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Abstract. One manifestation of quantum resonances is a large sojourn
time, or autocorrelation, for states which are initially localized. We elab-
orate on Lavine’s time-energy uncertainty principle and give an estimate
on the sojourn time. For the case of perturbed embedded eigenstates the
bound is explicit and involves Fermi’s Golden Rule. It is valid for a very
general class of systems. We illustrate the theory by applications to reso-
nances for time-dependent systems including the AC Stark effect as well
as multistate systems.

1. Introduction

By a state in a Hilbert space H we understand a normalized vector ¥ € H,
respectively, the associated projector P = |¢) (1|. Given a self-adjoint operator
H in 'H and the dynamics generated by H, the sojourn time for a state v is
defined by

o0

T =T(H,¢) = / [, e 2 . (1)

— 00
7T is a measure of the total amount of time the system spends in its initial
state; it equals the autocorrelation ffcoo tr (PP;) dt , where P; := e~ Ht peiflt,
it is infinite if ¥ is an eigenstate of H. The main result we shall prove in this
paper is a lower bound on 7 for a perturbed embedded eigenstate .
More precisely, consider

H:Ho—FIiVH,

Ey, v such that Hyy = Eyy and Ey embedded in the continuous spectrum of
Hy, k a small parameter. We assume that the eigenvalue is simple and that
the restriction of Hy to RanP' has good propagation properties which persist
upon perturbation by xkV; it is known that this is implied by a Mourre estimate
which we assume in hypothesis (A) below. It involves, in particular, multiple
commutators of unbounded operators; we now state and discuss our main result
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and refer the reader to Sect. 3 for a precise definition of the mathematically
more involved objects. Denote x(H € I) the spectral projection of a self-adjoint
operator H on a Borel set I, ads(B) = [A, B] = AB — BA the commutator,
and by ad’ (B) = ad% ' (ada(B)) its iterations.

We assume that the quadruple Hg, V, A, I satisfies

Hypothesis (A). Hy, A are self-adjoint operators, I an open interval and [0,1) 3
Kk — V, a symmetric operator valued function such that:

1. e7®4D(Hy) C D(Hy), Vs € R, the commutator [A, Hy] is Hy bounded
and a Mourre estimate:

X(Ho € I)i[Hy, A]x(Ho € I) > cx(Hy € I) + K

holds with ¢ > 0 and K a compact operator;
2. ad¥ (Hoy) are Hy bounded for k € {2,3};
3. ad% (V) are Hy bounded uniformly in  for k € {1,2};
4. K+ Vi (Hg+ 1)t is differentiable in operator norm.

With P+ =1—-P, H- = PXHP* and (HL — z)_l its resolvent reduced
to RanP~* denote

F(k,2) = PV,PL (HY = 2) 7' PLV,P Tmz #0,5 € [0,1) 2)

the weighted reduced resolvent. The explicit assumptions (A) imply the exis-
tence of the limit to the real axis F(k, E +i0) for E € I and its continuity in
operator norm topology, see Theorem 3.1 below; this is in fact all we need to
prove the following lower bound on the sojourn time:

Theorem 1.1. Assume (A). Let v be an eigenstate of Hy for a simple eigenvalue
Ey € I. Then it holds for k € (0,1) and H = Hy + KV, :

1
T(H, ) > —
() 2 <
where the energy width AE, which is defined in (6) below, has the property

AE = #2Tm <¢, VoPt (HE — Eo+i0) " PlVOl/J> +o(K?)

and T(H,vy) = oo if AE = 0.
Here P = |¢) (¢|, P+ =1— P,Hy := PLHyP+ and the limit F(0, Ey +
i0) = PV P+ (HOL — Ey + iO)_1 PLVyP exists as a bounded operator.

Without attempting to review the huge amount of literature on quantum
resonances and time-energy uncertainty principles we make some remarks.
A well-known time-energy uncertainty principle is
6r 1

> -
~ 55 AH

with the uncertainty AH := ((1/1, H2) — (¢, H1/)>2)1/2, see [9]. For the situ-
ation of Theorem 1.1 one has AH = xAV, so the denominator of the lower
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bound is linear in x whereas in Theorem 1.1 it is quadratic. In addition, instead
of the uncertainty, our bound involves the term

Im <¢, VoP+ (HE — Eo+1i0) " PLVO¢>

which is the overlap of ¢ with the continuum eigenstates induced by the per-
turbation; the occurrence of this term is Fermi’s Golden rule. See [26], ch XIL.6,
for more information.

For a general treatment of time-energy principles see Frohlich—Pfeiffer
[25].

Lavine’s influence on foundations of the theory was important, see [19].
Our contribution here is to revisit his ideas with state of the art methods and
to relate his lower bound to Fermi’s Golden Rule thus making it efficient to
produce concrete lower bounds which are in accordance to physics folklore
and known mathematical results on related aspects. As pointed out below, see
Remark 3.4, our theory applies to systems with low regularity meaning that it
is sufficient that the extension of F' to the real axis is continuous. Furthermore
it is flexible enough to accommodate for systems depending periodically on
time. We illustrate this with two applications to systems which are important
for physics and come as a perturbation of an embedded eigenvalue: the AC
Stark effect and multistate systems, see Sects. 4, 5 for additional motivation.
With low effort we prove in both cases lower bounds on the sojourn time, Egs.
(13) and (14), which seem to be new.

The reader can trace back the development of general mathematical res-
onance theory from the papers of Aguilar Combes [1], Simon [29], Orth [24],
Cattaneo Graf Hunziker [4]. The main focus of these has been on the location
of complex poles of an analytic continuation of the resolvent of H across the
absolutely continuous spectrum, respectively, on exponential decay laws of the
form

(i, e M) = a(r)e™ ") 4 b, 1) (3)

where the ¢ is related to the eigenstate 1, a(k) = 1+ O(k2), Im(A(k)) =
k2 Im (1, F (0, Eg + i0)%) + o(k?) and b(k,t) can be estimated for small k.
Our bound on the sojourntime, the square of the L?(R,dt) norm of
(J,e‘”H 12), gives complementary information to several points even if the
time decay of b is well controlled. It was proven in [4], Theorem 1.2 that

2
|b(k,t)] < % under the assumption that six relatively bounded com-

mutators exist. This estimate works for ’(Z)' = g(H)y with g a smooth function
localizing near Ey, and the assumption Im(F (0, Ey + i0) < 0 was used in a
crucial way. The bound on the error b belonging to L?(R, dt), the exponential
decay law implies an asymptotic of the sojourn time of QZ; so in this situa-
tion it provides more information than our bound. Here we improve in three
points: first we assume only existence of three relatively bounded commutators
in (A).2 (respectively, two in (A).3); second our result concerns the sojourn
time of the unperturbed eigenstate 1, a localization of this state as in [4] is
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not needed; this is potentially important for applications, see [18] for a discus-
sion of this point related to open systems. Finally our theory covers the case
Im(F (0, Ey +i0)) = 0; remark that an exponential decay law in this case was
proven in estimate (2.19) in [6], which, however, does not provide informa-
tion on the sojourn time because their error term b(x,-) may not be small in
L?(R,dt). The same remark applies to the error bound of [21], Theorem 2.1.

Let us mention that, technically speaking, our lower bound on the sojourn
time works for systems for which F'(x, E+10) is continuous whereas the results
mentioned above need higher order differentiability, see Remark 3.4 for more
information.

Remark that the present method gives lower bounds on the sojourn time.
Lower bounds on the resonance width, loosely related to upper bounds on the
sojourn time, were discussed, for example, in [2,8].

In the following section we shall discuss the lower bound in an abstract
setting; in Sect. 3 Theorem 1.1 is proven in the perturbative situation; in
Sect. 4 we apply to the time-periodic case, see Theorems 4.1 and 4.2, and in
Sect. 5 to multistate systems, see Theorem 5.1.

2. Abstract Lower Bound on the Sojourn Time and Lavine’s
Energy Width

We review Lavine’s [19] abstract lower bound involving the concept of a suit-
ably defined energy width, Theorem (2.5) below. Then we relate it to Fermi’s
Golden Rule.

We denote the resolvent of H by R(z) = (H — z)~ L.

Lemma 2.1. Let H be a self-adjoint operator on H. Then it holds for any state
¥, any A € R and any € > 0

1 B 2

T(H,w) = (2edm(w, (H — (\+i0) 7 v)) (4)
Equality holds for a A € R and an € > 0 if and only if (1, e *Htep) = e~ g€l
Proof. By Fourier Transform, the spectral Theorem and unitarity of e=* one

has
1 , , | Y —it(H—))
¥, — (RO +ie) — R —ie)v ) == [ e <w,e ¢> dt.
22 2 R
Now the claim follows from the Cauchy Schwartz in-equality,

| VT(H,)
2 v o O

where equality holds if and only if (1), e_it(H—)‘)1/)> = e—cltl, ]

1/2
(e RO+ i) < 5 ([ 1) a2 -

Remarks 2.2. 1. If equality holds in (4) for finite €, then it is a corollary
that 7(H,v¢) = 1 and thus [2eIm(t), R(A + ie)y)| = 1.
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2. On the other hand, as was remarked in [29], equality in Eq. (5) implies
analyticity of the spectral measure of 1) and in particular that its support
is the whole real line. Thus, equality cannot hold in general, in particular
not for semibounded or gapped Hamiltonians.

Starting from inequality (4) for 7, Lavine defines his notion of energy
width. Given A € R, consider the function

fle) :==2¢ Im(p, R(A+ie)y) (e>0)

f is non-negative, continuous and monotonous, and lim._. f(€) = 2, lim._,o

fle) =2, x (H € {\}) ). Inspired by Remarks (2.2) one defines

Definition 2.3. The energy width of the state ¥ at A € R with respect to H is
defined as the unique real number

AE := AE(H,y, ) := inf{e € (0,00) : 2¢Im(th, R(A +i€e)yp) > 1}.  (6)

Remarks 2.4. 1. AE(H, ¥, \) € [0,00], if AE(H, %, ) = 0 then the projec-
tion of v on the eigenspace of H at A does not vanish.
2. If AE(H,v,)\) > 0 then

2AEIm (¢, R(\ + iAE)y) =

3. An intuition behind the definition of AF is provided by spectroscopy:
the energy distribution of a resonant state at energy E, is expected
to be Lorentzian (Cauchy) Testing this model, i.e., calculating f(e) for

d(y, Eap) = m dp, we get
/ 2¢2 1 r - 2e(e+g)
=N+ n(p—B )2+ M T NCE) 4 (e +1)2

which equals 1 for € = /T2 4+ (A — E,.)? which in turn is minimal for
A = E,; in this case ¢ = AE =T, the half-width at half~-maximum of the
Lorentzian distribution.

With this definition and Lemma (2.1) one gets

Theorem 2.5. Let H be self-adjoint on H. Then for any state ¢ in the domain
of H and any A € R the following inequalities hold:

1 1
TWH) 2 X5 g = T =Nl @)

Proof. The first inequality follows from (4) and the definition of AE. For
the second inequality it suffices to choose € = ||(H — A)#¢|| and to show that
FUIH =XN9|) > 1 to conclude that ||[(H — )| > AE.

Now, by Holder’s inequality, one has for all € > 0

[(E—X)2+ ¢ /
1—/du¢ / +€2

( (ICE = M1 + ) Ty, (H — A — i)™ w>)
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Taking the square and choosing € = ||(H — A)v|| we infer f (||(H — N)v||) > 1.
a

To relate the energy width AE to Fermi’s Golden Rule in a perturbative
situation we prove

Proposition 2.6. Let H be self-adjoint on ‘H. Let 1 be a state in the domain
of H, A € R, P the orthogonal projector on ¢, A\ € R, R*(z) = (HL - z)_l
the resolvent reduced to the subspace RanP+.

If AE(H, ¢, \) defined in (6) is non-zero, then it solves the equation

AE = |(¢,(H — A= HP*R*(A+iAE)P+H) 4)| . (8)
Proof. Employ “Feshbach type” perturbation theory, that is consider H as
perturbation of DH := PHP + P+HP>, see, for example, [14]. Denote
Rp(z) := (DH — z)~!. We have for PH P+ small enough:

PR(2)P = (P(H — z)P — PHP*Rp(z)P*HP)™'  and thus
(i, R(2)) ™" = (v, (H = 2)¢) — F(2) (9)
with
F(z) = <1/),HPL (PrapPt -2~ PlH¢>.
Denoting (H) := (1, Hy) it follows that
2AETm (), RN+ iAE)Y) =1
AFE +ImF (A +1AE)

((H) = A —ReF(A +iAE))?> + (AE + ImF(\ + iAE))?
— AE? = ((H) — A —ReF)* + ImF? = |(H) — A — F|”.

= 1=2AF

3. Quadratic Lower Bound for a Perturbed Embedded
Eigenvalue

We now prove the lower bound on the sojourn time 7 (H, 1)) stated in Theorem
1.1. We make use of a limiting absorption principle and continuity properties of
the boundary values of the resolvent on states orthogonal to the unperturbed
bound state which are known to hold under hypothesis (A), see [4,15,22]; the
general idea is to show that a strong Mourre estimate holds for the reduced
operator H* and then to apply the classical results in the spirit of [16]. We
first recall the meaning of the commutators ad® (Hy) in hypothesis (A); this
construction, originally developed in [16,23] starts from the sesquilinear form
i(Hou, Av) —i(Au, Hyv) which is well defined for all vectors u, v in the domain
D(Hp) N D(A). We quote the efficient resumé of [4] made in the paragraph
following their equation (4): If this form has a bound

|i(Hou, Av) — i(Au, Hov)| < Cllul[[|(Ho + )v]l, (10)
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it extends to the sesquilinear form of a unique self-adjoint operator called
i[Ho, A] = iadi(Ho) which is bounded relative to Hy. Therefore, the second-
order commutator i[i[Hy, A], A] = —ad? (Hp) is defined as well if the bound
(10) with i[Ho, A] instead of Hy on the left hand side is assumed. For k > 3
the k-th order commutator, denoted by ad]j; (Hp), is then defined recursively
in terms of ad® ! (Hp) and A.

Recall the definition of the weighted reduced resolvent (2). We have

Theorem 3.1. Assume (A) and let Ey be a simple eigenvalue of Hy with eigen-
projector P. Then there exists an interval I > Ey and a kg > 0 such that
VK, |k| < Ko, VA € I the norm limit

F(s, A +i0) = lim PV.P* (Ho + KVi) " = (A+ ie)) " PLV,.P

exists and is bounded uniformly in |k| < ko and X € I; furthermore for |k| <
ko, Re(z) € I

|F (5, 2) = F(5',2)]| < el — /| + |2 = #])’

Proof. The result is proven in [15], Lemma 8.11 under the assumption that
1 € D(A?) and that two relatively bounded commutators exist. In [22] it is
proven that the relative boundedness of ad® (Hy) implies 1) € D(A?). O

Remark 3.2. Notice that in Theorem 1.1 Assumption (A).2 may be replaced
by:

ad? (Hy) is Hy bounded and the eigenvector ¢ belongs to D(A?).
Note that [22] constructed an example with two commutators relatively

bounded and ¢ ¢ D(A?).

We now finish the proof of our main result.

Proof of Theorem (1.1). Suppose AE > 0, otherwise 7 is infinite, see Remark
2.4.1. Denote the resolvent with respect to Hy + kV, by R, and (4), :=
(p, Ap). We take account of the Lamb shift, meaning that in Eq. (8) we choose

A= X2(k) = Eo + £(Vi)y — k°Re (Ry (Eo +10)) puy, py, -

Thus,

AE(\a(k)) = K2 ’Re (R (A2 +iAE) — Ry (Eo + i0)) piv, py

+ 4Im <Rl (A2 + iAE)>PiVNP¢’ :

From Theorem 3.1 we conclude first that AE(A2(k)) = O(k?) and second that

’AE(AQ(K)) — k2Im (RE (B + iO))PLVKPw‘

< o (ki + AE + [hg — Bol)* = 0 (nF).
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Remark 3.3. It is crucial that the a priori estimate (7) is valid for any pa-
rameter A. So we can choose A2(k) above and thus implement the intuition
provided by other theories. For example it was shown in [4], Theorem 1.2, that
in the exponential decay law (3) it holds Re(A(k)) = A2(k) + o(x?). The Lamb
shift is determined by the perturbations Re(E(k)) — Ey where Fy stand for
a degenerate eigenvalue of the hydrogen atom and E(x) for the resonance in-
duced from Ey by the interaction of the atom with a quantized electromagnetic
field. By calling the real quadratic correction to Fy “Lamb shift” in the proof
of the theorem above we refer to an important achievement of mathematical
physics: the proof that, for a suitable model, the second-order contribution to
the Lamb shift is determined by x?ReF (0, Eg + 40), see [3], Theorem 1.3.

Remark 3.4. The proof actually implies the bound O(k/3) for the error; only
o(k?) is stated in Theorem 1.1. Remark that the continuity of the function
(k,A) — F(k, A +i0) is sufficient to proof of Theorem 1.1. So instead of (A)
we could have assumed this property; we opted for hypothesis (A) because it
is simple and explicit. Remark, however, that the (Holder-) continuity of F,
can be inferred by other methods, for example, from singular Mourre theory,
see [7], Theorem 3.3. The above mentioned works on exponential decay rules,
[4,6,21] assume higher order differentiability.

4. Time-Periodic Perturbations

One feature of the simplicity of our theory is that applies immediately to
time-periodic perturbations of Schrédinger operators via Floquet theory. A
particular special case is the two body AC Stark effect which is maybe the
most simple physically relevant system to which our theory applies. Location
and exponential decay for resonances were analyzed in detail by Yajima and
Graffi [11,27] using complex deformation methods and by Mgller and Skibstedt
[21] in great generality using Mourre techniques. Here we aim only at lower
bounds on the sojourn time in the two body case for smooth potentials which
were not discussed before.
Consider for t € R

1
Hy=—5A+W and  H(t) = Ho+ KVi(t) on H*(RY);

We assume that T'—periodic family V(t) and W as a constant function of &, ¢
satisfy:

Hypothesis (AT). Let (k,t,2) — g.(t,z) € C>([0,1) x R/(TZ) x R%R) be
such that for a § > 0 and all o € N¢

sup sup || (@)’ 07 gu(t,2)|| < oo
k€[0,1),t€[0,T] z€R4

With w := 2% we denote by

—~ 1

T
Vi(n) = T/o exp (—inwt)V, (t) dt
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the multiplication operator in L?(R?) by the n—th Fourier coefficient of V.
Remark that Vi (n)=V,(—n).

Under assumption (AT') the propagator U generated by H(-) is well de-
fined; the sojourn time depends on the initial time ¢

TWHOw0) = [ |00
We now prove a lower bound for its average over tg:

Theorem 4.1. Suppose that W and V,, satisfy assumption (AT). Let Hy =
f%A + W on H?(R?). Let ¢ be a simple eigenstate of Hy with eigenvalue
Ey € I C R\WZ which is non-resonant, i.e.,: Eq + wZ()opp(Ho) = {Eo}.
Then it holds for the lifetime of v with respect to H(-) averaged over the
mitial time tg:

1
= T(H to) dt
/ w7 0) 0 = AE
where the energy width AE has the property

AE=#Y " Im <¢, Vo(—n)Ro (Eo + n -+ i0) /vg(n)w> +o(k7/3).

nez
Here Eo (Eo 4+ n+10) is the limit of the resolvent for Hy for n # 0 and the
reduced resolvent for n =0, VO( = fo MWt (¢ (t)dt

To prove Theorem (4.1) we use the space-time picture advocated by How-
land, see [13], and apply our theory to the Floquet Hamiltonian

K = Ko+ Vi (t), Ko:=—id; —A+W on HY(T)® H*R?)
T :=R/(TZ). It is known, [13] formula 1.6, that for ¢ € L*(T) ® L?(R%):
(e75p) (t+s) =U(t + s,t)p(t). (11)
Denote for n € Z the harmonics h,,(t) := %exp (inwt) and P, : L*(T) —
L?(T) the projector on span{h,, }. —id; and Hy commute so it holds for = € C\Z
strongly:
(Ko—2)""'=> Po@(Ho+n—2)". (12)
ner

Proof. (of Theorem (4.1)). In [28], Theorem 1.3 and Lemma 2.4, it was proved
that (AT) implies self-adjointness of Ky, K and that (A) holds in a neigh-
borhood I of Ey away from wZ for the quadruple Ky, V., A, I with V,, the
operator Valued multiplication by V. (¢), A :==1® (zLp + Lpz) and Lp :=
D(D?+ 1), D := —iV.

The non-resonance condition ensures that Ej is a simple eigenvalue of
K, with eigenstate ho ® . Application of Theorem (1.1) to the operator K
yields

1
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with
AE = kI (ho @ 1, VoP* (K — By +i0) " P*Voho @ 1)
w*Im (ho @ o, VoP ™~ (Kg o +i0) oho ® ¥ L>(T)®L2(RY)
+o(k?)
forIP’:|h0®w><h0®w\.NOWIPL:P()L®H+PO®P$ so by (12):
(K¢ —2) =Y P@H +n-2)"+Ro(H —2) .
n#0

Furthermore Py ® PyVo =" |ho) (hm|® ow/;(() — m) which implies

AE = x? Z Im <1/}, Vo(=n)Ro (Eg + n + i0) T/B(n)@/}> +o(k7/?).
ne”Z

For the case %fOT T(H,v,ty) dtg < oo the result now follows from
Jensen’s inequality and Fubini’s Theorem:

2
ds

T
T%ﬂm®w%=/;%/ (6, Ulto + 5, to)) dtg

R

0
T
< [ 7 [ 1wt stul o ds

1 /7
0
O
We now apply this general estimate to the AC Stark effect and obtain

Theorem 4.2. Let W € C*®(R% R) such that for a § > 0 and o € N
sup,, [|[(z)°t*0eW (z)|| < oco. Let F € C([0,T];R?), be a T-periodic func-
tion with zero mean and Fourier series F'(t) =3_, Feinet,

Let g € C®(R;RY), q(t) = Zn?&o (ifﬁem‘”t which is a T periodic func-
tion such that ¢ = F'.

Let Ey € R\WZ be a simple eigenvalue of Hy :== —2 A+ W (z) on H*(R?)
with eigenvector v such that Eg + wZ(\opp(Ho) = {Eo}.

For the sojourn time of ¥ with respect to the propagator generated by

1
H(t) = —iA—l—W(x—i—mq(t)) on H*(R?Y), kel[0,1),tcR:
it holds:

I/TT(Hwt)dt > L
TO s W5 L0 O_AE

where the energy width AE satisfies,

4 ,
F)FF ~ .
AFE = k? Z Im Z i <¢75jWR0(Eo +n+ zO)akW¢> +o(k"?) (13)
nez 7,k=1
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and Ry (Eo + n+1i0) denotes the limit of the resolvent of Hy if n # 0 and the
reduced resolvent if n = 0.

Remark 4.3. H(-) is the Hamiltonian of an electron in the potential W and
the homogeneous electric field of strength kKF(+) in the frame of a freely falling
observer. To see this, consider the unitary family of phase space translation
operators S(t) on L%(R?)

S(t) = e~ U a(®)D—p(H)z) Hiv(t)
with T periodic functions ¢, p such that p = kF and ¢ = p and ¢ € C°(R,R)
such that ¢ = @ — (% — Iin). Now from the identities

Sl4S=x+qS'DS=D+p
iatefi(Q(t)Dfp(t)m%b — ((QD —px) + % (pg — ij)) e*i(q(t)Dfp(t)m)w
and ¢ € S(R?) it follows that

1 ) D2 ) D2
S (—z@t + - - kFx + W(a:)) S = (—z@t + - +W(x+ mq(t))) .

Thus, if ¢(¢) solves the Schrodinger equation for %2 + W (x + kq(t)) then

S(t)1(t) solves the Schrodinger equation for %2 —kFz+W (z) in the laboratory
frame.

Proof. (of Theorem (4.2)). Define V(¢) by
KV (t,x) := W(x + rq(t)) — W(x).

Then V; satisfies Hypotheses (AT') and the sojourn time estimate stated in
Theorem 4.1 holds. Now Vo (t,z) = (8. W) () = 327, ¢;(1)9;,W («) and

Vo) =3 20,0 ()

- (inw)?

from which the formula for AE follows. O

5. Sojourn Time of Multistate Systems

Systems with inner degrees of freedom appear in various physical situations.
We just mention the Dirac equation and effective Hamiltonians which appear
in the Born Oppenheimer approximation, see [5,12,31]. Here we are interested
in situations where one channel is binding and the others are propagating; this
occurs, for example, in molecular predissociation, [10,17].

Theorem 5.1. Consider self-adjoint operators two Hilbert spaces Hi and Ha

and in Hi ® Ho
L H1 IiVH
H T (IQV,: HQ >

such that:
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H; is self-adjoint in Hyi, Ey is a simple eigenvalue of Hy with normalized
eigenvector Vg and the resolvent if Hy is compact in a punctured complex
neighborhood of Ey;

Hy is self-adjoint in Ha, there exists a self-adjoint A in Ho and an in-
terval I around Ey such that e=*AD(Hy) C D(Hs) for s € R and ad® (Hy) is
Hy—bounded for k € {1,2} and such that for a positive number ¢ it holds

X(Hs € 1)i[Hs, Alx(Hy € I) > ex(Hz € I);
the values of [0,1) > k — V,; are operators from Ha to Hy such that
ki Ve (Hy+4) " and ki V) (Hy +4) "
are norm differentiable and such that
AFVE(Hy 447" and VAR (Hy +40)7"
extend to bounded operators for k € {1,2}. Then it holds for H:

1
T(H >
( 7w0 @ 0) = AE
where the energy width AE has the property
AE = 52T (o, Vo (Hy — (Bo + ) +i0) " Vo) +o(s™).  (14)

Proof. (of Theorem (5.1)). Define

0 Vi
Hy:=H & Hyy A:=0@0A, V,: = (V; i ) .
We show that the quadruple Hy,V, A, I satisfies assumption (A) and apply
Theorem 1.1. Indeed:
e =T @ e™"4 leaves D(Hy) invariant by the assumption on A; also
ad® (Hy) = 0 @ ad¥ (H,) are Hy bounded.

X(Ho S I)'L’[AJHIO]X(HO S I) =066 X(Hg € I)Z’[A,HQ}X(HQ S I)
>0 x(Hael)=cx(Hpel)—ex(H €I)®0
by the Mourre estimate for Hs, the second term is compact, upon shrinking I

if necessary, because the resolvent of H; near Ej is compact. Furthermore for
ke {0,1,2}

0 —1)kV, Ax

is relatively Hy bounded. Remark that A* acts on the Hy component so 1 ©0
is in D(A*) and we have proven that the assumption (A) is satisfied. Now the
claim follow from Theorem 1.1 with the observation

PL:<]1—I1(/))><1/)I g) PLV,{P:(W:QEHM 8)'
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