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On the Stationary Navier–Stokes Equations
in the Half-Plane

Julien Guillod and Peter Wittwer

Abstract. We consider the stationary incompressible Navier–Stokes equa-
tion in the half-plane with inhomogeneous boundary condition. We prove
the existence of strong solutions for boundary data close to any Jeffery–
Hamel solution with small flux evaluated on the boundary. The pertur-
bation of the Jeffery–Hamel solution on the boundary has to satisfy a
nonlinear compatibility condition which corresponds to the integral of the
velocity field on the boundary. The first component of this integral is the
flux which is an invariant quantity, but the second, called the asymmetry,
is not invariant, which leads to one compatibility condition. Finally, we
prove the existence of weak solutions, as well as weak–strong uniqueness
for small data and provide numerical simulations.

1. Introduction

The stationary and incompressible Navier–Stokes equations in the half-plane

Ω =
{
(x, y) ∈ R

2 : y > 1
}

are

Δu − ∇p = u · ∇u, ∇ · u = 0,

u|∂Ω = u∗, lim
|x|→∞

u = 0, (1.1)

where u∗ is a boundary condition. Due to the incompressibility of the fluid,
the flux is an invariant quantity,

Φ =
∫

∂Ω

u∗ · n =
∫

R

v(x, y) dx,
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Figure 1. a The domain Ω we consider is the half plane
defined by x ∈ R and y > 1; b an aperture domain; c a
channel connected to a half-plane

for all y ≥ 1, where u = (u, v) and n = (0, 1) is the unit vector normal to
the boundary of the half-plane. This problem (see Fig. 1a) presents three dif-
ficulties: Ω is a two-dimensional unbounded domain, the boundary of ∂Ω is
unbounded, and the boundary data are not zero. There is not much previous
work on this problem, but some authors have treated related problems. Con-
cerning the half-plane problem, [19, Section 5] proves the uniqueness of solu-
tions for the steady Stokes equation and the time-dependent Navier–Stokes
equation. The so-called Leray’s problem, which consists of a finite number of
outlets connected to a compact domain, has been studied in detail by Amick
[1–3] and several other authors, but the resolvability for large fluxes is still an
open problem. Fraenkel [12,13] provides a formal asymptotic expansion of the
stream function in case of a curved channel by starting with the Jeffery–Hamel
solution [18,22] as the first order. The case of paraboloidal outlets was first
treated by Nazarov and Pileckas [30], and more recently by Kaulakytė and
Pileckas [24] and Kaulakytė [23]. Another important class of similar problems
are the aperture domains, introduced by Heywood [19], as shown in Fig. 1b.
The linear approximation was studied in any dimension by Farwig [9] and Far-
wig and Sohr [10]. The three-dimensional case was treated by Borchers and
Pileckas [6], as well as other authors. For the two-dimensional nonlinear prob-
lem, Galdi et al. [14] proved that the velocity tends to zero in the L2-norm
for arbitrary values of the flux. For small fluxes, Galdi et al. [16] and Nazarov
[29] show that the asymptotic behavior is given by a Jeffery–Hamel solution,
but only if the problem is symmetric with respect to the y-axis. The asymp-
totic behavior of the two-dimensional aperture problem in the nonsymmetric
case is still open. Finally, Nazarov et al. [31,32] considered a straight chan-
nel connected to a half-plane (see Fig. 1c) and looked under which conditions
the asymptotic behavior is given by a Jeffery–Hamel flow in the half-plane
and by the Poiseuille flow in the channel. These conditions are described in
detail later on. On a more applied side, the bifurcation properties and the
stability of Jeffery–Hamel flows have retained the attention of many authors
[4,8,28,36,38].
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Jeffery–Hamel flows play an important role in the asymptotic behavior of
flows carrying flux. They own their name to the work of Jeffery [22] and Hamel
[18] and are radial scale invariant solutions of the two-dimensional stationary
incompressible Navier–Stokes equations

Δu − (u · ∇) u − ∇p = 0, ∇ · u = 0,

in domains

D =
{
(r sin(θ), r cos(θ)) ∈ R

2 : r > 0 and θ ∈ (−β, β)
}

with β ∈
(
0, π

2

]
, satisfying the boundary condition

u
∣
∣
∂D\{0} = 0.

Explicitly, a Jeffery–Hamel solution (ujh, pjh) is of the form

ujh(r, θ) =
1
r
f(θ)er, pjh(r, θ) =

1
r2

(2f ′(θ) − C) ,

with C ∈ R and f a solution of the nonlinear second-order ordinary differential
equation

f ′′ + f2 + 4f = 2C,

satisfying the boundary condition f(±β) = 0. The constant C is related to the
flux Φ of the flow,

Φ =
∫ +β

−β

f(θ) dθ.

The Jeffery–Hamel solutions have been intensively studied [4,12,35,37],
and, because some basic mathematical questions still remain open, there has
been a regain of interest in recent years [7,25,33,34].

In what follows, we are interested in the half-plane case, so we consider
β = π

2 , i.e., the domain is the upper half plane D = R × (0,∞). In Cartesian
coordinates, the two components of the velocity of the Jeffery–Hamel solutions
are

ujh(x, y) =
1
y
fu

(
x

y

)
, vjh(x, y) =

1
y
fv

(
x

y

)
, (1.2)

with

fu(s) =
s f(arctan s)

1 + s2
, fv(s) =

f(arctan s)
1 + s2

.

The Jeffery–Hamel solutions for β = π
2 have a peculiar property: for small

Φ < 0, there is more than one solution. In fact, as shown in Appendix A, Φ = 0
is a tri-critical bifurcation point; see Fig. 2. For small Φ > 0, the Jeffery–Hamel
problem has a solution (u0

Φ, p0
Φ) which is symmetric with respect to the y-axis.

The solution (u0
Φ, p0

Φ) also exists for small values of Φ < 0, but when crossing
from Φ > 0 to Φ < 0, an additional pair (u±1

Φ , p±1
Φ ) of asymmetric solutions

(related to each other by a reflection with respect to the y-axis) appears. For
Φ = 0, the Jeffery–Hamel solution is the zero function and will be ignored in
what follows.
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Figure 2. Existence of the Jeffery–Hamel flows for small val-
ues of the flux Φ. For Φ > 0, there exists one symmetric solu-
tions, but for Φ < 0, also two additional asymmetric solutions
exist

The central idea of the method we use to study (1.1) is to interpret the
system as an evolution equation with y playing the role of time. The boundary
data of the original problem then become the initial data for the resulting
Cauchy problem. This allows discussing the “time” dependence of quantities
like the flux Φ =

∫
R

v(x, y)dx and the asymmetry A =
∫
R

u(x, y)dx in a natural
setting. We assume for the moment sufficient decay for these integrals to make
sense. As can be seen from (1.2), the flux and the asymmetry are invariants
for a Jeffery–Hamel solution (uσ

Φ, pσ
Φ), i.e., they are independent of the time y

and therefore

A =
∫

R

uσ
Φ(x, 1) dx =

∫

R

uσ
Φ(x, y) dx = lim

y→∞

∫

R

uσ
Φ(x, y) dx,

Φ =
∫

R

vσ
Φ(x, 1) dx =

∫

R

vσ
Φ(x, y) dx = lim

y→∞

∫

R

vσ
Φ(x, y) dx.

The flux is an invariant of the Navier–Stokes equation (1.1), i.e., if u is a
solution of the Navier–Stokes equation, then for y > 1,

∫

R

v(x, 1) dx =
∫

R

v(x, y) dx = lim
y→∞

∫

R

v(x, y) dx,

but the asymmetry is not an invariant, so typically,
∫

R

u(x, 1) dx �=
∫

R

u(x, y) dx �= lim
y→∞

∫

R

u(x, y) dx.

As we will see below, for solutions that are close but not equal to Jeffery–
Hamel, the asymmetry is no more an invariant, and this fact is the main
source of trouble for the construction of solutions.

Jeffery–Hamel solutions are singular at the origin and to study solu-
tions which are close to Jeffery–Hamel flows, it is necessary to regularize
the problem. For this purpose, given a Jeffery–Hamel solution (uσ

Φ, pσ
Φ) in

the upper half plane D =
{
(x, y) ∈ R

2 : y > 0
}
, we restrict it to the domain
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Ω =
{
(x, y) ∈ R

2 : y > 1
}

and construct stationary solutions of the Navier–
Stokes equations which are close to the Jeffery–Hamel flow by imposing bound-
ary conditions of the form

u
∣
∣
∂Ω

= uσ
Φ

∣
∣
∂Ω

+ ub, (1.3)

with ub small and with zero flux,
∫

∂Ω

ub · n = 0.

Even when considering such boundary conditions, we are not able to perform a
fixed point argument on the nonlinearity by inverting the Stokes problem. The
main reason is that the flux is determined by the boundary condition, while
the asymmetry is not. To adjust the asymmetry, we rewrite the boundary
condition as

u|∂Ω = uσ
Φ|∂Ω + (A, 0)

1√
2π

e− 1
2x2

+ us, (1.4)

where

A =
∫

R

ub,

so that us has no asymmetry and no flux.
∫

R

us = 0.

The choice of e− 1
2x2

in (1.4) is for convenience later on, and we could have
chosen instead any other smooth function of rapid decay.

We will show the existence of strong solutions to the Navier–Stokes equa-
tion (1.1), with the boundary condition (1.4) for Φ small and us in a small
ball by adjusting the parameter A. The main result is the following:

Theorem 1.1. For all boundary conditions of the form (1.4) with uσ
Φ a Jeffery–

Hamel solution with small enough flux Φ and all us in a small enough neigh-
borhood of zero in some function space, there exists A ∈ R (depending contin-
uously on Φ and us) and a solution (u, p) of the Navier–Stokes equation in Ω
satisfying

lim
y→∞ y

(
sup
x∈R

|u − uσ
Φ|
)

= 0, lim
y→∞ y2

(
sup
x∈R

|p − pσ
Φ|
)

= 0,

and

∇u ∈ L2(Ω), yu ∈ L∞(Ω),
u/y ∈ L2(Ω), y2∇u ∈ L∞(Ω). (1.5)

Moreover, if v is a weak solution (defined in (5.1)) of (1.1) and u a strong
solution of (1.1) satisfying (1.5), then u = v, provided u∗ is small enough.

We now discuss more precisely the results of Nazarov et al. [31,32], for
the domain shown in Fig. 1c. We note that in this domain, the flux through
the channel is not prescribed. They show that by requiring the asymptotic
behavior to be an antisymmetric Jeffery–Hamel solution u±1

Φ , there exists a
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unique solution in some weighted space, and the flux is uniquely determined
by the data. Conversely, by requiring that the asymptotic behavior is given by
a symmetric Jeffery–Hamel solution u0

Φ, the Navier–Stokes equation linearized
around u0

Φ leads to a well-posed problem for Φ < 0 and to an ill-posed one
for Φ > 0. So for Φ < 0, there exists a unique solution for all small enough
fluxes, but for Φ > 0 the asymptotic behavior is still unknown. So we believe
that in case Φ < 0, the Navier–Stokes equation in the half-plane (1.1) has a
solution decaying like r−1 at infinity whose asymptote is given by a Jeffery–
Hamel solution, but in the case Φ > 0, it is still not clear that the solution is
in general bounded by r−1.

The remainder of this paper is organized as follows. In Sect. 2, we intro-
duce the function spaces which we use for the mathematical formulation of
the problem and prove some basic bounds. In Sect. 3, we rewrite the Stokes
equation as a dynamical system, present the associated integral equations, and
provide bounds on the solution of the Stokes system, so that in Sect. 4 we can
show the existence of strong solutions to the Navier–Stokes system. In Sect. 5,
we prove the existence of weak solutions, and, finally, in Sect. 6, we prove the
uniqueness of solutions for small data with a weak–strong uniqueness argu-
ment. In the last part, we present numerical simulations that show that the
asymptotic behavior is most likely not given by a Jeffery–Hamel solution if
Φ > 0. In the Appendix, we show the existence of symmetric and asymmetric
Jeffery–Hamel solutions with small flux.

2. Function Spaces

As explained in the introduction, our strategy of proof is to rewrite (1.1) as a
dynamical system with y playing the role of time. This system is studied by
taking the Fourier transform in the variable x, which transforms the system
into a set of ordinary differential equations with respect to y. We now define
the function spaces for the Fourier transforms of the velocity field, pressure
field and the nonlinearity. The choice of spaces is motivated by the scaling
property of the equations with respect to x and y when linearized around a
Jeffery–Hamel solution. This setup turns out to be natural for the description
of the asymptotic behavior of solutions close to Jeffery–Hamel flows. Similar
function spaces were already used by Wittwer [39], where the basic opera-
tions which are needed for the discussion of the Navier–Stokes equations were
discussed. In particular, Wittwer [39] shows basic bounds on the convolution
with respect to the variable k, the Fourier conjugate variable of x, which is
needed to implement the nonlinearities, and bounds on the convolution with
the semigroup e−|k|y which is associated with the Stokes operator when viewed
as a time evolution in y. Further properties and improved bounds have been
proved by Hillairet and Wittwer [20] and Boeckle and Wittwer [5].

Definition 2.1. (Fourier transform and convolution) For two functions f̂ and
ĝ defined almost everywhere in Ω and which are in L1(R) for all y ≥ 1, the
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inverse Fourier transform of f̂ is defined by

f(x, y) = F−1
[
f̂
]
(x, y) =

∫

R

eikxf̂(k, y) dk,

and the convolution by
(
f̂ ∗ ĝ

)
(k, y) =

∫

R

f̂(k − �, y)ĝ(�, y) d�.

We note that with these definitions,

fg = F−1
[
f̂ ∗ ĝ

]
.

We now define two families of function spaces: the first one is for functions
of k only which will be used for the boundary data, and the second one is for
functions of k and y:

Definition 2.2 (function spaces on ∂Ω). For α ≥ 0 and q ∈ R, let Aα,q be the
Banach space of functions f̂ ∈ C(X,C) where

X =

{
R, q ≥ 0,

R\{0}, q < 0,
(2.1)

such that f̂(k) = f̂(−k) and the norm

∥
∥f̂ ;Aα,q

∥
∥ = sup

X

∣
∣f̂
∣
∣

ηα,q
with ηα,q(k) =

|k|q

1 + |k|α+q ,

is finite. For α ≥ 0 and q > 0, let Tα,q and Wα,q be the Banach space of
functions in Aα+1,min(0,q−1) such that their respective norm

∥
∥f̂ ; Tα,q

∥
∥ =

�q−1�∑

i=0

∥
∥∂i

kf̂ ;Aα+1,min(0,q−1−i)

∥
∥,

∥
∥f̂ ;Wα,q

∥
∥ =

�q−1�∑

i=0

∥
∥∂i

kf̂ ;Aα+1,q−1−i

∥
∥,

is finite, where �q − 1	 denotes the ceiling of q − 1.

Remark 2.3. The parameter α captures the behavior of functions at infinity,
which corresponds to the regularity in x in direct space. For example, if f̂ ∈
Aα,0 for α > 1, then f̂ ∈ L1(R) and by the dominated convergence theorem,
f ∈ C(R). The index q characterizes the behavior near k = 0: a function which
behaves like |k|q around zero is in the space Aα,q. The space Tα,q includes
some characterization of the derivative with respect to k, which is needed to
characterize the behavior near k = 0 as shown in the next lemma.

Lemma 2.4. For all f̂ ∈ Tα,q, the function

ĝ(k) = f̂(k) −

⎛

⎝
�q−1�∑

i=0

ki

i!
∂i

kf̂(0)

⎞

⎠χ(|k|),
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where χ is a smooth cutoff function with

χ ([0, 1]) = {1} , χ ([2,∞)) = {0} ,

satisfies ĝ ∈ Wα,q and therefore

Wα,q =
{

f̂ ∈ Tα,q : f̂ (i)(0) = 0, ∀i ≤ �q − 2	
}

.

Proof. Due to the fact that the behavior at large |k| of functions in Tα,q and
in Wα,q are the same, we only need to prove the behavior for small |k|. In view
of the properties of the cutoff function, for |k| ≤ 1 and i ≤ �q − 2	, we have

∣
∣∂i

kĝ(k)
∣
∣ =

∣
∣
∣
∣
∣
∣
∂i

kf̂(k) −

⎛

⎝
�q−2�−i∑

j=0

kj

j!
∂j+i

k f̂(0)

⎞

⎠χ(|k|)

∣
∣
∣
∣
∣
∣

≤
∫ |k|

0

∣
∣
∣∂�q−1�

k f̂(ξ)
∣
∣
∣ ξ�q−2�−idξ �

∥
∥f̂ ; Tα,q

∥
∥ |k|q−i

.

�
For functions of k and y, we define the following spaces with norms reflect-

ing the scaling property of the Jeffery–Hamel solution:

Definition 2.5 (function spaces on Ω). For α ≥ 0 and q ∈ R, let Bα,q be the
Banach space of functions f̂ ∈ C(X × [1,∞) ,C) where X is defined by (2.1),
such that f̂(k, y) = f̂(−k, y) and the norm

∥
∥f̂ ;Bα,q

∥
∥ = sup

X×[1;∞)

∣
∣f̂
∣
∣

μα,q
,

is finite, where the weight is given by

μα,q(k, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
yq

1
1 + (|k| y)α , q ≥ 0,

1
yq

1
1 + (|k| y)α

(
1 +

1
(|k| y)−q

)
, q < 0.

For α > 0 and q > 0, the space for the velocity field Uα,q is the Banach space
of functions in Bα+1,q−1 such that the following norm is finite,

∥
∥f̂ ;Uα,q

∥
∥ =

�q−1�∑

i=0

�α−1�∑

j=0

∥
∥∂j

y∂i
kf̂ ;Bα+1−j,q−1−i+j

∥
∥.

For α > 1 and q > 1, the spaces for the pressure Pα,q and for the nonlinearity
Rα,q are the Banach spaces of functions in Bα+1,q−1 such that the respective
norms are finite,

∥
∥f̂ ;Pα,q

∥
∥ =

�q−2�∑

i=0

�α−1�∑

j=0

∥
∥∂j

y∂i
kf̂ ;Bα+1−j,q−1−i+j

∥
∥,

∥
∥f̂ ;Rα,q

∥
∥ =

�q−2�∑

i=0

�α−2�∑

j=0

∥
∥∂j

y∂i
kf̂ ;Bα+1−j,q−1−i+j

∥
∥.
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Remark 2.6. The parameter α captures the behavior of functions at infinity
as a function of |k| y, which is reminiscent of the scaling properties in x/y
of the Jeffery–Hamel solution. By taking the inverse Fourier transform, the
parameter α corresponds to the regularity in x in direct space. The index q
determines the decay in y at infinity. As we will see below, functions on the
boundary which are in Aα,q are in the space Bα,q, when evolved in time by
e−|k|y. The spaces Uα,q, Pα,q and Rα,q include derivatives with respect to k
to catch the behavior near k = 0 and derivatives with respect to y for the
regularity in the y-direction.

Remark 2.7. For α′ ≥ α and q′ ≥ q, we have the inclusion Xα′,q′ ⊂ Xα,q for
X = A, B, T , W, U , P, and R, which will be routinely used without mention.

Remark 2.8. By definition, the restriction of a function f̂ ∈ Bα,q to the bound-
ary y = 1 is a function in Aα,q. In the same way, the restriction of f̂ ∈ Rα,q is
in Tα,q.

The above spaces lead to the following regularity in direct space:

Lemma 2.9. For α > 1 and q ≥ 0, if f̂ ∈ Bα,q, we have

f ∈ C(Ω), y1+qf ∈ L∞(Ω), yq−εf ∈ L2(Ω),

for all ε > 0. For α > 0 and q ≥ 0, if f̂ ∈ Uα,q or f̂ ∈ Pα,q we have

f ∈ C�α−1�(Ω), yq+i+j∂i
x∂j

yf ∈ L∞(Ω), yq−1+i+j−εf ∈ L2(Ω),

for i + j ≤ �α − 1	 and ε > 0.

Proof. We consider f̂ ∈ Bα,q. Since for y ≥ 1 and α > 1,

∣
∣f̂(k, y)

∣
∣ ≤ 1

yq

1
1 + (|k| y)α ≤ 1

1 + |k|α ∈ L1(R),

by using the dominated convergence theorem, and the fact that f̂(k, ·) ∈
C([1,∞)), we obtain f ∈ C(Ω). Since

∣
∣F−1[μα,q]

∣
∣ ≤ 1

yq+1

∫

R

1
1 + zα

dz ≤ α

α − 1
1

yq+1
,

yq+1f ∈ L∞. Finally, by Parseval identity
∫

R

|f(x, y)|2 dx =
∫

R

∣
∣f̂(k, y)

∣
∣2 dk ≤

∥
∥f̂ ;Bα,q

∥
∥

y2q+1

∫

R

1
1 + z2α

dz � 1
y2q+1

,

so yq−εf ∈ L2(Ω) for all ε > 0.
Finally, we consider f̂ ∈ Uα,q or f̂ ∈ Pα,q. Since ∂i

x∂j
yf = F−1

[
(ik)i

∂j
y f̂
]

and ∂j
y f̂ ∈ Bα−j,q+j , we have |k|i ∂j

y f̂ ∈ Bα−j−i,q+j+i, so by applying the
previous result, we obtain the claimed properties. �



3296 J. Guillod and P. Wittwer Ann. Henri Poincaré

3. Stokes System

In this section, we consider the following inhomogeneous Stokes system,

Δu − ∇p = ∇ · Q, ∇ · u = 0, u|∂Ω = ub, (3.1)

where Q is a given symmetric tensor. For simplicity, we define

R = Q12 = Q21, S =
1
2

(Q11 − Q22) .

The aim is to determine the compatibility conditions on the boundary data
ub and on the inhomogeneous term R = (R,S), such that (3.1) admits an
(α, q)-solution:

Definition 3.1 ((α, q)-solutions for Stokes). A pair (û, p̂) ∈ Uα,q × Pα−1,q+1

is called an (α, q)-solution of the Stokes equation, if it satisfies the Fourier
transform (with respect to x) of the Stokes equation (3.1).

Lemma 3.2 ((α, q)-solutions are classical solutions). For α > 2 and q > 0, if
(û, p̂) is an (α, q)-solution, then its inverse Fourier transform (u, p) has the
regularity (u, p) ∈ C2(Ω) × C1(Ω) and satisfies the Stokes equation (3.1) in
the classical sense.

Proof. In view of Lemma 2.9, we obtain that (u, p) ∈ C2(Ω) × C1(Ω), and
since (û, p̂) satisfies the Fourier transform of (3.1), we obtain that (u, p) is a
solution of (3.1) in the classical sense. �

Theorem 3.3 (existence of (α, q)-solutions for Stokes). For all α > 0 and q ≥ 1,

if Q̂ ∈ Rα,q+1, ûb ∈ Tα,q and either Q̂ = 0 or q /∈ N, there exists an (α, q)-
solution provided 2�q−1	 compatibility conditions hold. In particular, for q = 1
there are no compatibility conditions, for q ∈ (1, 2] there is one compatibility
condition

ûb(0) +
∫ ∞

1

R̂(0, y) dy = 0, v̂b(0) = 0,

and for q ∈ (2, 3], we have the additional conditions,

∂kûb(0) +
∫ ∞

1

∂kR̂(0, y) dy − 2i
∫ ∞

1

(y − 1) Ŝ(0, y) dy = 0,

∂kv̂b(0) +
∫ ∞

1

∂kR̂(0, y) dy + i
∫ ∞

1

(y − 1) R̂(0, y) dy = 0.

The rest of this section is devoted to the proof of the existence of an
(α, q)-solution for the Stokes system.

Definition 3.4. We define the following operators

(T<w) (k, y) =
1
2

∫ y

1

e−|k|(y−z) (1 − χ (|k| (z − 1))) w(k, z) dz,

(
T±

> w
)
(k, y) =

1
2

∫ ∞

y

(
e−|k|(z−y) ± χ (|k| (z − 1)) e|k|(z−y)

)
w(k, z) dz,

(Urw) (k, y) = (y − 1)r e−|k|(y−1)w(k),
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where χ ∈ C∞
0 (R) is a smooth cutoff function such that

χ ([0, 1]) = {1} , χ ([2,∞)) = {0} , (3.2)

and their combinations

T+ = T< − T+
> , T− = σT< + σT−

> ,

B+ = T+
∣
∣
y=1

, B− = T−∣∣
y=1

,

where

σ = i · sign(k).

Remark 3.5. We will see later on that the decay in y of the integral over
1 ≤ z ≤ y is crucially linked to the behavior of the integrand near k = 0.
To study the decay of the integral over 1 ≤ z ≤ y in terms of the decay of
the integrand, we use the cutoff function χ in the definition of T<, so that the
integrand vanishes at small values of k. To compensate this artificial cutoff, we
add the appropriate cutoff in the definition of T±

> . The reason for the definition
of T± is that these expressions appear often and are regular at k = 0.

Proposition 3.6. Formally, the Fourier transform of the Stokes system is given
by

û = NR̂ + Bûr, ûr = ûb − N|y=1 R̂, (3.3)

p̂ = −ikT+R̂ + ikT−Ŝ − Q̂12 − U0 [2ik (ûr + σv̂r)] , (3.4)

where

N =
(

T+ − T−ik (z − y) −T− − T+ik (z − y)
T+ik (z − y) −T−ik (z − y)

)
,

B =
(

U0 − |k|U1 −ikU1

−ikU1 U0 + |k|U1

)
.

Proof. The vorticity is

ω = ∂xv − ∂yu, (3.5)

and the Stokes equation (3.1) implies the vorticity equation

Δω =
(
∂2

x − ∂2
y

)
R − 2∂x∂yS. (3.6)

By defining γ = ω + R, the divergence-free condition, (3.5), and (3.6) can be
rewritten as a first-order differential system in y,

∂yu = ∂xv − γ + R, ∂yγ = ∂xη − 2∂xS,

∂yv = −∂xu, ∂yη = −∂xγ + 2∂xR.

By taking formally the Fourier transform in the variable x, the divergence-free
condition, (3.5) and (3.6) can be rewritten as a dynamical system where y
plays the role of time,

∂yr̂ = Lr̂ + q̂, û(k, 1) = ûb,
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where

r̂ =

⎛

⎜
⎜
⎝

û
v̂
γ̂
η̂

⎞

⎟
⎟
⎠ , L =

⎛

⎜
⎜
⎝

0 ik −1 0
−ik 0 0 0
0 0 0 ik
0 0 −ik 0

⎞

⎟
⎟
⎠ , q̂ =

⎛

⎜
⎜
⎝

R̂
0

−2ikŜ

2ikR̂

⎞

⎟
⎟
⎠ .

The eigenvalues of L are ± |k|, and since we are interested in solutions with
zero velocity at infinity, we have to distinguish between stable and unstable
modes, so the solution is given by

r̂(k, y) =
∫ y

1

PeL(y−z)q̂(k, z) dz −
∫ ∞

y

(1 − P) eL(y−z)q̂(k, z) dz

+eL(y−1)r̂s(k)

r̂s(k) =
∫ ∞

1

(1 − P) eL(1−z)q̂(k, z) dz + r̂b(k),

where P is the projection onto stable modes and r̂s is such that the boundary
condition in (3.1) is satisfied,

P =
1

2 |k|

⎛

⎜
⎜
⎝

|k| −ik 1/2 0
ik |k| 0 −1/2
0 0 |k| −ik
0 0 ik |k|

⎞

⎟
⎟
⎠ , r̂b =

⎛

⎜
⎜
⎝

ûb

v̂b

2 |k| (ûb + σv̂b)
2ik (ûb + σv̂b)

⎞

⎟
⎟
⎠ .

Using the Jordan decomposition for L, we can explicitly calculate the expo-
nential and find that

û =
1
2

∫ y

1

e−|k|(y−z) (1 − |k| (y − z)) R̂−(k, z) dz

− 1
2

∫ ∞

y

e−|k|(z−y) (1 + |k| (y − z)) R̂+(k, z) dz

+ e−|k|(y−1) [(1 − |k| (y − 1)) ûs − ik (y − 1) v̂s] ,

v̂ = −1
2

∫ y

1

e−|k|(y−z)ik (y − z) R̂−(k, z) dz

+
1
2

∫ ∞

y

e−|k|(z−y)ik (y − z) R̂+(k, z) dz

+ e−|k|(y−1) [(1 + |k| (y − 1)) v̂s − ik (y − 1) ûs] ,

where R̂± = R̂ ± σŜ and

ûs = ûb +
1
2

∫ ∞

1

e−|k|(z−1) (1 − |k| (z − 1)) R̂+(k, z) dz,

v̂s = v̂b +
1
2

∫ ∞

1

e−|k|(z−1)ik (z − 1) R̂+(k, z) dz.
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Using the operators defined in Definition 3.4, we can rewrite the integral equa-
tions as

û = T+
[
R̂ − ik (z − y) Ŝ

]
− T−

[
Ŝ + ik (z − y) R̂

]

+U0 [(1 − |k| (y − 1)) ûr − ik (y − 1) v̂r] ,

v̂ = T+
[
ik (z − y) R̂

]
− T−

[
ik (z − y) Ŝ

]

+U0 [(1 + |k| (y − 1)) v̂r − ik (y − 1) ûr] ,

where

ûr = ûb − B+
[
R̂ − ik (z − 1) Ŝ

]
+ B−

[
Ŝ + ik (z − 1) R̂

]
,

v̂r = v̂b − B+
[
ik (z − 1) R̂

]
+ B−

[
ik (z − 1) Ŝ

]
,

which shows (3.3). Finally, from the Fourier transform of the Stokes equation
(3.1), we can check that the pressure is effectively given by (3.4). �

To prove the existence of an (α, q)-solution, we have to estimate the
operators used in proposition 3.6:

Lemma 3.7. For α > 1, r ∈ N, and q ∈ R, the operator Ur : Aα,q → Bα+r,q−r

is well defined and continuous.

Proof. It suffices to prove that

1
1 + |k|α

(
y − 1

y

)r

e−|k|(y−1) � 1
1 + (|k| y)α+r .

For |k| y ≤ 1, the result is trivial and for |k| y > 1, we distinguish two cases:
for y > 2, we have

1
1 + |k|α

(
y − 1

y

)r

e−|k|(y−1) ≤ e− 1
2 |k|y � 1

1 + (|k| y)α+r ,

and for 1 ≤ y ≤ 2,

1
1 + |k|α

(
y − 1

y

)r

e−|k|(y−1) � 1
1 + (|k| y)α

1
(|k| y)r (|k| (y − 1))r e−|k|(y−1)

� 1
1 + (|k| y)α+r .

�
Lemma 3.8. For α > 1, r ∈ N and q ≥ 0, the operator Ur : Wα,q → Uα+r,q−r

is well defined and continuous.

Proof. First of all, we have

∂yUr = Ur−1 + |k| Ur,

so ∂yUr : Aα+1,q−1 → Bα+r,q−r. For q > 0, we have

∂k (Urw) = Ur∂kw + iσUr+1w,

so by Lemma 3.7 we obtain that ∂k (Urw) ∈ Bα+r+1,q−r−2. The result now
follows by a recursion on the number of derivatives. �
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Lemma 3.9. For α ≥ 0 and q ≥ 0, the operator T< : Bα,q → Bα+1,q−1 is well
defined and continuous.

Proof. Due to the cutoff function, the integral vanishes for |k| (y − 1) ≤ 1, and
for |k| y ≥ 1 + |k| we split the integral as follows,

(T<μα,q) (k, y) ≤
∫ y+1

2

1

e−|k|(y−z) (1 − χ (|k| (z − 1))) μα,q(k, z) dz

+
∫ y

y+1
2

e−|k|(y−z)μα,q(k, z) dz

� e−|k|(y−1)/2

∫ y+1
2

1

ηα,q(k) dz + μα,q(k, y)
∫ y

y+1
2

e−|k|(y−z) dz

� e−|k|(y−1)/2 (y − 1) ηα,q(k) +
1

|k| yμα,q−1 (k, y)

� μα+1,q−1(k, y),

where for the last step we apply Lemma 3.7. �

Lemma 3.10. For all α > 1 and q ≥ 0 with q �= 1, the operators T±
> : Bα,q →

Bα+1,q−1 are well defined and continuous.

Proof. For |k| y > 1, we have
(
T±

> μα,q

)
(k, y) �

∫ ∞

y

e−|k|(z−y)μα,q(k, z) dz ≤ μα,q (k, y)
∫ ∞

y

e|k|(y−z) dz

� 1
|k| yμα,q−1(k, y) � μα+1,q−1(k, y),

and for |k| y < 1, we have
(
T±

> μα,q

)
(k, y) �

∫ ∞

y

μα,q(k, z) dz ≤ |k|q−1
∫ ∞

|k|y

1
uq

1
1 + uα

du

� μα+1,q−1(k, y).

�

Lemma 3.11. For all α > 0 and q ≥ 0 with q /∈ N, the operators T± : Rα,q+1 →
Uα+1,q are well defined and continuous.

Proof. First, by using Lemma 3.10, we have T± : Bα+1,q → Bα+2,q−1. By taking
the derivative with respect to y, we get

∂y (T<q) (k, y) =
1
2

(1 − χ (|k| (y − 1))) q(k, y) − |k| (T<q) (k, y),

∂y

(
T±

> q
)
(k, y) =

−1
2

(1 ± χ (|k| (y − 1))) q(k, y) + |k|
(
T∓

> q
)
(k, y),

so the time derivative of the operators are

∂yT+ =
1
2

+ ikT−, ∂yT− = −ikT+,
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so ∂yT± : Bα+1,q → Bα+1,q. Since the integrand of T−
< vanishes at k = 0, we

have

∂k (T<w) = T<∂kw + i (y − 1) σT<w − iσT̃< (z − 1) w,

∂k

(
T+

> w
)

= T+
> ∂kw − i (y − 1) σT−

> w + iσT̃−
> (z − 1) w,

∂k

(
σT−

> w
)

= σT−
> ∂kw + i (y − 1) T+

> w − iT̃+
> (z − 1) w,

where a tilde over an operator denotes the same operator where χ is replaced
by χ + χ′, which is also a cutoff function satisfying (3.2). Therefore,

∂k (T+w) = T+∂kw + i (y − 1) T−w − iσT̃− (z − 1) w,

∂k (T−w) = T−∂kw − i (y − 1) T+w + iT̃+ (z − 1) w,

and by using the previously shown properties on the operators T±, we obtain
that ∂k (T±w) ∈ Bα+2,q−2. By recursion on the number of derivatives, we
obtain T±w ∈ Uα+1,q. �

We can now apply these lemmas to prove the existence of an (α, q)-
solution:

Proof of Theorem 3.3. By applying Lemma 3.8, we have B : Wα,q → Uα,q. By
applying Lemma 3.11, noting that

z − y = (z − 1) − (y − 1) ,

and bounding each resulting term separately, we obtain that N : Rα,q+1 →
Uα,q and N|y=1 : Rα,q+1 → Tα,q for q > 1 with q /∈ N. Therefore, if either
Q̂ = 0 or q /∈ N, the compatibility condition ûr ∈ Wα,q ensures the existence
of a solution (û, p̂) ∈ Uα,q × Pα−1,q+1. To deduce the explicit form of the
compatibility conditions ûr ∈ Wα,q, we use the characterization of Wα,q in
terms of elements of Tα,q provided in Lemma 2.4. We obtain that ûr ∈ Wα,q

corresponds to 2�q − 1	 real compatibility conditions. The first compatibility
condition is ûr(0) = 0 and the second ∂kûr(0) = 0. By explicit calculations,
we obtain the claimed conditions. �

4. Strong Solutions to the Navier–Stokes Equation

The Navier–Stokes equation in the half-space can be written as the Stokes
system (3.1) with Q = u ⊗ u, and we are going to look for solutions of the
form û = ûσ

Φ + û1 and perform a fixed point argument on û1 ∈ Uα,q. First
of all, the Jeffery–Hamel solution (1.2) at fixed values of y and large values of
±s, where s = x/y, satisfies

uσ
Φ(x, y) ≈ −1

y s2
f ′ (±π

2

)
, vσ

Φ(x, y) ≈ −1
y s3

f ′ (±π
2

)
,

so that its Fourier transforms satisfies ∂i
yûσ

Φ ∈ Bα,i and

ûσ
Φ ∈ Uα,0, (4.1)

for arbitrary α > 1. In order to treat the nonlinearity uσ
Φ ⊗ u1, we need the

following proposition concerning the convolution:



3302 J. Guillod and P. Wittwer Ann. Henri Poincaré

Proposition 4.1. For α > 1 and q ≥ 1, the convolution ∗ : Uα,1×Uα,q → Rα,q+1

is a continuous bilinear map.

Proof. First, we show that the map ∗ : Bα,p ×Bα,q−1 → Bα,p+q is a continuous
bilinear map, for p, q ≥ 0. If f̂ ∈ Bα,p and ĝ ∈ Bα,q−1, f̂ is in L∞(R) and
ĝ is in L1(R) for fixed y ∈ [1;∞), so that f̂ ∗ ĝ ∈ C(R) (see for example
[11, Proposition 8.8]). The dependence of the convolution on the power of y is
trivial and it therefore suffices to prove that

μα,0 ∗ μν
α,0 � μα,1

for ν ∈ (0, 1), where

μν
α,0(k, y) =

1
(|k| y)ν

1
1 + (|k| y)α−ν .

For |k| y ≤ 1, we have
∫

R

μα,0 (�, y) μν
α,0 (k − �, y) d� ≤

∫

R

μν
α,0 (k − �, y) d�

≤ 1
y

∫

R

μν
α,0 (�, 1) d�

� μα,1 (k, y) ,

and, for |k| y > 1, we have that μν
α,0 ≤ μα,0. Therefore, by splitting the integral

at k/2, we find that
∫

R

μα,0 (�, y) μν
α,0 (k − �, y) d� ≤ μα,0 (k/2, y)

∫

R

μα,0 (�, y) d�

≤ μα,0 (k/2, y)
1
y

∫

R

μα,0 (�, 1) d�

� μα,1 (k, y) .

Now, we consider f̂ ∈ Uα,1 and ĝ ∈ Uα,q. If α > 0, we have (see for
example [11, Exercise 8.8]) ∂k

(
f̂ ∗ ĝ

)
= f̂ ∗ ∂kĝ, so by using the previous

result, f̂ ∗∂kĝ ∈ Bα+1,q−1. By taking the derivative with respect to y, we have
∂y

(
f̂ ∗ ĝ

)
= ∂y f̂ ∗ ĝ + f̂ ∗ ∂y ĝ ∈ Bα,q+1. Finally, by a recursion on the number

of derivatives, we obtain that f̂ ∗ ĝ ∈ Rα,q+1. �

Now, we can state the main theorem:

Theorem 4.2 (existence of (α, q)-solutions for Navier–Stokes). For α > 2 and
q ∈ (1, 2), there exists ν > 0 such that for any Φ ∈ R and ûs ∈ Tα,q satisfying

|Φ| ≤ ν, ‖ûs; Tα,0‖ ≤ ν,

∫

R

us(x) dx = 0,

there exists A ∈ R depending continuously on Φ and ûs such that there exists
(u, p) ∈ C2(Ω) × C1(Ω) satisfying (1.1) with

u∗(x) = uσ
Φ(x, 1) +

(A, 0)√
2π

e− 1
2x2

+ us(x).
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Moreover, û − ûσ
Φ ∈ Uα,q and p̂ − p̂σ

Φ ∈ Pα−1,q+1, so that

lim
y→∞ y

(
sup
x∈R

|u − uσ
Φ|
)

= 0, lim
y→∞ y2

(
sup
x∈R

|p − pσ
Φ|
)

= 0,

and

∇u ∈ L2(Ω), yu ∈ L∞(Ω),
u/y ∈ L2(Ω), y2∇u ∈ L∞(Ω). (4.2)

Proof. We look for solutions of the form û = ûσ
Φ + û1 and perform a fixed

point argument on û1 in the space û1 ∈ Uα,q. In view of the previous section,
the Navier–Stokes equation can be written as the Stokes equation (3.1) for u1,
where Q = uσ

Φ ⊗ u1 + u1 ⊗ uσ
Φ + u1 ⊗ u1. The boundary condition is

û∗(k) = ûσ
Φ(k, 1) + (A, 0) e− 1

2k2
+ ûs(k),

and the compatibility conditions of Theorem 3.3 are given by

ûr(0) = A +
∫ ∞

1

R̂(0, y) dy, v̂r(0) = 0,

since by hypothesis ûs(k) = 0. Therefore, by defining A = −
∫∞
1

R̂(0, y) dy,
the two compatibility conditions are fulfilled. In what follows, C > 0 represents
a generic constant depending on q, but not on ε. By Proposition 4.1, we have
Q̂ ∈ Rα,q+1 and

∥
∥R̂;Rα,q+1

∥
∥ ≤ C (‖ûσ

Φ;Uα,0‖ + ‖û1;Uα,q‖) ‖û1;Uα,q‖ .

Since

|A| ≤
∣
∣
∣
∣

∫ ∞

1

R̂(0, y) dy

∣
∣
∣
∣ ≤ 1

q

∥
∥R̂;Rα,q+1

∥
∥,

we have

‖û∗ − ûσ
Φ; Tα,q‖ ≤ ‖ûs; Tα,q‖ + C

∥
∥R̂;Rα,q+1

∥
∥.

By applying Theorem 3.3, we obtain that

‖û1;Uα,q‖ ≤ C ‖ûs; Tα,q‖ + C (‖ûσ
Φ;Uα,0‖ + ‖û1;Uα,q‖) ‖û1;Uα,q‖ .

Therefore, for ν > 0 small enough, a fixed point argument shows the existence
of a solution (û, p̂) ∈ Uα,q × Pα−1,q+1 of the Fourier transform of the Navier–
Stokes equation. Moreover, by the standard argument on the continuity of the
fixed point, û depends continuously on ûs and ûσ

Φ so does A. In the same
way as in Theorem 3.3, we obtain the claimed regularity and the asymptotic
properties by applying Lemma 2.9. �
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5. Existence of Weak Solutions

In this section, we define weak solutions for our problem and discuss in par-
ticular the technicalities related to the inhomogeneous boundary conditions
on an unbounded boundary. To show that our definition of weak solutions
is general enough, we then construct such solutions by Leray’s method. To
study an inhomogeneous boundary problem, it is standard (see for example
[26, Chapter 5]) to define weak solutions by using an extension map to write
the energy inequality.

We denote by D1,2
σ (Ω) the subspace of the homogeneous Sobolev space of

order (1, 2) of divergence-free functions on Ω, and by D1,2
0,σ(Ω) the completion

with respect to the norm of D1,2
σ (Ω) of the vector space of smooth divergence-

free functions with compact support in Ω. We refer to [15, Chapter II.6.] for
the properties of these spaces. The main tool for studying the existence and
uniqueness of weak solutions is the Hardy inequality:

Proposition 5.1 ([27, Section 2.7.1]). For all u ∈ D1,2
0,σ(Ω), we have

‖u/y‖2 ≤ 2 ‖∇u‖2 .

We define an extension map as follows:

Definition 5.2 (extension). Given a boundary condition u∗, an extension is a
map a ∈ D1,2

σ (Ω) such that a/y ∈ L2(Ω), ya ∈ L∞(Ω) and y2∇a ∈ L∞, and
such that the trace of a on ∂Ω is u∗.

Remark 5.3. If û∗ ∈ Aα,0 and in view of Theorem 3.3 with q = 0 and Q̂ = 0,
the solution of the Stokes system is an extension using Lemma 2.9.

Definition 5.4 (weak solution). A weak solution in the domain Ω with boundary
condition u∗ is a vector field u = a + v, where a is an extension of u∗ and
v ∈ D1,2

0,σ(Ω) which satisfies:
∫

Ω

∇u : ∇ϕ +
∫

Ω

(u · ∇u) · ϕ = 0, (5.1)

for arbitrary smooth divergence-free vector fields ϕ with compact support in
Ω.

The main result of this section is the existence of weak solutions:

Theorem 5.5 (existence of weak solutions). For a small enough boundary con-
dition u∗ (more precisely admitting an extension a such that ‖ya‖∞+‖a/y‖2+
‖∇a‖2 is small enough), there exists a weak solution u in Ω.

Before proving this theorem, we mention the fact that any weak solution
vanishes at infinity in the following sense:

Proposition 5.6. If u = a + v is a weak solution with v ∈ D1,2
0,σ(Ω) and a/y ∈

L2(Ω), then

lim
|x|→∞

u = 0,
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in the following sense

lim
r→∞

∫ π/2

−π/2

|u(r sin θ, 1 + r cos θ)|2 dθ = 0.

Proof. First of all, by Hardy inequality, we have v/y ∈ L2(Ω), so that u/y ∈
L2(Ω). We define the half-ball Ωn, the half-shell Sn and the half-circle Γn by

Ωn = B((0, 1), n) ∩ Ω, Sn = Ω2n\Ωn,

Γn =
{

(n sin θ, 1 + n cos θ),
−π

2
≤ θ ≤ π

2

}
,

with B((0, 1), n) the open ball of radius n centered at (0, 1). By using the trace
theorem in S1, there exists C > 0 such that
∥
∥u;L2(Γ1)

∥
∥2 ≤

∥
∥u;L2(∂S1)

∥
∥2 ≤ C

∥
∥u;L2(S1)

∥
∥2

+ C
∥
∥∇u;L2(S1)

∥
∥2

.

By a rescaling argument, we obtain that

1
n

∥
∥u;L2(Γn)

∥
∥2 ≤ C

n2

∥
∥u;L2(Sn)

∥
∥2

+ C
∥
∥∇u;L2(Sn)

∥
∥2

,

and since y ≤ n in Ωn, we have

1
n

∥
∥u;L2(Γn)

∥
∥2 ≤ C

∥
∥u/y;L2(Sn)

∥
∥2

+ C
∥
∥∇u;L2(Sn)

∥
∥2

.

In the limit n → ∞, the right-hand side converges to zero, because u/y,∇u ∈
L2(Ω) and since the integrals over Sn can be written as the difference of inte-
grals over Ω2n and Ωn. Finally,

∫ π/2

−π/2

|u(n sin θ, 1 + n cos θ)|2 dθ =
1

2πn

∥
∥u;L2(Γn)

∥
∥ ,

and the result is proved. �

As usual, to show the existence of a weak solution in an unbounded
domain, we first prove, for arbitrary n ∈ N, the existence of a weak solution
in the domains Ωn defined in the previous proof. To this end, we introduce
the concept of approximate weak solution in Ωn and then apply the Leray–
Schauder theorem to prove the existence of such approximate solutions.

Definition 5.7 (approximate weak solution). For n ∈ N, an approximate weak
solution is a vector field un = a + vn, where vn ∈ D1,2

0,σ(Ω) with support in
Ωn, which satisfies

∫

Ω

∇un : ∇ϕ +
∫

Ω

(un · ∇un) · ϕ = 0,

for arbitrary smooth divergence-free vector fields ϕ with support in Ωn.

Lemma 5.8 (existence of approximate weak solution). Provided u∗ is small
enough, there exists for all n ∈ N an approximate weak solution un = a + vn,
with ‖∇vn‖ ≤ 1.
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Proof. First, we note that the trilinear term can be bounded as
∣
∣
∣
∣

∫

Ω

(un · ∇un) · ϕ

∣
∣
∣
∣ ≤ ‖∇un‖2 ‖un‖4 ‖ϕ‖4 .

Therefore, the map

W 1
0,σ(Ωn) → R

ϕ �→ −
∫

Ω

∇a : ∇ϕ −
∫

Ω

(un · ∇un) · ϕ,

is a continuous linear form and by the Riesz representation theorem, there
exists a map Fn : W 1,2

0,σ (Ωn) → W 1,2
0,σ (Ωn) such that

(Fn(vn),ϕ) = −
∫

Ω

∇a : ∇ϕ −
∫

Ω

(un · ∇un) · ϕ.

The map Fn is continuous on W 1,2
0,σ (Ωn) when equipped with the L4-norm,

and, since W 1,2
0,σ (Ωn) is compactly embedded in L4(Ωn), Fn is completely con-

tinuous.
The problem of finding an approximate solution is equivalent to solving

the equation

vn = Fn(vn)

in W 1,2
0,σ (Ωn). By the Leray–Schauder fixed point theorem (see for example [17,

Theorem 11.6.]), to prove the existence of an approximate weak solution, it is
sufficient to prove that the set of all possible solutions of the equation

vn = λFn(vn), (5.2)

is uniformly bounded in λ ∈ [0, 1].
To this end, we take the scalar product of (5.2) with vn, and after inte-

grations by parts, we get
∫

Ω

∇vn : ∇vn = λ

∫

Ω

(un · ∇vn) · a − λ

∫

Ω

∇a : ∇vn. (5.3)

Therefore by Hölder inequality, we obtain

‖∇vn‖2
2 ≤ λ [(‖a/y‖2 + ‖vn/y‖2) ‖ya‖∞ + ‖∇a‖2] ‖∇vn‖2 ,

and therefore using Hardy inequality,

‖∇vn‖2 ≤ λ (‖a/y‖2 + 2 ‖∇vn‖2) ‖ya‖∞ + λ ‖∇a‖2 .

For λ ∈ [0, 1], we finally obtain for n big enough, and a small enough,

‖∇vn‖2 ≤ ‖a/y‖2 ‖ya‖∞ + ‖∇a‖2

1 − 2 ‖ya‖∞
,

which proves that ∇vn is uniformly bounded. �

We are now able to take the limit n → ∞ and prove the existence of a
weak solution in Ω:
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Proof of Theorem 5.5. By Lemma 5.8, there exists for any n ∈ N an approx-
imate weak solution vn and the sequence (vn)n∈N

is bounded in D1,2
0,σ(Ω).

Therefore, we can extract a subsequence, denoted also by (vn)n∈N
, which con-

verges weakly to v in D1,2
0,σ(Ω). Now, let ϕ be a test function with compact

support in Ω. Then, there exists m ∈ N such that the support of ϕ is in Ωm.
Therefore, we have for any n ≥ m,

∫

Ω

∇un : ∇ϕ +
∫

Ω

(un · ∇un) · ϕ = 0.

By definition of the weak convergence, we have

lim
n→∞

∫

Ω

∇vn : ∇ϕ =
∫

Ω

∇v : ∇ϕ.

Since ϕ has support in Ωm,
∣
∣
∣
∣

∫

Ω

(un · ∇un − u · ∇u) · ϕ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ωm

((un − u) · ∇un + u · ∇ (un − u)) · ϕ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ωm

((vn − v) · ∇un) · ϕ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Ωm

(u · ∇ϕ) · (vn − v)
∣
∣
∣
∣

≤ ‖vn − v;L2(Ωm)‖
(

‖∇un‖2 ‖ϕ‖∞

+2 ‖∇un‖2 ‖y∇ϕ‖∞
)
,

and therefore since D1,2
0,σ(Ωm) is compactly embedded in L2(Ωm), this proves

that

lim
n→∞

∫

Ω

(un · ∇un) · ϕ =
∫

Ω

(u · ∇u) · ϕ.

�

6. Uniqueness

In this section, we prove a weak–strong uniqueness theorem by exploiting the
properties of (α, q)-solutions. Namely, we prove that any weak solution satis-
fying the decay properties (4.2) of an (α, q)-solution coincides with any weak
solutions for the same boundary data. The ideas of the proof that are not
specific to the presence of an extension can be found in Hillairet and Wittwer
[21] and we refer the reader to this article for some technical details which are
omitted here.

Theorem 6.1 (weak–strong uniqueness). Let ū be a weak solution that satisfies

ū ∈ D1,2
σ (Ω), yū ∈ L∞(Ω), y2∇ū ∈ L∞(Ω), (6.1)
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and such that ‖yū‖∞ is small enough. Then any weak solution u with boundary
value u∗ = ū|∂Ω that satisfies the energy inequality

∫

Ω

∇u : ∇v ≤
∫

Ω

(u · ∇v) · a, (6.2)

coincides with ū.

Remark 6.2. The (α, q)-solutions found in Theorem 4.2 satisfy the requirement
(6.1) on ū.

The remaining part of this section is devoted to the proof of this theorem.
To begin with, we prove that the strong solutions can be approximated in the
following uniform way:

Lemma 6.3 (approximation of a strong solution). For any ū that satisfies (6.1),
there exists C > 0 and a sequence (ūn)n∈N

such that:

1. ūn has support in Ω2n;
2. ūn = ū on Ωn;
3. ‖yū − yūn‖∞ ≤ C ‖yū‖∞;
4.
∥
∥y2∇ū − y2∇ūn

∥
∥

∞ ≤ C
(∥∥y2∇ū

∥
∥

∞ + ‖yū‖∞
)
;

5. ‖∇ū − ∇ūn‖2 ≤ C (‖∇ū‖2 + ‖yū‖∞) .

Proof. We define

χn(x, y) = χ

(
|(x, y)|

n

)
,

where χ is a cutoff function satisfying (3.2), so χn = 1 on Ωn and χn = 0
on Ω \ Ω2n. Since |∇χn| = |χ′| /n, we obtain that ‖∇χn‖2 and ‖y∇χn‖∞
are uniformly bounded in n. Then we define ūn = χnū, so that the first two
properties are valid. We have

‖yū − yūn‖∞ ≤ ‖1 − χn‖∞ ‖yū‖∞ ≤ C ‖yū‖∞ ,

so the third property is proven. Finally, since

|∇ū − ∇ūn| ≤ |1 − χn| |∇ū| + |ū| |∇χn| ,
we obtain

∥
∥y2∇ū − y2∇ūn

∥
∥

∞ ≤ ‖1 − χn‖∞
∥
∥y2∇ū

∥
∥

∞ + ‖y∇χn‖∞ ‖yū‖∞
≤ C

(∥∥y2∇ū
∥
∥

∞ + ‖yū‖∞
)
,

and
∥
∥∇ū − ∇ūn

∥
∥

2
≤ ‖1 − χn‖∞ ‖∇ū‖2 + ‖∇χn‖2 ‖yū‖∞
≤ C (‖∇ū‖2 + ‖yū‖∞) .

�

Then, we prove that the integration by parts with respect to the solution
ū is permitted:
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Lemma 6.4 (integration by parts). For any ū satisfying (6.1), we have
∫

Ω

(w · ∇ū) · u +
∫

Ω

(w · ∇u) · ū = 0,

for all u,w ∈ D1,2
σ (Ω) with u/y ∈ L2(Ω) and w/y ∈ L2(Ω). We note in

particular that if u and w are weak solutions, the hypotheses are satisfied.

Proof. Since the support of ūn is compact, after an integration by parts, we
have

∫

Ω

(w · ∇ūn) · u +
∫

Ω

(w · ∇u) · ūn = 0.

By using Hölder inequality and since ū − ūn has support only in Ωc
n = Ω\Ωn,

∣
∣
∣
∣

∫

Ω

(w · ∇ (ū − ūn)) · u

∣
∣
∣
∣ ≤ ‖w/y‖2

∥
∥y2∇ū − y2∇ūn

∥
∥

∞
∥
∥u/y;L2(Ωc

n)
∥
∥,

so by applying Lemma 6.3, we have

lim
n→∞

∫

Ω

(w · ∇ūn) · u =
∫

Ω

(w · ∇ū) · u.

In the same way,
∣
∣
∣
∣

∫

Ω

(w · ∇u) · (ū − ūn)
∣
∣
∣
∣ ≤ ‖w/y‖2

∥
∥∇u;L2(Ωc

n)
∥
∥ ‖yū − yūn‖∞

≤ C ‖w/y‖2

∥
∥∇u;L2(Ωc

n)
∥
∥ ‖yū‖∞ ,

so we obtain

lim
n→∞

∫

Ω

(w · ∇u) · ūn =
∫

Ω

(w · ∇u) · ū,

and the integration by parts also holds in the limit. Finally, if u = a + v is a
weak solution, we have by hypothesis a/y ∈ L2(Ω) and by Hardy inequality
v/y ∈ L2(Ω), since v ∈ D1

0,σ. �

Next, we prove some results on the extension of the allowed test functions
in the definition of weak solutions:

Lemma 6.5. If u is a weak solution, then
∫

Ω

∇u : ∇v̄ +
∫

Ω

(u · ∇u) · v̄ = 0,

for any v̄ ∈ D1
0,σ(Ω) such that yv̄ ∈ L∞(Ω).

Proof. Since u is a weak solution and v̄n = χnv̄ is compact,
∫

Ω

∇u : ∇v̄n +
∫

Ω

(u · ∇u) · v̄n = 0.

We have
∣
∣
∣
∣

∫

Ω

∇u : ∇ (v̄ − v̄n)
∣
∣
∣
∣ ≤

∥
∥∇u;L2(Ω \ Ωn)

∥
∥ ‖∇v̄ − ∇v̄n‖2 ,
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and
∣
∣
∣
∣

∫

Ω

(u · ∇u) · (v̄ − v̄n)
∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

Ω

(a · ∇u) · (v̄ − v̄n)
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

Ω

(v · ∇u) · (v̄ − v̄n)
∣
∣
∣
∣

≤ ‖ya‖∞
∥
∥∇u;L2(Ωc

n)
∥
∥
∥
∥(v̄ − v̄n) /y

∥
∥

2

+ ‖v/y‖2

∥
∥∇u;L2(Ωc

n)
∥
∥ ‖yv̄ − yv̄n‖∞

≤ 2 ‖ya‖∞ ‖∇v̄ − ∇v̄n‖2

∥
∥∇u;L2(Ωc

n)
∥
∥

+2 ‖∇v‖2 ‖yv̄ − yv̄n‖∞
∥
∥∇u;L2(Ωc

n)
∥
∥,

so by applying Lemma 6.3, these last two expressions vanish in the limit n →
∞, which proves the lemma. �

Lemma 6.6. If ū is a weak solution such that yū ∈ L∞(Ω), then
∫

Ω

∇ū : ∇v +
∫

Ω

(ū · ∇ū) · v = 0,

for any v ∈ D1
0,σ(Ω).

Proof. We have
∣
∣
∣
∣

∫

Ω

∇ū : ∇ϕ +
∫

Ω

(ū · ∇ū) · ϕ

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

Ω

∇ū : ∇ϕ

∣
∣
∣
∣+

∣
∣
∣
∣

∫

Ω

(ū · ∇ū) · ϕ

∣
∣
∣
∣

≤ ‖∇ū‖2 ‖∇ϕ‖2 + ‖yū‖∞ ‖∇ū‖2 ‖ϕ/y‖2

≤ ‖∇ū‖2 (1 + 2 ‖yū‖∞) ‖∇ϕ‖2 ,

and since the form is linear in ϕ, the lemma is proved. �

We now prove that the weak solution ū satisfies an energy equality:

Lemma 6.7. Any weak solution ū which satisfies (6.1) verifies the energy equal-
ity

∫

Ω

∇ū : ∇v̄ =
∫

Ω

(ū · ∇v̄) · a. (6.3)

Proof. By Lemma 6.6, we have
∫

Ω

∇ū : ∇v̄ +
∫

Ω

(ū · ∇ū) · v̄ = 0,

and by Lemma 6.4,
∫

Ω

(ū · ∇v̄) · v̄ = 0,

∫

Ω

(ū · ∇a) · v̄ +
∫

Ω

(ū · ∇v̄) · a = 0,

so we obtain the energy equality
∫

Ω

∇ū : ∇v̄ = −
∫

Ω

(ū · ∇a) · v̄ =
∫

Ω

(ū · ∇v̄) · a.

�



Vol. 17 (2016) On the Stationary Navier–Stokes Equations 3311

We now have the necessary tools to prove the main theorem of this sec-
tion:

Proof of Theorem 6.1. Let u and ū be two weak solutions with the same
boundary conditions, so d = u − ū ∈ D1,2

0,σ(Ω); see for example [15, Theo-
rem II.7.7]. Then, by using the scalar product on D1,2

0,σ(Ω), we have

‖∇d‖2
2 =

∫

Ω

(∇u − ∇ū) : (∇v − ∇v̄)

=
∫

Ω

∇u : ∇v +
∫

Ω

∇ū : ∇v̄ −
∫

Ω

∇u : ∇v̄ −
∫

Ω

∇ū : ∇v.

By using Lemmas 6.5 and 6.6, the energy equality (6.3) and the energy inequal-
ity (6.2), we have

‖∇d‖2
2 ≤

∫

Ω

(u · ∇v) · a+
∫

Ω

(ū · ∇v̄) · a +
∫

Ω

(u · ∇u) · v̄+
∫

Ω

(ū · ∇ū) · v.

Since u/y ∈ L2(Ω) and ū/y ∈ L2(Ω) by using Hardy inequality and
Lemma 6.4, we have

∫

Ω

(u · ∇a) · a = 0,

∫

Ω

(ū · ∇a) · a = 0,

which allows us to rewrite the bound as

‖∇d‖2
2 ≤

∫

Ω

(u · ∇u) · a +
∫

Ω

(ū · ∇ū) · a

+
∫

Ω

(u · ∇u) · v̄ +
∫

Ω

(ū · ∇ū) · v

≤
∫

Ω

(u · ∇u) · ū +
∫

Ω

(ū · ∇ū) · u.

By using Lemma 6.4, we integrate the second term by parts,

‖∇d‖2
2 ≤

∫

Ω

(u · ∇u) · ū −
∫

Ω

(ū · ∇u) · ū =
∫

Ω

(d · ∇u) · ū.

Again by Lemma 6.4, we have
∫

Ω

(d · ∇ū) · ū = 0,

so by Hardy inequality,

‖∇d‖2
2 ≤

∣
∣
∣
∣

∫

Ω

(d · ∇d) · ū

∣
∣
∣
∣ ≤ ‖d/y‖2 ‖∇d‖2 ‖yū‖∞ ≤ 2 ‖yū‖∞ ‖∇d‖2

2 .

Therefore, if ‖yū‖∞ is small enough, we obtain that d = 0, i.e., u = ū. �
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7. Numerical Simulations

To simulate this problem numerically, we truncate the domain Ω to a ball of
radius R = 104, ΩR = Ω ∩ B((0, 1), R). On the bottom boundary we take an
antisymmetric perturbation of a symmetric Jeffery–Hamel,

u|[−R,R]×{1} = u0
Φ +

ν

r
sin(2θ)er, (7.1)

and on the artificial boundary Γ, which is the upper half circle of radius R, we
take

u|Γ = u0
Φ.

In Fig. 3, we represent the velocity field u multiplied by r to see the behavior at
large distances. For ν = 0, this corresponds to the Jeffery–Hamel solutions u0

Φ

which are scale invariant. For negative fluxes Φ < 0, small perturbations have
almost no effect on the behavior at large distances, so the asymptotic term
is probably given by the Jeffery–Hamel solution u0

Φ. Conversely for Φ > 0,
even a small perturbation drastically changes the behavior of the solution at
large distances by somehow rotating the region where the magnitude of the
velocity is large. In the case, the asymptotic behavior is very likely not given
by the Jeffery–Hamel solution u0

Φ. This conclusion can also be seen in Fig. 4,
where we plot the velocity field u in polar coordinates multiplied by r on the
half-circle

{
103 (sin θ, cos θ) , θ ∈

[−π
2 ; π

2

]}
in terms of ν.
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Appendix A. Jeffery–Hamel Solutions with Small Flux

A Jeffery–Hamel solution in the upper half-plane,
{

(r sin θ, r cos θ) , r > 0 and θ ∈
(−π

2 , π
2

)}
,

is a radial solution of the Navier–Stokes equations with zero velocity on the
boundary and whose velocity norm is f(θ)/r. More explicitly, f has to satisfy
the boundary value problem (A.1). Here, we prove an existence theorem:

Theorem A.1. For every small enough value of the flux Φ, the Jeffery–Hamel
equation

f ′′ + f2 + 4f = 2C, f
(±π

2

)
= 0, (A.1)

admits a symmetric solution,

f0
Φ(θ) =

2Φ
π

cos2(θ) + O(Φ3/2),
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Figure 3. Numerical results for the velocity u multiplied by
r, for the boundary condition (7.1) in a domain of size R =
104, for various values of the flux Φ and of the perturbation ν
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Figure 4. Profiles of rur and ruθ on the half-circle of radius
103 in term of θ ∈ [−π/2, π/2] and ν ∈ [0, 1]
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and in addition if φ < 0, two quasiantisymmetric solutions,

f±1
Φ (θ) = ±

√
−48Φ

π
sin(2θ) + O(Φ).

Proof. First of all, the solution of the linear equation

f ′′ + 4f = g,

is given by

f(θ) = A sin(2θ) + B cos(2θ) − L[g](θ),

where

L[g](θ) =
1
2

cos(2θ)
∫ θ

−π/2

g(s) sin(2s) ds − 1
2

sin(2θ)
∫ θ

−π/2

g(s) cos(2s) ds.

Therefore the Jeffery–Hamel equation and the boundary condition (A.1) can
be rewritten as

f(θ) = A sin(2θ) + C cos2(θ) + L[f2](θ),
∫ +π/2

−π/2

f2(θ) sin(2θ) dθ = 0.

(A.2)

By defining

f0(θ) = A sin(2θ), f1(θ) = C cos2(θ) − A2

3
cos4(θ), f = f0 + f1 + f̄ ,

the flux condition

Φ =
∫ +π/2

−π/2

f(θ) dθ

directly gives the definition of C in terms of the flux,

C =
2Φ
π

+
A2

4
− 2

π

∫ +π/2

−π/2

f̄(θ) dθ,

and the two equations (A.2) can be rewritten by substitution as:

f̄ = L
[(

2f0 + f1 + f̄
) (

f1 + f̄
)]

, (A.3)

A
(
Φ +

π

48
A2
)

=
∫ +π/2

−π/2

(
A − 2f0(θ) − 2f1(θ) − f̄(θ)

)
f̄(θ) dθ. (A.4)

To find a fixed point of theses equations, we first solve the left-hand side of
the second equation

A0

(
Φ +

π

48
A2

0

)
= 0

for A0. This equation admits the solution A0 = 0 and in addition, if Φ < 0,
the two solutions

A0 = ±
√

−48Φ
π

.

Given one of these three solutions, we define

A = A0 + Ā,
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and (A.4) becomes:

Ā =
48

48Φ + 3πA2
0

[ ∫ +π/2

−π/2

(
A − 2f0(θ) − 2f1(θ) − f̄(θ)

)
f̄(θ) dθ

− π

48
(
3A0 + Ā

)
Ā2

]
. (A.5)

It is easily verified that the maps defined by (A.5) and (A.3) map the ball

BΦ =
{(

Ā, f̄
)

∈ R × C0
([

− π
2 , π

2

])
:
∣
∣Ā
∣
∣ ≤ 50 |Φ| and

∣
∣f̄
∣
∣ ≤ 600 |Φ|3/2

}

into itself, provided Φ is small enough. Moreover, since the maps (A.5) and
(A.3) are multilinear affine maps of Ā and f̄ , they are contractions from BΦ into
itself, for Φ small enough. The first-order terms which we explicitly computed
above prove the claimed leading terms of the symmetric and quasiantisym-
metric solutions. �
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[26] Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible
Flow, 2 edn. Gordon and Breach Science Publishers, New York. Translated
from the Russian by Richard, A. Silverman (1969)

[27] Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential
Equations, 2 edn. Grundlehren der mathematischen Wissenschaften, volume
342. Springer-Verlag. doi:10.1007/978-3-642-15564-2 (2011)

[28] Moffatt, H.K., Duffy, B.R.: Local similarity solutions and their limitations. J.
Fluid Mech. 96(02), 299–313 (1980). doi:10.1017/S0022112080002133

[29] Nazarov, S.A.: On the two-dimensional aperture problem for Navier–
Stokes equations. Comptes Rendus de l’Académie Des Sciences. Série 1,
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