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for Radial Schrödinger Operators
and Localization of the Regge Poles

Thierry Daudé and François Nicoleau

Abstract. We study inverse scattering problems at a fixed energy for radial
Schrödinger operators on R

n, n ≥ 2. First, we consider the class A of
potentials q(r) which can be extended analytically in �z ≥ 0 such that
| q(z) |≤ C (1+ | z |)−ρ, ρ > 3

2
. If q and q̃ are two such potentials

and if the corresponding phase shifts δl and δ̃l are super-exponentially
close, then q = q̃. Second, we study the class of potentials q(r) which can
be split into q(r) = q1(r) + q2(r) such that q1(r) has compact support
and q2(r) ∈ A. If q and q̃ are two such potentials, we show that for any

fixed a > 0, δl − δ̃l = o
(

1
ln−3

(
ae
2l

)2l
)

when l → +∞ if and only if

q(r) = q̃(r) for almost all r ≥ a. The proofs are close in spirit with the
celebrated Borg–Marchenko uniqueness theorem, and rely heavily on the
localization of the Regge poles that could be defined as the resonances
in the complexified angular momentum plane. We show that for a non-
zero super-exponentially decreasing potential, the number of Regge poles
is always infinite and moreover, the Regge poles are not contained in
any vertical strip in the right-half plane. For potentials with compact
support, we are able to give explicitly their asymptotics. At last, for
potentials which can be extended analytically in �z ≥ 0 with | q(z) |≤ C
(1+ | z |)−ρ, ρ > 1 , we show that the Regge poles are confined in a
vertical strip in the complex plane.
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1. Introduction

In quantum scattering theory, given a pair of Hamiltonians (−Δ + V,−Δ) on
L2(Rn), n ≥ 2, one of the main object of interest is the scattering operator S.
This scattering operator S commutes with −Δ and consequently, it reduces to
a multiplication by an operator-function S(λ), called the scattering matrix, in
the spectral representation of the Hamiltonian −Δ.

The goal of this paper is to address the following question : can we de-
termine the potential V from the knowledge of the scattering matrix S(λ) at
a fixed energy λ > 0?

For exponentially decreasing potential (i.e. when the potential V is a
“very small” perturbation), we can answer positively to this question (see
Novikov’s papers [34,35]), but we emphasize that, in general, the answer is
negative. For instance, in dimension n = 2, Grinevich and Novikov [16] con-
struct a family of real spherically symmetric potentials in the Schwartz space
such that the associated scattering matrices are equal to the identity. Such
potentials are called transparent potentials. Similarly, in the three-dimensional
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case, Sabatier [42] found a class of radial transparent potentials qa, a ∈ R, real
for r > 0, which are meromorphic in the complex plane cut along the negative
real axis with the following asymptotics:

qa(r) = ar− 3
2 cos

(
2r − π

4

)
+ O

(
r−2−ε

)
when r → +∞. (1.1)

However, in dimension n ≥ 3, if we assume that the potential V has a regular
behavior at infinity (i.e., V is the sum of homogeneous terms at infinity), and
if we know the scattering matrix at a fixed energy up to a smooth operator,
we can reconstruct the asymptotics of the potential (see [24,48]).

We emphasize, that in classical scattering theory, the situation is drasti-
cally different : for a spherically symmetric perturbation and for a fixed energy
λ large enough, the classical scattering matrix Scl(λ) determines the potential
(see for instance [13,23]).

In this paper, we study a quantum inverse scattering problem for the
Schrödinger equation on R

n, n ≥ 2,

− Δu + V (x)u = λu, (1.2)

with a fixed energy λ. Without loss of generality, we fix λ = 1 throughout this
paper. We assume that the potential V (x) is spherically symmetric, i.e.

V (x) = q(r) , r =| x | . (1.3)

It is well known that the Schrödinger equation (1.2) can be reduced to a
countable family of radial equations (see for instance [40]); indeed, we write:

L2(Rn) = L2(R+, rn−1dr) ⊗ L2(Sn−1,dσ), (1.4)

and for functions u(x) = f(r)g(ω), where r =| x |> 0, ω = x
r ∈ S

n−1, one has:

(−Δ + V ) f(r)g(ω) =
(

− d2

dr2
− n − 1

r

d
dr

+ q(r) − 1
r2

ΔSn−1

)
f(r)g(ω).

(1.5)

The operator ΔSn−1 appearing in (1.5) is the Laplace Beltrami operator on
the sphere S

n−1 and has pure point spectrum. Its eigenvalues are given by
kl = −l2 − l(n − 2), for l ≥ 0. It follows that:

L2(R+, rn−1dr) ⊗ L2(Sn−1,dσ) =
⊕
l≥0

L2(R+, rn−1dr) ⊗ Kl, (1.6)

where Kl is the eigenspace of ΔSn−1 associated with the eigenvalue kl. The re-
striction of the Schrödinger operator on each subspace Ll = L2(R+, rn−1dr)⊗
Kl is given by

− Δ + V |Ll
= − d2

dr2
− n − 1

r

d
dr

− kl

r2
+ q(r). (1.7)

Finally, if we define the unitary operator U ,

U : L2(R+, rn−1dr) → L2(R+,dr)

f �→ r
n−1
2 f(r).
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and setting ν(l) = l + n−2
2 , we obtain immediately a new family of radial

Schrödinger equations which will be the main object of this paper:

U

(
− d2

dr2
− n − 1

r

d
dr

+ q(r) − kl

r2

)
U−1 = − d2

dr2
+

ν(l)2 − 1
4

r2
+ q(r).

(1.8)

One assumes that the potential q(r) is piecewise continuous on R
+∗ and

satisfies the following conditions:

(H1)
∫ 1

0

r1−2ε | q(r) | dr < ∞ for some ε > 0.

(H2)
∫ +∞

1

| q(r) | dr < ∞.

The hypothesis (H1) insures that the centrifugal singularity dominates near
the origin, whereas the hypothesis (H2) means that, at large distances, the po-
tential is short range. Under these assumptions, it is well known [40, Theorem
XI.53] that for all l ≥ 0, there exists a unique solution ϕ(r, l) which is C1 and
piecewise C2 on (0,+∞) satisfying:

− u′′ +
(

ν(l)2 − 1
4

r2
+ q(r)

)
u = u, (1.9)

with the boundary condition at r = 0,

ϕ(r, l) ∼ rν(l)+ 1
2 , r → 0. (1.10)

Moreover, this solution, called the regular solution, has the asymptotic expan-
sion at infinity:

ϕ(r, l) ∼ 2 c(l) sin
(

r − (ν(l) − 1
2
)

π

2
+ δl

)
, r → +∞, (1.11)

where the constant c(l) is the modulus of the Jost function β(ν(l)) (see Sect. 2
for details).

The quantities δl are called the phase shifts and are physically measurable.
The scattering amplitude T (λ, ω, ω′), that is the integral kernel of the operator
S(λ) − 1, can be expressed by the phase shifts. For example, for n = 3, one
has the following relation:

T (λ = 1, ω, ω′) = − 1
π2

+∞∑
l=0

(2l + 1)
e2iδl − 1

2i
Pl(cos θ), (1.12)

where ω, ω′ ∈ S
2, cos θ = ω · ω′ and Pl(t) are the Legendre polynomials.

Therefore, we can reformulate our inverse problem as :
Is the knowledge of the phase shifts δl enough to determine the potential q(r)?
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Of course, as we have said before, the answer is negative in general since
the potentials appearing in [16,42] are spherically symmetric. Nevertheless,
for potentials with compact support, Ramm has obtained in [38] a stronger
result:

Theorem 1.1. Let q and q̃ be two potentials locally integrable with compact
support. We denote δl, (resp. δ̃l) the corresponding phase shifts. Consider a
subset L of N

∗ that satisfies the Müntz condition
∑

l∈L
1
l = ∞, and assume

that δl = δ̃l for all l ∈ L. Then q = q̃ a.e.

The proof of the previous result is based on an old idea due to Regge
[41]. This approach is called the method of the Complex Angular Momentum
(CAM): we allow the angular momentum l ∈ N to be a complex number ν ∈ C.
In some cases, it is possible to extend the equality δl = δ̃l for all l ∈ N into the
equality δ(ν) = δ̃(ν) for all ν ∈ C\{poles}. Indeed, for some particular classes
of holomorphic functions f , f(ν) is uniquely determined by its values at all the
integers f(l) (Carlson’s theorem [6]), or only for f(l) with l ∈ L (Nevanlinna’s
class [38]). Then we can often use this new amount of information to get the
equality between the potentials q and q̃.

The CAM method was used previously in a long paper by Loeffel [29].
In this paper, Loeffel studied in great details the properties of a meromorphic
function σ(ν) in the domain 
ν > 0. This function σ(ν) is called the Regge
interpolation, and for ν = ν(l) = l + n−2

2 , we have σ(ν(l)) = e2iδl , where δl are
the phase shifts. In particular, he showed that, if the Regge interpolation σ(ν)
and σ̃(ν) corresponding to two suitable potentials q and q̃, satisfy σ(ν) = σ̃(ν)
for 
ν > 0 where both are holomorphic, then q = q̃. Therefore, all the problem
consists in finding the classes of potentials q such that the data δl determine
uniquely σ(ν) for 
ν > 0. For instance, this is the case for potentials with
compact support [29, Theorem 3], or for potentials which can be extended
holomorphically in the domain 
z > 0 and with exponential decay (see also
the paper of Martin and Targonski [31]). We emphasize that Ramm’s result
for potential with compact support is actually a by-product of [29, Theorem
3] by Loeffel. Indeed, the function ξ(r, ν) = ϕ′(r,ν)

ϕ(r,ν) used in the proof of [29],
where ϕ(r, ν) is the regular solution, satisfies ν−1ξ(r, ν) = O(1) for 
ν large
and r > 0 fixed. Hence, this last function lies in the Nevanlinna class for 
ν
large enough. Nevertheless, Ramm’s proof has the advantage to be shorter.

In 2011, Horvath [21] also used the CAM approach and announced the
following result in the three-dimensional case:

Assume that the potential q(r) satisfies
∫ 1

0

r1−ε | q(r) | dr < ∞, and
∫ +∞

1

r | q(r) | dr < ∞, (1.13)

for some ε > 0. Then, the phase shifts δl for all l ∈ N determine q(r) uniquely.
This result seems to us incorrect. Horvath claims that we can naturally

extend the phase shifts δl as a holomorphic function δ(ν), 
ν > 0 such that
δ(l + 1

2 ) = δl. But, as we will see later in this paper, for any potentials with
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compact support (or even for potential super-exponentially decreasing) this
function δ(ν) has always an infinite number of poles νn with 
νn → +∞ as
n → +∞. Hence, one of the goals of this paper is to give a correct answer
to some inverse scattering problems for radial potentials. Nevertheless, we
emphasize that all the asymptotics of the phase shifts δl as l → +∞, obtained
in [21, Corollary 1], are rigorously exact.

Another goal of this paper is to obtain a local uniqueness result from the
data consisting of the phase shifts, close in spirit with the celebrated local Borg
Marchenko’s uniqueness theorem [4,15,44], and to precise an open question
formulated by Vasy–Wang [46] (for a class of potentials not necessary with
spherical symmetry):

Let us consider the pair of Hamiltonians (−Δ,−Δ + V (x)) on L2(Rn).
Assume that the potential V is smooth, real, and can be split into V (x) =
U(x)+W (x) such that W (x) is exponentially decreasing and U(x) is dilatable
analytically, i.e.

∃C > 0, ∀θ in a small complex neighborhood of 0,
| U(eθx) |≤ C (1+ | x |)−ρ, ρ > 1. (1.14)

Does the scattering matrix S(λ) at a fixed energy λ > 0 determine uniquely
V (x)?

As it was pointed to us by Roman Novikov, the family of central trans-
parent potentials constructed in [16] contains a subset of analytic potentials
in R

2, but it is not clear for us that these potentials can be extended in a
complex angular sector containing the positive axis. Thus, for generic dilat-
able analytically potentials, this question remains open. Nevertheless, we shall
see in this paper, that for central potentials V (x) = W (x) + U(x) where W
has a compact support and U(x) can be extended to an holomorphic function
in 
z ≥ 0, the answer is positive. Moreover, our result is local in nature. We
think that our result is still true if W (x) decays exponentially, but we did not
succeed in proving it.

First of all, let us begin by a global uniqueness theorem for dilatable
analytically potentials.

Definition. We say that the potential q(r) belongs to the class A if q can
be extended analytically in 
z ≥ 0 and satisfies in this domain the estimate
| q(z) |≤ C (1+ | z |)−ρ, ρ > 3

2 .

Our main first result is the following:

Theorem 1.2. Let q(r) and q̃(r) be two potentials belonging to the class A. We
denote δl, (resp. δ̃l) the corresponding phase shifts. Assume that δl and δ̃l are
super-exponentially close, i.e. for all A > 0,

δl − δ̃l = O(e−Al), l → +∞. (1.15)

Then, q(r) = q̃(r) on (0,+∞).

Remark 1.3. 1. Let us consider the potential q(r) = e−ar

(r+1)2 where a > 0.
Clearly, q(r) satisfies the hypothesis of Theorem 1.2. Thanks to the proof
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of Proposition 6.3 in Sect. 6 (see also [21, Corollary 1], one gets:

δl = O

(
1√
l

e−ηl

)
, l → +∞,

where cosh η = 1+ a2

2 . Therefore, if δl and δ̃l are only exponentially close,
we can not obtain a uniqueness result.

2. In the Born approximation (that is in the linear approximation near
zero potential), it is well known that the scattering amplitude can be
approximated by:

T (λ, ω, ω′) ≈ V̂ (
√

λω −
√

λω′), (1.16)

where V̂ is the Fourier transform of the potential (non necessarily spher-
ically symmetric). We emphasize that Theorem 1.2 is coherent with the
Born approximation. Indeed, it is not difficult to prove that, for a large set
of potentials in the class A, the restriction on any ball of V̂ (ξ) determines
uniquely the potential (see Theorem A.10 for details).

Now, let us define our class of potentials C which will be useful for our
local inverse problem.

Definition. We say that the potential q(r) belongs to the class C if q(r) can
be split into q(r) = q1(r) + q2(r) where q1 is piecewise continuous on (0,+∞).
Moreover,

1. q1 has compact support and satisfies the hypothesis (H1).
2. q2(r) ∈ A.

Before giving our second main result, we recall the following fact. In
the three-dimensional case, let q(r) be a piecewise continuous potential with
support in [0, a] and assume that q(a − 0) �= 0. In [21, Corollary 1, Eq. (17)
with ν = l + 1

2 ], Horvath proved that:

δl ∼ −q(a − 0)
2

( a

2l

)3 (ae

2l

)2l

, l → +∞. (1.17)

We also refer the reader to [39] where the formula for the radius of the support
of the potential is calculated from the scattering data.

Obviously, it follows that if q belongs to the class C with q2 = 0, the phase
shifts δl must satisfy the same asymptotics as in (1.17). Having this result in
mind, we can state our second main result by:

Theorem 1.4. Let q(r) and q̃(r) be two potentials belonging to the class C and
let δl, (resp. δ̃l) the corresponding phase shifts. Let us fix a > 0. Then, the two
following assertions are equivalent:

(A1) δl − δ̃l = o

(
1

ln−3

(ae

2l

)2l
)

, l → +∞.

(A2) q(r) = q̃(r) for almost all r ∈ (a,+∞).

Remark 1.5. 1. When q and q̃ have compact support, Theorem 1.4 was
essentially proved by Horvath [20] in the three-dimensional case.
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2. Actually, we have a better result for the implication (A.2) =⇒ (A.1). If
q(r) = q̃(r) almost everywhere on (a,+∞), we can prove (see Proposi-
tion 9.1):

δl − δ̃l = O

(
1
ln

(ae

2l

)2l
)

, l → +∞. (1.18)

3. We also think that Theorem 1.4 remains true if, in the definition of the
class C, we can allow the potential q1 to be exponentially decreasing. We
were not able to prove it since Corollary 5.7 fails when the potential q− q̃
decays exponentially.

4. At last, if q1 (resp. q̃1) is super-exponentially decreasing (see Sect. 6 for
the definition), following the proof of Theorem 1.4, one can get q2(r) =
q̃2(r) for all r > 0.

Outlines of the proof
1 The implication (A2) =⇒ (A1) in Theorem 1.4 is easy to prove and can

be found in [20], but for the reader’s convenience, we shall give here a
shorter proof.

2 Theorem 1.2 and the implication (A1) =⇒ (A2) in Theorem 1.4 follow in
spirit the local Borg Marchenko’s uniqueness theorem (see [4,15,44,45]).

Let us explain briefly our approach: we fix r > 0 and we define F (r, ν) as an
application of the complex variable ν by:

F (r, ν) = f+(r, ν)f̃−(r, ν) − f−(r, ν)f̃+(r, ν), (1.19)

where f±(r, ν) and f̃±(r, ν) are the Jost solutions associated with the poten-
tials q and q̃.

We are able to prove that this application is even with respect to ν,
holomorphic on the whole complex plane C, and of order 1 with infinite type.
Moreover, F (r, ν) is bounded on the imaginary axis iR, and for all r > 0 in
Theorem 1.2 (resp. for all r ≥ a in Theorem 1.4), we can show that F (r, ν) → 0
when ν → +∞, (ν real).

Therefore, using the Phragmen–Lindelöf Theorem on each quadrant of
the complex plane, we deduce that F (r, ν) is identically equal to zero, which
implies easily the uniqueness of the potentials for r > 0 in Theorem 1.2 (resp.
for r ≥ a in Theorem 1.4).

This same approach has been used recently to study scattering inverse
problems for asymptotically hyperbolic manifolds (see [10–12]). In the hy-
perbolic setting, a Liouville transformation changes the angular momentum
variable in a spectral variable, and we can see the Jost solutions as suitable
perturbations of the modified Bessel functions Iν(z). In the hyperbolic con-
text, the variable ν is fixed and depends only on the geometry of the manifold,
whereas the variable z ranges over C.

However, in the Euclidean setting of this paper, the situation is dras-
tically different; as in the hyperbolic case, the regular solution and the Jost
solutions are close (in some sense) to the Bessel functions Jν(r) or to the Han-
kel functions H

(j)
ν (r), but the complex angular momentum ν can be as large
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as possible and the radial variable r ranges over the non-compact set (0,+∞).
In general, this kind of situation leads to very cumbersome and complicated
calculations and one has to use the Langer uniform asymptotic formula for
Bessel functions of large order [25]. We emphasize that this is not the case in
this paper : we only use elementary properties for the Bessel functions.

The proofs of this paper rely heavily on the localization of the Regge
poles. By definition, the Regge poles are the zeros of the Jost function β(ν)
(see Sect. 2 for details) or equivalently, are the poles of the meromorphic
continuation of the phase shifts δ(ν) for ν ∈ C. Following Regge’s theory, the
positions of these poles determine power-law growth rates for the scattering
amplitude. Moreover, the low-energy scattering is well studied using the Regge
poles. In particular, they provide a rigorous definition of resonances.

In this paper, we prove the following theoretical result concerning the
localization of the Regge poles. For non-zero super-exponentially decreasing
potentials, we show that the number of the Regge poles are always infinite
and there are not bounded to the right in the first quadrant of the complex
plane. Our result contradicts Theorem 5.2 in [19], which says that for an in-
tegrable potential q(r) on (0,+∞), there are finitely many Regge poles in the
right-half plane. As it was pointed to us by Marletta [32], the error in [19]
comes from Eq. (5.3) : the Green kernel Θ(r, s) appearing in the integral is not
bounded with respect to the complex angular momentum. We emphasize that
our theoretical result is confirmed later, where for potentials with compact
support, the precise asymptotics of the Regge poles are calculated.

For potentials which can be extended analytically in 
z ≥ 0 with | q(z) |≤
C (1+ | z |)−ρ, ρ > 1, the situation is different. We generalize a result of Barut
and Diley [3] (see also [5]), and we show that the Regge poles are confined in
a vertical strip in the complex plane.

2. Review of Scattering Theory for Central Potentials

In this section, we recall (without proofs) some results obtained by Loeffel in
[29].

Following Regge’s idea, we consider the radial Schrödinger equation on
(0,+∞) at the fixed energy λ = 1, where the angular momentum ν is now
supposed to be a complex number and with 
ν ≥ 0:

− u′′ +
(

ν2 − 1
4

r2
+ q(r)

)
u = u. (2.1)

Of course, when ν = ν(l) = l+ n−2
2 , we recover the family of radial Schrödinger

equations (1.8) coming from the separation of variables.
First, we define the regular solution ϕ(r, ν) which is a solution of (2.1)

satisfying the boundary condition at r = 0:

ϕ(r, ν) ∼ rν+ 1
2 , r → 0. (2.2)

If the potential q(r) is piecewise continuous and satisfies the hypothesis (H1),
Loeffel shows that, for r > 0 fixed, the map ν → ϕ(r, ν) (resp. ν → ϕ′(r, ν)) is
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holomorphic in 
ν ≥ −ε, and we have:

∀ 
ν ≥ −ε, ϕ(r, ν) = ϕ(r, ν̄). (2.3)

Similarly, if the potential satisfies the hypothesis (H2), we can define the Jost
solutions f±(r, ν) as the unique solutions of (2.1) satisfying the boundary
condition at r = +∞:

f±(r, ν) ∼ e±ir , r → +∞. (2.4)

For r > 0 fixed, the maps ν → f±(r, ν) (resp. ν → f±′(r, ν)), are holomorphic
on C and are even functions. Moreover,

∀ν ∈ C , f+(r, ν) = f−(r, ν̄). (2.5)

The pair of the Jost solutions is a fundamental system of solutions (FSS) of
(2.1). Hence we can write

ϕ(r, ν) = α(ν)f+(r, ν) + β(ν)f−(r, ν), (2.6)

where α(ν), β(ν) ∈ C are called the Jost functions. We recall that the Wron-
skian of two functions u, v is given by W (u, v) = uv′−u′v. Therefore, it follows
immediately from (2.4) that

W (f+(r, ν), f−(r, ν)) = −2i. (2.7)

Hence, one has:

α(ν) =
i

2
W (ϕ(r, ν), f−(r, ν)), (2.8)

β(ν) = − i

2
W (ϕ(r, ν), f+(r, ν)). (2.9)

We can deduce that the Jost functions are holomorphic in 
ν ≥ −ε and satisfy

α(ν) = β(ν̄). (2.10)

Now, let us give some elementary properties of the Jost functions (see Sect. 4
for the details): the Jost function α(ν) does not vanish in the first complex
quadrant 
ν ≥ 0, �ν ≥ 0, whereas β(ν) does not vanish in the fourth complex
quadrant 
ν ≥ 0, �ν ≤ 0. The zeros of the Jost function β(ν) (belonging
to the first quadrant), are called the Regge poles. These are the poles of the
so-called Regge interpolation:

σ(ν) = eiπ(ν+ 1
2 )

α(ν)
β(ν)

. (2.11)

When ν > 0, it follows from (2.10) that | σ(ν) |= 1, thus we can define the
generalized phase shifts δ(ν) as a continuous function in (0,+∞) through the
relation:

σ(ν) = e2iδ(ν). (2.12)

The generalized phase shifts become unique if we impose the condition δ(ν) →
0 when ν → +∞. Then, we deduce from (2.4), (2.6) and (2.12) that:

ϕ(r, ν) ∼ 2 | β(ν) | sin
(

r − (ν − 1
2
)
π

2
+ δ(ν)

)
, r → +∞. (2.13)
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In particular, when ν = ν(l), (1.11) implies that the generalized phase shifts
are related to the physical phase shifts:

δ(ν(l)) = δl, l ∈ N. (2.14)

We emphasize that, if we can show that for suitable potentials q(r), there are
no Regge poles in a simply connected domain, the Eq. (2.12) allows us to define
δ(ν) as a holomorphic function in this domain.

Now, let us examine the free case, when the potential q(r) = 0. In this
case, the Eq. (2.1) is a standard Bessel equation (see [26, p. 106]). As a con-
sequence, we have explicit formulae for the regular solution ϕ0(r, ν), the Jost
solutions f±

0 (r, ν) and the Jost functions α0(ν), β0(ν). First, we denote:

A(ν) =

√
2
π

2ν Γ(ν + 1). (2.15)

Then, we have:

ϕ0(r, ν) = A(ν)
√

πr

2
Jν(r), (2.16)

f+
0 (r, ν) = ei(ν+ 1

2 )
π
2

√
πr

2
H(1)

ν (r), (2.17)

f−
0 (r, ν) = e−i(ν+ 1

2 )
π
2

√
πr

2
H(2)

ν (r), (2.18)

where Jν(r) is the Bessel function of order ν and H
(j)
ν (r) are the Hankel

functions of order ν (see the Appendix for details). Therefore, using (2.8),
(2.9) and [26, Eq. (5.9.3)], we obtain for 
ν ≥ −ε,

α0(ν) =
1
2

A(ν) e−i(ν+ 1
2 )

π
2 , (2.19)

β0(ν) =
1
2

A(ν) ei(ν+ 1
2 )

π
2 . (2.20)

Obviously, it follows from (2.11), (2.12), (2.19) and (2.20) that in the free case
the Regge interpolation σ0(ν) = 1 and the generalized phase shifts δ0(ν) = 0.

3. The Regular Solution ϕ(r, ν)

In this section, first, we recall very briefly the results obtained by Loeffel [29].
Second, we give a new integral representation for the regular solution ϕ(r, ν).

Using the method of variation of constants, it is easy to see ([1, Eq.
(3.14)], or [29]) that for 
ν ≥ −ε, ν �= 0,

ϕ(r, ν)=rν+ 1
2 +

1
2ν

∫ r

0

((s

r

)ν

−
(r

s

)ν) √
rs (1 − q(s)) ϕ(s, ν) ds, (3.1)

and for ν = 0, one has

ϕ(r, 0) =
√

r +
∫ r

0

(log s − log r)
√

rs (1 − q(s)) ϕ(s, 0) ds. (3.2)
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It follows that for a fixed r > 0, ν → ϕ(r, ν) (resp. ν → ϕ′(r, ν)) are holomor-
phic for 
ν ≥ −ε and one has the following estimate [29, Eq. (3)]

| ϕ(r, ν) | ≤ r�ν+ 1
2 exp

(
r2ε

| ν |
∫ r

0

s1−2ε | q(s) − 1 | ds

)
for | ν |≥ 2ε.

(3.3)

Moreover, for 
ν ≥ −ε, one has:

ϕ(r, ν) = ϕ(r, ν̄). (3.4)

We prefer to work with another Green kernel to obtain better estimates
for the regular solution with respect to ν. We can find the next Proposition 3.2
implicitly in [21, Eq. (35)], but in this paper, Horváth wrote this lemma using
the generalized phase shifts δ(ν) for 
ν > 0 which are, according to us, not
well defined, in the presence of Regge poles.

First, let us introduce the Green kernel K(r, s, ν) we shall use. We denote:

u(r) =
√

πr

2
Jν(r), (3.5)

v(r) = −i

√
πr

2
H(1)

ν (r). (3.6)

The pair (u(r), v(r)) is a (FSS) of the Eq. (2.1) when q(r) = 0. The Wronskian
W (u, v) = 1. Moreover, we have the elementary following lemma (see [26] for
details):

Lemma 3.1. (i) When r → 0,

u(r) ∼ 1
A(ν)

rν+ 1
2 , (3.7)

v(r) ∼ − 1
2ν

A(ν) r−ν+ 1
2 if ν �= 0. (3.8)

(ii) When r → +∞,

u(r) ∼ sin
(

r −
(

ν − 1
2

)
π

2

)
, v(r) ∼ −ei(r−(ν− 1

2 )
π
2 ). (3.9)

We define the Green kernel K(r, s, ν) for r, s > 0 and 
ν ≥ 0 by:

K(r, s, ν) = u(s) v(r) if s ≤ r, K(r, s, ν) = u(r) v(s) if s ≥ r. (3.10)

The following elementary proposition will be powerful to prove our local uni-
queness result:

Proposition 3.2. Let q(r) be a potential satisfying (H1) and (H2). For 
ν > 0,
one has:

ϕ(r, ν)=−2iβ(ν) e−i π
2 (ν− 1

2 ) u(r)+
∫ +∞

0

K(r, s, ν)q(s)ϕ(s, ν) ds. (3.11)

α(ν) ei π
2 (ν− 1

2 ) + β(ν) e−i π
2 (ν− 1

2 ) = −
∫ +∞

0

u(s)q(s)ϕ(s, ν) ds. (3.12)
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Proof. Using the method of variation of constants, there exists A,B ∈ C such
that

ϕ(r, ν) = Au(r) + Bv(r) +
∫ +∞

0

K(r, s, ν)q(s)ϕ(s, ν) ds. (3.13)

Note that the (RHS) of (3.13) is well defined with the help of Lemma 3.1.
Then, we write

ϕ(r, ν) =
(

A +
∫ +∞

r

v(s)q(s)ϕ(s, ν) ds

)
u(r)

+
(

B +
∫ r

0

u(s)q(s)ϕ(s, ν) ds

)
v(r). (3.14)

It follows from Lemma 3.1 that

ϕ(r, ν) = (B + o(1)) v(r) , r → 0. (3.15)

Since we have ϕ(r, ν) ∼ rν+ 1
2 when r → 0, we have to take B = 0. Then, the

Eq. (3.14) implies, when r → +∞:

ϕ(r, ν) ∼ Au(r) +
(∫ +∞

0

u(s)q(s)ϕ(s, ν) ds

)
v(r) ,

∼ A sin
(

r − (ν − 1
2
)
π

2

)
−

(∫ +∞

0

u(s)q(s)ϕ(s, ν) ds

)
ei(r−(ν− 1

2 )
π
2 ).

In other way, from (2.4) and (2.6), we deduce

ϕ(r, ν) ∼ α(ν)eir + β(ν)e−ir, r → +∞. (3.16)

Therefore, we obtain easily

α(ν) =
(

A

2i
−

∫ +∞

0

u(s)q(s)ϕ(s, ν) ds

)
e−i(ν− 1

2 )
π
2 , (3.17)

β(ν) = − A

2i
ei(ν− 1

2 )
π
2 , (3.18)

which implies the lemma. �

4. The Jost Solutions f±(r, ν)

As for the regular solution, using the method of variation of constants, the
Jost solutions for r > 0 are given by Loeffel [29, Lemma 6]:

f±(r, ν) = e±ir +
∫ +∞

r

sin(s − r)
(

ν2 − 1
4

s2
+ q(s)

)
f±(s, ν) ds. (4.1)

We can deduce easily that the maps ν → f±(r, ν) (resp. ν → f±′(r, ν)), are
holomorphic on C, are even functions and satisfy the following estimate:

| f±(r, ν) | ≤ exp
(∫ +∞

r

∣∣∣∣
ν2 − 1

4

s2
+ q(s)

∣∣∣∣ ds

)
. (4.2)

In particular, for a fixed r > 0, ν → f±(r, ν) is an entire function of order 2,
i.e. there exists A,B > 0 such that | f±(r, ν) | ≤ A e B |ν|2 , ∀ν ∈ C.
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In this section, we shall obtain new useful estimates for the Jost solu-
tions f±(r, ν) and we shall see that in particular the Jost solutions are entire
functions of order 1 with infinite type with respect to ν ∈ C (see below for
the definition). Before studying f±(r, ν), let us examine in detail the free case.
First, let us recall some well-known definitions for holomorphic functions (see
for instance [27]).

Definition. Let f : C → C an entire function of the complex variable z. Let

M(r) = sup
|z|=r

| f(z) | . (4.3)

We say that f is of order ρ if

lim sup
r→+∞

log log M(r)
log r

= ρ. (4.4)

A function of order ρ is said of type τ if

lim sup
r→+∞

log M(r)
rρ

= τ. (4.5)

If τ = +∞, we say that the function f is of order ρ with infinite (or maximal)
type.

Lemma 4.1. For r > 0 fixed, the free Jost solutions f±
0 (r, ν) are holomorphic

functions of order 1 with infinite type with respect to ν.

Proof. For instance, let us examine f+
0 (r, ν). We recall that f+

0 (r, ν) is even
with respect to ν, so it suffices to estimate | f+

0 (r, ν) | for 
ν ≥ 0. Using (2.17),
we have:

| f+
0 (r, ν) |= e−	ν π

2

√
πr

2
| H(1)

ν (r) | . (4.6)

On one hand, Theorem A.5 implies that, for 
ν ≥ 0 and some δ ∈ (0, 1) fixed:

| Jν(r) H(1)
ν (r) | ≤ Cδ eπ|	ν| (1 + 
ν)− δ

2 r
δ−1
2 . (4.7)

On the other hand, using Proposition A.7, we have for 
ν ≥ 0,

Jν(r) =
1

Γ(ν + 1)

(r

2

)ν

(1 + o(1)), ν → ∞. (4.8)

Hence, it follows that there exists suitable constants A,B > 0 such that, for
all 
ν ≥ 0,

| f+
0 (r, ν) |≤ A eB |ν| | Γ(ν + 1) | . (4.9)

Thus, the lemma follows from Stirling’s formula [26, Eq. (1.4.24)]. �

In the next lemma, we precise the localization of the zeros of the free Jost
solutions f+

0 (r, ν), r > 0 fixed, with respect to the complex variable ν ∈ C.
Of course, these zeros are also the zeros of the Hankel functions H

(j)
ν (r) as a

function of its order ν. We emphasize that this result is actually a general fact
for the Jost solutions f±(r, ν). The proof is inspired from [33]. We recall that
the first open quadrant of the complex plane is the set of the complex number
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ν such that 
ν > 0 and �ν > 0, the second open quadrant is the set of the
complex number ν such that 
ν < 0 and �ν > 0,...

Lemma 4.2. For r > 0 fixed, the zeros of the free Jost solution f+
0 (r, ν) (resp.

f−
0 (r, ν)) as function of ν belong to the first and third open quadrant (resp. the
second and the fourth open quadrant).

Proof. For instance, assume that f+
0 (r0, ν) = 0 for some r0 > 0 fixed. Using

(2.1) with q = 0, we see that

d
dr

[
W (f+

0 (r, ν), f+
0 (r, ν))

]
=

ν̄2 − ν2

r2
| f+

0 (r, ν) |2 . (4.10)

Integrating (4.10) over [r0,+∞[ and using (2.4), we obtain:
∫ +∞

r0

ν̄2 − ν2

r2
| f+

0 (r, ν) |2= −2i, (4.11)

or equivalently

2
ν �ν

∫ +∞

r0

| f+
0 (r, ν) |2

r2
= 1. (4.12)

It follows that 
ν �ν > 0 which implies the lemma. �

Now, let us study the Jost solutions f±(r, ν). As in the previous section,
we shall establish a new integral representation which will be useful for our
inverse problem. Instead of using the Green kernel K(r, s, ν), we prefer to use
a more convenience one, N(r, s, ν). Using the notation (3.5), (3.6), we set:

N(r, s, ν) = u(r)v(s) − u(s)v(r). (4.13)

Clearly, we have a new integral representation:

f±(r, ν) = f±
0 (r, ν) +

∫ +∞

r

N(r, s, ν)q(s)f±(s, ν) ds. (4.14)

As a by-product of this integral representation, we can deduce that the Jost
solutions, for r > 0 fixed, are bounded when ν belongs to the imaginary axis
iR :

Proposition 4.3. Assume that the potential q satisfies the hypothesis (H2).
Then, for all r > 0 and y ∈ R,

| f±(r, iy) | ≤ 2
1
4 exp

(√
2

∫ +∞

r

| q(s) | ds

)
. (4.15)

Proof. We consider the case (+) only and we solve (4.14) by iterations. We
set:

ψ0(r) = f+
0 (r, iy),

ψk+1(r) =
∫ +∞

r

N(r, s, iy)q(s)ψk(s) ds.
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For y ∈ R, one has | f+
0 (r, iy) |= e− π

2 y
√

πr
2 | H

(1)
iy (r) |. Therefore, using the

first estimate in Proposition A.1, one sees that:

| f+
0 (r, iy) |≤ 2

1
4 (4.16)

Moreover, recalling that Jν(r) = 1
2 (H(1)

ν (r) + H
(2)
ν (r)) (see the Appendix,

Sect. A1), we obtain immediately

N(r, s, ν) = i
π

4
√

rs
(
H(1)

ν (r)H(2)
ν (s) − H(1)

ν (s)H(2)
ν (r)

)
. (4.17)

Hence, it follows from (4.17) and Proposition A.1 again, that ∀s ≥ r > 0,∀y ∈
R,

| N(r, s, iy) |≤
√

2. (4.18)

Then, for all k ∈ N, we easily prove by induction:

| ψk(r) |≤ 2
1
4

1
k!

(√
2

∫ +∞

r

| q(s) | ds

)k

. (4.19)

Since f+(r, iy) =
∑+∞

k=0 ψk(r), one obtains the lemma. �

When the potential q(r) decays faster at infinity, roughly speaking when
q(r) = O(r−ρ) with ρ > 3

2 , we are able to prove that, for r > 0 fixed, the Jost
solutions f+(r, ν) ∼ f+

0 (r, ν) for ν → ∞ in the second or fourth quadrant, and
f−(r, ν) ∼ f−

0 (r, ν) for ν → ∞ in the first or third quadrant. Let us explain
briefly our strategy (for instance, let us the study f+(r, ν) with ν in the fourth
quadrant):

It follows from Lemma 4.2 that f+
0 (r, ν) does not vanish in the fourth

quadrant. Then, for 0 < r ≤ s, we can set:

M(r, s, ν) =
f+
0 (s, ν)

f+
0 (r, ν)

N(r, s, ν). (4.20)

Thus, setting g(r) = f+(r,ν)

f+
0 (r,ν)

, we obtain immediately from (4.14):

g(r) = 1 +
∫ +∞

r

M(r, s, ν) q(s)g(s) ds. (4.21)

Therefore, to solve the integral equation (4.21), we need uniform estimates
for the Green kernel M(r, s, ν) for 0 < r ≤ s and ν in the fourth quadrant.
This is the goal of the next lemma which is rather technical: indeed, since the
potential q(r) may have a singularity at r = 0 and decays like r−ρ with ρ > 3

2 ,
we have to distinguish the two different regimes s ≤ 1 and s ≥ 1:

Lemma 4.4. For all δ ∈ (0, 1), there exists Cδ > 0 such that for all ν in the
fourth quadrant with |ν| ≥ 1 and for all 0 < r ≤ s,

| M(r, s, ν) |≤ Cδ | ν |− δ
2 min

(
s, s

δ+1
2

)
.
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Proof. It follows from (2.17), (2.18) and (4.17) that

M(r, s, ν) =
i

2
f+
0 (s, ν)

f+
0 (r, ν)

(
f+
0 (r, ν)f−

0 (s, ν) − f+
0 (s, ν)f−

0 (r, ν)
)
. (4.22)

By Lemma 4.1, f±
0 (r, ν) are of order 1 with infinite type and by Lemma 4.2,

f+
0 (r, ν) does not vanish in the fourth quadrant. So using Theorem 12, p.22 in

[28] and its corollary p.24, we deduce that ν → M(r, s, ν) is (at most) of order
1 with infinite type in the fourth quadrant.

Therefore, roughly speaking, by the Phragmen–Lindelóf’s theorem, it suf-
fices to estimate M(r, s, ν) for ν ≥ 0 and ν = iy with y ≤ 0.

1. First, let us estimate M(r, s, ν) for ν > 0 and ν = iy, y < 0 when
s ≤ 1.

This case is rather simple since the variables r and s belong to a compact
set. For r ≤ s, we write:

N(r, s, ν) = v(r)v(s)
(

u(r)
v(r)

− u(s)
v(s)

)
= v(r)v(s)

∫ r

s

(u

v

)′
(t) dt,

= v(r)v(s)
∫ r

s

u′(t)v(t) − u(t)v′(t)
v2(t)

dt = v(r)v(s)
∫ s

r

1
v2(t)

dt,

where we have used W (u, v) = 1. Therefore, recalling that f+
0 (r, ν) = iei(ν+ 1

2 )
π
2

v(r), we have:

M(r, s, ν) = v2(s)
∫ s

r

1
v2(t)

dt. (4.23)

Now, from Proposition A.7, we see that for r in a compact set, one has the
uniform asymptotics:

v(r) = − 1√
π

Γ(ν)
(r

2

)−ν+ 1
2

(
1 + O

(
1
ν

))
, ν → +∞. (4.24)

We deduce that the Green M(r, s, ν) satisfies for ν > 0 and s ≤ 1, the following
uniform estimate:

| M(r, s, ν) | ≤ C s−2ν+1

∫ s

r

t2ν−1 dt ≤ Cs

ν
, (4.25)

where C does not depend on r, s and ν. In the same way, using Proposition A.7
again and

H
(1)
iy (r) =

eπyJiy(r) − J−iy(r)
sinh(πy)

, (4.26)

we obtain:

v(r)=
i
√

π

Γ(1 − iy) sinh(πy)

(r

2

) 1
2−iy

(
1+O

(
1
y

))
, y → −∞. (4.27)

Therefore, as in the case ν > 0, we have the uniform estimate for y < 0 and
s ≤ 1:

| M(r, s, iy) | ≤ Cs

| y | . (4.28)
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Now, we set:

f(ν) := ν M(r, s, ν). (4.29)

Clearly, f is of order 1 with infinite type in the fourth quadrant, f is bounded
on his boundary by Cs. Therefore, using the Phragmen–Lindelóf’s theorem,
we obtain for all ν in the fourth quadrant,

| f(ν) |≤ Cs, (4.30)

which of course, implies the lemma in the case s ≤ 1 and for | ν |≥ 1.
2. Now, let us estimate M(r, s, ν) for ν ≥ 0 and ν = iy, y ≤ 0 when

s ≥ 1.
Instead of using the integral representation (4.23), we start from

M(r, s, ν) =
v(s)
v(r)

N(r, s, ν) =
v(s)
v(r)

(u(r)v(s) − u(s)v(r)) , (4.31)

so

| M(r, s, ν) |≤ |v(s)|
|v(r)| |u(r)v(s)| + |u(s)v(s)|. (4.32)

Now, we use the following trick : for ν ≥ 0, we have (see the Appendix,
Sect. A.1):

| H(1)
ν (r) |2 = H(1)

ν (r)H(1)
ν (r) = H(1)

ν (r)H(2)
ν (r)

= (Jν(r) + iYν(r)) (Jν(r) − iYν(r)) = J2
ν (r) + Y 2

ν (r). (4.33)

Then,

| v(r) |2= πr

2
(
J2

ν (r) + Y 2
ν (r)

)
. (4.34)

Thus, using [47, p. 446], we see that for ν > 1
2 , the application r →| v(r) |

is strictly decreasing on (0,+∞), whereas for ν ∈ [0, 1
2 ] this application is

increasing.1

For ν > 1
2 , it follows from the previous remark and Corollary A.6, that

for any δ ∈ (0, 1), there exists Cδ > 0 such that

| M(r, s, ν) | ≤ |u(r)v(s)| + |u(s)v(s)|
≤ Cδ (1 + ν)− δ

2

(
(rs)

1+δ
4 + s

1+δ
2

)

≤ 2Cδ (1 + ν)− δ
2 s

1+δ
2 .

Now, let us study the case ν ∈ [0, 1
2 ]. By Lemma 3.1, | v(r) |→ 1 when

r → +∞. Therefore, as for such ν, r →| v(r) | is an increasing function, one
has | v(r) |≤ 1 for all r > 0. Then, one has:

1 The function we denote Yν(r) is sometimes denoted by Nν(r) in the literature on Bessel
functions.
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| M(r, s, ν) | ≤ | u(r) |
| v(r) | | v(s) |2 +|u(s)v(s)|

≤ | u(r) |
| v(r) | + |u(s)v(s)|.

It follows from (4.33) that:

| u(r) |2
| v(r) |2 ≤ J2

ν (r)
J2

ν (r) + Y 2
ν (r)

≤ 1, (4.35)

since for ν real, Jν(r) and Yν(r) are real (see Appendix, Sect. A.1). Thus, as
previously, for s ≥ 1 and ν ∈ [0, 1

2 ], we have:

| M(r, s, ν) |≤ 1 + |u(s)v(s)| ≤ Cδ s
1+δ
2 . (4.36)

It remains to study the case ν = iy with y ≤ 0. It follows from (4.20) that

M(r, s, iy) = i
π

4
s

(
H

(1)
iy (s)H(2)

iy (s) −
(
H

(1)
iy (s)

)2 H
(2)
iy (r)

H
(1)
iy (r)

)
. (4.37)

Then, we use the following elementary facts (see the Appendix, Sect. A.1):

H
(2)
iy (r) = H

(1)
−iy(r) = e−yπH

(1)
iy (r). (4.38)

Thus,

M(r, s, iy) = i
π

4
s

⎛
⎝H

(1)
iy (s)H(2)

iy (s) − e−yπ
(
H

(1)
iy (s)

)2 H
(1)
iy (r)

H
(1)
iy (r)

⎞
⎠ .

(4.39)

Then, using the first estimates in Proposition A.1, we obtain for y ∈ [−1, 0]:

| M(r, s, iy) |≤ C, (4.40)

and using the second ones, we have for y ≤ −1,

| M(r, s, iy) |≤ 2
√

s

| y | . (4.41)

As a conclusion, we have proved the following estimate for ν ≥ 0 or ν = iy
with y ≤ 0:

| M(r, s, ν) |≤ Cδ (1+ | ν |)− δ
2 s

δ+1
2 , (4.42)

where Cδ does not depend on r, s and ν. Now, we follow the same strategy as
for the case s ≤ 1, setting

f(ν) := (1 + ν)
δ
2 M(r, s, ν). (4.43)

This application is of order 1 with infinite type in the fourth quadrant, bounded
on his boundary by Cs

δ+1
2 . Using the Phragmen–Lindelóf’s theorem again, we

obtain the lemma as in the first case. �

As an application, we have the following result:
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Proposition 4.5. Assume that r
δ+1
2 q(r) satisfies the hypothesis (H2) for some

δ ∈]0, 1[. Then, there exists C > 0 such that, for all r > 0 and ν in the second
and fourth quadrant with | ν |≥ 1 for the case (+)) (resp. for all ν in the first
and third quadrant with | ν |≥ 1 for the case (−)) one has:

| f±(r, ν) |≤ exp
(

C

∫ +∞

r

min(s, s
δ+1
2 ) | q(s) | ds

)
| f±

0 (r, ν) | .

Proof. For the case (+) and ν in the fourth quadrant with | ν |≥ 1, we solve
(4.21) by iteration. We set

g0(r) = 1,

gk+1(r) =
∫ +∞

r

M(r, s, ν) q(s)gk(s) ds.

Clearly, by Lemma 4.4, we have the following estimate:

| gk(r) |≤ 1
k!

(
C | ν |− δ

2

∫ +∞

r

min
(
s, s

δ+1
2

)
| q(s) | ds

)k

. (4.44)

Hence, g(r) =
∑+∞

k=0 gk(r) satisfies

| g(r) |≤ exp
(

C

∫ +∞

r

min
(
s, s

δ+1
2

)
| q(s) | ds

)
, (4.45)

which implies the proposition for the case (+) and ν in the fourth quadrant.
We deduce the other cases from a parity argument and using (2.5). �
Remark 4.6. It follows from the proof of Proposition 4.5 that for ν in the
second or fourth quadrant,

f+(r, ν) ∼ f+
0 (r, ν), ν → ∞, (4.46)

whereas for ν in the first and the third quadrant,

f−(r, ν) ∼ f−
0 (r, ν), ν → ∞. (4.47)

We deduce from Proposition 4.5 the following important result:

Proposition 4.7. The Jost solutions f±(r, ν) are of order 1 with infinite type
with respect to ν ∈ C.

Proof. From Lemma 4.1 and Proposition 4.5, we see that f+(r, ν) (resp.
f−(r, ν)), is of order one and infinite type in the second and the fourth quad-
rant (resp. in the first and the third quadrant). In the next section (see Propo-
sition 5.4), we shall prove that β(ν) does not vanish in the fourth quadrant,
so using (2.6) we can write for such ν:

f−(r, ν) =
ϕ(r, ν) − α(ν)f+(r, ν)

β(ν)
(4.48)

Moreover, it follows from [29, Eq. (80)] that α(ν) and β(ν) are of order 1
with infinite type for 
ν ≥ 0. Therefore, as previously, using [28, Theorem
12, p. 22] and (3.3), we deduce that f−(r, ν) is (at most) of order one with
infinite type in the fourth quadrant, and also in the second quadrant by a
parity argument. �
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Let us finish this section by the following result which will be useful to
study the localization of the Regge poles in the Sect. 7.

Proposition 4.8. Assume that the potential q satisfies (H1) and has a compact
support. For any δ > 0 small enough, there exists C > 0 such that, for all ν
large enough and r > 0,

| f±(r, ν) − f±
0 (r, ν) | ≤ C

| ν | +1
| f±

0 (r, ν) | for | Arg ν |≤ π

2
− δ.

Proof. We deduce from Proposition A.7 that, for r in a compact set, one has
the uniform asymptotics:

v(r) = − 1√
π

Γ(ν)
(r

2

)−ν+ 1
2

(1 + o(1)) , ν → ∞, | Arg ν |≤ π

2
− δ.

(4.49)

It follows that for ν large enough in this domain, v(r) �= 0 and we can follow
exactly the same strategy as in Proposition 4.5.

We emphasize that for a potential q with a compact support, the variables
s ≥ r belong to a compact set, so using (4.23) and (4.49) again, we see that
the previous Green kernel M(r, s, ν) satisfies for | Arg ν |≤ π

2 −δ, the following
estimate:

| M(r, s, ν) | ≤ C s−2�ν+1

∫ s

r

t2�ν−1 dt ≤ C


ν + 1
. (4.50)

Therefore, as in Proposition 4.5, and setting again g(r) = f+(r,ν)

f+
0 (r,ν)

, we obtain
for | Arg ν |≤ π

2 − δ,

| g(r) − 1 | ≤ C


ν + 1
. (4.51)

Clearly, this implies the proposition. �

5. The Jost Functions α(ν) and β(ν)

In this section, we recall first some well-known results for the Jost functions
which can be found in [29] for example. For the reader’s convenience, we give
the proofs since they are very simple and short. In the second part of this
section, we shall establish some integral representations for the Jost functions.

Lemma 5.1. Assume that the potential q satisfies the hypotheses (H1) and (H2).
For y ∈ R, one has:

| α(iy) |2 − | β(iy) |2= y. (5.1)

Proof. Since ν → f±(r, ν) are even functions (2.6) implies:

ϕ(r, iy) = α(iy)f+(r, iy) + β(iy)f−(r, iy), (5.2)

ϕ(r,−iy) = α(−iy)f+(r, iy) + β(−iy)f−(r, iy). (5.3)
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Moreover, it is easy to see that the Wronskian W (ϕ(r, iy), ϕ(r,−iy)) = −2iy,
and using (2.10), one has:

α(−iy) = β(iy), β(−iy) = α(iy). (5.4)

Then, one obtains:

W
(
α(iy)f+(r, iy)+β(iy)f−(r, iy), β(iy)f+(r, iy)+α(iy)f−(r, iy)

)
= −2iy.

(5.5)

The lemma follows immediately from (2.7). �

Lemma 5.2. Assume that the potential q satisfies the hypotheses (H1) and (H2).
For 
μ ≥ 0, 
ν ≥ 0 such that 
(μ + ν) > 0, one has:

2i (α(ν)β(μ) − α(μ)β(ν)) = (ν2 − μ2)
∫ +∞

0

ϕ(r, ν)ϕ(r, μ)
r2

dr. (5.6)

Proof. First, we remark that the integral converges since 
(μ + ν) > 0. Sec-
ondly, using (2.1), one has:

(ϕ(r, μ)ϕ′(r, ν) − ϕ′(r, μ)ϕ(r, ν))′ = ϕ(r, μ)ϕ′′(r, ν) − ϕ′′(r, μ)ϕ(r, ν),

= ϕ(r, μ)ϕ(r, ν)
ν2 − μ2

r2
. (5.7)

Integrating (5.7) onto (0,+∞), we obtain

(ν2 − μ2)
∫ +∞

0

ϕ(r, μ)ϕ(r, ν)
r2

dr = [W (ϕ(r, μ)), ϕ(r, ν)]r=+∞
r=0 ,

= [W (ϕ(r, μ)), ϕ(r, ν)]|r=+∞ , (5.8)

since 
(μ + ν) > 0. To calculate this last Wronskian, we use (2.6) again:

ϕ(r, μ) = α(μ)f+(r, μ) + β(μ)f−(r, μ),

ϕ(r, ν) = α(ν)f+(r, ν) + β(ν)f−(r, ν).

Using (5.8) and the following elementary asymptotics, when r → +∞:

W (f+(r, ν), f+(r, μ)) → 0, W (f+(r, ν), f−(r, μ)) → −2i, (5.9)

the lemma is proved. �

Hence, we can deduce easily:

Corollary 5.3. Assume that the potential q satisfies the hypotheses (H1) and
(H2). For 
ν > 0, one has:

| α(ν) |2 − | β(ν) |2= 2 
ν �ν

∫ +∞

0

| ϕ(r, ν) |2
r2

dr. (5.10)

Proof. We take μ = ν̄ in the previous lemma and one uses (3.4). �
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Lemma 5.2 and Corollary 5.3 allow us to localize the zeros of the Jost
functions. We recall that the first quadrant (resp. the fourth quadrant) of the
complex plane is the set of the complex number ν such that 
ν ≥ 0 and �ν ≥ 0
(resp. 
ν ≥ 0 and �ν ≤ 0). At last, the Regge poles are the complex zeros of
the Jost function β(ν).

Proposition 5.4. Assume that the potential q satisfies the hypotheses (H1) and
(H2). Then, the Jost function α(ν) (resp. β(ν)) does not vanish in the first
quadrant (resp. the fourth quadrant). In other words, the Regge poles belong to
the first quadrant.

Proof. Since α(ν) = β(ν̄), we only study the zeros of the Jost function α(ν).
For 
ν > 0 and �ν > 0, Corollary 5.3 implies that α(ν) �= 0. In the same
way, if ν = iy with y �= 0, using Lemma 5.1, we see that α(iy) �= 0. At least,
if ν ≥ 0, we have β(ν) = α(ν) and (2.6) implies

ϕ(r, ν) = α(ν)f+(r, ν) + α(ν)f−(r, ν). (5.11)

It follows that α(ν) �= 0. �
In the next proposition, we give integral representations for the difference

of two Jost functions which are a slight generalization of Alfaro and Regge [1,
p. 38]. We adopt the following rule: if q and q̃ are two potentials, we use the
notation Z and Z̃ for all the relevant scattering quantities relative to these
potentials.

Proposition 5.5. Let q and q̃ two potentials satisfying (H1) and (H2). For

ν ≥ 0, one has:

α(ν) − α̃(ν) =
1
2i

∫ +∞

0

(q(r) − q̃(r)) f−(r, ν) ϕ̃(r, ν) dr. (5.12)

β(ν) − β̃(ν) = − 1
2i

∫ +∞

0

(q(r) − q̃(r)) f+(r, ν) ϕ̃(r, ν) dr. (5.13)

Proof. We follow the same strategy as in Lemma 5.2. Using (2.1), one has:
(
f−(r, ν)ϕ̃′(r, ν) − f−′

(r, ν)ϕ̃(r, ν)
)′

= (q̃(r) − q(r)) f−(r, ν)ϕ̃(r, ν).

(5.14)

Integrating (5.14) onto (0,+∞), we obtain
[
W (f−(r, ν), ϕ̃(r, ν))

]r=+∞
r=0

=
∫ +∞

0

(q̃(r) − q(r)) f−(r, ν)ϕ̃(r, ν) dr.

(5.15)

When r → +∞, f−(r, ν) ∼ f̃−(r, ν) (and also for the derivatives). It follows
from (2.8) that W (f−(r, ν), ϕ̃(r, ν)) → 2iα̃(ν). In the same way, when r → 0,
ϕ̃(r, ν) ∼ ϕ(r, ν). Thus, as previously, one has W (f−(r, ν), ϕ̃(r, ν)) → 2iα(ν).

�
As a consequence, we have the following integral representation which is

the key point to prove our local uniqueness inverse result in Theorem 1.4:
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Proposition 5.6. Let q and q̃ be two potentials satisfying (H1) and (H2). Then,
for 
ν ≥ 0,

α(ν)β̃(ν) − α̃(ν)β(ν) =
1
2i

∫ +∞

0

(q(r) − q̃(r)) ϕ(r, ν) ϕ̃(r, ν) dr.

(5.16)

Proof. We write:

α(ν)β̃(ν)−α̃(ν)β(ν)=(α(ν)−α̃(ν))β(ν) − (β(ν) − β̃(ν))α(ν). (5.17)

The result follows immediately from (2.6) and Proposition 5.5. �
We can also deduce from the previous proposition the next technical

result used in the proof of Theorem 1.4:

Corollary 5.7. Let q and q̃ be two potentials satisfying (H1) and (H2). Assume
also that q = q̃ a.e on [a + ∞[. Then, there exists C > 0 such that:

| α(ν)β̃(ν) − α̃(ν)β(ν) | ≤ C


ν + 1
a2�ν , ∀ 
ν ≥ 0. (5.18)

Proof. For r ≤ a, we know from (3.3) that there exists C > 0 such that, for
all ν with 
ν ≥ 0,

| ϕ(r, ν) |≤ C r�ν+ 1
2 . (5.19)

and identically for ϕ̃(r, ν). Then, applying Proposition 5.6, we obtain:

| α(ν)β̃(ν) − α̃(ν)β(ν) | ≤ C

∫ a

0

r2�ν+1 | q(r) − q̃(r) | dr. (5.20)

Thus, using for instance Lemma 3.1 in [21], we obtain the Corollary. �
Now, roughly speaking, the following proposition asserts that the Jost

functions α(ν) and β(ν) are suitable perturbations of the free ones in the
regime ν → +∞, (ν real), when the potential decays as O(r−ρ) with ρ > 3

2 at
infinity.

Proposition 5.8. Let q(r) be a potential satisfying (H1). Assume also that
r

1+δ
2 q(r) satisfies (H2) for some δ ∈ (0, 1). Then,

α(ν) ∼ α0(ν), β(ν) ∼ β0(ν) when ν → +∞. (5.21)

Proof. For instance, let us show β(ν) ∼ β0(ν) when ν → +∞. We use Propo-
sition 5.5 with the potential q̃ = 0:

β(ν) − β0(ν) =
1
2i

∫ +∞

0

q(r) f+(r, ν) ϕ0(r, ν) dr. (5.22)

We recall that:

β0(ν) =
1
2

A(ν) ei(ν+ 1
2 )

π
2 .

Hence, one obtains:∣∣∣∣
β(ν)
β0(ν)

− 1
∣∣∣∣ ≤

∫ +∞

0

∣∣∣∣q(r)f+(r, ν)
ϕ0(r, ν)
A(ν)

∣∣∣∣ dr. (5.23)
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Using Proposition 4.5, we obtain:
∣∣∣∣
β(ν)
β0(ν)

− 1
∣∣∣∣ ≤ C

∫ +∞

0

∣∣∣∣q(r)f+
0 (r, ν)

ϕ0(r, ν)
A(ν)

∣∣∣∣ dr,

≤ C

∫ +∞

0

∣∣∣rq(r)H(1)
ν (r)Jν(r)

∣∣∣ dr,

where we have used (2.16) and (2.17). Thus, it follows from Proposition A.7
and Theorem A.5 that:∣∣∣∣

β(ν)
β0(ν)

− 1
∣∣∣∣ ≤ C

(∫ 1

0

| rq(r)H(1)
ν (r)Jν(r) | dr

+
∫ +∞

1

| rq(r)H(1)
ν (r)Jν(r) | dr

)

≤ C

ν

∫ 1

0

r | q(r) | dr + Cδν
− δ

2

∫ +∞

1

| q(r) | r
δ+1
2 dr,

for some δ ∈ (0, 1), which implies the proposition. �

6. The Generalized Phase Shifts δ(ν)

In this section, we give some properties of the generalized phase shifts δ(ν) for
complex values of the angular momentum ν. We recall that they are defined
for ν > 0 by the formula:

e2iδ(ν) = eiπ(ν+ 1
2 )

α(ν)
β(ν)

, (6.1)

using the convention δ(ν) → 0 when ν → +∞. Of course, to define properly
δ(ν) for complex variables ν, we have to ensure that α(ν) and β(ν) do not
vanish in a simply connected domain. We recall that the zeros of α(ν) belong
to the fourth quadrant, whereas the zeros of β(ν), called the Regge poles, are
located in the first quadrant.

Definition. We say that a potential q(r) satisfies the property (R) if there exists
A ≥ 0 such that there are no Regge poles in the simply connected domain:

ΓA = {ν ∈ C ; 
ν > A}. (6.2)

Reminding that α(ν) = β(ν̄), we see that (6.1) allows us to define δ(ν) as an
holomorphic function on this domain. We shall give in the next section some
examples of such potentials.

The first property obtained in this section has been observed by Horvath
in [21], but as we said previously, we think that his argument is not correct
since, in general, the phase shifts δ(ν) are not well defined in the presence
of Regge poles. Therefore, it is necessary to assume that the property (R) is
satisfied.

Now, let us recall some useful facts on holomorphic functions of the com-
plex variable z.
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Definition. A function f(z) that is holomorphic in the half-upper plane �z > 0
and takes its values in the half-upper plane is called a Herglotz function.

A Herglotz function has a nice growth property (see [28, Theorem 8]):

∀z, �z > 0, | f(z) | ≤ 5 | f(i) | | z |2
�z

. (6.3)

We deduce immediately from Corollary 5.3 the following result:

Proposition 6.1. Let q(r) be a potential satisfying (H1), (H2) and the property
(R). Then, the function δ(ν) − π

2 ν is Herglotz in the variable z = −(ν − A)2,
ν ∈ ΓA, �ν < 0.

Proof. Let ν be a complex number in the fourth quadrant with ν ∈ ΓA. Corol-
lary 5.3 implies ∣∣∣∣

α(ν)
β(ν)

∣∣∣∣ < 1. (6.4)

Therefore, using (6.1), we obtain:∣∣∣e2i(δ(ν)−(ν+ 1
2 )

π
2 )

∣∣∣ < 1, (6.5)

or equivalently �(δ(ν) − π
2 ν) > 0. �

The second property was cited in [21] for potentials such that rq(r) satis-
fies (H2). We generalize this result to potentials q(r) which has a slower decay
at infinity. For simplicity, we assume here that q(r) is regular at r = 0, but we
can certainly allow some singularity at the origin. Of course, as previously, we
need to assume that the property (R) is satisfied.

Proposition 6.2. Let q(r) be a potential satisfying the property (R). We also
assume that | q(r) |≤ C (1+r)−ρ with ρ > 3

2 for all r > 0. Then, for ν ∈ ΓA+1,
there exists C > 0 such that:

| δ(ν) | ≤ C | ν |4 . (6.6)

Proof. We follows the same strategy as in [21, Section 3]. We start from Propo-
sition 3.2:

ϕ(r, ν) = −2iβ(ν) e−i π
2 (ν− 1

2 ) u(r) +
∫ +∞

0

K(r, s, ν)q(s)ϕ(s, ν) ds. (6.7)

We define the set:

Ω = {ν ∈ ΓA : | �ν |< 1 }. (6.8)

Using Corollary A.6, we see that for any δ ∈ (0, 1) and ν ∈ Ω,

| K(r, s, ν) | ≤ C | ν |− δ
2 (rs)

δ+1
4 , (6.9)

where the constant C depends implicitly of δ. We deduce from (6.7):

| ϕ(r, ν) + 2iβ(ν) e−i π
2 (ν− 1

2 ) u(r) |

≤ C | ν |− δ
2 r

δ+1
4

∫ +∞

0

s
δ+1
4 | q(s)ϕ(s, ν) | ds, (6.10)
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and also:

| ϕ(r, ν) | ≤ 2 | β(ν)e−i π
2 (ν− 1

2 ) u(r) |

+C | ν |− δ
2 r

δ+1
4

∫ +∞

0

s
δ+1
4 | q(s)ϕ(s, ν) | ds. (6.11)

We multiply (6.11) by r
δ+1
4 | q(r) | and we integrate over (0,+∞):

∫ +∞

0

r
δ+1
4 | q(r)ϕ(r, ν) | dr ≤ C | β(ν) |

∫ +∞

0

r
δ+1
4 | q(r)u(r) | dr

+ C | ν |− δ
2

∫ +∞

0

r
δ+1
2 | q(r) | dr ·

∫ +∞

0

s
δ+1
4 | q(s)ϕ(s, ν) | ds.

By our hypothesis, if we choose δ > 0 small enough, the integral
∫ +∞
0

r
δ+1
2 |

q(r) | dr is convergent, thus:
∫ +∞

0

r
δ+1
4 | q(r)ϕ(r, ν) | dr ≤ C | β(ν) |

∫ +∞

0

r
δ+1
4 | q(r)u(r) | dr

+ C | ν |− δ
2

∫ +∞

0

s
δ+1
4 | q(s)ϕ(s, ν) | ds. (6.12)

Hence, for ν ∈ Ω large enough, one obtains:
∫ +∞

0

r
δ+1
4 | q(r)ϕ(r, ν) | dr ≤ C | β(ν) |

∫ +∞

0

r
δ+1
4 | q(r)u(r) | dr.

(6.13)

Putting (6.13) into (6.10), and recalling that | �ν | is bounded, we have:

| ϕ(r, ν) + 2iβ(ν) e−i π
2 (ν− 1

2 ) u(r) | ≤ C | ν |− δ
2 r

δ+1
4 |

− 2iβ(ν)e−i π
2 (ν− 1

2 ) | ·
∫ +∞

0

s
δ+1
4 | q(s)u(s) | ds, (6.14)

or equivalently,
∣∣∣∣

ϕ(r, ν)
−2iβ(ν)e−i π

2 (ν− 1
2 )

− u(r)
∣∣∣∣ ≤ C | ν |− δ

2 r
δ+1
4

∫ +∞

0

s
δ+1
4 | q(s)u(s) | ds,

(6.15)

since β(ν) does not vanish in Ω. On the other hand, Proposition 3.2 asserts:

α(ν) ei π
2 (ν− 1

2 )+β(ν) e−i π
2 (ν− 1

2 ) = −
∫ +∞

0

u(r)q(r)ϕ(r, ν) dr. (6.16)

Dividing (6.16) by β(ν)e−i π
2 (ν− 1

2 ) and using (6.1), we obtain:

e2iδ(ν) − 1 = −2i

∫ +∞

0

u(r)q(r)
ϕ(r, ν)

−2iβ(ν)e−i π
2 (ν− 1

2 )
dr. (6.17)
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Thus,

e2iδ(ν) − 1 = −2i

∫ +∞

0

u2(r)q(r) dr

− 2i

∫ +∞

0

u(r)q(r)
(

ϕ(r, ν)
−2iβ(ν)e−i π

2 (ν− 1
2 )

− u(r)
)

dr. (6.18)

Thus, we deduce from (6.15) that:
∣∣∣∣e2iδ(ν) − 1 + 2i

∫ +∞

0

u2(r)q(r) dr

∣∣∣∣

≤ C | ν |− δ
2

(∫ +∞

0

r
δ+1
4 | q(r)u(r) | dr

)2

. (6.19)

Using again that, for δ > 0 small enough, the integral
∫ +∞
0

r
δ+1
2 | q(r) | dr is

convergent, the Cauchy–Schwartz’s inequality implies:
∣∣∣∣e2iδ(ν) − 1+2i

∫ +∞

0

u2(r)q(r) dr

∣∣∣∣ ≤ C | ν |− δ
2

∫ +∞

0

| q(r) | | u(r) |2 dr.

(6.20)

It follows that, for ν ∈ Ω:
∣∣∣e2iδ(ν) − 1

∣∣∣ ≤ C

∫ +∞

0

| q(r) | | u(r) |2 dr,

≤ C

∫ +∞

0

| rq(r) | | Jν(r) |2 dr. (6.21)

Now, by our hypothesis, we use the following estimate | rq(r) |≤ C√
r

for all
r > 0, and we obtain:

∣∣∣e2iδ(ν) − 1
∣∣∣ ≤ C

∫ +∞

0

| Jν(r) |2√
r

dr. (6.22)

This last integral can be estimated using Corollary A.4; for all ν ∈ Ω,
∫ +∞

0

| Jν(r) |2√
r

dr ≤ C | ν |− 1
2 . (6.23)

It follows that for ν ∈ Ω,∣∣∣e2iδ(ν) − 1
∣∣∣ ≤ C | ν |− 1

2 . (6.24)

We deduce that:

δ(ν) = k(ν)π + ε(ν), (6.25)

with k(ν) ∈ Z and ε(ν) = O(| ν |− 1
2 ). For ν large enough in Ω, | ε(ν) |< π,

hence ν → k(ν) is a continuous function which implies that k(ν) is constant
for ν ∈ Ω large enough. Since δ(ν) → 0 as ν → +∞, this constant is equal to
zero, and we have obtained:

δ(ν) = O(| ν |− 1
2 ) for ν ∈ Ω. (6.26)
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Now, let us consider complex numbers ν ∈ ΓA+1 with �ν ≤ −1. Using (6.3)
and Proposition 6.1, one has:

∣∣∣δ(ν) − π

2
ν
∣∣∣ ≤ C

| ν − A |4
| �(ν − A)2 | ≤ C | ν − A |4 . (6.27)

Thus, using that δ(ν) = δ(ν̄) (which follows from the definition of the gener-
alized phase shifts), and using (6.26), (6.27), we have:

| δ(ν) | ≤ C | ν |4 for ν ∈ ΓA+1. (6.28)

�
As a by-product of the proof of Proposition 6.2, we can give some esti-

mates on the generalized phase shifts δ(ν), when ν → +∞ and for the class
of potentials with super-exponential decay at +∞. Propositions 6.2 and 6.3
will be very useful later to prove the existence of an infinite number of Regge
poles.

Definition. A function f : ]0,+∞[→ R is super-exponentially decreasing if for
any A ≥ 0, there exists C > 0 (depending on A) such that:

| f(r) |≤ C e−Ar for all r > 0. (6.29)

We have the following result which is very close to [21, Corollary 1, Eq. (14)].
We shall use this proposition in the proof of Theorem 7.1.

Proposition 6.3. Let q(r) be a potential such that | q(r) | ≤ C e−Ar, ∀r > 0.
Then, for all B < A,

δ(ν) = O

(
1√
ν

e−ν Argcosh (1+B2
2 )

)
, ν → +∞.

In particular, if the potential q(r) is super-exponentially decreasing, the gener-
alized phase shifts δ(ν) are super-exponentially decreasing, (ν real).

Proof. By hypothesis, for any B < A, there exists C > 0 such that

| q(r) | ≤ C

r
e−Br , ∀r > 0. (6.30)

Therefore, using (6.21), we have for ν > 0 large enough:
∣∣∣e2iδ(ν) − 1

∣∣∣ ≤ C

( ∫ +∞

0

e−Br | Jν(r) |2 dr

)
,

≤ CQ0
ν− 1

2

(
1 +

B2

2

)
,

where Q0
ν− 1

2
is the Legendre function of the second kind (see [37, (10.22.66)]).

But, when ν → +∞, we know (see [37, (14.3.10), (14.15.14) and (10.25.3)])
that:

Q0
ν− 1

2
(cosh η) =

√
η

sinh(η)
K0(νη) (1 + o(1)),

=
√

π

2ν sinh(η)
e−νη (1 + o(1)). (6.31)
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Then, the proposition taking cosh η = 1 + B2

2 . �

7. Localization of the Regge Poles

7.1. The Case of Super-Exponentially Decreasing Potentials

In this section, using Propositions 6.2 and 6.3, we prove that for a non-zero
super-exponentially decreasing potential, the number of Regge poles is always
infinite, and moreover their real parts tend to infinity in the first quadrant. As
we have said in the “Introduction”, this theoretical result contradicts Theorem
5.2 in [19], which says that for an integrable potential q(r) on (0,+∞), there
are finitely many Regge poles in the right-half plane. We emphasize that our
theoretical result will be confirmed in the next subsection, where for potentials
with compact support, the asymptotics of the Regge poles are given.

Theorem 7.1. Let q(r) be a non-zero potential satisfying (H1) and which is
super-exponentially decreasing.
Then, the number of Regge poles is infinite and their real parts tend to infinity
in the first quadrant.

Proof. Assume that the Regge poles are contained in a vertical strip in the
first quadrant, i.e. there exists A > 0 such that β(ν) �= 0 for 
ν > A (i.e.
for ν ∈ ΓA). Then δ(ν) can be defined as an holomorphic function on ΓA and
Proposition 6.2 asserts that for 
ν > A, there exists C > 0 such that:

| δ(ν) | ≤ C | ν |4 . (7.1)

Now, let us recall an elementary result for functions of the complex variable,
belonging to the Hardy class. The Hardy class H2

+ (see for instance [27, Lecture
19]) is the set of analytic functions F in the right half-plane Ω = {ν ∈ C , 
ν >
0}, satisfying the condition

sup
x>0

∫

R

| F (x + iy) |2 dy < ∞, (7.2)

and equipped with the norm

|| F ||=
(

sup
x>0

∫

R

| F (x + iy) |2 dy

) 1
2

. (7.3)

The Paley–Wiener Theorem asserts that a function F (ν) belongs to the Hardy
space H2

+ if and only if there exists a function f ∈ L2(0,+∞) such that

F (ν) =
1√
2π

∫ +∞

0

e−tν f(t) dt , ∀ν ∈ Ω. (7.4)

Moreover, we have:

|| F || = || f ||L2(0,∞) . (7.5)

A function F (ν) belonging in the Hardy class has a very nice property: if one
knows that F (ν) = O

(
e−Bν

)
, ν → +∞, one can show that F (ν) satisfies a

uniform bound for ν ∈ Ω. Actually, we emphasize that we have a better result;
it suffices to have the previous estimate for ν integer (see [11, Proposition 4.2]).
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We prefer to give here this result in this discrete setting since we shall use it
again in the next section.

Proposition 7.2. Let F be a function in the Hardy class H2
+. Assume that for

some B > 0, we have F (l) = O(e−Bl), l → +∞ (l integer). Then,

| F (ν) | ≤ || F ||√
4π
ν

e−B�ν , ∀ν ∈ Ω. (7.6)

We use Proposition 7.2 with the function F (ν) defined by:

F (ν) =
δ(ν + A + 1)
(ν + A + 1)5

, (7.7)

which belongs to the Hardy class thanks to (7.1). Now, we use the fact that
q(r) is super-exponentially decreasing. Proposition 6.3 implies : ∀B > 0,

F (ν) = O
(
e−Bν

)
, ν → +∞. (7.8)

Hence, we deduce from Proposition 7.2 that F (ν) = 0 since B > 0 is arbitrary.
It follows from (2.11) and (2.12) that:

α(ν) = e−i(ν+ 1
2 )π β(ν) for all 
 ν ≥ A + 1, (7.9)

and by analytical continuation (7.9) holds for 
ν > 0. Then the Regge inter-
polation σ(ν) = 1 for all 
ν > 0, so applying the Loeffel’s uniqueness Theorem
(see [29, Theorem 2]), we obtain q = 0. Note we could also use Novikov’s re-
sults to obtain q = 0 (see [34,35]), since the potential q(r) is exponentially
decreasing. �

7.2. Potentials with compact support

Now, let us study the case of a potential having compact support. We have
seen above that the Regge poles are always in infinite number and their real
parts go to infinity. For potentials with compact support, we can improve our
previous result. The first proposition (which is certainly known) obtained in
this section shows that the Regge poles concentrate (in some sense given below)
on the positive imaginary axis. This theoretical result will be confirmed in the
second proposition where the precise asymptotics for the Regge poles and for
a large class of potentials with compact support are obtained.

Proposition 7.3. Let q be a potential satisfying (H1) and with compact support.
Then, for all δ > 0, there are a finite number of Regge poles in the sector
Arg ν ∈ [0, π

2 − δ].

Proof. Let q be a potential with support in [0, b]. By Proposition 5.5 with
q̃ = 0, we have:

β(ν) − β0(ν) = − 1
2i

∫ b

0

q(r)f+(r, ν)ϕ0(r, ν) dr. (7.10)

Therefore,

β(ν)
β0(ν)

− 1 = − 1
2i

∫ b

0

q(r)f+(r, ν)
ϕ0(r, ν)
β0(ν)

dr. (7.11)



2880 T. Daudé and F. Nicoleau Ann. Henri Poincaré

It follows from (2.15), (2.16) and (2.20) that:

ϕ0(r, ν)
β0(ν)

=
√

2πr e−i(ν+ 1
2 )

π
2 Jν(r), (7.12)

then, ∣∣∣∣
ϕ0(r, ν)
β0(ν)

∣∣∣∣ ≤
√

2πr e	ν π
2 | Jν(r) | . (7.13)

Now, using Proposition 4.8, we see that there exists C > 0 such that:

| f+(r, ν) |≤ C | f+
0 (r, ν) | for Arg ν ∈

[
0,

π

2
− δ

]
. (7.14)

It follows from (2.17) that:

| f±(r, ν) |≤ C
√

r e−	ν π
2

∣∣∣H(1)
ν (r)

∣∣∣ . (7.15)

Then,
∣∣∣∣
β(ν)
β0(ν)

− 1
∣∣∣∣ ≤ C

∫ b

0

r | q(r) | | Jν(r)H(1)
ν (r) | dr. (7.16)

Since r belongs to a compact set, Proposition A.7 implies:∣∣∣∣
β(ν)
β0(ν)

− 1
∣∣∣∣ ≤ C

| ν | +1
, (7.17)

and thus, for ν large with Arg ν ∈ [0, π
2 − δ], β(ν) �= 0. �

Now, we are able to give the precise asymptotics of the Regge poles for a
potential with compact support. As we shall see, the Regge poles concentrate
(in a certain sense) along the positive imaginary axis. We begin by a first
technical lemma. In this lemma, to simplify the proof, q is assumed to be C2

on his support.

Lemma 7.4. Let q(r) be a piecewise continuous potential having his support in
[0, a]. We assume that q is C2 in [0, a] and let δ > 0 small enough. Then, for
Arg ν ∈ [π

2 − δ, π
2 ], one has as ν → ∞:

β(ν)
β0(ν)

=
[
1 − 2iπ

(ν + 1)Γ2(ν + 1)

(a

2

)2ν+2
(

q(a − 0) + O

(
1
ν

))]
+ O

(
1
ν

)
.

(7.18)

Proof. We use the following integral representation for the regular solution
proved in [38]: there exists an integral kernel R(r, s) independent of ν such
that

ϕ(r, ν) = ϕ0(r, ν) +
∫ r

0

R(r, s) ϕ0(s, ν)
ds

s2
, (7.19)

where
1. R(r, s) is C2 with respect to r, s : 0 < r < +∞, 0 < s ≤ r.
2. R(r, r) = r

2

∫ r

0
sq(s) ds.

3. R(r, 0) = 0.
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4. There exists C > 0 such that for all r > 0,
∫ r

0
| R(r, s) | ds

s ≤ C.
5. R(r, s) has first derivatives which are bounded.

Note in particular that a simple application to the mean value Theorem gives
us the estimate

R(r, s) = O(s), s → 0. (7.20)

Now, Proposition 5.5 with q = 0 and q̃ = q gives:

β(ν) − β0(ν) =
1
2i

∫ a

0

q(r)f+
0 (r, ν) ϕ(r, ν) dr. (7.21)

Therefore, using (2.17) and (2.20), one has:

β(ν)
β0(ν)

= 1 − i

∫ a

0

√
πr

2
q(r) H(1)

ν (r)
ϕ(r, ν)
A(ν)

dr. (7.22)

It follows from (2.16) and (7.19) that:

β(ν)
β0(ν)

= 1 − iπ

2

∫ a

0

rq(r) Jν(r) H(1)
ν (r) dr

− iπ

2

∫ a

0

√
rq(r)

∫ r

0

s− 3
2 R(r, s) Jν(s) H(1)

ν (r) ds dr. (7.23)

For Arg ν ∈ [π
2 − δ, π

2 ] and for r, s in a compact set, one has the following
uniform asymptotics (see Corollary A.9) when ν → ∞:

Jν(s) H(1)
ν (r) =

1
iπν

(s

r

)ν
(

1 +
r2 − s2

4ν
+ O

(
1
ν2

))

+
2

Γ2(ν + 1)

(rs

4

)ν
(

1 − r2 + s2

4ν
+ O

(
1
ν2

))
. (7.24)

Now, using (7.24), we can estimate the first term in the (RHS) of (7.23). One
has:

∫ a

0

rq(r) Jν(r)H(1)
ν (r) dr

=
∫ a

0

rq(r)
[

1
iπν

(
1 + O

(
1
ν2

))

+
2

Γ2(ν + 1)

(r

2

)2ν
(

1 − r2

2ν
+ O

(
1
ν2

))]
dr

=
21−2ν

Γ2(ν + 1)

∫ a

0

r2ν+1q(r)
(

1 − r2

2ν
+ O

(
1
ν2

))
dr + O

(
1
ν

)

Let us examine the above integral. For instance, integrating twice by parts, we
see easily that:

∫ a

0

r2ν+1q(r) dr =
a2ν+2

2ν + 2

(
q(a − 0) + O

(
1
ν

))
, (7.25)
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and so on for the other terms. Thus, we obtain easily:∫ a

0

rq(r) Jν(r)H(1)
ν (r) dr

=
4

(ν + 1)Γ2(ν + 1)

(a

2

)2ν+2
(

q(a − 0) + O

(
1
ν

))
+ O

(
1
ν

)
.

(7.26)

Similarly, we claim that:∫ a

0

√
rq(r)

∫ r

0

s− 3
2 R(r, s)Jν(s)H(1)

ν (r) ds dr

= O

(
1

ν2Γ2(ν + 1)

(a

2

)2ν+2
)

+ O

(
1
ν2

)
(7.27)

For instance, using (7.24), we need to estimate:

I1 =
1

iπν

∫ a

0

r
1
2−νq(r)

∫ r

0

s− 3
2+νR(r, s)dsdr.

Using (7.20) and an integration by parts, we see that
∫ r

0

s− 3
2+νR(r, s)ds =

rν− 1
2

ν − 1
2

(
R(r, r) + O

(
1
ν

))
. (7.28)

Hence, we get easily

I1 =
1

iπν(ν − 1
2 )

∫ a

0

q(r)R(r, r)dr + O

(
1
ν2

)
= O

(
1
ν2

)
. (7.29)

We can estimate the other terms similarly and we leave the details to the
reader. �

We use the previous lemma to give the main result of this section. When
the potential q(r) has a discontinuity on the boundary of his support, i.e. when
q(a − 0) �= 0, we can calculate precisely the asymptotics of the Regge poles in
the first quadrant. We have in mind the example of the square well potential
defined by q(r) = q0 if r ∈]0, a] and q(r) = 0 for r > a. Let us denote by
νp the Regge poles in the first quadrant and assume that they are ordered
according to their increasing modulus. We shall see that the leading term of
this asymptotic expansion does not depend on the depth and the width of the
potential, and that the Regge poles concentrate on the positive imaginary axis
in the following meaning:

�νp


νp
=

2 log p

π
(1 + o(1)) when p → +∞. (7.30)

Theorem 7.5. Let q(r) be a piecewise continuous potential having his support
in [0, a]. We assume that q is C2 in [0, a] and q(a − 0) �= 0. Then, the Regge
poles νp, p ∈ N satisfy:

νp =
(

pπ2

2 log2 p
+ i

pπ

log p

)
(1 + o(1)), p → +∞. (7.31)
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Proof. We give only the main ingredients of the proof and we leave the details
to the reader. For Arg ν ∈ [π

2 − δ, π
2 ], we define:

f(ν) = 1 − 2iπ

(ν + 1)Γ2(ν + 1)

(a

2

)2ν+2

q(a − 0). (7.32)

Using Stirling’s formula, we obtain easily:

f(ν) = 1 − iq(a − 0) e−2w[log w−1−log( a
2 )]

(
1 + O

(
1
w

))
, (7.33)

where we have set w = ν + 1. Now, if we set A = 1 + log(a
2 ) and z = e−Aw,

we can write the Eq. (7.33) as:

f(ν) = 1 − iq(a − 0) e−2eAz log z

(
1 + O

(
1
z

))
. (7.34)

For instance, we assume that q(a − 0) > 0 and we define the function g(z) by:

g(z) = 1 − iq(a − 0) e−2eAz log z. (7.35)

We obtain immediately that the zeros zp of the function g(z) must verify, for
p ∈ Z, the equation:

zp log zp =
1

2eA

(
log q(a − 0) + i

(
2p +

1
2

)
π

)
:= αp. (7.36)

Since we are looking for the Regge poles in the first quadrant, we only have to
consider the case where p ∈ N. Setting zp = eup in (7.36) we see that we have
to study the roots up of the following equation:

up eup = αp, (7.37)

which is the so-called Lambert’s equation. The solution is given by up = W (αp)
where W stands for the Lambert’s function. Using the asymptotics of the
Lambert function (for the principal branch) (see for instance [9], or [8, Eq.
(4.20)]), we obtain:

up = log αp − log2 αp + o(1), p → +∞. (7.38)

Therefore, we deduce:

zp =
αp

log αp
(1 + o(1)). (7.39)

An easy calculation gives:

log αp = log
(pπ

eA

)
+ i

π

2
+ o(1), (7.40)

thus it follows that:


zp =
pπ2

2eA(log p)2
(1 + o(1)), (7.41)

�zp =
pπ

eA log p
(1 + o(1)). (7.42)

Now, the end of the proof follows from a standard application of Rouché The-
orem. We refer to [14, pp. 35–36] for the details. �
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7.3. The Case of Potentials Dilatable Analytically

In this section, we study the localization of the Regge poles for short-range
potentials q(r) which can be extended analytically in the complex angular
sector of the positive real axis | arg z |≤ b ≤ π

2 . In particular, the results of
this section generalize to the case b = π

2 those results of Barut and Diley [3]
who proved that the Regge poles are confined into a domain which is contained
in a vertical strip on the first quadrant (see also [5]). To make complex scaling,
we introduce the following formalism:

Definition 7.6. Let V a small complex neighborhood of 0 ∈ C. We say that a
potential q(r) is dilation-analytic short range if q(r) can be extended analyti-
cally in a conic neighborhood of (0,+∞) with:

| q(eθr) | ≤ C (1 + r)−ρ , ρ > 1 , for all θ ∈ V. (7.43)

In other words, if the disc D(0, b) ⊂ V with b ≤ π
2 , the above definition

means that q(r) can be extended analytically in the complex angular sector of
the positive real axis | arg z |≤ b ≤ π

2 . For simplicity, we shall say that the
potential q(r) belongs to the class Ab.

Now, let us consider radial Schrödinger equations with the energy λ = k2:
(

− d2

dr2
+

ν2 − 1
4

r2
+ q(r)

)
u(r) = k2u(r). (7.44)

We emphasize that in this section, the dependance with respect to the energy
and the potential is important since we shall make later complex scalings. The
regular solution is denoted by ϕ(r, ν; k, q) and satisfy:

ϕ(r, ν; k, q) ∼ rν+ 1
2 , r → 0. (7.45)

If we solve the integral equation (3.1) taking into account the energy k2, we
obtain easily that, for 
ν ≥ 0, the regular solution ϕ(r, ν, k, q) is analytic with
respect to k2 (for details, see [1], p. 19).

Similarly, the Jost solutions are denoted by f±(r, ν; k, q) and satisfy:

f±(r, ν; k, q) ∼ e±ikr , r → +∞. (7.46)

As for the regular solution, taking into account the energy k2 in the integral
equation (4.1), we can show that, for 
ν ≥ 0, the Jost solution f+(r, ν; k, q)
is analytic with respect to k for �k ≥ 0, whereas f−(r, ν; k, q) is analytic for
�k ≤ 0 (see [1], p. 24).

Now, as in Sect. 2, we define the Jost functions:

α(ν; k, q) =
i

2
W (ϕ(r, ν; k, q), f−(r, ν; k, q)),

β(ν; k, q) = − i

2
W (ϕ(r, ν; k, q), f+(r, ν; k, q)). (7.47)

Clearly, α(ν; k, q) is defined for 
ν ≥ 0 and �k ≤ 0, whereas β(ν; k, q) is
defined for 
ν ≥ 0 and �k ≥ 0.

To exploit the fact that our potential is dilatable analytically, we begin
with the following elementary lemma whose easy proof is omitted:
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Lemma 7.7. For θ ∈ R, the regular solution and the Jost solutions satisfy:

ϕ(eθr, ν; k, q) = e(ν+
1
2 )θ ϕ(r, ν; eθk, qθ), (7.48)

f±(eθr, ν; k, q) = f±(r, ν; eθk, qθ), (7.49)

where qθ(r) = e2θ q(eθr).

Hence, for dilation-analytic potentials in V, Lemma 7.7 allows us to define
analytically ϕ(eθr, ν; k, q) for θ ∈ V, and f±(eθr, ν; k, q) for θ ∈ V with the
condition ±�(eθk) ≥ 0.

We can deduce the following result for the Jost function β(ν) = β(ν; 1, q):

Corollary 7.8. Assume that the potential q(r) is dilation-analytic short range.
Then, for θ ∈ V, one has:

β(ν; 1, q) = e(ν− 1
2 )θ β(ν; eθ, qθ). (7.50)

Proof. Using Lemma 7.7, one has for θ ∈ R,

ϕ(r, ν; eθ, qθ) = e−(ν+ 1
2 )θ ϕ(eθr, ν; 1, q),

f+(r, ν; eθ, qθ) = f+(eθr, ν; 1, q).

Using (7.47), one obtains

β(ν; eθ, qθ) = − i

2
W (e−(ν+ 1

2 )θ ϕ(eθr, ν; 1, q), f+(eθr, ν; 1, q)), (7.51)

= e−(ν+ 1
2 )θ eθ β(ν; 1, q). (7.52)

Then, the result follows from a standard analytic continuation. �

Now, we can establish our main result concerning the localization of the
Regge poles:

Theorem 7.9. Let q(r) be a potential belonging to the class Ab for some b ∈]0, π
2 ]

with ρ > 1. Then, there exists A > 0 such that there are no Regge poles in
Γb

A = {ν ∈ C ; 
ν > A, | arg(ν − A) |≤ b}.
Of course, this result is really pertinent when 0 ≤ arg(ν − A) ≤ b since

we know that there are no Regge poles in the fourth quadrant. Moreover, if
we take b = π

2 in Theorem 7.9, we obtain immediately the following Corollary
which has been proved in [3] by Barut and Diley in the case ρ > 2 only.

Corollary 7.10. Let q(r) be a potential which can be extended analytically in

z ≥ 0 and such that

| q(z) | ≤ C (1+ | z |)−ρ, ρ > 1. (7.53)

Then, the Regge poles are bounded to the right in the first quadrant.

Proof. We follow in spirit and simplify the approach given in [1, pp. 80–82] for
Yukawian potentials (i.e. for exponentially decreasing potentials). We define:

Ob = {ν ∈ C, Arg ν ∈ [0, b]}, (7.54)
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and we denote by Rb the set of the Regge poles belonging to Ob. To simplify
the notation, we set:

Ψ(r) = ϕ(r, ν, eib, qib), (7.55)

W (r) = qib(r). (7.56)

Let ν ∈ Rb be a Regge pole for the potential q(r) at the energy λ = 1,
i.e. we assume that β(ν) = β(ν; 1, q) = 0. First, we remark that 
ν > 0
since β(ν) does not vanish on the imaginary axis. We shall use implicitly
this fact to give sense of the next integrals. Secondly, using Corollary 7.8, we
get β(ν; eib,W ) = 0. Thus, using (2.6) and a standard analytic continuation
argument, we have:

Ψ(r) = α(ν; eib,W ) f+(r, ν; eib,W ) + β(ν; eib,W ) f−(r, ν; eib,W ),

= α(ν; eib,W ) f+(r, ν; eib,W ). (7.57)

We emphasize that it follows from (7.46) that Ψ(r) (and its derivative), decay
exponentially when r → +∞. Now, we start from:

− Ψ′′ +
(

ν2 − 1
4

r2
+ W (r)

)
Ψ = e2ib Ψ. (7.58)

We multiply (7.58) by Ψ and we integrate by parts on (0,+∞). We obtain:
∫ +∞

0

| Ψ′ |2 dr − [
Ψ′Ψ

]+∞
0

+
∫ +∞

0

(
ν2 − 1

4

r2
+ W (r)

)
| Ψ |2 dr

=
∫ +∞

0

e2ib | Ψ |2 dr. (7.59)

When r → +∞, Ψ′Ψ is exponentially decreasing, and when r → 0, Ψ′Ψ =
O(r2�ν), with 
ν > 0. Hence, we get:
∫ +∞

0

| Ψ′ |2 dr+
∫ +∞

0

(
ν2 − 1

4

r2
+W (r)

)
| Ψ |2 dr=

∫ +∞

0

e2ib | Ψ |2 dr.

(7.60)

Now, let us remark that:
∫ +∞

0

∣∣∣∣Ψ′ − Ψ
2r

∣∣∣∣
2

dr =
∫ +∞

0

| Ψ′ |2 −

(

Ψ′Ψ
r

)
+

| Ψ |2
4r2

dr. (7.61)

Integrating by parts on (0,+∞), one has easily:
∫ +∞

0

Ψ′Ψ
r

dr =
∫ +∞

0

| Ψ |2
r2

dr −
∫ +∞

0

ΨΨ′

r
dr, (7.62)

so we obtain:

2

(∫ +∞

0

Ψ′Ψ
r

dr

)
=

∫ +∞

0

| Ψ |2
r2

dr. (7.63)

Putting (7.63) into (7.61), we have:
∫ +∞

0

∣∣∣∣Ψ′ − Ψ
2r

∣∣∣∣
2

dr =
∫ +∞

0

| Ψ′ |2 −| Ψ |2
4r2

dr. (7.64)
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Thus, using (7.60) and (7.64), one obtains:
∫ +∞

0

[
ν2

r
− re2ib

] | Ψ |2
r

dr = −
∫ +∞

0

∣∣∣∣Ψ′ − Ψ
2r

∣∣∣∣
2

dr −
∫ +∞

0

W | Ψ |2 dr

(7.65)

Now, multiplying (7.65) by ei(π
2 −b−Arg ν) and taking the real part, one has:

| ν | cos
(π

2
− b + Arg ν

) ∫ +∞

0

( | ν |
r

+
r

| ν |
) | Ψ |2

r
dr

= −
∫ +∞

0



(
ei(π

2 −b−Arg ν)W
)

| Ψ |2 dr

− cos
(π

2
− b − Arg ν

) ∫ +∞

0

∣∣∣∣Ψ′ − Ψ
2r

∣∣∣∣
2

dr. (7.66)

Since b ∈]0, π
2 ], cos(π

2 − b − Arg ν) ≥ 0, thus, we obtain immediately:

| ν | cos
(
Arg ν +

π

2
− b

) ∫ +∞

0

( | ν |
r

+
r

| ν |
) | Ψ |2

r
dr

≤ −
∫ +∞

0



(
ei(π

2 −b−Arg ν)W
)

| Ψ |2 dr

≤
∫ +∞

0

| W || Ψ |2 dr. (7.67)

Our main hypothesis on the potential q(r) implies a fortiori | W (r) |≤ C
r , thus

| ν | cos
(
Arg ν+

π

2
− b

) ∫ +∞

0

( | ν |
r

+
r

| ν |
) | Ψ |2

r
dr≤C

∫ +∞

0

| Ψ |2
r

dr.

(7.68)

Reminding we are looking for the Regge poles in Ob, one sees that cos(Arg ν +
π
2 − b) ≥ 0, so using that |ν|

r + r
|ν| ≥ 2, one has:

| ν | cos
(
Arg ν +

π

2
− b

) ∫ +∞

0

| Ψ |2
r

dr ≤ C

2

∫ +∞

0

| Ψ |2
r

dr,

(7.69)

so we have

| ν | cos
(
Arg ν +

π

2
− b

)
≤ C

2
, (7.70)

or equivalently



(
ν ei(π

2 −b)
)

≤ C

2
. (7.71)

The Theorem follows easily. �
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8. Proof of the Theorem 1.2

The goal of this section is to prove our Theorem 1.2. Our proof is self-contained,
elementary, and very close in spirit with the celebrated local Borg–Marchenko’s
uniqueness Theorem (see [4,15,44,45]). In particular, we emphasize that we
do not use the Regge–Loeffel’s uniqueness theorem [29, Theorem 2].

8.1. Uniqueness of the Regge Interpolation Function

Let us consider potentials q(r) (resp. q̃(r)), belonging to the class A, i.e. each
potential can be extended analytically in the domain 
z ≥ 0 and such that,
for all z in this domain, we have (for instance for the potential q(r)):

| q(z) | ≤ C (1+ | z |)−ρ , ρ >
3
2
.

Using Corollary 7.10, there exists N ∈ N large enough such that β(ν) and
β̃(ν) do not vanish for 
ν > N − 1. Therefore, we can define in this region the
generalized phase shifts δ(ν) and δ̃(ν). Moreover, using Proposition 6.2, for all
ν with 
ν ≥ N ,

| δ(ν) |≤ C | ν |4 , | δ̃(ν) |≤ C | ν |4 . (8.1)

It follows from (8.1) that the function F (ν) given by

F (ν) =
δ(ν + n−2

2 + N) − δ̃(ν + n−2
2 + N)

(ν + N)5
(8.2)

belongs to the Hardy class H2
+ (see Sect. 7 for the definition), and from our

main hypothesis on the phase shifts, we have for all A > 0 and l ∈ N,

F (l) = O(e−Al) , l → +∞. (8.3)

Now, using Proposition 7.2 and since A > 0 is here arbitrary, we obtain that
F (ν) = 0 for all ν with 
ν ≥ 0. Hence, for 
ν > 0 large enough, we have
δ(ν) = δ̃(ν). It follows from (2.12) that

σ(ν) = σ̃(ν) for 
ν > 0 large enough, (8.4)

or equivalently, using (2.11) and (2.12), α(ν)β̃(ν) − α̃(ν)β̃(ν) = 0 for 
ν > 0
large enough. By a standard analytic continuation, this last equality holds true
for 
ν > 0. Thus using again (2.11) and (2.12), we have obtained:

σ(ν) = σ̃(ν), (8.5)

for 
ν > 0 (here both functions are meromorphic).

8.2. A New Proof of the Regge–Loeffel’s Theorem

At this stage, we could use Regge–Loeffel’s uniqueness Theorem (see [29, The-
orem 2]) as a black box to obtain q = q̃. Nevertheless, we prefer to give
here another proof which has the advantage to be very simple, short and self-
contained. We emphasize we shall also use this new approach for the proof of
Theorem 1.4. Moreover, as we will see at the end of this section, this strategy
allows us to obtain a new Regge–Loeffel’s theorem which is local in nature.
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We follow an idea close to the local Borg Marchenko uniqueness Theorem
(see [4,15,44,45]). We fix r > 0, and we define F (r, ν) as a function of the
complex variable ν by:

F (r, ν) = f+(r, ν)f̃−(r, ν) − f−(r, ν)f̃+(r, ν). (8.6)

As we have seen in the Sect. 4, F (r, ν) is holomorphic on C with respect to
ν, is even, and of order 1 with infinite type. Moreover, Proposition 4.3 implies
that F (r, ν) is bounded on the imaginary axis.

Now, we aim at showing that F (r, ν) → 0 when ν → +∞. For ν ≥ 0, as
β(ν) �= 0, we can set:

Φ(r, ν) =
ϕ(r, ν)
β(ν)

. (8.7)

Clearly, using (2.6), we get:

f−(r, ν) = Φ(r, ν) − α(ν)
β(ν)

f+(r, ν), (8.8)

and thus,

F (r, ν) = Φ̃(r, ν)f+(r, ν) − Φ(r, ν)f̃+(r, ν)

+
(

α(ν)
β(ν)

− α̃(ν)
β̃(ν)

)
f+(r, ν)f̃+(r, ν). (8.9)

Therefore, using (2.11), we deduce:

F (r, ν) = Φ̃(r, ν)f+(r, ν) − Φ(r, ν)f̃+(r, ν)

+ e−iπ(ν+ 1
2 ) (σ(ν) − σ̃(ν)) f+(r, ν)f̃+(r, ν). (8.10)

Hence, by (8.5), we see that for ν ≥ 0, F (r, ν) can be written as:

F (r, ν) = Φ̃(r, ν)f+(r, ν) − Φ(r, ν)f̃+(r, ν). (8.11)

For instance, let us examine Φ(r, ν)f̃+(r, ν). Propositions 4.5 and 5.8 imply
for ν ≥ 0:

| Φ(r, ν)f̃+(r, ν) | ≤ C

∣∣∣∣
ϕ(r, ν)
β0(ν)

∣∣∣∣ | f+
0 (r, ν) | . (8.12)

Using (3.3), we get for a fixed r > 0 and for all ν ≥ 0:

| ϕ(r, ν) |≤ C rν , (8.13)

and Proposition A.7 gives:

| f+
0 (r, ν) | ≤ C (

r

2
)−ν+ 1

2 Γ(ν). (8.14)

Thus, using (2.20), we obtain easily:

Φ(r, ν)f̃+(r, ν) = O(ν−1) when ν → +∞. (8.15)

At this stage, we have then proved that F (r, ν) → 0 when ν → +∞. In partic-
ular, by parity, F (r, ν) is bounded on the real axis. Applying the Phragmén–
Lindelöf theorem (see [6, Theorem 1.4.2] for instance) in each quadrant of the
complex plane, we see that F (r, ν) is bounded on C, and so is constant by
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Liouville’s Theorem. As the limit is 0 when ν → +∞, we have F (r, ν) = 0 for
all ν ∈ C. Therefore, using (8.6), we have :

f+(r, ν)f̃−(r, ν) = f−(r, ν)f̃+(r, ν) , ∀ν ∈ C, ∀r > 0. (8.16)

For ν ∈ R fixed, we remark that, for all r > 0, f±(r, ν) �= 0.2 Indeed, assume
for instance that f+(r, ν) = 0 for some r > 0. Since f−(r, ν) = f+(r, ν), we
have also f−(r, ν) = 0 which contradicts W (f+(r, ν), f−(r, ν)) = −2i. Then,
we can write (8.16) as

f+(r, ν)
f−(r, ν)

=
f̃+(r, ν)
f̃−(r, ν)

, ∀ν > 0, ∀r > 0. (8.17)

Differentiating and using that W (f+(r, ν), f−(r, ν)) = −2i, it follows that
(f−(r, ν))2 = (f̃−(r, ν))2. We take the logarithmic derivative of this and we
differentiate once more. We obtain:

(f−(r, ν))′′

f−(r, ν)
=

(f̃−(r, ν))′′

f̃−(r, ν)
, (8.18)

Using (2.1), we deduce q = q̃, for all r > 0.
As we have said in the beginning of this section, it is not difficult to see

that the previous approach allows us to obtain a local Regge–Loeffel’s theorem:

Theorem 8.1. Let q(r) and q̃(r) be two potentials satisfying (H1) and such that
rρq(r), rρq̃(r) satisfy (H2) for some ρ > 1

2 . If σ(ν) − σ̃(ν) = o(ν( ae
2ν )2ν) when

ν → +∞, then q(r) = q̃(r) for almost all r ∈ (a,+∞).

Proof. Under these hypotheses, using (8.10) and Proposition 4.5, we see that,
for r ≥ a, the function F (r, ν) = o(1) when ν → +∞, and we conclude as
previously. �

We also note that we shall prove in Proposition 9.1 the following result :
if q(r) = q̃(r) for almost all r ∈ (a,+∞), then

σ(ν) − σ̃(ν) = O

(
1
ν2

(ae

2ν

)2ν
)

. (8.19)

9. Proof of the Theorem 1.4

9.1. Proof of (A2) =⇒ (A1)

We begin with the following proposition which proves the implication
(A2) =⇒ (A1) of Theorem 1.4. We emphasize that here, we only use the
fact that the potentials decay sufficiently rapidly at infinity; in particular, we
do not use explicitly that the potentials belong to the class C. Note that this
proposition has been proved in [20] using a variational approach for the gen-
eralized phase shifts. For the reader’s convenience, we present here a shorter
proof.

2 We could also use the same strategy as in Lemma 4.2 to obtain this result.
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Proposition 9.1. Let q and q̃ be two potentials satisfying (H1) and such that
rρq(r) and rρq̃(r) satisfy (H2) for some ρ > 1

2 . Assume that q(r) = q̃(r) for
almost all r ∈ (a,+∞). Then, the corresponding phase shifts satisfy:

δl − δ̃l = O

(
1
ln

(ae

2l

)2l
)

, l → +∞. (9.1)

Proof. We use the Regge interpolation (2.11) for ν > 0:

e2iδ(ν) − e2iδ̃(ν) = eiπ(ν+ 1
2 )

α(ν) ˜β(ν) − ˜α(ν)β(ν)

β(ν) ˜β(ν)
. (9.2)

Now, Corollary 5.7, Proposition 5.8 and (2.20) imply:

| e2iδ(ν) − e2iδ̃(ν) | ≤ C
a2ν

(ν + 1) | β0(ν) |2 ≤ C
(a

2

)2ν 1
(ν + 1)Γ2(ν + 1)

.

(9.3)

By definition, δ(ν) (resp. δ̃(ν)) → 0 when ν → +∞. Hence, it follows from
(9.3) that

| δ(ν) − δ̃(ν) | ≤ C
(a

2

)2ν 1
(ν + 1)Γ2(ν + 1)

. (9.4)

Then, applying Stirling’s formula with ν = ν(l) = l + n−2
2 , we obtain the

result. �
9.2. Proof of (A1) =⇒ (A2)
9.2.1. Reduction to the Analytic Case. Let us consider two potentials q and
q̃ belonging to the class C, i.e. q = q1 + q2 such that q1 has compact support
in [0, b], and q2 can be extended holomorphically in 
z ≥ 0. In the same way,
q̃ = q̃1 + q̃2 with the same properties. For j = 1, 2, we denote δj

l (resp. δ̃j
l ), the

phases shifts corresponding to the potential qj (resp. q̃j).
First, we prove the following elementary result. This lemma permits us

to reduce our proof to the analytic case of Theorem 1.2.

Lemma 9.2. Let q and q̃ be two potentials belonging to the class C, assume that

δl − δ̃l = o

(
1

ln−3

(ae

2l

)2l
)

, l → +∞. (9.5)

We set c = max (a, b). Then,

δ2l − δ̃2l = o

(
1

ln−3

(ce

2l

)2l
)

l → +∞. (9.6)

Proof. We write:

δ2l − δ̃2l = (δ2l − δl) + (δl − δ̃l) + (δ̃l − δ̃2l ), (9.7)

and using Proposition 9.1, one has:

(δ2l − δl) + (δ̃l − δ̃2l ) = o

(
1

ln−3

(
be

2l

)2l
)

, (9.8)

which implies the lemma. �
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9.2.2. End of the Proof of Theorem 1.4. Let us consider two potentials q and
q̃ belonging to the class C, i.e. q = q1 + q2 such that q1 has compact support
in [0, b], and q2 can be extended holomorphically in 
z ≥ 0. In the same way,
q̃ = q̃1 + q̃2 with the same properties. We assume that:

δl − δ̃l = o

(
1

ln−3

(ae

2l

)2l
)

, l → +∞.

First, we apply Lemma 9.2 and Theorem 1.2 and we get q2(r) = q̃2(r) for all
r > 0.

Now, as in the proof of Theorem 1.2, we define for a fixed r > 0,

F (r, ν) = f+(r, ν)f̃−(r, ν) − f−(r, ν)f̃+(r, ν). (9.9)

As previously, the application F (r, ν) is holomorphic on C with respect to ν,
is even and is bounded on the imaginary axis. Moreover, this application is of
order one with infinite type.

Now, our goal is to show that for r ≥ a, F (r, ν) → 0 when ν → +∞.
Hence, as in the second proof of Theorem 1.2, we shall get q(r) = q̃(r) almost
everywhere for r ≥ a, and Theorem 1.4 will be proved.

As in the previous section, we define for ν ≥ 0,

Φ(r, ν) =
ϕ(r, ν)
β(ν)

, (9.10)

and as in (8.10), we obtain

F (r, ν) = Φ̃(r, ν)f+(r, ν) − Φ(r, ν)f̃+(r, ν)

+
(

α(ν)
β(ν)

− α̃(ν)
β̃(ν)

)
f+(r, ν)f̃+(r, ν). (9.11)

At this stage, it is important to make a crucial remark; since q and q̃ may
have compact supports, Theorem 7.1 asserts that the Regge poles associated
to these potentials may have their real parts that tend to +∞ in the first
quadrant. It follows that we have to modify the strategy of the second proof
of Theorem 1.2.

Of course, as in the last section, we have Φ(r, ν)f̃+(r, ν) − Φ̃(r, ν)f+(r, ν)
= O(ν−1) when ν → +∞. Then,

F (r, ν) =
(

α(ν)
β(ν)

− α̃(ν)
β̃(ν)

)
f+(r, ν)f̃+(r, ν) + O(ν−1),

=
(
α(ν)β̃(ν) − α̃(ν)β(ν)

) f+(r, ν)f̃+(r, ν)
β(ν)β̃(ν)

+ O(ν−1). (9.12)

First, we see that Propositions 4.5 and 5.8 imply for ν ≥ 0:
∣∣∣∣∣
f+(r, ν)f̃+(r, ν)

β(ν)β̃(ν)

∣∣∣∣∣ ≤ C

∣∣∣∣
f+
0 (r, ν)
β0(ν)

∣∣∣∣
2

. (9.13)
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Hence, using Proposition A.7, we get:
∣∣∣∣∣
f+(r, ν)f̃+(r, ν)

β(ν)β̃(ν)

∣∣∣∣∣ ≤ C

(ν + 1)2 r2ν
. (9.14)

This suggests to set:

G(ν) =
(
α̃(ν)β(ν) − α(ν)β̃(ν)

) 1
(ν + 1)2 r2ν

, (9.15)

and we aim at proving that G(ν) → 0 when ν → +∞. To show this result, we
use Cartwright’s Theorem [6, Theorem 10.2.1] which we recall here:

Theorem 9.3. Let f(ν) be holomorphic in 
ν ≥ 0. Assume there exists A,B >
0 such that:

| f(ν) |≤ Cexp (A 
ν + B | �ν |) .

If B < π and if f(l) → 0 as l → +∞ (l integer), then f(ν) → 0 as ν → +∞.

We apply this Theorem with the function f(ν) := G(ν + n−2
2 ). Since

q2 = q̃2, q − q̃ is supporting in [0, b], then using Corollary 5.7, one has:

| f(ν) |≤ C

(
b

r

) 2�ν

. (9.16)

Now, let us estimate f(l) = G(ν(l)). One starts from:

f(l) =
(

α̃(ν(l))
β̃(ν(l))

− α(ν(l))
β(ν(l))

)
β(ν(l))β̃(ν(l))

r2ν(l) (ν(l) + 1)2
. (9.17)

Then using (2.11), (2.12) and Proposition 5.8, one obtains:

| f(l) | ≤ C | e2iδl − e2iδ̃l |
∣∣∣∣
β0(ν(l))

l rl

∣∣∣∣
2

,

= o

(
1

ln−3

(ae

2l

)2l
) ∣∣∣∣

β0(ν(l))
l rl

∣∣∣∣
2

,

thanks to our main hypothesis on the phase shifts. But, Stirling’s formula and
(2.20) imply:

β0(ν(l)) = O

(
l

n−1
2

(
2l

e

)l
)

, l → +∞. (9.18)

We deduce that: for r ≥ a, f(l) → 0 as l → +∞. Therefore, Cartwright’s
Theorem (with B = 0), implies that f(ν) → 0 as ν → +∞, which in turn
implies the same result for G(ν).
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Appendix A.

A.1. Some Basic Facts on the Bessel Functions

First, let us recall some well-known definitions for the Bessel functions. We
refer the reader to [26, Chapter 5], or to the classic treatise by Watson [47] to
which we will make frequent references.

The Bessel function Jν(z) is defined for ν ∈ C and | Arg z |< π by:

Jν(z) =
+∞∑
k=0

(−1)k
(

z
2

)ν+2k

Γ(k + 1)Γ(k + ν + 1)
. (A.1)

The Bessel functions of the third kind or Hankel functions, denoted by H
(1)
ν (z)

and H
(2)
ν (z) are defined in terms of the Bessel functions of the first and second

kind by:

H(1)
ν (z) = Jν(z) + iYν(z) , H(2)

ν (z) = Jν(z) − iYν(z), (A.2)

and can be written for ν /∈ Z as:

H(1)
ν (z) =

J−ν(z) − e−iπνJν(z)
i sin νπ

, (A.3)

H(2)
ν (z) =

eiπνJν(z) − J−ν(z)
i sin νπ

. (A.4)

For integral ν, the Hankel functions H
(j)
n (z), j = 1, 2, are defined as the limit

(see [26, Eqs. (5.4.5), (5.4.6) and (5.6.1)]),

H(j)
n (z) = lim

ν→n
H(j)

ν (z). (A.5)

The Bessel functions Jν(z) and the Hankel functions H
(j)
ν (z) are entire func-

tions of ν. Moreover, we have the following relations (see [30], p. 66):

Jν(z) = Jν̄(z̄) , Yν(z) = Yν̄(z̄) , H
(1)
ν (z) = H

(2)
ν̄ (z̄). (A.6)

H
(1)
−ν (z) = eiνπH(1)

ν (z) , H
(2)
−ν (z) = e−iνπH(2)

ν (z). (A.7)

A.2. Estimates on the Imaginary Axis for the Hankel Functions

In this section, we shall give useful estimates for H
(1)
iy (r) and H

(2)
iy (r) with

respect to r and y. These results are probably well known, but as we were
unable to find a precise reference, we will give the simple proofs below.

Proposition A.1. For any r > 0 and y ∈ R
∗, one has:

| H
(1)
iy (r) | ≤ 2

3
4√
πr

e
π
2 y, | H

(2)
iy (r) |≤ 2

3
4√
πr

e− π
2 y. (A.8)

| H
(1)
iy (r) |≤ 2√

π
(r | y |)− 1

4 e
π
2 y, | H

(2)
iy (r) |≤ 2√

π
(r | y |)− 1

4 e− π
2 y. (A.9)

Proof. By (A.6), it suffices to estimate | H
(1)
iy (r) |. We write

| H
(1)
iy (r) |2= H

(1)
iy (r) H

(1)
iy (r) = H

(1)
iy (r)H(2)

−iy(r) = eπyH
(1)
iy (r)H(2)

iy (r),

(A.10)
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where we have used (A.6) and (A.7). Hence, using (A.2), we obtain:

| H
(1)
iy (r) |2 = eπy (Jiy(r) + iYiy(r)) (Jiy(r) − iYiy(r)) ,

= eπy
(
J2

iy(r) + Y 2
iy(r)

)
. (A.11)

Now, for 
z > 0, we recall the Nicholson’s integral representation (see [30], p.
93):

J2
ν (z) + Y 2

ν (z) =
8
π2

∫ +∞

0

K0(2z sinh t) cosh(2νt) dt, (A.12)

where K0(z) is the Macdonald’s function given by (see [37, Eq. 10.32.9]):

K0(z) =
∫ +∞

0

e−z cosh t dt , 
z > 0. (A.13)

It follows from (A.11) and (A.12) that for all r > 0:

| H
(1)
iy (r) |2 =

8eπy

π2

∫ +∞

0

K0(2r sinh t) cos(2ty) dt. (A.14)

Clearly, from (A.13), we see that the Macdonald’s function K0(x) is a positive
decreasing function for x > 0, and using the inequality cosh t ≥ 1 + t2

2 , we
obtain easily for x > 0:

K0(x) ≤
√

π

2x
e−x. (A.15)

Then, since sinh t ≥ t for t ≥ 0, it follows from (A.14) and (A.15) that :

| H
(1)
iy (r) |2 ≤ 8eπy

π2

∫ +∞

0

K0(2rt) dt

≤ 8eπy

π2

∫ +∞

0

√
π

4rt
e−2rt dt

≤ 2
√

2
πr

eπy,

which proves the first part of the proposition.
Now, assume for instance that y > 0. Making the change of variables

s = 2ty in (A.14), we obtain:

| H
(1)
iy (r) |2= 4eπy

yπ2

∫ +∞

0

f(s) cos(s) ds, (A.16)

where f(s) = K0(2r sinh( s
2y )) is a decreasing function for s > 0. We write this

later integral as:
∫ +∞

0

f(s) cos(s) ds =
∫ π

2

0

f(s) cos(s) ds

+
∞∑

n=0

(∫ π
2 +(2n+1)π

π
2 +2nπ

f(s) cos(s) ds +
∫ π

2 +(2n+2)π

π
2 +(2n+1)π

f(s) cos(s) ds

)
.
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By the first mean value theorem, there exists an ∈ [π
2 + 2nπ, π

2 + (2n + 1)π]
and bn ∈ [π

2 + (2n + 1)π, π
2 + (2n + 2)π] such that:

∫ π
2 +(2n+1)π

π
2 +2nπ

f(s) cos(s) ds +
∫ π

2 +(2n+2)π

π
2 +(2n+1)π

f(s) cos(s) ds

= −2(f(an) − f(bn)) ≤ 0. (A.17)

It follows from (A.16) that

| H
(1)
iy (r) |2 ≤ 4eπy

yπ2

∫ π
2

0

f(s) cos(s) ds

≤ 4eπy

yπ2

∫ π
2

0

K0

(
2r sinh

(
s

2y

))
ds

≤ 4eπy

yπ2

∫ π
2

0

K0

(
rs

y

)
ds,

where we have still used that K0(x) is a decreasing function and sinhx ≥ x
for x ≥ 0. Then, the result comes immediately from (A.15). �

A.3. A New Integral Representation for the Product of Two Bessel Functions

In the next Theorem, we give an integral representation formula for the prod-
uct of the Bessel function Jν(r) and the Hankel function H

(1)
ν (R). To our

knowledge, this result seems to be new and will be very useful to estimate the
Green kernel K(r, s, ν) appearing in Proposition 3.2.

Theorem A.2. For 
ν > 0 and 0 < r < R, one has the following integral
representation:

Jν(r) H(1)
ν (R) = −2i

π

∫ +∞

0

ei(r+R) cosh x J2ν(2
√

rR sinh x) dx.

(A.18)

Proof. We start from the integral relation due to Buchholz for the product of
two (normalized) Whittaker functions (see [7, p. 86, Eq. (5c)], or [17, BU 86
(5c), p. 716], but we warn the reader of a misprint in [17]):

∫ +∞

0

e− t
2 (a1+a2) cosh x

(
coth

(x

2

))2k

I2ν(t
√

a1a2 sinh x) dx

=
Γ( 12 + ν − k)

t
√

a1a2 Γ(1 + 2ν)
Wk,ν(ta1) Mk,ν(ta2), (A.19)

for 
(12 + ν − k) > 0, 
ν > 0, a1 > a2 > 0, t > 0, where Wk,ν(z), Mk,ν(z)
are the Whittaker functions (see [30], p. 295), and Iν(z) is the modified Bessel
function which is related to Bessel function Jν(z) by the formula [26, Eq.
(5.7.4)]:

Iν(z) = e−i π
2 ν Jν(iz) , −π < Arg z <

π

2
. (A.20)



Vol. 17 (2016) Localization of the Regge Poles 2897

We recall (see [30], p. 305), that: ∀z ∈ C\R
−,

W0,ν(z) =
i

2
√

πz e−i π
2 ν H(1)

ν

(
iz

2

)
, (A.21)

M0,ν(z) = Γ(1 + ν) 22ν e−i π
2 ν

√
z Jν

(
iz

2

)
. (A.22)

In the Eq. (A.19), we take a1 = 2R, a2 = 2r, k = 0 and we obtain easily:

Jν(itr) H(1)
ν (itR) = − 2i√

π

Γ(2ν + 1)
Γ(ν + 1

2 )Γ(ν + 1)22ν
eiνπ

.

∫ +∞

0

e−t(r+R) cosh x I2ν(2t
√

rR sinh x) dx.

Now, using the duplication formula for the Gamma function [26, Eq. (1.2.3)]:

Γ(2ν + 1) =
1√
π

22ν Γ
(

ν +
1
2

)
Γ(ν + 1), (A.23)

we obtain immediately:

Jν(itr) H(1)
ν (itR) = −2i

π
eiνπ

∫ +∞

0

e−t(r+R) cosh x I2ν(2t
√

rR sinh x) dx.

(A.24)

Now, we see it is easy to extend (A.24) for 
t ≥ 0, t �= 0 recalling that (see
[26], eqs. (5.7.1) and (5.11.8)),

I2ν(z) ∼ 1
Γ(2ν + 1)

(z

2

)2ν

, z → 0, | Arg z |< π, (A.25)

I2ν(z) ∼ 1√
2πz

(
ez + e−z±iπ(2ν+ 1

2 )
)

, z → ∞, | Arg z |< π − δ, ±�z > 0.

(A.26)

Then taking t = −i in (A.24) and using (A.20), we obtain the result. �

A.4. Uniform Estimate for the Green Kernel K(r, s, ν)

In this subsection, we use Theorem A.2 to prove an uniform estimate with
respect to r, s > 0 and 
ν ≥ 0 for the Green kernel defined in Sect. 3 by
K(r, s, ν) = u(s)v(r) if s ≤ r and K(r, s, ν) = u(r)v(s) if s ≥ r, where

u(r) =
√

πr

2
Jν(r), v(r) = −i

√
πr

2
H(1)

ν (r).

Let us begin by an elementary result:

Lemma A.3. For 2
ν + 1 > δ > 0, one has:
∫ +∞

0

| Jν(t) |2
tδ

dt =
Γ(δ) Γ(
ν + 1−δ

2 )
2δ | Γ( δ+1

2 + i�ν) |2 Γ(
ν + 1+δ
2 )

.
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Proof. We recall, [47, p. 403], that for 
(μ + ν + 1) > 
δ > 0, one has:

∫ +∞

0

Jμ(t)Jν(t)
tδ

dt =
Γ(δ) Γ

(
μ+ν−δ+1

2

)

2δΓ
(

δ+ν−μ+1
2

)
Γ

(
δ+ν+μ+1

2

)
Γ

(
δ−ν+μ+1

2

) .

(A.27)

We choose μ = ν̄, δ > 0 in (A.27), and taking account Jν̄(t) = Jν(t), the
lemma is proved. �

We deduce the following estimate:

Corollary A.4. For all δ ∈ (0, 1), there exists Cδ > 0 such that:
∫ +∞

0

| Jν(t) |2
tδ

dt ≤ Cδ eπ|	ν| (1 + 
ν)−δ , ∀
ν ≥ 0.

Proof. Let us fix δ ∈ (0, 1). By Lemma A.3, one has:
∫ +∞

0

| Jν(t) |2
tδ

dt =
Γ(δ)
2δ

Γ(
ν+ 1−δ
2 )

Γ(
ν+ 1+δ
2 )

1
| Γ( δ+1

2 + i�ν) |2 . (A.28)

We recall that for x ≥ 1
2 (see [37], Eq. (5.6.7)),

| Γ(x + iy) |≥ 1√
cosh(πy)

Γ(x). (A.29)

Moreover, one has the following asymptotics [26, p. 15],

Γ(z + α)
Γ(z + β)

∼ zα−β , z → +∞. (A.30)

Hence, the corollary follows immediately from (A.28), (A.29) and (A.30). �

Now, we can establish the following result:

Theorem A.5. For any δ ∈ (0, 1), there exists Cδ > 0 such that, for all 0 <
r ≤ R and 
ν ≥ 0,

| Jν(r) H(1)
ν (R) | ≤ Cδ eπ|	ν| (1 + 
ν)− δ

2 (rR)
δ−1
4 .

Proof. Of course, by a standard continuity argument, it suffices to prove the
estimate for 0 < r < R and 
ν > 0. Using Theorem A.2, one has:

| Jν(r) H(1)
ν (R) |≤ 2

π

∫ +∞

0

| J2ν(2
√

rR sinh x) | dx. (A.31)

We make the change of variables s = 2
√

rR sinh x and we obtain:

| Jν(r) H(1)
ν (R) |≤ 1

π
√

rR

∫ +∞

0

| J2ν(s) |
(

1+
s2

4rR

)− 1
2

ds. (A.32)
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We take δ ∈ (0, 1) and by the Cauchy–Schwarz inequality, one deduces from
(A.32):

| Jν(r) H(1)
ν (R) |≤ 1

π
√

rR

(∫ +∞

0

| J2ν(s) |2
sδ

ds

) 1
2

·
(∫ +∞

0

sδ

(
1 +

s2

4rR

)−1

ds

) 1
2

. (A.33)

By Corollary A.4,
(∫ +∞

0

| J2ν(s) |2
sδ

ds

) 1
2

≤ Cδ eπ|	ν| (1 + 
ν)− δ
2 . (A.34)

Hence, the Theorem follows from the obvious inequality:
∫ +∞

0

sδ

(
1 +

s2

4rR

)−1

ds ≤ Cδ (rR)
δ+1
2 . (A.35)

�
From the definition of the Green kernel K(r, s, ν), we deduce an uniform

bound with respect to r, s and ν in the right complex half-plane :

Corollary A.6. For any δ ∈ (0, 1), there exists Cδ > 0 such that, for all r, s > 0
and 
ν > 0,

| K(r, s, ν) | ≤ Cδ eπ|	ν| (1 + 
ν)− δ
2 (rs)

δ+1
4 .

A.5. Uniform Asymptotics for the Bessel Functions with Respect to the Order

In this section, we shall recall some uniform asymptotics for the Bessel function
Jν(r) and the Hankel function H

(1)
ν with respect to ν when r belongs to a com-

pact set. We emphasize that all these uniform asymptotics fail if r ∈ (0,+∞).

Proposition A.7. Let δ > 0 be small enough. For r > 0 belonging to a compact
set, we have the uniform asymptotics when ν → ∞:

Jν(r) =

(
r
2

)ν

Γ(ν + 1)

(
1 + O

(
1
ν

))
, | Arg ν |≤ π − δ.

H(1)
ν (r) = − i

π

(r

2

)−ν

Γ(ν)
(

1 + O

(
1
ν

))
, | Arg ν |≤ π

2
− δ.

Proof. The first asymptotics follows directly from (A.1). We refer to [36, p.
374] for the same explanation for the modified Bessel function Iν(z). To prove
the second asymptotics, we use the following result [43, Eq. (1.2)] for the
Macdonald’s function Kν(z):

Kν(z) =
1
2

Γ(ν)
( z
2 )ν

(
1 + O

(
1
ν

))
, | Arg ν |≤ π

2
− δ. (A.36)

We conclude using the relation [26, Eq. (5.7.1)]:

H(1)
ν (r) = −2i

π
e−iν π

2 Kν(−ir). (A.37)

�
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Remark A.8. A more precise uniform asymptotic expansion for Jν(r) and
H

(1)
ν (r) for r in a compact set is necessary for the study of the Regge poles.

Following [43], one has:

Jν(r) =

(
r
2

)ν

Γ(ν + 1)

(
1 − r2

4ν
+ O

(
1
ν2

))
, | Arg ν |≤ π − δ. (A.38)

H(1)
ν (r) = − i

π

(r

2

)−ν

Γ(ν)
(

1 +
r2

4ν
+ O

(
1
ν2

))
, | Arg ν |≤ π

2
− δ.

(A.39)

We deduce from the previous remark the following result:

Corollary A.9. For Arg ν ∈ [π
2 − δ, π

2 ] and for r, s in a compact set, one has
the following uniform asymptotics when ν → ∞:

Jν(s) H(1)
ν (r) =

1
iπν

(s

r

)ν
(

1 +
r2 − s2

4ν
+ O

(
1
ν2

))

+
2

Γ2(ν + 1)

(rs

4

)ν
(

1 − r2 + s2

4ν
+ O

(
1
ν2

))
.

Proof. Using (A.3), one has:

Jν(s)H(1)
ν (r) =

Jν(s)J−ν(r) − e−iπν Jν(s)Jν(r)
i sin(πν)

. (A.40)

Now, we remark that | Arg (−ν) |≤ π − δ. Then, we can also use the previous
uniform asymptotics for J−ν(r). For instance, we have as ν → ∞:

Jν(s)J−ν(r) =

(
s
r

)ν

Γ(ν + 1)Γ(−ν + 1)

(
1 +

r2 − s2

4ν
+ O

(
1
ν2

))
. (A.41)

But by the complement formula for the Gamma function [26, Eq. (1.2.2)]:

Γ(ν)Γ(1 − ν) =
π

sin(πν)
, (A.42)

one obtains :
Jν(s)J−ν(r)

i sin(πν)
=

1
iπν

(s

r

)ν
(

1 +
r2 − s2

4ν
+ O

(
1
ν2

))
. (A.43)

We can study the second term in (A.40) similarly. �

A.6. The Born Approximation

In this section, we prove that for a large set of potentials q(r) belonging to the
class A, the restriction of the Fourier transform of the potential on any ball
determines uniquely q(r). This result is coherent with the Born approximation.
We recall also the following facts: for general potentials V (x) (not necessary
with spherical symmetry) satisfying for all x ∈ R

n,

| V (x) | ≤ C (1+ | x |)−ρ, ρ > n, (A.44)

it is shown in [18] that the scattering matrix S(μ), μ ∈ [λ, λ + δ], where λ is a
fixed energy and δ > 0 is arbitrary small, determines the Fourier transform of



Vol. 17 (2016) Localization of the Regge Poles 2901

V on the ball B(0, 2
√

λ), and in [22], this result is extended to the case ρ > 3
2

for smooth potentials.
We have the following theorem:

Theorem A.10. Let V (x) = q(r) be a central potential in the class A with
ρ > n. Then, the restriction of the Fourier transform of V (x) on any ball
determines uniquely the potential.

Proof. Therefore, let us assume that V̂ (ξ) is known for |ξ| ≤ a for some a > 0.
We write:

V̂ (ξ) =
1

(2π)
n
2

∫

Rn

e−ix·ξ V (x) dx

=
1

(2π)
n
2

∫ +∞

0

(∫

Sn−1
e−irξ·ω dω

)
q(r) rn−1 dr.

But, it is well known that for ξ �= 0 (see for instance [2, Eq. (3.2)]):∫

Sn−1
e−irξ·ω dω =

2π

|rξ|n
2 −1

Jn
2 −1(r | ξ |). (A.45)

By our hypothesis, q(r) belongs to the Hardy class H2
+, so the Paley–Wiener

theorem (see (7.4)) asserts that there exists f ∈ L2(0,+∞) such that:

q(r) =
∫ +∞

0

e−tr f(t) dt (A.46)

Then, we have for ξ �= 0:

V̂ (ξ) =
1

| ξ |n
2 −1

∫ +∞

0

(∫ +∞

0

e−trJn
2 −1(r | ξ |) r

n
2 dr

)
f(t) dt.

(A.47)

Recalling that [47, Eq. (6), p. 386]:
∫ +∞

0

e−αrJν(βr) rν+1 dr =
2α (2β)ν Γ(ν + 3

2 )√
π (α2 + β2)ν+ 3

2
, 
ν > −1, 
α > |�β|,

(A.48)

we obtain easily for ξ �= 0:

V̂ (ξ) =
2

n
2 Γ(n+1

2 )√
π

∫ +∞

0

t

(t2 + |ξ|2)n+1
2

f(t) dt. (A.49)

Clearly, this later integral is analytic with respect to | ξ | in (0,+∞), so using
the standard analytic continuation principle and the inverse Fourier transform,
Theorem A.10 is proved. �
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[20] Horváth, M.: Partial identification of the potential from phase shifts. J. Math.
Anal. Appl. 380(2), 726–735 (2011)
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Laboratoire de Mathématiques Jean Leray
UMR CNRS 6629
2 Rue de la Houssinière, BP 92208
44322 Nantes Cedex 03, France
e-mail: francois.nicoleau@math.univ-nantes.fr

Communicated by Jan Derezinski.

Received: June 11, 2015.

Accepted: October 19, 2015.


	Local Inverse Scattering at a Fixed Energy for Radial Schrödinger Operators and Localization of the Regge Poles
	Abstract
	1. Introduction
	2. Review of Scattering Theory for Central Potentials
	3. The Regular Solution varphi (r, nu)
	4. The Jost Solutions f pm (r, nu)
	5. The Jost Functions α(ν) and β(ν)
	6. The Generalized Phase Shifts δ(ν)
	7. Localization of the Regge Poles
	7.1. The Case of Super-Exponentially Decreasing Potentials
	7.2. Potentials with compact support
	7.3. The Case of Potentials Dilatable Analytically

	8. Proof of the Theorem 1.2
	8.1. Uniqueness of the Regge Interpolation Function
	8.2. A New Proof of the Regge--Loeffel's Theorem

	9. Proof of the Theorem 1.4
	9.1. Proof of (A2) Longrightarrow (A1)
	9.2. Proof of (A1) Longrightarrow (A2)
	9.2.1. Reduction to the Analytic Case
	9.2.2. End of the Proof of Theorem 1.4


	Appendix A. 
	A.1. Some Basic Facts on the Bessel Functions
	A.2. Estimates on the Imaginary Axis for the Hankel Functions
	A.3. A New Integral Representation for the Product of Two Bessel Functions
	A.4. Uniform Estimate for the Green Kernel K(r,s,ν)
	A.5. Uniform Asymptotics for the Bessel Functions with Respect to the Order
	A.6. The Born Approximation

	Acknowledgements
	References




