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Matrix Models from Operators
and Topological Strings, 2

Rinat Kashaev, Marcos Mariño and Szabolcs Zakany

Abstract. The quantization of mirror curves to toric Calabi–Yau three-
folds leads to trace class operators, and it has been conjectured that the
spectral properties of these operators provide a non-perturbative realiza-
tion of topological string theory on these backgrounds. In this paper, we
find an explicit form for the integral kernel of the trace class operator
in the case of local P

1 × P
1, in terms of Faddeev’s quantum dilogarithm.

The matrix model associated to this integral kernel is an O(2) model,
which generalizes the ABJ(M) matrix model. We find its exact planar
limit, and we provide detailed evidence that its 1/N expansion captures
the all genus topological string free energy on local P

1 × P
1.

1. Introduction

Topological strings on Calabi–Yau (CY) manifolds, just like other string the-
ories, are only defined in perturbation theory, in terms of a genus expansion.
In the closed string sector, the topological string free energies compute the
Gromov–Witten invariants of the CY target, and for this reason topological
string theory has played a prominent role in the interface of string theory,
geometry, and mathematical physics.

Recently, it has been conjectured in [1] that topological strings on toric
CY threefolds are captured, non-perturbatively, by the spectral theory of
quantum-mechanical, trace class operators. These operators arise naturally
in the quantization of their mirror curves. The conjecture of [1] builds upon
previous ideas on quantization and mirror symmetry [2–5], but it also incorpo-
rates many conceptual aspects of large N dualities. In fact, many of the crucial
ingredients in the proposal of [1] were first unveiled in the study of the ABJM
matrix model at large N [6–11].1 As spelled out in detail in [13], one way of

1 The approach of [10] was first applied to topological string theory in [12], but it requires
corrections which are incorporated in [1].
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formulating the spectral theory/mirror symmetry correspondence of [1] is by
considering the so-called fermionic traces Z(N, �) of the trace class operator
(see Sect. 2.1 for a precise definition.) It turns out that, in the ‘t Hooft limit,

N → ∞, � → ∞,
N

�
= λ fixed, (1.1)

these traces have an asymptotic expansion of the form,

log Z(N, �) =
∑

g≥0

Fg(λ)�2−2g. (1.2)

According to the conjecture of [1], the functions Fg(λ) should be the
genus g free energies of the standard topological string, in the so-called conifold
frame. The ‘t Hooft parameter λ is a flat coordinate for the CY moduli space
and is given by the vanishing period at the conifold point (we are assuming
here that the mirror curve has genus one.) In this way, the weakly coupled
topological string emerges in a limit in which the quantum-mechanical problem
is strongly coupled (since � → ∞). On the other hand, the double-scaling limit

N → ∞, � → 0, N� = μ fixed, (1.3)

corresponds to the WKB expansion in the quantum-mechanical problem, and
it is captured by the Nekrasov–Shatashvili (NS) limit of the refined topological
string, in agreement with the results of [4,5]. An obvious corollary of (1.2) is
that the fermionic spectral traces Z(N, �) of the trace class operator provide
a non-perturbative definition of the topological string partition function, in
the spirit of large N dualities. From a more physical point of view, one can
regard Z(N, �) as the canonical partition function of a quantum ideal gas of
N fermions, where the operator plays the role of density matrix [6].

As explained in [13], if the kernel of the operator arising in the quantiza-
tion of the mirror curve is known explicitly, then the fermionic spectral traces
can be computed by a matrix model. Fortunately, it was shown in [14] that,
for some simple mirror curves (leading to so-called three-term operators), one
can compute the corresponding kernels in closed form, in terms of Faddeev’s
quantum dilogarithm. This made it possible to verify the trace class property
conjectured in [1]. Armed with these kernels, one can compute the fermionic
spectral traces Z(N, �), which are given by a generalized O(2) matrix model
of the type considered in [15]. In [13] this matrix model was studied in the
1/N expansion, and it was checked in detail that, for local P

2 and a certain
limit of local F2, (1.2) gives indeed the topological string free energies.

This paper extends the results of [13,14] to an important local CY,
namely local P

1×P
1. In this case, the mirror curve has genus one, therefore one

modulus, but it also involves a mass parameter, since the geometry has two
Kähler parameters. The quantization of this curve leads to a four-term oper-
ator. By the quantum pentagon identity for Faddeev’s quantum dilogarithm,
we find an explicit expression for the integral kernel of the corresponding trace
class operator. The matrix model obtained from this kernel turns out to be an
O(2) matrix model. We compute some spectral traces at finite N , as a function
of the mass parameter, which agree with the predictions of the conjecture in
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[1], as shown in [16]. We also study the matrix model in the large N limit.
This can be done by doing perturbation theory in the ‘t Hooft coupling, as in
[13], but we can also use the general techniques of [17,18], as developed in [19],
to solve exactly for its planar limit. We compare the resulting 1/N expansion
with the topological string genus expansion, and we find a detailed agreement.

It is known, geometrically, that the topological string on P
1 ×P

1 is equiv-
alent to the topological string on local F2 by a simple change of parameters
[16] (this leads to a relation between the Gromov–Witten invariants of the two
geometries, as pointed out in [16,20]). We show that this equivalence holds as
a unitary equivalence between the corresponding trace class operators. This
allows us to extend all of our results to local F2 with arbitrary moduli, extend-
ing in this way the analysis presented in [13].

The trace class operator obtained by quantization of the mirror curve
of local P

1 × P
1 can be regarded as a generalization of the density matrix

appearing in the Fermi gas formulation of the ABJ(M) matrix model [6,21–
23], after an analytic continuation to complex mass parameters. Therefore, one
can rederive from our results various aspects of the ABJ(M) matrix model.
For example, we show that the exact planar solution of the O(2) matrix model
reproduces the planar free energy of the ABJ(M) matrix model obtained in
[24].

It is natural to ask how our matrix model for local P
1 × P

1 compares to
a previous proposal in [25]. This proposal is based on a generalization of the
Gopakumar–Vafa large N duality [26], in which topological string theory on
local P

1 × P
1 is described by large N , U(N) Chern–Simons theory on the lens

space L(2, 1) [25]. When this is combined with the results of [27], one obtains
a matrix model description of topological strings on local P

1 × P
1 which has

been studied in some detail [25,28,29]. There are, however, many important
differences between these matrix models. First of all, the matrix model of [25] is
a two-cut matrix model, while our model is a one-cut matrix model. This leads
to important differences at the non-perturbative level, since in the model of [25]
the two Kähler parameters of local P

1 ×P
1 are discretized (they correspond to

the two filling fractions of the two-cut matrix model), while in the matrix model
described here only the “diagonal” Kähler parameter is discretized. Another
difference between these two matrix models is that the weak ‘t Hooft coupling
expansion of the model in [25] corresponds to the so-called orbifold point in the
moduli space of local P

1×P
1, while in the model considered here it corresponds

to the conifold point. Both points lead to logarithmic periods (which are in fact
needed to match the Gaussian behavior of the matrix models), but they are
different. It would be interesting to understand in more detail the relationship
between the two matrix models, specially at the non-perturbative level, but
we will not pursue this problem here.2 Note that, if the conjecture of [1] is
true, the matrix model description in terms of kernels of trace class operators
studied in this paper is likely to apply to all toric CY threefolds. In contrast,

2 We would like to thank R. Schiappa for raising this issue.
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the large N duality of [25] applies only to a special type of geometries, obtained
as ADE quotients of the resolved conifold.

This paper is organized as follows. In Sect. 2 we elaborate on [14] and
obtain an explicit representation for the integral kernel of the trace class oper-
ator associated to local P

1 × P
1. We also write down an O(2) matrix model

computing the fermionic spectral traces, and we study its 1/N expansion. We
obtain perturbative results as well as a closed form expression for the pla-
nar free energy, which can be expanded at both weak and strong coupling.
In addition, we show how many known results for the ABJ(M) matrix model
can be recovered from this solution. In Sect. 3 we compare successfully the
1/N expansion of the matrix model with the topological string free energies of
local P

1 × P
1, which we compute around a generic point in the conifold locus.

We conclude in Sect. 4 and we list some open problems for the future. In the
Appendix, we list some properties of the quantum dilogarithm which are used
in Sect. 2.

2. Operators, Kernels and Matrix Models

2.1. Integral Kernel and Matrix Model for Local P
1 × P

1

As explained in [1,14], given the mirror curve to a toric CY threefold, one can
quantize it to obtain a trace class operator ρ. Although this procedure can be
followed for any toric geometry, the simpler case is that of toric (almost) del
Pezzo CY threefolds, defined as the total space of the canonical line bundle on
a toric (almost) del Pezzo surface S,

X = O(KS) → S. (2.1)

In this case, the mirror curve has genus one. The complex moduli of the curve
involve a “true” geometric modulus ũ as well as a set of “mass” parameters
mi, i = 1, . . . , r, where r depends on the geometry under consideration [30,31].
The mirror curves can be put in the “canonical” form

W (ex, ey) = OS(x, y) + ũ = 0, (2.2)

where OS(x, y) is given by

OS(x, y) =
k+2∑

i=1

exp
(
ν

(i)
1 x + ν

(i)
2 y + fi(mj)

)
, (2.3)

and fi(mj) are suitable functions of the parameters mj . The vectors ν
(i)
1,2 can be

obtained from the toric description of the CY threefold. The mirror curve (2.2)
is quantized by standard Weyl quantization. In particular, x, y are promoted
to self-adjoint Heisenberg operators x, y, satisfying the commutation relation

[x, y] = i�, (2.4)

and ordering ambiguities are resolved by Weyl’s prescription. In this way,
OS(x, y) becomes an operator, which will be denoted by OS . As conjectured
in [1] and proved in [14] in many cases, the inverse operator
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ρS = O−1
S (2.5)

is of trace class.
In this paper we will focus on the important local del Pezzo CY threefold

in which S = P
1 × P

1 = F0, and usually called local P
1 × P

1 or local F0.
Topological string theory on this background is known to have various appli-
cations: it engineers geometrically SU(2) Seiberg–Witten theory [32], it is dual
to Chern–Simons theory on the lens space L(2, 1) [25], and it is closely related
to the partition function of ABJ(M) theory on the three-sphere [6,24]. In this
case, the function OS(x, y) is given by,

OF0 (x, y) = ex + mF0e
−x + ey + e−y, (2.6)

and depends on a mass parameter that we denote by mF0 . In principle, we will
take mF0 to be real and positive, but as we will see it is possible to extend
some of the results to complex values of mF0 .

We would like to find an explicit expression for the kernel of the operator
ρF0 . As for the three-term operators analyzed in [14], this kernel will involve in
a crucial way Faddeev’s quantum dilogarithm Φb(x) [33–35], see the Appendix
for its definition and some of its basic properties. In addition, the function
Φb(x) has the following features. If p and q are self-adjoint Heisenberg opera-
tors satisfying,

[p, q] = (2πi)−1, (2.7)

the quantum dilogarithm satisfies [14]

Φb(p)e2πbq Φ∗
b(p) = e2πbq + e2πb(p+q),

Φ∗
b(q)Φb(p)e2πbq Φ∗

b(p)Φb(q) = e2πbq + e2πb(p+q) + e2πb(p+2q). (2.8)

One also has the important quantum pentagon identity [36],

Φb(p)Φb(q) = Φb(q)Φb(p + q)Φb(p). (2.9)

The quantization of (2.6) leads to the operator,

OF0 = ex + mF0e
−x + ey + e−y. (2.10)

Let us set

� = πb2 (2.11)

and

x = πb(p + 2q), y = πbp. (2.12)

Using (2.8), we find

ex/2OF0e
x/2 − mF0 = e2x + ex+y + ex−y = e2πb(p+2q) + e2πb(p+q) + e2πbq

= Φ∗
b(q)Φb(p)e2πbq Φ∗

b(p)Φb(q). (2.13)
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Therefore,

Φ∗
b(p)Φb(q)ex/2OF0e

x/2 Φ∗
b(q)Φb(p) = mF0 + e2πbq

= mF0

(
1 + e2πb(q−bξ/π)

)

= mF0

Φb(q − bξ/π − ib/2)
Φb(q − bξ/π + ib/2)

, (2.14)

where the parameter ξ is related to mF0 through the equation

mF0 = e2b2ξ. (2.15)

Let us now define the operator

B ≡ Φ∗
b(q − bξ/π − ib/2)Φ∗

b(p)Φb(q)eπbp/2eπbq. (2.16)

We obtain the following formula [14]

O−1
F0

= m−1
F0

B∗B. (2.17)

On the other hand, we can use the quantum pentagon relation (2.9) to write
the operator B as

e−(πb/2)2/(4πi) Φb(p)B

= Φ∗
b(p + q − bξ/π − ib/2)Φ∗

b(q − bξ/π − ib/2)Φb(q)eπb(p+q)/2eπbq/2

= Φ∗
b(p+q − bξ/π − ib/2)eπb(p+q)/2 Φ∗

b(q − bξ/π − ib/4)Φb(q + ib/4)eπbq/2.
(2.18)

If we introduce new momentum and position operators by

p′ ≡ p + q − bξ/π, q′ ≡ q − bξ/2π, (2.19)

we find

ρF0 = e−b2ξ/2f(q′)
1

2 cosh(πbp′)
f∗(q′), (2.20)

where

f(q) = eπbq/2 Φb(q − bξ/2π + ib/4)
Φb(q + bξ/2π − ib/4)

. (2.21)

In the position representation for the operators p′ and q′, we obtain the integral
kernel,

ρF0(x1, x2) = 〈x1|O−1
F0

|x2〉 = e−b2ξ/2 f(x1)f∗(x2)
2b cosh

(
π x1−x2

b

) . (2.22)

As shown already in [14], this is a positive-definite, trace class operator on
L2(R). Note that ρF0(x1, x2) is related by a unitary transformation to the
symmetric, real kernel

e−b2ξ/2 |f(x1)||f(x2)|
2b cosh

(
π x1−x2

b

) , (2.23)

which is of the type considered in [37,38]. In particular, as shown in these
references, its diagonal resolvent can be obtained from a TBA-like system of
non-linear integral equations.
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The spectral information of a trace class operator ρ depending on a para-
meter � and acting on a Hilbert space H can be encoded in different ways.
The spectral traces of ρ are defined by

Z� = TrH ρ�, � = 1, 2, . . . (2.24)

The fermionic spectral traces are given by

Z(N, �) = TrΛN (H)

(
ΛN (ρ)

)
, N = 1, 2, . . . , (2.25)

where the operator ΛN (ρ) is defined by ρ⊗N acting on ΛN (H). The generating
function of the fermionic spectral traces is the Fredholm or spectral determinant
of ρ:

Ξ(κ, �) = det(1 + κρ) = 1 +
∞∑

N=1

Z(N, �)κN , (2.26)

and it is an entire function of κ due to the trace class property of ρ [39].
A well-known theorem of Fredholm (see chapter 3 of [39] for a proof)

states that Z(N, �) has the matrix model-like representation

Z(N, �) =
1

N !

∫
dNxdet (ρ(xi, xj)) . (2.27)

In this equation, ρ(x1, x2) is the integral kernel of the operator ρ,

ρ(x1, x2) = 〈x1|ρ|x2〉. (2.28)

The spectral traces (2.24) and the fermionic spectral traces are closely
related, since one has that

J (κ) = log Ξ(κ, �) = −
∞∑

�=1

Z�

�
(−κ)�

. (2.29)

The above quantities can be interpreted, more physically, in terms of an ideal
Fermi gas of N particles, as in [6]. In this setting, ρ is the canonical density
matrix, Z(N, �) is the canonical partition function of the gas, Ξ(κ, �) is the
grand canonical partition function, and J (κ) is the grand potential.

Since we have an explicit formula for the integral kernel of ρF0 , we can
write down an explicit expression for the integral (2.27). By Cauchy’s identity,
as in [6,13,40],

∏
i<j

[
2 sinh

(
μi−μj

2

)] [
2 sinh

(
νi−νj

2

)]

∏
i,j 2 cosh

(
μi−νj

2

) = detij
1

2 cosh
(

μi−νj

2

)

=
∑

σ∈SN

(−1)ε(σ)
∏

i

1

2 cosh
(

μi−νσ(i)

2

) ,

(2.30)
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we obtain the following matrix model representation for the fermionic traces
of ρF0 ,

ZF0(N, �) =
e−b2ξN/2

N !

∫
dNu

(2π)N

N∏

i=1

∣∣∣∣f
(
bui

2π

)∣∣∣∣
2
∏

i<j 4 sinh2
(

ui−uj

2

)

∏
i,j 2 cosh

(
ui−uj

2

) , (2.31)

where the variables ui are related to the original variables xi by

ui =
2π

b
xi. (2.32)

2.2. Relation to Local F2 and Spectral Traces

It is known that topological string theory on the local F2 geometry is closely
related to topological string theory on local F0 [16]. It turns out that this
equivalence also holds at the level of the corresponding quantum operators.
To see this, let us first redefine the operators appearing in (2.10) as,

� = 2πb2, x = 2πbq, y = 2πbp. (2.33)

We then have,

ex + ey = ex/2
(
1 + ey−x

)
ex/2 = eπbqΦb (p − q − ib/2)

Φb (p − q + ib/2)
eπbq

= Φb (p − q) e2πbq Φb (p − q)−1
. (2.34)

Therefore,

1
Φb(p − q)

OF0 Φb(p − q) − e2πbq

=
1

Φb(p − q)
(
mF0e

−2πbq + e−2πbp
)
Φb(p − q)

= mF0e
−πbqΦb(p − q − ib/2)

Φb(p − q + ib/2)
e−πbq + e−πbpΦb(p − q − ib/2)

Φb(p − q + ib/2)
e−πbp

= mF0

(
e−2πbq + e2πb(p−2q)

)
+ e−2πbp + e−2πbq

= (1 + mF0)e
−2πbq + mF0e

2πb(p−2q) + e−2πbp, (2.35)

or in terms of original variables

1
Φb(p − q)

OF0 Φb(p − q) = ex + (1 + mF0)e
−x + mF0e

y−2x + e−y. (2.36)

By defining new variables

x′ = x + ν, y′ = y − 2x − 3ν, ν = −1
4

log(mF0), (2.37)

we rewrite (2.36) as follows

1
Φb(p − q)

m
−1/4
F0

OF0 Φb(p − q) = ex
′
+ (m1/2

F0
+ m

−1/2
F0

)e−x′
+ ey

′
+ e−2x′−y′

.

(2.38)
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We conclude that the operator m
−1/4
F0

OF0 is unitarily equivalent to the operator

OF2 = ex + mF2e
−x + ey + e−2x−y, (2.39)

corresponding to the local F2 geometry [1,14], after the substitution

mF2 = m
1/2
F0

+ m
−1/2
F0

. (2.40)

In the CY geometries, the rescaling by m
−1/4
F0

leads, in view of (2.2), to the
following relation between the moduli,

ũF2 = m
−1/4
F0

ũF0 . (2.41)

The relationships (2.40), (2.41) agree precisely with those found by a direct
analysis of the topological string in these geometries [16]. This means in par-
ticular that any test of the conjecture of [1] for local F0 leads automatically to
a corresponding test for local F2. The unitary equivalence of the two operators
also leads to the following equality of spectral traces,

Trρ�
F2

(mF2) = m
�/4
F0

Trρ�
F0

(mF0), (2.42)

after the substitution (2.40).
Using the expression for the integral kernel in (2.22), as well as (2.42), we

can in principle compute explicitly the first spectral traces. According to [1],
we should expect simplifications in the so-called maximally supersymmetric
case � = 2π, which corresponds to

b =
√

2 (2.43)

in (2.11). For this value of b, we can use the functional equation (A.9b) satisfied
by the quantum dilogarithm to obtain the following expression in terms of
elementary functions,

|f(x)|2 =
1

4 cosh
(

π
√

2(x−bξ/2π)
2

)
cosh

(
π

√
2(x+bξ/2π)

2

) . (2.44)

After an appropriate change of variables, we obtain,

TrρF0 =
1
8π

m
−1/4
F0

∫ ∞

−∞

du

cosh(u) cosh(u − √
2bξ/2)

=
1
8π

log(mF0)

m
1/2
F0

− 1
. (2.45)

The second trace is a little bit more complicated. We find

Trρ2
F0 =

1

64π2
m

−1/2
F0

∫ ∞

−∞

∫ ∞

−∞

dudv

cosh(u) cosh(u − √
2bξ/2π) cosh(v) cosh(v − √

2bξ/2π) cosh(u − v)2

=
m

−1/2
F0

16π2

⎡

⎢⎣

(
log(mF0)

m
1/2
F0

− m
−1/2
F0

+ 1

)2

− 1 − π2

(
m

1/4
F0

+ m
−1/4
F0

)2

⎤

⎥⎦ . (2.46)

When mF0 = 1, these expressions give,

TrρF0(mF0 = 1) =
1
4π

, Trρ2
F0

(mF0 = 1) =
12 − π2

64π2
. (2.47)
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in accord with the values predicted in [1] from the spectral theory/mirror
symmetry correspondence.

We can now use (2.42) to obtain the values of the same traces for local
F2. We find,

TrρF2 =
1
4π

cosh−1(mF2/2)√
mF2 − 2

,

Trρ2
F2

=
1

16π2

⎡

⎢⎣

⎛

⎝2
cosh−1(mF2/2)√

m2
F2

− 4
+ 1

⎞

⎠
2

− 1 − π2

mF2 + 2

⎤

⎥⎦ . (2.48)

We obtain, in particular

TrρF2(mF2 = 0) =
1

8
√

2
,

Trρ2
F2

(mF2 = 0) =
1
64

(
4
π

− 1
)

, (2.49)

which were already obtained in [14], and

TrρF2(mF2 = 1) =
1
12

,

Trρ2
F2

(mF2 = 1) =
1

432

(
12

√
3

π
− 5

)
. (2.50)

It can be verified [16] that these values agree with the predictions of the con-
jecture in [1].

2.3. Perturbative Expansion

We are now interested in studying the matrix integral (2.31) in the ‘t Hooft
limit (1.1). As in [13], we should first analyze the integrand of (2.31) when
� (or equivalently b) is large. At the same time, we have to decide what is
the appropriate scaling of the parameter mF0 appearing in the operator, as �

becomes large. As it was explained in [13], to recover the topological string for
arbitrary mass parameter, we have to scale

log mF0 ∼ �, � → ∞. (2.51)

We recall the variable ξ is defined as

ξ =
π

2�
log mF0 . (2.52)

This is the mass variable that will be kept fixed in the ‘t Hooft limit. If we
introduce the parameter

g =
1
�
, (2.53)
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we can write the matrix integral (2.31) in the form

Z(N, �) =
e−ξλ/(2πg2)

N !

∫

RN

dNu

(2π)N

N∏

i=1

e− 1
g V (ui,g)

∏
i<j 4 sinh

(
ui−uj

2

)2

∏
i,j 2 cosh

(
ui−uj

2

) , (2.54)

where

V (u, g) = −g log
∣∣∣∣f
(
bu

2π

)∣∣∣∣
2

. (2.55)

As in [13], we can now use the self-duality of Faddeev’s quantum dilogarithm,

Φb(x) = Φ1/b(x), (2.56)

as well as (A.10), to obtain the following asymptotic expansion for small g,

V (u, g) ∼ − u

2π
− 1

π2

∑

k≥0

(−4π4g2)k B2k(1/2)
(2k)!

× Im
[
Li2−2k(−ieu+ξ) + Li2−2k(−ieu−ξ)

]
. (2.57)

If we write this expansion as

V (u, g) =
∑

�≥0

g2�V (�)(u), (2.58)

we find that the leading contribution as g → 0 is given by the “classical”
potential,

V (0)(u) = − u

2π
− 1

π2

(
Im Li2(−i eu+ξ) + Im Li2(−i eu−ξ)

)
. (2.59)

The matrix integral (2.54) is an O(2) matrix model [41], in which the
inverse Planck constant g plays the role of the string coupling constant, and
the potential itself depends on g. To obtain the ‘t Hooft expansion of the
free energy, we can use the asymptotic expansion of the potential (2.58). In
particular, since this expansion only involves even powers of �, we conclude
that the matrix integral (2.54) admits a standard ‘t Hooft expansion, of the
form

F (N, �) = log Z(N, �) =
∑

g≥0

�
2−2gFg(λ, ξ), (2.60)

where λ is the ‘t Hooft parameter introduced in (1.1), and ξ was introduced in
(2.52). Note that, in the planar limit, only the classical part of the potential
(2.59) contributes. By the asymptotics of the dilogarithm, one finds that the
classical potential behaves as

V (0)(u) ≈ |u|
2π

, |u| → ∞, (2.61)

i.e., it is a linearly confining potential at infinity, similar to the potentials
appearing in matrix models for Chern–Simons-matter theories [6,19] and in
other matrix integrals associated to quantized mirror curves [13]. The potential
(2.59), for two values of ξ, as well as its asymptotic form (2.61), is shown in
Fig. 1.
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Figure 1. The classical potential (2.59) as a function of u,
for ξ = 1 (lower line) and ξ = 2 (upper line), together with
their asymptotic form (2.61) when u is large

We would like to compute the genus g free energies Fg(λ, ξ) appearing in
the expansion (2.60). We will first obtain approximate expressions for the very
first free energies, as expansions around λ = 0, by doing perturbation theory
in g, as in [13]. To do this, we regard (2.54) as a Gaussian Hermitian matrix
model, perturbed by single and double trace operators. The computation is
straightforward (see for example [25] for a similar example). For the genus g
free energies we find the following structure,

F0(λ, ξ) =
λ2

2

(
log
(

π2λ cosh ξ

4

)
− 3

2

)
− 2

π2
Im
(
Li2(i eξ)

)
λ +
∑

k≥3

f0,kλk,

F1(λ, ξ) = − 1
12

log � − 1
12

log λ + ζ ′(−1) +
∑

k≥1

f1,kλk,

Fg(λ, ξ) =
B2g

2g(2g − 2)
λ2−2g +

∑

k≥1

fg,kλk, g ≥ 2. (2.62)

In writing the second term in the first line, we used the dilogarithm identity

Li2(z) + Li2

(
1
z

)
= −π2

6
− 1

2
log2(−z). (2.63)

In the last line, B2g are Bernoulli numbers. The coefficients fg,k are themselves
non-trivial functions of the parameter ξ. For g = 0, one finds, at the very first
orders,
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f0,3 = π2 1 − 3 cosh(2ξ)
24 cosh(ξ)

,

f0,4 = π4 −73 + 68 cosh(2ξ) + 45 cosh(4ξ)
2304 cosh2(ξ)

,

f0,5 = π6 534 − 203 cosh(2ξ) − 390 cosh(4ξ) − 165 cosh(6ξ)
30720 cosh3(ξ)

, (2.64)

while for g = 1, 2, one finds,

f1,1 = π2 −1 + 3 cosh(2ξ)
48 cosh(ξ)

,

f1,2 = π4 127 + 4 cosh(2ξ) − 27 cosh(4ξ)
2304 cosh2(ξ)

,

f1,3 = π6 −750 − 265 cosh(2ξ) + 30 cosh(4ξ) + 57 cosh(6ξ)
18432 cosh3(ξ)

,

f2,1 = π6 894 + 577 cosh(2ξ) + 210 cosh(4ξ) + 15 cosh(6ξ)
61440 cosh3(ξ)

. (2.65)

These results will be crucial to compare the asymptotic evaluation of the fermi-
onic spectral traces to the predictions of [1].

2.4. The Exact Planar Solution

The O(2) matrix model can be solved exactly in the planar limit [17,42].
However, it was noted in [19] that instead of using the specific results for the
O(2) case, it is more convenient to first consider the O(n) model for arbitrary
n, solve it with the powerful techniques of [18], and then take the limit n → 2.

To proceed, we change variables z = eu in the matrix integral (2.54), and
we obtain

Z(N, �) =
e− ξ

2πg2
λ

N !

∫
dNz

(2π)N
e− 1

g

∑N
i=1(V

(0)(zi)+O(g2))

∏
i<j(zi − zj)2∏
i,j(zi + zj)

, (2.66)

where the classical potential (2.59), when written in terms of z, reads

V (0)(z) = − log(z)
2π

+
ImLi2(i zeξ) + ImLi2(i ze−ξ)

π2
. (2.67)

To obtain the planar limit it is enough to consider the classical potential in
(2.66). We assume that we can model the distribution of eigenvalues by a con-
tinuous function on a single connected compact support, i.e., we assume that
we have a one-cut solution. This is a natural assumption, since the potential
has a unique minimum at u = 0 and it has a linearly confining behavior (2.61).
We will take the cut along the segment [a, b] ∈ R+. Following the techniques
of [18] (in the conventions of [19]) we introduce the auxiliary G-functions,

G(ν)(z) = −i
(
e

iπν
2 G

(ν)
+ (z) − e− iπν

2 G
(ν)
+ (−z)

)
, (2.68)

G(1−ν)(z) = −
(
e

iπν
2 g+(z)G(ν)

+ (z) + e− iπν
2 g+(−z)G(ν)

+ (−z)
)
, (2.69)
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where

G
(ν)
+ (z) =

−iz√
z2 − a2

√
z2 − b2

ϑ4(0)ϑ1

(
π v−i(1−ν)K′

2K

)

ϑ4

(
π i(1−ν)K′

2K

)
ϑ1

(
π v

2K

)e− iπ(1−ν)v
2K

with z = a sn(v), (2.70)

g+(z) =

√
z2 − a2

√
z2 − b2 + z

e

√
e2 − a2

√
e2 − b2

z2 − e2

with e = a sn(i(1 − ν)K′). (2.71)

Here, K and K′ are elliptic integrals of the first kind, and ϑi(u) are Jacobi theta
functions. We follow the conventions of [43] for all the elliptic functions and
integrals appearing in these formulae. The elliptic modulus k and the nome
q (= eiπτ ) are given by:

k =
a

b
, q = e−π K′

K . (2.72)

In addition, the ν parameter is related to the n of the O(n) model by

n = 2 cos(πν), (2.73)

so that n → 2 corresponds to ν → 0.
Let us denote by C the closed contour encircling the cut at [a, b] clockwise.

The following equations, due to [18], allow to find the ‘t Hooft parameter λ as
a function of the endpoints of the cut a, b:

0 =
1

2 cos
(

π(1−ν)
2

)
∮

C

dz

2πi
dV (0)

dz
G(1−ν)(z), (2.74)

λ =
1

2(1 − cos(νπ)) cos(πν
2 )

∮

C

dz

2πi
z
dV (0)

dz
G(ν)(z). (2.75)

The first equation is satisfied if we set b = 1/a, as expected from the symmetry
ui ↔ −ui of the matrix integral. So our elliptic modulus is given by k = a2.
The second equation leads, in the limit ν → 0, to the equation

λ =
f(ξ, a)

π2
. (2.76)

To determine the function f(ξ, a), we note that the derivative ∂f(ξ, a)/∂ξ can
be computed by deforming the contour and using the residue theorem. Indeed,
we have

∂

∂ξ

(
z
dV (0)

dz

)
=

z

2π2i

( 1
z + ieξ

− 1
z − ieξ

− 1
z + ie−ξ

+
1

z − ie−ξ

)
. (2.77)
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After some calculations, one obtains

∂

∂ξ
f(ξ, a) =

K

2π
√

(a2 + 1)2 + 4a2 sinh2(ξ)
{

−
(

Z

(
arcsin

eξ

√
a2 + e2ξ

)
− eξ

√
1 + a2e2ξ

√
a2 + e2ξ

)2

+

(
Z

(
arcsin

e−ξ

√
a2 + e−2ξ

)
− e−ξ

√
1+a2e−2ξ

√
a2+e−2ξ

)2

+ 2a2 sinh(2ξ)

}
,

(2.78)

where Z is the Jacobi Zeta function. The argument of the elliptic functions
appearing in this and subsequent expressions is now given by the complemen-
tary modulus

k1 =
√

1 − a4. (2.79)

Since f(ξ, a) → 0 when ξ → −∞, we can write

f(ξ, a) =
∫ ξ

−∞
dξ′ ∂

∂ξ′ f(ξ′, a). (2.80)

A convenient expression for this integral is in terms of Jacobi theta functions
with nome

q1 = e−π K′
K = eiπτ1 . (2.81)

One finds,

f(ξ, a) = lim
Λ→∞

[
1
4

∫ π
2Kw(Λ)

π
2Kw(ξ)

(
ϑ′

2

ϑ2
(y)2 − ϑ′

1

ϑ1
(y)2
)

dy

+
K
2π

(√
(a2 + 1)2 + 4a2 sinh2(ξ) −

√
(a2 + 1)2 + 4a2 sinh2(Λ)

)]
,

(2.82)

where

w(ξ) = F
(

arcsin
eξ

√
a2 + e2ξ

)
(2.83)

and F is the incomplete elliptic integral of the first kind with modulus k1.
This equation determines the endpoints of the cut as functions of the ‘t Hooft
parameter λ. The planar free energy is then determined by the equation [18,19],

d2F0

dλ2
= −2π

K′

K
= 2 log q1, (2.84)

up to two integration constants, which can be easily fixed by the weak coupling
analysis of the previous section.

The exact planar solution makes it possible to explore the dependence of
F0 on the full moduli space of λ, ξ. First of all, we can reproduce the pertur-
bative results in (2.62), (2.64) by doing a small ‘t Hooft coupling expansion.
When the ‘t Hooft parameter goes to zero, the cut collapses to the minimum
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of the potential. In the z-plane, the endpoint of the cut a goes towards 1, so we
can expand in small k1 =

√
1 − a4. In this case, we can use the q1-expansions

of the theta functions in (2.82), and after some calculations we find,

λ =
1

64π2 cosh(ξ)
k4
1 +

1
64π2 cosh(ξ)

k6
1 +

115 + 119 cosh(2ξ)
16384π2 cosh3(ξ)

k8
1

+
51 + 55 cosh(2ξ)
8192π2 cosh3(ξ)

k10
1 + O(k12

1 ). (2.85)

Inverting this series and plugging it in (2.84), we obtain, after integrating
twice,

F0(λ, ξ) = c0(ξ) +
(

c1(ξ) − ξ

2π

)
λ +

λ2

2

(
log

π2λ cosh ξ

4
− 3

2

)

+
π2(1 − 3 cosh(2ξ))

24 cosh(ξ)
λ3 +

π4(−73 + 68 cosh(2ξ) + 45 cosh(4ξ))
2304 cosh2(ξ)

λ4

+ O(λ5), (2.86)

where c0,1(ξ) are integration constants, and we added after integration the
missing −ξλ/(2π) from the prefactor of (2.66). This agrees with the perturba-
tive expansion at genus zero from (2.62), (2.64).

One advantage of the exact solution is that we can also analyze the regime
of strong ‘t Hooft coupling. For this, we do an S-transformation in (2.82) and
express our formulae in terms of

q = eiπτ = e−iπ/τ1 , (2.87)

which is the relevant variable for the large λ expansion. We also do a shift in
the integration variable to obtain:

f(ξ, a)

= lim
Λ→∞

{
−τ

4

∫ πτ
2 (1−w(Λ)/K)

πτ
2 (1−w(ξ)/K)

dy

(
ϑ′

1

ϑ1
(y) − ϑ′

4

ϑ4
(y)
)(

ϑ′
1

ϑ1
(y) +

ϑ′
4

ϑ4
(y) +

4iy
πτ

)

+
K
2π

(√
(a2 + 1)2 + 4a2 sinh2(ξ) −

√
(a2 + 1)2 + 4a2 sinh2(Λ)

)}
,

(2.88)

where the elliptic integrals are still evaluated at k1. As we did for the weak
coupling expansion, we expand the integrand in small q and integrate. After
some calculations, we obtain

λ =
1

8π3
log2 k

4
− 1

12π
− ξ2

2π3
+

1
π3

cosh(2ξ)
(

1 − log
k

4

)(
k

4

)

+
1

4π3

{
4
(

1 − log
k

4

)
+ 3 cosh(4ξ)

(
−1 + 2 log

k

4

)}(
k

4

)2

+ O(k3).

(2.89)
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where we remind that k = a2. This can be inverted to yield the series,

k

4
= e−2π

√
2λ̂ +

(
4 +

√
2

π
√

λ̂

)
cosh(2ξ)e−4π

√
2λ̂ + O

(
e−6π

√
2λ̂

)
, (2.90)

where we use the shorthand notation

λ̂ = πλ +
1
12

+
ξ2

2π2
. (2.91)

Again, by (2.84), we finally obtain,

F0(λ, ξ) = −
√

2 λ̂3/2

3π
+ c̃0(ξ) +

(
c̃1(ξ) − ξ

2π

)
λ − cosh(2ξ)

4π4
e−2π

√
2λ̂

− 1
32π5

{(
8π +

4√
2λ̂

)
+

(
π +

4√
2λ̂

)
cosh(4ξ)

}
e−4π

√
2λ̂

+O
(

e−6π
√

2λ̂

)
, (2.92)

where c̃0,1(ξ) are integration constants that can be fixed in principle from the
weak coupling behavior. As anticipated in [1], the strong coupling expansion
of the free energy displays the 3/2 scaling typical of theories of M2 branes
[44], and the coefficient of the leading term agrees with the general formula
for local del Pezzo Calabi–Yau’s found in [1]. The expansion (2.92) is very
similar to the expansion of the planar free energy of ABJ(M) theory presented
in [24]. As we will see in the next section, one can in fact recover the result
for ABJ(M) theory from (2.92). Let us also note that, in the case ξ = 0, the
formulae above simplify considerably, and one can write the periods in terms
of indefinite integrals of theta functions,

λ = − 1
2πi

∫
dτ1 ϑ2(2τ1)4ϑ3(2τ1)2,

dF0

dλ
= −

∫
dτ1 τ1 ϑ2(2τ1)4ϑ3(2τ1)2 + c, (2.93)

where c is again an integration constant. These integrals can be performed to
obtain an expression which is useful for strong coupling expansions, namely,

λ =
1

4π4
G3,2

3,3

(
4k

(k + 1)2

∣∣∣∣
1
2 , 1

2 , 1
0, 0, 0

)
+ C1,

∂F0

∂λ
=

4k

16π(k + 1)2 4F3

(
1, 1,

3
2
,
3
2
; 2, 2, 2;

4k

(k + 1)2

)

+
1
4π

log
(

− 4k

(k + 1)2

)
+ C2. (2.94)

Another ingredient of the planar solution which can be computed exactly is
the density of eigenvalues. Let us first consider the resolvent of the O(2) matrix
model (2.66), defined as

ω(p) =
1
N

〈
Tr

1
p − M

〉
, (2.95)
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where M is the matrix with eigenvalues zi, i = 1, . . . , N , and the bracket
denotes the normalized vev. We can split this function into its even and odd
parts with respect to p,

ω(p) = ω+(p) + ω−(p). (2.96)

The planar limit of the even part can be computed using the formula [17]

ω0
+(p) = − 1

2λ

∮

C

dw

2πi
V ′(w)w
p2 − w2

√
(p2 − a2)(p2 − 1

a2 )
√

(w2 − a2)(w2 − 1
a2 )

, (2.97)

where V (z) is the planar potential (2.67), and C is a contour around the cut
[a, 1/a] anti-clockwise. We find,

ω0
+(p) =

a
√

(p2 − a2)(p2 − 1
a2 )

4π2ip2λ

{
Π
(

a2

p2
, arcsin

ieξ

a

∣∣∣a4

)

+ Π
(

a2

p2
, arcsin

ie−ξ

a

∣∣∣a4

)
− L(p, a)

}

+
1

4π2pλ

(
arctan

eξ

p
− arctan eξp

)
, (2.98)

where Π is the elliptic integral of the third kind, and

L(p, a) = lim
Λ→∞

Π
(

a2

p2
, iΛ
∣∣∣a4

)

=
−ip2

a2(a2 − p2)

[
Π
(

1 − p2

a2

∣∣∣∣ 1 − 1
a4

)
− K′

(
1
a4

)]
. (2.99)

When z ∈ [a, 1/a], the eigenvalue density is given by the discontinuity equation

ρ(z) =
1
iπ

(
ω0

+(z + i0) − ω0
+(z − i0)

)
(2.100)

=
a
√

(z2 − a2)( 1
a2 − z2)

2π3iz2λ
×
{

Π
(

a2

z2
, arcsin

ieξ

a

∣∣∣a4

)

+ Π
(

a2

z2
, arcsin

ie−ξ

a

∣∣∣a4

)
− L(z, a)

}
. (2.101)

This expression can be checked by doing a numerical simulation of 300 eigen-
values relaxed into a configuration which approximately minimizes the effec-
tive action of the matrix model, as in [45]. The results are shown in Fig. 2,
after going back to the initial u variable, so that ρ(u) = ρ(z(u))dz/du, with
z(u) = eu.

2.5. Relation to the ABJ(M) Matrix Model

In [46], a matrix model computing the partition function of ABJ(M) the-
ory [47,48] on S

3 was derived, using localization. This model turns out to
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Figure 2. Left Eigenvalue density ρ(u) for λ = 1, ξ = 0
against a histogram showing the numerical density of N = 300
relaxed eigenvalues. Right Same plot with λ = 3/4 and ξ = 5

be closely related to the topological string on local P
1 × P

1. In the case of
ABJM theory, this was first noted and exploited in [6,24] in the context of
the ‘t Hooft expansion, and then in [9,10] for the M-theory expansion (which
involves as well the refined topological string in the NS limit). The generaliza-
tion to ABJ theory was done in [23,49]. Since the matrix model (2.31) gives
a non-perturbative completion of the partition function on this geometry, it is
natural to wonder whether it is related to the ABJ(M) matrix model. In fact,
one can recover the ABJ(M) matrix model from (2.31) provided one considers
complex values of the parameter mF0 . Note that the operator (2.10) is no longer
self-adjoint in this case, and, in addition, one has to be careful with the result-
ing multi-valued structure, since the integral kernel depends on the logarithm
of mF0 .

Let us then set

log mF0 = i� − 2πiM, M ∈ Z≥0. (2.102)

Here, the integer M will be identified with the difference between the ranks of
the two Chern–Simons theories in ABJ theory [48]. This relationship is the one
suggested by the explicit results of [23,49]. In these papers, the grand potential
of ABJ(M) theory is written in terms of the topological string on local F0. If
we now use the explicit expression (2.20) for the integral kernel, we find

ρF0 = e−i�/4+iπM/2e
√

π� q/2
Φ√

�/π
(q + i

2M
√

π/�)

Φ√
�/π

(q − i
2M
√

π/�)
1

2 cosh(
√

π� p)

×
Φ√

�/π
(q − i

2M
√

π/� + i
2

√
�/π)

Φ√
�/π

(q + i
2M
√

π/� − i
2

√
�/π)

e
√

π� q/2. (2.103)

Due to the form of the arguments, we can use the functional equations for the
quantum dilogarithm, (A.9a) and (A.9b), and we obtain
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ρF0 = e−i�/4+iπM/2e
√

π� q/2

⎛

⎝
M−1

2∏

s= −M+1
2

1

1 + e2π(q
√

π/�+iπs/�)

⎞

⎠ 1
2 cosh(

√
π� p)

×
⎛

⎝
M−1

2∏

s= −M+1
2

(1 + e2π(q
√

π/�+iπs/�+i/2))

⎞

⎠ 1
1 + (−1)Me2

√
π� q

e
√

π� q/2.

(2.104)

To make contact with ABJ(M) theory, let us define

k =
�

π
(2.105)

and let us introduce the variables

u = 2π
√

k q, v = 2π
√

k p, (2.106)

so that [u, v] = 2πik. In these new variables, and after a similarity transforma-
tion, we find,

AρF0 A−1 = e−iπk/4+iπM/2ρABJ(M), (2.107)

where

ρABJ(M) =
1

2 cosh(v/2)
1

e
u
2 + (−1)Me− u

2

M−1
2∏

s= −M+1
2

tanh
(u + 2πis

2k

)
(2.108)

is, up to a similarity transformation, the operator appearing in the Fermi gas
formulation of ABJM theory [6] and of ABJ theory [21–23]. Since the phase
appearing in (2.107) is the same one appearing in the relation between F0 and
F2, we also conclude that,

ρF2 = ρABJ(M), (2.109)

up to a combination of unitary and similarity transformations. The dictionary
between the parameters is (2.105) and

mF2 = 2 cos
(

πk

2
− πM

)
. (2.110)

In particular, the spectral traces of the kernel of the ABJ(M) matrix model
can be obtained from the traces of the F2 operator. This can be easily tested
for ABJM theory, in the case k = 2, M = 0, using the expressions (2.48). The
relevant value of the mass parameter is mF2 = −2, which is a branch point for
the functions in (2.48). However, the traces at this point are well-defined and
one finds the correct values [7]

Tr ρABJM

∣∣
k=2

=
1
8
, Tr ρ2

ABJM

∣∣
k=2

=
1
64

− 1
16π2

. (2.111)

We also find that, when k = 2 and M = 1, which is the maximally supersym-
metric ABJ theory, the theory is equivalent (at the level of spectral traces) to
the maximally supersymmetric case of local F2 with mF2 = 2, or, equivalently,
of local F0 with mF0 = 1.
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The exact results for the planar solution found in the previous section
can be used to rederive the exact planar solution of the ABJ(M) matrix model,
first obtained in [24,50]. Indeed, due to (2.102), the exact planar free energy
of ABJ(M) theory can be obtained from the general formulae obtained above
by setting

ξ =
iπ
2

− iπ2M

�
. (2.112)

As a check, note that the shifted variable (2.91) becomes

λ̂ = πλ − 1
2

(
B2 − 1

4

)
− 1

24
, (2.113)

where

B =
1
2

− M

k
(2.114)

has to be identified as the B field of ABJ theory. The shift (2.113) is pre-
cisely the one found in [24]. In addition, the strong coupling expansion (2.92)
becomes,

F0(λ, β) = −
√

2 λ̂3/2

3π
+ c̃0 +

(
c̃1 − i

4

)
λ +

β + β−1

8π4
e−2π

√
2λ̂

− 1
4π4

{
1
16

(β2 + 16 + β−2) +
1

4π
√

2λ̂
(β + β−1)2

}
e−4π

√
2λ̂

+ O
(

e−6π
√

2λ̂

)
,

where

β = e−2πiM/k. (2.115)

The function in (2.115) is precisely −1/(4π4) times the planar free energy
FABJ

0 obtained in [24]. This overall factor is due to our different conventions
for the string coupling constant.

It should be noted, however, that the perturbative and weak coupling
expansion worked out for the matrix model (2.54) can not be used for ABJM
theory in the form presented above. For ABJM theory, M = 0, so that ξ =
iπ/2, and the expansions (2.64), (2.65) and (2.86) diverge. This is not a problem
of our exact solution, but rather a breakdown of the Gaussian approximation.
The reason is that, when considering the particular limit of ABJM theory,
the “classical” potential (2.59) is no longer a perturbed Gaussian, since it is
exactly given by the r.h.s. of (2.61), and, in particular, it is not smooth at
u = 0. One can, however, still obtain the correct weak coupling expansion
from the exact planar solution, and one obtains,

λ =
1

8π2
k2
1 +

1
16π2

k4
1 +

65
1536π2

k6
1 + O(k8

1) (2.116)
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where k1 is given by (2.79), as well as

F0(λ) = c0 + c1λ +
(

log
(

π2λ

2

)
− 3

2

)
λ2 − π4

9
λ4

+
283π8

5400
λ6 − 961π12

19845
λ8 + O(λ10), (2.117)

which is precisely (up to an overall factor −1/(4π4)) the expression found in
[24]. In addition, one finds the relations

λ = − 1
2πi

∫
dτ1 ϑ3(2τ1)4ϑ2(2τ1)2,

dF0

dλ
= −

∫
dτ1 τ1 ϑ3(2τ1)4ϑ2(2τ1)2 + c̃, (2.118)

which are obtained from (2.93) by exchanging ϑ2 with ϑ3. This can be also
integrated explicitly, as in (2.94), and the result is in precise agreement with
the result of [24].

3. Comparing the Matrix Model to the Topological String

3.1. Predictions from the Spectral Theory/Mirror Symmetry Correspondence

The conjecture of [1] gives a very precise prediction for the ‘t Hooft expansion
(1.2) of the fermionic traces of the trace class operators obtained by quantizing
mirror curves. We will now summarize some of the results of [1], specialized to
the case of interest, namely local P

1 ×P
1 (see also [13,14] for other summaries

of the main results of [1]). According to the conjecture of [1], the basic quantity
determining the spectral properties of the operator ρF0 is the modified grand
potential J(μ,mF0 , �). This function depends on the “chemical potential” μ,
which is related to the “fugacity” κ entering (2.26) as

κ = eμ, (3.1)

as well as on the mass parameter mF0 appearing in (2.10). The modified grand
potential is determined by the enumerative geometry of the CY. We first need
a dictionary between the parameters μ, mF0 , and the parameters appearing in
the enumerative geometry of local P

1 × P
1. This CY has a “diagonal” Kähler

parameter T , which is related to μ by

T = 2μeff . (3.2)

Here, the “effective” μ parameter is determined by the so-called quantum
mirror map of [4] (see [1] for the notation),

μeff = μ − 1
2

∑

�≥1

â�(�)e−2�μ. (3.3)

In this paper we will not need the explicit expression of this quantum mirror
map, since it is not relevant in the ‘t Hooft limit we will focus on. In addition,
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there is a Kähler parameter Tm associated to the mass parameter mF0 . Geo-
metrically it measures, roughly speaking, the difference in sizes between the
two spheres in local P

1 × P
1, and one has the relation

Tm = − log mF0 . (3.4)

The modified grand potential has the form,

J(μ,mF0 , �) = J (p)(μeff ,mF0 , �) + JM2(μeff ,mF0 , �) + JWS(μeff ,mF0 , �).
(3.5)

Here, J (p)(μ,mF0 , �) is the perturbative part, which is a cubic polynomial in
μ:

J (p)(μ,mF0 , �) =
2

3π�
μ3 − log mF0

2π�
μ2 +

(
π

3�
− �

12π

)
μ + A(mF0 , �).

(3.6)

When mF0 = 1 one recovers the expression presented in [1]. When mF0 = 1, the
part which depends on μ can be obtained in a relatively straightforward way by
working out the classical grand potential [16,51], or using the result for local
F2 and the dictionary between this model and local F0. A precise expression
for the function A(mF0 , �) has been obtained by Y. Hatsuda (Unpublished.).
His expression exploits the relationship between ABJ theory and topological
string theory on local P

1 × P
1 discussed in Sect. 2.5. It is given by,

A(mF0 , �) =
log3 mF0

48π�
− log mF0

4

( π

3�
− �

12π

)
+ Ac

(
�

π

)
− FCS

(
�

π
,M

)
.

(3.7)

Let us spell out the details of this formula. The function Ac(k) was introduced
in [6] in the Fermi gas approach to ABJM theory. It was determined explicitly
in [51] and further simplified in [52]. It reads,

Ac(k) =
2ζ(3)
π2k

(
1 − k3

16

)
+

k2

π2

∫ ∞

0

x

ekx − 1
log(1 − e−2x)dx. (3.8)

In (3.7), FCS(k,M) is an analytic continuation of the Chern–Simons free energy
on the three-sphere for gauge group U(M) and level k,

FCS(k,M) = log ZCS(k,M), (3.9)

where M is related to the parameters of our problem as

M =
� + i log mF0

2π
. (3.10)

Note that this is precisely the relation (2.102) used in Sect. 2.5. As it is well-
known, the Chern–Simons partition function for integer M is given by [53]

ZCS(k,M) = k−M/2
M∏

j=1

(
2 sin

πj

k

)M−j

, (3.11)
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but in view of (3.10) we have to extend it to arbitrary complex M . This can
be done in various equivalent ways [54,55], but in this paper we will not need
the precise form of this extension.

The “membrane” part of the potential JM2(μeff ,mF0 , �) appearing in
(3.5) will not be relevant for our purposes. It is fully determined by the refined
BPS invariants of the topological string in this CY background, see [1,13] for
details. Finally, the worldsheet part of the modified grand potential is

JWS(μeff ,mF0 , �) =
∑

g≥0

∞∑

v=1

∑

d

nd
g

1
v

(
2 sin

2π2v

�

)2g−2

e− 2π
�

vd·T, (3.12)

where

T = (T, Tm), (3.13)

nd
g are the Gopakumar–Vafa invariants [56] of local P

1 × P
1, and d = (d1, d2)

are two non-negative integers.
One of the consequences of the conjecture of [1] is that the fermionic

spectral traces ZF0(N, �) can be obtained as integral transforms of the modified
grand potential,

ZF0(N, �) =
1

2πi

∫

C
eJ(μ,mF0 ,�)−Nμdμ, (3.14)

where the contour C goes from e−iπ/3∞ to eiπ/3∞ (so that the integral is
absolutely convergent). The formula (3.14) leads to a precise prediction for
the ‘t Hooft limit of the fermionic spectral traces. Note that, to keep the
dependence on both Kähler parameters, we have to take a limit in which
log mF0 scales with �, as we required in (2.51). We then consider the ‘t Hooft
limit of J(μ,mF0 , �), in which

μ → ∞, mF0 → ∞, � → ∞, (3.15)

and
μ

�
= ζ fixed,

π

2�
log mF0 = ξ fixed. (3.16)

The parameter ξ was introduced in (2.52). We will express often the results in
terms of

m = e4ξ, (3.17)

which corresponds to the mass parameter appearing in the standard topolog-
ical string free energies. Indeed, with this definition, one has that

− log(m) =
2π

�
Tm. (3.18)

In the ‘t Hooft limit, the membrane part of the grand potential in (3.5)
goes to zero, and μeff → μ. The remaining ingredients have non-trivial ‘t
Hooft-like expansions. The expansion of A(mF0 , �) can be easily worked out.
The function Ac(k) has the large k expansion [51]:
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Ac(k) = − k2

8π2
ζ(3) +

1
2

log(2) + 2ζ ′(−1) +
1
6

log
( π

2k

)

+
∑

g≥2

(
2π

k

)2g−2

4g(−1)g−1cg, (3.19)

where

cg =
B2gB2g−2

(4g)(2g − 2)(2g − 2)!
. (3.20)

On the other hand, in the limit we are considering, M → ∞, but

2π2i
�

M = πi − 2ξ (3.21)

is fixed. This is the standard ‘t Hooft expansion of FCS(�/π,M), worked out
at all genus in [26], and with ‘t Hooft parameter (3.21). One then finds an
expansion of the form,

A(mF0 , �) =
∑

g≥0

Ag(ξ)�2−2g, (3.22)

where A1(ξ) includes as well a logarithmic dependence on �, and

A0(ξ) =
ζ(3) − 2Li3(−e2ξ)

8π4
,

A1(ξ) = −ξ

6
+

1
12

log
(
16π2 cosh ξ

)− 1
12

log � + ζ ′(−1),

Ag(ξ) = (2π2)2g−2(−1)g−1

{
(4g − 2)cg − B2g

2g(2g − 2)!
Li3−2g

(−e2ξ
)}

.

(3.23)

It follows from this expression that

Ag(0) = 2(−1)g−1
(
4π2
)2g−2

cg

(
3 − 23−2g

)
, g ≥ 2, (3.24)

in agreement with the result presented in [1] for mF0 = 1,

A (mF0 = 1, �) =
3
2
Ac

(
�

π

)
− Ac

(
2�

π

)
. (3.25)

One concludes that, in the ‘t Hooft limit (3.15), the modified grand potential
has the asymptotic expansion,

J ‘t Hooft(ζ, ξ, �) =
∞∑

g=0

Jg(ζ, ξ)�2−2g, (3.26)

where

J0(ζ, ξ) =
2
3π

ζ3 − log m

4π2
ζ2 − 1

12π
ζ + A0(ξ) +

1
16π4

F inst
0 (t,m),

J1(ζ, ξ) =
π

3
ζ + A1(ξ) + F inst

1 (t,m),

Jg(ζ, ξ) = Ag(ξ) + (4π2)2g−2F inst
g (t,m) , g ≥ 2. (3.27)
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Here, we have introduced the variable

t = 4πζ, (3.28)

and F inst
g (t,m) is the worldsheet instanton part of the standard genus g topo-

logical string free energy.
To obtain the ‘t Hooft expansion of the fermionic trace and make contact

with (2.60), we have to calculate the integral in (3.14), by doing a saddle-point
expansion for � large. Let us denote by

∑

g≥0

FF0
g (λ,m)�2−2g (3.29)

the asymptotic expansion of the logarithm of the integral in (3.14). At leading
order, one finds

λ =
∂J0(ζ,m)

∂ζ
, (3.30)

which determines the ‘t Hooft parameter λ as a function of ζ, and conversely,
ζ as a function of λ. The genus zero free energy FF0

0 (λ,m) is then given by a
Legendre transform,

FF0
0 (λ,m) = J0(ζ(λ),m) − λζ(λ). (3.31)

In particular

∂FF0
0

∂λ
= −ζ. (3.32)

The next-to-leading order correction to the saddle-point, FF0
1 (λ,m), is given

by,

FF0
1 (λ,m) = J1(ζ(λ),m) − 1

2
log
(

2π
∂2J0

∂ζ2

)
. (3.33)

The higher order corrections can be computed systematically using the results
of [57] (already exploited in this context in [13]): in the saddle-point approx-
imation, the integral in (3.14) implements a transformation from the large
radius frame, appropriate to Jg(ζ,m), to the conifold frame. Therefore, the
functions FF0

g (λ,m) appearing in (3.29) are the topological string free energies
of local P

1 × P
1 in the conifold frame. According to the conjecture of [1], they

should be equal to the matrix model free energies appearing in (2.60)

Fg(λ,m) = FF0
g (λ,m), g ≥ 0. (3.34)

This was tested in detail for local P
2 and for local F2 (for a fixed valued of

mF2) in [13]. We will devote the rest of this paper to an explicit verification
of (3.34), and in the next section we will compute the r.h.s. of (3.34) using
standard techniques in topological string theory.
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3.2. Topological Strings on Local P
1 × P

1

Let us review some basic facts about the special geometry of local P
1 × P

1.
Since this has two two-cycles, we can regard it as a two parameter model, and
its mirror has then two complex moduli z1, z2. However, it has been known for
some time that m = z1/z2 does not receive quantum corrections, therefore it
should be rather regarded as a parameter (see for example [30]). We will then
have a complex modulus, z = z2, and a “mass” parameter m. The periods will
be obtained as solutions to a single Picard–Fuchs (PF) equation corresponding
to the operator [30]:

L =
(
8(1 − m)2z2 − 4(1 + m)z +

1
2

)
θ3 +

(
16(1 − m)2z2 − 4(1 + m)z

)
θ2

+
(
6(1 − m)2z2 − (1 + m)z

)
θ, (3.35)

where

θ = z
d
dz

. (3.36)

This is the form of the operator which is appropriate for the large radius point
z = 0. As usual in local mirror symmetry, there will be a constant solution 1,
a logarithmic solution

g1(z) = log(z) + σ1(z), (3.37)

and a double logarithmic solution,

g2(z) = log2(z) + 2 log(z)σ1(z) + σ2(z). (3.38)

In these equations, σ1,2(z) are power series around z = 0, whose coefficients
depend on m. The very first orders read,

σ1(z) = 2(m
1
2 + m− 1

2 )m
1
2 z + 3

(
(m + m−1) + 4

)
mz2

+
20
3

(
(m

3
2 + m− 3

2 ) + 9(m
1
2 + m− 1

2 )
)
m

3
2 z3 + O(z4),

σ2(z) = 4(m
1
2 + m− 1

2 )m
1
2 z +

(
13(m + m−1) + 40

)
mz2

+
8
9

(
41(m

3
2 + m− 3

2 ) + 279(m
1
2 + m− 1

2 )
)
m

3
2 z3 + O(z4)

(3.39)

Let us now consider the following linear combinations of the basic periods,

Π(lr)
A (z) =

(
0 1 0

)
⎛

⎝
1
g1(z)
g2(z)

⎞

⎠ , (3.40)

Π(lr)
B (z) =

(
0

log m

2
1
2

)
⎛

⎝
1
g1(z)
g2(z)

⎞

⎠ . (3.41)

The first A-period determines the flat coordinate t through the mirror map,
while the second, B-period determines the genus zero free energy F0(t,m) at
large radius,
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−t = Π(lr)
A ,

∂F0

∂t
= Π(lr)

B . (3.42)

After integration, we get,

F0(t,m)

=
t3

6
− log m

4
t2 − 2(m

1
2 + m− 1

2 )m
1
2 e−t − 1

4

(
(m + m−1) + 16

)
me−2t

− 2
27

(
(m

3
2 + m− 3

2 ) + 81(m
1
2 + m− 1

2 )
)
m

3
2 e−3t + O(e−4t). (3.43)

Equivalently, one can obtain the same information from the equations

∂t

∂z
= − 2

πz
√

1 − 4(
√

m + 1)2z
K
(

16
√

mz

4(
√

m + 1)2z − 1

)
, (3.44)

∂2F0

∂t∂z
= − 2

z
√

1 − 4(
√

m − 1)2z
K
(

4(
√

m + 1)2z − 1
4(

√
m − 1)2z − 1

)
, (3.45)

which can be obtained from the results of [58] for local F2, together with the
dictionary relating the moduli of local F2 to those of local F0.

We now analyze the theory near the conifold locus given by the vanishing
of the discriminant:

Δ = 1 − 8(m + 1)z + 16(m − 1)2z2

=
(
4(1 +

√
m)2z − 1

)(
4(1 − √

m)2z − 1
)
. (3.46)

Note that there are two different branches of the conifold locus, related to
the two square roots of m. For each value of m, we have a different conifold
point in each of the branches of the conifold locus, and we have to analyze the
topological string near an arbitrary point, as a function of m. For m = 1, the
topological string near the corresponding conifold point at z = 1/16 has been
analyzed in [13,24,59]. We will pick for convenience the branch of positive
roots, and introduce the local variable,

y = 1 − 4(1 +
√

m)2z, (3.47)

which vanishes at the conifold point

zc =
1

4(1 +
√

m)2
. (3.48)

In the variables appropriate to the conifold point, the PF operator becomes

L̃ = 4(y − 1)2
(
y(μ − 1)2 + 4μ

)
θ3

y

+4(y − 1)
(
2y2(μ − 1)2 + y(1 + μ)2 + 8μ

)
θ2

y

+
(
3y3(μ − 1)2 + 4y2μ + y(μ2 − 6μ + 1) + 16μ

)
θy. (3.49)

There is a basis of solutions given by a constant solution 1, a vanishing solution

f1(y) = y + O(y2) (3.50)
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and a logarithmic solution

f2(y) = log(y)f1(y) + s(y), s(y) = y + O(y2). (3.51)

It is easy to solve for f1(y) and s(y) as power series in y with m-dependent
coefficients:

f1(y) = y− cosh(2ξ) − 11
16

y2 +
9 cosh(4ξ) − 124 cosh(2ξ) + 827

1536
y3 + O(y4),

s(y) = y− 7 cosh(2ξ) − 45
32

y2+
27 cosh(4ξ) − 380 cosh(2ξ) + 1561

1152
y3+O(y4),

(3.52)

where we expressed the results in terms of the variable ξ, related to m by
(3.17). The analytic continuation of the large radius periods to the conifold
point must be a linear combination of the two solutions f1(y), f2(y) found
above. By expanding the exact results (3.44)–(3.45) around the conifold locus,
one finds

Π(lr)
A (z) =

(
C1

cosh ξ

π

(
log
(

cosh2 ξ

16

)
− 2
)

cosh ξ

π

)⎛

⎝
1
f1(y)
f2(y)

⎞

⎠ , (3.53)

Π(lr)
B (z) =

(
C2 π cosh ξ 0

)
⎛

⎝
1
f1(y)
f2(y)

⎞

⎠ , (3.54)

where C1, C2 are a priori ξ-dependent constants which we do not know how
to evaluate analytically. These constants are given by the values of the large
radius periods at the conifold point, i.e.,

C1 = Π(lr)
A (zc), C2 = Π(lr)

B (zc). (3.55)

The constant C1 can be computed analytically, and we present this computa-
tion in Appendix B. The constant C2 can be calculated numerically, by evalu-
ating the series (3.39) at the conifold point (where the series still converges).
However, as we will see in the next section, the value of these constants is
predicted by the conjecture of [1], and we will find a precise agreement with
the analytical and numerical evaluations of C1,2, respectively.

The above results determine the genus zero free energy at large radius
F0(t,m). The genus one free energy can be obtained, for example, from the
result for local F2 in [58], using the map of moduli. One finds,

F1(t,m) = − 1
12

log
(
m

1
2 z7(16(m − 1)2z2 − 8(m + 1)z + 1)

)

−1
2

log
(

− ∂t

∂z

)
, (3.56)

with the large radius expansion

F1(t,m) = − 1
24

log(m) +
t

12
− 1

6
(1 + m)e−t + · · · (3.57)

The higher genus free energies near the conifold point can be obtained
by integrating the holomorphic anomaly equation. A systematic computation
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has only been performed at m = 1 [24,59], but it will provide us with useful
tests, as we will see in the next section.

3.3. Comparison

Let us now compare the results from the matrix model/spectral theory side,
with the predictions from the conjecture of [1]. We start with the genus zero
free energy. By the expansion (3.43), we can write

J0

(
ζ =

t

4π
, ξ

)
=

1
16π4

(
F0(t,m) − π2

3
t + 16π4A0(ξ)

)
, (3.58)

where t is related to ζ by (3.28) and it is the standard Kähler parameter of
the geometry. We also recall that m is related to ξ by (3.17). The ‘t Hooft
parameter is given by (3.30), which reads in this case,

4π3λ = Π(lr)
B − π2

3
. (3.59)

The form of the matrix model expansion (2.62) indicates that λ must be a
vanishing period at the conifold point, i.e.,

Π(lr)
B (z = zc) = C2 =

π2

3
. (3.60)

This gives a prediction for the value of the constant C2, which we have verified
by evaluating this constant numerically. This test involves doing a high preci-
sion numerical sum of the large radius expansion of Π(lr)

B (z = zc), for different
values of m.

We should note that, as far as we know, the constants that have to be
added to the B-periods to obtain a vanishing period at the conifold point are
not known a priori, and they have to be determined on a case-by-case basis,
often numerically (see [60,61] for some examples.) According to the conjec-
ture of [1], this constant is obtained from the terms in the modified grand
potential which are linear in the chemical potential and next-to-leading in
�. On the other hand, it follows from the general construction in [1] that
these terms are in turn determined by the linear terms in the moduli appear-
ing in the large radius free energy FNS

1 . Therefore, we have the following
consequence of the conjecture of [1]: in a toric CY threefold, the constant
terms which appear in the vanishing periods at the conifold are determined by
the coefficients of the linear terms in FNS

1 . This is, of course, also the case
for the example of local P

2 studied in [13], and provides an intriguing link
between refined genus one free energies and the special geometry of the conifold
point.

Let us now proceed to compute FF0
0 from (3.32), which reads

∂FF0
0

∂λ
=

1
4π

Π(lr)
A . (3.61)



Vol. 17 (2016) Matrix Models from Operators and Topological Strings, 2 2771

This can be integrated to find, up to an integration constant,

FF0
0 (λ, ξ) =

λ2

2

(
log
(

π2λ cosh ξ

4

)
− 3

2

)
+

C1(ξ)
4π

λ + π2 1 − 3 cosh(2ξ)
24 cosh(ξ)

λ3

+π4 −73 + 68 cosh(2ξ) + 45 cosh(4ξ)
2304 cosh2(ξ)

λ4

+π6 534 − 203 cosh(2ξ) − 390 cosh(4ξ) − 165 cosh(6ξ)
30720 cosh3(ξ)

λ5 + O(λ6).

(3.62)

The λ-independent function C1(ξ) appearing here is the one appearing in
(3.54). This result agrees with the results in (2.62), (2.64), and (2.86) obtained
in the matrix model, provided that

C1(ξ) = − 8
π

Im
(
Li2(ieξ)

)
. (3.63)

Note that, as in the examples of [13], the r.h.s. of (3.63) is a prediction of
the conjecture of [1] on the value of the A-period at the conifold point. This
prediction comes from the explicit form of the potential (2.59), which is, in
turn, determined by the explicit form of the integral kernel (2.22). As shown
in Appendix B, the value (3.63) agrees precisely with the analytic evaluation
of the A-period at the conifold.

Finally, we note that, according to the result (2.62) in the matrix model,
the integration constant in FF0

0 (λ,m) should vanish. This implies that

0 = FF0
0 (λ = 0,m) =

(
J0(ζ(λ),m) − λ ζ(λ,m)

)∣∣∣
λ=0

. (3.64)

Using (3.58), this yields the following relation between the function A0(ξ) in
(3.23) and the value of the genus zero free energy at the conifold point:

A0(ξ) =
1

16π4

(
F0(−C1(ξ), ξ) +

π2

3
C1(ξ)

)
, (3.65)

where we used that t(zc) = −C1(ξ). This is yet another remarkable conse-
quence of the conjecture of [1] for the special geometry of the conifold point,
and we have verified it numerically with high precision. To give a flavor of
the validity of (3.65), in Fig. 3 we show the value of A0(ξ), as given in (3.23),
against a numerical evaluation of the r.h.s. of (3.65) for some values of ξ.

We conclude that, at the level of the genus zero free energy, there is
a remarkable agreement between the result obtained from the matrix model
(i.e., from the spectral theory side) and the predictions of [1] based on topo-
logical string theory. In particular, one can use the results of the matrix
model/spectral theory side to obtain non-trivial information about the coni-
fold theory which is not available otherwise (as far as we know): the analytic
values of the periods and the genus zero free energy at the conifold point.

Let us now consider the genus one free energy. Note that

J1(ζ, ξ) =
π

3
ζ + A1(ξ) + F inst

1 (t, ξ) = A1(ξ) +
ξ

6
+ F1(t, ξ), (3.66)
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Figure 3. The continuous line shows the exact function
A0(ξ), as given in (3.23), while the dots are numerical evalu-
ations of the r.h.s. of (3.65) for some values of ξ

where we used (3.56) and the expansion (3.57). If we now take into account
(3.33) and the equation

∂2J0(ζ)
∂ζ2

= 4π
∂λ

∂t
, (3.67)

we obtain

FF0
1 (λ) = A1(ξ) +

ξ

6
− 1

24
log m

− 1
12

log
(
m

1
2 z7(λ)(16(m − 1)2z2(λ) − 8(m + 1)z(λ) + 1)

)

+
1
2

log
(

− 1
8π2

∂z(λ)
∂λ

)
. (3.68)

By the explicit expression for A1(ξ) in (3.23), we find that the small λ expan-
sion of this function is,

FF0
1 (λ) = − 1

12
log λ − 1

12
log � + ζ ′(−1)

+ π2 −1 + 3 cosh(2ξ)
48 cosh2(ξ)

λ

+ π4 127 + 4 cosh(2ξ) − 27 cosh(4ξ)
2304 cosh2(ξ)

λ2 + O(λ3), (3.69)

which is in precise agreement with what was found in (2.62), (2.65).
There are some non-trivial tests that can be done at higher genus, in the

case ξ = 0, using the results in [24,59]. Let us first recall that the topological
string free energies in the conifold frame, when expanded around the conifold
point in terms of a vanishing period, have a universal critical behavior char-
acterized by a pole of order 2g − 2, for g ≥ 2 [62]. It was then pointed out
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in [63] that the full expansion satisfies a “gap condition”, i.e., after this pole,
the rest of the expansion is regular and it starts at zeroth order in the vanish-
ing period. This has been exploited to constrain solutions to the holomorphic
anomaly equations. However, in the matrix model free energies, as one can see
in (2.62), the expansion around the conifold fulfills a “strong” gap condition,
in the sense that the expansion in λ after the pole starts at first order in λ
(and not at zeroth order). In contrast, the conventional topological string free
energies satisfy only a “weak” gap condition. In practice, this has the following
consequence. Let us consider the instanton part of the large radius, genus g
free energies F inst

g (t,m), and let us perform a symplectic transformation to the
conifold frame. The “weak” gap condition of [63] implies that the expansion
of the resulting quantities around the conifold point is of the form,

B2g

2g(2g − 2)
t2−2g
c + bg(ξ) + O(tc), (3.70)

where tc = 4π2λ is a vanishing period at the conifold.3 Then, it follows from
the last line in (3.27) that

Fg(λ, ξ) =
B2g

2g(2g − 2)
λ2−2g + (4π2)2g−2bg(ξ) + Ag(ξ) + O(λ). (3.71)

Therefore, consistency with the expansion (2.62), which satisfies a strong gap
condition, requires that

bg(ξ) = − Ag(ξ)
(4π2)2g−2

, g ≥ 2. (3.72)

This can be regarded as yet another prediction of spectral theory for the topo-
logical string, since the coefficients Ag(ξ) have been fixed by consistency with
studies of the spectrum. For ξ = 0, the constants bg(0) can be computed sys-
tematically from the holomorphic anomaly equations [24,59]. One finds, for
the very first genera,

b2(0) = − 1
1152

, b3(0) =
23

5806080
, b4(0) = − 19

278691840
, (3.73)

and using (3.24), one verifies that (3.72) is indeed satisfied.
Finally, we note that the genus two free energy in the conifold frame is

given by [24,59],

F inst
2 (tc, ξ = 0) = − 1

240t2c
− 1

1152
+

53tc
122880

− 2221t2c
14745600

+ · · · (3.74)

The third term in this expansion agrees with the coefficient f2,1 in (2.65), for
ξ = 0 after taking into account the overall factor (4π2)2 in (3.27). We conclude
that the ‘t Hooft expansion of the fermionic traces, as calculated by the matrix
model, is in perfect agreement with the predictions of [1] (and with the result
of (Hatsuda, Y.: Unpublished) for the function A(mF0 , �)).

3 We are considering just the instanton part of the large radius free energies, so we are not
including the constant map contribution to these amplitudes to zero. Note, however, that
adding this contribution does not lead in general to a strong gap condition at the conifold.
In other words, −bg is not the constant map contribution at large radius.
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4. Conclusions and Open Problems

In this paper we have found an explicit expression for the integral kernel of the
trace class operator associated to the mirror curve of local F0, for arbitrary
values of the mass parameter. This makes it possible to obtain a matrix model
computing the fermionic spectral traces of this operator. This model turns out
to be an O(2) model, which can be exactly solved in the planar limit. Using
this matrix model, we have verified in detail that the fermionic spectral traces
of (2.20) provide a non-perturbative definition of the topological string on this
geometry, in the sense that their asymptotic ‘t Hooft expansion is given by
the genus expansion of the topological string. This provides yet another test
of the conjecture in [1]. In particular, our calculation checks the conjectural
form of the quantum-mechanical instanton corrections to the spectral problem
proposed in [1].

There are various obvious problems raised by our results. It would be
interesting to improve our checks by calculating higher genus amplitudes
directly in the matrix model, although this type of calculations is not sim-
ple for O(n) models. Even at genus zero, it would be interesting to have an
analytic proof that the function F0 obtained in the matrix model agrees exactly
with the genus zero free energy of the topological string FF0

0 . Another obvious
open problem is to extend this type of calculations to other geometries, like
for example local Bn, where Bn is the blow-up of P

2 at n points. To do this, we
would need an explicit form for the integral kernels of the corresponding trace
class operators. It would be also interesting to find exponentially small correc-
tions to the ‘t Hooft expansion of the matrix model studied here, to construct
a trans-series expansion of the matrix model free energy, in the spirit of [64]
(see [65] for a recent, detailed case study of trans-series in the quartic matrix
model). This could then be compared to the predictions of [1] and/or to the
trans-series construction of [66,67].

Another research direction concerns the field theory limit of the model
analyzed in this paper. It can be explicitly shown that the spectral problem
for the operator (2.10) has a double-scaling limit in which one recovers the
quantum spectral curve of SU(2) Toda given in [68]. This corresponds to the
field theory limit of the topological string, which is pure N = 2 Yang–Mills
theory [32]. According to [3], the NS limit of the instanton partition function
of [69] provides a quantization condition for this spectral problem. This can
be verified using the perturbative WKB approach [5], but there are also non-
perturbative corrections (see [70–72] for different perspectives on this issue). It
would be interesting to analyze this field theory limit using the tools introduced
here.

Finally, as we have explained, the matrix model in this paper generalizes
the ABJ(M) matrix model, and in particular extends it to arbitrary values of
M . This is due to the fact that the dependence on M is through the mass
parameter mF0 , as shown in (2.102). In contrast, in the existing matrix models
for ABJ theory [21,46], M has to be in principle a positive integer. This might
be useful to relate ABJ theory to higher spin theories [73,74].
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Appendix A. The Quantum Dilogarithm

The quantum dilogarithm Φb(x) is defined by [33–35]

Φb(x) =
(e2πb(x+cb); q)∞

(e2πb−1(x−cb); q̃)∞
, (A.1)

where

q = e2πib2 , q̃ = e−2πib−2
, Im(b2) > 0 (A.2)

and

cb =
i

2
(
b + b−1

)
. (A.3)

An integral representation in the strip |Imz| < |Im cb| is given by

Φb(x) = exp
(∫

R+iε

e−2ixz

4 sinh(zb) sinh(zb−1)
dz

z

)
. (A.4)

Remarkably, this function admits an extension to all values of b with b2 ∈ R≤0.
Φb(x) is a meromorphic function of x with

poles: cb + iNb + iNb−1, zeros: − cb − iNb − iNb−1. (A.5)

The functional equation

Φb(x)Φb(−x) = eπix2
Φb(0)2, Φb(0) =

(
q

q̃

) 1
48

= eπi(b2+b−2)/24, (A.6)

allows us to move Φb(x) from the denominator to the numerator. In addition,
when b is either real or on the unit circle, we have the unitarity relation

Φb(x) =
1

Φb (x)
. (A.7)

The asymptotics of the quantum dilogarithm are given by [75]

Φb(x) ∼
{

Φb(0)2eπix2
when �(x) � 0,

1 when �(x) � 0.
(A.8)

The quantum dilogarithm is a quasi-periodic function. Explicitly, it satisfies
the equations

Φb(x + cb + ib)
Φb(x + cb)

=
1

1 − qe2πbx
(A.9a)

Φb(x + cb + ib−1)
Φb(x + cb)

=
1

1 − q̃−1e2πb−1x
. (A.9b)

When b is small, we can use the following asymptotic expansion (see for exam-
ple [75,76]),

log Φb

( x

2πb

)
∼

∞∑

k=0

(
2πib2

)2k−1 B2k(1/2)
(2k)!

Li2−2k(−ex), (A.10)

where B2k(z) is the Bernoulli polynomial.



2776 R. Kashaev et al. Ann. Henri Poincaré

Appendix B. The A-Period at the Conifold Point

In this short Appendix we compute the A-period Π(lr)
A (z) at the conifold point

z = zc, for arbitrary values of m (or, equivalently, of ξ). The starting point of
this calculation is the integral

I =
1

(2πi)2

∫

S1×S1
log P (z, w)

dz

z

dw

w
, (B.1)

where

P (z, w) = 2(x2 + y2) + x2(z + z−1) + 2y2(w + w−1). (B.2)

Note that P (z, w) is essentially the polynomial defining the mirror curve to
local F0, and the integral I is the logarithmic Mahler measure of this polyno-
mial. Let us define

z1 =
x4

4(x2 + y2)2
, z2 =

y4

4(x2 + y2)2
. (B.3)

By expanding log P (z, w) in power series in z1,2, we find

I = log
(
2(x2 + y2)

)−
∞∑

n=1

∑

2k+2l=n

Γ(2k + 2l)
Γ(1 + k)2Γ(1 + l)2

zk
1zl

2. (B.4)

If we identify the variables z1,2 with the moduli of local F0, we have that

m =
z1

z2
=
(

x

y

)4

, (B.5)

and we finally obtain

I = 2 log y − 1
2
Π(lr)

A (zc), (B.6)

where zc is given in (3.48).
On the other hand, the integral (B.1) was explicitly computed by Kaste-

leyn in Sect. 3 of [77], in the analysis of the dimer model on the bipartite
square lattice on the torus (see [78] for a nice summary of the subject.) By
writing it as

I =
1
π2

∫ π

0

∫ π

0

log
(
4(x2 cos2 ω + y2 cos2 ω′)

)
dωdω′, (B.7)

one can first perform the integral w.r.t. ω′, compute the remaining integral
as a power series in x/y = eξ, and resum the resulting series in terms of the
dilogarithm. One finds,

I = 2 log y +
4
π

Im
(
Li2
(
ieξ
))

. (B.8)

By comparing this to (B.6), we conclude that

Π(lr)
A (zc) = − 8

π

(
Li2
(
ieξ
))

, (B.9)

which is precisely what we obtained from (3.63).
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