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Abstract. We describe general constraints on the elliptic genus of a 2d su-
persymmetric conformal field theory which has a gravity dual with large
radius in Planck units. We give examples of theories which do and do not
satisfy the bounds we derive, by describing the elliptic genera of symmet-
ric product orbifolds of K3, product manifolds, certain simple families
of Calabi—Yau hypersurfaces, and symmetric products of the “Monster
CFT”. We discuss the distinction between theories with supergravity du-
als and those whose duals have strings at the scale set by the AdS cur-
vature. Under natural assumptions, we attempt to quantify the fraction
of (2,2) supersymmetric conformal theories which admit a weakly curved
gravity description, at large central charge.

1. Introduction

The AdS/CFT correspondence [1] provides a concrete framework for hologra-
phy, where very particular d dimensional quantum field theories can capture
the dynamics of quantum gravity in d + 1 spacetime dimensions. A natural
question from the outset has been: “which class of quantum field theories is
dual to (large radius, weakly coupled) Einstein gravity theories?”

In a recent paper [2], interesting progress was made on this issue in the
particular case of two-dimensional CFTs. The authors of [2] make the plausible
assumption that a weakly coupled gravitational theory should reproduce the
most basic aspects of the phase structure known in all of the simple examples
of AdS/CFT. In particular, as one raises the temperature, there should be a
phase transition at a critical temperature (usually taken to be 3* = = = 2m)
between a “gas of particles” and a black hole geometry [3]—the Hawking—Page
transition [4]. By requiring that outside a small neighborhood of the critical

temperature the thermal partition function should be dominated by BTZ black
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holes at high 7', or the ground state at low 7', one finds interesting constraints
on the spectrum of any putative dual conformal field theory.

A significant consequence of this constraint is the derivation of the
Bekenstein-Hawking black hole entropy (expressed here in the ensemble where
one keeps track only of the total energy £ = h + h — i5)

F _
S(E)sz/%, E:h+h—1—c2 (1.1)

for £ > {5 and ¢ > 1. Notice that this is the regime where we expect the
Bekenstein—Hawking formula to give a good approximation of the black hole
entropy on gravitational grounds. It is different from the regime of applicability
of the usual Cardy formula based on familiar modular form arguments (% >
1).

Here, we turn our attention to 2d supersymmetric theories. In two-
dimensional theories with at least (0,1) supersymmetry and left and right-
moving Zsy fermion number symmetries, one can define the elliptic genus [5-8].
We will focus on the special case of (2,2) supersymmetry in this paper, but we
expect that many of our considerations could be suitably generalized. In the
(2,2) case, the elliptic genus associates to a 2d SCFT a weak Jacobi form; de-
tailed knowledge of the space of such forms (see e.g., [9]) will allow us to make
some strong statements about CFT/gravity duality in this case. Prominent
cases of such 2d supersymmetric theories in the AdS/CFT correspondence in-
clude those arising in D-brane constructions of supersymmetric black strings
[10], where the near-horizon geometry has a dual given by a o-model with
target MY /Sy for M = K3 or T*. By requiring the Bekenstein—Hawking
formula for these black objects to apply in the black hole regime, we derive a
constraint on the coeflicients of the elliptic genus.

Intuitively, the condition that the CFT elliptic genus exhibits an enlarged
regime of applicability of the Bekenstein-Hawking entropy (which turns out
to warrant a Hawking—Page transition) hints that there is indeed a weakly
coupled gravity dual. In the simplest perturbative string theory constructions
of AdS, there are at least three scales of interest—the Planck scale Mpjanck,
the string scale Mgtring, and the inverse AdS radius ﬁ. (There are also in
general one or more Kaluza—Klein scales—for simplicity we are imagining con-
structions like the Freund—Rubin construction where the KK scale coincides
with the AdS radius.) The most conventional regime of understanding string
models is when Mpianck > Mtring > ﬁ However, the conditions we impose
are also satisfied in some theories where there is no separation of scales be-
tween Miring and ﬁ apparent in the elliptic genus. We therefore also discuss
further criteria on the coefficients of the elliptic genus which may distinguish
between theories with a separation of scales between supergravity and string
modes, and theories without such separation.

It is important to keep in mind that our necessary condition serves only
as an indicator of whether there might be a weakly coupled gravity dual to
some region in the moduli space of the superconformal field theory. In simple
examples, the moduli space will have other generic phases characterized by
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duals with no simple geometric description, and the large radius gravity dual
would characterize only a small region of the SCFT moduli space. However, as
the elliptic genus is an invariant calculable (in principle) in this small region, it
will have the properties expected of a theory with a weakly coupled gravity de-
scription if the SCFT admits such a description anywhere in its moduli space.

This paper is organized as follows. In Sect. 2, we review some basic facts
about Jacobi forms. In Sect. 3, we describe the constraint we wish to place on
the Fourier coefficients of these forms, following a similar philosophy to [2]. In
Sect. 4, we check the bound on various simple constructions: K3 symmetric
product orbifolds (which provide some of the simplest examples of AdS3/CFTy
and do satisfy the bound), product manifolds, a family of Calabi—Yau spaces
going off to large dimension, and a symmetric product of the “Monster CF'T”.
As some of the examples will fail, we see that the bound does have teeth—
there are simple examples of (2,2) superconformal field theories at large cen-
tral charge that violate it. In Sect. 5, focusing on the distinctions between
the K3 symmetric product and the “Monster” symmetric product, we discuss
the distinction between low-energy supergravity theories and low-energy string
theories. In Sect. 6, we attempt to quantify “the fraction of supersymmetric
theories at large central charge which admit a gravity dual”, using a natural
metric on a relevant (suitably projectivized) space of weak Jacobi forms. De-
tailed arguments supporting some of the assertions in the main body of the
paper are provided in two appendices.

2. Modularity Properties

We can define the following elliptic genera for any 2d SCFT with at least
(1,1) supersymmetry and left and right-moving fermion quantum numbers.
Denote by L,,, L,, the left and right Virasoro generators, and F, F' the left and
right-moving fermion number. The NS sector elliptic genus can be defined via:

ZNS,—i—(T) _ TTNS,R (—l)F qLo—c/24q—Eo—c/24 ) (21)

It is a (weakly holomorphic) modular form under the congruence subgroup I'g,
defined in (3.34). Similar definitions apply in other sectors:

X = Trp,p (1) ghome/2igho=e/2t (2.2)

Zp4(t)=Trrr (—1)F qLo—e/21gLo=c/24 23

Zns,~ (1) = Trs,r (—1)F+TF gLo—c/24gLo—c/24 (2.4)

Here, ¢ = 2™ where 7 takes values in the upper-half plane, and we have

assumed equal left and right-moving central charges, ¢, = cg = c.

For the most part, we will consider theories with additional structure,
e.g., (2, 2) superconformal theories. In fact for any (0, 2) theory with a left-
moving U(1) symmetry, and so in particular for any (2, 2) SCFT, one can
define a refined elliptic genus as

ZR,R(Ta z) _ TTR,R(_1)F+F‘qLo—c/24qio—c/24yJo. (2.5)
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Here, y = €2™#. The additional symmetry promotes the two-variable elliptic
genus into a weak Jacobi form [11]. We will also consider

ZNS,R(Ta Z) _ TI,NS,R(71)FqLofc/24qLofc/24yJo

1 c C
= ZR.R <T72+T—2F> q2rys.

Note that we could define Zng ns as a quantity which localizes on right-moving
chiral primaries, but with suitable definition it would give the same function
as Zns,r above. So, while the AdS vacuum appears in the (NS, NS) sector, we
will focus on Zys r when stating our bounds in Sect. 3.

In the cases of interest to us, there is no anti-holomorphic dependence on
7 due to the (—1) insertion, and the elliptic genus is a purely holomorphic
function of 7. In fact, much more is true. Using standard arguments one can
show that the elliptic genus of an SCFT defined above in (2.5) transforms nicely
under the group Z?2 x SL(2,Z). In particular, it is a so-called weak Jacobi form
of weight 0 and index ¢/6, defined below. For instance, supersymmetric sigma
models for Calabi—Yau target spaces of complex dimension 2m have elliptic
genera that are weight 0 weak Jacobi form of index m. For the rest of this
paper, we will be considering SCFTs with m € Z, or equivalently ¢ divisible
by 6.

Consider a holomorphic function ¢(7,z) on H x C which satisfies the
conditions

) <m+b z ) = (e + )P e o7, 2), <i Z) € SLy(Z) (2.7)

ol

(2.6)

ct+d et +d

S(1, 2+ br + 1) = e 2TMETTD g7 1) 40 €T (2.8)
In the present context, (2.8) can be understood in terms of the spectral flow
symmetry in the presence of an N > 2 superconformal symmetry.

The invariance ¢(7,2) = ¢(7 + 1,2) = ¢(7,z + 1) implies a Fourier ex-
pansion

o(r2)= 3 eln, 0"y, (2.9)

n,lEL
and the transformation under (' %) € SLy(Z) shows
c(n, l) = (—=1)%c(n, —20). (2.10)

The function ¢(7, z) is called a weak Jacobi form of index m € Z and weight
w if its Fourier coefficients ¢(n,¢) vanish for n < 0. Moreover, the elliptic
transformation (2.8) can be used to show that the coefficients

c(n,0) = Cr.(D(n,?)) (2.11)
depend only on the so-called discriminant
D(n,0) := £* — 4mn (2.12)

and r = ¢ (mod 2m). Note that D(n,¢) is the negative of the polarity, defined
in [12] as 4mn — (2.
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Combining the above, we see that a Jacobi form admits the expansion
$(r2) =D hoe(7)mr(T,2) (2.13)
reZ/2m7

in terms of the index m theta functions,

Omr(rz)= Y. /myh, (2.14)
k=r mod 2m
Both Ay, , and 6, , only depend on the value of » modulo 2m. However, for
some later manipulations, we should note that it is sometimes useful to choose

the explicit fundamental domain —m < r < m for the shift symmetry in 7.
When |r| < m we can write:

R (7) = (1) B, (7) = Y e(n, 7)q~ P/, (2.15)
n>0

The vector-valued functions 6,, (7, z) transform as

1 2mimz2
6 <_,_Z> e SO 2), (2.16)

T T
Om(T+1,2) =T 0,,(7, 2), (2.17)

where S, 7 are the 2m X 2m unitary matrices with entries

1 wirr!
Sy = —e m 2.18
oT (2.18)
7\"LT‘2

7;‘7" =€ 2m 6rr (219)

From this we see that h = (k) is a 2m-component vector transforming as a
weight w — 1/2 modular form for SLo(Z).

In particular, an elliptic genus (with w = 0) of a theory with central
charge ¢ = 6m can be written as

Zpr(rz)= Y Z T, 2). (2.20)
reZ/2mZ

We have written Z,(7) for Ay, (7) in this expression. Thus Z,(7) only depends
on r modulo 2m, but again, when |r| < m it is useful to expand:
2
Zp(7) = Z_n(r) = c(n,r)g" im (2.21)
n>0
The function Z,.(7) can be thought of as the elliptic genus of the rth supers-
election sector corresponding to the eigenvalue of Jy = r mod 2m. From the
CFT point of view, the r ~ r 4+ 2m identification can be understood in terms
of the spectral flow symmetry of the superconformal algebra. When there is a
gravity dual the r — r + 2m transformation corresponds, from the bulk view-
point, to a large gauge transformation of a gauge field holographically dual to
the U(l)R
Since the Fourier coefficients of a weak Jacobi form have to satisfy

c¢(n,l)y=0 forall n<O0, (2.22)
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(which can be thought of as unitarity of the CFT), this leaves open the possi-
bility to have “polar terms” c(n, £)q"y* with

m? > D(n,0) >0, n>0

in an index m weak Jacobi form. These are called polar terms because they
are precisely the terms in the g-series of Z,.(7) that have exponential growth
when approaching the cusp 7 — ioo. The finite set of independent coefficients
of the polar terms in the elliptic genus will play a crucial role in what follows.
In what follows, we will denote by ¢p the sum of all the polar terms in the
elliptic genus.

Importantly, the full set of Fourier coefficients of a weak Jacobi form can
be reconstructed from just the polar part, ¢ p. This can be understood through
the fact that there are no non-vanishing negative weight modular forms at any
level. For discussions of this in related contexts, see [12-14]. Let us denote
by V,. the space of possible polar polynomials (without requiring that they
correspond to the polar part of a bona fide weak Jacobi form). Given the
symmetries of the ¢(n, £), V,, is spanned by ¢"y* in the region P™):

P ={(t,n):1<<m, 0<n, D(n,{) >0} . (2.23)

By a standard counting of the number of lattice points underneath the parabola
4mn — £? = 0 in the £,n plane [12], one can give a formula for the dimension
of the vector space of polar parts P(m) = dim(V},,):

P(m) =Y [—1. (2.24)

In this note, where we work at leading order in large m, we will only need
the leading behavior of the sum (2.24); this is determined by the elementary
formula Y7 | £2 = m3 4+ m? 4+ tm to be

P(m) = %mQ +0(m), m> 1. (2.25)

Because we are working at leading order at large m (large central charge),
we will not need to use the subleading corrections to (2.25) (see for instance
[9] and [12]). Neither will we need to deal with the important subtlety that
not all vectors in V,,, actually correspond to a weak Jacobi form. Denoting the
space of weak Jacobi forms of weight 0 and index m as jo,m, in fact one has
dim(Jo,m) — P(m) = O(m). These facts would become important if one were
to extend our results to the next order in a 1/m expansion.

3. Gravity Constraints and Phase Structure

We will now derive a constraint on the polar coefficients of an SCF'T as follows.
The polar coefficients determine the elliptic genus, and we will require that the
genus matches the expected Bekenstein—-Hawking entropy of black holes in the
high-energy regime. Happily, we will find that a second (a priori independent)
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requirement of the existence of a sharp Hawking—Page transition at the critical
temperature 0 = 27 gives the same constraint on the coefficients.

More precisely, we will be considering infinite sequences of CFTs going
off to large central charge, and we will bound the asymptotic behavior of
physical observables in such sequences as m — co. (One familiar example that
can be taken as representative of what we have in mind is the sequence of o-
models with targets Sym™ (K3).) Simple physical considerations will lead us
to propose certain constraints on the growth of the polar coefficients at large
m in the related families of elliptic genera.

Now, there are precise mathematical statements on the behaviors of coef-
ficients of large powers of ¢ in modular forms. For instance, there are theorems
proving that for a generic holomorphic modular form f = )" ¢,¢™ of fixed
weight &, c,, grows as O(n*~1) at large n, while for a cusp form, the coefficients
are of O(n"/?).

Note that our growth estimates are rather different in nature from those of
the previous paragraph. Our estimates will be physically motivated by known
facts about corrections to Einstein gravity in the expansion in energy divided
by Mpianck- We are proposing a mathematical criterion, motivated by physics,
that would allow one to check whether a given sequence of CFTs can pos-
sible have a weakly coupled gravity dual. This could equally well be viewed
as a mathematical conjecture about the families of modular forms arising in
sequences with gravity duals.

Our eventual criterion will be derived by considering the free energies
F,, of the CFTs in this family. The free energy in these theories, as m — oo,
gives a function with a sharp first-order phase transition at 8 = 27. This is
the physical phenomenon of the Hawking—Page transition [4]. (Sharp roughly
because, in microscopic examples of AdS;/CFTy, semi-classical configurations
of winding strings can condense and lower the free energy precisely at 2w,
yielding the transition—see [§5.3.2, [15]]). Similarly, when we state physically
motivated criteria about the free energies of our sequences of theories, we
will be making statements about the sequence F,,, and assuming that the
limit as m — oo of %Fm exists as a piece-wise differentiable function with
discontinuous first-derivative at 8 = 2.

3.1. A Bekenstein—Hawking Bound on the Elliptic Genus

Suppose that ¢ is the elliptic genus of a superconformal field theory with a
large radius gravitational dual. Define the “reduced mass” of a particle state
in the dual gravity picture to be the eigenvalue of

m
4 )
namely the quantity —D(n, £)/4m for the term ¢"y in the elliptic genus. Define
E™4 to be the eigenvalue under LY. Then:

o Classically, the states with E™? > 0 are black holes in AdSs;. We will
discuss their contribution to the supergravity computation of the elliptic
genus in detail below.

1
Led =Ly — —J2 — (3.1)
4m



2630 N. Benjamin et al. Ann. Henri Poincaré

e In contrast, in the gravitational computation of the elliptic genus, it is
the states with £ < 0 which contribute to the polar part of the su-
pergravity partition function [13]. These are precisely the modes which
are too light to form black holes in the bulk. These are the states which
appear in ¢p.

We now present an argument that constrains the coefficients in ¢p using
the supergravity estimate of the black hole contribution to the elliptic genus.
We treat the elliptic genus as the grand canonical partition function

Z(B,p) = Z PAWQ-E) _ e*ﬁF(B,#)7 (3.2)

microstates

where 7 = iTi and z = —z—gﬁ are the corresponding variables in the elliptic
genus. In other words, we define
B By
A -7 — i .= . 3.3
(B, 1) NS,R (T lg07 o (3:3)

To make contact with the usual thermodynamical analysis, we will require g
and p to be real numbers. Let us discuss the supergravity estimate for this in
simple steps. See also, for instance, the nice discussions in [16,17].

3.1.1. Uncharged BTZ. In calculating the elliptic genus for a 2d SCFT, we
restrict to states that are ground states on the right-moving side, but with
arbitrary Lg. These correspond to extremal spinning black holes in the 3d
bulk, with vanishing temperature 7' = 0.

We can calculate the entropy of these black holes using the standard
properties of black hole thermodynamics [18]. We will work in units where
fags = 1. The inner and outer horizons coincide for the extremal geometries,
and are located at

ry=r_=2VGM. (3.4)

The entropy is given by
™4
S=—. 3.5
2G (3:5)
Finally, the central charge of the Brown-Henneaux Virasoso algebra is related
to G by

c=—. (3.6)

Combining, we get

cM
S =2m/—. (3.7)
6
If we were to include Planck-suppressed corrections to the black hole entropy,
we expect no fractional powers of Mpianck to appear in the corrected formula,
but corrections which involve log(Mpianck) can appear. This translates into

O(log ¢) corrections, but no power-law in ¢ corrections, to the entropy.
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The black hole mass M is identified with the eigenvalue of Lo — 57, which
we will denote as n. This means that the degeneracy of states of the elliptic
genus ¢, goes as

Cpn = e27r./%+0(logn). (38)

This is the familiar Cardy-like growth. As we are interested in studying families
of CFTs asymptoting to the large central charge limit, we would like to know
about the behavior at fixed n as ¢ — oo. For this purpose, the more informative
expression would be

en = 2™V 5 +0Uoge), (3.9)

As an aside, let us discuss the validity of the above equation. The above
derivation of the black hole contribution to the partition function is valid
whenever the radius of the black hole is large in Planck units. The first BTZ
black hole appears at a mass ~ Mpjanck, and we see from (3.4) that its radius
will already be quite large—of order £aqs, or O(c) in Planck units. We then
expect the semi-classical entropy formula to be valid for even very light black
holes at large c. This is one way to understand the characteristic Cardy-like
growth of the number of states of CFTs with gravity duals, even outside the
usual range of validity of the Cardy formula that is guaranteed by modular
invariance alone.

Writing the elliptic genus now as

Z(r) = / dn TV i (3.10)

we can ask the question: at fixed 7 (where 2;7 = % is the formal “temperature”
variable; not to be confused with the temperature of the black hole, which is

zero), what value of n dominates the sum? This is solved using standard saddle

point approximation methods. The derivative of €™V ¢ 2™ vanishes when

[c
2miT = — — 3.11
TIT T o ( )

or equivalently

c
= —. 3.12
f=m/ (312
Thus we get
m
n = 772@. (3.13)
Using the famous relation ' = F — S/ we therefore get
F=-m22 1 O(logm). (3.14)

32
We were careful to write 3 here to distinguish from the physical temperature of
the extremal black holes contributing to the genus. (While the torus partition
function at a given 7 would correspond to a thermal ensemble, the elliptic
genus is only counting extremal states and the temperature represented by
Im(7) is fictitious.)
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3.1.2. Adding Wilson Lines. Now we turn to the elliptic genus, a refinement
of the above discussion which keeps track of U(1) charge.

In the bulk, the existence of the U(1) symmetry of the dual (2,2) SCFT
is manifested in the presence of Chern—Simons gauge fields. First, let us dis-
cuss the expected effect heuristically. By adding a U(1) Chern—Simons gauge
interaction at level k, we add to the action the following boundary term

k
Sgavke = “Tor [, LTV98" Aok, (3.15)
For a BTZ black hole, the angular direction in the 2d spatial manifold (which
we shall call the ¢ direction) is non-contractible, so we allow Ay to be nonzero.

We thus shift the action by a term proportional to A2. This will add a
term that goes as p? to the free energy so we will get something like

F~ % k2 (3.16)

Finally, for a (2,2) SCFT with k& determined by the central charge and hence

the index m, we will have
F % +mp? | (3.17)
Now, let us be more explicit. The entropy of the black holes we are
considering is given, in general, by [19]
02
S =2my/my\/n — —

4m

= v/~D(n, 0), (3.18)

where n is the eigenvalue under Lo — 57, and £ is the Jy eigenvalue.

Now, again, we write the degeneracy

2 2
c(n,ﬁ) _ e27r\/ﬁ nfffm%*O(log (nff—m)) (319)

or following the analogous discussion above
c(n, €) = 2™V n—drm+O0(logm) (3.20)
and the elliptic genus can be approximated as

ZNS,R(Tv Z) _ /dn/d€ e27ri‘rn€27rizée27r\/ﬁ\/n7fjl . (321)

This has a saddle when

m
T Vimn — 02
o (3.22)

2/Amn — 2’

Rewriting, the dominant saddle occurs at

72 9
on (5 )

= 2mpu. (3.23)
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Thus, we get the free energy as
72 9
F= —m@ —mu” + O(logm). (3.24)

Identifying this free energy with —%logZ gives us the behavior of the
elliptic genus. However, we need to be sure that the supergravity derivation
is valid—i.e., that the configurations we included correspond to reliable and
dominant saddle points. Reliability follows if the black hole is large in Planck
units, which works for any £ > 0 at large ¢. We also require that the black
hole saddle be the dominant one. This will be true for any g < 27 at very large
m. For > 2, instead the “gas of gravitons” dominates, and (3.24) is not the
appropriate expression for the free energy. Finally, in a tiny neighborhood of
[ = 2m, the free energy crosses from the value for the gas of gravitons to the
value characteristic of black holes above; this is a regime where “enigma black
holes” play an important role, and cannot be characterized in a universal way.
In known microscopic examples of AdS3;/CFTs, these are small black holes
(localized on the transverse sphere) of negative specific heat (see e.g., [20,21]
for discussions).

Next we will derive constraints on the low-temperature expansion—and
in particular the polar coefficients—f{rom these results of black hole thermo-
dynamics.

3.1.3. Bounds on Polar Coefficients. After these physical preliminaries, we
are ready to derive the main result of this paper. This result will follow (given
appropriate physical assumptions) by combining modular invariance with the
physical requirement that Z(8, 1) has large m asymptotics given by

2
log Z(5, u) = m (ﬁ " mﬂ) + O(logm), (3.25)
for all real (8, p) such that 0 < 8 < 27. Recall from Eq. (3.3) that Z(8, p) is
just the elliptic genus Zns r(7, 2) evaluated for 7 = i/2m and z = —ifu/27.

Now we write out the modular property:

m  —2ximz? 1 z
Zns.r(T,2) = (~1)"e” 7 Zns m (—T,—T). (3.26)

We make a few elementary manipulations:

rirm . 1
ZNS,R(7—> Z) = 62 4 GQ‘MZWZR’R (T,Z + T;)

TiTm . ].
— ™3 627rzzm Z ZT(T)Qm,r (T,Z + T;_ >

reZ/2m

TiTm : _ 27iTD
= e 2 627”2"7‘ E E CT(D)Q am

re€Z/2m7 D<r?
D=r? mod 4m

2mik?T ; ;
% § e im e?ﬂlzk(_l)kelﬂ‘rk

k=r mod 2m
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_mitm -
—e 3 627rzzm 2 E

reZ/2m’ D<r?
D=r? mod 4m

« Z Cfr(D)€%(—D+m2+(l€+m)2)e27rizk(_1)k. (327)
k=r mod 2m

Combining (3.26) and (3.27), we get
mimz?  ixm mizm
Zns,r(T,2) — TP e Z Z

r€Z/2m7Z D<r?
D=r? mod 4m

< Yy C,(D)etns (D=—m?=(ktm)?) =222k (g yktm

k=r mod 2m

2 mn?
B DD

r€L/2mZ D<r?
D=r? mod 4m

% Z CT(D)e%(D—mQ_(k+m)2)62ﬂi(k+m)(u+%) (328)

k=r mod 2m

where in the last line we have used the substitutions 7 = % and z = fizﬁ—:.

Note that the prefactor in front of the sum in Eq. (3.28) gives the right-
hand side of Eq. (3.25). Therefore

og| > > S Co(D)efsPmmt b)) g2rilhbm) ()

reZ/2mZ D<r? k=7 mod 2m
D=r? mod 4m

~ O(log(m)). (3.29)

In order to turn this into a more useful statement we next introduce
another physically motivated hypothesis—the “non-cancellation hypothesis”.
This hypothesis states that the leading order large m asymptotics is not af-
fected if we replace the terms in the expansion of Zy g r above by their absolute
values.! Given the noncancellation hypothesis none of the terms in the sum
can get large, and hence we arrive at the necessary condition:

7(2 D b
log <|C’T(D)|eW(D_m2_(k+m)z)> =0(logm) for all 8 < 27 and k=7 mod 2m.
(3.30)

The strongest bound is obtained by taking the limit as § increases to 27
from below, yielding:

|CT<D>| < eﬁ(m2—D+min{(k+m)2\k=7"(m0d 2m)})+0(10gm). (331)

1 Since ZNs,r is modular this again can only be valid in a distinguished set of expansions
around cusps, and we take it to apply to the expansion in (3.28).
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We can write the bound simply in terms of coefficients ¢(n, £) where 0 < ¢ < m;
the rest of the coefficients will be determined from this subset via spectral flow
and reflection of /. We then get the bound

le(n, £)] < e2m(n+%—1g)+00ogm), (3.32)

m 14|
Put differently, ‘6_277(”-’_7_%)0(71,@” can grow at most as a power of m for

m — oo. In addition to these conditions, the bound should not be saturated
by an exponentially large number of states. Note that in the special case ¢ = 0,
our bound (3.32) coincides with the result of [2].

We conclude with a few remarks.

1. To be fastidious, the bound (3.32) applies to any family C(™) of CFTs
with a weakly coupled gravity dual, together with a sequence (n(m),
£(m)) of lattice points such that the sequence of elliptic genus coefficients
c(n(m), £(m);C™)) has well-defined large m asymptotics.

2. The O(logm) error term in the exponent can be understood in various
ways. Perhaps the most enlightening physically is that it can be directly
connected (via modularity) to the Mpianex suppressed corrections to the
black hole entropy in the 5 < 27 regime.

3. Note that the bound is already nontrivial for the coefficient ¢(0,m) of
the extreme polar term with (n,£) = (0,£m). Under spectral flow, the
states contributing to this degeneracy correspond to the unique NS-sector
vacuum on the left tensored with one of the Ramond sector ground states
on the right. We will see that already the bound on the extreme polar
states is useful.

4. Notice that in (3.18), we have only written a formula for the entropy in
the stable black hole region E™d > 57+ Lhis follows because our saddle
point approximation is only self-consistent when § < 27 in this range
of energies. While it may seem naively that the large ¢ behavior of the
free energy would guarantee this formula also for 0 < E™9 < 57, this is
not the case. Because there is a jump of O(c) in the energy in a small
neighborhood of 8 = 2, in this window O(1) contributions to the free
energy (which we’ve neglected in the large ¢ limit) could lead to significant
changes in E™9; our formula for S(E*?) is then unreliable. It becomes
reliable once one reaches the stable range of energies E™ > 54+ For
further discussion of this issue, see [2] as well as [20,21].

3.2. On the Hawking—Page Transition

In what follows, we will present an alternate derivation of (3.32) by insisting
on a sharp Hawking—Page phase transition near 5 = 27 (in the limit of large
central charge) in the NS-R sector. The sharp transition is not a surprise. It is
expected from general properties of the AdS;/CFT53 duality (and in particular,
from the existence of light multiply-wound strings which can lower the free
energy once § < 2, in known microscopic examples [§5.3.2; [15]]).
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Recall that the NS sector elliptic genus has a g-expansion of the form

m T+1 moy gy £
Zns +(T) = q% Zrr (7’, 2) = Z(—Nc(n,z) VEREEI (3.33)

n,f

From the modular properties of Zrr(7,2) we see that Zng 4 (7) is invariant
under the group

F@Z{(ZZ) eSLaB)|c—d=a—b=1 (mon)} (3.34)

which is conjugate to the Hecke congruence group I'g(2).
Clearly, it satisfies at the lowest temperatures

_BY_c
logZns .+ (’T =iy )= 246, 8> 2r. (3.35)

To have a phase dominated by the ground state until temperatures paramet-
rically close to § = 27 at large central charge ¢ = 6m, one requires:

logZns,+ <T = zfﬂ) = 2—646 +O(logc), [ >2m. (3.36)

Again, this can be viewed as an asymptotic condition on a family of CFTs
which has a weakly curved gravity dual at large m: the limit as m — oo of
% log Zns,+ for any > 27 exists and asymptotes to iﬁ.

The size of the sub-leading terms in (3.36) requires some discussion. In
fact, just for the purpose of having a phase transition at 8 = 2« in the large ¢
limit, it is possible to relax the condition of strict ground state dominance and
to allow logZns,+(8) = 558+ O(c'~?) for some § > 0, instead of restricting to
O(log ¢). As noted before, however, in the large temperature regime this would
imply corrections to the Bekenstein-Hawking entropy suppressed by fractional
powers of Mpjanck, Which are not expected. On the other hand, logarithmic
corrections are expected. This suggests one should set § = 1. In any case,
we shall not pursue the slight generalization to 6 # 0 in the present paper—
the requisite modification of the analysis can be implemented in a relatively
straightforward way.

A sufficient condition for (3.36) to be true is that |c(n, )T Tn+s| <
e™P/* for a number of terms which grows at most polynomially in m. If we in-
voke the noncancellation hypothesis, we can also say that a necessary condition
is:

le(n, £)] < e2m(n='5+%)+0(ogm) (3.37)
If we combine this statement with the spectral flow property c¢(n,£) = ¢(n +
sl +ms?, ¢+ 2sm) for all integers s we can get the best bound by minimizing
with respect to s, subject to the condition that s is integer. Combining with
reflection invariance on /£ it is not difficult to show then that the best bound is

le(n, £)] < 20— B+ 5)FOUozm) (3.38)
where (n, ) is related to (ng, £y) by spectral flow and reflection and 0 < ¢y < m.

This is the same condition we have derived to reproduce Bekenstein—-Hawking
entropy (3.32).
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F1GURE 1. The tessellation by I'y and its sub-tessellation by
I's\I'g. The thick lines are where phase transitions in super-
gravity can occur

The above phase transition corresponds to moving between Im(7) = 1—¢
and Im(7) = 1+¢€ with Re(7) = 0 between two specific copies of the fundamen-
tal domain of I'y; see Fig. 1. In the Euclidean signature, other saddle points
corresponding to analytic continuation of the BTZ black holes are also believed
to be relevant [13,22], and one is led to a stronger prediction for a phase di-
agram requiring an infinite number of different phases corresponding to pairs
(c,d) of co-prime integers with ¢ > 0, ¢ —d = 1 (mod 2) (see [13] and [23],
§7.3).2

One should then obtain a phase structure which divides the upper-half
plane into regions dominated by the various saddle points labeled by different
values of (¢,d). This corresponds to a tessellation of the upper-half plane by
I \I'p where I', is the group generated by T2, coinciding with the intersection
of Ty and (T). In the above sentence, we have use the definition T'= (} 1) €
PSLy(Z) and (T) = {T",n € Z}. This tessellation is drawn in Fig. 1 with
the thick lines. We discuss the derivation of this phase diagram in detail in
Appendix A, and show that in each region, one has a phase transition at the
thick line in Fig. 1 which is similar in nature to our transition between thermal
AdS dominance and the black hole regime.

4. Examples

In this section, we discuss how the elliptic genera of various simple CFTs—
o-models with targets Sym” (K3), product manifolds (K3)V, or Calabi-Yau
hypersurfaces up to relatively high dimension d—fare against the bound. Some-
what unsurprisingly, the first class of theories passes the bound while the others

2 Reference [13] erroneously claimed the phase diagram would be invariant under PSL(2,7Z).
However the argument given there is easily corrected, and it predicts a phase diagram
invariant under I'g(2) for the NS-sector genus considered there. For further discussion see
Appendix A.
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fail dramatically, exhibiting far too rapid a growth in polar coefficients [24]. We
close with a discussion of Sym® (M), with M the Monster CFT of Frenkel-
Lepowsky—Meurman. This example proves a useful foil in contrasting theories
with low energy supergravity vs low energy string duals.

4.1. Sym”™ (K3)
The first example is one which we expect to satisfy the bound, and serves as a
test of the bound. A system which historically played an important role in the
development of the AdS/CFT correspondence was the D1-D5 system on K3
[10], and the duality between the o-model with target space (K3)" /Sy and
supergravity in AdSs was one of the first examples of AdS;/CFTy duality [1].
See also [25] for a more detailed analysis.

The elliptic genus of the symmetric product CFT was discussed exten-
sively in [26]. One can define a generating function for elliptic genera

Zx(o,T1,2) = Z PN Zr r(Sym™(X);7,2), p=e>", (4.1)
N>0
which is given by [26] as

ZX(U7 T, Z) = H ! (42)

1 — pngn yl)ex (nn’,l) °
n>0,n'20,l( )

The coefficients cx(n,!) are defined as the Fourier coefficients of the original
CFT X,

Zrr(X;7,2) = Y ex(n,1)g"y, (4.3)
n>0,1
If we are interested in calculating the O(g") piece of the elliptic genus of
Sym™ (X), we can set n’ = 0 in (4.2), giving
1
lim Zx(o,7,2) = _—. (4.4)
T—1i00 n1>_£l (1 _ pnyl)cx(O,l)
When X is the sigma model with Calabi—Yau target space (which we also call
X)), the above is, up to simple factors, the generating function for the y,-genus
of Sym™ (X).
The most polar term of Sym”™ (X) is given by 3™ where m = dim¢ X /2
is the index of the elliptic genus of X. This is the coefficient of yVpV in (4.2),
which only receives contributions from
1

. 4.5
(1= pym)ex(Om) *5)
By calculating the coefficient of p™Vy™V™ in (4.5) we get
cx(0,m)+ N —1
Nm) = 4.
CSymN X (07 m) ( cx (O7 m) _1 ; ( 6)

a polynomial of degree cx(0,m) — 1 in N and therefore allowed by the bound
(3.32).
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In order to find the subleading polar piece for Sym” (X), we calculate
the coefficient of the term pNyN™ =1 in (4.2). This has contributions from

1 1 1
(1 _ pym)cx(O,m) (1 _ pym—l)cx(o,m—l) (1 _ prm)cx(O,m) '

(4.7)

The pNy™N—1 term generically comes from multiplying a p™V—1y™(N -1

in the first term in (4.7) with a py™~! from the second term. For the special
case of m = 1, it can also come from multiplying a p™ ~2y™(V=2) from the first
term with a p?y™ from the third term.

The coefficient of pV 1y (V=1 in the first term is (C"Cf&gzlj)]ffz), and
1

the coefficient of py™~* in the second term is cx (0,m — 1). The coefficient of
pV=2y™(N=2) in the first term is (Cxcfggij)lfl_?’) and the coefficient of p?y™ in
the third term is ¢x (0, m). Thus the coefficient of the penultimate polar piece

is given by

CSymNX(O? Nm — 1)

(s ) ex (0.m — 1), et
(X OV ex (0,0) + (KON e (0,1),  ifm=1.

Again, this exhibits polynomial growth in N and is allowed by (3.32). Any term
a finite distance away from the most polar term (e.g., y™¥"~%¢" for constant
x) will grow as a polynomial in N of degree ¢x (0, m) — 1.

For Calabi—Yau manifolds X with yo = 2, we have cx(0,m) = 2 so the
two most polar terms simplify to

CSymNX(OaNm) =N+1

Nex(0,m — 1), itm>1

Nex(0,0)+2(N —1),  ifm=1 (4.9)

CSymNX(O7Nm_1) :{

For the special case of X = K3, we have m = 1 and ¢x (0,0) = 20, so the
penultimate polar piece grows as 22N — 2.

We can do a similar calculation to find the coefficient in front of y
for Sym”™ (K3) with = > 1. We find the asymptotic large N value for the
coefficient, presented in Table 1. In Fig. 2, we plot the polar coefficients of
Sym?° (K3) against the values allowed by the bound. Although some very po-
lar terms exceed e27("~'2+%) in (3.32), the deviation is of the order O(log N)
in the exponent, which is allowed in our analysis. See [27] for more informa-
tion on the order O(log N) corrections. For terms with polarity close to zero,
the O(log N) corrections are less important, and we see that the bound is
subsaturated as expected.

The fact that Sym®™ (K3) satisfies our bounds is part of a more general
story—in fact all symmetric products will satisfy this bound, regardless of the
“seed” SCFEFT. This follows from the general class of arguments presented in
[2,24].

N—x
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TABLE 1. Coefficient of yV =% in Sym’ (K3) elliptic genus at

large N
T Coefficient
0 N+1
1 22N — 2
2 27TN — 323
3 2576 N — 5752
4 19574N — 64474
5 128156 N — 557524
6 746858 N — 4035502
7 3959312N — 25550800
8 19391303N — 145452673
9 88757346 N — 758554926
10 383059875 N — 3673549725
11 1569800280N — 16690133400
12 6143337474N — 71708443374
13 23066290212N — 293213888652
14 83418524934 N — 1146991810674
15 291538891984 N — 4310932524176
16 987440609467N — 15624074962373
17 3249156243514 N — 54773846935526
18 10408875430635N — 186236541847125
19 32525691116400N — 615565850482800
20 99302600734650 N — 1981904206578750
We later plot these values in Fig. 8
Sym?*(K3)

604

50f

ot o Data: log(|c(n, ))|)

30feg, Bound

zo—"P e, P o %8

10F Cte. 3 o

b D(n.l)

L L L
100 200 300 400

FIGURE 2. Here, we plot the polar coefficients of Sym?° (K 3)
versus polarity, and also the coefficients allowed by the
bounds. We see that at this value of ¢ (=120), the bounds
are satisfied by the symmetric product conformal field theory,
after allowing minor shifts due to the O(logm) correction

4.2. Products of K3 (or, X%)

The most obvious families of CFTs that “should” fail any reasonable test for
having a (weakly coupled) gravity dual are given by tensor products of many
small ¢ CFTs. Here, as a foil to Sym”™ (K3), we describe the results for the
product (K3)". Not surprisingly, it fails to satisfy the bounds. We will use the
fact that
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K3% Polar Coefficients
60fe,

ot e « Data: log(|c(n, ))])

30 S Bound

20f .

L L L L D(nJ)
100 200 300 400

F1GURE 3. Here, we plot the polar coefficients of the product
conformal field theory with target K320

N

N N n
2% 2 = (Z8 ()" = [ D ex(n,0q™y" | (4.10)
n,t

For concreteness, we look at the x, genus of K 3N, Since
ZED(1,2) = 2571 + 20+ 2y + O(g), (4.11)
the ¢%™ term in the elliptic genus of K3 is given by
cran (0, N) =2V, (4.12)

which violates the bound (3.32) of only polynomial growth for the most polar
term.

To visualize the violation we plot the polar coefficients of K32° against
the bound in Fig. 3. Note that the violations are not of the order O(log N),
and (3.32) is clearly not satisfied.

We conclude with a few remarks about examples similar to the above:

1. We cannot rule out all product manifolds using this method. For in-
stance, the elliptic genus of 7% is zero, which means that products of
T* will surely satisfy the bound, having a vanishing elliptic genus. The
vanishing is due to cancellations arising from the U(1)* translation sym-
metry acting on Sym” (7). One could instead work with Sym™ (7%)/T*.
In worldsheet terms, there are fermion zero modes due to the extra trans-
lation symmetry which must be saturated by the insertion of a suitable
number of fermion currents. The relevant modification of the genus is
worked out in [28]. It should be fairly straightforward to generalize our
considerations to situations such as this where extra insertions are re-
quired to define a proper index.

2. Another simple example that violates the bound is the iterated symmetric
product Sym™* (Sym™2(K3)). Taking, for simplicity, Ny = Ny = N, so

m = N2, the coefficient of the most polar term is (%{,V) ~ \/71T7N4N =

mél\/m for large m. Indeed, the iterated symmetric product is an
example of the more general class of permutation orbifolds. It would
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be interesting to explore the relation of our bound to the oligomorphic
criterion of [29,30].

4.3. Calabi—Yau Spaces of High Dimension

To provide a slightly more nontrivial test, we discuss the elliptic genera of
Calabi-Yau sigma models with target spaces X (9 given by the hypersurfaces
of degree d + 2 in CP™!, e.g.,

d+1

>zt =o. (4.13)
1=0

We have chosen these as the simplest representatives among Calabi—Yau man-
ifolds of dimension d; as they are not expected to have any particularly special
property uniformly with dimension, we suspect this choice is more or less
representative of the results we could obtain by surveying a richer class of
Calabi—Yau manifolds at each d. In any case we will settle with one Calabi—
Yau per complex dimension. Since m = d/2, and we have been assuming m is
integral, we restrict to even d.

The elliptic genus for these spaces is independent of moduli, and can be
conveniently computed in the Landau-Ginzburg orbifold phase. This yields
the formula [11]

d+2
s (0 (r- g+ ol + aks)
Z (7, 2) y=* (4.14)
R.R d+2 [ k
k=0 91(T,m2+m7+m)

Many further facts about elliptic genera of Calabi—Yau spaces can be found in
[31].

First, we discuss the explicit data. To facilitate this we computed all
polar coefficients numerically for d = 2,4,...,36. Then, we provide a simple
analytical proof of bound violation valid for all values of d (just following from
the behavior of the subleading polar term).

Using (4.14) we can extract the polar coefficients explicitly for any given
d. In Figs. 4, 5, and 6 we plot the coefficients of the polar pieces against
polarity for Calabi—Yau 10-, 20-, and 36-fold, respectively. In Fig. 7, we plot
the subleading polar coefficients of these Calabi—Yau spaces as a function of
their dimension. In all cases, we see that the bounds are badly violated.

Numerics aside, it is easy to give a simple analytical argument proving
that these Calabi—Yaus will violate the bound. Consider the subleading y™ !
polar piece of Zd R

The coefﬁments cx@ (0, p) of the elliptic genera of Calabi—Yau spaces are
determined simply by topological invariants:

Cx(d) (07 m— Z) = Z(_l)i+khk7i7 (415)
k
so the coefficient in front of y™ 1! is

—x1=Y_ —(=1)Pn"*. (4.16)

p
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CY10 Polar Coefficients
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FIGURE 4. Here, we plot the polar coefficients of Zg3!0
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FIGURE 5. Here, we plot the polar coefficients of Zg520
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FIGURE 6. Here, we plot the polar coefficients of Zg53¢

We know h'9~1 is given by the number of complex structure parameters of
the hypersurface, or

pld—1 _ (d+2)x (d+3) x---x(2d+3)
N 1x2x---x(d+2)

_ (?:;) —(d+2)2 (4.17)

(d+2)?
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Subleading Polarity for Calabi-Yau 2m-fold
log(| ¢(0, m-1)])

50 - °

30 L

20+ )

FIGURE 7. Here, we plot the subleading polar coefficients of
the Calabi-Yau elliptic genera against the dimension

By a standard application of the Lefschetz hyperplane theorem, the remaining
hYP vanish except for ht! = 1. Thus we get (recall d = 2m is even)

2d + 3
d+2
And just as a check, for d = 36, we numerically get
cx e (0,17) = 34463103243466306 75857
75
= —382+1 4.19
(50) ~38% 41 (4.19)

which matches the expectation on the nose.
Asymptotically, (4.18) goes as:

log cx @ (0,m — 1) ~ log (2d)! — 21log (d)!
~ 2dlog (2d) — 2dlog (d)
= 2dlog?2 (4.20)

exw(0,m—1) = ) — (d+2)* + 1. (4.18)

SO
ex@ (0,m — 1) ~ 224 = 24m, (4.21)
To satisfy the bound, we need cg?) (0,m — 1) to grow at most polynomially
with m when it in fact grows exponentially with m.

4.4. Enter the Monster

We now discuss a theory which passes our bounds but seemingly exhibits
no supergravity regime—instead exhibiting a Hagedorn degeneracy of states
already at low energies. We have benefited immensely in thinking about this
theory from the unpublished work of Yin.

A ¢ = 24 CFT with Monster symmetry was constructed many years
ago by Frenkel, Lepowsky, and Meurman [32]. Let us call the non-chiral CFT
with Monster symmetry M. In this section, we wish to consider the symmetric
products Sym” (M). As M has no moduli, there is a unique partition function
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canonically associated with this theory, and we will consider the chiral partition
function instead of the elliptic genus in this section.

This requires a word of explanation. While the elliptic genera we’ve con-
sidered are related to non-chiral CFTs with conventional AdS gravity duals (in
favorable cases), a chiral CFT can never have a conventional Einstein gravity
dual. However, as explained in [33,34], there are candidates for chiral gravity
duals to holomorphic CFTs. See also [35] and references therein for a more de-
tailed discussion on these theories. In this sense, we can consider the partition
functions which follow as (candidate) duals to (a suitably defined theory of)
chiral gravity (coupled to suitable matter).

Using the formula for the second-quantized partition function [26], along
with the famous denominator identity due to Borcherds [36]:

I a-prg™)e™ =p(o) - J(r) (4.22)
n>0,meZ
where p = €™ and ¢ = €*™7 and J(1) = ¢ ' 4+ Y.~ ¢(n)q", one can write
the generating function:

6727rw'

Z >N Z(Sym™ (M); 1) = COECE

N=0

(4.23)

For large Im(7) the infinite sum only converges for Im(o) > Im(7), while for
small Im(7) the infinite sum only converges for Im(c + 1) > 1. Choosing large
Im(7) we can say that
N e—27'ri(N+1)o'
Z(Sym"™ (M); 1) = %ddj(a) — 70 (4.24)
where the contour is a circle at constant Im(o) on the cylinder given by the
quotient of the o-plane by o ~ o + 1 and we must assume Im(o) > Im(7).
The contour integral can—at least naively—be evaluated by deforming the
contour to smaller values of Im(o) approaching Im(c) = 0. (We certainly
cannot deform to large Im(o) because of the exponential growth from the
term e 2™ (N+1)7 ) This deformation leads to residues from an infinite set of
simple poles at o = 7 together with ¢ equal to all the modular images of 7
within the strip [Re(7)| < 1. Using

2
oA d(r) = —Jw. (4.25)
This naive contour deformation yields:
Z(Sym™ (M); 1) = Pg(qufl)L)24 . (4.26)
Ey(1)?Eg(T)

Here, Po(g~V~1) is the weight 2 Poincaré series of g~V ~1.3

3 This Poincaré series requires regularization, indicating the above contour deformation argu-
ment is subtle. A standard procedure for obtaining a well-defined Poincaré series is described
in detail in many places. See, for examples, Sect. 4 of [14] or Sect. 2 of [46]. As explained in
those references, the modular anomaly of the series Pg(q’Nfl) is expressed in terms of a
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Because
Py(g V) =gV +0(0), (4.27)
all of the modes which provide the low-energy spectrum (i.e., the states which
are not black holes) are visible in the expansion of
24
Fr)= M0
Ey(1)?Ee(7)
It now follows from the fact that ¢/24 = N and the structure of Py
that we can find the modes at energies below the black hole bound just from
expanding F'. Writing

(4.28)

F(r)=>anq", (4.29)

a; is the ground-state contribution and the higher aj; count the excited states
visible in the partition function (until one reaches the threshold to form black

holes).
One can extract the kth coefficient via the contour integral
1 1

27

As n(7) has no poles, F4 has a simple zero at 7 = e™3 with no other zeroes,
and Fg has a simple zero at 7 = ¢ with no other zeros, we can now evaluate
(4.30) explicitly.
The pole at 7 = i provides the dominant behavior of the integral for

k> 1. One finds
om0

E4(i)*Eg (i)’
and hence in the regime 1 < n < N = g, the Sym” (M) theory has a
degeneracy of polar states governed by

ay ~ €™ (4.32)

One can view this as satisfying an analog of the bound (3.32) for chiral
gravity. In harmony with this, the singularity of (4.23) at 0 = 7 and at o =
—1/7 should come from the N — oo limit of the partition functions, and
this strongly suggests that the partition functions Z(Sym®™(M);7) exhibit
the expected Hawking—Page first-order transition (as indeed follows from the
general results of [24]), that is, the large NV asymptotics at fixed pure imaginary
T is given by:

(4.31)

ap ~ €

k1 N"2qg~N(1+O(N™1)) Im(7) > 1

kIN®2GN(1+O(N1)) Im(r) <1 (4.33)

Z(Sym™ (M);7) ~ {
where ¢ := exp(—2mi/7). Here k1, ko are constants we have not attempted to
determine.

Footnote 3 continued
period of a weight zero cusp form. Since no such nonzero cusp form exists we conclude that
P2(¢~ V1) is in fact modular, as is required by modularity of Z(Sym® (M); 7).
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The growth (4.32) exhibits a Hagedorn spectrum, hinting that if there
is a holographically dual theory it must be a string theory with string scale
comparable to the AdS radius.

5. String Versus Supergravity Duals
We have just seen that some theories with a low-energy Hagedorn degeneracy
c

# of states at energy F ~ €*™, 1< E < 54 (5.1)
still satisfy our bounds. This might indicate that such theories are low-energy
string theories—there is no parametric separation of scales evident between the
emergence of a Hagedorn degeneracy and some other set of low-energy modes
with well-defined asymptotics (which could serve as a proxy for supergravity
KK modes).*

This is to be contrasted with the growth of states exhibited by a super-
gravity theory in d spatial dimensions, in the regime where the supergravity
modes have wavelengths shorter than any scale set by the curvature. The grav-
ity modes then behave, to leading approximation, like a gas of free particles
in d dimensions. The energy per unit volume scales as

E ~ T (5.2)
while the entropy per unit volume scales as
s~T9 (5.3)
Hence, in such a theory, one expects (simply from dimensional analysis) that
o d
Cm ~ econsth L, a= —— 5.4
P d+1 (5.4)

in the regime dominated by supergravity modes. For instance, in the canonical
AdSs x S° solution of IIB supergravity, there is a supergravity regime with
E16 growth of the entropy as a function of energy [15].

For AdS;3 x S3 x K3 compactifications where the K3 is much smaller than
the S3, one would expect a 6d supergravity regime to occur at low energies. We
now provide some simple analytical and numerical arguments demonstrating
that the growth is indeed sub-Hagedorn. Related discussions appear in [37,38].
The naive “gas of particles” analogy discussed above, for polar terms, would
suggest a growth of econstxE”® Ope can get slower growth, however, due to
cancellations in the supergravity modes which contribute to the elliptic genus.
We also note that at gstring << 1, there would be a regime of energies in the
full physical theory exhibiting a Hagedorn degeneracy of string states. These
do not, however, contribute in the elliptic genus.

4 Two subtleties could invalidate the considerations of this section. In one direction, can-
cellations between terms in a partition function could lead to subexponential growth of
coefficients when in fact the entropy grows exponentially. In the other direction, when con-
sidering the entropy at finite volume it can happen that the entropy grows exponentially
with energy, even though the theory is not a string theory. For an example, see Sect. 7 of
[47].
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First, we provide an analytical argument demonstrating that there is a
range in which the polar terms of the elliptic genus of Sym’ (K3) clearly has
subexponential growth (though we do not quantify beyond this). Taking (4.4)
at y = 1, we get that the sum of all O(¢°) coefficients of the EG of Sym” (K3)
is the Nth coefficient of

S (5.5)

which goes as
e47r\/N+O(logN). (56)

Since all of the O(q°) pieces of the EG of Sym” (K3) are positive (which can
be shown from (4.4) for instance), each individual term must be smaller than
(5.6). If we label the O(q") states by E as above (we are interested in the
growth in the NS sector, and the different powers of y at O(¢°) in the R sector
genus give states of different NS energy), we must have

ag < e™VN (5.7)

Thus

aye < VN (5.8)

for a < 1 which correspond to states parametrically below the Planck mass in
the NS sector as N — oo. Relabeling gives us

1
ap < 647TE2& . (59)

We therefore find states parametrically lighter than the Planck mass with a
subexponential growth of states. Note that there may be other states at the
same energy level that we neglect due to only considering O(q°) terms in the
elliptic genus. However, as we expect the entropy to be a function of polarity
up to small corrections, taking terms with positive powers of ¢ into account
would only multiply our expression in (5.9) by some polynomial factor without
changing the leading order.

Because we expect the only relevant scales (other than supergravity KK
scales) to be the string scale and Planck scale, and we do not get stringy growth
in this regime, we expect subexponential growth throughout the polar terms.
We now provide further (weak) numerical evidence in favor of this hypothesis.
We include a plot of the normalized coefficients of y¥ =% for x = 1,...40 in
the large N limit in Fig. 8 (these numbers do not change past some N since
they only involve twisted sectors of permutations of some fixed length).

These examples suggest a criterion that distinguishes between theories
with low-energy Einstein gravity duals as opposed to low-energy string duals,
with the usual qualifier that cancellation is possible in an index computation.
Writing

cp ~ eNET ] B i, (5.10)
theories with o < 1 are likely to have a range of scales at low energy where
supergravity applies, while theories with a« = 1 are evidently string theories
already at the scale set by the curvature. We note that similar issues have been
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FIGURE 8. Here, we plot the normalized coefficients of 3V —*
terms in elliptic genus of SymN(K3) for x = 1,...40 in
the large N limit. Note the subexponential growth in the
plot. Numerical values for the first twenty terms are given in
Table 1

discussed, in the context of the duality between AdS, gravity and CFT3, in
the interesting paper [39].

6. Estimating the Volume of an Interesting Set of Modular
Forms

In this section, we use (3.32) to try and quantify a lower bound on the “frac-
tion of large m superconformal field theories which may admit a gravity dual”.
Our approach will be to ask: “How special is the class of weight zero, index
m Jacobi forms corresponding to such superconformal theories?” As we have
seen, thermodynamic arguments constrain the growth of the polar coefficients
provided there is a physically reasonable gravitational dual, so the problem
reduces to quantifying “what fraction” of all possible polar coefficients corre-
sponds to the theories with gravitational duals.

Since the Jacobi form is completely determined by its polar coefficients,
the map from CFTs to elliptic genera can be viewed as a map from the space
of (0,2) field theories to a subset & C Z/(™). Now, there is a natural metric
on the moduli spaces of conformal field theories, namely, the Zamolodchikov
metric [40]. The moduli space of such theories, with a fixed central charge

¢, is a union of connected components Ha/\/lg:). It was suggested some time
ago that, at least for the space of (2,2) superconformal theories, the total
Zamolodchikov volume of V(¢ := 3" vol (M,(f)) should be finite. This was
based on physical arguments [41,42]. For the case of components arising from
Calabi-Yau manifolds it has been shown that indeed vol (MES)) is finite. (See
[43] and references therein for the mathematical work on this subject.) The
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finiteness of V(¢ would allow us to define a measure on the space of (2,2)
theories of a fixed central charge and thereby to quantify statements of “how
often” a property is exhibited in a natural way. We will assume that V(¢ is in
fact finite.?

Using the push-forward measure under the map to the polar coefficients of
elliptic genera we obtain a natural measure on the space £ of polar coefficients.
Unfortunately, our present state of knowledge of conformal field theory is too
primitive to evaluate this measure in great detail, but to illustrate the idea,
and some of the issues which will arise, we will sketch two toy computations.

For our first toy computation we consider the pushforward to a measure
on Z, for the absolute value of the extreme polar coefficient of the elliptic
genus. We denote this by

e(C) = |e(0,m;C)| (6.1)
for a (2,2) CFT C with ¢ = 6m.

Now e is multiplicative on CFTs,

e(Cl X CQ) = e(Cl)e(Cg). (62)
We would also like to say the same for the volumes:

vol (C1 % C2) = vol (C1)vol (Cz) (6.3)

but this is in general not the case. Here vol (C) denotes the volume of the
connected component of V(¢ in which C lies. A simple counterexample is
provided by conformal field theories with toroidal target spaces. Nevertheless,
for ensembles such as theories based on generic Calabi-Yau manifolds the
volume is multiplicative, because the relevant Hodge numbers are additive.
We will refer to an ensemble of CFT’s for which (6.3) holds as a multiplicative
ensemble and here we restrict attention to such ensembles. Extending our
discussion beyond multiplicative ensembles is an interesting, but potentially
difficult, problem.

Given a multiplicative ensemble, let us say an N = (2,2) CFT C is prime
if it is not the product of two such theories C; and Cy each with positive central
charge. Let C(m, «) denote the distinct prime CFT’s of central charge ¢ = 6m,
with o = 1,..., f;n. We expect f,, to be finite, but this is not necessary for
our construction, so long as the relevant products below converge. Denote the
absolute value of the extreme polar coefficient, and the Zamolodchikov volume
of C(m,a) by e(m,a),v(m, ), respectively. Then the Zamolodchikov volume
vol(M) of theories of central charge ¢ = 6M is determined from:

HHI_Uma +Zvol (6.4)

Similarly, we can write a generating function for the volume of the theories
with a fixed extreme polar coefficient. We assume that e(m,a) # 0 in our

5 Friedan has proposed a mechanism by which such a probability distribution might in fact
be dynamically generated from more fundamental principles [48,49].
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ensemble (thus excluding, for example, Calabi—Yau models with odd complex
dimension) and form the generating function:

0 fm o]
HHl—vma Je(m, a)~sg™ _1+Z£(S;M)QM (6.5)
m=1a=1 M=1
Then -
(siar) =y "D (6.6)

=1
and the measure for the extreme polz:r coefficient is
vol (e; M)
vol (M) ~
In order to make this slightly more concrete, let us restrict even further to

the ensemble of (4,4) theories generated by taking products of the symmetric
products of K3 sigma models, such as

(Sym' (K3))™ x (Sym*(K3))"™ x - (Syme(Kfi))W . (6.8)

We will call this the K3-ensemble and it is a multiplicative ensemble of CFT’s.
In this ensemble the prime CFTs are simply the symmetric products Sym" (K 3).
For Sym'(K3) the moduli space M is the famous double quotient

p(e; M) == (6.7)

M; =0(M)\O(4,20;R)/O(4) x O(20) (6.9)
with ' = II* @ Eg @ Es, while for N > 1 the moduli space is [25,44,45]
My = O(T"\O(4,21;R)/0(4) x O(21) (6.10)

with I a lattice of signature 4, 21 determined in [45]. The four “extra moduli”
in (6.10) compared to (6.9) are due to the blowup multiplet at the locus of A
singularities in Sym?® (K3) where two points meet. All higher twist fields are
irrelevant. Denote the Zamolodchikov volume of these moduli spaces by vy .
The Zamolodchikov volume vol(M) of the ensemble of models (6.8) is then
simply given by

}_[1 — qn =1+ Z vol(M (6.11)
Now, to get the measure for a fixed extreme polar term we noted above that
e(Sym"(K3)) =n+1, (6.12)
so the extreme polar term of the elliptic genus of (6.8) is just the product:
2m3n2 (L4 1) (6.13)
Therefore, our general formula specializes to
ml—:[1 1— vm(m1+ 1)=sqm b MXZ:IE(S; Mg, (6.14)

where &(s; M) defines the conditional volume as in (6.6) and the measure for
the extreme polar term is given by (6.7), above.
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Determining the numerical values of the constants vy used above is a very
interesting problem in number theory. This will be discussed in a separate
paper, along with some applications of the function £(s; M) to the central
issue of this paper.® It would also be very interesting to extend the above
discussion to the ensemble of all (4,4) theories, but this looks quite challenging.
We would need to include products with Sym®™ (7%)/T*. Moreover, we have
omitted products with other (4,4) models constructable from permutation
orbifolds, or from other compact hyperkahler manifolds arising from moduli
spaces of hyperholomorphic bundles on K3 and T%¢. And we have omitted
the unknown unknowns since we do not know that every (4,4) model can be
realized geometrically. Nevertheless, we expect some of the basic features of
the above discussion to survive better knowledge of the moduli space.

The above discussion is our first toy computation. Given our poor knowl-
edge of the moduli space of conformal field theories we will resort to a sec-
ond toy computation. We hope it proves instructive. We enumerate the po-
lar coefficients c(a) by decreasing discriminant D(a) = f(a)? — 4mn(a), a =
0,...,7(m) — 1 where j(m) = dim Jy,,. Thus, D(0) = m?. The idea of the
second toy computation is to find a natural probability measure on the vector
space of polar coefficients (¢(0),...,c¢(N)). Of course, a vector space has infi-
nite measure in its Euclidean norm so we map these coefficients to an affine
coordinate patch of RPY, with N = j(m). That is, we consider the points
[1:¢(0):...:¢(N)] in RPY. We then consider the Fubini-Study measure on
this patch. Whether this measure bears any relation to the a priori Zamolod-
chikov measure (in the large N limit) remains to be seen. (Since we do not
like the answer, we suspect the answer is that it does not.)

The volume element for the unit radius RPY in affine coordinates [1 :

o N s

B deP A - NdEN
dvol = TEy (5‘1) JVD (6.15)
Now we consider the subspace of the affine coordinate patch with
le(a)| < R(a). (6.16)

R(a) is a bound which is supposed to come from physics. One reasonable guess
is

R(a) = e2r(n(@)-243) (6.17)
Note that this is imposing (3.32) without allowing an O(logm) correction.
Concretely, we are interested in the fraction

il , m
N+1 N e2m(ni— ==+

NG =) ) 1
+

=2 (11 €,

a5 PR LCTRE S (14 3,(¢9)2)"5

in the limit N — oo.

(6.18)

6 For further details, see https://www.perimeterinstitute.ca/video-library/collection/
mock-modularity-moonshine-and-string-theory.
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In Appendix B, we show that in the limit of large N,
0.9699 < fn < 0.9725. (6.19)

We actually view this as a good indication that the Fubini-Study measure is
not a good surrogate for the Zamolodchikov measure. On general grounds, one
actually expects theories with weakly coupled gravity duals (even characteriz-
ing some small region of their moduli space) to be rare creatures.

In general CFTs, the number of excited states at large energies n grows

like 6271—\/%7 by the Cardy formula. Hence a measure which was based on “ex-
pecting” there to be a small number of states in that regime would clearly
be incorrect. While one cannot use Cardy’s result in the energy range char-
acterizing polar coefficients, it seems suspicious that our measure “expects”
the fewer polar coefficients—related to states with high energy, though below
the black hole bound—to be close to 0. In fact, one might expect that in a
random SCFT, the polar coefficients typically grow fairly rapidly with decreas-
ing polarity. In such a case, it would be more difficult for them to lie within
the polydisc specified by our bounds. Finding a modified volume estimate (or
attaching a plausible physical meaning to our present estimate) will have to
remain a problem for the future.
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Appendix A: Extended Phase Diagram

Here, we derive in detail the extended phase diagram depicted in Fig. 1. The
logic of the argument can be summarized as follows. The expression of the
elliptic genus as a regularized Poincaré sum involves a sum over all co-prime
pairs of integers (¢, d). For each such pair arising from the invariant group I'y of
Zns,+, we will find that there is an (n, ¢) labeling a polar term in the elliptic
genus which can serve as the analogue of our ground state in the ground-
state dominance condition. As a consequence, in each region in the tessellated
upper-half plane there is a single pair (c,d) labeling the saddle point which
dominates the gravitational path integral (CFT elliptic genus). Each phase
transition across the bold lines in Fig. 1 is then a modular copy of the one we
studied in this paper.
The elliptic genus can be written in terms of its polar part as [14]

ZRRTZ Z C ( )+% Z Klg»noo Z

reZ/QmZ LEZNn>0 (T'oc\I) &
D(n,£)>0
., ar+b z c2? 2miD(n, £)
Co(D(n, L 2 14 - R\ —F—
«(D(n, ))exp( 7m(nCTde—’_ et +d mCT+d)> <4mc(c7'+d)
(A1)

where the limit coset is given by

lim > = lim Y (A.2)

(Toc\I) K 0<c< K
—K?<d<K?
(e,d)=1

and R is the regularization factor

R(z) = % /OI e 2V %dz = erf(Vz) — 2\/i€I7 (A.3)

where erf(z) = % Iy e~t*dt denotes the error function.
As discussed in [13], §6, using the classic identities

ar+b a 1
er+d ¢ cler+d)
lr+1 1 d 1 11
2er+d 2 2C(CT+d)+§CT+d
o(r/2+1/2)2 _z+20—d+lc — 2cd + d?
et +d 4 4c 4 cler+d)
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and Im(—c(crl+d)) = ‘i’Tn_ﬁ;?Q = Im(%2£2), we see that
m 1 T+1
Zns,+ (1) = (- 45 Z Cr( ( 9 )
reZ/2mZ
1 2miD(n, L)
tezn>0 (Too\D) i
D(n,£)>0
with
’X(n,ﬁ; c, d)‘
b d—c)? d—
= |Ce(D(n,¥))| exp (—27r1m (ZZId) <m( 40) n 5 C)) .

(A.5)

We would like to know which term in the elliptic genus, i.e., which pair
(n,?), contributes the most to the sum in (A.1) with a given pair (c,d).

First, focusing on the exponential factor in (A.5), using that Im(i‘:_tdb) >0

and 0 < D(n,¢) < m? we conclude that the maximum of
exp ( 27 Im (42£2) (m(d O 4 pyeld=a C))) occurs at (n,£) = (ne.a, le.q)
ct+d ) c,dy*e,d)sy

(ne,ds lea) = (F((d = ¢)* = 1), —m(d — c))
when d — ¢ is odd. Ignoring the other factors for the moment, we expect that

‘X(n,f; ¢, d)‘ has its maximum

b
‘X(nc’d,fc,d; c, d)‘ = C,m(mQ) exp (27TTIm(Z;Id)> (A.6)
when (n,€) = (nc,d,lc,q). In the above we have used the fact that c(nc.q, Cc.q)
= ¢(0,m) = C_,,(m?) is equal to the number of NS ground states [see (2.11)].
The situation is different for the pair of co-primes integers (c,d) with
even d — c. Using the more refined condition for the discriminants of the polar
terms

O<D(n,€)§r2 where —m <r <m, {=7r mod 2m

that holds for all weak Jacobi forms as a straightforward consequence of (2.13),
we see that the maximum of the exponential term in (A.5) is of order 1 which
is achieved whenever ¢ = —(d — ¢)m +r, n = m(d — ¢)? — @ for any
—m < r < m. In other words, the contribution of the part of the sum given
by a pair (¢,d) with ¢ —d =0 (mod 2) in (A.1) is exponentially suppressed.

As a result, assuming that the exponential factor in (A.6) is the dominat-
ing factor and ignoring for the moment the regularization factor, one concludes
that in each region in the upper-half plane given by the tessellation by I'no\I'g
there is a unique pair (¢, d) that dominates and this corresponds to the infin-
itely many phases of 3d quantum gravity. To see this, notice that

ar +b Im(7) a b
I = <I I
o <cr+d> ler +d|? — m(r) v(c d) €le
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whenever 7 € T'ooF is in the (interior of the) fundamental domain
F={reH|r| >1, -1 <Re(r) <1}
of T'y or any of its images under the translation 7 — 7+ 2n, n € Z. See Fig. 1.
Next we would like to discuss the conditions under which that the term
with (n,¢) = (nc,d, le,q) indeed dominates the sum over all polar terms for a
given pair (¢, d). First we show that the effect of the regularization factor can be

ignored at the large central charge limit where D(n¢ g, lc,q)/4m =m/4 > 1.
To see this, note that R(x) — 0 as z — 0 and

R(z) —1=0(\ze™™)
as r — oo, and

2miD(n, ) \ _ 2nD(n,{) ar +b
Re (4mc(c7' + d)) - 4m tm er+d)’

Second, for there to be no term over dominating the term coming from (n, £) =
(ne,d; £e,q) in the sum in the region where ‘”H’ € I'o F as predicted by analyz-

ing the exponential factor alone as in (A.5) focussmg on the line Re( g:j;g) 0
we see that the coefficients of the polar terms have to satisfy

log [e(ne,a, £e,a)] < (27T(m((d —o)*+1)

4
for all co-prime pairs (¢,d) with d — ¢ odd. It is not hard to show that the
seemingly stronger condition (A.7) is in fact implied by our bound (3.37) when
taking the spectral flow symmetry into account. Recalling that ¢(n¢.q,lcq) =
C_m(m?) and

c(n,l) = c(n(k),L(k)) , n(k) =n+E*m+kl, 0(k) = £+ 2km
for all k € Z, we can write (A.7) as

log |c(n(k), (k)| < 27 (n(kz) — @ + T;) + O(logm)

o+ E(d; C))) +O(logm) (A.7)

where k =

In summary, we have proved the following. The condition (A.7) is re-
quired for Zyg+(7) to be consistent with the phase structure given by the
group I'o,\I'y (corresponding to distinct Euclidean BTZ black holes which
dominate in different regions of parameter space [23], §7.3). We have seen that
the necessary condition (3.37) that we derived earlier in the paper, governing
the Hawking—Page transition, is sufficient to guarantee (A.7), and hence the
full expected phase diagram.

d—c—1
— -

Appendix B: Estimating the Volumes of Regions in RP™

Recall the problem we have. We would like to estimate

M\ +72)

1
2 di N+1
A /< it L T e ™

F(N+1 271'(n1

(B.1)
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TABLE 2. Most polar terms at index m (excluding y™)

_1f0 m
Term 2=ty
ymfl e™
ym72 6271'
qym 6271'
ym73 6371'
qymfl 6371'
ym74 6471-
qym72 e47‘r
qum 8471'
ym—s s
qym73 8571'
q2ym— 1 657T

in the large N limit where N +1 is the number of polar terms of a Jacobi form
of index m.
As an example, let us consider m = 2. We will later switch to the large
m limit. There are only two polar terms: y? and y' so N = 1. We normalize
the y2 coefficient to 1, and the coefficient for y* parametrizes RP! (the “point
at infinity” corresponds to a y? coefficient of 0, but this has measure zero).
For y', ¢ =1and n =0, so

il m
e%(m #4+3) _ er. (B.2)
Thus the integral is
(1) / 1
=— dé) ——— = 0.9725. B.3
S A (Er L )

In the large m limit, there are [*1] integrals with limits —e*™ to e*™ (see
Table 2).

Appendix B.1: An Upper Bound

In this section, we will derive an upper bound on fy of 0.9725. Recall the
famous fact of life that

F(N2+2)/ e 1
T Ntz N+1
5 S A+E+-+,) 7
G 1
3 ) ” e (B.4)
w2 (14+&+---+£3) >

Thus, we can always take extra integrals to oo and we will get a strictly bigger
value. No matter how big N is, we will always have an integral with limits
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—e™ to e” (Coming from the y™~! term). In particular

N+1 1
d€ /d& /d{

N+1 /—e" 1 2- N 1+£1 +§]2V)N;-1
N+1
2
NiL

2 / dgl/ €z - . /OodgN(lJrg%Jr..l.Jrg]?V)N?

i/w%1+&

=0.9725, (B.5)

. . . il m
where we define an integral d¢; with unlabeled limits as from —e2nlni—tFl+g)
to e2m(ni— ‘22” +3).

Appendix B.2: A Lower Bound

Now we will show a lower bound of 0.9699 through a series of inequalities.
Again we use the same conventlon of unlabeled limits of integration d¢; being

from —eQW(ni—fm +1) to 27 (ni— = +72)
First we will show

S s [ | T Sy

>1Z(171r/d&1+1€-2>' (B.6)

To see this, first rewrite (

N+1 1
N+1 /dfl/d§2 /di +£1 .+§]2V)N;r1
< Z (1 - i/d&ijg?) . (B.7)

=1
1 1

Now note that
represents the fraction of RPY where &; is between the appropriate limits of
F ) g0 2m(ni—F+5) We write this as a fraction of RPY instead
of RP' by using (B.4) to add the remaining N — 1 integrals from —oo to oo
and change the prefactor.

In more detail, let us take the first term (i = 1) in the sum in the right-
hand side of (B.7). That term is

1 [ 1
1—= 3 —
ﬂ-\/fe"' 6114_6%

FN+1 1
—1-— 2 /_eﬂd&/ dés . /mdf T 89

_627r(ni —
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which is exactly the region outside —e™ < & < €™ in RPY. However, the
left-hand side of (B.7) is RPY with the region

excluded.

Thus, (B.7) is satisfied by using the fact that the complement of the
intersection is less than the sum of complements.

Now we are in business. It is another classic fact of life that

1 (RO 1 2 ,
; /_R(Z) dé_zﬁg? = ; arctan R(’L)
2
=1- e B.10
TRG) (B-10)
Plug into (B.6), to get:
N N
1 1 2

1— 1—— —— 1-— B.11
Z( w/df’1+53>> 2R (B.1)

In the large m limit, the first terms look like

= 0.9699. (B.12)
Thus, putting everything together, we get
fn > 0.9699. (B.13)
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