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Homogenized Diffusion Limit of a
Vlasov–Poisson–Fokker–Planck Model

Mohamed Lazhar Tayeb

Abstract. The approximation by diffusion and homogenization of the
initial-boundary value problem of the Vlasov–Poisson–Fokker–Planck
model is studied for a given velocity field with spatial macroscopic and
microscopic variations. The L1-contraction property of the Fokker–Planck
operator and a two-scale Hybrid-Hilbert expansion are used to prove the
convergence towards a homogenized Drift–Diffusion equation and to ex-
hibit a rate of convergence.

1. Introduction

The paper is intended to study the approximation by diffusion and homoge-
nization of the initial-boundary value problem for the Vlasov–Poisson–Fokker–
Planck system. The Fokker–Planck equation at the diffusion scale reads as

∂tf
ε +

1
ε

[
v · ∇xfε + ∇v ·

((
1
ε
uε(x) − ∇xΦε

)
fε

)]
=

1
ε2

∇v · [v fε + ∇vfε] .

(1)
The distribution fε = fε(t, x, v) is a positive function depending on the

time t ≥ 0, the position x which belongs to a bounded subset ω ⊂ R
d and the

velocity v ∈ R
d, where d = 1, 2 or 3 is the dimension. The parameter ε is a

positive number related to the scaled thermal mean free path. The potential
Φε = Φε(t, x) describes the self-variations of the charge density [27]. It solves
the homogeneous Poisson equation{

−ΔxΦε =
∫
Rd fε dv,

Φε
|∂ω

= 0.
(2)

The vector field uε is oscillating spatially with both macroscopic and
microscopic oscillations. For simplicity, we shall denote the cell period by the
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unit d-dimensional cube Y = (0, 1)d and consider the sequence uε:

uε(x) := u
(
x,

x

ε

)
− ε∇xΦb(t, x) (3)

where u is a given Y -periodic function with respect to the second variable,
with values in R

d and Φb is a harmonic extension on ω̄ of a given potential
boundary data, also denoted Φb (ΔxΦb = 0, x ∈ ω).

Our aim is to analyze the convergence, as ε goes to zero, of the solution
of the system (1)–(3) subject to a given initial data which might depend on ε:

fε(t = 0) = fε
I (4)

and a specular reflection boundary condition: ∀ t ≥ 0 and (x, v) ∈ ∂ω × R
d

fε(t, x, v) = fε(t, x, v − 2(v · n(x))n(x) ), (5)

where n(x) is the outward unit vector in the position x ∈ ∂ω.
In kinetic transport theory (gas dynamics, neutron transport, plasmas,. . . ),

the diffusion approximation is, since many years, a large field of research. Ear-
lier works go back to transport equations associated with force-free case [2,3].
Progressively, different fluid models have been obtained as a hydrodynamic
limit of kinetic equations for prescribed macroscopic potential [25,26]. Nowa-
days, more attention is paid to the variations of the potential by coupling
the distribution with the Poisson equation [4,5,11,15,16,18] and recently by
adding a potential with microscopic variations in the same order of the mean
free path of the diffusive operator, leading to phenomena of homogenization
[10,17,19,22,30]. The concept of relative entropy dissipation is useful to ap-
proximate the solution of the kinetic model to its corresponding equilibrium
state [6,7,12,21,24,28,29]. Various models are approximated using ideas like
Hilbert expansion method and Chapman–Enskog development. When some
coefficients have both macroscopic and microscopic variations, the multi-scale
Hilbert development and the multi-scale convergence [1] are well adapted to
extract the homogenized effects (see for example [10]).

The present paper is devoted to the analysis of the diffusion limit of
a Vlasov–Fokker–Planck model where a general form for the velocity field
(not necessarily a gradient) and microscopic variations are considered. We will
also take into account the self variation of the potential in the one dimension
by coupling the density with the Poisson equation. In this case (d = 1), we
establish uniform a priori estimates for hyper well-prepared initial data. Note
that, with the Poisson coupling and for d > 1, we can deal with solution for
the Vlasov–Poisson–Fokker–Planck system in a renormalized sense. We present
(for instance) the analysis of the convergence in a linear and multi-dimensional
setting. The case of adding the Poisson coupling and d > 1 will be the goal of
a forthcoming paper.

The paper is organized as follows. In Sect. 2, we give some notations
and preliminaries on the properties of the Fokker–Planck operator and the
two-scale convergence. Section 3 is devoted to the formal derivation of the
homogenized fluid model for a force-free case, letting the expression of the
cell operator. In Sect. 3, we present the assumptions we require throughout
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the analysis and establish the main result (Theorem 4.1). In Sect. 5 we prove
rigorously the convergence (ε goes to zero) in the one dimension (d = 1) where
we take into account the Poisson coupling. The proof is based on a two-scale
Hybrid-Hilbert expansion. In Sect. 6, we extend the two-scale method to the
linear setting with a general form of the velocity field and without restriction
on the dimension. We finish by analyzing the case of ballistic motion for a
quasi-periodic vector field.

2. Preliminaries

We denote by ω the position space and by Ω := ω × R
d the phase space. For

all time T > 0, ωT and ΩT stand as:

ωT := (0, T ) × ω and ΩT := (0, T ) × Ω.

The incoming and the outgoing parts of the boundary, ∂Ω := ∂ω × R
d,

are

∂Ω± = {(x, v) ∈ ∂Ω, ± (v · n(x)) > 0} .

The charge and current densities are given by

�ε(t, x) =
∫
Rd

fε(t, x, v) dv and jε(t, x) =
1
ε

∫
Rd

fε(t, x, v) v dv. (6)

The total mass and the kinetic energy are defined by

Mε(t) =
∫

Ω

fε(t, x, v) dxdv and Kε(t) =
∫

Ω

fε(t, x, v)
|v|2
2

dxdv. (7)

For convenience, the Fokker–Planck operator is denoted by

L∗(f) = Δvf + ∇v · (v f) (8)

It is the adjoint (in D′) of

L(f) = Δvf + v · ∇vf (9)

We remark that

L∗(f) = ∇v ·
[
M(v)∇v

f

M(v)

]

where M is the normalized Maxwellian with mean velocity equal to zero:

M(v) =
e−|v|2/2

(2π)d/2
.

The Fokker–Planck operator, acting on the Hilbert space L2(M−1 dv) :=
L2(Rd, M−1 dv), is an unbounded operator with domain

D(L∗) :=
{

f ∈ L2(M−1 dv) /∇v

(
f

M

)
∈ [L2(M dv)]d

}
.

It follows that,
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Lemma 2.1. [6]
1. The null space of L∗ is spanned by the Maxwellian M :

L∗(f) = 0 ⇐⇒ f = �(t, x)M(v).

2. Entropy dissipation: for all non-decreasing function H on R
+,

DissH(f) :=
∫
Rd

L∗(f)H
(

f

M

)
dv = −

∫
Rd

M

∣∣∣∣∇v
f

M

∣∣∣∣
2

H′
(

f

M

)
≤ 0.

In particular,

Disslog(f) :=
∫
Rd

L∗(f) log
(

f

M

)
dv = −

∫
Rd

∣∣∣2∇v

√
f + v

√
f
∣∣∣2 dv, (10)

therefore,

Disslog(f) = 0 ⇔ L∗(f) = 0 ⇔ f = �M(v).

In all the sequel, we will use the subscript (. . .)# to mean that we consider
functions defined on the whole space in y and Y-periodic with respect to
y. Indeed, the following spaces C#, C∞

# and Lp
# correspond to continuous,

indefinitely differentiable and Lp
loc functions respectively, defined on R

d. For
two-scale oscillating function ψ ≡ ψ(x, x

ε ), the notation (ψ)ε refers to the value
of ψ at (x, x/ε).

Due to the presence of two-scale sequence uε, it is more convenient to use
the two-scale convergence [1] to highlight the effect of the fast variation. To do
this, we identify each bounded sequence ηε := ηε(t, x, v) of L2

loc(ΩT ) to its two-
scale Riesz’s representation [22]. We denote this two-scale function by η̃ε :=
η̃ε(t, x, y, v) ∈ L2

loc(ΩT ; L2
#(Y )) in the sense that for all ψ ∈ D(ΩT ; C#(Y )),∫

ΩT

ηε(t, x, v)ψ
(
t, x,

x

ε
, v

)
dt dxdv

=
∫

ΩT

∫
Y

η̃ε(t, x, y, v)ψ(t, x, y, v)dt dxdy dv. (11)

Definition 2.2. Let ηε be a bounded sequence L2(ΩT ). We say that ηε two-
scale converges towards η̃ ≡ η(t, x, y, v) if η̃ε converges weakly (towards η̃) in
L2(ΩT × Y ). Equivalently, for all ψ ∈ D(ΩT ; C#(Y )),∫

ΩT

ηε(t, x, v)ψ
(
t, x,

x

ε
, v

)
dt dxdv

→
∫

ΩT

∫
Y

η̃(t, x, y, v)ψ(t, x, y, v)dt dxdy dv.

As a consequence, for all bounded sequence ηε in L2(ΩT ), there exists a sub-
sequence which two-scale converges to η̃.

Lemma 2.3. [1] Let ηε be a sequence that two-scale converges to
η̃ := η(t, x, y, v) in L2(ΩT ). Then, ηε weakly converges in L2(ΩT ) towards
η, satisfying

η(t, x, v) :=
∫

Y

η̃(t, x, y, v) dy
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and

lim
ε→0

‖ηε‖L2(ΩT ) ≥ ‖η̃‖L2(ΩT ×Y ) ≥ ‖η‖L2(ΩT ).

Furthermore, if

lim
ε→0

‖ηε‖L2(ΩT ) = ‖η̃‖L2(ΩT ×Y ),

we say that ηε converges in two-scale strongly and if η̃ ∈ L2(ΩT ; C#(Y )), then

lim
ε→0

∥∥∥ηε − η̃
(
t, x,

x

ε
, v

)∥∥∥
L2(ΩT )

= 0.

Remark 2.4. 1. We notice that the concept of two-scale convergence is also
defined in Lp space for all p ∈]1,∞]. Further extensions on two-scale
convergence in LlogL can be found in [14].

2. If a sequence converges in two-scale strongly towards a y-independent
function, then it converges in Lp-strong.

3. If uε converges in two-scale strongly to ũ and vε converges in two-scale
to ṽ (in L2 for example). Then,∫

ω

uε(x) vε(x)ψ
(
x,

x

ε

)
→

∫
ω

∫
Y

ũ(x, y)ṽ(x, y)ψ(x, y), ∀ ψ ∈ D(ω; C#(Y )).

3. Formal Asymptotics: Two-Scale Hilbert Expansion

Let us consider the linear force-free case (without potential):

∂tf
ε +

1
ε

v · ∇xfε +
1
ε2

uε(x) · ∇vfε =
1
ε2

(Δvfε + ∇v · (v fε))

and assume that fε is a bounded sequence in L2
loc. According to the repre-

sentation (11), there exists f̃ε ∈ L2
loc(R

+ × ω × Y × R
d) such that for all

ψ ∈ C(ΩT ; C#(Y )), we have∫
Ω

fε(t, x, v)ψ
(
t, x,

x

ε
, v

)
=

∫
Ω

∫
Y

f̃ε(t, x, y, v)ψ(t, x, y, v). (12)

According to this representation, ∇xfε becomes ∇xf̃ε + 1
ε∇y f̃ε and f̃ε

solves the following equivalent two-scale Fokker–Planck equation:

∂tf̃ε +
1
ε

v · ∇xf̃ε +
1
ε2

[v · ∇y + u(x, y) · ∇v − L∗] (f̃ε) = 0 (13)

where L∗ is given by (8). We denote by

Lx = −v · ∇y − Δv + (v − u(x, y)) · ∇v

and its distributional adjoint (appearing in (14)) stands as

L∗
x := v · ∇y + u(x, y) · ∇v − L∗.

So, that (13) is equivalent with

∂tf̃ε +
1
ε

v · ∇xf̃ε +
1
ε2

L∗
x(f̃ε) = 0 (14)
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Now, let us derive formally the limit fluid model. Assume that f̃ε behaves
(as ε goes to zero) like

f̃ε(t, x, y, v) ∼ f̃(t, x, y, v) + ε f̃1(t, x, y, v) + ε2f̃2(t, x, y, v) + · · · (15)

where the coefficients of the development f̃ , f̃i, i = 1, 2, . . . are Y -periodic with
respect to the fast variable y = x/ε. By plugging this development in (14) we
obtain

∂t

[
f̃ + ε f̃1 + ε2 f̃2 + · · ·

]
+

1
ε

[
v · ∇xf̃ + ε v · ∇xf̃ + ε2 v · ∇xf̃2 + · · ·

]
1
ε2

L∗
x(f̃) +

1
ε
L∗

x(f̃1) + L∗
x(f̃2) + · · · = 0

Identifying the coefficients of the same power of ε, we get,

L∗
x(f̃) := v · ∇y f̃ + u(x, y) · ∇v f̃ − L∗f̃ = 0, (16)

L∗
x(f̃1) = −v · ∇xf̃ (17)

and
L∗

x(f̃2) = −∂tf̃ − v · ∇xf̃1. (18)

Now, we shall study the spectral properties of the cell operator L∗
x in

order to expect the leading profile f̃ and obtain the homogenized fluid model.
We define the weighted Hilbert space:

L
2
M =

{
f̃ ∈ L2 (dydv/M) /f̃ : Y-periodic with respect to y

}
.

Proposition 3.1. [20] The operator L∗
x is an unbounded operator on L

2
M with

domain

D(L∗
x) =

{
f̃ ∈ L

2
M/ ∇v(f̃/M) ∈ [L2(M(v)dydv)]d

}

and satisfying:

1. There exists a non negative and normalized function ϕ = ϕ(x, y, v) ∈
D(L∗

x) such that
N (L∗

x) = Rϕ.

2. The range R(L∗
x) is characterized by:

R(L∗
x) =

{
g̃ ∈ L

2
M

/∫
Rd

∫
Y

g̃(y, v) dy dv = 0
}

.

3. Let g̃ ∈ R(L∗
x). Then, there exists f̃ ∈ D(L∗

x) such that L∗
xf̃ = g̃ which is

uniquely defined under the condition
∫
Rd

∫
Y

f̃(y, v) dy dv = 0.
4. The equilibrium state ϕ has an exponential decay as |v| goes to infinity:

∃ β < 1 / ∀ p ∈ [1, k], |∂p
xi

ϕ| + |∂p
yi

ϕ| + |∂p
vi

ϕ| ≤ Ck e−β |v|2/2,

where the constant Ck depends only on k and ‖u‖W k,∞(ω×Y ).
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According to this proposition, the leading function, f̃ has the following profile:

f̃(t, x, y, v) = �(t, x)ϕ(x, y, v), (19)

where
� =

∫
Rd

∫
Y

f̃(y, v) dy dv

is the homogenized density associated with f̃ and ϕ is the defined cell function.
Replacing f̃ in (17) by this expression, we infer

L∗
xf̃1 = −(v · ∇�)ϕ − � v · ∇xϕ.

Using the assumption A4, the function ϕ satisfies∫
Rd

∫
Y

viϕ dy dv = 0 (20)

which implies also that
∫
Rd

∫
Y

v · ∇xϕ dy dv = 0 and then, vi ϕ and v · ∇xϕ =
∇x · (v ϕ) belong to [R(L∗

x)]. Choosing f̃1 ∈ R(L∗
x), we get

f̃1(t, x, y, v) = −∇x�(t, x) · L∗
x

−1(vϕ) − �L∗
x

−1(v · ∇xϕ). (21)

Equation (18) becomes

− L∗
x(f̃2) = ∂t�ϕ − ∇x ·

[
v ⊗ L∗

x
−1(vϕ) ∇x�

]
− ∇x ·

[
�

(
v L∗

x
−1(v · ∇xϕ)

)]
.

(22)
We can define the diffusion matrix D(x) and the coefficient ξ(x) by⎧⎨

⎩
D(x) =

∫
Rd

∫
Y

v ⊗ L∗
x

−1(vϕ) dy dv ∈ R
d×d,

ξ(x) =
∫
Rd

∫
Y

v L∗
x

−1 [v · ∇xϕ] ∈ R
d.

(23)

The fact that the cell function ϕ is normalized (in (y, v)) and the solv-
ability condition ∫

Rd

∫
Y

L∗
x(f̃2) dy dv = 0

yield the following homogenized Drift–Diffusion equation:

∂t� + ∇x · [−D(x)∇x� − ξ(x) �] = 0. (24)

Lemma 3.2. The diffusion matrix D(x), given by (23), is positive.

Proof. The function ϕ ∈ N (L∗
x) is a non negative function and satisfies∫

Rd

∫
Y

v ϕdy dv = 0.

Therefore, there exists a vector function Ψ = Ψ(x, y, v) ∈ R
d such that

LxΨ = −v.

D(x) :=
∫
Rd

∫
Y

v ⊗ L∗−1
x (vϕ) dy dv = −

∫
Rd

∫
Y

LxΨ ⊗ L∗−1
x (vϕ) dy dv

= −
∫
Rd

∫
Y

(Ψ ⊗ v)ϕ dy dv =
∫
Rd

∫
Y

(Ψ ⊗ LxΨ) ϕ dy dv
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Let, for i, j ∈ {1, . . . , d}, Dij(x) the general coefficient of the matrix
D(x). Then,

(Dij + Dji)(x) =
∫
Rd

∫
Y

(Ψi LxΨj + Ψj LxΨi) ϕ dy dv

=
∫
Rd

∫
Y

(Lx(ΨiΨj) + 2∇Ψi · ∇Ψj) ϕ dy dv

= 2
∫
Rd

∫
Y

∇vΨi · ∇vΨj ϕ dy dv

Let ξ ∈ R
d and Ξ = (Ψ1ξ1, . . . ,Ψdξd). Then,

〈(D + DT )ξ, ξ〉 =
∫
Rd

∫
Y

(‖∇vΞ‖2
)
ϕdy dv ≥ 0.

�

4. Assumptions and Main Result

Throughout the analysis, we shall assume

A1. Smoothness of the velocity field. The velocity field u is smooth, bounded
and Y -periodic: ∃ k ≥ 2 / u ∈ W k,∞(ω × Y ) and∫

Y

u(x, y) dy = ū

where ū is independent of x.

A2. Smoothness of the potential. The potential and its time derivative satisfy:

(Φb, ∂tΦb) ∈ L∞
loc(R

+; W 2,∞ × W 1,∞).

A3. Positive and hyper well-prepared initial data. The initial distribution sat-
isfies

fε
I (x, v) = �I(x)ϕ

(
x,

x

ε
, v

)
≥ 0

where ϕ is given in Proposition 3.1 and the sequence �I ∈ L∞(ω).

A4. No ballistic motion. The cell function ϕ, given by Proposition 3.1 satisfies
the condition ∫

Rd

∫
Y

v ϕdy dv = 0.

Our main result is the following

Theorem 4.1. Assume that Assumptions A1–A4 are satisfied. Then,
1. In the one-dimensional case. Let (fε,Φε) be a weak solution of the Fokker–

Planck–Poisson system (1)–(5) in one dimension. Then, ∀T > 0, ∃CT >
0/

sup
t≤T

∫
Ω

∣∣∣fε(t, x, v) − �(t, x)ϕ
(
x,

x

ε
, v

)∣∣∣ dxdv ≤ CT ε.
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In particular,

sup
t≤T

∫
ω

∣∣∣∣�ε(t, x) − �(t, x)
∫
Rd

ϕ
(
x,

x

ε
, v

)
dv

∣∣∣∣ ≤ CT ε

and

Φε → Φ in L2((0, T ) × ω)

where (�,Φ) is the solution of the following homogenized Drift–Diffusion-
Poisson system:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t� + ∂x j = 0,

j = −D(x) ∂x� − ξ(x) � + � λ(x) ∂x(Φ + Φb),

−∂2
xxΦ = �I ,

(j · n(x),Φ) |x∈∂ω
= 0,

�| t=0 = �I

(25)

The diffusion coefficient D(x) and ξ(x) are given by (23), λ(x) is given
in (36) and the cell function ϕ is given by Proposition 3.1.

2. In the linear multi-dimensional case. Let fε be a weak solution of the
linear Fokker–Planck (1)–(5) (with Φε = Φb = 0). Then, ∀T > 0, ∃CT >
0/

sup
t≤T

∫
Ω

∣∣∣fε(t, x, v) − �(t, x)ϕ
(
x,

x

ε
, v

)∣∣∣ dxdv ≤ CT ε

where � is the solution of the homogenized Drift–Diffusion equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t� + ∇x · j = 0,

j = −D(x)∇x� − ξ(x) �,

� |t=0 = �I ,

j · n(x) = 0, x ∈ ∂ω.

(26)

The matrix D(x) and the coefficient ξ(x) are given by (23) and ϕ is the
cell function. �

Remark 4.2. When we deal with hydrodynamic limits of Boltzmann–Poisson
system, two ideas are developed in the literature, the moment method [19,22]
and the Hilbert expansion method [9,25,26]. Here, we would like to investigate
the Hilbert method based on the contraction property [8] of the collision op-
erator which requires a lot of regularity on the limit system. A Hybrid-Hilbert
expansion is used to analyze the diffusion limit of the BGK model (coupled
to Poisson) with inflow boundary data [9]. The same expansion is also used
to study the behavior of the Fermi–Dirac statistics without detailed balance
principle assumption [17,23]. In these previous examples, a correction of the
linear Hilbert expansion is introduced to approximate the singularity due to
the Poisson coupling and to control the time derivative of electrostatic field
[23]. In the present context, we deal with a two-scale variations setting and
also in one dimension we take into account the Poisson coupling. We notice
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that we are not able to establish an entropy dissipation for the system and use
compactness method which requires uniform Lp-estimates. Such an estimate
seems to be difficult to obtain due to the general form of the field (not neces-
sary a gradient) uε = u(x, x

ε ). We will use in the present analysis “the robust
tool” based on the contraction property of the Fokker–Planck operator. In ad-
dition, we carefully analyze the Poisson coupling in one dimension by adding
the correction introduced in [9] using a two-scale Hybrid-Hilbert expansion.

5. The One-Dimensional Case

The subject of this section is to analyze the one-dimensional case where we
take into account the self-variation of the potential. In a first step we construct
a relative Maxwellian which will be useful to obtain uniform Lp-bound on some
momenta of the solution of coupled system. Then, in a second step, we prove
the convergence result given in Theorem 4.1 for d = 1.

Step 1. Construction of a relative Maxwellian.

let Y = (0, 1) be the cell period. The field u is smooth and its average is a
constant ū: ∫ 1

0

u(x, τ)dτ = ū.

With such assumption, there exists a smooth function

ψ0 = ψ0(x, y)/u = ∂yψ0(x, y) + ū.

Choosing ψ0 with null average with respect to the second variable,
∫ 1

0
ψ0(x, τ)

dτ = 0, we get

ε ∂x

[
x �→ ψ0

(
x,

x

ε

)]
= (u + ε ∂xψ0)

(
x,

x

ε

)
− ū.

The fact that the integral
∫ 1

0
∂xψ0(x, τ)dτ = 0 implies that: there exists

a smooth function

ψ1 = ψ1(x, y)/ − ∂xψ0(x, y) = ∂yψ1(x, y).

Now, we define

θε(x) = −
∫ x

0

(∂xψ1)
(

x′,
x′

ε

)
dx′.

We have,

(∂xθε)(x) = −∂xψ1

(
x,

x

ε

)

and if we consider the function

Ψε(x) := ψ0

(
x,

x

ε

)
+ εψ1

(
x,

x

ε

)
+ εθε(x)

then, its derivative satisfies

∂xΨε =
1
ε

u
(
x,

x

ε

)
.
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The scaled Fokker–Planck equation (1) becomes

∂tf
ε +

1
ε
(v · ∇xfε − ∇x(Φε + Φb − Ψε) · ∇vfε) =

1
ε2

(Δvfε + ∇v · (v fε)).

(27)

We define the total relative Maxwellian as

MΦε+Φb−Ψε(t, x, v) = M(v)e−Φε(t,x)−Φb(t,x)+Ψε(x)

:=
1√
2π

e−v2/2−Φε(t,x)−Φb(t,x)+Ψε(x).

It follows that MΦε+Φb−Ψε satisfies the following useful relation:[
v · ∇x − ∇x(Φε + Φb) · ∇v +

1
ε
u

(
x,

x

ε

)
· ∇v

]
MΦε+Φb−Ψε

= L∗(MΦε+Φb−Ψε) = 0. (28)

Step 2. A priori estimates: relative entropy

Lemma 5.1. Let ε be a non negative parameter. Then, the scaled Fokker–
Planck–Poisson system has a weak solution satisfying

t �→ Mε(t) + Kε(t) +
1
2
‖∂xΦε‖2

L2(t) +
∫ t

0

‖jε‖2
L2(s) ds ∈ L∞

loc(R
+)

where jε, Mε(t) and Kε(t) are given in (6) and (7). Moreover, the distribution
function has an exponential decay:

fε ≤ CT exp(−v2/2) (29)

and then Φε is uniformly bounded in L∞
loc(R

+; W 2,∞(ω)). �
Proof of Lemma 5.1. The proof of the existence of a weak solution is well
known in one-dimensional setting. We refer to [9] for a similar case. The uni-
form L1-norm:

d
dt

‖fε(t)‖L1(Ω) = 0

can be obtained by integrating the scaled equation (1) with respect to dxdv,
using the conservation property of the Fokker–Planck operator:∫

Rd

L∗(f)dv = 0

and the fact that the equation is subject to specular reflection boundary as-
sumption which does not induce boundary fluxes. Multiplying the Eq. (1) by

log
(

fε

MΦε+Φb−Ψε

)
= logfε + v2/2 + Φε + Φb − Ψε

and integrating by parts we get, thanks to (28),
d
dt

∫
Ω

fε(logfε + v2/2 + Φε + Φb − Ψε) −
∫

ω

�ε∂tΦε

=
∫

Ω

L∗(fε)log
fε

M(v)
+

∫
ω

∂tΦb �ε.
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Using the fact that Φε solves the homogeneous Poisson equation, we infer∫
ω

�εΦε = ‖∂xΦε‖2
L2(ω) and

∫
ω

�ε∂tΦε =
d

2dt
‖∂xΦε‖2

L2(ω)

Using the entropy inequality (10), and remarking that we do not have
entropy production terms due the boundary, we get[∫

x,v

fε(logfε +
v2

2
+ Φb − Ψε) +

1
2
‖∂xΦε‖2

L2

]t

0

+
1
ε2

∫ t

0

∫
Ω

∣∣∣2∂v

√
fε + v

√
fε

∣∣∣2 dv ≤
∫ t

0

∫
ω

∂tΦb �ε.

Remarking the following inequality

fε(logfε + v2/4) = fεlog
(

fε

e−v2/4

)
≥ fε − e−v2/4

and using Assumptions A1–A4, we infer that for all T > 0 and t ∈ (0, T )

Kε(t) +
1
2
‖∂xΦε‖2

L2(t) +
1
ε2

∫ t

0

∫
Ω

∣∣∣2∂v

√
fε + v

√
fε

∣∣∣2

≤ CT

(
1 +

∫ t

0

Mε(s) ds

)
≤ CT .

Moreover, the current density can be bounded in a first step in L1 using
the entropy dissipation and the finite bound of the mass and the kinetic energy.
Indeed,

jε =
1
ε

∫
R

v fε dv =
1
ε

∫
R

v
√

fε(
√

fε + 2∂v

√
fε ) dv

which implies that∫ T

0

‖jε(t)‖2
L1dt

≤ 1
ε2

∫ T

0

∫
Ω

∣∣∣2∂v

√
fε + v

√
fε

∣∣∣2 + sup
t≤T

Mε(t) + sup
t≤T

Kε(t) ≤ CT .

Note that (at this stage) the previous estimate gives a uniform bound for
the charge and current densities. Indeed �ε and jε are uniformly bounded in
L∞(0, T ; L1(ω)) and L2(0, T ; L1(ω)) respectively and,

∂t�
ε + ∂xjε = 0.

This equation and the Poisson equation imply that:

−∂2
xx∂tΦε = ∂t�

ε := −∂xjε

which gives a uniform bound for ∂tΦε in L2(0, T ; L∞(ω)) in the one-dimensional
case. To establish the L2-control for jε and the exponential decay (29), we shall
use the weak maximum principle which is enough to conclude the proof. This
is the subject of the following paragraph.
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Weak maximum principle: L∞-estimate.

Let fε(t = 0) = �I(x)ϕ(x, x
ε , v) a hyper well-prepared initial data. We define

the scalar coefficient αε by

αε = ‖�I‖L∞ exp
(∫ t

0

‖∂t(Φε + Φb)‖L∞(s) ds

)
.

Then, the function gε = fε −αε MΦε+Φb−Ψε(t, x, v) satisfies the following
system ⎧⎪⎪⎨

⎪⎪⎩

∂tg
ε + 1

ε (v ∇x · gε − ∂x(Φε + Φb − Ψε) · ∇vgε)−L∗(gε)
ε2

= (αε ∂t(Φε + Φb) − αε′)(t)MΦε+Φb−Ψε ≤ 0

gε(t = 0) = (�I − ‖�I‖L∞)MΦε+Φb−Ψε ≤ 0.

Applying the weak maximum principle for transport equations, we infer
that gε ≤ 0 a. e. As a consequence, we get

fε ≤ ‖�I‖L∞ exp
(

−|v|2
2

− Φε − Φb + Ψε +
∫ t

0

‖∂t(Φε + Φb)‖L∞(s)ds

)

which gives the uniform upper bound for fε, appearing in (29), using the fact
that ∂tΦε is bounded in L1(0, T ; L∞(ω)) and Assumptions A2 and A3. From
the decay (29), one can show that the current density belongs to L2((0, T )×ω).
Indeed,∫ T

0

‖jε(t)‖2
L2dt

≤ 1
ε2

∫ T

0

∫
Ω

∣∣∣2∂v

√
fε + v

√
fε

∣∣∣2 × sup
t≤T

sup
x∈ω

(∫
R

v2fε dv

)
≤ CT

and this ends the proof of Lemma 5.1. �

5.1. Convergence in 1-D: Two-Scale Hybrid-Hilbert Expansion

This section is devoted to the rigorous analysis of the convergence (ε → 0), in
the one-dimensional case. Note that we would like to prove the convergence of
(fε,Φε) satisfying (1)–(5) towards to (�ϕ(x, x

ε , v), Φ), where (�, Φ) is solution
of the homogenized Drift–Diffusion-Poisson system (25) stated in the main
theorem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t� + ∂x j = 0,

j = −D(x) ∂x� − ξ(x) � + � λ(x) ∂x(Φ + Φb),

−∂2
xxΦ = �I ,

(j · n(x),Φ) |x∈∂ω
= 0,

�| t=0 = �I

where Φb is the harmonic extension of the boundary data for the potential.
The coefficients D(x) and ξ are given by (23) and λ(x) is defined in (36). In all
this section, the notations f̃ε, f̃ , f̃ε

1 , . . . refer to the two-scale representation of



2542 M. L. Tayeb Ann. Henri Poincaré

fε, f , fε
1 , . . . according to the relation (12). The proof of convergence is based

on the contraction property of L∗
x: For all f̃ = f̃(y, v) ∈ L2

loc(Ω × Y ), we have∫
Rd

∫
Y

L∗
x(f̃)sign(f̃) dy dv =

∫
Rd

∫
Y

L∗(f̃)sign(f̃)dy dv ≤ 0. (30)

We go back to the two-scale expansion of fε, introduced in Sect. 3, and
make a correction at the ε−order:

f̃ε(t, x, v) = f̃ + εf̃ε
1 + ε2f̃2 + rε.

The leading term f̃ belongs to the null space of L∗
x:

f̃ = �(t, x)ϕ (x, y, v)

where the macroscopic unknown � =
∫

Y

∫
R

f̃ dydv is the homogenized charge
density of f̃ . The second term f̃ε

1 depends on the self-consistent potential
in order to avoid the singularity created by the Poisson coupling: we take
f̃ε
1 ∈ R(L∗

x), satisfying

L∗
x(f̃ε

1) = −v · ∇xf̃ + ∇x(Φε + Φb) · ∇v f̃ ,

= −∇x� · vϕ − � v · ∇xϕ + �∇x(Φε + Φb) · ∇vϕ.

The function vϕ, v · ∇xϕ and ∇vϕ belong to the range of L∗
x. Then, one

can choose f̃ε
1 as

f̃ε
1 (t, x, y, v)

= −∇x�(t, x) · L∗
x

−1(v ϕ) − �L∗
x

−1(v · ∇xϕ)+�∇x(Φε+Φb) · L∗
x

−1(∇vϕ).
(31)

We define

f̃1(t, x, y, v) = −∇x�(t, x) · L∗
x

−1(v ϕ) − �L∗
x

−1(v · ∇xϕ)

+�∇x(Φ + Φb) · L∗
x

−1(∇vϕ) (32)

where (�,Φ) is the solution of the homogenized Drift–Diffusion-Poisson model
(25). Notice that f̃1 is such that

L∗
x(f̃1) = −v · ∇xf̃ + ∇x(Φ + Φb) · ∇v f̃

and the difference f̃ε
1 − f̃1 satisfies

f̃ε
1 − f̃1 = �∇x(Φ − Φε) · L∗

x
−1(∇vϕ) (33)

The function f̃2 is the solution in R(L∗
x) of

− L∗
x(f̃2) = ∂tf̃ + v · ∇xf̃1. (34)

Integrating (34) with respect to dy dv, the solvability condition gives the
Drift–Diffusion equation

∂t� + ∇x · (−D(x)∇x� − ξ(x) � + � λ(x)∇x(Φ + Φb)) = 0, (35)

where D(x) and ξ(x) are given by (23) and

λ(x) :=
∫

Y ×Rd

v ⊗ L∗
x

−1(∇vϕ) dy dv ∈ R
d×d. (36)
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If we replace f̃ and f̃1 by their expressions in (34), we get

−L∗
x(f̃2)

= ∇x ·
[ (

D(x)ϕ − v ⊗ L∗
x

−1(vϕ)
)

∇x� + �
(
λϕ − v ⊗ L∗

x
−1(∇vϕ)

)

× ∇x(Φ + Φb)
]

− ∇x ·
[
ξϕ − v ⊗ L∗

x
−1(v · ∇xϕ)�

]
.

Now, let us approximate the remainder rε:

rε(t, x, v) := fε(t, x, v) −
[
f̃ − εf̃ε

1 − ε2f̃2

] (
t, x,

x

ε
, v

)
.

It satisfies the following scaled transport equation:⎧⎪⎨
⎪⎩

∂tr
ε + 1

ε (v · ∇xrε + ∇x(Φε + Φb) · ∇v rε) + 1
ε2 u(x, x

ε )
· ∇vrε − L∗(rε)

ε2 = Sε

rε(t = 0) = −ε(f̃1(t = 0) − ε f̃2)ε(t = 0),

(37)

where the source term stands as

Sε = −
[
ε∂tf̃ε

1+ε2∂tf̃2+εv · ∇xf̃2 + v · ∇x(f̃ε
1 − f̃1) − ε∇x(Φε + Φb) · ∇v f̃2

]
ε

+
[
∇xΦε · ∇v(f̃ε

1 − f̃1) + ∇x(Φε − Φ) · ∇v f̃1

]
ε

and the subscript [...]ε means that we take the value at y = x
ε .

Multiplying (37) by sign(rε) and integrating with respect to all the vari-
ables, we get

‖rε(t)‖L1(Ω) ≤ ‖rε(0)‖L1(Ω) +
1
ε2

∫ t

0

∫
x,v

Δvrε sign(rε) dτ +
∫ t

0

‖Sε(t)‖L1(Ω)

≤ ‖rε(0)‖L1(Ω) +
∫ t

0

‖Sε(τ)‖L1(Ω)dτ.

Using the fact f1 and f2 are smooth enough, we can deduce that

‖Sε‖L1(Ω) ≤ CT

(
ε + ε‖∂t∇x(Φε − Φ)‖L1ω) + ‖∇x(Φε − Φ)‖L1Ω)

)
.

The Poisson coupling, the continuity equation and the uniform bound of
‖jε‖L1 imply that (in one dimension) we can establish

‖Sε(t)‖ ≤ CT (ε + ‖(�ε − �)(t)‖L1) ≤ CT (ε + ‖rε(t)‖L1) .

The initial value of ‖rε‖L1 = O(ε). Then, the Gronwall lemma yields

‖rε(t)‖L1 ≤ CT

(
ε +

∫ t

0

‖rε(s)‖L1ds

)
≤ CT ε, ∀ t ≤ T.

From the fact that the field ∂xΦε belongs to L∞(0, T, W 1,1) and the so-
lution (�,Φ) has a good regularity (in the one-dimensional setting), we deduce
that f̃ε

1 and f̃2 are bounded in L1((0, T ) × Ω) and

sup
t≤T

∫
Ω

∣∣∣fε(t, x, v) − �(t, x)ϕ
(
x,

x

ε
, v

)∣∣∣ dxdv ≤ CT ε.
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Moreover, using the L∞-uniform bound of fε we deduce

sup
t≤T

∥∥∥fε − �ϕ
(
x,

x

ε
, v

)∥∥∥
Lp

≤ CT,p ε1/p, ∀ p ∈ [1,∞[

which implies that �ε converges in two-scale strongly to �
∫
R

ϕ(x, y, v)dv in all
Lp for p ∈ (1,∞) and weakly to � for p ≥ 1. In turns, we obtain the strong
convergence of the potential Φε to Φ in all Lp for p < ∞. This ends the proof
of convergence for the one-dimensional case.

6. The Linear Multi-dimensional Case

The subject of this section is to extend the analysis to the multi-dimensional
case. We restrict ourself (for instance) to the linear setting without restriction
on the dimension. So, one can incorporate the potential in the expression of
the vector field u by considering the following scaled Fokker–Planck equation

∂tf
ε +

1
ε
v · ∇xfε +

1
ε2

u
(
x,

x

ε

)
· ∇vfε =

L∗(fε)
ε2

(38)

where L∗ is the Fokker–Planck operator given by (8). As explained in Sect. 3,
we can identify fε by f̃ε = f̃ε(t, x, y, v) in the sense∫

Ω

fε(t, x, v)ψ
(
t, x,

x

ε
, v

)
=

∫
Ω

∫
Y

f̃ε(t, x, y, v)ψ(t, x, y, v)

for all ψ ∈ D(R+ × ω̄; C#(Y )). The two-scale function f̃ε = f̃ε(t, x, y, v) is the
solution of the equivalent two-scale transport equation:

∂tf̃ε +
1
ε
v · ∇xf̃ε +

1
ε2

L∗
xf̃ε = 0

where,

L∗
x = v · ∇y + u(x, y) · ∇v − L∗

and its distributional adjoint is

Lx = −v · ∇y − Δv + (v − u(x, y)) · ∇v.

Remark 6.1. 1. Let us comment the case of a field uε coming from a poten-
tial with macroscopic and microscopic variations:

uε(x) = ∇xΦε

where

Φε(x) = Φ
(
x,

x

ε

)

so that, uε has the form:

uε(x) = ∇xΦ
(
x,

x

ε

)
+

1
ε
∇yΦ

(
x,

x

ε

)
.

We remark that with this case, we can proceed like in [10] (see also [22]
when we added the Poisson coupling), by defining the relative
maxwellians:

MΦ(x, y, v) = exp(−|v|2/2 − Φ(x, y))
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and

MΦε(x, v) = MΦ

(
x,

x

ε
, v

)

and rewrite the Fokker-Planck operator as

L∗(f) = ∇v ·
[
MΦ∇v

f

MΦ

]
.

The main point of the analysis is related on the fact that the cell
function, defined in Proposition 3.1, is here the relative Maxwellian MΦ.
Indeed, if we define the effective potential

Φe(x) = log
(∫

Y

e−Φ(x,y)dy

)
,

then MΦ+Φe
is normalized with respect to dvdy and we have

L∗
x(ϕ) = 0 ⇔ ∃ �(t, x)/ϕ = �(t, x)MΦ(x, y, v).

Moreover,

[v · ∇y + u(x, y) · ∇v]MΦ = L∗(MΦ) = 0.

We remark also that we can construct an upper solution for the
scaled Boltzmann equation, leading to a uniform L∞-bound for the dis-
tribution fε. Then, using the relative entropy, by multiplying the scaled
Boltzmann equation by fε/MΦε , we can deduce that fε behaves like its
local equilibrium �εMΦε . This is enough, using compactness arguments
like velocity averaging lemma and/or div-curl lemma [19], to prove com-
pactness properties and derive rigorously the homogenized fluid model.
The details of this analysis is the subject of a forthcoming paper [13].

2. Due to the fact that the vector field u has a general form (not necessarily
a gradient), we are not be able to construct a relative equilibrium solution
which solves the transport part of the equation and belongs to null space
of the Fokker–Planck operator.

3. A first attempt to justify the limit (ε goes to zero) is to use the duality
method [23]. This method is well adapted for linear equations but in the
present setting, we need a uniform Lp-estimate to deal with the duality
in two-scale. Nevertheless, the duality method yields the form of the two
scale limit of fε which is bounded in D′

#. Indeed, writing (38) in its
two-scale form, we get

ε2∂tf̃ε + εv · ∇xf̃ε + L∗
x(f̃ε) = 0. (39)

We deduce, as ε goes to 0, that f̃ε converges in D′
# to f̃ satisfying

L∗
x(f̃) = 0.

This implies that: there exists a function � = �(t, x) such that,

f̃(t, x, y, v) = �(t, x)ϕ(x, y, v)

where the unknown �(t, x) =
∫

Y

∫
Rd f̃(t, x, y, v) dy dv.
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4. By taking reflection boundary assumption, the weak solution of the scaled
Boltzmann equation, satisfies

d
dt

‖fε(t)‖L1 = 0

and using Assumption A3, the total mass is uniformly bounded.
5. The idea of our proof is to analyze the behavior limit of the difference

fε−�(t, x)ϕ(x, x
ε , v) in L1 which does not require a uniform Lp-estimate to

deal with two-scale convergence. We remark that also in this linear case,
we should in some sense use the Hilbert expansion and the contraction
property of the Fokker–Planck operator and the key point is that the
property is satisfied by both L∗ and the cell operator L∗

x:∫
Rd

∫
Y

L∗
x(f̃)sign(f̃) dy dv =

∫
Rd

∫
Y

L∗(f̃)sign(f̃)dy dv ≤ 0. (40)

According the the previous remark, and since the equation is linear, we
do not have the singularity coming from the Poisson coupling, we can use the
original Hilbert expansion introduced in Sect. 3. Indeed, we denote by f̃ , f̃1

and f̃2, respectively, the solution of (16), (17) and (18):

f̃(t, x, y, v) = �(t, x)ϕ(x, y, v),

f̃1(t, x, y, v) = −∇x�(t, x) · L∗
x

−1(v ϕ) − �L∗
x

−1(v · ∇xϕ)

and f̃2 is such that

−L∗
x(f̃2) = ∇x ·

[
(v ⊗ L∗

x
−1(vϕ) − D(x)ϕ) ∇x�

]

−∇x ·
[
�

((
vL∗

x
−1(v · ∇xϕ)

)
− ξ(x)

)]

where D(x) and ξ(x) are defined in (23). Then,

f̃2 = ∇x · (χ1∇x�) + ∇x(�χ2) (41)

where

−L∗
x(χ1) =

[
(v ⊗ L∗

x
−1(vϕ) − Dϕ)

]

and

−L∗
x(χ2) =

[
v L∗

x
−1(v · ∇xϕ) − ξ(x))

]
.

Now, let us assume that the initial data are hyper well prepared:

fε(t = 0) = �I ϕ
(
x,

x

ε
, v

)

and for all t ≥ 0, fε satisfies the specular reflection boundary condition:

fε(t, x, v) = fε(t, x, v − 2(v · n(x))n(x)), for (x, v) ∈ ∂Ω.
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Let f̃ , f̃1 and f̃2 satisfying, respectively, (19), (21) and (41) where � is
the solution of the homogenized Drift–Diffusion equation (43):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t� + ∇x · j = 0,

j = −D(x)∇x� − ξ(x) �,

� |t=0 = �I ,

j · n(x) = 0, x ∈ ∂ω

where the matrix D(x) and the coefficient ξ(x) are given by (23). Writing the
equation satisfied by

rε = fε(t, x, v) −
[
f̃ − εf̃1 − ε2f̃2

] (
t, x,

x

ε
, v

)

we get

∂tr
ε +

1
ε
v · ∇xrε +

1
ε2

u
(
x,

x

ε

)
· ∇vrε − L∗(rε)

ε2
= Sε

where the source term is

Sε(t, x, v) = −ε
[
∂tf̃1 + ε ∂tf̃2 + v · ∇xf̃2

] (
t, x,

x

ε
, v

)

and the initial data

‖rε(t = 0)‖L1 = O(ε).

The L1-contraction (40) gives

‖rε(t)‖L1(Ω) ≤ ‖rε(0)‖L1(Ω) +
∫ t

0

‖Sε(τ)‖L1(Ω)dτ ≤ CT ε, ∀ t ≤ T

which in turns implies, thanks to the good decay of f1 and f2, to∥∥∥fε − �(t, x)ϕ
(
x,

x

ε
, v

)∥∥∥
L∞(0,T ; L1(Ω))

≤ CT ε.

where the constant CT depends only on T and ‖u‖W k,∞ . This completes the
proof of the main result for the linear case without restriction on the dimension.
The case involving the ballistic case will be the subject of the next section.

6.1. The Case of Ballistic Motion

We remark that the condition
∫

Y

∫
Rd v ϕdy dv = 0 stated in assumption A4

ensures that no ballistic motion is involved. Here, we would like to extend
our analysis for a case of a ballistic dynamics by considering a quasi-periodic
vector field:

uε(x) = u
(
x,

x

ε

)
(42)

So that, the cell function is x-dependent, satisfying the condition∫
Rd

∫
Y

v ϕ(x, y) dy dv =
∫
Rd

∫
Y

v L∗−1
x (0) dy dv = C �= 0.

We notice that, the vector field satisfies the assumption A1 and the con-
stant C is x-independent.
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Proposition 6.2. Assume that A1–A3 are satisfied and the vector field uε has
the profile given in (42). Let fε be a weak solution of the linear Fokker–Planck
(1)–(5) (with Φε = Φb = 0). Then, ∀T > 0, ∃CT > 0/

sup
t≤T

∫
Ω

∣∣∣fε(t, x, v) − �(t, x − Ct/ε)ϕ
(
x,

x

ε
, v

)∣∣∣ dxdv ≤ CT ε

where � is the solution of the homogenized Drift–Diffusion equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t� + ∇x · j = 0,

j = −D∇x� − ξ �,

� |t=0 = �I ,

j · n(x) = 0, x ∈ ∂ω.

(43)

The matrix D and the coefficient ξ are given by (49) and ϕ is the cell-
function.

Proof of Proposition 6.2. The idea of derivation is based on Remark 2.2 of [20]
(see also [16]). Indeed, let us start by the deriving the homogenized fluid model
in this case of ballistic motion.

First step: transformation of coordinates. We go back to the scaled Boltz-
mann equation, written in its two-scale form (14) by considering the two-scale
distribution function: f̃ε = f̃ε(t, x, y, v). We introduce the transformation of
coordinates (x, v) �→ (z, w) :

z = x − C t/ε and w = v − C.

We denote by
˜̃
fε(t, z, y, w) := f̃ε(t, z + C t/ε, y, w + C)

where f̃ε is the solution of (14). Then, the function ˜̃
fε solves the scaled trans-

port equation:

∂t
˜̃
fε +

1
ε
w · ∇z

˜̃
fε +

1
ε2

[
(w + C) · ∇y

˜̃
fε + (u(z + C t/ε, y) − C)

·∇w
˜̃
fε − ∇w ·

(
∇w

˜̃
fε + w

˜̃
fε

)]
= 0

which is equivalent to,

∂t
˜̃
fε +

1
ε
w · ∇z

˜̃
fε +

1
ε2

L̃∗
z+C t/ε(

˜̃
fε) = 0

and, for all ξ ∈ R
d and f ≡ f(t, z, y, w),

L̃∗
ξ(f) = (w + C) · ∇yf + (u(ξ, y) − C) · ∇wf − ∇w · [∇wf + wf ].

Second step: derivation of the homogenized Drift–Diffusion model. We remark
that, with these new coordinates, we have a two-scale Boltzmann equation
associated with an ε-dependent vector field. With such property, we cannot
apply directly the Hilbert development used previously. We point out, that this
property is related to the fact that the velocity has macroscopic variations (u
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is x-dependent). Our idea is to use a Chapman–Enskog expansion of two-scale
solution ˜̃

fε, by assuming that it behaves like

˜̃
fε(t, z, y, w) ∼ ˜̃

f0(t, z, y, w) + ε
˜̃
f1(t, z, y, w) + ε

˜̃
f2(t, z, y, w) + · · · , (44)

where ˜̃
f0,

˜̃
f1, . . . are Y -periodic with respect to y. Plugging this development

in the previous equation, one can choose

L̃∗
z+C t/ε(

˜̃
f0) := 0, (45)

L̃∗
z+C t/ε(

˜̃
f1) = −w · ∇z

˜̃
f0 (46)

and
L̃∗

z+C t/ε(
˜̃
f2) = −∂t

˜̃
f0 − w · ∇z

˜̃
f1. (47)

Now, we remark, using Proposition 3.1, that the null space of the cell op-
erator L̃∗

z+C t/ε is spanned by the shifted cell function ϕ̃(., .) parameterized by
z + C t/ε:

ϕ̃(z, y, w) := ϕ(z + C t/ε, y, w + C).

From Proposition 3.1, the function ϕ̃ = L̃∗−1
z+C t/ε(0) is normalized with

respect with (y, w): ∫
Rd

∫
Y

ϕ̃(z + C t/ε, y, w) dy dw = 1.

As a consequence, one can choose the leading term in the previous devel-
opment in the form

˜̃
fε
0 (t, z, y, w) := �(t, z) ϕ̃(z + C t/ε, y, w) (48)

We notice that, the ε-dependence ˜̃
f0 is incorporated in the cell function

and the homogenized charge density depends only on (t, z). Moreover,∫
Rd

∫
Y

w ϕ̃(z + C t/ε, y, w)dydw =
∫
Rd

∫
Y

wϕ(z + C t/ε, y, w + C)dydw

=
∫
Rd

∫
Y

(v − C)ϕ(z + C t/ε, y, v)dydv = 0.

The Eq. (46) becomes

−L̃∗
z+C t/ε(

˜̃
f1) = ∇z� · wϕ̃ + �w · ∇zϕ̃

The functions wiϕ̃, for all i ∈ {1, . . . , d} and w · ∇zϕ̃ belong to the
range of L̃∗

z+C t/ε. Let θ̃(z, ., .) := L̃∗−1
z (wϕ̃(z, ., .)) and θ̃1(z, ., .) := L̃∗−1

z

(w · ∇zϕ̃(z, ., .)). Then,

˜̃
f1(t, z, y, w) = (∇z� · θ̃) + � θ̃1

= ∇z�(t, z) · θ̃(z, y, w) + �(t, z) θ̃1(z, y, w)
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Denoting by {
D(z) =

∫
Rd

∫
Y

w ⊗ L∗−1
z (wϕ̃(z, y, w)) dy dw

ξ(z) =
∫
Rd

∫
Y

w L∗−1
z (w · ∇zϕ(z, y, w)) dy dw

(49)

Integrating the Eq. (47) with respect dy dw, we obtain the homogenized
Drift–Diffusion model:

∂t� + ∇z · [−D(z + C t/ε)∇z� − ξ(z + C t/ε)�] = 0

For the rigorous proof of convergence, we proceed like in the previous
case using the two-scale Hilbert expansion and the contraction property:∫

Rd

∫
Y

L∗
z+C t/ε(r)sign(r)dy dw ≤ 0

Let
˜̃
fε
1 (t, z, y, w) = ∇z�(t, z) · θ̃(z + Ct/ε, y, w) + �(t, z) θ̃1(z + Ct/ε, y, w) (50)

and ˜̃
fε
2 is a solution of (47). Then, writing the two-scale transport equation

satisfied by the remainder

rε := rε(t, z, y, w) := ˜̃
fε − ˜̃

fε
0 − ε

˜̃
fε
1 − ε2 ˜̃

fε
2

satisfying

sup
t≤T

∫
Ω×Y

|rε(t, z, y, w)| dz dy dw ≤ CT ε

which is equivalent, using the fact that ˜̃
f1 and ˜̃

f2 have a good decay, that

sup
t≤T

∫
Ω

|fε(t, x, v) − �(t, x − Ct/ε)ϕ(x, x/ε, v)| dxdv ≤ CT ε

and this ends the proof of Proposition 6.2. �

7. Concluding Remarks

We remark that in the multi-dimensional setting, we have two difficulties. The
first one is the fact that the vector uε is not a gradient. With this assumption,
it seems that we can not use directly the entropy dissipation. The second point,
if we take into account the Poisson coupling, is the fact that the solution has
only a renormalized sense. Indeed,

1. For fixed ε > 0. we are able (for instance) to prove the existence of
solutions only in a renormalized sense: fε ∈ LlogL and ∇xΦε ∈ L2. We
refer to [16] for a similar case.

2. Only the L1-norm is uniform (in ε) due to the presence of the singular
term ε−2uε∇vfε for the case of reflection boundary condition. It seems
that it is difficult to use the relative entropy method to obtain a uniform
Lp-estimate. Moreover, the L1-norm is limited to the case of specular
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reflection assumptions. In the inflow boundary condition setting, we do
not have directly the conservation of mass due to singular fluxes:

d

dt
‖fε‖L1(Ω) +

1
ε

∫
∂Ω+

fε
b |v·n(x)|dσ dv =

1
ε

∫
∂Ω−

fε
b |v·n(x)|dσ dv

The multi-dimensional and self-consistent setting is a very interest-
ing task.
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conducteurs pour une statistique de Fermi–Dirac. Asymptot. Anal. 6, 135–
169 (1992)

[16] Goudon, T.: Hydrodynamic limit for the Vlasov–Poisson–Fokker–Planck system:
analysis of two dimensional case. Math. Models Methods Appl. Sci. 15, 737–
752 (2005)

[17] Goudon, T., Mellet, A.: Homogenization and diffusion asymptotics of the linear
Boltzmann. ESAIM Control Optim. Calc. Var. 9, 371–398 (2003)

[18] Goudon, T., Nieto, J., Poupaud, F., Soler, J.: Multidimensional high-field limit of
the electrostatic Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 213, 418–
442 (2005)

[19] Goudon, T., Poupaud, F.: Approximation by homogeneization and diffusion of
kinetic equations. Commun. Partial Differ. Equ. 26, 537–569 (2001)

[20] Hairer, M., Pavliotis, G.A.: Periodic homogenization for hypoelliptic diffu-
sions. J. Stat. Phys. 117(1–2), 261–279 (2004)

[21] Masmoudi, N., Tayeb, M.-L.: Diffusion limit of a semiconductor Boltzmann–
Poisson system. SIAM J. Math. Anal. 38, 1788–1807 (2007)

[22] Masmoudi, N., Tayeb, M.-L.: Diffusion and homogenization approximation for
semiconductor Boltzmann–Poisson system. J. Hyperbolic Differ. Equ. 5(1), 65–
84 (2008)

[23] Masmoudi, N., Tayeb, M.-L.: On the diffusion limit of a semiconductor
Boltzmann–Poisson system without micro-reversible process. Commun. Partial
Differ. Equ. 35(7), 1163–1175 (2010)

[24] Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an
illustration on growth models. J. Math. Pures Appl. (9) 84(9), 1235–1260 (2005)

[25] Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann
equation: analysis of boundary layers. Asymptot. Anal. 4(4), 293–317 (1991)

[26] Poupaud, F., Schmeiser, S.: Charge transport in semiconductors with degeneracy
effects. Math. Methods Appl. Sci. 14(5), 301–318 (1991)

[27] Poupaud, F., Soler, J.: Parabolic limit and stability of the Vlasov–Fokker–Planck
system. M3AS 10(7), 1027–1045 (2000)

[28] Villani, C.: Entropy Production and Convergence to Equilibrium, Entropy Meth-
ods for the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1916, pp.
1–70 (2008)

[29] Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202(950) (2009)

[30] Weinan, E.: Homogenization of linear and nonlinear transport equations. Com-
mun. Pure Appl. Math. 45(3), 301–326 (1992)



Vol. 17 (2016) Homogenized Diffusion Limit of a VPFP Model 2553

Mohamed Lazhar Tayeb
Department of Mathematics
Faculty of Sciences of Tunis
University of Tunis ElManar
2092 El-Manar, Tunisia
e-mail: lazhar.tayeb@fst.rnu.tn

Communicated by Nader Masmoudi.

Received: January 13, 2014.

Accepted: January 5, 2016.


	Homogenized Diffusion Limit of a Vlasov--Poisson--Fokker--Planck Model
	Abstract
	1. Introduction
	2. Preliminaries
	3. Formal Asymptotics: Two-Scale Hilbert Expansion
	4. Assumptions and Main Result
	5. The One-Dimensional Case
	5.1. Convergence in 1-D: Two-Scale Hybrid-Hilbert Expansion

	6. The Linear Multi-dimensional Case
	6.1. The Case of Ballistic Motion

	7. Concluding Remarks
	Acknowledgements
	References




