
H∗(E; Z)

− id−−→ H∗(Ex; Z)
i∗Ex

H∗(E; Z)
. (3.4)

The easiest way to see that the two definitions of T coincide is by describing
them on the level of cocycles: Let μ ∈ Zk(X; Z) be a cocycle representing
the transgressive class u ∈ H∗(X; Z). By assumption, f∗u = 0, thus there
exists a cochain ν ∈ C∗(E; Z) such that f∗μ = δν. Moreover, since i∗xu ∈
H∗({x}; Z) = {0}, we find a cochain α ∈ C∗({x}; Z) such that δα = i∗xμ.
Thus, the pair (μ, α) ∈ Z∗(X, {x}; Z) represents the image of u under the
isomorphism H∗(X; Z) → H∗(X, {x}; Z), whereas the pair (μ, ν) ∈ Z∗(f ; Z)
represents a pre-image of u under the map H∗(f ; Z) → H∗(X; Z). Then we
have

δ(f∗
xα − i∗Ex

ν) = f∗
xδα − i∗Ex

δν = f∗
x i∗xμ − i∗Ex

f∗μ = 0.

Transgression maps the transgressive class u = [μ] to the equivalence class of
the cohomology class [f∗

xα − i∗Ex
ν] ∈ H∗(Ex; Z) in the quotient H∗(Ex;Z)

i∗
Ex

H∗(E;Z) .
The description by diagram (3.1) realizes this mapping through

[μ, α]
�

��

[μ]���

[f∗
xα − i∗Ex

ν] [(0, f∗
xα − i∗Ex

ν) − δiEx
(ν, 0)]��� f∗[μ, α]

The description by diagram (3.4) realizes this mapping through

[μ, ν]
�

��

[μ]���

[f∗
xα − i∗Ex

ν] [(0,−f∗
xα + i∗Ex

ν) + δfx
(α, 0)]��� [i∗xμ, i∗Ex

ν]

.

Thus both descriptions (3.2), (3.4) of the transgression yield the same well-
defined homomorphism

Tf : H∗(X; Z) ⊃ dom(T ) → H∗(Ex; Z)
i∗Ex

H∗(E; Z)
, [μ] �→ [

[f∗
xα − i∗Ex

ν]
]

,

with ν ∈ C∗(E; Z) and α ∈ C∗({x}; Z) as above.

Remark 3.1 (Naturality). Transgression along smooth maps is natural with
respect to mappings of pairs in the following sense: Let f : E → X and
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f ′ : E′ → X ′ be smooth maps. Let Φ : E → E′ and ϕ : X → X ′ be smooth
maps such that the diagram

E′ Φ ��

f ′

��

E

f

��
X ′

ϕ
�� X

commutes. Then the transgressions along f and f ′ are related through

Φ∗ ◦ Tf = Tf ′ ◦ ϕ∗.

Remark 3.2. Let G be a Lie group and πEG : EG → BG a universal principal
G-bundle. Let x ∈ BG and identify the fiber EGx with G. Since EG is con-
tractible, all cohomology classes on BG are transgressive. Thus, transgression
along the bundle projection πEG is a group homomorphism

T := TπEG
: H∗(BG; Z) → H∗(G; Z).

In Sect. 3.4, we generalize this transgression homomorphism to a homo-
morphism of differential cohomology groups.

3.3. Splitting Results

In this section, we show that for a compact Lie group, the even degree dif-
ferential cohomology of the classifying space BG splits into Cheeger–Simons
characters and topologically trivial characters. The arguments are analogous
to those in [3, Ch. A.2], where we derive a splitting of the curvature exact
sequence for differential cohomology on a manifold X of finite type. Contrary
to the case of an arbitrary manifold X, the splitting on BG is canonical, once
the universal connection is fixed. For the odd degree differential cohomology
of BG, we derive (non-canonical) splittings into flat characters with torsion
class and topologically trivial characters.

Theorem 3.3. Let G be a compact Lie group. Let πEG : EG → BG be a
universal principal G-bundle with fixed universal connection Θ. Let k ≥ 2.
Then we have canonical splittings

̂H2k(BG; Z) = ̂CWΘ

(

K2k(G; Z)
) ⊕ ι

(

Ω2k−1(BG)
)

(3.5)

̂H2k(πEG; Z) = ̂CCSΘ

(

K2k(G; Z)
) ⊕ ι

(

Ω2k−1(πEG)
)

. (3.6)

These splittings are compatible, in the sense that the canonical homomorphism
p̆πEG

: ̂H2k(πEG; Z) → ̂H2k(BG; Z) commutes with the projection to the fac-
tors.

Proof. From the work of Cartan [13] (see also [19, Ch. 8]), the map CW induced
by the Chern–Weil construction on the universal bundle is an isomorphism:

Ik(G)
CWΘ ��

≈
CW ���������������� Ω2k

cl

dR

��
H2k(BG; R).



Vol. 17 (2016) Cheeger–Chern–Simons Theory 1555

The set of all Chern–Weil forms CWΘ(Ik(G)) ⊂ Ω2k
cl (BG) is a b2k(BG)-

dimensional subspace. Since b2k(BG) = dim(Ik(G)) < ∞, it has topological
complements. Since the embedding CWΘ(Ik(G)) ↪→ Ωk

cl(BG) factorizes the
isomorphism CW : Ik(G) → H2k(BG; R), the space of exact forms dΩ2k−1(BG)
⊂ Ω2k(BG) is a canonical candidate for the complement.

Likewise, the set of all Chern–Weil forms with integral periods CWΘ

(Ik
0 (G)) ⊂ Ω2k

0 (BG) is a finitely generated free Z-submodule, complemented
by dΩ2k−1(BG). Thus we obtain the canonical splittings

Ω2k
cl (BG) = CWΘ(Ik(G)) ⊕ dΩ2k−1(BG)

Ω2k
0 (BG) = CWΘ(Ik

0 (G)) ⊕ dΩ2k−1(BG).

H2k(BG; Z) = CW (Ik
0 (G)) ⊕ Tor(H2k(BG; Z)).

Here, Tor(H2k(BG; Z)) ⊂ H2k(BG; Z) denotes the torsion subgroup. The
above splittings induce a splitting of the set R2k(BG; Z) of forms with in-
tegral periods and corresponding integer cohomology classes:

R2k(BG; Z) =
(

(c, curv) ◦ ̂CWΘ

)

(K2k(G; Z)) ⊕ dΩ2k−1(BG) × {0}. (3.7)

By the exact sequence (A.2) for absolute differential cohomology, the homo-
morphism (curv, c) : ̂H2k(BG; Z) → R2k(BG; Z) is an isomorphism, since
H2k−1(BG; R) vanishes. From the sequences (A.1), we obtain the commuta-
tive diagram

Ω2k−1(BG)

Ω2k−1
0 (BG)

ι

��

d �� dΩ2k−1(BG)

��
̂H2k(BG; Z) curv

�� Ω2k
0 (BG),

with injective vertical maps and surjective horizontal maps. The inverse of the
homomorphism (curv, c) maps the first summand in (3.7) to the space of all
Cheeger–Simons characters ̂CWΘ(K2k(G; Z)) and the second summand to the
space of all topologically trivial characters ι(Ω2k−1(BG)). Thus, we obtain the
splitting (3.5).

For relative differential cohomology, we obtain the splitting (3.6) by the
same reasoning, using in addition the isomorphisms H2k(πEG; Z) → H2k

(BG; Z), u �→ ũ, and ((curv, cov), c) : ̂H2k(πEG; Z) → R2k(πEG; Z). By con-
struction, the homomorphism p̆πEG

: ̂H2k(πEG; Z) → ̂H2k(BG; Z) maps the
Cheeger–Chern–Simons character ̂CCSΘ(λ, u) to the corresponding Cheeger–
Simons character ̂CWΘ(λ, u). Thus, the splittings (3.5) and (3.6) are compat-
ible. �

Similarly, we can split the odd degree differential cohomology of BG.
Here, we have no Cheeger–Simons characters. The splitting neither depends
upon the choice of a universal connection, nor is it canonical. To obtain this
splitting, we first split the subspace of flat characters in ̂Hn(BG; Z).
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Proposition 3.4. Let G be a compact Lie group and πEG : EG → BG a uni-
versal principal G-bundle. Then the subspace of topologically trivial characters
̂Hn

triv.(BG; Z) = c−1(0) = ι(Ωn−1(BG)) ⊂ ̂Hn(BG; Z) has the following (non-
canonical) splitting:12

̂Hn
triv.(BG; Z) ≈ j

(

Hn−1(BG; R)
) ⊕ dΩn−2(BG). (3.8)

For odd degree differential cohomology, we obtain the (non-canonical) splitting:

̂H2k−1(BG; Z) ≈ j
(

H2k−2(BG; U(1))
) ⊕ dΩ2k−2(BG). (3.9)

Proof. The splittings are obtained similarly to those in [3, Ch. A.2] for arbitrary
manifolds of finite type: For any degree n ∈ N, let Fn ⊂ Ωn(BG) be a linear
complement to the subspace Ωn

cl(BG) of closed forms. The splitting Ωn(BG) =
Ωn

cl(BG)⊕Fn induces a splitting of the upper row of the commutative diagram

0 �� Hn−1(BG;R)
Hn−1(BG;Z)R

��

��

Ωn−1
cl (BG)

Ωn−1
0 (BG)

d ��

ι

��

dΩn−1(BG) ��

��

0

0 �� Hn−1(BG; U(1))
j

��
̂Hn−1

triv. (BG; Z) curv
�� dΩn−1(BG) �� 0.

Using the exact sequences (A.1) and applying the vertical maps, we obtain the
splitting ̂Hn

triv.(BG; Z) = j(Hn−1(BG; R)) ⊕ ι(Fn−2). This yields (3.8).
Now, let n = 2k − 1. Since Hodd(BG; R) = {0}, any closed form of odd

degree is exact. Replacing ̂Hn−1
triv. (BG; Z) by ̂H2k−1(BG; Z) and Ω2k−1

0 (BG) by
dΩ2k−2(BG) in the above diagram, we still get a diagram with exact rows. Ap-
plying the vertical maps yields ̂H2k−1(BG; Z) = j(H2k−2(BG; R))⊕ ι(F 2k−2),
which in turn yields (3.9). �
Remark 3.5. In the proof of Proposition 3.4, we did not use Cartans theorem.
Thus, the proposition also holds for noncompact Lie groups with finitely many
components.

3.4. Universal Transgression in Differential Cohomology

Let G be a compact Lie group and πEG : EG → BG a universal principal G-
bundle with fixed universal connection Θ. The goal of this section is to extend
the cohomology transgression T : H2k(BG; Z) → H2k−1(G; Z) on a universal
principal G-bundle of a compact Lie group to a transgression homomorphism
̂T : ̂H2k(BG; Z) → ̂H2k−1(G; Z) on differential cohomology. To this end, we
first introduce differential cohomology transgression ̂Tf along any smooth map
f : E → X along the lines of (3.3) and (3.4). It is then straightforward to show
that the differential cohomology transgression ̂Tf vanishes on products. Finally,
we use the splitting (3.5) of ̂Heven(BG; Z) to show that in case f = πEG, the
transgression ̂TπEG

has a canonical lift ̂T : ̂Heven(BG; Z) → ̂Hodd(G; Z).

12 By abuse of notation, we denote the inclusion of flat characters j : Hn−1(BG; U(1)) →
̂Hn(BG; Z) and its composition with the coefficient homomorphism Hn−1(BG; R) →
Hn−1(BG; U(1)) by the same symbol.
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Before defining the differential cohomology transgression ̂Tf , let us briefly
motivate our approach: As reviewed in Sect. 3, there are two equivalent ways to
define the ordinary transgression on smooth singular cohomology: (3.2) uses
the pull-back along a smooth map f : E → X of the relative cohomology
H∗(X, {x}; Z), whereas (3.4) uses the mapping cone sequence of the map f . In
case f = πEG, the contractibility of EG implies that all cohomology classes on
BG are transgressive and that transgression on BG is a map to the cohomology
of G ≈ EGx; see Remark 3.2. The situation changes when we replace smooth
singular cohomology by differential cohomology in these approaches, since the
long exact sequence (A.3) for absolute and relative differential cohomology
contains only three differential cohomology groups.

Replacing singular cohomology groups by differential cohomology groups
in (3.1) (with f = πEG) results in a particularly small set of transgressive char-
acters, namely those characters h ∈ ̂H∗(BG; Z) satisfying π∗

EGh = 0. Since EG
is contractible, this condition is equivalent to h being flat. This is in contrast to
singular cohomology, where any cohomology class on BG is transgressive. On
the other hand, this version of differential cohomology transgression takes val-
ues in

̂H∗(EGx;Z)
i∗
Ex

j(H∗(EG;U(1))) = ̂H∗(EGx; Z). Replacing singular cohomology groups
by differential cohomology groups in (3.3) (with f = πEG) yields a transgres-
sion map defined on the whole differential cohomology of BG with values in
the quotient

̂H∗(EGx;Z)
i∗
Ex

H∗(EG;Z) . We will show below that it has a canonical lift to
̂H∗(EGx; Z). For this reason, we find it more appropriate to use the mapping
cone cohomology to define the differential cohomology transgression.

As with smooth singular cohomology, the differential cohomology trans-
gression may be defined not just for the bundle projection πEG, but for any
smooth map f : E → X:

Definition 3.6. Let f : E → X be a smooth map and x ∈ X. A differential
character h ∈ ̂Hn(X; Z) is said to be transgressive along f iff it is topolog-
ically trivial along f , i.e., c(f∗h) = 0. Denote by dom( ̂Tf ) ⊂ ̂H∗(X; Z) the
set of characters which are transgressive along f . The differential cohomology
transgression

̂Tf : Hn(X; Z) ⊃ dom( ̂T ) →
̂Hn−1(Ex; Z)

i∗Ex

̂Hn−1(E; Z)

is the group homomorphism defined by the dashed lines in the commutative
diagram

̂Hn−1(E; Z) ��

i∗
Ex

��

̂Hn(f ; Z) ��

i∗
Ex

����

̂Hn(X; Z)

i∗
x

��

�� c◦f∗
�� Hn(E; Z)

̂H∗(Ex; Z)
ı̆fx

��
̂H∗(fx; Z) ����

̂H∗({x}; Z).

(3.10)
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More explicitly, for a character h ∈ ̂Hn(X; Z), the transgressed character ̂Tf (h)
is given as follows: choose a relative character h′ ∈ ̂Hn(f ; Z) such that p̆f (h′) =
h. Then put

̂Tf (h) := [−(̆ıfx
)−1(i∗Ex

h′)] ∈
̂Hn−1(Ex; Z)

i∗Ex

̂Hn−1(E; Z)
. (3.11)

Remark 3.7. It is obvious from the definition that topologically trivial char-
acters are transgressive and the transgression vanishes on those. Let h = ι(μ)
for some μ ∈ Ωn−1(X). Choose an arbitrary form ν ∈ Ω2k−2(E). Then,
p̆f (ι(μ, ν)) = ι(μ) and i∗xμ = 0. Thus, ı̆πx

(i∗Ex
ν) = (0, i∗Ex

ν) = (ix, iEx
)∗(μ, ν).

Thus, ̂Tf maps ι(μ) to the equivalence class of i∗Ex
ν in the quotient

̂Hn−1(Ex;Z)

i∗
Ex

̂Hn−1(E;Z)
,

which is 0.

As for smooth singular cohomology (or any generalized cohomology the-
ory), the differential cohomology transgression is natural with respect to maps
of pairs:

Proposition 3.8 (Naturality). Let f : E → X and f ′ : E′ → X ′ be smooth
maps. Let Φ : E → E′ and ϕ : X → X ′ be smooth maps such that the diagram

E′ Φ ��

f ′

��

E

f

��
X ′

ϕ
�� X

commutes. Then the transgressions along f and f ′ are related through

Φ∗ ◦ ̂Tf = ̂Tf ′ ◦ ϕ∗. (3.12)

Proof. Clearly, the maps Φ and ϕ induce a map of diagrams as in (3.10). More
explicitly, let h ∈ ̂Hn(X; Z), transgressive along f . Let y ∈ X ′ and x := ϕ(y).
Then, ϕ∗h is transgressive along f ′, since c(f ′∗ϕ∗h) = c(Φ∗f∗h) = Φ∗c(f∗h) =
0. Let h′ ∈ ̂Hn(f ; Z) with p̆f (h′) = h. Since the maps p̆fx

, p̆f ′
y

and ı̆fx
, ı̆f ′

y
in

the mapping cone sequence commute with pull-backs along (Φ, ϕ), we obtain:

̂Tf ′(ϕ∗h) = [−(̆ıf ′
y
)−1(i∗Ey

(Φ, ϕ)∗h′)]

= [−(̆ıf ′
y
)−1(Φ∗i∗Ex

h′)]

= Φ∗[−(̆ıfx
)−1(i∗Ex

h′)]

= Φ∗
̂Tf (ϕ∗h).

�

In the following, we restrict to the case of fiber bundles instead of arbi-
trary smooth maps. Recall that relative differential cohomology is a right mod-
ule over the absolute differential cohomology ring and the characteristic class
is a module homomorphism [1, II, Ch. 4]. In particular, if h1 ∈ ̂Hk1(X; Z) is
transgressive in the bundle π : E → X, then for any character h2 ∈ ̂Hk2(X; Z)
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the internal product h1 ∗ h2 is transgressive in E → X, whereas the external
product h1 × h2 is transgressive in the bundle π × idX : E × X → X × X.
Moreover, if h′

1 ∈ ̂Hk1(π; Z) with p̆π(h′
1) = h1, then p̆π(h′

1 ∗ h2) = h1 ∗ h2 and
p̆π×idX

(h′
1 × h2) = h1 × h2.

Once the differential cohomology transgression is known to be natural
with respect to bundle maps, it is straightforward to show that it vanishes on
products.

Proposition 3.9. Let π : E → X be a fiber bundle and h1, h2 ∈ ̂H∗(X; Z). If
h1 or h2 is transgressive, then so is h1 ∗ h2, and we have ̂Tπ(h1 ∗ h2) = 0.

Proof. The proof resembles the one for singular cohomology in [11, Ch. A].
The argument basically relies on the naturality of the external product and of
the transgression. First note that h1 ∗ h2 is transgressive if h1 or h2 is, since
c(f∗(h1 ∗ h2)) = c(f∗h1) ∗ c(f∗h2).

Suppose h1 ∈ ̂Hk1(X; Z) is transgressive. Choose h′
1 ∈ ̂Hk1(π; Z) such

that p̆π(h′
1) = h1. Let ΔX : X → X × X be the diagonal map. Then we have

the pull-back diagram

E
(idE ×π)◦ΔE ��

π

��

E × X

π×idX

��
X

ΔX

�� X × X.

On the right hand side, the inclusion of the fiber Ex × {x} over (x, x) is given
by the map iEx

×ix. By naturality of transgression and of the external product,
we obtain:

̂Tπ(h1 ∗ h2) = ̂Tπ(Δ∗
X(h1 × h2))

(3.12)
=

(

(idE ×π) ◦ ΔE

)∗
̂Tπ×idX

(h′
1 × h2).

From (3.11), applied to the bundle E × X → X × X, we obtain:13

̂Tπ×idX
(h′

1 × h2)
(3.11)
=

[ − ı̆
(

(iEx
× ix)∗(h′

1 × h2)
) ]

=
[ − ı̆

(

i∗Ex
h′

1 × i∗xh2
︸︷︷︸

=0

) ]

= 0.

Clearly, this yields ̂Tπ(h1 ∗ h2) = 0.
Now, assume that h2 is transgressive. Since the internal product on

̂H∗(X; Z) is graded commutative, we have h1 ∗ h2 = (−1)k1+k2h2 ∗ h1. By
the argument above, we obtain ̂Tπ(h1 ∗ h2) = (−1)k1+k2 ̂Tπ(h2 ∗ h1) = 0. �

We conclude this section by showing that in even degrees, the universal
differential cohomology transgression ̂TπEG

has a canonical lift to a homo-
morphism with values in the odd degree differential cohomology of G. This

13 To simplify the notation, we drop the index iEx × ix of the map ı̆ in the long exact

sequence (A.3) of the restricted projection (π × idX)(x,x) : Ex × {x} → {(x, x)}.
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is due to the splitting (3.5). To motivate the construction of this lift, recall
that the Chern–Simons construction [15] represents the transgression on real
cohomology: for any λ ∈ Ik

0 (G), the restriction of the Chern–Simons form
CSΘ(λ) ∈ Ω2k−1(EG) to the fiber EGx ≈ G is closed with de Rham coho-
mology class [i∗EGx

CSΘ(λ)]dR = T ([CWΘ(λ)]dR) ∈ H2k−1
dR (G; Z). In fact, this

form neither depends upon the base point x nor upon the choice of universal
connection. It may be expressed explicitly in terms of the Maurer–Cartan form
of G, as explained in [15, p. 55].

We thus expect to find a transgression homomorphism which maps a
Cheeger–Simons character ̂CWΘ(λ, u) ∈ ̂H2k(BG; Z) to a differential charac-
ter on G with curvature i∗EGx

CSΘ(λ) and characteristic class T (u).

Remark 3.10. If b2k−2(G) = 0, the exact sequence (A.2) implies that differen-
tial characters in ̂H2k−1(G; Z) are uniquely determined by their characteristic
class and curvature. Thus for any (λ, u) ∈ K2k(G; Z) there exists a unique
differential character h ∈ ̂H2k−1(G; Z) satisfying

c(h) = T (u)
curv(h) = i∗EGx

CSΘ(λ).

This character represents the equivalence class ̂TπEG
( ̂CWΘ(λ, u)) ∈ ̂H2k−1(G;Z)

ι(Ω2k−2(G))
.

The requirements are satisfied, e.g., in degrees k = 2, 3 on a compact,
simply connected Lie group G. By the Hopf theorem, H∗(G; R) is an exterior
algebra in odd degree generators. Now, π1(G) = {0} implies b1(G) = 0 and
hence H2k−2(G; R) = {0} for k = 2, 3.

Even if these requirements are not satisfied, we have a canonical con-
struction of characters in ̂Hodd(BG; Z) from Cheeger–Simons characters in
̂Heven(BG; Z):

Theorem 3.11 (Differential cohomology transgression). Let G be a compact
Lie group. Let πEG : EG → BG be a universal principal G-bundle with fixed
universal connection Θ. Then the transgression ̂TπEG

from Definition 3.6 has
a canonical lift ̂T on even degree differential cohomology:

̂H2k−1(G; Z)

��
̂H2k(BG; Z)

̂T

��

̂TπEG

�� ̂H2k−1(G;Z)
ι(Ω2k−2(G))

. (3.13)

With respect to the splitting (3.5), the homomorphism ̂T is given as

̂T : ̂CWΘ(K2k(G; Z)) ⊕ ι(Ω2k−1(BG)) → ̂H2k−1(G; Z)
̂CWΘ(λ, u) ⊕ ι(ρ) �→ −(̆ıπx

)−1(i∗EGx
̂CCSΘ(λ, u)).

(3.14)
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Proof. By Remark 3.7, the transgression ̂TπEG
vanishes on the second factor of

̂H2k(BG; Z) in (3.5). By Definition 3.6, to evaluate the transgression ̂TπEG
on

a Cheeger–Simons character h = ̂CWΘ(λ, u) ∈ ̂H2k(BG; Z), we need to find a
relative character h′ ∈ ̂H2k(πEG; Z) satisfying p̆πEG

(h′) = h. By Theorem 2.2,
the corresponding Cheeger–Chern–Simons character h′ = ̂CCSΘ(λ, u) is the
canonical choice of such a relative character. Inserting h′ = ̂CCSΘ(λ, u) into
(3.11), we observe that the map ̂T indeed lifts the transgression ̂TπEG

. �

Remark 3.12. Since the Chern–Simons and Cheeger–Chern–Simons construc-
tions are not multiplicative, the map ̂T does not vanish on products. For char-
acters h1, h2 ∈ ̂Heven(BG; Z), one of which is topologically trivial, we have
̂T (h1 ∗ h2) = 0, since also h1 ∗ h2 is topologically trivial. To the contrary, for
(λi, ui) ∈ K∗(G; Z), i = 1, 2, we have

̂T
(

̂CWΘ(λ1, u1) ∗ ̂CWΘ(λ2, u2)
)

= −ι(i∗EGx
ρ). (3.15)

Here, ρ ∈ Ω2k−2(EG) is a form which corrects the non-multiplicativity of the
Chern–Simons construction. By (2.20), we have

̂CCSΘ(λ1 · λ2, u1 ∪ u2) = ̂CCSΘ(λ1, u1) ∗ ̂CWΘ(λ, u) + ιπEG
(0, ρ).

By pull-back along (ix, iEGx
) : ({x}, EGx) → (BG,EG) and naturality of the

product, we obtain

(ix, iEGx
)∗

̂CCSΘ(λ1 · λ2, u1 ∪ u2)

= (ix, iEGx
)∗

̂CCSΘ(λ1, u1) ∗ i∗x ̂CWΘ(λ, u)
︸ ︷︷ ︸

=0

+ιπEG
(0, EGx

∗ρ)

= ιπEG
(0, i∗EGx

ρ).

Inserting into Definition 3.14, we obtain (3.15).

Remark 3.13 (Compatibility). The transgression ̂T : ̂Heven(BG; Z) → ̂Hodd

(G; Z) is compatible with the usual cohomology transgression T and the char-
acteristic class. Likewise, it is compatible with the Chern–Simons construction
and the curvature. Thus, we have

c ◦ ̂T = T ◦ c (3.16)

curv(̂T ( ̂CWΘ(λ, u))) = i∗EGx
CSΘ(λ). (3.17)

Compatibility with characteristic class follows from the fact that the map ̂T
is constructed through diagram chase arguments analogous to those in (3.4)
with singular cohomology replaced by differential cohomology. Compatibility
with curvature follows from the construction of the Cheeger–Chern–Simons
characters. By (2.13), we have:

curv(̂T ( ̂CWΘ(λ, u))) = curv
( − (̆ıπx

)−1(i∗EGx
̂CCSΘ(λ, u))

)

= cov(i∗EGx
̂CCSΘ(λ, u))

= i∗EGx
CSΘ(λ).
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If b2k−2(G) = 0, then ̂T ( ̂CWΘ(λ, u)) is the unique character in ̂H2k−1(G; Z)
satisfying (3.16) and (3.17). This follows immediately from the exact sequence
(A.2).

3.5. A Differential Hopf Theorem

Let G be a compact connected Lie group. The classical Hopf theorem states
that the real cohomology of G is an exterior algebra on odd degree genera-
tors p1, . . . , pN . By the Borel transgression theorem, the real cohomology of
the classifying space BG is a polynomial algebra on even degree generators
q1, . . . , qN . Moreover, the generators of H∗(BG; R) and H∗(G; R) are related
by transgression, i.e., T (qi) = pi for i = 1, . . . , N . In this section, we use the
splitting (3.5) to transfer these results to differential cohomology.

Let k ∈ N. By the Cartan theorem, the universal Chern–Weil map de-
scends to an isomorphism CW : Ik

0 (G) → H2k
dR(BG; Z) ∼= H2k(BG; Z)R. For

qi as above, choose invariant polynomials λi ∈ Iki
0 (G) such that CW (λi) = qi.

Moreover, choose ui ∈ H2ki(BG; Z) such that ui
R

= qi for i = 1, . . . , N . Then,
(λi, ui) ∈ K2ki(G; Z), and we have the corresponding Cheeger–Simons charac-
ters ̂CWΘ(λi, ui) ∈ ̂H2ki(BG; Z). Denote the curvatures of the transgressed
Cheeger–Simons characters by

ωi := curv(̂T ( ̂CWΘ(λi, ui))) = i∗EGx
CSΘ(λi) ∈ Ω2ki−1

0 (G).

Since T (qi) = T (ui
R
) = T ([CWΘ(λi)]dR) = [ωi]dR ∈ H2ki−1(G; R), the canon-

ical map Ω∗
cl(G) → H∗(G; R) descends to an isomorphism Λ(ω1, . . . , ωN ) ≈−→

H∗(G; R). Denote by ΛZ(ω1, . . . , ωN ) ⊂ Ω∗
0(G) the integral lattice generated

by the forms ω1, . . . , ωN . If the cohomology of G has no torsion, then we also
obtain an isomorphism ΛZ(ω1, . . . , ωN ) ≈−→ H∗(G; Z).

Now, the subring of ̂H∗(G; Z) generated by the transgressed Cheeger–
Simons characters ̂T ( ̂CWΘ(λi, ui)) is a direct summand of ̂H∗(G; Z) as a
graded group. This may be regarded as a differential cohomology version of
the Hopf theorem:

Theorem 3.14 (Differential Hopf theorem). Let G be a compact, connected
Lie group such that H∗(G; Z) has no torsion. Choose (λi, ui) ∈ K∗(G; Z),
i = 1, . . . , N, such that

H∗(BG; R) = R[u1
R, . . . , uN

R]

H∗(G; R) = Λ(T (u1
R), . . . , T (uN

R)) = Λ(ω1, . . . , ωN )

H∗(G; Z) = ΛZ(ω1, . . . , ωN ),

where ωi := curv(̂T ( ̂CWΘ(λi, ui))) = i∗EGx
CSΘ(λi) ∈ Ω2ki−1

0 (G) denote the
curvature forms of the transgressed Cheeger–Simons characters. Let F ⊂ Ω∗(G)
be a topological complement to the subspace Ω∗

cl(G) of closed forms. Then, we
have the following topological direct sum decomposition of graded groups:

̂H∗(G; Z)=
〈

̂T ( ̂CWΘ(λ1, u1)), . . . , ̂T ( ̂CWΘ(λN , uN ))
〉

Z
⊕ ι

(

Λ(ω1, . . . ωN )
) ⊕ ι(F ).



Vol. 17 (2016) Cheeger–Chern–Simons Theory 1563

In other words, up to topologically trivial characters the differential co-
homology of G is generated by odd degree characters which are transgressions
of Cheeger–Simons characters on BG.

Proof. By the assumption that the cohomology of G has no torsion, we have
H∗(G; Z) = H∗(G; Z)R = H∗

dR(G; Z). Since G is assumed to be compact,
we may use the splitting arguments from [3, Ch. A]. Any choice of n-forms
which represent a basis of Hn(G; R) provides us with a splitting ̂Hn(G; Z) ≈
j(Hn−1(G; U(1))) ⊕ Ωn

0 (G).
Since H∗(G; Z) has no torsion, any flat character is topologically trivial.

In other words, the image of the inclusion j : H∗(G; U(1)) → ̂H∗(G; Z) coin-
cides with the image of the topological trivialization ι : Ω∗(G) → ̂H∗(G; Z),
restricted to the space of closed forms. Thus for any n ∈ Z, we obtain a direct
sum decomposition ̂Hn(G; Z) ≈ ι(Ωn−1

cl (G)) ⊕ Ωn
0 (G). The inclusion of the

first factor corresponds to topological trivialization, and the projection to the
second factor corresponds to the curvature map.

Using the Hopf theorem, we may choose these splittings more canoni-
cally: Let (λi, ui) ∈ K2ki(G; Z) and ωi for i = 1, . . . , N as above. By the
isomorphisms ΛZ(ω1, . . . , ωN ) ≈−→ H∗(G; Z) and Λ(ω1, . . . , ωN ) ≈−→ H∗(G; R),
we obtain canonical topological splittings

Ω∗
cl(G) = Λ(ω1, . . . , ωN ) ⊕ d(Ω∗(G))

Ω∗
0(G) = ΛZ(ω1, . . . , ωN ) ⊕ d(Ω∗(G)). (3.18)

Choose a topological complement F ⊂ Ω∗(G) to the subspace Ω∗
cl(G) of closed

forms, e.g., by introducing an auxiliary Riemannian metric and using the
Hodge decomposition. Then the exterior differential restricts to a topologi-
cal isomorphism d : F → d(Ω∗(G)) and we obtain the splittings

Ω∗(G) = Λ(ω1, . . . , ωN ) ⊕ d(Ω∗(G)) ⊕ F

Ω∗(G)
Ω∗

0(G)
=

Λ(ω1, . . . , ωN )
ΛZ(ω1, . . . , ωN )

⊕ F =
H∗(G; R)
H∗(G; Z)

⊕ F.

Now, let h ∈ ̂H∗(G; Z) be an arbitrary character. Then its curvature form
curv(h) ∈ Ω∗

0(G) = Λ(ω1, . . . , ωN ) ⊕ d(Ω∗(G)) has a unique decomposition

curv(h) =
∑

ai1,...,ik
· ωi1 ∧ · · · ∧ ωik + dμ

with coefficients ai1,...,ik
∈ Z and μ ∈ F . Now, put

h′ :=
∑

ai1,...,ik
· ̂T ( ̂CWΘ(λi1 , ui1)) ∗ · · · ∗ ̂T ( ̂CWΘ(λik , uik)) + ι(μ).

Then, we have curv(h) = curv(h′). Thus, there is a uniquely determined dif-
ferential form ρ ∈ Λ(ω1, . . . , ωN ) such that h = h′ + ι(ρ). Summarizing, we
have obtain a unique decomposition of the character h as

h =
∑

ai1...ik
· ̂T ( ̂CWΘ(λi1 , ui1)) ∗ · · · ∗ ̂T ( ̂CWΘ(λiN , uiN )) + ι(ρ) + ι(μ).

This proves the theorem. �
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Remark 3.15. If the integral cohomology has G torsion, then the differential
cohomology of G also contains flat characters with torsion characteristic class.
These could also be contained in the subring generated by ̂T ( ̂CWΘ(λi, ui)).
In this case, one cannot expect that the differential cohomology has a direct
sum decomposition, since the subgroup of torsion class characters generated
by Cheeger–Simons characters need not be a direct summand of the subgroup
of all torsion class characters.

3.6. Transgression via the Caloron Correspondence

Let G be a compact connected Lie group and LG and ΩG the free and the
based loop group. Calorons were introduced [25,41] as certain periodic G-
instantons on a manifold of the form X × S1. Later, it was observed [22] that
calorons are in 1–1 correspondence with LG-intantons on X. In mathematical
terms, the so-called caloron correspondence [28,40] is a 1–1 correspondence
between principal LG- or ΩG-bundles over a manifold X and principal G-
bundles over X × S1. Both sides of the correspondence may be equipped with
connections: in this case, the caloron correspondence is a 1–1 correspondence
between G-bundles over X ×S1 with connection and LG- or ΩG-bundles over
X with connection and a so-called Higgs field ; see [28,40] for details.

A particular ΩG-bundle with connection arises from the path fibration
P0G → G. This bundle carries a canonical Higgs field. The caloron corre-
spondence transfers the path fibration into a canonical principal G-bundle
with connection (P̃ , θ̃) → G × S1; see [40]. Since the base of this G-bundle is
a fiber bundle with compact oriented fibers, we may apply fiber integration
for differential characters as constructed in [1]. This yields another notion of
differential cohomology transgression:

Definition 3.16. Let G be a compact connected Lie group. Let πEG : EG →
BG be a universal principal G-bundle with fixed universal connection Θ. Let
(P̃ , θ̃) → G × S1 be the principal G-bundle arising from the path fibration
via the caloron transform. Then we define the caloron transgression to be the
homomorphism

̂Tcal : ̂H2k(BG; Z) = ̂CWΘ(K2k(G; Z)) → ̂H∗(G; Z)

̂CWΘ(λ, u) ⊕ ι(ρ) �→
 

S1

̂CW θ̃(λ, u).

Remark 3.17. Note that we could extend the above homomorphism to a map
defined on all of ̂H∗(BG; Z) by choosing a classifying map for the bundle with
connection f : G × S1 → BG and setting

̂H∗(BG; Z) → ̂H∗(G; Z), h �→
 

S1
f∗h.

But this map in general depends upon the choice of the classifying map. In con-
trast, the Cheeger–Simons characters ̂CW θ̃(λ, u) = f∗

̂CWΘ(λ, u) are natural
with respect to connection-preserving bundle maps and thus do not depend
upon the choice of the classifying map.
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In general, we do not know whether the caloron transgression ̂Tcal co-
incides with the differential cohomology transgression ̂T . We only know that
they have the same curvature and characteristic class; thus they coincide up
to topologically trivial flat characters:

Lemma 3.18. Let G be a compact connected Lie group. Let ̂T be the universal
differential cohomology transgression as defined in Definition 3.6. Let ̂Tcal be
the caloron transgression as defined in Definition 3.16. Then we have

curv ◦ ̂T ≡ curv ◦ ̂Tcal

c ◦ ̂T ≡ c ◦ ̂Tcal.

Proof. Let (λ, u) ∈ K2k(G; Z) and ̂CWΘ(λ, u) ∈ ̂H2k(BG; Z) the correspond-
ing Cheeger–Simons character. By (3.17), we have curv( ̂T ( ̂CWΘ(λ, u)) =
ι∗xCSΘ(λ). On the other hand, it is shown in [40, Prop. 4.11] that also curv(̂Tcal

( ̂CWΘ(λ, u))) = ι∗xCSΘ(λ). Similarly, by (3.16), we have c ◦ ̂T ( ̂CWΘ(λ, u)) =
T (u). On the other hand, it is shown in [12, Prop. 3.4] that c(T ′( ̂CWΘ(λ, u))) =ffl

S1 u(P ) = T (u). �

Corollary 3.19. Let G be a compact connected Lie group with b2k−2(G) = 0.
Then the transgressions

̂T , ̂Tcal : ̂H2k(BG; Z) → ̂H2k−1(G; Z)

coincide.

Proof. The claim immediately follows from Lemma 3.18 and the exact sequence
(A.2). �

Taking the map ̂H∗(BG; Z) → ̂H∗(G; Z) as in Remark 3.17, we obtain
another variant of an Hopf theorem on differential cohomology. As in Sect. 3.5,
choose (λi, ui) ∈ K2ki(G; Z) such that H∗(G; R) = Λ(u1

R
, . . . , uN

R
; R). Putting

ωi = curv
(

˜Tcal( ̂CWΘ(λi, ui))
) (3.17)

= curv
(

̂T ( ̂CWΘ(λi, ui))
)

,

we have H∗(G; R) = Λ(ω1, . . . , ωN ).

Proposition 3.20. Let G be a compact , connected Lie group such that H∗(G; Z)
has no torsion. Let πEG : EG → BG be a universal principal G-bundle with
fixed universal connection Θ. Let (P̃ , θ̃) → G × S1 be the canonical G-bundle
arising from the path fibration via the caloron transform. Choose (λi, ui) ∈
K2ki(G; Z), i = 1, . . . , N, as above such that

H∗(BG; R) = R[u1
R
, . . . , uN

R
]

H∗(G; R) = Λ(T (u1
R
), . . . , T (uN

R
)) = Λ(ω1, . . . , ωN ).

Let f : G × S1 → BG be a classifying map for the bundle with connection.
Assume that f(G × S1) ⊂ BG is an embedded submanifold. Define

˜Tcal : ̂H∗(BG; Z) → ̂H∗(G; Z), h �→
 

S1
f∗h.
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Then we have the topological direct sum decomposition
̂H∗(G; Z) =

〈

˜Tcal( ̂CWΘ(λ1, u1)), . . . , ˜Tcal( ̂CWΘ(λN , uN ))
〉

Z
⊕ ˜Tcal

(

ι(Ω∗(BG))
)

.

Proof. Since G is compact, we may choose a topological complement F ⊂
Ω∗(G) for the space Ω∗

cl(G) of closed forms. Since the cohomology of G has
no torsion, any flat character is topologically trivial. Thus, j(H∗(G; U(1))) =
ι(Ω∗

cl(G)). By arguments similar to those in [3, Ch. A] and in the proof of
Theorem 3.14, we obtain the splitting of the curvature sequence:

̂H∗(G; Z) ≈ ι(Ω∗
cl(G)) ⊕ Ω∗

0(G)
(3.18)
= ι(Ω∗

cl(G)) ⊕ d(Ω∗(G)) ⊕ ΛZ(ω1, . . . , ωN )

= ι(Ω∗
cl(G)) ⊕ ι(F ) ⊕ ΛZ(ω1, . . . , ωN )

= ι(Ω∗(G)) ⊕ ΛZ(ω1, . . . , ωN ).

By construction, the subspace ΛZ(ω1, . . . , ωN ) ⊂ Ω∗
0(G) is generated by the

curvatures of the characters ˜Tcal( ̂CWΘ(λi, ui)). In other words, the curvature
provides an isomorphism

curv :
〈

˜Tcal( ̂CWΘ(λ1, u1)), . . . , ˜Tcal( ̂CWΘ(λN , uN ))
〉

Z

≈−→ ΛZ(ω1, . . . , ωN ).

The assumption that f(G × S1) ⊂ BG is an embedded submanifold implies
that the pull-back of differential forms f : Ω∗(BG) → Ω∗(G×S1) is surjective.
Note that also the fiber integration

ffl
S1 : Ω∗(G × S1) → Ω∗(G) is surjective.

Let ϑ ∈ Ω1(S1) be any 1-form with integral 1. Given a form μ ∈ Ω∗(G), the
up-down formula for the bundle pr1 : G × S1 → G yields

ffl
S1 pr∗

1μ ∧ pr∗
2ϑ =

μ ∧ ffl
S1 pr∗

2ϑ = μ. Thus the map
ffl

S1 ◦f∗ : Ω∗(BG) → Ω∗(G) is surjective.
Hence, ˜Tcal

(

ι(Ω∗(BG))
)

= ι(Ω∗(G)). �

4. Differential Trivializations of Universal Characteristic Classes

In this section, we use Cheeger–Chern–Simons characters to establish a notion
of differential refinements of trivializations of universal characteristic classes
for principal G-bundles. Specializing to the class 1

2p1 ∈ H4(BSpinn; Z), this
yields our notion of differential String classes.

4.1. Trivializations of Universal Characteristic Classes

Throughout this section let G be a Lie group with finitely many components
and π : P → X a principal G-bundle. As above, let πEG : EG → BG be a
universal principal G-bundle over the classifying space of G, i.e., a principal
G-bundle with contractible total space. Let u ∈ Hn(BG; Z) be a universal
characteristic class for principal G-bundles. Equivalently, we may consider u as
a homotopy class of maps BG

u−→ K(Z, n). In the following, we briefly review
the notion and basic properties of trivializations of universal characteristic
classes from [46].

Let ˜BGu be the homotopy fiber of the map BG
u−→ K(Z, n). Let f : X →

BG be a classifying map for the bundle π : P → X, i.e., f∗EG ∼= P as principal
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G-bundles over X. A trivialization of the class u(P ) := f∗u ∈ Hn(X; Z) is by
definition a homotopy class of lifts

˜BGu

��
X

˜f
��

f
�� BG.

The class u(P ) admits trivializations if and only if it is trivial, i.e., u(P ) = 0.
By [46, Prop. 2.3], a trivialization of u(P ) gives rise to a cohomology class
q ∈ Hn−1(P ; Z) such that for any x ∈ X we have:

Hn−1(Px; Z) � i∗Px
q = T (u) ∈ Hn−1(G; Z). (4.1)

Here, iPx
: Px → P denotes the inclusion of the fiber Px := π−1(x) ⊂ P

over x ∈ X. A cohomology class q ∈ Hn−1(P ; Z) satisfying (4.1) is called a
u-trivialization class.

The cohomology of the base acts on u-trivialization classes by q �→
q + π∗w, where w ∈ Hn−1(X; Z). If ˜Hj(G; Z) = {0} for j < n − 1, then
trivializations of u(P ) are classified up to homotopy by u-trivialization classes
q ∈ Hn−1(P ; Z). In this case, the transgression T : Hn(BG; Z) → Hn−1(G; Z)
is an isomorphism and we have the Serre exact sequence

{0} �� Hn−1(X; Z)
π∗

�� Hn−1(P ; Z)
i∗
Px �� Hn−1(G; Z) ��f∗◦T −1

�� Hn(X; Z).

In particular, the set of u-trivialization classes is a torsor for Hn−1(X; Z).

4.2. Differential Trivializations

We are looking for an appropriate notion of differential refinements of u-
trivialization classes. Naively, one could define a differential u-trivialization
to be any differential character q̂ ∈ ̂Hn−1(P ; Z) whose characteristic class c(q̂)
is a u-trivialization class. However, by the exact sequences (A.1), this would
determine those differential characters only up to an infinite-dimensional space
of differential forms on P . Instead, we expect that for an appropriate notion of
differential u-trivializations, the space of all those is a torsor for the differential
cohomology ̂Hn−1(X; Z) (respectively, π∗

̂Hn−1(X; Z), in case pull-back by π
is not injective).

Let u ∈ Hn(BG; Z) be a universal characteristic class in the image of
the Chern–Weil map, i.e., n = 2k and there exists an invariant polynomial
λ ∈ Ik(g) such that uR = [CWΘ(λ)]dR ∈ Hn(BG; R). By [15], the Chern–
Simons construction is a version of the transgression homomorphism on the
level of differential forms in the sense that restriction of the Chern–Simons
form to any fiber represents the transgression of the associated Chern–Weil
class:

H2k−1
dR (Px) � [i∗Px

CSθ(λ)]dR = T (u)R ∈ H2k−1(G; R),
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where x ∈ X is an arbitrary point. Thus, we expect the curvature of a dif-
ferential u-trivialization q̂ to be related to the Chern–Simons form CSθ(λ).
However, this form is not closed, since dCSθ(λ) = π∗CWθ(λ).

By assumption, we have u(P ) = f∗u = 0, and hence [CWθ(λ)]dR = uR =
0. Thus, there exist differential forms ρ ∈ Ω2k−1(X) such that dρ = CWθ(λ).
Then the form CSθ(λ) − π∗ρ is closed. Moreover, we may choose ρ such that
CSθ(λ) − π∗ρ has integral periods. This follows from the long exact sequence
for mapping cone de Rham cohomology with integral periods:

· · · �� H2k−1
dR (P ; Z) �� H2k

dR(π; Z) �� H2k
dR(X; Z) �� · · ·

Since [CWθ(λ)]dR = 0, the mapping cone class [CWθ(λ), CSθ(λ)]dR lies in the
image of the homomorphism H2k−1

dR (P ; Z) → H2k
dR(π; Z). We thus find a pair

of forms (ρ, η) ∈ Ω2k−1(π) such that (CWθ(λ), CSθ(λ)) − dπ(ρ, η) lies in the
image of Ω2k−1

0 (P ) → Ω2k
0 (π). Thus, CWθ(λ) = dρ and CSθ(λ)−π∗ρ+dη has

integral periods. But then also CSθ(λ) − π∗ρ has integral periods.
The space of forms ρ ∈ Ω2k−1(X) with dρ = CWθ(λ) and CSθ(λ)−π∗ρ ∈

Ω2k−1
0 (P ) is a torsor for the infinite-dimensional group Ω2k−1

0 (X). For a fixed
such form and a fixed u-trivialization class q, the set of differential characters
q̂ ∈ ̂H2k−1(P ; Z) with curvature curv(q̂) = CSθ(λ) − π∗ρ and characteristic
class c(q̂) = q is a torsor for the torus H2k−1(P ;R)

H2k−1(P ;Z)R
.

The condition that CSθ(λ)−π∗ρ has integral periods has a nice interpre-
tation in terms of global sections of the Cheeger–Simons character ̂CW θ(λ, u) ∈
̂H2k(X; Z). As above, assume that u(P ) = 0. Thus, ̂CW θ(λ, u) is topologi-
cally trivial. By the long exact sequence (A.3) for the map idX , it has a global
section. By (A.4), global sections are uniquely determined by their covariant
derivative. Thus for any form ρ ∈ Ω2k−1(X) with dρ = CWθ(λ), we have
p̆id(ιid(ρ, 0)) = ̂CW θ(λ, u).

Now, consider the long exact sequence (A.3) twice, once for the identity
idX and once for the bundle projection π : P → X. Pull-back along the map
(idX , π) : (X,P ) → (X,X) yields the commutative diagram:

H2k−2(X; U(1))
π∗◦j ��

̂H2k−1(P ; Z)
ı̆π ��

̂H2k(π; Z)
p̆π ��

̂H2k(X; Z)

H2k−2(X; U(1))
j

��

id∗
X

��

̂H2k−1(X; Z)
ı̆id

��

π∗

��

̂H2k(idX ; Z)
p̆id

��

(idX ,π)∗
��

̂H2k(X; Z)

id∗
X

��

(4.2)
Pull-back along (idX , π) maps the global section ιid(ρ, 0) ∈ ̂H2k(idX ; Z) of
the Cheeger–Simons character ̂CW θ(λ, u) to the relative character ιπ(ρ, 0) ∈
̂H2k(π; Z). Thus, commutativity of the right square yields

p̆π

(

ιπ(ρ, 0)
)

= p̆π

(

(idX , π))∗ιid(ρ, 0)
)

= p̆id

(

ιid(ρ, 0)
)

= ̂CW θ(λ, u).

On the other hand, we have p̆( ̂CCSθ(λ, u)) = ̂CW θ(λ, u). Thus, the relative
characters ̂CCSθ(λ, u) and ιπ(ρ, 0) differ by a character in the image of the
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homomorphism ı̆ : ̂H2k−1(P ; Z) → ̂H2k(π; Z). This observation yields our
notion of differential u-trivializations:

Definition 4.1. Let G be a Lie group with finitely many components. Let π :
(P, θ) → X be a principal G-bundle with connection. Let u ∈ H2k(BG; Z) be
a universal characteristic class for principal G-bundles and (λ, u) ∈ K2k(G; Z).
A differential u-trivialization is a differential character q̂ ∈ ̂H2k−1(P ; Z) such
that

− ı̆π(q̂) = ̂CCSθ(λ, u) − ιπ(ρ, 0) (4.3)

for some ρ ∈ Ω2k−1(X).

To establish our notion of differential u-trivializations, we started from a
global section ρ ∈ Ω2k−1(X) of the Cheeger–Simons character ̂CW θ(λ, u). We
show that any differential u-trivialization uniquely determines a global section:

Lemma 4.2. Let G be a Lie group with finitely many components and (λ, u) ∈
K2k(G; Z). Let π : (P, θ) → X be a principal G-bundle with connection. Let
q̂ ∈ ̂H2k−1(P ; Z) be a differential u-trivialization. Then the differential form
ρ ∈ Ω2k−1(X) in (4.3) is uniquely determined by the character q̂. Moreover,
it satisfies p̆id(ιid(ρ, 0)) = ̂CW θ(λ, u). In other words, ιid(ρ, 0) ∈ ̂H2k(idX ; Z)
is the unique global section of the Cheeger–Simons character ̂CW θ(λ, u) with
covariant derivative ρ. In particular, we have dρ = CWθ(λ) and thus u(P ) = 0.

Conversely, any such global section determines differential u-trivializa-
tions, uniquely up to characters of the form j(π∗w) ∈ ̂H2k−1(P ; Z) for some
w ∈ H2k−2(X; U(1)).

Proof. Assume that (4.3) holds for two differential forms ρ, ρ′ ∈ Ω2k−1(X).
Then we have ιπ(ρ − ρ′, 0) = 0 and hence cov(ιπ(ρ − ρ′, 0)) = π∗(ρ − ρ′) = 0.
Since pull-back of differential forms along the bundle projection π : P → X is
injective, we conclude ρ = ρ′.

Next we show that any differential form ρ satisfying (4.3) determines
global sections. From the commutative diagram (4.2) and condition (4.3), we
conclude

p̆id(ιid(ρ, 0)) = p̆π(ιπ(ρ, 0)) = p̆π( ̂CCSθ(λ, u) + ı̆(q̂)) = ̂CW θ(λ, u).

Thus the form ρ canonically determines a global section of ̂CW θ(λ, u) with
covariant derivative ρ. Hence, curv( ̂CW θ(λ, u)) = CWθ(λ) = dρ and c( ̂CW θ

(λ, u)) = u(P ) = 0.
Conversely, let u(P ) = 0 and ρ ∈ Ω2k−1(X) such that dρ = CWθ(λ, u).

Then, ιid(ρ, 0) ∈ ̂H2k(idX ; Z) is the unique global section of ̂CW θ(λ, u) with
covariant derivative ρ. Hence, ιπ(ρ, 0) ∈ ̂H2k(π; Z) is a section along π. Thus,
we have p̆( ̂CCSθ(λ, u) − ιπ(ρ, 0)) = 0. By the long exact sequence (A.3), we
find a differential character q̂ ∈ ̂H2k−1(P ; Z) such that −ı̆(q̂) = ̂CCSθ(λ, u) −
ιπ(ρ, 0). By (A.3), again it is uniquely determined up to a character of the
form j(π∗w) for some w ∈ H2k−2(X; U(1)). �
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We show that differential u-trivializations are differential refinements of
u-trivialization classes and, conversely, any u-trivialization class is the char-
acteristic class of a differential u-trivialization. In particular, the property for
a principal G-bundle with connection π : (P, θ) → X to admit differential u-
trivializations is a purely topological condition, namely vanishing of the char-
acteristic class u(P ) ∈ H∗(X; Z).

Proposition 4.3. Let G be a Lie group with finitely many components and
(λ, u) ∈ K2k(G; Z). Let π : (P, θ) → X be a principal G-bundle with connec-
tion. Then the following holds:

(i) The bundle π : (P, θ) → X admits differential u-trivializations iff u(P ) =
0.

(ii) If q̂ ∈ ̂H2k−1(P ; Z) is a differential u-trivialization, then c(q̂) = H2k−1

(P ; Z) is a u-trivialization class.
(iii) For any u-trivialization class q ∈ H2k−1(P ; Z), there exist differential

u-trivializations q̂ ∈ ̂H2k−1(P ; Z) with c(q̂) = q.
(iv) If q̂ ∈ ̂H2k−1(P ; Z) is a differential u-trivialization, then we have:

curv(q̂) = CSθ(λ) − π∗ρ. (4.4)

(v) For any differential u-trivialization q̂ ∈ ̂H2k−1(P ; Z) and any x ∈ X, we
have:

̂H2k−1(Px; Z) � i∗Px
q̂ = ̂T ( ̂CW θ(λ, u)) ∈ ̂H2k−1(G; Z). (4.5)

Proof. We first prove (i): Assume u(P ) = 0. Then the Cheeger–Simons char-
acter ̂CW θ(λ, u) is topologically trivial. Choose ρ ∈ Ω2k−1(X) such that
ιid(ρ, 0) = ̂CW θ(λ, u). By Lemma 4.2 there exist differential u-trivializations
with differential form ρ. The converse implication follows from (ii).

Next, we prove (v): Let q̂ ∈ ̂H2k−1(P ; Z) be a differential character sat-
isfying (4.1). We compute the pull-back to the fiber Px over any point x ∈ X.
From the commutative diagram

({x}, Px)
(ix,iPx ) ��

(idx,πx)

��

(X,P )

(idX ,π)

��
({x}, {x})

(ix,ix)
�� (X,X)

and the naturality of the long exact sequence (A.3) we obtain

ı̆πx
(i∗Px

q̂) = (ix, iPx
)∗ ı̆π(q̂)

(4.3)
= (ix, iPx

)∗( − ̂CCSθ(λ, u) + ιπ(ρ, 0)
)

= −(ix, iPx
)∗

̂CCSθ(λ, u) + (ix, iPx
)∗(idX , π)∗ιid(ρ, 0)

(3.11)
= ı̆πx

( ̂T ( ̂CW θ(λ, u))) + (idx, πx)∗ ιid(i∗xρ, 0)
︸ ︷︷ ︸

=0

.
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By the long exact sequence (A.3) for the bundle projection πx over a point
x ∈ X, the map ı̆πx

: ̂H2k−1(Px; Z) → ̂H2k(πx; Z) is an isomorphism. We thus
conclude that i∗Px

q̂ = ̂T ( ̂CW θ(λ, u)).
Next, we prove (ii): From (4.5), we conclude that

i∗Px
c(q̂) = c(i∗Px

q̂)
(4.5)
= c( ̂T ( ̂CW θ(λ, u)))

(3.16)
= T (c( ̂CW θ(λ, u))) = T (u).

Thus, the characteristic class c(q̂) of any differential u-trivialization q̂ is a
u-trivialization class. In particular, u(P ) = 0.

Now, we prove (iii): Let q ∈ H2k−1(P ; Z) be a u-trivialization class, in
particular, u(P ) = 0. By (i) we know that differential u-trivializations ex-
ist. We aim at constructing a differential u-trivialization q̂ with characteristic
class c(q̂) = q. Let q̂′ ∈ ̂H2k−1(P ; Z) be any differential u-trivialization with
differential form ρ′. Put q′ := c(q̂′). Since q and q′ are both u-trivialization
classes, we have q − q′ = π∗w for some w ∈ H2k−1(X; Z). Choose a differen-
tial character ŵ ∈ ̂H2k−1(X; Z) with characteristic class c(ŵ) = w. Now, put
q̂ := q̂′ + π∗ŵ. Then we have c(q̂) = q. Put ρ := ρ′ − curv(ŵ). Then, we have
ı̆id(ŵ) = ιid(−curv(w), 0) and hence

−ı̆π(q̂) = −ı̆π(q̂′) − ı̆π(π∗ŵ)

= ̂CCSθ(λ, u) − ιπ(ρ′, 0) − (idX , π)∗ ı̆id(ŵ)

= ̂CCSθ(λ, u) − ιπ(ρ′ − curv(ŵ), 0)

= ̂CCSθ(λ, u) − ιπ(ρ, 0).

Thus, q̂ is a differential u-trivialization.
Finally, (iv) follows immediately from (4.3) and cov(̆ı(q̂)) = −curv

(q̂). �

It is well known that the set of all u-trivialization classes u ∈ H2k−1(P ; Z)
is a torsor for the action of the additive group H2k−1(X; Z). We show that the
analogous statement holds for the set of differential u-trivializations.

Proposition 4.4. Let G be a Lie group with finitely many components and
(λ, u) ∈ K2k(G;Z). Let π : (P, θ) → X be a principal G-bundle with con-
nection. The differential cohomology group ̂H2k−1(X; Z) acts on the set of all
differential u-trivializations by (q̂, h) �→ q̂ + π∗h.

Moreover, the set of differential u-trivializations is a torsor for the addi-
tive group π∗

̂H2k−1(X; Z).

Proof. Let q̂ be a differential u-trivialization with differential form ρ and h ∈
̂H2k−1(X; Z). As above, we have ı̆id(h) = ιid(−curv(h), 0) and hence

−ı̆π(q̂ + π∗h) = ̂CCSθ(λ, u) − ιπ(ρ, 0) − ιπ(−curv(h), 0)

= ̂CCSθ(λ, u) − ιπ(ρ − curv(h)).

Thus, q̂+π∗h is a differential u-trivialization with differential form ρ−curv(h).
Hence, the differential cohomology group ̂H2k−1(X; Z) acts on the set of dif-
ferential u-trivializations.
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The action of the group ̂H2k−1(X; Z) on the set of differential u-trivializa-
tions is in general not free. The kernel of the map π∗ : ̂H2k−1(X; Z) →
̂H2k−1(P ; Z) is contained in the image of the map j : H2k−2(X; U(1)) →
̂H2k−1(X; Z). By injectivity of the latter, the kernel consists of characters of the
form j(v), where v is in the kernel of π∗ : H2k−2(X; U(1)) → H2k−2(P ; U(1)).

We need to show that the action is transitive. Let q̂ and q̂′ be differential
u-trivializations with differential forms ρ and ρ′, respectively. By Lemma 4.2,
we have p̆id(ιid(ρ, 0)) = ̂CW θ(λ, u) = p̆id(ιid(ρ′, 0)). From the long exact se-
quence (A.3), we thus obtain a differential character h′ ∈ ̂H2k−1(X; Z) such
that ı̆id(h′) = ιid(ρ − ρ′, 0). This yields

ı̆π(q̂ − q̂′) = ιπ(ρ − ρ′, 0) = ı̆π(π∗h).

From the upper row in (4.2), we conclude q̂ − q̂′ = π∗(h′ + j(v)) for some
v ∈ H2k−2(X; U(1)). Put h := h′ + j(u) ∈ ̂H2k−1(X; Z). Then, we have
q̂ − q̂′ = π∗h. �

Remark 4.5. In general, the condition (4.5) is weaker than (4.3). Let μ ∈
Ω2k−2(X) and f ∈ C∞(P ) not constant along the fibers. Put η := f ·π∗μ. Then,
η vanishes upon pull-back to any fiber Px. Moreover, dη = df ∧ π∗μ + f · π∗dμ
is not the pull-back of a form on the base X. Now, let q̂ be any differential
u-trivialization. Then, q̂ + ι(η) ∈ ̂H2k−1(P ; Z) still satisfies (4.5), since

i∗Px
(q̂ + ι(η)) = i∗Px

q̂ + ι(i∗Px
η) = ̂T ( ̂CW θ(λ, u)).

But q̂ + ι(η) does not satisfy (4.4), since curv(q̂ + ι(η)) − CSθ(λ) = π∗ρ + dη
is not the pull-back of a form on X. This implies that q̂ + ι(ρ) does not satisfy
(4.3).

Remark 4.6. In general, even the two conditions (4.4) and (4.5) together do
not imply (4.3). Suppose there exists a closed form ν ∈ Ω2k−1(X) such that
π∗ν = dη for some η ∈ Ω2k−2(P ) and i∗Px

η is exact for any x ∈ X. Without
loss of generality, we assume that ν does not have integral periods. Let q̂ be
a differential u-trivialization with differential form ρ. Put h := q̂ + ι(η). Then
we have

i∗Px
h = i∗Px

q̂ + ι(i∗Px
η) = ̂T ( ̂CW θ(λ, u)),

since i∗Px
η is exact and thus ι(i∗Px

η) = 0. Thus, h satisfies (4.5). Moreover, h
satisfies (4.4), since

curv(h) = curv(q̂) + dη = CSθ(λ) − π∗(ρ − ν).

But we have −ı̆(h) = −ı̆(q̂)− iπ(0, η) = ̂CCSθ(λ, u)− iπ(ρ, η). Thus, h satisfies
(4.3) if and only if ιπ(ρ, η) = ιπ(ρ′, 0) for some ρ′ ∈ Ω2k−1(X). The latter
condition is equivalent to (ρ − ρ′, η) being closed with integral periods. By
assumption, dη = π∗ν and dν = 0. Thus, we necessarily have ρ − ρ′ = ν.
But by assumption, ν does not have integral periods, and so neither does
(ν, η) = (ρ − ρ′, η).
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4.3. Dependence on the Connection

Since the Cheeger–Chern–Simons character ̂CCSθ(λ, u) depends on the con-
nection θ, so do differential u-trivializations:

Proposition 4.7. Let G be a Lie group with finitely many components and
(λ, u) ∈ K2k(G;Z). Let π : P → X be a principal G-bundle with connections
θ0, θ1 ∈ A (P ). Define α(θ0, θ1;λ) ∈ Ω2k−2(P ) as in Sect. 2.4.

Then the following holds: if q̂ ∈ ̂H2k−1(P ; Z) is a differential u-trivializa-
tion on (P, θ0) with differential form ρ, then q̂ − ι(α(θ0, θ1;λ)) is a differential
u-trivialization on (P, θ1) with differential form ρ + CS(θ0, θ1;λ).

Proof. By definition, we have

−ı̆(q̂)
(4.3)
= ̂CCSθ0(λ, u) − ιπ(ρ, 0)

(2.23)
= ̂CCSθ1(λ, u) − ιπ(CS(θ0, θ1;λ), α(θ0, θ1;λ)) − ιπ(ρ, 0)

= ̂CCSθ1(λ, u) − ιπ(ρ + CS(θ0, θ1;λ), 0) − ιπ(0, α(θ0, θ1;λ))

= ̂CCSθ1(λ, u) − ιπ(ρ + CS(θ0, θ1;λ), 0) − ı̆(ι(α(θ0, θ1;λ))).

Thus, the differential character q̂ − ι(α(θ0, θ1;λ)) ∈ ̂H2k−1(P ; Z) and the dif-
ferential form ρ+CS(θ0, θ1;λ) ∈ Ω2k−1(X) together satisfy condition (4.3) on
(P, θ1). �

5. Differential String Classes and (Higher) Chern–Simons
Theories

In this section, we establish our notion of differential String classes on a prin-
cipal Spinn-bundle with connection π : (P, θ) → X, where n ≥ 3. We obtain
this notion by specializing the notion of differential u-trivialization to the case
u = 1

2p1 ∈ H4(BSpinn; Z). This notion of corresponds to geometric string
structures from [55], i.e., trivializations of the Chern–Simons bundle 2-gerbe,
together with a compatible connection.

There are four essentially equivalent ways to define differential String
classes. The first due to Waldorf views differential String classes as stable iso-
morphism classes of geometric string structures [55,56]. the second is implicit
in the work of Redden [46]: on a compact Riemannian manifold (X, g) there is
a canonical String class q ∈ ̂H3(P ; Z), defined via Hodge theory and adiabatic
limits. It has a canonical refinement to a differential String class q̂ ∈ ̂H3(P ; Z).
Thirdly, one may define differential String classes analogously to String classes
as characters on P which restrict on any fiber to the so-called basic differential
character in ̂H3(Spinn; Z), the stable isomorphism class of the so-called basic
gerbe on Spinn. Finally, our own notion regards differential String classes as
differential 1

2p1-trivializations in the sense of Sect. 4. None of the first three
ways to regard differential String classes directly generalizes to higher-order
structures. In contrast, our notion does: differential u-trivializations can be
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defined for any universal characteristic class u ∈ ̂H∗(BG; Z) on any Lie group
G with finitely many components.

In this section, we first recall the notion of string structures and string
classes. Next, we introduce our notion of differential String classes by special-
izing differential u-trivializations to the case u = 1

2p1 ∈ H4(BSpinn; Z). Then
we prove the equivalence of the four above-mentioned notions of differential
String classes. Finally, we discuss (higher) Chern–Simons theories arising from
differential String classes (and more generally, differential u-trivializations) and
transgression to loop space.

5.1. String Structures and String Classes

The group Stringn is by definition a 3-connected cover of Spinn. It is defined
only up to homotopy. As is well known, the homotopy type Stringn cannot
be represented a finite-dimensional Lie group, since any such group has non-
vanishing π3. There exist several models of Stringn, either as a topological
group [52,53], as a Lie 2-group [2,29,50] or as an infinite-dimensional Fréchet
Lie group [43]. In the latter case, a string structure (in the Lie theoretic sense)
is defined as a lift of the structure group of π : P → X from Spinn to Stringn.

Stringn is defined as the homotopy fiber of a classifying map λ : BSpinn →
K(Z; 4) for the generator 1

2p1 ∈ H4(BSpinn; Z) ∼= H3(Spinn; Z) ∼= π3(Spinn) ∼=
Z. A string structure (in the homotopy theoretic sense) on a principal Spinn-
bundle π : P → X is a homotopy class of lifts ˜f of classifying maps f for the
bundle π : P → X:

BStringn

��
X

˜f
��

f
�� BSpinn

λ �� K(Z; 4).

Isomorphism classes of string structures in the Lie theoretic sense correspond
to string structures in the homotopy theoretic sense. Clearly, a principal Spinn-
bundle π : P → X admits a string structure (in either sense) if and only if
1
2p1(P ) = 0. Since Hj(Spin(n); Z) = 0 for j = 1, 2, by [46] there is a 1–1
correspondence between isomorphism classes of string structures on P and
1
2p1-trivialization classes q ∈ H3(P ; Z). These classes are called String classes.

5.2. Differential String Classes

We derive our notion of differential String classes by specializing the concept
of differential trivializations of universal characteristic classes of principal G-
bundles from Sect. 4. For G = Spinn, n ≥ 3, the Chern–Weil construction
yields an isomorphism14 I2

0 (Spinn) → H4
dR(BSpinn; Z) ∼= H4(BSpinn; Z) ∼= Z.

We thus write the elements of K4(Spinn; Z) simply as λ or u instead of pairs
(λ, u).

14 Here, Ik
0 (G) denotes the space of invariant polynomials of degree k, the Chern–Weil forms

of which have integral periods.
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Let (P, θ) → X be a principal Spinn-bundle with connection. The invari-
ant polynomial λ ∈ I2

0 (Spinn) ∼= H4(BSpinn; Z) yields the Chern–Weil form
CWθ(λ) ∈ Ω4

0(X) and the Cheeger–Simons character ̂CW θ(λ) ∈ ̂H4(X;Z)
with curvature curv( ̂CW θ(λ)) = CWθ(λ) and characteristic class c( ̂CW θ(λ)) =
u(P ). Moreover, we have the Chern–Simons form15 CSθ(λ) ∈ Ω3(P ) and
the Cheeger–Chern–Simons character ̂CCSθ(λ) ∈ ̂H4(π; Z) with covariant
derivative cov( ̂CCSθ(λ)) = CSθ(λ). Since H4(BSpinn; Z) ∼= I2

0 (Spinn) ∼=
K4(Spinn; Z) ∼= Z with generator 1

2p1, we may write λ = � · 1
2p1 for some

� ∈ Z. As customary in the physics literature, we call � the level of λ.

Definition 5.1. Let π : (P, θ) → X be a principal Spinn-bundle with con-
nection, where n ≥ 3. A differential String class on (P, θ) is a differential
1
2p1-trivialization, i.e., a differential character q̂ ∈ ̂H3(P ; Z) such that

− ı̆π(q̂) = ̂CCSθ

(

1
2
p1

)

− ιπ(ρ, 0) (5.1)

for some ρ ∈ Ω3(X). A differential String class at level � is a differential � · 1
2p1-

trivialization, i.e., a differential character q̂ ∈ ̂H3(P ; Z) such that

− ı̆π(q̂) = ̂CCSθ

(

� · 1
2
p1

)

− ιπ(ρ, 0) (5.2)

for some ρ ∈ Ω3(X).

Proposition 5.2. Let q̂ ∈ ̂H3(P ; Z) be a differential String class on π : (P, θ) →
X with differential form ρ ∈ Ω3(X). Let x ∈ X be an arbitrary point. Then
we have

curv(q̂) = CSθ

(

1
2
p1

)

− π∗ρ (5.3)

−ı̆π(c(q̂)) =
1
2
p̃1(P ) (5.4)

i∗Px
q̂ = ̂T

(

̂CWΘ

(

1
2
p1

))

. (5.5)

Here, 1
2 p̃1 ∈ H4(πESpinn

; Z) denotes the mapping cone class corresponding to
the universal characteristic class 1

2p1 ∈ H4(BSpinn; Z) under the isomorphism
H∗(πESpinn

; Z) → H∗(BSpinn; Z). �

Proof. By (5.1), we have curv(q̂) = −cov(̆ıπ(q̂)) = CSθ( 1
2p1) − π∗ρ. Similarly,

we have −ı̆π(q̂) = c( ̂CCSθ( 1
2p1)) = 1

2 p̃1(P ). Finally, by restriction to the fiber
over x, we obtain −ı̆πx

(i∗Px
q̂) = (ix, iPx

)∗
̂CCSθ( 1

2p1). By Definition 3.14, this
is equivalent to i∗Px

q̂ = ̂T ( ̂CWΘ( 1
2p1)). �

From Proposition 4.3, we conclude:

15 For λ = 1
2
p1 the Chern–Simons form CSθ( 1

2
p1) is the usual Chern–Simons 3-form for

Spinn.
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Corollary 5.3. Let n ≥ 3. A principal Spinn-bundle π : (P, θ) → X with
connection admits differential String classes if and only if it is String, i.e.,
1
2p1(P ) = 0. The characteristic class c(q̂) ∈ H3(P ; Z) of a differential String
class q̂ ∈ ̂H3(P ; Z) is a String class. The differential form ρ in the notion of
differential String classes is uniquely determined by the character q̂. It satisfies
dρ = CWθ( 1

2p1).
Conversely, if P is String, then for any String class q ∈ H3(P ; Z) and

any differential form ρ ∈ Ω3(X) with dρ = CWθ( 1
2p1), there exist differential

String classes q̂ ∈ ̂H3(P ; Z) with differential form ρ and c(q̂) = q.

The differential cohomology group ̂H3(X; Z) acts on differential String
classes by (q̂, h) �→ q̂ + π∗h. In the general case of differential u-trivializations,
this action of the differential cohomology of the base is not free. But in the
case of differential String classes it is, and we have:

Corollary 5.4. Let π : (P, θ) → X be a principal Spinn-bundle with connection
and n ≥ 3. Then the set of differential String classes q̂ ∈ ̂H3(P ; Z) is a torsor
for the additive group ̂H3(X; Z).

Proof. Since ˜Hi(Spinn; Z) = {0} for i ≤ 2, the Leray–Serre sequence yields
the following exact sequence [46, Prop. 2.5]:

0 �� H3(X; Z) π∗
�� H3(P ; Z)

i∗
x �� H3(Spinn; Z) T −1

�� H4(X; Z).
(5.6)

From the long exact sequence (A.1), we conclude that the pull-back π∗ :
̂H3(X; Z) → ̂H3(P ; Z) is injective. Thus the action of the additive group
̂H3(X; Z) on differential String classes is free. Hence by Proposition 4.3, the set
of differential String classes on (P, θ) is a torsor for the differential cohomology
group ̂H3(X; Z). �

As discussed in Sect. 4.3, differential u-trivializations depend upon the
choice of connection. Obviously, we find the same dependence of differential
String classes and their differential forms on the connection:

Corollary 5.5. Let θ0, θ1 ∈ A (P ) be connections on the principal Spinn-bundle
π : P → X. Define CS(θ0, θ1; 1

2p1) ∈ Ω3(X) and let α(θ0, θ1; 1
2p1) ∈ Ω2(P ) be

as in Sect. 2.4.
Then the following holds: if q̂ is a differential String class on (P, θ0) with

differential form ρ, then q̂ − ι(α(θ0, θ1; 1
2p1)) is a differential String class on

(P, θ1) with differential form ρ + CS(θ0, θ1; 1
2p1).

The transgression map T : H4(BSpinn; Z) → H3(Spinn; Z) is an isomor-
phism. The restriction of the Chern–Simons form CSθ( 1

2p1) to any fiber Px

represents the class T ( 1
2p1) ∈ H3(Spinn; Z) in de Rham cohomology. The pull-

back of the Chern–Simons form to any fiber i∗Px
CSθ( 1

2p1) ∈ Ω3(Spinn) can be
expressed purely in terms of the Maurer–Cartan form of Spinn; see [15]. In
particular, it does not depend upon the connection θ on P .
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Since b2(Spinn) = 0, by Remark 3.13, ̂T ( ̂CW θ( 1
2p1)) is the unique differ-

ential character in ̂H3(Spinn; Z) with curvature i∗Px
CSθ( 1

2p1) and characteris-
tic class T (1

2p1). We call T ( ̂CW θ( 1
2p1)) the basic 3-character on Spinn, since

it coincides with the stable isomorphism class of the so-called basic gerbe on
Spinn; see [37].

Next, we obtain equivalent characterizations for a character q̂ ∈ ̂H3(P ; Z)
to be a differential String class:

Proposition 5.6. Let π : (P, θ) → X be a principal Spinn-bundle with con-
nection. Let q̂ ∈ ̂H3(P ; Z) and ρ ∈ Ω3(X). Then the following conditions are
equivalent:

(i) The characteristic class c(q̂) ∈ H3(P ; Z) is a String class and the curva-
ture satisfies curv(q̂) = CSθ( 1

2p1) − π∗ρ.
(ii) The curvature satisfies curv(q̂) = CS(1

2p1)−π∗ρ and, for any x ∈ X, we
have i∗Px

q̂ = ̂T ( ̂CWΘ( 1
2p1)).

(iii) The character q̂ is a differential String class with differential form ρ.

Proof. Before we prove the claim, let us recall that b1(Spinn) = b2(Spinn) = 0
implies that degree 3 characters on Spinn are uniquely determined by their
characteristic class and curvature. Moreover, the bundle projection provides
an isomorphism π∗ : H2(X; R) → H2(P ; R). Thus, differential characters in
̂H3(P ; Z) are uniquely determined by their curvature and characteristic class
up to characters of the form π∗ι(ν) for some closed form ν ∈ Ω2(X).

We first prove the implication (i) =⇒ (ii): By the curvature condition,
we have curv(i∗Px

q̂) = i∗Px
CSθ( 1

2p1) = curv(̂T ( ̂CWΘ( 1
2p1))). By assumption,

c(q̂) is a String class, thus c(i∗Px
(q̂)) = T ( 1

2p1) = curv(̂T ( ̂CWΘ( 1
2p1))). Hence,

i∗Px
q̂ = ̂T ( ̂CWΘ( 1

2p1)).
Now, we prove the implication (ii) =⇒ (iii): Since i∗Px

q̂ = ̂T ( ̂CW θ( 1
2p1)),

the characteristic class c(q̂) is a String class. By Lemma 4.2 there exists a
differential String class q̂′ ∈ ̂H3(P ; Z) with characteristic class c(q̂). Let ρ′ ∈
Ω3(X) be the differential form of the differential String class q̂′. By (5.3) for
q̂′ and the curvature condition for q̂, we have curv(q̂) − curv(q̂′) = π∗(ρ − ρ′).
Since the pull-back π∗ : Ω∗(X) → Ω∗(P ) is injective, the form ρ − ρ′ is closed.
On the other hand, curv(q̂) − curv(q̂′) is exact, since both forms represent
the cohomology class c(q̂)R. By the exact sequence (5.6), the pull-back π∗ :
H3(X; Z) → H3(P ; Z) is injective. Thus, we find a form η ∈ Ω2(X) such that
ρ − ρ′ = dη.

Put q̂′′ := q̂′+ι(π∗η). Then we have curv(q̂′′) = curv(q̂′)+dπ∗η = curv(q̂)
and c(q̂′′) = c(q̂′) = c(q̂). Thus, there exists a closed form ν ∈ Ω2(X) such that
q̂ = q̂′′ + ι(π∗ν) = q̂′ + ι(π∗(η + ν)). Since q̂′ is a differential String class, we
have:



1578 C. Becker Ann. Henri Poincaré

−ı̆π(q̂) = −ı̆π(q̂′ + ι(π∗(η + ν)))

= ̂CCSθ

(

1
2
p1

)

− ιπ(ρ′, 0) + ιπ(0, π∗(η + ν))

= ̂CCSθ

(

1
2
p1

)

− ιπ(ρ′ − dη, 0) + ιπ(dπ(η + ν, 0))

= ̂CCSθ

(

1
2
p1

)

− ιπ(ρ, 0).

Thus, q̂ is a differential String class with differential form ρ.
Finally, the implication (iii) =⇒ (i) follows from (5.3) and Corollary

5.3. �

5.3. Related Concepts

In this section, we relate differential String classes as in Definition 5.1 to canon-
ical trivializations of the class 1

2p1 ∈ H4(X; Z) [46] and to geometric String
structures [55]. The former are certain 3-forms on a compact Riemannian man-
ifold (X, g), while the latter are certain bundle gerbes with connection on P .
We show that the stable isomorphism class of a geometric string structure is a
differential String class and vice versa, and any differential String class is the
stable isomorphism class of a geometric string structure.

Another approach to differential (twisted) string structures has appeared
in [48], where the authors describe those structures in terms of ∞-connections
on G-principal ∞-bundles. Their approach also applies to higher lifts in the
Whitehead tower of BOn, which account for higher geometric structures, de-
scribed in homotopy theoretic terms. The authors also discuss how these higher
geometric structures are related to anomaly cancellation in String theory. As
the lift in the Whitehead tower from BSpinn to BStringn accounts for anom-
aly cancellation of supersymmetric Strings on the target space X, the next
lift is related to anomaly cancellation for fivebranes on X. That is why the
geometric structure corresponding to such a lift is called a fivebrane structure
in [48].

5.3.1. Canonical Differential Refinements. Let (X, g) be a compact Riemann-
ian manifold and q ∈ H3(P ; Z) a fixed String class. Let ρ0 be the unique
co-exact 3-form satisfying dρ0 = CWθ( 1

2p1). Denote by H 3
g (X) the space of

harmonic 3-forms on X with respect to the metric g. By [46, Thm. 3.7], there
is a unique harmonic form with integral periods ρ ∈ H 3

g (X; Z) such that

H3
dR(P ; Z) �

[

CSθ

(

1
2
p1

)

− π∗(ρ0 + ρ)
]

dR

= qR ∈ H3(P ; Z)R. (5.7)

Thus, the form CSθ( 1
2p1) − π∗(ρ0 + ρ) is a canonical representative of the

String class q in de Rham cohomology. In particular, it has integral periods.
Taking differential characters on P with characteristic class, a String class and
curvature, the associated Redden form CSθ( 1

2p1) − π∗(ρ0 + ρ) yields another
equivalent characterization of differential String classes:
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Proposition 5.7. Let (X, g) be a compact Riemannian manifold and π : (P, θ) →
X a principal Spinn-bundle with connection, for n ≥ 3. Let q ∈ H3(P ; Z) be
a fixed String class. Let ρ0 be the unique co-exact 3-form satisfying dρ0 =
CWθ( 1

2p1). Let ρ ∈ H 3
g (X; Z) such that CSθ( 1

2p1) − π∗(ρ0 + ρ) represents qR.
Then for a character q̂ ∈ ̂H3(P ; Z), the following are equivalent:

(i) The character q̂ has characteristic class c(q̂) = q and curvature curv(q̂) =
CSθ(λ) − π∗(ρ0 + ρ).

(ii) The character q̂ is a differential String class with differential form ρ0 + ρ
and c(q̂) = q.

Proof. The implication (i) =⇒ (ii) follows from Proposition 5.6. The impli-
cation (iI) =⇒ (i) follows from (5.3). �

Since the 3-form ρ0 is a canonical trivialization of 1
2p1(P ) ∈ H4(X; Z),

one might consider any differential character q̂ ∈ ̂H3(P ; Z) with the charac-
teristic class a String class q and the curvature the associated Redden form
CSθ( 1

2p1)−π∗(ρ0 +ρ) as a canonical differential refinement of the String class
q. In this sense, our notion of differential String classes recovers the notion of
canonical differential refinements of String classes that is implicit in [46].

5.3.2. Geometric String Structures. A geometric string structure in the sense
of [55] is a certain bundle gerbe with connection on P . More precisely, it is a
trivialization of the so-called Chern–Simons bundle 2-gerbe CS , together with
a compatible connection. To relate geometric string structures to differential
String classes in the sense of Definition 5.1, we first relate Cheeger–Chern–
Simons characters to the Chern–Simons bundle 2-gerbe:

Proposition 5.8. Let π : (P ; θ) → X be a principal Spinn-bundle with connec-
tion, and n ≥ 3. Let CS be the bundle 2-gerbe on X, defined over the submer-
sion π : P → X, as in [12,55]. Let hCS ∈ ̂H4(π; Z) be the relative character
associated with CS , as in Appendix B. Then we have hCS = ̂CCSθ( 1

2p1).

Proof. Both the Chern–Simons bundle 2-gerbe CS and the Cheeger–Simons
and Cheeger–Chern–Simons characters ̂CW θ( 1

2p1), ̂CCSθ( 1
2p1) are natural

with respect to connection-preserving bundle maps. Thus it suffices to com-
pare them on a universal principal Spinn-bundle πESpinn

: ESpinn → BSpinn

with fixed universal connection Θ. The curvature of the character hCS equals
the 4-form curvature H ∈ Ω4(X) of the bundle 2-gerbe CS , which in turn
equals the Chern–Weil form CWΘ( 1

2p1) = curv( ̂CCSΘ( 1
2p1)). Similarly, the

covariant derivative of the character hCS equals the curving B ∈ Ω3(P ) of
the bundle 2-gerbe CS , which equals the Chern–Simons form CSΘ( 1

2p1) =
cov( ̂CCSΘ( 1

2p1)). The characteristic class of hCS maps under the isomorphism
H4(πESpinn

; Z) → H4(BSpinn; Z) to the characteristic class of CS , which
equals 1

2p1 ∈ H4(BSpinn; Z). Thus the relative characters hCS , ̂CCSΘ( 1
2p1) ∈

̂H4(πESpinn
; Z) have the same curvature, covariant derivative and character-

istic class. Since H3(πESpinn
; R) ∼= H3(BSpinn; R) = {0}, we conclude that

hCS = ̂CCSθ( 1
2p1). �
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A geometric string structure on (P, θ) is by definition a trivialization of
the Cheeger–Simons bundle 2-gerbe CS together with a compatible connec-
tion. In particular, it is a bundle gerbe with connection S on P . Its Dixmier–
Douady class is a String class. Moreover, there is a uniquely determined 3-
form ρ ∈ Ω3(X), such that curv(S ) = CSθ( 1

2p1) − π∗ρ. Thus, we obtain a
1–1 correspondence between differential String classes and isomorphism classes
of geometric string structures. In particular, the notion of differential String
classes from Definition 5.1 is compatible with the one in [56].

Proposition 5.9. Let π : (P ; θ) → X be a principal Spinn-bundle with connec-
tion, and n ≥ 3. The the following holds:

(i) If S is a geometric string structure with differential form ρ, then its
isomorphism class [S ] ∈ ̂H3(P ; Z) is a differential String class. Their
differential forms coincide.

(ii) For any differential String class q̂ ∈ ̂H3(P ; Z) with differential form ρ,
there exists a geometric string structure S such that [S ] = q̂.

In other words, the set of isomorphism classes of geometric string structures
on (P, θ) coincides with the set of differential String classes on (P, θ).

Proof. The isomorphism class of a geometric string structure on (P, θ) is a
differential cohomology class [S ] ∈ ̂H3(P ; Z) with the characteristic class
a String class and curvature form curv([S ]) = CSθ( 1

2p1) − π∗ρ. Thus by
Proposition 5.6, [S ] is a differential String class with differential form ρ.

By [55, Cor. 2.11], the set of isomorphism classes of geometric string
structures on (P, θ) is a torsor for the differential cohomology group ̂H3(X; Z).
By Corollary 5.4, the same holds for the space of geometric string structures.
Since these torsors have a nonempty intersection, they coincide. �
5.4. (Higher) Chern–Simons Theories

In this section, we briefly explain how differential String classes at level � lead
to trivializations of a version of extended Chern–Simons theory.16 We describe
this Chern–Simons theory by its evaluations on closed oriented manifolds of
dimension 0, 1, 2, 3. These evaluations are constructed by transgression of the
Cheeger–Simons character ̂CW θ(λ). The trivializations are given by transgres-
sion of the differential String class and its differential form.17

As above, let λ = � · 1
2p1 ∈ H4(BSpinn; Z) ∼= K4(Spinn; Z) ∼= Z. The

Cheeger–Simons character ̂CW θ(λ) ∈ ̂H4(X; Z) defines a version of Chern–
Simons theory at level � for the group Spinn with target space X, extended

16 Note that we do not claim to have a rigorous notion of extended field theory. In the
literature, fully extended field theories are expected to be functors from geometrically defined
higher categories to algebraically defined higher categories, like topological field theories in
the sense of Atiyah are functors from the cobordism category to the category of vector spaces.
We only introduce a notion of how to evaluate differential characters on lower-dimensional
closed manifolds. In a fully extended field theory, one would also expect to have evaluations
on manifolds with corners, which e.g. appear as boundaries of higher degree.
17 There are several ways to construct transgression of differential cohomology to loop spaces
and higher mapping spaces. For a good geometric method, see [1].
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down to points: for a point ∗, the mapping space C∞(∗,X) is canonically
identified with X itself. The evaluation of ̂CW θ(λ) on a point ∗ is the character
̂CW θ(λ) itself. Its classical action is given by the U(1)-valued holonomy around
closed oriented 3-manifolds mapped to X. The evaluation of ̂CW θ(λ) on the
closed oriented 1-manifold S1 is the transgression τ( ̂CW θ(λ)) ∈ ̂H3(C∞(S,X);
Z) to the free loop space LX. Its classical action is the corresponding surface
holonomy on the free loop space LX. Similarly, evaluation of ̂CW θ(λ) on a
closed oriented surface Σ2 is the transgression τΣ( ̂CW θ(λ)) ∈ ̂H2(C∞(Σ2,X);
Z) to the space of smooth maps f : Σ2 → X. It yields an isomorphism class of
Hermitean line bundles with connection over the mapping space C∞(Σ2,X),
and the classical action is the holonomy of this bundle around oriented loops
in C∞(Σ2,X). The evaluation of ̂CW θ(λ) on a closed oriented 3-manifold M3

is the transgression τM ( ̂CW θ(λ)) ∈ ̂H1(C∞(M3,X); Z) ∼= C∞(C∞(M3,X),
U(1)) to the space of smooth maps f : M3 → X. Its classical action on a point
f ∈ C∞(M3,X) coincides with the evaluation of the three manifold holonomy
holM3( ̂CW θ(λ)) : C∞(M3,X) → U(1).

As we observed in Sect. 2.1.4, replacing the Cheeger–Simons character
̂CW θ(λ) by the associated Cheeger–Chern–Simons character ̂CCSθ(λ) allows
us to extend the Chern–Simons action to oriented manifolds with boundary,
together with sections of the bundle π : P → X along the boundary. Similarly,
we obtain the extended Chern–Simons theory by transgression to loop spaces
and higher mapping spaces.18

By [53], we expect a notion of geometric string structure on (P, θ) to
provide a trivialization of the corresponding extended Chern–Simons theory.
In the case of the Chern–Simons theory defined by the characters ̂CW θ(λ),
̂CCSθ(λ) and its transgressions, a trivialization is given by a differential String
class and its differential form, together with their transgressions: Any differ-
ential String class q̂ on (P, θ) with differential form ρ ∈ Ω3(X) provides a real
lift of the 3-manifold holonomy of ̂CW θ( 1

2p1)). By Lemma 4.2, we have:

holM

(

̂CW θ

(

1

2
p1

))

(f) :=

(

f∗holM

(

̂CW θ

(

1

2
p1

)))

[M ] = exp

(

2πi

ˆ

M

f∗ρ

)

.

Since transgression for absolute and relative differential cohomology commutes
with the exact sequence (A.3), transgression of the pair (q̂, ρ) yields differential
trivializations of the transgressions of ̂CW θ( 1

2p1). Thus, the pair (q̂, ρ) consist-
ing of a differential String class and its associated differential form provides us
with a trivialization of the Chern–Simons theory of ̂CW θ( 1

2p1), extended down
to points. Thus, for an oriented closed surface Σ2 the transgressed differential
String class τΣ(q̂) ∈ ̂H2(C∞(Σ,X); Z) satisfies:

−ı̆π(τΣ(q̂)) = τΣ

(

̂CCSθ

(

1
2
p1

))

− ιπ(τΣ(ρ), 0).

18 For transgression of relative differential cohomology, see [1].
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Mfd. Dim. Chern–Simons obj. Action Trivialization

* 0 ĈCSθ(λ) 3-mfd. hol. on X (q̂, ρ)

S1 1 τ(ĈCSθ(λ)) surface hol. on LX τ(q̂, ρ)

Σ2 2 τΣ(ĈCSθ(λ)) hol. on C∞(Σ, X) τΣ(q̂, ρ)

M3 3 τM (ĈCSθ(λ)) Chern–Simons action τM (q̂, ρ)

In particular, τΣ(ρ) ∈ Ω1(C∞(Σ,X)) defines an isomorphism class of sections
of the line bundle over C∞(Σ,X) associated with the transgressed Cheeger–
Simons character τΣ( ̂CW θ( 1

2p1)). Likewise, transgression of q̂ along S1 satisfies

−ı̆π(τ(q̂)) = τ

(

̂CCSθ

(

1
2
p1

))

− ιπ(τ(ρ), 0).

Again, τ(ρ) ∈ Ω2(C∞(S1,X)) yields a global section of the transgressed char-
acter τ( ̂CW θ( 1

2p1)).
Summarizing, we obtain the following table of objects in our version of

extended Chern–Simons theory, the components of the classical action, and its
trivializations:

Remark 5.10 (Higher-order Chern–Simons theories). In the same way as for
differential String classes, we can define trivilizations of higher degree Chern–
Simons theories defined by higher-degree Cheeger–Chern–Simons characters:
Let G be a Lie group with finitely many components and π : (P, θ) → X a
principal G-bundle with connection. Let (λ, u) ∈ K2k(G; Z) and ̂CW θ(λ, u),
̂CCSθ(λ, u) the associated Cheeger–Simons and Cheeger–Chern–Simons char-
acters. As explained in Sect. 2.1.5, the Cheeger–Simons character defines a clas-
sical action on smooth maps f : M2k−1 → X from a closed oriented (2k − 1)-
manifold M2k−1. Likewise, the Cheeger–Chern–Simons character ̂CCSθ(λ, u)
defines a classical action on pairs (f, σ), consisting of a smooth map f : M → X
from an oriented (2k − 1)-manifold M with boundary and a section σ : ∂M →
P |∂M ; see Sect. 2.3. Transgression to loop space and higher mapping spaces
yields a higher degree Chern–Simons theory, extended down to points, in the
sense explained above. A differential u-trivialization q̂ with differential form
yields a trivialization of the (2k − 1)-manifold holonomy of ̂CW θ(λ, u). Simi-
larly, transgression of the pair (q̂, ρ) to loop space and higher mapping spaces
yields a trivialization of the extended higher-order Chern–Simons theory.

Remark 5.11 (Dijkgraaf–Witten correspondence). For a compact Lie group
G, it is well known that topological charges of 3-dimensional Chern–Simons
theories correspond to cohomology classes in H4(BG; Z). Likewise, topological
charges of the Wess–Zumino model correspond to classes in H3(G; Z). From the
work of Dijkgraaf and Witten [18], the correspondence between 3-dimensional
Chern Simons theories and Wess–Zumino models is realized by the cohomology
transgression T : H4(BG; Z) → H3(G; Z), applied to the topological charges.
The differential cohomology transgression ̂T : ̂H∗(BG; Z) → H∗(G; Z) from
Definition 3.14 generalizes the Dijkgraaf–Witten correspondence to fully ex-
tended Chern–Simons theories of arbitrary degree.
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5.5. String Geometry

Let π : P → X be a principal Spinn-bundle. Applying the loop space functor
yields a principal L Spinn-bundle π : LP → LX. In analogy to the construc-
tion of the spinor bundle on X, one aims at a construction of vector bundles
associated with the loop group bundle LP → LX by good representations
of the loop group L Spinn. However, the positive energy representations of
L Spinn are all projective [44]. Therefore, one needs to lift the structure group
of the loop bundle π : LP → LX from L Spinn to its universal central
extension

1 → U(1) → ̂L Spinn → L Spinn → 1. (5.8)

The obstruction to such lifts is precisely the transgression to loop space of the
class 1

2p1(P ) ∈ H4(X; Z) [33]. Such lifts are sometimes called spin structures
on the loop bundle π : LP → LX. A manifold X is called String if it admits
a spin structure π : P → X and 1

2p1(P ) = 0. More generally, one may call a
principal Spinn-bundle String if 1

2p1(P ) = 0.
If X is a String manifold, then it is possible to lift the structure group

of the loop bundle π : LP → LX from L Spinn to its universal central
extension. In a next step, one may want to construct associated vector bundles
and interesting operators on sections of those. However, there remain serious
analytical difficulties when dealing with differential operators on the infinite-
dimensional loop space LX. A famous conjecture of Witten says that the
S1-equivariant index of a hypothetical Dirac operator on LX should be given
by the so-called Witten genus [57]. So far, construction of Dirac operators on
loop space is far beyond reach, let alone analytical features like the Fredholm
property, which are required to have a well-defined index. A related conjecture
due to Höhn and Stolz [52] (which can be formulated without using those
hypothetical Dirac operators) expects the Witten genus on a String manifold
to be an obstruction against positive Ricci curvature.

Instead of struggling with the analysis on the free loop space LX, one
may also study the obstruction 1

2p1(P ) and its trivializations on the manifold
X itself. This is the program of string geometry : The universal characteristic
class 1

2p1 generates H4(BSpinn; Z) ∼= H3(Spinn; Z) ∼= π3(Spinn) ∼= Z. There-
for, 1

2p1(P ) ∈ H4(X; Z) is the obstruction to lift the structure group of a
principal Spinn-bundle π : P → X to its 3-connected cover Stringn → Spinn.

As explained in Sect. 4.1, homotopy classes of lifts of classifying maps

˜BGu

��
X

˜f


f
�� BG

u �� K(Z;n).

give rise to so-called u-trivialization classes q ∈ Hn−1(P ; Z). In the special
case of G = Spinn, n ≥ 3, and u = 1

2p1 ∈ H4(BSpinn; Z); such lifts are
called string structures (in the homotopy theoretic sense). By [46], there is a
1–1 correspondence between string structures in the homotopy theoretic sense
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and string classes q ∈ H3(P ; Z). Similarly, one may consider differential String
classes on a principal Spinn-bundle with connection (P, θ) as isomorphism
classes of string structures with additional geometric structure. As explained
in Sect. 5.3.2, String classes on (P, θ) are precisely the stable isomorphism
classes of so-called geometric string structures.

In the string geometry program, one may regard (geometric) string struc-
tures on (P, θ) → X as replacements of (geometric) spin structures on the loop
bundle π : LP → LX. More explicitly, transgression to loop space can be
applied not only to the obstruction class 1

2p1, but also to its trivializations:
(geometric) string structures on π : P → X are transgressed to (geometric)
spin structures on the loop bundle π : LP → LX. For more details, see
[54,56].

Here, we notice that transgression of relative and absolute differential
characters fits into that picture:

Proposition 5.12. Let π : (P, θ) → X be a principal Spinn-bundle and q̂ a dif-
ferential String class with differential form ρ. Then the transgressed character
τ(q̂) ∈ ̂H2(LP ; Z) represents a line bundle with connection on LP, which
over any fiber of the loop bundle π : LP → LX represents the universal
central extension ̂L Spinn → L Spinn. In other words, transgression to loop
space maps differential String classes on (P, θ) to differential Spin classes on
the loop bundle LP → LX.

Proof. As above we notice that the transgressed differential String class satis-
fies

−ı̆π(τ(q̂)) = τ

(

̂CCSθ

(

1
2
p1

))

− ιπ(τ(ρ), 0).

In particular, the transgressed differential form τ(ρ) yields a global section of
the transgressed character τ( ̂CW θ( 1

2p1)). Moreover, by naturality of the trans-
gression, the transgressed character τ(q̂) ∈ ̂H2(LP ; Z) satisfies i∗LPγ

(τ) =

τ(i∗Px
q̂) ∈ ̂H2(L Spinn; Z). This follows from the commutative diagram of eval-

uation maps

L Spinn × S1 ��

π̂!

��

�� ��

ev

��
LP × S1 ev ��

π̂!

��

P

L Spinn
�� LP

and the identification of the fiber LPγ = π−1(γ) over γ ∈ LX with the loop
group L Spinn.

Note that transgression to loop space induces an isomorphism on co-
homology τ : H3(Spinn; Z) → H2(L Spinn; Z). By definition, the class c(q̂)
represents the generator of H3(Spinn; Z) over any fiber Px ≈ G. Thus, c(τ(q̂))
represents the generator of H2(L Spinn; Z) over any fiber of the loop bundle.
Hence, τ(q̂) represents fiberwise the universal central extension.
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In this sense, String classes transgress to Spin classes on the loop bun-
dle, and differential String classes transgress to differential refinements of
those. �
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Appendix A. Differential Characters

In this section, we briefly recall the notion of (absolute and relative) differential
characters as introduced in [7,14]. We recall some facts on the relation between
the absolute and relative characters from [1].

Let ϕ : A → X be a smooth map. Let Z∗(ϕ; Z) be the group of smooth
singular cycles of the mapping cone complex. Denote the differential of the
mapping cone complex by ∂ϕ(v, w) := (∂v + ϕ∗w,−∂w). Similarly, denote
by Ω∗(ϕ) the mapping cone de Rham complex with differential dϕ(ω, ϑ) =
(dω, ϕ∗ω − dϑ).

Let k ≥ 2. The group of degree-k relative (or mapping cone) differential
characters ̂Hk(ϕ; Z) is defined as:

̂Hk(ϕ; Z) :=
{

h ∈ Hom(Zk−1(ϕ; Z),U(1))
∣

∣ h ◦ ∂ϕ ∈ Ωk(ϕ)
}

.

The notation h◦∂ϕ ∈ Ωk(ϕ) means that there exists a pair of differential forms
(ω, ϑ) ∈ Ωk(ϕ) such that for any chain (v, w) ∈ Ck(ϕ; Z) we have

h(∂ϕ(v, w)) = exp

(

2πi

ˆ

(v,w)

(ω, ϑ)

)

= exp
(

2πi

ˆ

v

ω +
ˆ

w

ϑ

)

.

It turns out that the pair of forms (ω, ϑ) ∈ Ωk(ϕ) := Ωk(X) × Ωk−1(A)
is uniquely determined by the character h. Moreover, it is dϕ-closed and has
integral periods. We call ω =: curv(h) the curvature of the character h and ϑ =:
cov(h) its covariant derivative. We also have a homomorphism c : ̂Hk(ϕ; Z) →
Hk(ϕ; Z), called characteristic class.

The group ̂Hk(X; Z) of absolute differential characters on X is obtained
as above by replacing the mapping cone complexes by the smooth singular and
the de Rham complex of X. A character h ∈ ̂Hk(X; Z) then has a characteristic
class in c(h) ∈ ̂Hk(X; Z) in integral cohomology and a curvature curv(h) ∈
Ωk

0(X) in the space of closed k-forms with integral periods.
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In [1, Ch. 8] we establish a 1–1 correspondence between ̂H2(ϕ; Z) and the
group of isomorphism classes of Hermitean line bundles with connection and
section along ϕ. By a section, we mean a nowhere vanishing section or a sec-
tion of the associated U(1)-bundle. The curvature of a character corresponds
to the (normalized) curvature form of the line bundle. Its covariant derivative
corresponds to the covariant derivative of the section; hence the name. The
characteristic class corresponds to the first Chern class of the line bundle. Sim-
ilarly, ̂H2(X; Z) corresponds to the group of isomorphism classes of Hermitian
line bundles with connection.

The group ̂Hk(ϕ; Z) fits into the following commutative diagram of short
exact sequences:

0

��

0

��

0

��
0 �� Hk−1(ϕ;R)

Hk−1(ϕ;Z)R

��

�� Ωk−1(ϕ)

Ωk−1
0 (ϕ)

ι

��

d �� dΩk−1(ϕ)

��

�� 0

0 �� Hk−1(ϕ; U(1))

p

��

j ��
̂Hk(ϕ; Z)

c

��

(curv,cov) �� Ωk
0(ϕ)

��

�� 0

0 �� Tor(Hk(ϕ; Z))

��

jTor

�� Hk(ϕ; Z)

��

�� Hk(ϕ; Z)R

��

�� 0

0 0 0

.

(A.1)
Here, Ωk

0(ϕ) denotes the space of pairs of forms which are dϕ-closed and have
integral periods. The homomorphism

ι : Ωk−1(ϕ) → ̂Hk(ϕ; Z), (μ, ν) �→
(

(s, t) �→ exp

(

2πi

ˆ

(s,t)

(μ, ν)

))

is called topological trivialization. The Kronecker product defines the homo-
morphism

j : Hk−1(ϕ; Z) → ̂Hk(ϕ; Z), w �→ (

(s, t) �→ 〈w, [s, t]〉 )

,

which we call inclusion of flat characters. Finally, jTor denotes the inclusion of
the torsion subgroup of Hk(ϕ; Z). The left column is built from the coefficient
sequence Z ↪→ R � U(1) and the canonical identification Tor(Hk(ϕ; Z)) ∼=
Ext(Hk−1(ϕ; Z); Z). It is easy to see that the rows of the above diagram split
algebraically. In [3, Ch. A], we show that they also have (non-canonical) topo-
logical splittings, if the real cohomology of X is finite dimensional.

The mapping cone de Rham cohomology class of the curvature and co-
variant derivative coincides with the image of the characteristic class in real
cohomology. Thus, the two middle sequences of (A.1) may be joined to the
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following exact sequence:

0 �� Hk−1(ϕ;R)
Hk−1(ϕ;Z)R

��
̂Hk(ϕ; Z)

(curv,cov,c) �� Rk(ϕ; Z) �� 0. (A.2)

Here,

Rk(ϕ; Z) :=
{

((ω, ϑ), ũ) ∈ Ωk
0(ϕ) × Hk(ϕ; Z)

∣

∣ [(ω, ϕ)]dR = ũR ∈ Hk(ϕ; R)
}

denotes the set of pairs of differential forms and integral cohomology classes
that match in real cohomology. We also obtain the corresponding short exact
sequences for the group of absolute characters. For details, see [7] and [1, Ch. 8].

Moreover, we have natural homomorphisms between absolute and relative
characters. These fit into the following long exact sequence [1, Ch. 8]:

Hk−2(X; U(1))
ϕ∗◦j ��

̂Hk−1(A; Z)
ı̆ϕ ��

̂Hk(ϕ; Z)
p̆ϕ ��

̂Hk(X; Z)
ϕ∗◦c �� Hk(A; Z) .

(A.3)

The sequence proceeds by the long exact sequences for smooth singular map-
ping cone cohomology with U(1)-coefficients on the left and with integer co-
efficients on the right. In degree 2, the homomorphism p̆ϕ corresponds to the
forgetful map that ignores sections.

A relative character h′ ∈ ̂Hk(ϕ; Z) is called a section along ϕ of the
absolute character h = p̆ϕ(h′). The sequence (A.3) in particular tells us that a
character h ∈ ̂Hk(X; Z) admits sections along ϕ if and only if it is topologically
trivial along ϕ, i.e., ϕ∗c(h) = 0. Moreover, it is shown in [1, Ch. 8] that global
sections are uniquely determined by their covariant derivative, i.e., we have an
isomorphism

cov : ̂Hk(idX ; Z)
∼=−→ Ω2k−1(X). (A.4)

The inverse is given by cov−1(ρ) = ιid(ρ, 0).
Differential cohomology is not homotopy invariant. Instead, there is the

following homotopy formula [1, Ex. 56]: for a homotopy f : [0, 1] × X →
Y between smooth maps f0, f1 : X → Y and a differential character h ∈
̂Hk(Y ; Z), we have:

f∗
1 h − f∗

0 h = ι

(ˆ 1

0

f∗
s curv(h)ds

)

. (A.5)

Likewise, for a homotopy (f, g) : [0, 1] × (X,A) → (Y,B) between smooth
maps (f0, g0), (f1, g1) : (X,A) → (Y,B), and a relative differential character
h ∈ ̂Hk(ψ; Z), where ψ : B → Y , we have [1, II, Cor. 40]:

(f1, g1)∗h − (f0, g0)∗h = ιϕ

(ˆ 1

0

f∗
s curv(h)ds,−

ˆ 1

0

g∗
scov(h)ds

)

. (A.6)

The graded abelian group ̂H∗(X; Z) of absolute differential characters
carries a ring structure compatible with the exact sequences in (A.1) and
with the wedge product of differential forms and the cup product on singular
cohomology. We derive a nice characterization of the ring structure in [1, II,
Ch. 6]. Moreover, the graded abelian group ̂H∗(ϕ; Z) of relative characters
carries the structure of a right module over the ring ̂H∗(X; Z), compatible
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with the module structures on mapping cone differential forms and mapping
cone cohomology; see [1, II, Ch. 4].

In [1, I, Ch. 7] and [1, II, Ch. 5], we construct fiber integration and
transgression maps for absolute and relative differential characters. Thus, on
any fiber bundle π : E → X with compact oriented fibers F, we obtain fiber
integration homomorphisms

π̂! : ̂Hk(E; Z) → ̂Hk−dim F (X; Z)

π̂! : ̂Hk(Φ; Z) → ̂Hk−dim F (ϕ; Z).

Here, ϕ : A → X denotes a smooth map and Φ : ϕ∗E → E the induced bundle
map. The fiber integration maps commute with the usual fiber integrations on
differential forms and cohomology and with the homomorphisms in the short
exact sequences (A.1) and the long exact sequence (A.3).

Transgression to the free loop space LX := {γ : S1 → X smooth} is
defined via pull-back by the evaluation map ev : LX ×S1 → X, (γ, t) �→ γ(t),
and fiber integration in the trivial bundle:

τ : ̂Hk(X; Z) → ̂Hk−1(LX; Z), h �→ π̂!(ev∗h).

Likewise, transgression to the free loop space is defined for relative or mapping
cone characters: For a smooth map ϕ : A → X, let ϕ : LA → LX, γ �→
ϕ ◦ γ, be the induced map of loop spaces. Then we have the transgression
τ : ̂Hk(ϕ; Z) → ̂Hk−1(ϕ; Z), h �→ π̂!(ev∗h). Here, L (X,A) denotes the set
of pairs of smooth maps (f, g) : S1 → (X,A), such that ϕ ◦ g = f and
ev : L (X,A) × S1 → (X,A), ((f, g), t) �→ (f(t), g(t)), denotes the evaluation
map. Moreover, the transgression maps for absolute and relative characters
commute with the maps in the exact sequence (A.3). For details, see [1, II,
Ch. 5].

Appendix B. Bundle 2-Gerbes

In [1, II, Sect. 3.2.2], we show that a bundle gerbe with connection G , repre-
sented by a submersion π : Y → X, defines a relative differential character
hG ∈ ̂H3(π; Z). Moreover, we have (curv, cov)(hG ) = (H,B)(G ), i.e., the cur-
vature and covariant derivative of the character hG coincide with the curvature
and curving of the bundle gerbe G . The image of the relative character under
the map p̆ : ̂H3(π; Z) → ̂H3(X; Z) coincides with the stable isomorphism class
of the bundle gerbe.

In this section, we describe the analogous statement for bundle 2-gerbes
with connection.19 As a particular instance of this fact, we conclude that for
any principal Spinn-bundle with connection π : (P, θ) → X, the Cheeger–
Simons bundle 2-gerbe with respect to the connection θ represents the Cheeger–
Chern–Simons character ̂CCSθ( 1

2p1) ∈ ̂H4(π; Z). This in turn implies that
differential string structures in the sense of [55] represent differential String
classes in our sense.

19 For more details on bundle 2-gerbes with connection and their trivializations, see [51,55].
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Recall that a bundle 2-gerbe with connection G , represented by a sub-
mersion π : Y → X, consists of a bundle gerbe with connection P → Y [2]

and a 3-form B ∈ Ω3(Y ), subject to several compatibility conditions for ten-
sor products of pull-backs to the various higher fiber products. The 3-form B
is called the curving of the connection on G . Moreover, the connection of the
bundle 2-gerbe has a curvature 4-form H ∈ Ω4

0(X). The curvature and curving
are related by π∗H = dB. The characteristic class of a bundle 2-gerbe is a
cohomology class CC(G ) ∈ H4(X; Z).

A trivialization with connection of a bundle 2-gerbe with connection is a
bundle gerbe with connection S over Y , subject to several compatibility con-
ditions for tensor products of pull-backs to the various higher fiber products. In
particular, any trivialization with connection comes together with a uniquely
determined 3-form ρ ∈ Ω3(X) such that π∗ρ = curv(S ) + B and dρ = H.
A bundle 2-gerbe admits trivializations if and only if its characteristic class
vanishes and any trivialization admits compatible connections.

Now, let G be a bundle 2-gerbe with connection, represented by a sub-
mersion π : Y → X. We define the differential character hG ∈ ̂H4(π; Z)
as follows:20 For a cycle (s, t) ∈ Z3(π; Z), choose a geometric relative cycle
(ζ, τ) ∈ Z3(π) that represents the homology class of (s, t). Let (ζ, τ) be repre-

sented by a smooth map (S, T )
(f,g)−−−→ (X,Y ). Choose a chain (a, b) ∈ C4(π; Z)

such that [(s, t) − ∂π(a, b)]∂πS4 = [ζ, τ ]∂πS4 . Since dim(S) = 3, the pull-back
bundle 2-gerbe f∗G is trivial. Choose a trivialization S with compatible con-
nection and 3-form ω ∈ Ω3(S). The map g : T → Y factors through the induced
map f∗Y F−→ Y and thus induces a map g : T → f∗Y . Since dim(T ) = 2, the
pull-back bundle gerbe g∗S is trivial. Choose a trivialization with compatible
connection and 2-form ϑ ∈ Ω2(T ).

Now put:

hG (s, t) := exp

(

2πi

(ˆ

(S,T )

(ρ, ϑ) +
ˆ

(a,b)

(H,B)

))

. (B.1)

In the same way as for bundle gerbes with connection [1, II, Ch. 3], one can
show that hG is indeed a differential character in ̂H4(π; Z) with

(curv, cov)(hG ) = (H,B).

Appendix C. Transgression

In this section, we discuss the relation of transgression to loop space with
transgression in universal bundles. We show that the two transgressions agree
in singular cohomology. This is of course well known. For convenience of the
reader, we give the argument here. Most of the material can be found, e.g., in
[17, Ch. 10.3].

Let X be a smooth manifold and x0 ∈ X an arbitrary base point. Trans-
gression to the based loop space ΩX := {γ ∈ LX | γ(1) = x0} is defined as for

20 We use the notations from [1].
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the free loop space by pull-back via the evaluation map ev : ΩX × S1 → X,
(γ, t) �→ γ(t) and fiber integration in the trivial bundle:

τ0 : H∗(X; Z) → H∗(ΩX; Z), u �→ π!(ev∗u).

On the other hand, for any fibration P
π−→ X with fiber F and contractible

total space, we have the transgression defined by

TP : H∗(X; Z)
∼= �� H∗(X,x0; Z) π∗

�� H∗(P, P0 ; Z) δ−1
�� H∗(Px0 ; Z).

(C.1)
The connecting homomorphism δ : H∗(Px0 ; Z) → H∗(P, Px0 ; Z) is an isomor-
phism since P is assumed to be contractible.

For a topological space Y, let CY := Y × [0, 1]/Y × {0} denote the cone
over Y and SY := CY/Y × {1} the suspension. Let p : CY → SY denote the
projection. The suspension isomorphism S∗ : H∗(SY ; Z) → H∗(Y ; Z) is the
concatenation of isomorphisms

H∗(SY ; Z)
p∗

�� H∗(CY, Y ; Z) δ−1
�� H∗(Y ; Z). (C.2)

The connecting homomorphism δ : H∗(Y ; Z) → H∗(CY, Y ; Z) is an isomor-
phism, since the cone CY is contractible.

Now, let Y = ΩX. The suspension is a quotient of the trivial fiber bundle
with fiber S1. In other words, SΩX = ΩX×S1/ΩX×{1}. Let pr : ΩX×S1 →
SΩX denote the projection. Define a map � : ΩX → X by [s, γ] �→ γ(s). Then
we have the commutative diagram:

ΩX × S1 ev ��

pr

��

X

SΩX.

�

��														

.

Fiber integration π! in smooth singular cohomology is defined by the Leray–
Serre spectral sequence; see [5, p. 482f.]. It is realized by pre-composition of
cocycles with the transfer map on smooth singular chains; see [1, Ch. 4]. This
identification yields the commutative diagram:

H∗(SΩX; Z) S∗
��

pr∗

��

H∗(ΩX; Z)

H∗(ΩX × S1; Z).

π!

��

















.

Thus, we obtain

τ0 = π! ◦ ev∗ = π! ◦ pr∗ ◦�∗ = S∗ ◦ �∗ : H∗(X; Z) → H∗(ΩX; Z). (C.3)

Now, let P0X := {γ : [0, 1] → X smooth, γ(0) = x0 } be the based path space
of X. Let e : P0X → X, γ �→ γ(1), be the path fibration with fiber ΩX. Since
P0X is contractible we obtain from (C.1) the transgression TP0 : H∗(X; Z) →
H∗(ΩX; Z) for the path fibration.
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We have a map of pairs g : (CΩX,ΩX) → (P0X,ΩX) induced by the
map g : CΩX → P0X, (t, γ) �→ (s �→ γ(st)). Since CΩX and P0X are con-
tractible total spaces of fibrations with the same fiber, the induced map on
cohomology is an isomorphism due to the five lemma. This yields the commu-
tative diagram of isomorphisms:

H∗(P0X,ΩX; Z)
g∗

�� H∗(CΩX,ΩX; Z)

H∗(ΩX; Z)
δ

��													δ

���������������

. (C.4)

Moreover, we have the commutative diagram

CΩX
e◦g ��

p
����������� X

SΩX

�

��

. (C.5)

This yields:

τ0 (C.3)
= S∗ ◦ �∗ (C.2)

= δ−1 ◦ p∗ ◦ �∗ (C.4)
= δ−1 ◦ (e ◦ g)∗ (C.5)

= δ−1 ◦ e∗ = TP0 .

As above, let πEG : EG → BG be a universal principal G-bundle, i.e., a
principal G-bundle with contractible total space EG. A contraction of EG
to y0 ∈ EG associates to any point y ∈ EG a path γy : [0, 1] → EG with
γy(0) = y0 and γy(1) = y. Thus, γy ∈ P0(EG).

Let x0 := πEG(y0). Then we obtain a map H : EG → P0BG, y �→ πEG ◦
γy. Since ev(πEG ◦ γy) = πEG(γy(1)) = πEG(y), the map preserves the fibers.
It is in fact a homotopy equivalence of fibrations from the universal principal
G-bundle πEG : EG → BG to the path fibration e : P0BG → BG over the
classifying space BG. In particular, it yields a homotopy equivalence of the
fibers and thus isomorphisms H∗ : H∗(L0(BG); Z) → H∗(G; Z). Moreover, as
a homotopy equivalence of fibrations with contractible total spaces, the map
H identifies the transgressions H∗ ◦ TP0 = T .

Summarizing, we obtain the following identifications of transgressions:

τ0 = S∗ ◦ �∗ = TP0 : H∗(X; Z) → H∗(ΩX; Z)
H∗ ◦ TP0 = T : H∗(BG; Z) → H∗(G; Z).
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Homogènes des Groupes de Lie Compacts. Ann. Math. (2) 57, 115–207 (1953)

[5] Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces I. Am.
J. Math. 80, 458–538 (1958)

[6] Biswas, I., Hurtubise, J., Stasheff, J.: A construction of a universal connec-
tion. Forum Math. 24, 365–378 (2012)

[7] Brightwell, M., Turner, P.: Relative differential characters. Commun. Anal.
Geom. 14, 269–282 (2006)

[8] Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantiza-
tion. Progress in Mathematics. Birkhäuser, Boston (1993)
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