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Rigidity of Stable Marginally Outer Trapped
Surfaces in Initial Data Sets

Alessandro Carlotto

Abstract. In this article, we investigate the restrictions imposed by the
dominant energy condition (DEC) on the topology and conformal type
of possibly non-compact marginally outer trapped surfaces (thus extend-
ing Hawking’s classical theorem on the topology of black holes). We first
prove that an unbounded, stable marginally outer trapped surface in an
initial data set (M, g, k) obeying the dominant energy condition is con-
formally diffeomorphic to either the plane C or to the cylinder A and in
the latter case infinitesimal rigidity holds. As a corollary, when the DEC
holds strictly, this rules out the existence of trapped regions with cylindri-
cal boundary. In the second part of the article, we restrict our attention
to asymptotically flat data (M, g, k) and show that, in that setting, the
existence of an unbounded, stable marginally outer trapped surface es-
sentially never occurs unless in a very specific case, since it would force
an isometric embedding of (M, g, k) into the Minkowski spacetime as a
space-like slice.

1. Introduction

In general relativity, the existence of a closed trapped surface in a space-
like slice (M, g, k) of a spacetime (L, γ) is (under certain natural energy and
causal conditions) symptomatic of the geodesic incompleteness of the space-
time in question. In physical terms, that spacetime must contain a black hole.
However, when considering marginally outer trapped surfaces, the a priori re-
striction to closed submanifolds is no longer completely justified, at least for
very general classes of data. Indeed, when one considers MOTS as separating
elements, namely as boundaries of a trapped region, it seems conceivable that
complete, unbounded MOTS may arise. To be more specific, let us recall here
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that given an initial data set (M, g, k), the outer trapped region is the union
of all domains bounded by weakly outer trapped surfaces and the, possibly
empty, interior boundary of M : it was recently proven by Andersson and Met-
zger (Theorem 1.3 in [3]) that the boundary of the trapped region is a smooth,
embedded, outermost MOTS (in fact, the only one). In their work, they as-
sumed to deal with a compact ambient manifold with two closed boundary
components ∂+M and ∂−M, so that the boundary of the trapped region had
itself to be closed, hence only consisting of spherical and (possibly exceptional)
toroidal components by Hawking’s theorem on the topology of black holes (see
[22] and [20] for the associated rigidity phenomena). But when the existence
assumption on ∂+M is dropped and M is not compact, then it is a priori
possible to deal with unbounded trapped regions for which the conclusion of
the theorem by Andersson and Metzger still holds. Hence, it becomes relevant
to extend the aforementioned topological results to the case of complete (un-
bounded) stable MOTS. Incidentally, we observe here that while the notion of
outward for a non-compact orientable surface is arbitrary, this is not the case
for MOTS that arise as boundaries of the trapped region.

A second very good reason to pursue our study is given by the recent work
by Eichmair on the Plateau problem for marginally outer trapped surfaces
[15], as complete MOTS naturally arise as limits of MOTS with boundary
(because of their curvature and area estimates, the latter being related to
their λ-minimizing properties).

We first prove that in general initial data sets, the sole assumption of
dominant energy condition forces severe restrictions on the conformal class of
a complete, stable MOTS: in fact when μ > |J |g strictly that rules out the
existence of all types of MOTS but spherical and planar ones, namely those
equivalent to C.

Theorem 1. Let (M, g, k) be an initial data set of dimension three, satisfying
the dominant energy condition and let Σ be a complete, two-sided stable MOTS
in M . Then the following statements hold:

1. If Σ is compact, then it is conformally equivalent to the sphere S
2 or to

the torus T
2. Moreover, in the latter case, Σ is flat, totally geodesic and

can be embedded in a smooth local foliation {Σt}t∈(−ε,ε) where each leaf
is itself a MOTS. As a result, if Σ is outermost, then it is conformally
equivalent to S

2.
2. If Σ is not compact, then it is conformally equivalent to the complex plane

C or to the cylinder A. Moreover, in the latter case Σ is infinitesimally
rigid, namely

K = χ = μ + J(ν) = 0 identically on Σ.

If the strict dominant energy condition holds, then only the first alterna-
tive can happen (and thus Σ is conformally equivalent to C).

The statements collected in (1) are well known and date back to Hawking
(in [22]; see also [21] for the higher dimensional counterpart), and to Galloway
[20] for the part concerning the construction of the foliation {Σt}t∈(−ε,ε): they
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have been stated here for completeness. Various comments related to Theorem
1 are appropriate. First of all, the proof of the rigidity statement given in part
(2) would be relatively simple if one made the assumption that the MOTS
Σ has finite total curvature (in which case one could easily adapt the argu-
ment given, for minimal surfaces, by Fischer-Colbrie and Schoen in [19]) or
if, alternatively, one assumed the sectional curvature of (M, g) to be bounded
(in which case one could combine the argument given by Schoen and Yau in
[31] with a preliminary deformation by means of Shi’s complete Ricci flow).
Instead, we do not make any such assumptions here and thus the proof of
Theorem 1 requires a combination of various ideas. We also emphasize that
in part (2) of this theorem, the surface Σ is not required to have quadratic
area growth (nor to be embedded) and in this generality a rigorous argument
is more subtle than it may look.

We later specify our study to asymptotically flat data and show that, in a
wide setting, unbounded stable MOTS do not exist at all unless the spacetime
in question is Minkowskian.

Theorem 2. Let (M, g, k) be an initial data set of dimension three in boosted
harmonic asymptotics. If it contains a complete, properly embdedded1 two-
sided stable MOTS Σ, then (M, g, k) isometrically embeds in the Minkowski
spacetime as a space-like slice.

We refer the reader to Sect. 2 for the precise definition of the class of
data mentioned here. In this introduction, we shall limit ourselves to say that
this includes as special cases:

• data in harmonic asymptotics (as defined in [17]), which were proven
to be a dense class in general asymptotically flat initial data sets with
respect to the topology of weighted Sobolev spaces (see Section 6 of [17]);

• the t = constant slices, in isotropic coordinates, of the Kerr–Newman
spacetime (thus including, as special cases, Schwarzschild, Kerr and
Reissner–Nordström data) as well as boosts thereof.

It is certainly appropriate to mention here the article [10], which is a
joint work with R. Schoen, where we show that the rigidity Theorem 2 is es-
sentially sharp by constructing asymptotically flat initial data sets that have
large ADM energy and momentum and are exactly trivial outside of a solid
cone (of given, yet arbitrarily small opening angle), so that they contain plenty
of complete, stable MOTS of the planar type. A posteriori, this strongly justi-
fies our requirement that the metric g in the previous statement has some good
asymptotics at infinity. Moreover, such flexibility result allows the construction
of new classes of N -body solutions of the Einstein constraint equations.

For time-symmetric data, namely when k = 0, marginally outer trapped
surfaces are nothing but minimal surfaces and hence Theorem 2 generalizes
the following result of independent interest.

1 Of course, in saying this, it is implicitly assumed that the surface in question is non-
compact.
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Theorem [8]. Let (M, g) be an asymptotically Schwarzschildean
three-manifold of non-negative scalar curvature. If it contains a complete, prop-
erly embedded two-sided stable minimal surface Σ, then (M, g) is isometric to
the Euclidean space R

3 and Σ is an affine plane.

Despite the formal analogy, the proof of Theorem 2 significantly differs
from that of its time-symmetric counterpart. Basically, the non-variational
nature of MOTS does not allow a direct application of the results concerning
isolated singularities of variational problems (see the monograph by Simon [33]
and reference therein) and thus a more ad hoc argument is needed. As a result,
the proof in question, though quite lengthy, has two remarkable advantages:
firstly, it is self-contained and, secondly, it highlights the key role of stability
over the inessential variational structures themselves. Thus, the reader shall
find here a substantially different proof of the rigidity result in [8], at least
when the ambient dimension equals three.

Lastly, we mention that the latter rigidity result (Theorem 2) can also be
interpreted in terms of restrictions on the blow-up set of Jang’s equation, based
on arguments which go back to the proof of the Positive Energy Theorem by
Schoen–Yau [30] and we refer the reader to the beautiful survey by Andersson
et al. [1] for further details on this correspondence.

2. Definitions and Notations

We need to start by recalling a few basic definitions.

2.1. Initial Data Sets

Definition 2.1. Given an integer n ≥ 3, we define an initial data set to be a
triple (M, g, k) where:

• M is a complete C3 manifold of dimension n;
• g is a C2 Riemannian metric on M ;
• k is a C1 symmetric (0, 2) tensor on M .

For an initial data set, we define the mass density μ and the current density
J by means of the equations{

μ = 1
2

(
Rg + (trgk)2 − ‖k‖2

g

)
J = divg (k − (trgk) g) .

We say that (M, g, k) satisfies the dominant energy condition (which we often
abbreviate as DEC) if at any point of M

μ ≥ |J |g.
When (M, g, k) arises as a space-like slice inside a spacetime (L, γ) the

densities μ and J are defined as certain components of the stress-energy tensor
T and thus the equations above should be considered as restrictions deriving
from the Gauss and Codazzi equations in (L, γ), known as Einstein constraint
equations.
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We now restrict our attention to a special subclass of initial data sets,
which are the object of the study of the second part of this article.

Definition 2.2. Given an integer n ≥ 3, an initial data set (M, g, k) is called
asymptotically flat if:

1. there exists a compact set Z ⊂ M (the interior of the manifold) such that
M\Z consists of a disjoint union of finitely many ends, namely M\Z =⊔N

l=1 El, and for each index l there exists a smooth diffeomorphism Φl :
El → R

n\Bl for some open ball Bl ⊂ R
n containing the origin, so that

the pulled-back metric
(
Φ−1

l

)∗
g and the pushed-forward tensor (Φl)∗ k

satisfy the following conditions:⎧⎨
⎩

((
Φ−1

l

)∗
g
)

ij
− δij = pij , pij(x) ∈ O2(|x|−(n−2))

((Φl)∗ k)ij = O1(|x|−(n−1))
as |x| → ∞;

2. both the mass density μ and the current density are integrable, namely

(μ, J) ∈ L1(M).

In the time-symmetric case, namely when k = 0, we will simply refer to (M, g)
as an asymptotically flat manifold.

2.2. Boosted Harmonic Asymptotics

For our purposes, it is appropriate to enlarge the class of data under con-
sideration from those in harmonic asymptotics (see [17]) to its closure under
the operation of relativistic boost (inside a given spacetime), namely when a
transformation of the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x0

)′ =
(
1 − β2

)−1/2 (
x0 − βx1

)
(
x1

)′ =
(
1 − β2

)−1/2 (
x1 − βx0

)(
x2

)′ = x2(
x3

)′ = x3

is performed and the resulting (x0)′ = 0 space-like slice is considered. Notice
that here 0 ≤ β < 1 is the speed describing the boost (in normalized unit,
with c = 1).

Definition 2.3. We say that an initial data set (M, g, k) (see Definition 2.2) is
in boosted harmonic asymptotics if the metric g has the form

g(x) =
n∑

l=1

(
1 +

Kβ2
l

|x|n−2
∗

)
dxl ⊗ dxl + O2

(
|x|−(n−1)

∗
)

,

where we have set

|x|2∗ =
n∑

l=1

ζ2
l

(
xl

)2

for some fixed positive real numbers β1, . . . , βn, ζ1, . . . , ζn and non-negative K.
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Of course, in the previous definition (for a given such metric g) the con-
stant K is only determined up to a positive scaling factor, but since we are
only concerned about it being (or not being) equal to zero this turns out to
be a convenient choice for our treatment. A motivation for the introduction of
the class above is given by the following basic example.

Remark 2.4. The Schwarzschild spacetime is described in the so-called
isotropic coordinates (due to Eddington) by

γ = −f(x)dt ⊗ dt +
(

1 +
M
2 |x|

)4

δ, f(x) =

(
1 − M

2|x|
1 + M

2|x|

)2

,

(where δ denotes here the Euclidean metric on R
3 (in fact, on R

3\{|x| ≤ rS}
for rS = M/2)) and, therefore, by restricting to the hypersurface t = βx1 (for
some 0 ≤ β < 1) we get the space-like metric

g =

[(
1 +

M
2 |x|

)4

− β2f(x)

]
dx1 ⊗ dx1 +

(
1 +

M
2 |x|

)4 ∑
i=2,3

dxi ⊗ dxi

which can be Taylor-expanded as

g =
[(

1 − β2
)

+
(
1 + β2

) (
2M
|x|

)]
dx1 ⊗ dx1

+
(

1 +
2M
|x|

) ∑
i=2,3

dxi ⊗ dxi + O2

(
|x|−2

)
.

Therefore, replacing the coordinates {x} by means of asymptotically flat co-
ordinates {X} ⎧⎪⎨

⎪⎩
X1 =

(
1 − β2

)1/2
x1

X2 = x2

X3 = x3

we finally get

g =
[
1 +

(
1 + β2

1 − β2

) (
2M
|X|∗

)]
dX1 ⊗ dX1

+
(

1 +
2M
|X|∗

) ∑
i=2,3

dXi ⊗ dXi + O2

(
|X|−2

∗
)

,

where, in this case,

|X|∗ =
(
1 − β2

)−1 (
X1

)2
+

(
X2

)2
+

(
X3

)2
.

2.3. Positive Mass Theorems and Their Rigidity Statements

We recall the notions of ADM energy and momentum, which arose in the
context of the Hamiltonian formulation of general relativity [5] and were shown
to be well defined in [6].



Vol. 17 (2016) Rigidity of Stable MOTS 2831

Definition 2.5. Given an asymptotically flat initial data set (M, g, k) (so that
both μ and |J |g are integrable), one can define the ADM energy E and the
ADM momentum P at each end to be

E =
1

2 (n − 1) ωn−1
lim

r→∞

∫
|x|=r

n∑
i,j=1

(gij,i − gii,j) νj
0 dH n−1

Pi =
1

(n − 1) ωn−1
lim

r→∞

∫
|x|=r

n∑
i,j=1

πijν
j
0 dH n−1,

where we have set π = k − (trgk) g (the momentum tensor)2, νj
0 = xj

|x| and
ωn−1 is the volume of the standard unit sphere in R

n.

Our second rigidity result is based on the following fundamental theorem.

Theorem 2.6 [16,17,29,30,34]. Let (M, g, k) be an asymptotically flat initial
data set of dimension 3 ≤ n < 8 with one end and satisfying the dominant
energy condition. Then, E ≥ |P|. Moreover, E = 0 if and only if (M, g, k)
can be isometrically embedded in the Minkowski spacetime (M, η) as a space-
like hypersurface, so that g is the induced metric from η and k is the second
fundamental form (in particular, M is topologically R

n). In the time-symmetric
case, E ≥ 0 and equality holds if and only if (M, g) is isometric to the Euclidean
space (Rn, δ).

We remark that the same conclusions also hold true when M has multiple
ends, in which case the inequalities are in fact true at the level of each end.

Thanks to this result, we can define the ADM mass to be the norm (with
respect to the Minkowski metric η) of the four-vector (E ,P) , namely

M =
√

E − |P|2.
Various remarks are in order. A first proof of this result was given, in the time-
symmetric case, by Schoen and Yau [29] using minimal surfaces techniques and
extended later, via Jang’s equation, to show that the energy is non-negative
for general asymptotically flat data [30]. The statement that the mass is non-
negative (namely, E ≥ |P|) was set by Witten in 1981 [34] based on the use
of spinors and the Dirac equation, and detailed by Parker and Taubes in [27].
The Schoen–Yau proof of the rigidity statement corresponding to null energy
was gotten under the extra technical assumption that if the dimension of M
equals three, then trg(k) ≤ C|x|−3, which was later refined by Eichmair [16] to
trg(K) ≤ C|x|−α for some α > 2. The spinorial approach does not require this
assumption and since all three-manifolds are spin, one can in fact state the
theorem in the form we gave above. More precisely, for spin manifolds Parker
and Taubes proved that if E = 0, then the ambient Riemann tensor of the
spacetime Rm = Rmγ vanishes identically on M , and the same conclusion was
also obtained [7,12,35] for the M = 0 case. At that stage, one can give self-
contained arguments proving that (M, g, k) must isometrically embed inside
the Minkowski spacetime (M, η) as a space-like slice (see, for instance, [26]).

2 Of course, indices are raised and lowered using the ambient metric g.
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2.4. Marginally Outer Trapped Hypersurfaces

Let a four-dimensional Lorentzian manifold (L, γ) be given and let (M, g, k)
be an initial data set inside it. Therefore, if υ is the future-directed time-
like unit normal vector field to M, we will have k(X,Y ) = γ (Dγ

Xυ, Y ) for
X,Y ∈ Γ(TM) and Dγ the Levi–Civita connection of γ. In this setting, let
Σ ↪→ M be a complete, two-sided surface in M : we will denote by ν a (choice
of) smooth unit normal vector field of Σ in M and, by convention, refer to
such choice as outward pointing. At this stage, we can define l+ = υ + ν (resp.
l− = υ−ν) as future-directed outward- (resp. future directed inward) pointing
null vector field along Σ. The surface Σ is a codimension two submanifold
of L and therefore its extrinsic geometry cannot be described in terms of a
scalar function. Instead, it is customary in general relativity to decompose its
second fundamental form into two scalar valued null second forms that will be
denoted by χ+, χ− and are associated with l+, l−, respectively. More precisely,
the function χ+ is defined by

χ+ : TpΣ × TpΣ → R, χ+(X,Y ) = γ (Dγ
X l+, Y )

and similarly for χ−. Furthermore, we consider the associated null mean cur-
vatures that are gotten by tracing with respect to the first fundamental form
induced on Σ by the metric g:

θ± = trgχ± = divΣl±.

A simple, but useful remark is that in fact the null mean curvatures
satisfy the equation

θ± = trΣk ± H,

where H denotes the scalar mean curvature of Σ in (M, g). We will limit
ourselves to recall that θ± measures the divergence of the outgoing and ingoing
light rays emanating from Σ, respectively. In the most trivial example, that of
a round sphere in Euclidean slices of the Minkowski spacetime, one obviously
has θ− < 0 and θ+ > 0, but in the presence of a gravitational field it might
happen that for a given surface Σ, both θ− and θ+ are negative, in which case
we say that Σ is a trapped surface.

Definition 2.7. Let (L, γ) be a four-dimensional Lorentzian manifold, let
(M, g, k) be an initial data set (see Definition 2.2) and let Σ be a complete sur-
face in M . With the notation above, we say that Σ is outer trapped if θ+ < 0
on Σ. Similarly, we say that a complete surface Σ is marginally outer trapped
if instead the equation

θ+ = 0

is satisfied.

Despite their non-variational nature, MOTS do have a suitable notion of
stability as suggested by Anderrson et al. [2]. For minimal submanifolds (say,
for simplicity, of codimension one), the Jacobi operator arises both from the
second variation of the area functional and from the (pointwise) first variation
of the mean curvature: while the former approach is not applicable to MOTS,
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the latter can easily be extended. In the setting above, we can consider a
normal variation {Σt}t∈(−ε,ε) of Σ in M described by a vector field X = φν for
some compactly supported, smooth function φ ∈ C∞

c (Σ,R). For t ∈ (−ε, ε), a
suitably small neighbourhood of 0, let νt be the outward normal vector field of
Σt in M , set lt = υ+νt and let θ(t) be the corresponding null mean curvature.
Notice that, from now onwards, we will systematically omit the + sign while
referring to these quantities. It is well known (see, for instance, Section 2 of
[17]) that the first pointwise variation of the null mean curvature is given by[

∂θ

∂t

]
t=0

= L(φ),

with L being the operator (for V = k(ν, ·)�
Σ)

L(φ) = ΔΣφ − 2g (V,∇Σφ) +
(

(μ + J(ν)) +
1
2

|χ|2 − K − divΣV + |V |2
)

φ.

It is well known (see, for instance [2]) that the operator L is not neces-
sarily self-adjoint, yet its principal eigenvalue λ1(L) is real (this follows from
the Krein–Rutman theorem). As a result, it makes sense to give the following
definition.

Definition 2.8. In the setting above, we will say that a complete MOTS is stable
if for every regular, relatively compact domain Ω, one has that λ1(L,Ω) ≥ 0.

The operator L is significantly more complicated than the Jacobi operator
for minimal surfaces and, correspondingly, the associated stability condition is
much less useful than the usual stability condition. This obstacle is overcome
by introducing the symmetrized operator

L(φ) = ΔΣφ +
(

(μ + J (ν)) +
1
2

|χ|2 − K

)
φ,

for which the following comparison result holds.

Proposition 2.9 [21]. Let Σ be a complete MOTS in an initial data set (M, g, k),
let Ω be a relatively compact domain in Σ and let λ1(L,Ω) (resp. λ1(L,Ω)) be
the principal eigenvalue of the operator L (resp. L) on Ω. Then,

λ1(L,Ω) ≥ λ1(L,Ω).

Notations. We denote by R (resp. Ric(·, ·)) the scalar (resp. Ricci) curvature of
(M, g), by RΣ (resp. K) the scalar (resp. Gaussian) curvature of Σ ↪→ (M, g)
and by ν (a choice of) its unit normal. We let C be a real constant which is
allowed to vary from line to line, and we specify its functional dependence only
when this is relevant.

3. An Extension of Hawking’s Theorem on the Topology
of Black Holes

This section is devoted to the proof of Theorem 1.
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Proof. We give here the proof of part (2) and so let ϕ : Σ → M be a com-
plete, non-compact two-sided immersed3 stable MOTS. Based on the Riemann
mapping theorem, the universal cover of (Σ, ϕ∗g) is conformally equivalent to
either C or the unit disk D. If the latter case happened, we would have a pos-
itive solution w on D, endowed with the pull-back metric h = π∗(ϕ∗g) of the
equation

Δhw − Khw +
((

μ + J(ν) +
1
2

|χ|2
)

◦ ϕ ◦ π

)
w = 0

just gotten by lifting the function on Σ whose existence is guaranteed by
Theorem 1 in [19] applied to the symmetrized stability operator L (here, we
are exploiting the comparison result by Galloway and Schoen, Proposition
2.9). We have denoted by π : D → Σ the covering map. Using the dominant
energy condition, we know that μ+J(ν)+ |χ|2 /2 ≥ 0; thus the equation above
contradicts Corollary 3 in [19]. It follows that the universal cover of (Σ, ϕ∗g)
is conformally equivalent to C and thus (Σ, ϕ∗g) is conformal either to C itself
or to A.

For what concerns the rigidity assertion, let ϕ : Σ → M be a cylindrical
MOTS. We are going to exploit a conformal deformation trick which has its
roots in the work by D. Fischer-Colbrie (see e.g. pg. 127 of [18]) and that was
recently used, in the time-symmetric context, in a joint paper with Chodosh
and Eichmair (see Appendix C of [9]). Similarly to what we just did, thanks
to the stability assumption, the comparison Proposition 2.9 and Theorem 1
in [19], we can find a smooth positive function u : Σ → R such that Lu = 0,
where L is the symmetrized stability operator of Σ. We claim that the confor-
mally deformed metric on Σ given by u2ϕ∗g is complete. This is a consequence
of the argument that proves Theorem 1 in [18], which we can follow almost
verbatim modulo replacing the Jacobi operator with the symmetrized stability
operator and the assumption that the scalar curvature is non-negative with
the dominant energy condition. That being said, we observe that the Gauss
curvature of such metric is given by the well-known equation

Ku2ϕ∗g = u−2

(
Kϕ∗g +

|∇u|2
u2

− Δu

u

)
, (3.1)

and since Lu = 0, namely −Δϕ∗gu = −Kϕ∗gu + Qu, we end up finding

Ku2ϕ∗g = u−2

( |∇u|2
u2

+ Q

)
(3.2)

where of course we have set Q =
(
μ + J(ν) + 1

2 |χ|2
)

◦ ϕ. Hence, Ku2ϕ∗g ≥ 0
on the cylinder Σ. Now, a classic theorem by Cohn–Vossen [13] (that was later
significantly extended by Cheeger–Gromoll [11]) ensures that (Σ, u2ϕ∗g) must
be flat, that is to say Ku2ϕ∗g = 0 identically on Σ. The last equation above

3 For the sake of simplicity and uniformity, Theorem 1 was stated for embedded MOTS, but
for what concerns part (2) such assumption is unnecessary, so that we provide here the proof
for immersions. At the level of regularity, it is enough to assume that the maps ϕ : Σ → M
is C3.
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(3.2) ensures that Q = 0 along ϕ(Σ) and u = const. and thus (3.1) gives
Kϕ∗g = 0 as well. Thereby, the proof is complete. �

4. Isometric Embedding in the Minkowski Spacetime

We now turn to the analysis of asymptotically flat data sets. One first needs to
gain a good description at infinity for a complete stable MOTS without making
use of the general results for isolated singularities of geometric variational
problems, which are not at disposal for this class of surfaces because of their
non-variational nature. We shall prove the following statement of independent
interest.

Proposition 4.1. Let (M, g, k) be an asymptotically flat initial data set of di-
mension three and let Σ ↪→ M be a complete, properly embedded stable MOTS.
Then, each end of Σ coincides, outside a compact set, with the graph of a
function u ∈ C2(Π;R) for which the following pointwise estimates hold:

|u(x′)| = O(log |x′|), |x′||∇u(x′)| + |x′|2|∇∇u(x′)| = O(1) as |x′| → ∞.

Here, {x} is a set of asymptotically flat coordinates for the corresponding end
of the ambient manifold M , x′ = (x1, x2) and Π is a linear subspace in those
coordinates.

Let us recall that in Theorem 2 (and, hence, throughout this section), the
surface Σ is assumed to be two sided. Furthermore, at the level of regularity,
it suffices to assume that Σ ⊂ M as a C3 surface.

Remark 4.2. Thanks to the conclusion of Theorem 1, we know that Σ is con-
formally diffeomorphic to either the plane C or the cylinder A and, hence, if
properly embedded, it has respectively one or two ends.

Remark 4.3. It is readily checked that our argument shows that in fact the
conclusion above applies to every unbounded connected component of Σ\Z
provided Σ is an embedded stable MOTS.

For the sake of conceptual clarity, we shall divide the proof of Proposition
4.1 into a few steps, according to the sequence of lemmata below.

Lemma 4.4. Every unbounded connected component of Σ\Z (for Z the core of
M) has finite total curvature and quadratic area growth.

Proof. This proof follows the arguments given in the first half of Section 3 of
[8] rather closely, so we shall limit ourselves to sketch it and emphasize the
differences, when they occur.

Let then Σi ↪→ Ej be an unbounded connected component of Σ\Z (for
Z as in Definition 2.1). Thanks to the curvature estimates by Andersson and
Metzger [4], the MOTS equation and decay assumption on the momentum
tensor, we know that for any sequence λm ↘ 0 there exists a subsequence
(which we do not rename) such that λmΣi converges smoothly in R

3\{0} to
a stable minimal lamination L. We have already proven in Section 3 of [8]
that any such lamination consists of flat planes only, in fact (up to an ambient
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rotation) L = R
2 × Y with Y ⊂ R closed. This implies that the decay of the

second fundamental form of Σ can be upgraded to |A(x)||x| = o(1) as |x| → ∞,
which in turn is the key to prove that, possibly removing a larger compact set,
Σi consists of a finite union of (at most two, by Theorem 1) annular connected
components. By this, we mean that each such connected component has the
topology of a half-cylinder and each large coordinate sphere in the ambient end
in question shall intersect that component transversely along a circle. Thus,
possibly enlarging the core Z, we can certainly assume we had started with one
of those annular components, that is Σi itself. Finally, arguing by contradiction
by means of a blow-down procedure, one can exploit the Coarea formula to
show that Σi has quadratic area growth and, thus, use the stability inequality
together with the logarithmic cutoff trick to check that the total curvature of
Σi has to be finite. �

Our next goal is to exploit all of this information to improve the curvature
decay of Σ, namely to prove that in fact |A(x)| ≤ C|x|−1−α for some α > 0
and, at that stage, we shall get the conclusion of Proposition 4.1 in a fairly
direct way.

To proceed in the argument, we start by observing that the symmetrized
stability inequality for Σ implies that given any positive ρ,(

1 − ρ

2

)∫
Σ

|A|2ξ2 dH 2 ≤
∫

Σ

|∇Σξ|2 dH 2 +
C

ρ

∫
Σ

1
1 + d(p, p0)3

ξ2 dH 2

for any compactly supported function ξ of class C1.
We let from now onwards Σi to be an annular connected component of

Σ\Z (based on the above discussion) and Σi
0 ↪→ (R3, δ) the corresponding

submanifold in the Euclidean ambient. For simplicity of notation, we shall
simply denote it by Σ0.

By the usual comparison relation between A and A0, namely

|A(x) − A0(x)|g ≤ C

|x|2 (|x||A(x)|g + 1), (4.1)

one can deduce that in fact

(1 − ρ)
∫

Σ0

|A0|2ξ2 dH 2 ≤
∫

Σ0

|∇Σ0ξ|2 dH 2 +
C

ρ

∫
Σ0

|x|−3ξ2 dH 2. (4.2)

Here, {x} is a set of asymptotically flat coordinates for M along the end
in question and of course in the last inequality we are referring to the two-
dimensional Hausdorff measure in (R3, δ). Without loss of generality Σ0 ⊂
R

3\Br0 with ∂Σ0 ⊂ ∂Br0 and, correspondingly, the test function ξ is required
to be compactly supported in Σ0\Br0 . For reasons that will be clear soon in
the proof of the following lemma, we set from now onwards ρ = 1

6 = 1
3(n−1)

since n = 3.

Lemma 4.5. There exists a constant C > 0 which only depends on (M, g, k),
such that for all functions ϕ that are compactly supported and vanish in a
neighbourhood of ∂Br0 ↪→ R

3, we have
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∫
Σ0

|A0|2 ϕ2 dH 2 ≤C

∫
Σ0

(
1 − (ν · ν0)

2
)

|∇Σ0ϕ|2 dH 2 + C

∫
Σ0

|x|−3
ϕ2 dH 2,

where ν ∈ S2 is any constant unit vector of unit length.

Proof. As a first step, let us set ξ = ϕ
(
1 − (ν · ν0)

2
)1/2

in the stability in-

equality (4.2), with ϕ ∈ C1 and compactly supported away from ∂Σ0: such
function ξ is not C1 itself, but locally Lipschitz (hence, H 2− a.e. differen-
tiable) with |∇Σ0ξ| ≤ |A0| and a standard approximation argument justifies
its use in (4.2). In this whole proof, we will use ∇ in place of ∇Σ0 , and Δ in
place of ΔΣ0 to make the estimates more readable. Correspondingly, expanding
all terms on the right-hand side we get

(1 − ρ)
∫

Σ0

|A0|2
(
1 − (ν · ν0)

2
)

ϕ2 dH 2

≤
∫

Σ0

[(
1 − (ν · ν0)

2
)

|∇ϕ|2 + ϕ2

∣∣∣∣∇(
1 − (ν · ν0)

2
)1/2

∣∣∣∣
2
]

dH 2

+ 2
∫

Σ0

ϕ
(
1 − (ν · ν0)

2
)1/2

∇ϕ · ∇
(
1 − (ν · ν0)

2
)1/2

dH 2

+ C

∫
Σ0

|x|−3
ϕ2 dH 2.

At that stage, we need to write the second summand on the right-hand side
in a more useful way. Integration by parts gives∫

Σ0

∇ϕ2 · ∇ (
1 − (ν · ν0)2

)
dH 2 =

∫
Σ

ϕ2Δ(ν · ν0)2 dH 2

and since (due to the Codazzi equation)

Δ(ν · ν0)2 = 2 |∇ν0 · ν|2 − 2|A0|2(ν · ν0)2 + 2
∑

i

τi(H0)(τi · ν)(ν · ν0),

we come up with the functional inequality

(1 − ρ)
∫

Σ0

|A0|2ϕ2 dH 2

≤ C

∫
Σ0

(1 − (ν · ν0)2)|∇ϕ|2 dH 2

+
∫

Σ0

ϕ2

(
|∇ν0 · ν|2 +

∣∣∣∣∇(
1 − (ν · ν0)

2
)1/2

∣∣∣∣
2
)

dH 2

+
∫

Σ0

ϕ2
∑

i

τi(H0)(τi · ν)(ν · ν0) dH 2 + C

∫
Σ0

|x|−3ϕ2 dH 2.

Notice that here and above, {τi} is just a local orthonormal basis for the
tangent space to Σ0. Now, since in fact

|∇ν0 · ν|2 +
∣∣∣∣∇(

1 − (ν · ν0)
2
)1/2

∣∣∣∣
2

=
|∇ν0 · ν|2

1 − (ν0 · ν)2
,
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we can follow, almost verbatim, the proof of Lemma 1 in [28] to get the point-
wise geometric inequality

|A0|2 − |∇ν0 · ν|2
1 − (ν0 · ν)2

≥ 1
n − 1

|A0|2 − 2
n − 1

|A0||H0|

(that in our case we specify with n = 3), which implies that

1
3

∫
Σ0

|A0|2ϕ2 dH 2

≤ C

∫
Σ0

(1 − (ν · ν0)2)|∇ϕ|2 dH 2

+
∫

Σ0

ϕ2
∑

i

τi(H0)(τi · ν)(ν · ν0) dH 2 +
∫

Σ0

|A0||H0|dH 2

+ C

∫
Σ0

|x|−3ϕ2 dH 2.

Integrating by parts the second summand on the right-hand side of the previ-
ous inequality and applying the usual algebraic manipulations to absorb the
terms involving the second fundamental form A0 on the left-hand side (ex-
ploiting the MOTS equation and Eq. (4.1) to handle the summands of the
form

∫
Σ0

|H0|2 dH 2), we conclude that∫
Σ0

|A0|2 ϕ2 dH 2 ≤C

∫
Σ0

(
1 − (ν · ν0)

2
)

|∇Σ0ϕ|2 dH 2 + C

∫
Σ0

|x|−3
ϕ2 dH 2

which is precisely the inequality we were supposed to prove. �

At this point, the strategy is to combine this improved inequality with a
Poincaré-type inequality to prove that the outer total curvature

∫
Σ0\Bσ

|A0|2
dH 2 decays like a negative power of σ as we let σ go to infinity. At that stage,
this integral estimate will be turned into a pointwise estimate by means of the
De Giorgi lemma.

As a preliminary remark, we observe that the improved decay estimate
|A0(x)| ≤ o(1)|x|−1 (which follows from the proof of Lemma 4.4 together with
(4.1)) implies via a standard graphicality lemma (as in Chapter 2 of [14]) that
for any σ, a large enough Σ0 can be described, in the Euclidean annulus of radii
σ and 2σ as a graph over a coordinate plane. Specifically for any such σ, there
exists a plane Π = Π(σ) in coordinates {x} and a suitably smooth function
v = v(σ) : Π → R whose graph coincides with Σ0 in the aforementioned
ambient annulus.

Lemma 4.6. Let Σ0 ↪→ (
R

3, δ
)

be as above. Then there exist constants α > 0
and C such that

J(σ) =
∫

Σ0\Bσ

|A0|2 dH 2 ≤ Cσ−2α.
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Proof. Thanks to Lemma A.1 in [8], it suffices to show that there exist two
constants θ ∈ (0, 1) and ξ > 0 such that

J(2σ) ≤ θJ(σ) + ξσ−1.

Given any σ > r0, we would like to consider the improved stability inequality
(Lemma 4.5) with ϕσ, a C1 function, which vanishes in Bσ, is equal to one
outside of B2σ and increases linearly for σ ≤ r ≤ 2σ. Obviously, any such
function is not compactly supported, yet this choice can easily be justified
considering a suitable sequence of functions monotonically increasing to ϕσ

and applying, once again, a logarithmic cutoff trick. This strongly makes use
of the conclusion we got in Lemma 4.4, namely quadratic area growth and
finiteness of the total curvature. The details are rather standard and we omit
them here. As a result, we obtain∫

Σ0\B2σ

|A0|2 dH 2 ≤ 2Cσ−2

∫
Σ0∩(B2σ\Bσ)

(
1 − (ν · ν0)

2
)

dH 2 + Cσ−1

and our strategy now is to combine it with a Poincaré–Wirtinger inequality.
We can find an upper bound on the first term on the right-hand side as

follows: since trivially

1 − (ν · ν0)
2 =

1
4

|ν − ν0|2 |ν + ν0|2 ≤ |ν − ν0|2

we have

σ−2

∫
Σ0∩(B2σ\Bσ)

(
1 − (ν · ν0)

2
)

dH 2 ≤ σ−2

∫
Σ0∩(B2σ\Bσ)

|ν − ν0|2 dH 2.

Let then ν
(σ)
0 be the average of ν0 on such Σ0 ∩B2σ\Bσ: clearly, ν

(σ)
0 does not

need to be a unit vector in general, but still the following pointwise inequality
holds: ∣∣∣∣∣∣ν0 − ν

(σ)
0∣∣∣ν(σ)
0

∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣ν0 − ν
(σ)
0

∣∣∣ +

∣∣∣∣∣∣ν(σ)
0 − ν

(σ)
0∣∣∣ν(σ)
0

∣∣∣
∣∣∣∣∣∣ ≤ 2

∣∣∣ν0 − ν
(σ)
0

∣∣∣
and therefore (letting ν = ν

(σ)
0 /|ν(σ)

0 |)

σ−2

∫
Σ0∩B2σ\Bσ

|ν − ν0|2 dH 2 ≤ 4σ−2

∫
Σ0∩B2σ\Bσ

∣∣∣ν0 − ν
(σ)
0

∣∣∣2 dH 2.

By the area formula, we can rewrite the previous integral as∫
Σ0∩B2σ\Bσ

∣∣∣ν0 − ν
(σ)
0

∣∣∣2 dH 2 =
∫

proj(Σ0∩B2σ\Bσ)

∣∣∣ν0 ◦ v − ν
(σ)
0

∣∣∣2 Jac(v) dL 2,

where proj : Σ0 → Π is the Euclidean orthogonal projection and clearly for

the Jacobian Jac (v) =
√

1 + |∇v|2. Thanks to the locally uniform bounds for
these graphical components (again: as in Chapter 2 of [14]), one easily gets
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that∫
proj(Σ0∩B2σ\Bσ)

∣∣∣ν0 ◦ v − ν
(σ)
0

∣∣∣2 Jac(v) dL 2

≤ C

∫
proj(Σ0∩B2σ\Bσ)

∣∣∣ν0 ◦ v − ν
(σ)
0

∣∣∣2 dL 2

≤ Cσ2

∫
proj(Σ0∩B2σ\Bσ)

|∇Σ0ν0 ◦ v|2 dL 2 ≤ Cσ2

∫
Σ0∩B2σ\Bσ

|A0|2 dH 2,

and hence combining all these equations we come to the final estimate∫
Σ0\B2σ

|A0|2 dH 2 ≤ C

∫
Σ0∩B2σ\Bσ

|A0|2 dH 2 + Cσ−1.

This is nothing but

J(2σ) ≤ C (J (σ) − J (2σ)) + Cσ−1

or, equivalently,

J(2σ) ≤ C

1 + C
J(σ) +

C

1 + C
σ−1

and our claim follows by setting θ = ξ = C (1 + C)−1. �

At this point, we want to turn the previous integral estimate into an
improved pointwise estimate. To that aim, we need an adaptation of one basic
fact of the De Giorgi–Nash theory, the subsolution estimate, which is discussed
in Appendix A. To apply Proposition A.1, we also recall in Appendix B a
general Simons’ type inequality for the surfaces in (R3, δ).

We shall now make use of these results to complete the proof of Propo-
sition 4.1.

Proof. Thanks to Lemma B.1, the MOTS equation and the Schoen-type decay
estimate by Andersson–Metzger, we get

ΔΣ0 |A0(x)|2 ≥ − C

|x|5 − 6 |A0(x)|4 , ∀ |x| = r > 2r∗.

It follows at once, by trivial manipulations, that one can choose a positive
constant C > 0 independent of x (and where r = |x| /2) such that the function

u = r−5/2 + |A0|2

satisfies a functional inequality of the form (A.1), specifically (for any ε > 0)

ΔΣ0u ≥ −C
(
r−5/2 + |A0|2

)
u, x ∈ Br (x) .

As a result, we are in a position to apply our De Giorgi–Nash inequality,
Proposition A.1, to the function u, for p = 1 and θ = 1/2 thus obtaining (via
the integral estimate Lemma 4.6) for r > r∗

sup
B

Σ0
r/2(x)

|A0| ≤ C

(
1
r2

∫
Br(x)

(
r−5/2 + |A0|2

)
dH 2

)1/2

≤ Cr−1−min{1/4,α}.
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The crucial remark here is that the constant C in the final estimate can
be chosen independently of x (to a greater extent of r) because (based on the
statement of Theorem A.1) the quantity

r2(1− 1
1+ε )

(∫
BΣ

r (x)

(
r−5/2 + |A0|2

)1+ε

dH 2

)1/(1+ε)

is uniformly bounded, as we let r → ∞, with this being true in fact for any
positive value of ε. As a result, we conclude that

sup
B

Σ0
r/2(x)

|A0| ≤ Cr−1−α′
, α′ = min {1/4, α}

and therefore as a special case

|A0 (x)| ≤ C |x|−1−α′
, ∀ x ∈ Σ\B2r∗ .

This improved decay estimate on the second fundamental form implies
at once (due to its radial integrability) that the tangent cone to Σ0 at infinity
is unique and, hence, possibly by taking a smooth extension inside a compact
set, we can assume that there exist Π and u ∈ C2 (Π;R) such that Σ0 coincides
with its graph, at least outside of a suitably large ball. Furthermore, we have
that

∇u(x′) = O(|x′|−α′
), ∇∇u(x′) = O(|x′|−1−α′

).

At this stage, a bootstrap argument (along the lines of the one presented
in Appendix A of [8]) based on linear PDE theory in R

2 allows to improve
the decay rate up to the optimal threshold α′ = 1, thereby completing the
proof. �

Lastly, we are now in a position to give the proof of Theorem 2 and deduce
that an initial data set having boosted harmonic asymptotics and containing
a properly embedded stable MOTS must isometrically embed in (M, η) as a
space-like slice.

Proof. Because of the stability comparison theorem by Galloway–Schoen
(Proposition 2.9), we know that for any test function φ ∈ W1,2(Σ) the fol-
lowing functional inequality is satisfied:∫

Σ

[
μ + J(ν) +

1
2

|χ|2
]

φ2 dH 2 ≤
∫

Σ

|∇Σφ|2 dH 2 +
∫

Σ

Kφ2 dH 2.

The conclusion of Proposition 4.1, concerning the structure at infinity of Σ,
together with the well-known result by Shiohama [32] concerning the Gauss–
Bonnet theorem for open manifolds give that∫

Σ

K = 2π [χ(Σ) − N ′]

for N ′ the total number of ends of Σ. Applying the logarithmic cutoff trick to
our inequality (which is legitimate because of Lemma 4.4) and combining it
with the previous equation, we must conclude that Σ � R

2 and that μ+J(ν) =
0, χ = 0 identically on Σ. That being said, one can follow once more the
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argument by Fischer-Colbrie and Schoen to get to the conclusion that Σ has
to be intrinsically flat, namely its Gauss curvature is zero at every point.

Let us denote by y1, y2 Euclidean coordinates on Π and let them be
completed to an asymptotically flat set of coordinates {y} for R

3. Also, let
C ∈ SO(3) be the (Euclidean) isometry relating {x} and {y}, so that the
tangent vectors to Σ have {x}-coordinates given by (wl)

i = ci
j (vl)

j for l = 1, 2
where clearly

v1 =

⎛
⎝ 1

0
∂y1u

⎞
⎠ , v2 =

⎛
⎝ 0

1
∂y2u

⎞
⎠ .

The metric g induced on Σ by the ambient metric g has, in terms of the
matrix C (and using the decay properties of u), an asymptotic expansion of
the form

g (vi, vj) = gij = δij +
K

r(y)
ωij + O2(|r(y)|−2)

with r2(y) =
∑2

i=1 ζ2
i

(
yi

)2 + ζ2
3u2(y) and ωij =

∑3
l=1

(
cl
i

) (
cl
j

)
β2

l . In particu-
lar, let us emphasize that ωii > 0 for any choice of the index i due to the fact
that C ∈ SO(3). We can easily determine the Christhoffel symbols of g

Γ
k

ij = −K
2

2∑
p=1

δkp

(
ωipζ

2
j yj + ωjpζ

2
i yi − ωijζ

2
pyp

r3(y)

)
+ O1(|r(y)|−3)

and thus one can differentiate further and get

Γ
k
ij,l = −K

2

2∑
p=1

δkp

×
[

ωipζ2
j δjl + ωjpζ2

i δil − ωijζ
2
pδpl

r3 (y)
− 3

ωipζ2
j ζ2

l yjyl + ωjpζ2
i ζ2

l yiyl − ωijζ
2
pζ2

l ypyl

r5(y)

]

+ O
(
|r(y)|−4

)
.

It follows that the expression of the scalar curvature of Σ is given, in these
coordinates, by

RΣ = gij
(
Γk

ij,k − Γk
ik,j

)
+ O(|r(y)|−4)

= −K
∑
i�=k

[
− ωiiζ

2
k

r3 (y)
− 3

ωikζ2
i ζ2

kyiyk − ωiiζ
4
k(yk)2

r5 (y)

]
+ O(|r(y)|−4),

so that we can conveniently rewrite it in the final form

RΣ = − K
r3 (y)

×
[
−ω11ζ2

2 − ω22ζ2
1 − 3

r2(y)

(
2ω12ζ2

1ζ2
2y1y2 − ω11

(
ζ2
2y2

)2 − ω22

(
ζ2
1y1

)2)]

+ O(|r(y)|−4).

Now, we know that RΣ is identically equal to zero and therefore this is true,
as a special case, on the coordinate line where y2 = 0: the expansion of the
scalar curvature along that path is given by
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RΣ = − K
r3(y)

[
−ω11ζ

2
2 − ω22ζ

2
1 +

3ω22

(
ζ2
1y1

)2

(ζ1y1)2 + (ζ3u(y))2

]
+ O(|y|−4),

so if K were not zero, by letting |y| → ∞ we would get the algebraic condition
2ω22ζ

2
1 = ω11ζ

2
2 . Considering, symmetrically, the coordinate line where y1 = 0

we would be led to the system{
2ω11ζ

2
2 = ω22ζ

2
1

2ω22ζ
2
1 = ω11ζ

2
2

and, hence, by comparison, we would get the conclusion ω11ζ
2
2 = ω22ζ

2
1 = 0,

a contradiction. Thus, we necessarily have K = 0 and then (keeping in mind
Definition 2.3) this implies that the ADM energy of the metric g of the initial
data set (M, g, k) is zero and, so, thanks to the rigidity statement in Theorem
2.6, this forces (M, g, k) to isometrically embed as a space-like slice in the
Minkowski model (M, η), which is what we had to prove. �
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Appendix A. A De Giorgi–Nash Estimate

We shall state and briefly discuss here an almost immediate adaptation of a
fundamental result by De Giorgi and Nash to complete surfaces in the Euclid-
ean space that are not necessarily minimal.

Proposition A.1. Let Σ0 be as in Sect. 4. For x0 ∈ Σ0 and r > 2r0, let BΣ0
r (x0)

be the intrinsic ball of center x0 with |x0| = 2r and radius r on Σ0. Suppose
u ∈ W1,2

(
BΣ0

r (x0)
)

is non-negative, locally bounded and weakly satisfies

ΔΣ0u + au ≥ 0 (A.1)

and that there exists ε > 0 such that

r2− 2
1+ε ‖a‖

L1+ε
(
B

Σ0
r (x0)

) ≤ C ′.

Then, there exists r∗ such that when r > r∗, the following statement holds: for
every θ ∈ (0, 1) and p > 0, there exists a constant C such that

sup
B

Σ0
θr(x0)

u ≤ C

(
r−2

∫
B

Σ0
r (x0)

up dH 2

)1/p

,

where C = C (θ, p, C ′).
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Let us describe how the general well-known proof for Euclidean balls can
be adapted to our setting. The argument to prove Theorem A.1 when Ω ⊂ R

d

is a bounded regular domain is based on the Sobolev inequality(∫
Ω

|u| dp
d−p dL d

) d−p
d

≤ C(d, p)
∫

Ω

|∇u|p dL d (A.2)

for u ∈ W1,p
0 (Ω). In turn, this general version can easily be deduced from the

case p = 1, namely(∫
Ω

|u| d
d−1 dL d

) d−1
d

≤ C(d)
∫

Ω

|∇u| dL d (A.3)

by replacing the function u by |u| (d−1)p
(d−p) and recalling the basic fact that D |u| =

(sgnu) |Du| for L d−a.e. point x ∈ Ω ⊂ R
d. When Σ0 ↪→ (

R
3, δ

)
is a minimal

surface and Ω = BΣ0
r (x) , then inequalities like (A.3) (and hence (A.2)) still

hold true, while if Σ0 is only known to be, say, a smooth submanifold (A.3)
with locally bounded mean curvature, then they should be replaced by the
Michael–Simon inequality (see [24] and [23] for this extended version):(∫

B
Σ0
r (x)

|u|2 dH 2

)1/2

≤ C

∫
B

Σ0
r (x)

(|∇Σ0u| + |H0| |u|) dH 2.

But notice that, by applying the Cauchy–Schwarz inequality on the second
summand of the right-hand side we get(∫

B
Σ0
r (x)

|u|2 dH 2

)1/2

≤ C

[∫
B

Σ0
r (x)

|∇Σ0u| dH 2

+

(∫
B

Σ0
r (x)

|H0|2 dH 2

)1/2 (∫
B

Σ0
r (x)

|u|2 dH 2

)1/2
⎤
⎦

and, hence, thanks to the MOTS equation satisfied by Σ0 and the usual
comparison relations for H,H0, we can find r∗ so that(∫

B
Σ0
r (x)

|u|2 dH 2

)1/2

≤ C

∫
B

Σ0
r (x)

|∇Σ0u| dH 2

whenever |x| > 2r∗ and u ∈ W1,1
0

(
BΣ0

r (x)
)
. Therefore, we can deduce (A.2)

from this and at that point follow, with very minor variations, the standard
Euclidean proof of Theorem A.1 (see, for instance Theorem 5.3.1 in [25]).

Appendix B. A Simons’ Inequality for General Surfaces

Lemma B.1. Let Σ0 ↪→ (R3, δ) any immersed surface. Then

ΔΣ0 |A0|2 ≥ −2
∣∣∇2

Σ0
H0

∣∣ |A0| − 6 |A0|4 + 2 |∇Σ0A0|2 .
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Proof. The proof of this Lemma is a variation on the well-known argument by
J. Simons. Indeed, working with a local basis {τ1, τ2} , we get by the Gauss
and Codazzi equations the identity

aik,jk = aik,kj +
∑
m

(akiajm − ajiakm) amk +
∑
m

(akkajm − ajkakm) ami

and hence
1
2
ΔΣ0 |A0|2 =

∑
i,j

aijΔΣ0aij +
∑
i,j

|∇Σ0aij |2 =
∑
i,j,k

aijaij,kk +
∑
i,j,k

a2
ij,k

=
∑
i,j,k

aijaik,jk +
∑
i,j,k

a2
ij,k

=
∑
i,j,k

aijakk,ij +
∑

i,j,k,m

aij (akiajm − ajiakm) amk

+
∑

i,j,k,m

aij (akkajm − ajkakm) ami +
∑
i,j,k

a2
ij,k

≥ − |∇Σ0∇Σ0H0| |A0| − (1 +
√

2) |A0|4 + |∇Σ0A0|2 ,

where in the last step we have used the Cauchy–Schwarz inequality and can-
celled out two summands that are patently equal (modulo renaming the in-
dices). The claim follows at once. �
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